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Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should I bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

f (t) =

e−t, t ≥ 0,
0, t < 0.

In the text (Example IV-6.1.3–2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by ν, we would get

f̂ (ν) =
∫
R

f (t)e−2iπνt dt =
1

1 + 2iπν
.

The idea, as discussed in Chapter IV-2, is that f̂ (ν) gives a representation of the
“amount” of the signal present at the frequency ν. Now, it is desirable to be able
to reconstruct f from f̂ , and we shall see in Section IV-6.2 that this is done via the
formula

f (t)“=”
∫
R

f̂ (ν)e2iπνt dν. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with Mathematica®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of
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Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f (t). Are the tables wrong? Well, no.
But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L2(R;C) to f . Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.
1. The story—it is the story of the L2-Fourier transform—is not completely trivial.

It requires some delving into functional analysis at least, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. It is not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, is beautiful.
The nature of the points above, as they relate to this series, are as follows.

Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an inter-
esting pair of articles concerning this is [Wigner 1960] and [Hamming 1980].
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What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial
matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will normally be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

I am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.
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Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki1 ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

Andrew D. Lewis Kingston, ON, Canada
1Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French

mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concept is referred
to before being defined, and starting developments from the most general, and proceeding to
the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.
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Preface for Volume 5

This final volume in this series is the second of the two core volumes in terms
of our principal theme of a mathematical theory of signals and systems. In this
volume we develop some aspects of system theory. As we explain in the text,
system theory is an enormous topic and one that simply cannot be presented in
a comprehensive way, never mind within the confines of one piece of work. Our
focus, therefore, is on a certain sort of system, namely one described by differential
or difference equations and with a finite-dimensional state space. We give special
attention to linear systems, although we do thoroughly develop some aspect of the
theory outside the traditional linear confines. We do this in order to develop some
aspect of system theory in a sufficiently general way that we can discuss linear
systems in a useful context.

We begin this volume in a manner similar to how we began our volume on
signal theory: by giving some extensive motivation in Chapter 1. We do this
by developing a large number of examples that show how differential and dif-
ference equations arise in many applications, coming from engineering, science,
economics, and social science. We also consider examples that illustrate the sort of
problems that system theory is designed to deal with.

After the presentation of these motivational examples, we present in Chapter 2
a framework for “general system theory.” We do this so that we can discuss, sepa-
rately from the specific settings we deal with later in the volume, the characteristics
of systems that one might encounter. In this way, when we encounter these in the
subsequent specific settings, the questions about structure are real questions and
not just properties. We also use the development of a general setting for system
theory to consider again some system theoretic problems, now in a more precise
way than we were able to do in Chapter 1 in the context of examples.

The models we present in Chapter 1, and the models we will study in later chap-
ters, come in the form of differential and difference equations. The former arise in
continuous-time settings while the latter arise in discrete-time settings. We carry
forward the project initiated in Volume 4 of a parallel development of continuous-
and discrete-time cases, now in the context of system theory. This begins in earnest
in Chapter 3 where we discuss differential and difference equations in generality.
Here we go to great lengths to precisely say what differential and difference equa-
tions are, and not just give specific examples of these and them talk about how to
solve them; this is the usual way in which these objects are considered. We develop
differential and difference equations in a setting whose generality exceeds what we
will encounter in later chapters. We do this for the usual reasons, namely that
the generality adds context. Specifically, we develop a framework where partial
differential and partial difference equations are considered, although we do not do
anything with these later. One device that we carefully develop (and which is often
not carefully developed) is that of the flow for an ordinary differential or difference
equation.
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In the next two chapters, 4 and 5, we consider classes of ordinary differential
and difference equations in detail. The focus in both chapters is on linear equations,
and as such the material we develop here is part of the undergraduate education
for all engineer students and most physical science students. Our presentation
of this material is different from what most such students will encounter. The
differences arise in the by now expected ways: we do not focus so much on the
computational facets of these topics, instead concentrating on structure and on the
presentation of general results that will be useful to us later. Students who have
had a normal undergraduate course in differential equations will recognise some
of the main topics we cover, but will find the details we present rather different.
Also, we develop difference equations alongside differential equations as equals.
A presentation of difference equations at the level of generality we give seems
difficult to find in the existing literature. We do not get deeply into the topic
of dynamical systems—one direction one can go after learning about differential
and difference equations—we do introduce some qualitative methods for studying
these equations, as these qualitative methods are more insightful than the usual
presentation of mechanical computational procedures. While we do not spend as
much effort on computation techniques as is often seen in a course on differential
equations, we do recognise that computation is essential. With this in mind, we do
present sections on the use of computer tools for numerical solution of differential
and difference equations.

The beating heart of this volume is Chapter 6 where we introduce eight classes
of systems, coming in three pairs according to continuous-time/discrete-time, (state
space)/(input/output), and linear/(not linear). A central focus of our development
is the focus of continuity property of systems. This is not an emphasis one typically
sees in presentations of system theory, either at the introductory or advanced level.
It is here that we make careful and systematic use of our topologies for signals
presented in Sections IV-1.3 and IV-1.2, and which rely on the machinery to which
we devoted much of Volume 3. We also see that convolution, presented in detail
in Chapter IV-4, features prominently for linear systems.

The next two chapters, 7 and 8, deal specifically with topics connected to linear
system theory: the transfer function and the frequency response. These connect,
respectively, the Laplace transforms and the Fourier transforms to the theory of
linear systems, and provide a set of tools that are very useful in fields where linear
system theory is applied, such as control theory and signal processing.finish

Andrew D. Lewis Kingston, ON, Canada
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Chapter 1

Motivation for system theory

Throughout this volume we will use examples of systems from engineering,
physics, biology, economics, etc., to illustrate concepts from system theory. In this
chapter we present a large number of examples to show the breadth of problems
that can fit under the umbrella of the general theory we present. This will, we
hope, make it possible for readers with various backgrounds (and with sufficient
mathematical background) to read this volume and relate to the tools that are
introduced. We shall not provide a comprehensive overview of any of the subject
areas we rough upon, since to do this would be the subject of a treatise devoted
solely to modelling, and it is not our intention to provide this. A reader needing a
more in-depth treatment of the modelling for any of the areas we present can refer
to the literature we review in Section 1.3.1

We breakdown our presentation into two parts. In Section 1.1 we illustrate how
differential and difference equation models arise in various sorts of models. In this
volume, we shall restrict our attention to specific sorts of differential and difference
equations, namely ordinary differential and difference equations. In Section 1.1
we consider some models that do not fall into this category, in order to illustrate
that there are many interesting models that do not fall exactly into the framework
we develop. In Section 1.2, equipped with differential and difference equation
models, we present some ideas in system theory that arise in these models.

Do I need to read this chapter? A reader who feels like they need something
motivational to cling to as we go through the detailed mathematical presentation
will definitely need to read this chapter. Other readers will find it merely enjoyable.

•

Contents

1.1 How do differential and difference equations arise in mathematical modelling? 3
1.1.1 Mass-spring-damper systems . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 The motion of a simple pendulum . . . . . . . . . . . . . . . . . . . . . . 5

1In some areas, a truly mathematical presentation of the modelling background would be a
significant contribution, in and of itself, and we hope that this is undertaken at some point in all
cases.
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Section 1.1

How do differential and difference equations arise in
mathematical modelling?

We shall almost exclusively study models that arise from differential and differ-
ence equations. It is possible to approach the subject of differential and difference
equations from a purely mathematical point of view. And, indeed, even if one is
interested in only applying the theory of differential and difference equations in
specific areas, a good knowledge of this mathematical subject is necessary. How-
ever, a primary reason for the importance of differential and difference equations
in mathematics is that they arise so naturally and broadly in areas of application,
ranging from engineering, physics, economics, and biology, to name a few. Indeed,
it may not be inaccurate to say that differential and difference equations provide
the most important (but definitely not the only) conduit from developments in
mathematics to applications. In this section, we illustrate this with an array of
examples.

Caveat We mainly shall not be precise in this section with things like whether
functions are continuous, differentiable, etc. In the remainder of the text we shall
be more careful about these things. •

1.1.1 Mass-spring-damper systems

Let us start by considering a single mass connected to the ground by a spring and
a damper, as in Figure 1.1. The mass has mass m, the spring is a linear spring with

m

k d

y(t)

Figure 1.1 A simplified model of a car suspension

a restoring force proportional to the change in length from its equilibrium—i.e., the
spring force is −k∆, k ≥ 0, where ∆ is the change in length— and the damper is also
linear with a restoring force proportional of the velocity at which the damper is
contracted–i.e., the damper force is −d∆̇, d ≥ 0, where “ ˙ ” means “derivative with
respect to time.” This may be thought of as a simple model for a car suspension.
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We shall derive an equation that governs the vertical motion of the mass as a
function of time. We let y(t) be the vertical displacement of the mass, with the
assumption that y = 0 corresponds to the undeflected position of the spring. We
suppose that we have a gravitational force acting “downwards” in the diagram
and with a gravitational constant ag. One then performs a force balance, setting
vertical forces equal to the mass times the acceleration:

−dẏ(t) − ky(t) −mag = mÿ(t) ⇐⇒ mÿ(t) + dẏ(t) + ky(t) = −mag. (1.1)

Note that this is an equation with single independent variable t (time) and single
dependent variable y (vertical displacement). Moreover, the equation us not an
algebraic equation for y as a function of t, since derivatives of y with respect to t
arise.

During the course of this volume, we shall learn how to exactly solve a differ-
ential equation like this. But before we do so, let us see if we can, based on our
common sense, deduce what sort of behaviour a system like this should exhibit.
First let’s determine the equilibrium of the system, since it is not when y = 0, be-
cause of the gravitational force. Indeed, as equilibrium the mass should not be in
motion and so we ought to have ẏ = 0 and ÿ = 0. In this case, y = −mag

k . Now let’s
think about what happens when d = 0. What we expect here is that the mass will
oscillate in the vertical direction around the equilibrium. Moreover, we may expect
that as k becomes relatively larger, the frequency of oscillations will increase. Now,
adding the damping constant d > 0, perhaps our intuition is not quite so reliable a
means of deducing what is going on here. But what happens is this: the damper
dissipates energy. This causes the oscillations to decay to zero as t→∞. Moreover,
if d gets relatively large, it actually happens that the oscillations do not occur, and
the mass just moves towards its equilibrium. These are things we will investigate
systematically.

Next let us complicate matters a little, and consider two interconnected masses
as in Figure 1.2. In this case, to simplify things we interconnect the masses only

m m
k k k

x1 x2

Figure 1.2 Interconnected masses

with springs. As in the figure, we let x1 and x2 denote the positions of the masses,
assuming that all springs are uncompressed with x1 = x2 = 0. In this case, the force
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balance equations for the two masses give the equations

−kx1(t) − k(x1(t) − x2(t)) = mẍ1(t), ⇐⇒ mẍ1(t) + 2kx1(t) − x2(t) = 0,
−kx2(t) − k(x2(t) − x1(t)) = mẍ2(t), ⇐⇒ mẍ2(t) + 2kx2(t) − x1(t) = 0.

Let us express this using matrix/vector notation:

m
[
1 0
0 1

] [
ẍ1(t)
ẍ2(t)

]
+ k

[
2 −1
−1 2

] [
x1(t)
x2(t)

]
=

[
0
0

]
.

If we introduce the notation

M = m
[
1 0
0 1

]
, K = k

[
2 −1
−1 2

]
, x(t) =

[
x1(t)
x2(t)

]
,

then we can further write this as

Mẍ(t) + Kx(t) = 0. (1.2)

Note that this is an equation with single independent variable t (time) and two
dependent variables x1 and x2, or equivalently a vector dependent variable (x1, x2) ∈
R2 (horizontal displacements). As was the case with the single mass, the key point
is that the equation involves derivatives of the dependent variables with respect to
the independent variable.

In the text, we will see how to analyse such equations as this. Let us say a few
words about the most interesting features of how this system behaves. There are
two interesting classes of behaviours, one occurring when x1(t) = x2(t) (the masses
move together) and one occurring when x1(t) = −x2(t) (the masses move exactly
opposite one another). These “modes” of the system are important, as we shall
see that every solution is a linear combination of these two. This has to do with
fundamental properties of systems of this general type.

1.1.2 The motion of a simple pendulum

Let us consider the motion of a pendulum as depicted in Figure 1.3. We suppose
that we have a mass m attached to a rod of length ℓ whose mass we consider to
be negligible compared to m. We have a gravitational force with gravitational
constant ag that acts downward in the figure. Summing moments about the pivot
point gives

−magℓ sinθ(t) = mℓ2θ̈(t) ⇐⇒ θ̈(t) +
ag

ℓ
sinθ(t) = 0. (1.3)

This is an equation in a single independent variable t (time) and a single depen-
dent variable θ (pendulum angle), and again is an equation in derivatives of the
dependent variable with respect to the independent variable.
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θ

ℓ

Figure 1.3 A simple pendulum

We shall not learn how to solve this equation in this text, although a “closed-form
solution” is possible with a suitably flexible notion of “closed-form.” However,
problems such as this one call into question the value of having a closed-form solu-
tion. What is, perhaps, a more useful way to understand the behaviour of a simple
pendulum is to try some sort of approximation. We shall make an approximation
near the two equilibria of the pendulum, corresponding to θ = 0 (the “down”
equilibrium) and θ = π (the “up” equilibrium). To make the approximation, we
note that, for ϕ near zero,

sinϕ ≈ ϕ,
sin(π + ϕ) = sinπ cosϕ + cosπ sinϕ ≈ −ϕ.

Therefore, the equation governing the behaviour of the simple pendulum are
approximated near θ = 0 (say θ = 0 + ϕ) by

ϕ̈(t) +
ag

ℓ
ϕ(t) = 0.

We shall see during the course of our studies that a general solution to these
equations takes the form

ϕ(t) = ϕ(0) cos(ωϕ(t)) +
ϕ̇(0)
ω

sin(ωϕ(t)),

where ω =
√

ag/ℓ. Thus, if the approximation is valid, this suggests that the
motion of the simple pendulum, for small angles, consists of periodic motions
with frequency ω. It turns out that this behaviour is indeed close to that of the
genuine pendulum equations. To be precise, the motion of the pendulum for small
angles is indeed periodic, and as the angle gets smaller, the frequency approaches
ω. However, the motion is not sinusoidal. Moreover, the period gets larger for
larger amplitude motions.

A very large amplitude motion would be when θ starts atπ. If we take θ = π+ϕ
then the governing equation is approximately

ϕ̈(t) −
ag

ℓ
ϕ(t) = 0.
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We shall see that a general solution to these equations takes the form

ϕ(t) = ϕ(0) cosh(ωϕ(t)) +
ϕ̇(0)
ω

sinh(ωϕ(t)), (1.4)

whereω =
√

ag/ℓ. (Here cosh and sinh are the hyperbolic cosine and sine functions,
defined by

cosh(x) = 1
2 (ex + e−x), sinh(x) = 1

2 (ex
− e−x).)

For most values of ϕ̇(0) and ϕ̇(0), the solutions of this equation diverge to ∞
as t → ∞. Of course, as ϕ gets large, this approximation becomes unreliable.
Nonetheless, the behaviour observed for small times agrees with what we think the
dynamics ought to be: since the “up” equilibrium is unstable, trajectories generally
move away from this equilibrium. Note, however, that there are a small number
of the solutions (1.4) that do not diverge to ∞, but approach ϕ = 0 as t → ∞,
namely those for which ϕ(0) = − ϕ̇(0)

ω . In terms of the physics of the pendulum,
these solutions correspond to the motions of the pendulum where the pendulum
swings with just enough energy to approach the upright equilibrium as t→∞.

1.1.3 Bessel’s equation

We shall not motivate here precisely how the equation we consider in this
section arises in practice. We shall be content with the following description: If
one tries to solve the potential equation (1.19) in two-dimensions and in polar
coordinates, then one arrives at the equation

r2∂
2y
∂r2 + r

∂y
∂r
+ (r2

− α2)y = 0, (1.5)

forα ∈ R (actually, in the particular case of the potential equation,α is a nonnegative
integer). This equation, for example, describes the radial displacement in a drum
when it has been struck. The equation is known as Bessel’s equation.

We note that Bessel’s equation has one independent variable r, one dependent
variable y, and is an equation in the derivatives of the dependent variable with
respect to the independent variable.

1.1.4 RLC circuits

Next let us consider differential equations such as arise in circuits comprised of
ideal resistors, inductors, and capacitors. Let us define these terms. We will use
“E,” “I,” and “q” to denote voltage, current, and charge, respectively.
1. A resistor is a device across which the voltage drop is proportional to the current

through the device. The constant of proportionality is the resistance R: E = RI.
2. An inductor is a device across which the voltage drop is proportional to the time

rate of change of current through the device. The constant of proportionality is
the inductance L: E = LdI

dt .
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3. A capacitor is a device across which the voltage drop is proportional to the
charge in the device. The constant of proportionality is the 1

C with C being the
capacitance: E = 1

Cq.
The three devices are typically given the symbols as in Figure 1.4. The physical

I(t) E = RI

Resistor

I(t) E = LdI
dt

Inductor

q(t) E = 1
C q

Capacitor

Figure 1.4 Electrical devices

laws governing the behaviour of ideal circuits are:

1. the current I is related to the charge q by I = dq
dt ;

2. Kirchhoff’s voltage law states that the sum of voltage drops around a closed
loop must be zero;

3. Kirchhoff’s current law states that the sum of the currents entering a node must
be zero.

Given a collection of such devices arranged in some way—i.e., a “circuit”—along
with voltage and/or current sources, we can imagine that governing equations for
the behaviour of the circuit can be deduced. In Figure 1.5 we have a particularly

−
E

+

R

L

C

Figure 1.5 A series RLC circuit

simple configuration. The voltage drop around the circuit must be zero which
gives the governing equations

E(t) = RI(t) + Lİ(t) + 1
Cq(t) =⇒ Lq̈(t) + Rq̇(t) + 1

Cq(t) = E(t)
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where E(t) is an external voltage source. This may also be written as a current
equation by merely differentiating:

LÏ(t) + Rİ(t) + 1
C I(t) = Ė(t). (1.6)

In either case, we have an equation in a single independent variable (time) and a
single dependent variable (charge or current). The equations involve, of course,
derivatives of the dependent variable with respect to the dependent variable.

We comment here on similarity with the equation (1.6) with the equation (1.1)
describing the motion of a damped mass/spring system are worth remarking upon.
The capacitor plays the rôle of a spring (stores energy), the resistor plays the rôle
of a damper (dissipates energy), and the inductor plays the rôle of a mass (it
energy is obtained from “motion” in the circuit). This gives rise to an important
“electro-mechanical analogy” in the modelling of physical systems.

1.1.5 Tank systems

Here we consider two tanks with fluid in a configuration shown in Figure 1.6.
Here are the variables and parameters:

a1

a2

A1

A2

Fin

Fout,1

Fout,2

Figure 1.6 Mass balance in coupled tank flow

Fin volume flow into tank 1
Fout,j volume flow out of tank j, j ∈ {1, 2}
A j cross-sectional area of tank j, j ∈ {1, 2}
a j cross-sectional area of orifice j, j ∈ {1, 2}
h j height of water in tank j, j ∈ {1, 2}
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Let us state the rules we shall use to deduce the behaviour of the system, assuming
that the fluid is “incompressible” so the mass of a given volume of fluid will be
constant:
1. according to Bernoulli’s Law, the velocity of the fluid exiting a small orifice at

the bottom of a tank with level h is
√

2agh, where ag is the acceleration due to
gravity;

2. the volume of rate of fluid flow passing through an orifice with constant cross-
sectional area A with velocity v (assumed to be constant across the cross-section)
is Av;

3. the rate of change of volume in a tank with constant cross-sectional area A and
fluid height h is Adh

dt .
We can thus form the balance equations for each tank by setting the rate of

change of volume in the tank equal to the volume flow in minus the volume flow
out:

A1ḣ1(t) = Fin(t) − Fout,1 = Fin(t) −
√

2a1h1(t),

A2ḣ2(t) = Fout,1(t) − Fout,2 =
√

2a1h1(t) −
√

2a2h2(t).
(1.7)

The equations governing the behaviour of the system have one independent vari-
able t (time) and two dependent variables h1 and h2, or a single vector variable
(h1, h2) ∈ R2 (the heights of fluid in the tanks). As with all of our examples, the
equations involve the derivatives of the dependent variables with respect to the
independent variable.

1.1.6 Population models

An important area of application of differential equations is in biological sci-
ences, in areas such as epidemiology and population dynamics. We shall consider
here two simple models of population dynamics as an illustration.

First let us consider a population that we model as a scalar variable p ∈ R. First
we consider a situation where the rate of population growth is proportional to p for
small values of p, but then diminishes as we approach some “limiting population
size, p0, representing the fact that there may be limited resources. This can be
represented by a model like

ṗ(t) = kp(t)
(
1 −

p(t)
p0

)
. (1.8)

This is often referred to as the logistical model of population dynamics. This is
an equation with a single independent variable t (time) and a single dependent
variable p (population).

While we will not explicitly examine this equation in this text, the reader may
relatively easily verify the following behaviour, under the natural assumption that
k > 0.
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1. There is an equilibrium at p = 0 that is not stable. That is, for small positive
populations, the rate of population change is positive.

2. There is an equilibrium at p = p0 that is stable. That is, for populations less than
the limiting population p0, the rate of population change is positive.
Let us now consider two populations a and b, with a representing the population

of a prey species and b representing the population of a predator species. The
following assumptions are made:
1. prey population increases exponentially in the absence of predation;
2. predators die off exponentially in the absence of predation;
3. predator growth and prey death due to predation is proportional to the rate of

predation;
4. the rate of predation is proportional to the encounters between predators and

prey, and encounters themselves are proportional to the populations.
Putting all of this together, the behaviour of the prey population a can be modelled
by

ȧ(t) = αa(t) − βa(t)b(t)

and the behaviour of the predator population can be modelled by

ḃ(t) = δa(t)b(t) − γb(t).

We should combine these equations:

ȧ(t) = αa(t) − βa(t)b(t),

ḃ(t) = δa(t)b(t) − γb(t).
(1.9)

These equations have a single independent variable t (time) and two dependent
variables a and b, or equivalently a single vector variable (a, b) ∈ R2. This model is
called the Lotka–Volterra predator-prey model.

We shall not in this text undertake a detailed analysis of this equation. However,
a motivated reader can easily find many sources where this model is discussed in
great depth and detail.

1.1.7 Economics models

Another area where differential equations are useful is in social sciences, and
especially economics. We consider an example of this, known as the Rapoport
production and exchange model.

The setup is this. Individuals A and B produce goods that we measure by scalar
variables a, b ∈ R. The individuals A and B trade, each trying to maximise their
“happiness,” typically referred to as “utility.”2 We denote by p the proportion of

2In philosophy, the notion of “utility” as a measure of general happiness dates, in its most
explicit form, to Thomas Hobbes (1588–1679) and John Locke (1632–1704). While early versions of
utilitarianism were based in religion, John Stuart Mill (1806–1873) developed a powerful secular
utilitarian ethic, which itself led to the secular philosophy of Jeremy Bentham (1748–1832).
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goods produced and retained, and by q the proportion of goods produced and
traded: thus p + q = 1. The assumptions made by Rapoport are these:
1. people are lazy, so the act of production is a loss of utility;
2. people are gauche, so possessing something produced is a gain in utility;
3. the loss of utility due to the agonies of production are proportional to the

amount produced;
4. while there is no cap in a person’s desire to acquire crap, the utility they gain

from acquiring crap diminishes, the more crap they have;
5. the rate at which A or B makes product a and b is proportional to the rate at

which utility increases with respect to a and b.
With all this as backdrop, let us introduce something meaningful. First of all, let
us give the utility functions for A and B:

UA(a, b) = log(1 + pa + qb) − rAa, UB(a, b) = log(1 + qa + pb) − rBb.

If one examines these expressions, one can see that they capture in form and shape
the characteristics of individuals A and B described above. Of course, many other
forms are also viable candidates.

Now, according to condition 5, the equations that govern the amounts a and b
are:

ȧ(t) = cA

(
p

1 + pa(t) + qb(t)
− rAa(t)

)
,

ḃ(t) = cB

(
p

1 + pa(t) + qb(t)
− rBb(t)

)
.

(1.10)

These equations have a single independent variable t (time), and two dependent
variables a and b, or equivalently one vector variable (a, b) ∈ R2 (production).
The equation is one that involves the derivatives of the dependent variables with
respect to the independent variable.

An indepth analysis of these equations is not something we will undertake here.

1.1.8 Euler–Lagrange equations

We consider here the following problem. Suppose we are given y1, y2 ∈ R and
x1, x2 ∈ R with x1 < x2. Denote by

Γ(y1, y2, x1, x2)
= {γ : [x1, x2]→ R | γ is twice continuously differentiable γ(x1) = y1, γ(x2) = y2}

the set of all twice continuously differentiable functions with value y1 at the left
endpoint and y2 at the right endpoint, as in Figure 1.7. Suppose that we have
a function L : [x1, x2] × R2

→ R that we call the Lagrangian. Associated to this
Lagrangian and a function γ ∈ Γ(y1, y2, x1, x2) we have an associated cost

CL(γ) =
∫ x2

x1

L(x, γ(x), γ′(x)) dx.
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Figure 1.7 Candidate curves in an optimisation problem

The objective is to find γ that minimises CL(γ). That is, we seek γ∗ ∈ Γ(y1, y2, x1, x2)
such that

CL(γ∗) ≤ CL(γ), γ ∈ Γ(y1, y2, x1, x2).

Such a function γ∗ is a minimiser for the Lagrangian L. One can show, without
much difficulty, but using methods from the calculus of variations that are a little
far afield for us at the moment, that if γ∗ is given by γ∗(x) = y(x) is a minimiser for
L, then it necessarily satisfies the equation

d
dt

(
∂L
∂y′

)
−
∂L
∂y
= 0,

which are the Euler–Lagrange equations for this problem. We give the equations
in their traditional form, although this form is genuinely confusing. Let us be a
little more explicit about what the equations mean. By an application of the Chain
Rule, the Euler–Lagrange equations can be written as

∂2L
∂y′∂y′

y′′(x) +
∂2L
∂y′∂y

y′(x) −
∂L
∂y
= 0. (1.11)

Note that this is an equation in the single independent variable x and the single de-
pendent variable y. Again, it is an equation involving derivatives of the dependent
variable with respect to the independent variable. However, this equation has, in
general, an important difference with some of the other equations we have seen.
To illustrate this, let us consider the Lagrangians L(x, y, y′) = y′. In this case

∂2L
∂y′∂y′

y′′(x) +
∂2L
∂y′∂y

y′(x) −
∂L
∂y

is identically zero: a circumstance unlike the equations we have encountered be-
fore.



14 1 Motivation for system theory 2022/03/07

The Euler–Lagrange equations are important equations in physics and optimi-
sation, but to study them in any depth is not something we will be able to undertake
in this text.

1.1.9 Maxwell’s equations

Maxwell’s equations are famously important equations governing the be-
haviour of electromagnetic phenomenon. Let us introduce the physical variables
of Maxwell’s equations:

E electric field
B magnetic field
J current density
ρ charge density

The first three of these quantities are vector fields on the physical space R3. Thus
we should think of each of these physical quantities as defining a direction in
R3 and a length at each point in R3, i.e., an arrow. The charge density ρ is a
scalar-valued function on R3. Let us say a word or two about how we should
interpret these quantities. First of all, the charge density ρ is relatively easy to
understand: it prescribes the density of charge provided by subatomic particles
per unit volume as we move through physical space. The electric field indicates
how charge moves through space; at each point (x1, x2, x3) in space, it moves in the
direction of E(x1, x2, x3). Thus E(x1, x2, x3) can be thought of as a “force” acting on
a charge at the point (x1, x2, x3). The magnetic field B3 acts for magnetic field lines
rather like the electric field acts from the flow of charge: it indicates the direction of
magnetic force applied to a moving charge. The current density J gives the current,
as a vector quantity, rather in the manner of a fluid flow.

There are also some physical constants in the equations of electromagnetism.
These are the following:

ϵ0 permittivity of free space
µ0 permeability of free space

These constants are proportionality constants, rather in the manner of the acceler-
ation due to gravity, which we have been denoting by ag.

With this preparation, we shall produce Maxwell’s equations which indicate

3There is another quantity H that also represents the magnetic field, and is proportional to B in
a vacuum, but has a more complicated relationship within a magnetic material. Very often H is
referred to as the magnetic field, and B is called something different. But often the name “magnetic
field” is applied to B
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how these quantities interact with one another:

ϵ0∇ · E = ρ,
∇ · B = 0,

∇ × E = −
∂B
∂t
,

∇ × B = µ0J + µ0ϵ0
∂E
∂t
.

(1.12)

Let us first describe the mathematical symbols “∇·” and “∇×” that you will
learn about in a course on vector calculus. The operator ∇· is the divergence and
acts on a vector field X = (X1,X2,X3), giving a function according to the definition

∇ · X =
∂X1

∂x1
+
∂X2

∂x2
+
∂X3

∂x3
.

The precise meaning of the divergence of a vector field requires a few ways of
thinking about things that are not part of ones makeup prior to a course like
this, but basically vanishing divergence corresponds to “volume preserving.” The
operator ∇× is curl and again acts on a vector field X = (X1,X2,X3) giving another
vector field according to the definition

∇ × X =
(
∂X2

∂x3
−
∂X3

∂x2
,
∂X1

∂x3
−
∂X3

∂x1
,
∂X2

∂x1
−
∂X1

∂x2

)
.

As with divergence, a really good understanding of curl of a bit beyond us at this
point. Let us say two things: (1) ∇×X measures the “rotationality” of a vector field
X, so its vanishing somehow means it is not rotational; (2) if ∇ × X = 0, then there
exists a function f such that X = ∇ f , with ∇ f being the gradient of f :

∇ f =
(
∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

)
.

What we can now see is that there are four independent variables (x1, x2, x3, t)
in Maxwell’s equations, representing spacetime, and 3 + 3 + 3 + 1 = 10 dependent
variables E, B, J, and ρ. The equations involve the partial derivatives of the
dependent variables with respect to the independent variable.

Now we can say a few words about the meaning of Maxwell’s equations. The
first equation, called Gauss’s law for electricity, says that the “expansiveness”
of the electric field is proportional to the charge density. The second equation,
called Gauss’s law for magnetism, says that the expansiveness of the magnetic
field is zero. The third equation, called Faraday’s law of induction, tells us that
a time-varying magnetic field gives rise to an electric field. Finally, the fourth
equation, called Ampére’s law, says that both a time-varying electric field and a
current density field give rise to magnetic field.

Of course, any systematic investigation of Maxwell’s equations is not something
we can undertake here, and indeed in complete generality is not possible, by any
reasonable meaning of “systematic investigation.”
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1.1.10 The Navier–Stokes equations

The Navier–Stokes equations deal with the motion of a Newtonian, viscous,
and compressible fluid. This means (1) there are viscous, i.e., friction, effects
that are accounted for, (2) the viscous stresses arise as a consequence of temporal
deformation of the fluid, (3) and the mass of fluid in a given volume is allowed
to vary. The motion of the fluid we represent by a mapping ϕ : R × R3

→ R3, so
that ϕ(t, x) indicates where the fluid particle at x ∈ R3 at time 0 resides at time t.
We shall abbreviate ϕt : R3

→ R3 the mapping ϕx(x) = ϕ(t, x). We shall not deal
directly with this mappingϕ, but rather with its associated velocity field, by which
we mean the mapping u : R ×R3

→ R3 defined by

u(t,ϕt(x)) =
d
dt
ϕt(x).

Thus u(t, x) is the velocity of the fluid particle initially at position x at time t. In
Figure 1.8 we illustrate how one can think of the velocity field by depicting the

x Φt(x)

u(t, φt(x))

Figure 1.8 The velocity field for a fluid motion

trajectory followed by a single particle, along with the velocity of that particle at
time t.

The Navier–Stokes equations are equations for the velocity field u. The first
part of these equations is the continuity equation, which represents the law of
conservation of mass:

∂ρ

∂t
+ ∇ · (ρu) = 0. (1.13)

Here ρ is a scalar-valued function on R3 giving the mass density of the fluid
as a function on physical space. The operator “∇·” is the divergence which we
encountered in our discussion of Maxwell’s equations above. Note that when ρ
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is constant—which corresponds to incompressible flow—the continuity equation
reads

∇ · u = 0,

meaning that the velocity field preserves volume. Along with the mass conser-
vation equation, we have a force/momentum balance equation that we will not
provide any details for:

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + ∇ · (µ(∇u + (∇u)T) − 2

3µ(∇ · u)I) + f . (1.14)

These are the Navier–Stokes equations.
Let us first define all of the mathematical components of this equation, at least

so one can imagine writing these equations down in explicit form. The term ∇u is
the gradient or Jacobian of the velocity field, which is a 3 × 3-matrix:

∇u =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


.

The second term in the Navier–Stokes equations is the vector obtained by multiply-
ing this matrix on the left by the vector u. The variable p is the pressure field which
is a scalar function, and ∇p represents the gradient of the pressure field, i.e., the
vector field grad p = ( ∂p

∂x1
, ∂p
∂x2
, ∂p
∂x3

). The variable µ is the viscosity, and represents
the internal forces in the fluid due to friction causes when creating strain gradients.
Of course, I is the 3×3 identity matrix. Note that the second term on the right-hand
side has the form ∇ ·M for a matrix function M. This is a vector field, called the
divergence of M. It is given explicitly by

∇ ·M =

 3∑
j=1

∂M1 j

∂x j
,

3∑
j=1

∂M2 j

∂x j
,

3∑
j=1

∂M3 j

∂x j

 .
Finally, f are body forces, e.g., gravitational effects.

The Navier–Stokes equations have four independent variables (x1, x2, x3, t) and
five dependent variables, ρ, p, and (u1,u2,u3). It is, of course, an equation in the
derivatives of the dependent variables with respect to the independent variables.

1.1.11 Heat flow due to temperature gradients

Our next modelling task is that of heat flow in a homogeneous medium. Let us
specify the physical assumptions we make.
1. For simplicity we work with a one-dimensional medium, i.e., a rod.
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2. We assume a homogeneous medium, i.e., its characteristics are constant as we
move throughout. We assume the rod to have a constant cross-sectional area A.

3. Thermal energy is given by Q = cρVu, where ρ is the mass density, V is the
volume, u is temperature, and c is the specific heat of the medium. We assume
ρ and c to be constant throughout the material.

4. We assume that rate of heat transfer from one region to another through a slice
of the rod is proportional to the temperature gradient:

q = −K
∂u
∂x
,

where q is the heat flow per unit area and x measures the distance along the
rod. This is Fourier’s law.

5. Thermal energy is conserved in each chunk of the rod.
Let us use these assumptions to derive an equation governing the temperature
distribution in a rod. Consider a chunk of the rod as shown in Figure 1.9. In the

q(a) q(b)

x

x = a x = b

Figure 1.9 A chunk of rod used in the derivation of the heat
equation

figure, the rod chunk is shown at a fixed time. The quantity q(a) denotes the rate
of heat flow at the position x = a on the rod, and q(b) denotes the rate of heat flow
at the position x = b on the rod. In terms of the quantities in Figure 1.9, Fourier’s
law reads

q(a) = −K
∂u
∂x

∣∣∣∣
a
, q(b) = K

∂u
∂x

∣∣∣∣
b

for some constant c > 0. The signs result from the fact that heat will flow in a
direction opposite the temperature gradient. If we assume that no heat escapes
from the upper and lower boundaries of the rod, then the net change in heat in the
rod chunk in a time ∆t will be

∆Q = KA∆t
(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
, (1.15)
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With the assumptions we have made, the net change in heat in the chunk over a
time ∆t is given by

∆Q = cρA(b − a)∆t
∂u
∂t
, (1.16)

where ∂u
∂t is the average of the time rate of change of temperature throughout

the chunk and ρ is the mass density of the material. By making (b − a) and ∆t
sufficiently small, one may ensure that ∂u

∂t does not vary much through the chunk.
Equating (1.15) and (1.16) we get

cρA(b − a)∆t
∂u
∂t
= KA∆t

(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
Now, dividing by µ∆t(b − a) and taking the limit as b − a goes to zero we get the
heat equation:

∂u
∂t
= k

∂2u
∂x2 , (1.17)

where k = K
cρ > 0 is the diffusion constant.

The heat equation has two independent variables x and t and a single dependent
variable u. It is an equation in the derivatives of the dependent variable with respect
to the independent variables. A multidimensional (in space) analogue of the heat
equation is imaginable, and takes the form

∂u
∂t
= k

(
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n

)
.

The operator in the right-hand side is of independent interest, and is known as the
Laplacian of u and given by

∆u =
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

With this bit of notation, the heat equation can be written as

∂u
∂t
= k∆u.

We shall subsequently look at the heat equation in some detail, and shall say
some things about the behaviour of its solutions at that time.

1.1.12 Waves in a taut string

Next we consider the small transverse vibrations of a taut string when it is
plucked, e.g., a guitar string. To derive the equations governing these transverse
vibrations, we use simple force balance on a short segment of the string. In
Figure 1.10 we depict a little segment of a string with its transverse displacement
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T

θ(b)

T

θ(a)

x = a x = b

Figure 1.10 A segment of string used in the derivation of the
wave equation

denoted u. It is assumed that the tension T in the string is independent of x and t.
This is acceptable for small string deflections. The vertical component of the force
on the string is given by

Fy = −T sin(θ(a)) + T sin(θ(b)).

Let us manipulate this until it looks like something we want. We denote the vertical
deflection of the string by u. We then have

tanθ(a) =
∂u
∂x

∣∣∣∣
a
, tanθ(b) =

∂u
∂x

∣∣∣∣
b
.

Now recall that for small angles θ we have sinθ ≈ tanθ. This then gives

Fy ≈ T
(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
.

Now the mass of the segment of string is ρ(b − a) with ρ the length mass density
of the string, which we assume to be constant. The vertical acceleration is then
∂2u
∂t2 , which we suppose to be constant in the segment. By making the length of the
segment sufficiently small, this becomes closer to being true. An application of
force balance now gives

ρ(b − a)
∂2u
∂t2 ≈ T

(
∂u
∂x

∣∣∣∣
b
−
∂u
∂x

∣∣∣∣
a

)
.

Dividing by ρ(b − a) and letting b − a go to zero, we have the wave equation:

∂2u
∂t2 = c2∂

2u
∂x2 , (1.18)

where c =
√

T
ρ > 0 is the wave speed for the problem.

There are two independent variables x and t for the wave equation, and a
single dependent variable u. The equation itself is one involving derivatives of the
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dependent variable with respect to the independent variables. As with the heat
equation, a multidimensional (in space) analogue of the heat equation is possible,
and takes the form

∂2u
∂t2 = c2

(
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n

)
.

The operator in the right-hand side is the Laplacian which we saw with the heat
equation:

∆u =
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

The wave equation can be thus written as

∂2u
∂t2 = k∆u.

In the text we shall examine the wave equation in a little detail, and say some
things about the behaviour of its solutions.

1.1.13 The potential equation in electromagnetism and fluid mechanics

In this section we shall see how the Laplacian, introduced in our discussion
of the wave equation, arises in special cases of Maxwell’s and Navier–Stokes’
equations.

We first consider Maxwell’s equations of electromagnetism. We make a few
assumptions about the physics that will allow us to simplify the complicated
Maxwell’s equations.
1. We assume we are in steady-state, so the dependent variable do not depend on

time.
2. We assume that the electric field E is a potential field. This means that there

exists a function V, called the electric potential, such that E = ∇V = ( ∂V
∂x1
, ∂V
∂x2
, ∂V
∂x3

).
3. We assume that we are in free space so the charge density is zero.
The equations for the potential function are determined by Gauss’s law:

∇ · E = 0 =⇒ ∇ · ∇V = 0.

A direct computation gives

∇ · ∇V = ∆V =
∂2V
∂x2

1

+
∂2V
∂x2

2

+
∂2V
∂x2

3

. (1.19)

This is the potential equation in R3.
Next we turn to a special case of the Navier–Stokes equations, making the

following physical assumptions.
1. The flow in inviscid, so the viscosity µ vanishes.
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2. The flow in incompressible, so the divergence of the fluid velocity vanishes.
3. We assume the fluid velocity is derived from a velocity potential: u = −∇ϕ.
4. We suppose that body forces are potential forces, i.e., f = −∇V, e.g., gravitational

forces.
In this case, the assumptions of incompressibility and the existence of a velocity

potential give the following form of the equation of continuity:

∇ · u = 0 =⇒ ∆ϕ = 0.

Let us investigate the impact of this, along with the other physical assumptions, in
describing properties of the fluid flow. First of all, a direct computation gives

u · ∇u = (∇ × u) × u + grad(1
2u · u),

where a× b denotes the vector cross-product and a · b denotes the Euclidean inner
product of a, b ∈ R3. Since u = −∇ϕ, we calculate that ∇ × u = 0, and so the
Navier—Stokes equations read

∇

(
∂ϕ

∂t
+

1
2

(u · u) +
p
ρ
+ V

)
= 0.

This implies that
∂ϕ

∂t
+

1
2

(u · u) +
p
ρ
+ V

depends only on t. This is known as Bernoulli’s principle.
Let us indicate another way in which the Laplacian arises in fluid flow problems,

in this case with planar flow problems, i.e., that u3 = 0. We assume that the fluid
velocity (u1,u2, 0) has the special form

u1 =
∂ψ

∂x2
, u2 = −

∂ψ

∂x1

for a function ψ of (x1, x2) called the stream function. Note that the resulting fluid
velocity automatically satisfies the incompressible continuity equation:

∂u1

∂x1
+
∂u2

∂x2
=

∂2ψ

∂x1∂x2
−

∂2ψ

∂x2∂x1
= 0.

If we additionally require that ∆ψ = 0, then ∇ × u = 0. In this case, we recall from
vector calculus that u = −gradϕ, i.e., the flow is a potential flow.
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1.1.14 Einstein’s field equations

In Einstein’s theory of general relativity, a spacetime is a four-dimensional
“differentiable manifold.” This means that around every point in spacetime there
is a parameterisation by R4. To keep things simple (and still representative), we
just assume that our spacetime is equal to R4. There are two physical objects
defined on spacetime, and Einstein’s field equations relate these. The first is the
stress-energy tensor T which is a symmetric 4 × 4 matrix function. This encodes
the properties of spacetime like mass and electromagnetic fields. The other object
defined on spacetime of interest is the metric tensor g, which is another symmetric
4 × 4 matrix function, this one having the property that it has one negative and
three positive eigenvalues. Physically, g determines the gravitational properties of
spacetime, as well as the space and time structure.

We definitely will not derive Einstein’s field equations, but will simply produce
them. First of all, we denote the coordinates for spacetime by (x1, x2, x3, x4); the use
of superscripts as indices is traditional in general relativity. The components of
the matrices T and g we denote by T jk and g jk, j, k ∈ {1, 2, 3, 4}. First we define the
Christoffel symbols associated with g:

γ j
kl =

1
2

4∑
m=1

g jm

(
∂gmk

∂xl
+
∂gml

∂xk
−
∂gkl

∂xm

)
,

where g jk, j, k ∈ {1, 2, 3, 4}, are the components of g−1. Next, the curvature tensor is
then defined by

R j
klm =

∂Γ j
lm

∂xk
−
∂Γ j

km

∂xl
+ Γ

j
kmΓ

m
lm − Γ

j
lmΓ

m
km,

the Ricci tensor is the 4 × 4-symmetric matrix function Ric defined by

Ric jk =

4∑
l=1

Rl
l jk, j, k ∈ {1, 2, 3, 4},

and the scalar curvature is function defined by

ρ =
4∑

j,k=1

g jk Ric jk .

Finally, we define the contravariant form of the stress-energy tensor, which is the
symmetric 4 × 4-matrix function T with components

T jk =

4∑
l,m=1

g jlgkmTlm, j, k ∈ {1, 2, 3, 4}.
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With all of this data, we can now write the Einstein field equations:

Ric − 1
2ρg + Λg =

8πG
c4 T, (1.20)

where Λ is the cosmological constant, G is the gravitational constant, and c is the
speed of light in a vacuum.

There are four independent variables in Einstein’s field equations, the coor-
dinates (x1, x2, x3, x4) for spacetime. There are nominally ten dependent variables
(the sixteen components of g taking into account symmetry). The equations are
complicated equations in the derivatives of dependent variables with respect to
the independent variables.

Of course, we will not say anything about the nature of the solutions to Einstein’s
field equations. This is the subject of deep work by many smart people.

1.1.15 The Schrödinger equation

In quantum mechanics, the Schrödinger equation governs the behaviour of a
function known as the wave function. The wave function encodes the state of
a quantum system in the form of a “probability amplitude.” These are typically
complex-valued as they come equipped with, not just an amplitude, but a phase.
This phase allows for the wave part of the particle/wave duality seen in the be-
haviour of subatomic particles. We shall not delve into the quantum mechanical
machinations required to understand where the equation comes from, but shall
merely produce the Schrödinger equation for the wave function ψ of a single par-
ticle moving in R3 in an electric field with electric potential function V:

iℏ
∂ψ

∂t
= −
ℏ2

2µ
∆ψ + Vψ, (1.21)

where i =
√
−1, ℏ is Planck’s constant, and µ is the effective mass of the particle.

Note that the Schrödinger equation is an equation with four independent vari-
ables, (x1, x2, x3) and t, and a single complex-valued dependent variable ψ, or
equivalently, regarding a complex number as determined by its real and imaginary
parts, two real dependent variables. Of course, the equation is one involving the
derivatives of the dependent variable with respect to the independent variables.

1.1.16 The Black–Scholes equation

The model we arrive at in this section is widely used in options trading, and
has garnered a Nobel Prize in Economics for its developers. It is also true that
the widespread misuse of this model, and models like it, combined with greed
and governments divesting themselves of regulatory responsibilities, has led to
the ruination of millions of lives. So mathematics can make a difference in peoples
lives!
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The equation we give provides the price V of an option as a function of stock
price S and time t. It also has the following parameters:

r risk-free compound interest rate
σ standard deviation of stock’s returns

We shall not describe the “derivation” of the model, but simply state the
Black–Scholes equation:

∂V
∂t
+

1
2
σ2S2∂

2V
∂S2 + rS

∂V
∂S
− rV = 0.

For this equation, there are two independent variables (t,S) and a single indepen-
dent variable V. The equation involves derivatives of the independent variable
with respect to the dependent variables.

Now you can go off into a room and run Black–Scholes simulations, and make
yourself rich!

1.1.17 Fibonacci numbers and rabbits

A completely unrealistic model for a rabbit population assumes that (1) rabbits
appear in opposite sex pairs, (2) a pair of opposite sex rabbits gives birth to a pair
of opposite sex rabbits at the end of every time period, and (3) rabbits never die.
If fn is the number of opposite sex pairs at the end of the nth time period, then we
have

fn+1 = fn + fn−1, n ∈ Z>0.

If we specify f0 = 0 and f1 = 1, then the sequence 0, 1, 1, 2, 3, 5, 8, . . . is the Fibonacci
sequence.

1.1.18 Bank balance model

Suppose that one has a bank account that earns annual interest α ∈ R>0. At the
end of each year, the account owner withdraws an amount w that might depend
on time (perhaps it increases each year) and on the account balance. Let us denote
the “time” here by n ∈ Z≥0, with n = 0 being the opening of the account with a
balance x0. Subsequence balances are then computed by

xn+1 = (1 + α)xn − w(n, xn), n ∈ Z≥0. (1.22)

A question that might arise is then whether the interest rate α, the withdrawal rule
w, and the initial balance x0 leads to growth or depletion of the account.

1.1.19 Keynesian national income model

Consider the following variables:

Y national income
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C consumer expenditure
I private investment in equipment
G government expenditure.

If “time” is a counter n ∈ Z≥0 indicating a regular time interval, say a year, then we
can measure these quantities at the end of each time interval and then we have

Yn = Cn + In + Gn.

Now these quantities are interrelated, and these interrelations give the behaviour
of the model. For example, maybe consumer expenditure is proportional to the
previous national income,

Cn+1 = αYn.

Maybe capital investment is proportional to the increase of consumer expenditure
from one year to another,

In+1 = β(Cn+1 − Cn).

Finally, we may assume that government expenditure is constant, normalised to
be Gn = 1. Assembling this all together gives

Yn+2 − α(1 + β)Yn+1 − Yn = 1. (1.23)

One can wonder whether, in such a model, the national income grows or shrinks.

1.1.20 A discrete model for heat flow

Suppose that we have a rod of infinite length whose temperature we measure
at time intervals ∆time and spatial intervals ∆space. Thus we record temperatures

u(m∆time,n∆space), m ∈ Z≥0, n ∈ Z.

Heat will flow from position (n − 1)∆space to position n∆space and from position
n∆space to position (n + 1)∆space. The discrete analogue to Fourier’s Law gives the
temperature increase at position n∆space from time m∆time to time (m + 1)∆time as

u((m + 1)∆time,n∆space) − u(m∆time,n∆space)

= k
(
u(m∆time, (n − 1)∆space) − u(m∆time,n∆space)

)
− k

(
u(m∆time,n∆space) − u(m∆time, (n − 1)∆space)

)
= k

(
u(m∆time, (n − 1)∆space) − 2u(m∆time,n∆space) + u(m∆time, (n − 1)∆space)

)
,

for a constant k ∈ R>0.
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1.1.21 Summary

In this section we have presented myriad illustrations of how equations involv-
ing various numbers of independent and dependent variables, along with deriva-
tives or iterates of these, may arise in applications. The subject of this volume is
how to solve some such equations, and how to look for the essential attributes of
equations such as these and of system models described by these equations. These
are the subjects of “differential equations” and “difference equations.” These are
subjects that are impossible to comprehend fully in any sort of generality, which
is not unreasonable since differential and difference equations describe physical
phenomenon that we do not expect to be able to understand fully. Thus the sub-
ject of differential and difference equations is a combination of looking deeply at
certain special cases (particularly linear equations) and working hard to determine
characteristic behaviour of general classes of systems.

1.1.22 Notes

[Brown 2007, page 68]

Exercises

1.1.1 Think of, or Google, three models (not included in the text) where differential
or difference equations arise in practice. In each case, do the following:
(a) indicate the independent and dependent variables;
(b) give some meaning to these variable in terms of the particular applica-

tion;
(c) provide a tiny bit of background about where the equations come from.
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Section 1.2

System thinking

In the preceding section we saw a multitude of examples from a variety of areas.
These examples as presented fall into the general area of “dynamical systems,”
in the sense that we have models and we want to understand the behaviour of
the models. In this section we shall reconsider some of these examples from a
systems point of view, in order to illustrate some of the questions that can arise
in the general subject of “system theory.” In system theory, one typically has the
important additional concepts of “input” which allows one to affect the behaviour
of the model. This is an important way in which system theory differs from
dynamical system theory.

The discussion here will be highly abbreviated, both in terms of theory and in
terms of the details of the particular applications. Some of the theoretical problems
are considered in detail subsequently in this volume.

1.2.1 Mass-spring-damper systems

Let us first think about the simplified car suspension model depicted in Fig-
ure 1.1. We can suppose that the mass is subject to a vertical force F. In this case,
one is interested in the response of the system; namely, given values for the physi-
cal constants m, k, and d, how does the system respond? Specific questions might
include: what is the amplitude of the oscillations for a given input? how long does
it take for oscillations to damp out? what is the maximum acceleration experienced
by the mass? These sorts of questions are related to the behaviour of the system
that transfers the input F to the response y. In terms of design, one is interested in
selecting parameters k and d so that the input/response behaviour satisfies certain
criterion. This exact system is examined in some detail in Example 4.3.20.

For the coupled masses depicted in Figure 1.2, one might consider various
inputs to the system. For example, one might consider applying a force F1 applied
to mass m1, a force F2 applied to mass m2, or an application of both forces. One
might also consider the situation where F2 = αF1 for a constant α. Questions
that might arise are: can one select the inputs so as to have the response of the
system behave in a certain way? are some combinations of inputs more effective
than others at achieving this objective? Here we see questions of a somewhat
different character than for the car suspension model. Namely, we are interested
in designing the inputs so as to achieve a desired response.

1.2.2 RLC circuits

The RLC circuits discussed in Section 1.1.4 have associated with them a vari-
ety of system theoretic questions that are electrical analogues of the mechanical
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questions for the mass-spring-damper problems from the preceding section. Here
the response is perhaps the current in the circuit or the charge in a capacitor, and
the input in a voltage or current source at some point in the circuit. One can then
consider questions of how the physical constants, i.e., values for resistance, capac-
itance, or inductance, affect the response of the system for a given input. One can
also think about how to design inputs to achieve desired behaviour of the response.

1.2.3 Tank systems

For the tank system depicted in Figure 1.6, one can ask questions similar to those
for mass-spring-damper systems and RLC circuits. For example, one can regard
the input flow Fin as being fixed, and then examine how the physical constants A1,
A2, a1, and a2 affect the fluid levels in each of the tanks. Alternatively, one can think
about designing the input flow Fin in such a way that the fluid levels in the tanks
behave as desired.

1.2.4 Population models

The most important features of the population models of Section 1.1.6 are the
equilibria for the systems and their stability. Equilibria are to be thought of as states
where there is a balance between the various factors that affect a population. The
stability of an equilibrium reflects whether the balance is maintained when there
are small changes in the populations.

1.2.5 Euler–Lagrange equations

In Section 1.1.8 we considered a sort of problem that is important in system
theory, that of optimisation. While it is important, it is not a subject to which we
will devote any substantial attention in this volume. We give a brief overview
of how to formulate optimality problems as so-called “goal-seeking systems” in
Section 2.3.1.

1.2.6 Heat flow due to temperature gradients

In Section 1.1.11 we considered the temperature distribution in a rod. Here
there are system theoretic problems that are of the “analysis” type and of the “de-
sign” type, as we have seen above. A typical “analysis” problem is a description of
the temperature distribution as time gets large. A typical design problem might be
the specification of boundary and/or initial conditions to give a desired temperature
distribution.

We note that the particular model for the heat equation (and the wave and
potential equations) are not of the sort to which we will devote attention in this
volume. This is because these are instances of so-called “infinite-dimensional
systems.” They are infinite-dimensional because the temperature distribution (or
the string displacement, or the charge distribution) is, at a given instant of time, a
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function and so will typically live in some infinite-dimensional space of functions,
such as considered in Sections IV-1.2 and IV-1.3.

1.2.7 The Black–Scholes equation

The Black–Scholes equation is actually used in the financial tool to assist in
making decisions regarding stocks. A simplified description of this sort of activity
would be that one considers how parameter changes in the Black–Scholes model,
based on empirical observations, leads to decision-making strategies.

1.2.8 Bank balance model

The simple bank balance model of (1.22) can be thought of with the withdrawal
strategy w as being fixed, or as being an input to be designed. In the former
situation, one wishes to examine the effects of the withdrawal strategy on the long-
term balance in the account, whereas, in the latter situation, one wishes to determine
a strategy that leads to a desired behaviour as the bank balance, e.g., maximising
it at retirement.

1.2.9 Keynesian national income model

For the simplified national income model presented in (1.23), one can again
think of the parameters of the model as being fixed or as being designed. Also,
in the derivation of this model, various assumptions were made about the model,
and these may be changed in order to examine their effects on the national income.

1.2.10 A token-operated turnstile

All of the examples presented in Section 1.1 are modelled by differential or
difference equations. However, it is not the case that all natural examples of
systems are modelled in this way. To illustrate this, we consider an example of
a system that is modelled by a deterministic finite state automaton, which we
consider in a general setting in Example 2.2.11–2.

Consider a token-operator turnstile that has an arm that blocks access, opening
when a token is inserted in the machine. Such a machine has two states, “locked”
(L) and “unlocked” (U). The turnstile has two possible inputs, “insert token” (T)
and “push to open” (P). The default state is L. An input of T will change the state
to U, while an input of P will not change the state from L. If the state is U and an
input of P is given, the state changes to L. An input of T while in state U will not
change the state. This simple process is summarised by the diagram

L
T

66

P
��

U
P

vv

T
UU
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1.2.11 Image transmission

Suppose that we wish to transmit an image over a communication channel. A
general schematic for this is shown in Figure 1.11, and we see that, abstractly, one

source
encoder

channel
encoder

Modulator

physical
channel

Demodulator
channel
decoder

source
decoder

Figure 1.11 A communication channel

transmits a signal through various stages in the transmission process. If one has
an image, then one must convert this into a format that can be converted into a
transmittable signal that can be decoded by the receiver. There are many ways
to convert an image file into a transmittable signal, so let us just illustrate this
abstractly in a special case. Consider the greyscale image shown in Figure 1.12.4

This image is 256 × 256 pixels, and each pixel is assigned a number in the set

Figure 1.12 A greyscale image

{0, 1, . . . , 255}, with 0 corresponding to white and 255 to black. Thus the image can
be thought of as a map f : {0, 1, . . . , 255}2 → {0, 1, . . . , 255}. One way to think of this
is as a R-valued signal defined on a two-dimensional discrete domain.

4Image downloaded from Waterloo BragZone, http://links.uwaterloo.ca/bragzone.base.html.
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Exercises

1.2.1 Think of, or Google, three instances (not included in the text) of instances
where “systems thinking” of the sort illustrated in this section arise. In each
case, do the following:
(a) identify inputs and outputs;
(b) indicate whether there is an “analysis” or a “design” problem;
(c) provide some context about why the system theoretic problems are in-

teresting and/or useful.
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Section 1.3

Notes

1.3.1 Mechanics

1.3.2 Fluid mechanics

[Newton 1687]
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This version: 2022/03/07

Chapter 2

General classes of systems and their
properties

We shall, for the most part, focus our attention on specific sorts of systems,
typically systems described by differential and difference equations. However, it
is sometimes useful to give a lower resolution view of the subject, since by doing
so one can separate out specifically system-theoretic concepts from other concepts
particular to the certain classes of systems. Thus, in this chapter we present a
“general” theory of systems that will include as special cases all of the systems we
shall subsequently consider in detail.

The objectives of the presentation is to define in a general setting important
system-theoretic notions such as input, output, state, linearity, causality, time de-
pendence, interconnection, etc. The generality will allow us to represent these
important concepts in a framework that is free from the baggage of structure that
is not required for these concepts to make sense. We shall also carefully describe
the additional assumptions that must be placed on a general system framework
to arrive at the special classes of systems to which we shall devote the greatest
attention: linear systems.

Do I need to read this chapter? For a reader whose interest is in the standard
theory of linear systems—and the development of such systems is the primary
objective of this volume—this chapter might be regarded as optional. However,
we believe that a general and abstract framework that gives an (not the) answer to
the question, “What is a system?” is useful and interesting. •
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Section 2.1

Abstract formulations of systems

In this section we introduce the basic definition of what we shall mean by a
“general system,” and flesh out some consequences of this definition. We shall
introduce as special cases of this definition a few examples that we shall only
explore in detail in subsequence chapters.

2.1.1 General systems

Our most general notion of system is the following.

2.1.1 Definition (General system) A general system is a pair Σ = (V ,B ) where
(i) V = (Vi)i∈I is a family of sets (for i ∈ I, the set Vi is an object of Σ) and
(ii) B ⊆

∏
i∈I Vi (the behaviours of the system). •

The way in which one should think about a general system is this. Each of the
sets Vi, i ∈ I, represents some component of the system. A behaviour, by definition,
is a mapping β : I→ ∪i∈IVi with the property that β(i) ∈ Vi, i ∈ I (Definition I-1.6.7).
Given a behaviour β, β(i) represents the way in which the component Vi contributes
to that behaviour.

We shall not really work at length with the preceding very general notion of a
system. However, to illustrate how it works, it is worth looking at a few examples.
These examples are chosen for their simplicity, and for their ability to represent the
general definitions.

2.1.2 Examples (General systems)
1. Let us consider a particle of mass m falling under the influence of a gravita-

tional force determined by the gravitational acceleration ag. The objects in the
system are the mass m ∈ R>0, the gravitational acceleration ag ∈ R>0, and the
twice continuously differentiable path ξ : R≥0 → R followed by the particle for
nonnegative times. Thus

V = R>0 ×R>0 × C2(R≥0;R).

A behaviour is a selection (m, ag, ξ) ∈ V of an element of each of the three
objects of the system. Of course, a behaviour is not arbitrary, but involves a
relationship between the objects of the system; this is what makes the concepts
of a system have content. And this is where the specifics of the system enter
into the description, i.e., this is where the modelling considerations of Chapter 1
enters the picture. The physics, i.e., force balance, mandates that

B = {(m, ag, ξ) ∈ V | mξ̈(t) = −mag},
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if gravity acts in the opposite direction of increasing ξ. Let us make a few
observations about this set of behaviours:

(a) The behaviour is actually independent of the object m. This is fine.
(b) The behaviours place restrictions on ξ ∈ C2(R≥0;R). Thus the object

C2(R≥0;R) is far larger than is needed to capture the behaviours of the
system. For example, we could replace this object with C∞(R≥0;R), the
infinitely differentiable mappings from R≥0 to R. But even this is larger
than is required. Sometimes the precise specification of the objects is im-
portant. For example, one could also make the set of behaviours empty by
over-prescribing the set of functions from C2(R≥0;R) to which ξ belongs.
For example, if we require that ξ(t) = et, there will be no behaviours that
satisfy the physical model.

(c) We have prescribed the time domain R≥0 on which paths for the particle
are defined. One could change this time interval, or one could allow paths
with varying time intervals.

(d) Similarly, the codomainR for the paths of the particle is too large. Thus the
system description contains behaviours one will never observe in practice.

(e) For each (m, ag) ∈ R>0 × R>0, there are many ξ ∈ C2(R≥0;R) for which
(m, ag, ξ) ∈ B . Again, this is to be expected, and is something we shall
subsequently deal with in a systematic way.

The objective with this sort system is to understand the behaviour of the be-
haviours. In this case this is easily done, but generally this might be difficult.
This sort of system described by a linear ordinary differential equation is one
we shall study in detail in the sequel.

2. Let Q = {s1, s2}, letΛ = {0, 1}, and define δ : Q×Λ→ Q according to the following
table:

0 1

s1 s2 s1

s2 s1 s2

We call the elements of Q states and the elements of Λ letters (thus Λ is the
alphabet). Note that δ(s, 1) = s and δ(s, 0) , s; thus a 0 changes the state and a
1 leaves the state unchanged. Thus, alongside the table, we can represent δ by
the diagram

s1

0

66

1
��

s2

0
vv

1

TT
(2.1)

Define W to be the set of finite sequences of 0’s and 1’s. We thus write an element
w ∈ W as w = w1w2 · · ·wk for some k ∈ Z>0, and where w j ∈ A for j ∈ {1, . . . , k}.
An element of W is called a word. Given a word w = w1w2 · · ·wk ∈ W, there
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exists q0, q1, . . . , qk ∈ Q such that, recursively,

q j+1 = δ(q j,w j+1), j ∈ {0, 1, . . . , k − 1}.

We call qk the terminal state of the word w. Note that, if q0 = s1, then q j,
j ∈ {0, 1, . . . , k}, measures the evenness (when q j = s1) or oddness (when q j = s2)
of the number of zeros in w1w2 · · ·w j, j ∈ {1, . . . , k}.
The system is then V = W ×Q andB ⊆ W ×Q is the set of pairs (w, q) where
w is a word and q is the terminal state of w.
This system (including the final condition that qk = s1) is an example of what is
known as a deterministic finite state automaton. Turing machines in the theory
of computation are variations of deterministic finite state automatons. One
can think of this as a system that accepts certain inputs; in the case described
above, it would accept strings of 0’s and 1’s with an even number of 0’s. While
interesting, we shall not work with these systems in detail in this volume.

3. Let us consider a pair of simple digital logic systems.
Let n ∈ Z>0. Suppose we have a device that has 2n input channels, labelled
{i0, i1 . . . , i2n−1}, and each channel receives an input from the set {0, 1}. The device
also has n output channels, labelled {o0, o1, . . . , on−1}, that each return an output
from the set {0, 1}. A one hot input to the 2n input channels means that at most
one of the 2n channels is a 1, and all others are 0. A binary encoder takes a one
hot input and returns n outputs according to the rule that, if the input channel
ik receives the 1, then the output o j ∈ {0, 1}, j ∈ {0, 1, . . . , on−1} satisfies

k =
n−1∑
j=0

o j2 j;

that is to say, o0o1 · · · on−1 is the binary representation of k. If i0 = i1 = · · · = i2n−1 =
0, then there is no output. We can regard a binary encoder as a system by

Benc =

(i,o) ∈ {0, 1}{0,1,...,2
n
−1}
× {0, 1}{0,1,...,n−1}

∣∣∣∣∣∣∣ ∥i∥ = 1,
n−1∑
j=0

o( j)2 j = k, i(k) = 1

 .
A binary decoder undoes this operation. Thus it has n input channels
{I0, I1, . . . , In} and 2n output channels {O0,O1, . . . ,O2n−1}, with each input channel
receiving an element from {0, 1} and each output channel receiving an element
from {0, 1}. The rule for producing an output is that, if

n−1∑
j=0

I j2 j = k ∈ {0, 1, . . . , 2n
− 1},
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output Ok is set to 1 and all other outputs are zero. Thus the output is one hot.
The system in this case is

Bdec =

(I,O) ∈ {0, 1}0,1,...,n−1}
× {0, 1}{0,1,...,2

n
−1}

∣∣∣∣∣∣∣ ∥O∥ = 1, O

 n−1∑
j=0

I( j)2 j

 = 1


These can each be clearly regarded as inverses of one another. One way one
can use these is as a means of converting input from a keyboard with 2n keys
input into a sequence of n 0’s and 1’s. Crucial to this is that keyboard input is
naturally one hot since only one key at a time can be depressed.

4. Suppose we perform a set of experiments where we control quantities c1, . . . , ck

and measure quantities m1, . . . ,mr. Each of these quantities we suppose to take
values in R>0. Thus we have V = (R>0)k

× (R>0)r. The experiment gives us a
systemB ⊆ V comprised of the data from each measurement. •

2.1.2 General input/output systems

A special class of system is that which involves an explicit identification of what
one calls “inputs” and what one calls “outputs.” The definition is the following.

2.1.3 Definition (General input/output system) A general input/output system is a
triple Σ = (U ,Y ,B ), where

(i) U is a set (the set of inputs),
(ii) Y is a set (the set of outputs), and
(iii) B ⊆ U ×Y (the behaviours of the system).

The set
dom(Σ) = {µ ∈ U | there exists η ∈ Y with (µ, η) ∈B }

is the domain of Σ and the set

rng(Σ) = {η ∈ Y | there exists µ ∈ U with (µ, η) ∈B }

is the range of Σ. Given µ ∈ U we denote

B (µ) = {η ∈ Y | (µ, η) ∈B }. •

In a very abstract sense, this notion of “input/output system” is easy to under-
stand: given a pair (µ, η) ∈ B , one should think of µ ∈ U as being data that is
input to the system and η ∈ Y as being a possible outcome. Some readers may
find it insightful to recall from Definition I-1.2.1 thatB ⊆ U ×Y is what we have
called a “relation” from U to Y . Note that, generally, there may be more than
one output η for a given input µ. We shall deal with this in a systematic way
in the sequel. However, sometimes one does have a well-defined mapping from
inputs to outputs, and the following definition captures this, keeping in mind that
a mapping between sets is a particular example of a relation (Definition I-1.3.1).
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2.1.4 Definition (Functional input/output system) A general input/output system Σ =
(U ,Y ,B ) is a functional input/output system if there exists FΣ : U → Y such that
B = graph(FΣ). •

Let us consider some general input/output systems.

2.1.5 Examples (General input/output systems)
1. For a general system Σ = (V ,B ) with V = (Vi)i∈I, it is sometimes natural to

partition the index set I as I = Ii ∪ Io with Ii ∩ Io, and then take U =
∏

i∈Ii
Vi and

Y =
∏

i∈Io
Vi.

2. For the particle in a gravitational field of Example 2.1.2–1, we take the inputs
to be the mass m of the particle and the gravitational acceleration ag. Thus we
take U = R>0 ×R>0. As output we takeY = C2(R≥0;R). In this case we see that
there are many possible outputs corresponding to a given output. Thus this is
not a functional input/output system.

3. We can consider the deterministic finite state automaton of Example 2.1.2–2 as
a general input/output system. To do so, we take U = W and Y = Q. Thus
inputs are words formed of 0’s and 1’s and outputs are the terminal states for
the corresponding word. We note that this is a functional input/output system
since the input uniquely determines the output.

4. We consider the binary encoder and decoder of Example 2.1.2–3. These have
the natural structure of general input/output systems by taking

Uenc = {0, 1}{0,1,...,2
n
−1}, Yenc = {0, 1}{0,1,...,n}

and
Udec = {0, 1}{0,1,...,n}, Ydec = {0, 1}{0,1,...,2

n
−1}.

5. For the experimental data system of Example 2.1.2–4, it is natural to take U to
be the set (R>0)k where the controlled variables reside, while we takeY = (R>0)r,
the set where the measured variables reside. In this case, there is a single output
for any input, corresponding to the fact that setting the controls yields a unique
set of measurements; otherwise, it is not a very good experiment. Thus this is
a functional input/output system. •

2.1.3 States for general input/output systems

We have observed that, for a general input/output system, there is the possibility
of having multiple outputs for a single output. In this section we explore a way of
parameterising this lack of uniqueness of the input→output process. The following
definition captures this.

2.1.6 Definition (Response function, state object) For a general input/output system
Σ = (U ,Y ,B ), let a set XΣ and a map ρΣ : XΣ ×U → Y be given such that

B = {(µ, η) ∈ U ×Y | there exists x ∈ XΣ such that ρΣ(x, µ) = η}.
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Then ρΣ is a response function and XΣ is a state object. •

Let us verify the existence of response functions.

2.1.7 Proposition (General input/output systems have response functions) If Σ =
(U ,Y ,B ) is a general input/output system for which dom(Σ) = U , then there exists a
set XΣ and a map ρΣ : XΣ × U → Y such that ρΣ is a response function with state object
XΣ.

Proof Let
XΣ =

{
f ∈ Y U

∣∣∣ graph( f ) ⊆B
}

and define ρΣ : XΣ ×U → Y by ρΣ( f , µ) = f (µ). Because dom(Σ) = U , XΣ , ∅.
Now let (µ0, η0) ∈B . We claim that there exists f(µ0,ξ0) ∈ XΣ such that f(µ0,η0)(µ0) =

η0. Indeed, let f ∈ XΣ and then define f̂ : U → Y by

f̂ (µ) =

 f (µ), µ , µ0,

η0, µ = µ0.

It is clear that f̂ ∈ XΣ and that f̂ (µ0) = η0, hence our claim holds. Now note that

ρΣ( f(µ0,η0), µ0) = f(µ0,η0)(µ0) = η0.

This shows that

B ⊆ {(µ, η) ∈ U ×Y | there exists x ∈ XΣ such that ρΣ(x, µ) = η}.

For the converse, suppose that (µ0, η0) ∈ U ×Y is such that η0 = ρΣ( f , µ0) for some
f ∈ XΣ. Then η0 = f (µ0), whence (µ0, η0) ∈B since graph( f ) ⊆B . ■

The preceding result is interesting abstractly. However, it is not very useful
in practice since the construction of the response function in the proof will not
generally have useful properties. Something of some concern to us will be the
matter of the existence of useful state objects and corresponding response functions.

It is insightful to consider response functions in terms of the examples we have
presented.

2.1.8 Examples (Response functions, state objects)
1. Let us work with the mass in a gravitational field from Example 2.1.5–2. Here

the inputs were the parameters (m, ag) ∈ U = R>0 × R>0 and the outputs were
paths for the particle ξ ∈ C2(R≥0;R). If one remembers1 that a solution of a
sufficiently well-behaved ordinary differential equation exists and is uniquely
determined by its initial condition, then one sees that we can take XΣ = R2 and
define

ρΣ((x0, v0), (m, ag)) = ξ(x0,v0),

1This is a subject we treat in detail in Section 3.2.1.
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where ξ(x0,v0) : R≥0 → R is the unique solution of the initial value problem

mξ̈(t) = −mag, ξ(0) = x0, ξ̇(0) = v0. (2.2)

We see that ((m, ag), ξ) ∈ U ×Y if and only if there exists (x0, v0) ∈ XΣ such that
ρΣ((x0, v0), (m, ag)) = ξ; this is just the statement of the existence and uniqueness
theorem for ordinary differential equations, along with the fact that all solutions
to the initial value problem (2.2) exist on R≥0.

2. Next we work with the Example 2.1.5–3, the deterministic finite state automa-
ton. While we called elements of Q “states,” it will not be until we talk systemat-
ically about systems with time that we shall be able to recognise this property as
a “state space.” In our current framework, since an input uniquely determines
the behaviour, there is an “obvious” state object and response function, as the
reader can show in Exercise 2.1.1.

3. The binary encoder and decoder of Example 2.1.2–4, as functional input/output
systems, possess an “obvious” state object and response function.

4. The experimental measurement Example 2.1.5–5, as a functional input/output
system, possesses an “obvious” state object and response function. •

2.1.4 Complex general input/output systems

The terminology “complex system” is one that can be used as some sort of
fashion statement. Here we shall use this terminology to describe systems that are
interconnected in some way. The idea is that one has a generalised input/output
system, but that the relationship between the input and the output is the result of
an interconnection of subsystems. While such systems are, at a low resolution, just
general input/output systems, the purpose of the complex systems point of view is
to understand how the behaviours of the subsystems contribute to the behaviour
of the full system, and the rôle of the specific interconnections in this process.

Let us define, in our general setting, what we mean by a complex system.

2.1.9 Definition (Complex general input/output system) A complex general input/out-
put system is a pair Σ = (S ,B ) where

(i) S = ((Ui,Yi,Bi))i∈I is a family of general input/output systems (the subsys-
tems of Σ) and

(ii) B ⊆
∏

i∈IBi is a general system with objects (Bi)i∈I. •

Let us unravel this rather featureless definition. We recall from Definition I-1.6.7
that an element ofB is a mapping β : I→ ∪i∈IBi for which β(i) ∈Bi. Let us denote
an element of

∏
i∈IUi by µ : I→ ∪i∈IUi with µ(i) ∈ Ui. Similarly, elements of

∏
i∈IYi

are written η : I → ∪i∈IYi with η(i) ∈ Yi. Also as in Definition I-1.6.7, we have the
projections pr j :

∏
i∈IBi → B j, j ∈ I, and similarly for

∏
i∈IUi and

∏
i∈IYi. This

then allows us to state the following property of complex general input/output
systems.
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2.1.10 Proposition (Complex general input/output systems are general input/output
systems) A complex general input/output systemΣ = (S ,B ) withS = ((Ui,Yi,Bi))i∈I

induces a general input/output system Σ′ = (U ,Y ,B ′) satisfying
(i) U =

∏
i∈IUi and Y =

∏
i∈IYi,

(ii) B ′ = {(µ, η) ∈ U ×Y | ∃ β ∈B such that pri(β) = (pri(µ),pri(η), i ∈ I}, and
(iii) B = {ϕ ∈

∏
i∈I(Ui ×Yi) | ∃ (µ, η) ∈B ′ such that pri(ϕ) = (πi(µ), πi(η))}.

Proof We takeU ,Y , andB ′ as in parts (i) and (ii), and show that condition (iii) holds.
Note thatBi ⊆ Ui ×Yi. Let β ∈B . Thus β(i) = (µβ(i), ηβ(i)) for some mappings

µβ : I→ ∪i∈IUi, ηβ : I→ ∪i∈IYi

with µβ(i) ∈ Ui and ηβ(i) ∈ Yi. That is to say, µβ ∈
∏

i∈I Ui and ηβ ∈
∏

i∈IYi. Thus
(µβ, ηβ) ∈ U ×Y . This shows that

B ⊆ {ϕ ∈
∏
i∈I

(Ui ×Yi) | ∃ (µ, η) ∈B ′ such that pri(ϕ) = (πi(µ), πi(η))}.

The opposite inclusion is simply the definition ofB ′. ■

While this does not completely clarify the situation, it does provide us with some
interpretation of a complex general input/output system as a subset of behaviours
from all possible combinations of inputs and outputs. However, this is all best
illustrated via concrete examples.

2.1.11 Examples (Complex general input/output systems)
1. Consider two general input/output systems Σi = (Ui,Yi,Bi), i ∈ {1, 2}, and we

suppose that we additionally have a set C and mappings

π1 : Y1 → C , π2 : U2 → C .

We define the serial interconnection of Σ1 and Σ2 to be the general input/output
system

Σ2 ◦ Σ1 ⊆ (U1 ×U2,Y1 ×Y2,B2 ◦B1)

defined by

B2 ◦B1 = {((µ1, µ2), (η1, η2)) ∈ (U1 ×U2) × (Y1 ×Y2) |
(µi, ηi) ∈Bi, i ∈ {1, 2}, π1(η1) = π2(µ2)}.

We depict in Figure 2.1 we depict how one should think of a serial interconnec-
tion. A particular instance of this is when Y1 = U2 = C and π1 = π2 = idC , in
which case diagram simplifies to that shown in Figure 2.1. In this simplified
case, we note that the input µ2 and the output η1 should not really be thought
of as being part of the system inputs and outputs, since they serve the purpose
of determining the character of the interconnection. Also, in the simplified case
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µ1

Σ1

η1
π1(η1) = π2(µ2)?

η1

µ2

µ2

Σ2

η2

µ1

Σ1

µ2 = η1
Σ2

η2

Figure 2.1 General serial interconnection (top) and simple serial
interconnection (bottom)

when both Σ1 and Σ2 are functional input/output systems, we see one way of
understanding the serial interconnection. In such a case we have

η2 = FΣ2(µ2) = FΣ2(η1) = FΣ2
◦ FΣ1(µ1),

and so the input→output relation is a literal composition.
2. Again, consider two general input/output systems Σi = (Ui,Yi,Bi), i ∈ {1, 2}. In

this case we again assume that we have a setC and maps πi : Ui → C . We then
define the parallel interconnection of Σ1 and Σ2 to be the general input/output
system

Σ1 + Σ2 = (U1 ×U2,Y1 ×Y2,B1 +B2)

with

B1 +B2 = {((µ1, µ2), (η1, η2)) ∈ (U1 ×U2) × (Y1 ×Y2)|
(µi, ηi) ∈Bi, i ∈ {1, 2}, π1(µ1) = π2(µ2)}.

In Figure 2.2 we depict how one can think of the parallel interconnection. The
situation simplifies if we take U1 = U2 = C and π1 = π2 = idC . In this case
we show in Figure 2.2 the manner in which the interconnection simplifies. To
understand the “+” notation in the case of functional input/output systems, we
make the following “computation,” assuming that all symbols make sense:

η1 + η2 = FΣ1(µ1) + FΣ2(µ2) = (FΣ1 + FΣ2)(µ),

where µ = µ1 = µ2. •
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µ1

µ2

π1(µ1) = π2(µ2)?

µ1

µ2

Σ1

η1

Σ2
η2

µ1 = µ2

Σ1

η1

Σ2
η2

Figure 2.2 General parallel interconnection (top) and simple par-
allel interconnection (bottom)

2.1.5 Linear general input/output systems

We now introduce, in our general setting, the notion of a linear system. Linear
systems comprise the balance of systems in which we shall be interested, so this
section marks, in some way, the beginning of the content of the volume.

We start with the definition.

2.1.12 Definition (Linear general input/output system) A linear general input/output
system is a triple Σ = (U ,Y ,B ), where

(i) U and Y are vector spaces over some field F and
(ii) B is a subspace of U ⊕Y . •

Linear systems admit particularly illustrative response functions.

2.1.13 Proposition (Linear general input/output systems admit linear response
functions) Let F be a field, let U and B be F-vector spaces, and let B ⊆ U ⊕ Y
(not necessarily a subspace, a priori). Then the following statements are equivalent:
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(i) Σ = (U ,Y ,B ) is a linear general input/output system;
(ii) there exist an F-vector space XΣ and linear mappings RΣ,s ∈ HomF(XΣ;Y ) and

RΣ,i ∈ HomF(U ;Y ) such that XΣ is a state object and

RΣ : XΣ ⊕U → Y
(x, µ) 7→ RΣ,s(x) + RΣ,i(µ)

is a response function.
Proof (i) =⇒ (ii) First we claim that there exists RΣ,i ∈ HomF(U ;Y ) such that

{(µ,RΣ,i(µ)) | µ ∈ U } ⊆B .

We will first prove this for dom(Σ) = U .
Let

LB = {L ∈ HomF(U ′;Y ) | U ′ ⊆ U , {(µ′,L(µ′)) | µ′ ∈ U ′} ⊆B }.

We define a partial order on LB by requiring that L1 ⪯ L2 if dom(L1) ⊆ dom(L2)
and L2|dom(L1) = L1. We claim that LB , ∅. Indeed, let (µ, η) ∈ B and define
U ′ = spanF(µ) and then define L ∈ HomF(U ′;Y ) by the requirement that L(µ) = η.
Then L ∈ LB . Let P ⊆ LB be a totally ordered subset. For L ∈ P let UL = dom(L).
Define UP = ∪L∈P UL and define LP ∈ HomF(UP ;Y ) by requiring that LP = L|UL for
L ∈ P . The definition of the partial order ensures that this definition makes sense. We
claim that LP ∈ P . We first show that LP is indeed linear. Let µ1, µ2 ∈ UP and let
L ∈ P be such that µ1, µ2 ∈ UL. Then

LP (µ1 + µ2) = L(µ1 + µ2) = LP (µ1) + LP (µ2).

Similarly, LP (aµ) = aLP (µ) for a ∈ F and µ ∈ UP . Moreover, if µ ∈ UP . then for L ∈ P
such that µ ∈ dom(L), we have

(µ,LP (µ)) = (µ,L(µ)) ∈B .

Thus LP ∈ P , as claimed. This shows that the totally ordered set P has an upper
bound. Thus, by Zorn’s Lemma,LB has a maximal element, which we denote by RΣ,i.
We claim that dom(RΣ,i) = U . Suppose otherwise. Then there exists µ′ < dom(RΣ,i).
Define

U ′ = dom(RΣ,i) ⊕ spanF(µ′).

Since dom(Σ) = U , there exists η′ ∈ Y so that (µ′, η′) ∈ B . Now, it µ + aµ′ ∈ U ′ with
µ ∈ dom(RΣ,i), then define L′ ∈ HomF(U ′;Y ) by

L′(µ + aµ′) = RΣ,i(µ) + aη′.

We easily verify that L′ is linear. Also,

(µ + aµ′,RΣ,i(µ) + aη′) ∈B , µ′ ∈ U ′, a ∈ F.
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Since L′|dom(RΣ,i) = RΣ′,i, we thus contradict the maximality of RΣ,i, and so conclude
that dom(RΣ,i) = U .

Now we prove that there exists RΣ,i ∈ HomF(U ;Y ) such that

{(µ,RΣ,i(µ)) | µ ∈ U } ⊆B

even when dom(Σ) ⊂ U . By Theorem I-4.5.52, we letU1 be a complement to dom(Σ) ⊆
U . Thus U = dom(Σ) ⊕ U1. Then, by the previous paragraph, there exists R′

Σ,i ∈

HomF(dom(Σ);Y ) such that (µ,R′
Σ,i(µ)) ∈ B for every µ ∈ dom(Σ). Then define

RΣ,i ∈ HomF(U ;Y ) by

RΣ,i(µ + µ1) = RΣ,i(µ), µ ∈ dom(Σ), µ1 ∈ U1.

Clearly RΣ,i has the desired property.
Now we define XΣ and RΣ,s. We take

XΣ = {(0U , η) | (0U , η) ∈B } =B ∩ ({0U } ⊕Y ).

By Proposition I-4.5.34, XΣ is an F-vector space. Define

RΣ,s : XΣ → Y
(0U , η) 7→ η.

Obviously RΣ,s is linear.
Taking

RΣ(x, µ) = RΣ,s(x) + RΣ,i(µ),

let us prove that RΣ is a response function. Indeed, let (µ, η) ∈ B so that (µ,RΣ,i(µ)) ∈
B . Therefore,

(0U , η − RΣ,i(µ)) ∈B .

Thus
η − RΣ,i(µ) = RΣ,s(x) =⇒ η = RΣ(x, µ)

for some x ∈ XΣ by definition of RΣ,s. Thus

B ⊆ {(µ, η) ∈ U ⊕Y | there exists x ∈ XΣ such that η = RΣ(x, µ)}.

Next let (µ, η) ∈ U ⊕Y has the property that there exists x ∈ XΣ such that η = RΣ(x, µ).
Thus

η = RΣ,s(x) + RΣ,i(µ).

Note that
(0U ,RΣ,s(x)) ∈B , (µ,RΣ,i(µ)) ∈B

by definition of RΣ,s and RΣ,i. SinceB is a subspace we have

(µ,RΣ,s(x) + RΣ,i(µ)) ∈B .

Thus
{(µ, η) ∈ U ⊕Y | there exists x ∈ XΣ such that η = RΣ(x, µ)} ⊆B
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and so RΣ is indeed a response function.
(ii) =⇒ (i) Let (µ1, η1), (µ2, η2) ∈ B . Then, since XΣ is a state object and RΣ is a

response function, there exists x1, x2 ∈ XΣ such that

ηi = RΣ(xi, µi) = RΣ,s(xi) + RΣ,i(µi), i ∈ {1, 2}.

Then

η1 + η2 = RΣ,s(x1) + RΣ,i(µ1) + RΣ,s(x2) + RΣ,i(µ2)
= RΣ(x1 + x2, µ1 + µ2),

showing that (µ1 + µ2, η1 + η2) ∈B . Similarly one shows that, if (µ, η) ∈B and a ∈ F,
then a(µ, η) ∈B , and soB is a subspace. ■

Of course, a functional linear general input/output system is a linear general
input/output system Σ = (U ,Y ,B ) for whichB is the graph of a linear function
FΣ ∈ HomF(U ;Y ). Thus, if such systems are going to be interesting, it will be be-
cause of their specific structure since the general structure is pretty featureless. Let
us give an interesting example of a specific functional linear general input/output
system.

2.1.14 Example (Linear general input/output system) Let k ∈ L1
loc(R≥0;R) and define a

mapping Fk : L1
loc(R≥0;R)→ L1

loc(R≥0;R) by

Fk( f )(t) =
∫ t

0
f (τ)k(t − τ) dτ

(see Theorem IV-4.1.13). By linearity of the integral, we see that

Σ = (L1
loc(R≥0;R),L1

loc(R≥0;R),graph(Fk))

is a functional linear general input/output system. This will be an important class
of systems in this volume, and they are known as “convolution systems” (see ). • what?

2.1.6 Notes

[Mesarovic and Takahara 1975, Mesarovic and Takahara 1989]

Exercises

2.1.1 Show that a functional input/output system possesses an “obvious” state
object XΣ and response function ρΣ.

2.1.2 LetΣ = (U ,Y ,B ) be a general input/output system with state object XΣ and
corresponding response function ρΣ. Given x0 ∈ XΣ, define

FΣ,x0 : U → Y
µ 7→ ρΣ(x0, µ)

.

Answer the following questions.
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(a) Show that FΣ,x0 corresponds to a functional input/output system.
(b) Carry this out for the Example 2.1.5–2; that is, for each state, what is

the corresponding functional input/output system? what does it mean
physically?

2.1.3 Consider a
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Section 2.2

General time systems

The focus in this volume is on systems whose inputs, outputs, and states are
functions of time. In this section we consider in our abstract setting systems
with time. We shall subsequently be primarily interested in systems described by
differential and difference equations. However, it is illustrative to develop some of
the properties of these systems in a more abstract setting where, in a certain sense,
they are easier to motivate and understand.

2.2.1 General time-domains

We have previously carefully considered “time,” particularly when working
with transform theory. In this previous setting, we had denoted by T a “time-
domain,” by which we meant a subset of R of the form T = S ∩ I where S is a
semigroup in (R,+) and I is an interval (see Definition IV-1.1.2). In this chapter,
and a few times subsequently when we reference the general theory of systems,
we shall consider a more general notion of time.

2.2.1 Definition (General time-domain) A general time-domain is a totally ordered set
(T,≤). When we make reference to a general time-domain, we shall sometimes
simply write “T,” assuming the partial order. •

Of course, by Zermelo’s Well Ordering Theorem (Theorem I-1.5.16), any set
has a partial order making it a totally ordered set, so the notion of a time-domain
apparently places no restriction on the sets of things we can consider as time. But
the order is just as crucial in the definition as is the set. In any case, we shall mostly
work with the simple sorts of time-domains described by Definition IV-1.1.2.

It will be convenient to introduce some notation regarding general time-
domains. To this end, we introduce the following terminology associated with
a general time-domain (T,≤) and for t, t0, t1 ∈ Twith t0 ≤ t1:

T<t = {τ ∈ T | τ < t},
T≤t = {τ ∈ T | τ ≤ t},
T>t = {τ ∈ T | τ > t},
T≥t = {τ ∈ T | τ ≥ t},

T[t0,t1] = {τ ∈ T | t0 ≤ τ ≤ t1},

T[t0,t1) = {τ ∈ T | t0 ≤ τ < t1},

T(t0,t1] = {τ ∈ T | t0 < τ ≤ t1},

T(t0,t1) = {τ ∈ T | t0 < τ < t1}.

These are, of course, generalisations of the notion of an interval, and we call them
sub-time-domains. Note that each sub-time-domain is itself a general time-domain
with the partial order induced from T.

We shall sometimes want to concatenate two general time-domains to form a
new one. The following definition pertains to this idea.
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2.2.2 Definition (Concatenation of general time-domains) Let (T,≤) be a general time-
domain.

(i) Given two sub-time-domains S1, S2 ⊆ T, we say that S2 follows S1 if

(a) T(sup(S1),inf(S2)) = ∅ and
(b) S1 ∩ S2 = ∅

(see Definition I-1.5.11 for notation).
(ii) If the sub-time-domain S2 follows the sub-time-domain S1, the concatenation

of S1 and S2 is
S1 ∗ S2 = S1 ∪ S2. •

We ask the reader to prove in Exercise 2.2.1 that the concatenation of two
sub-time-domains is itself a sub-time-domain.

The usual notion of time-domain as we previously used it had important addi-
tional structure, namely the group structure inherited from R. We generalise this
as follows.

2.2.3 Definition (Additive general time-domain, stationary time-domain)
(i) An additive general time-domain is a pair ((S,≤),T) where

(a) (S,≤) is a general time-domain with the structure of an Abelian
group—with group operation denoted “+” and with identity element
denoted by “0”—with the property that t0 ≤ t1 if and only if 0 ≤ t1 − t0,
and

(b) T ⊆ S is a segment.

When referring to an additive time-domain we shall often simply write “T,”
assuming the partial order and the Abelian group containing T.

(ii) A stationary time-domain is an additive time-domain ((S,≤),T) with the
property that, for every t̄ ∈ T, there is a bijective mapping

τ−t̄ : T→ T≥t̄

t 7→ t + t̄.

The mapping τ−t̄ is the time shift by t̄.2 •

The additive time-domains we will consider in practice are ((R,≤),T) and
((Z(∆)),T), where R and Z(∆) have the usual additive group structure. In Exer-
cise 2.2.4 the reader can verify that these are simply the time-domains considered
previously in Definition IV-1.1.2. In Exercise 2.2.4 the reader can think about what
are stationary time-domains in these typical cases.

2Note that the sign of the shift here is the opposite of that from Example IV-1.1.6–1.
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2.2.2 Functions on general time-domains

Now that we have laid out the properties of time in a general way, let us consider
functions on general time-domains. It is necessary3 to be able to discuss functions
defined only on a sub-time-domain of a general time-domain, and this complicates
things.

2.2.4 Definition (Partial time function on a general time-domain) Let S be a set and
let (T,≤) be a general time-domain.

(i) A partial time function on T with values in S is a map f : T′ → S where
T′ ⊆ T is a sub-time-domain.

(ii) The domain of a partial time function f on T with values in S is denoted by
dom( f ).

(iii) By S(T) we denote the set of partial time functions on Twith values in S.
(iv) If f ∈ S(T), we denote by dom( f ) ⊆ T the domain of f . •

Note that we can think of dom as being a mapping dom: S(T)
→ 2T. Doing this,

dom−1(S) denotes the set of mappings from S to S.
Just as one can concatenate sub-time-domains, one can concatenate functions

defined on sub-time-domains.

2.2.5 Definition (Concatenation, restriction, and extension of partial time func-
tions) Let S be a set and let (T,≤) be a general time-domain.

(i) If S1, S2 ⊆ T are sub-time-domains with S2 following S1 and if f1, f2 ∈ S(T)

satisfy dom( fi) = Si, i ∈ {1, 2}, the concatenation of f1 and f2 is f1 ∗ f2 ∈ S(T)

with dom( f1 ∗ f2) = S1 ∗ S2 and given by

f1 ∗ f2(t) =

 f1(t), t ∈ S1,

f2(t), t ∈ S2.

We shall say that the pair ( f1, f2) is concatenatable if the conditions just
preceding apply.

(ii) If S1, S2 ⊆ T are sub-time-domains satisfying S2 ⊆ S1 and if f ∈ S(T) satisfies
dom( f ) = S1, then the restriction of f to S2 is f |S2 ∈ S(T) being the usual set
theoretic restriction.

(iii) If S1, S2 ⊆ T are sub-time-domains satisfying S2 ⊆ S1 and if f1, f2 ∈ S(T) satisfy
dom( fi) = Si, i ∈ {1, 2}, then f1 is an extension of f2 if f1|S2 = f2.

We sometimes wish to consider classes of partial time functions with various
properties relative to concatenation or restriction. To this end, let S ⊆ S(T). The
collection S of partial time functions is:

3This necessity arises, for example, because an ordinary differential equation may only possess
solutions for finite times (see Example 2.2.21).
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(iv) closed under concatenation if, for every concatenatable pair ( f1, f2) of partial
time functions from S , we have f1 ∗ f2 ∈ S ;

(v) closed under restriction if, for every f ∈ S with dom(S1) and every sub-time-
domain S2 ⊆ S1, f |S2 ∈ S ;

(vi) extendible if, for every f ∈ S , there exists g ∈ dom−1(T) ∩ S such that g is
an extension of f ;

(vii) regular if it is closed under concatenations, closed under restrictions, and
extendible. •

If S ⊆ S(T) is a collection of partial time functions and if S ⊆ S is a sub-time-
interval, we denote

SS = { f |(S ∩ dom( f )) | f ∈ S }.

Following our notation above for sub-time-intervals, we abbreviate

S<t = { f |(T<t ∩ dom( f )) | f ∈ S },
S≤t = { f |(T≤t ∩ dom( f )) | f ∈ S },

S>t = { f |(T>t ∩ dom( f )) | f ∈ S },
S≥t = { f |(T≥t ∩ dom( f )) | f ∈ S }.

Note that these subsets of partial time functions are not required to be in the original
collection S . We also denote

St = { f (t) | f ∈ S }, (2.3)

noting that St ⊆ S.
While these notions are simple, it is worthwhile to consider a few familiar

classes of functions that do or do not satisfy the various conditions of the preceding
definition.

2.2.6 Examples (Concatenation, restriction, extension)
1. We take T = R, S = R, and consider the class S of partial time functions that

are continuous on their domain. We then have the following attributes of the
collection S .

(a) S is not closed under concatenation: Consider the two partial functions f1

with domain [0, 1] and f2 with domain (1, 2] given by f1(t) = 1 and f2 = 0.
Clearly f1, f2 ∈ S and ( f1, f2) are concatenatable. However, f1 ∗ f2 is not
continuous.

(b) S is closed under restriction: This is clear.
(c) S is not extendible: Consider f ∈ S with domain (−π2 ,

π
2 ) and given

by f = tan−1. There is no continuous function g ∈ C0(R;R) satisfying
f = g|(−π2 ,

π
2 ) (what would be the value of g at ±π2 ?).

2. We take T = R, S = R, and consider the class S of partial time functions that
are Lebesgue integrable on their domain. For this collection of partial time
functions, we have the following attributes.



2022/03/07 2.2 General time systems 55

(a) S is closed under concatenation: This follows from Proposition III-2.7.22.
(b) S is closed under restriction: This is clear.
(c) S is extendible: A function that is integrable on some interval S can be

extended to an integrable function on R by taking its value to be zero on
R \ S.

3. We take T = R, S = R, and let S be the collection of partial time functions
with the property that, if f ∈ S is such that dom( f ) ⊆ R≥0, then f (t) = 0 for
all t ∈ dom( f ). For this class of partial time functions, we have the following
properties.

(a) S is closed under concatenations: This is clear.
(b) S is not closed under restriction: If we take f to have domain R and be

defined by f (t) = 1 for all t ∈ dom( f ), then the restriction f |R≥0 is not in
S .

(c) S is extendible: This is clear. •

The examples suggest some interesting classes of partial time functions that we
will subsequently encounter. Let us give some notation for this.

2.2.7 Notation (Common classes of partial time functions) We work with
continuous- and discrete-time. We consider scalar-valued signals here, with sig-
nals taking values in finite-dimensional spaces following straightforwardly as in
Section IV-1.4.

We begin with discrete-time signals, letting T be a discrete time-domain as in
Definition IV-1.1.2. Then we denote:

(i) F(T) is the set of all partial time signals on T;
(ii) cfin((T);F) = { f ∈ F(T)

| f ∈ cfin(dom( f );F)};
(iii) c0((T);F) = { f ∈ F(T)

| f ∈ c0(dom( f );F)};
(iv) ℓp((T);F) = { f ∈ F(T)

| f ∈ ℓp(dom( f );F)}, p ∈ [1,∞].
For f ∈ ℓp((T);F), we denote by ∥ f ∥p the p-norm of f as an element of ℓp(dom( f );F).
For f ∈ c0((T);F), we denote by ∥ f ∥∞ the ∞-norm of f as an element of
c0(dom( f );F). Of course, all norms can be defined for f ∈ cfin((T);F).

Now we work with continuous-time signals, letting T be a continuous time-
domain as in Definition IV-1.1.2. To define the appropriate Lebesgue spaces, we
need equivalence classes of signals in F(T) that agree almost everywhere. The way
to do this is clear, but let us enunciate this. Two signals f1, f2 ∈ F(T) are equivalent
if dom( f1) = dom( f2) and if

λ({t ∈ T | f1(t) − f2(t) , 0}) = 0.

We denote the equivalence class containing f by [ f ]. Then we denote:
(i) F(T) is the set of all partial time signals on T;
(ii) Cr

cpt((T);F) = { f ∈ F(T)
| f ∈ Cr

cpt(dom( f );F)}, r ∈ Z≥0 ∪ {∞};
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(iii) Cr
0((T);F) = { f ∈ F(T)

| f ∈ Cr
0(dom( f );F)}, r ∈ Z≥0 ∪ {∞};

(iv) Cr
bdd((T);F) = { f ∈ F(T)

| f ∈ Cr
bdd(dom( f );F)}, r ∈ Z≥0 ∪ {∞};

(v) Cr((T);F) = { f ∈ F(T)
| f ∈ Cr(dom( f );F)}, r ∈ Z≥0 ∪ {∞};

(vi) L(p)((T);F) = { f ∈ F(T)
| f ∈ L(p)(dom( f );F)}, p ∈ [1,∞];

(vii) Lp((T);F) = {[ f ] ∈ F(T)
| [ f ]p ∈ Lp(dom( f );F)}, p ∈ [1,∞];

(viii) Lp
loc((T);F) = {[ f ] ∈ F(T)

| [ f ]p ∈ Lp
loc(dom( f );F)}, p ∈ [1,∞];

(ix) AC((T);F) = { f ∈ F(T)
| f is absolutely continuous};4

(x) ACloc((T);F) = { f ∈ F(T)
| f is locally absolutely continuous}.5 •

Next we consider some particular constructions on stationary time-domains.

2.2.8 Definition (Partial functions on stationary time-domains) Let ((S,≤),T) be a
stationary time-domain, let S be a set, and let S ⊆ S(T) be a collection of partial
time functions.

(i) For f ∈ S , a time t̄ ∈ T is f-admissible if

{t + t̄ | t ∈ dom( f )} ⊆ T.

We denote by τ( f ) the set of f -admissible times.
(ii) For f ∈ S and t̄ ∈ τ( f ), denote by τ∗t̄ f ∈ S(T) the partial function with

dom(τ∗t̄ f ) = {t + t̄ | t ∈ dom( f )}

and τ∗t̄ f (t) = f (t − t̄).
(iii) The collection S of partial time functions is stationary if

τt̄(S ) ≜ {τ∗t̄ f | f ∈ S , t̄ ∈ τ( f )} ⊆ S . •

2.2.3 Definition and basic properties of time systems

We can now give a definition of a general class of systems where objects depend
on time.

2.2.9 Definition (General time system) A general time system is a sextuple

Σ = (U,Y,T,U ,Y ,B )

where
(i) U is a set (the input set),
(ii) Y is a set (the output set),
(iii) T is a general time-domain,

4See Definition III-2.9.23
5Ibid.



2022/03/07 2.2 General time systems 57

(iv) U ⊆ U(T) (the admissible input signals),
(v) Y ⊆ Y(T) (the admissible output signals), and
(vi) B ⊆ U ×Y (the behaviours of the system) has the property that, if (µ, η) ∈B ,

then dom(µ) = dom(η). •

Note that, for a general time system Σ = (U,Y,T,U ,Y ,B ), there is the associ-
ated general input/output system (U ,Y ,B ). In Figure 2.3 we depict how one can

T

Y
U

η1

µ1 η2

µ2

η3

µ3

Figure 2.3 Depiction of general time system with behaviours de-
fined on varying domains

think of a general time system.
General time systems can be restricted to sub-time-domains.

2.2.10 Definition (Restriction of a general time system) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system and let S ⊆ T be a sub-time-domain. The restriction of Σ
to S is the general time system

ΣS = (U,Y, S,US,YS,BT),

where
BS = {(µ|(S ∩ dom(µ)), η|(S ∩ dom(η))) | (µ, η) ∈B }. •
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We shall find it convenient to use some abbreviations to match those above for
restrictions of partial time functions:

B<t =BT<t ,

B≤t =BT≤t ,

B>t =BT>t ,

B≥t =BT≥t .

Σ<t =ΣT<t ,

Σ≤t =ΣT≤t ,

Σ>t =ΣT>t ,

Σ≥t =ΣT≥t .

Note that we do not require these to be subsets of B . That is to say, restricted
behaviours need not be behaviours of the original system, but are behaviours of
some new system.

Let us consider some examples of time systems.

2.2.11 Examples (General time system)
1. Let us consider a modification of the mass in a gravitational field from Exam-

ple 2.1.2–1. In that previous example, we had considered the parameters for
mass and gravitational acceleration as being inputs. Here we think of these as
being fixed, and instead apply a force f to the mass which we think of as being
the input.
Thus we take U = R (the set where the force f takes its values), Y = R (the set
of positions for the mass), T = R≥0 (the set of times), U = L1

loc((R≥0);R), and

Y = {ξ ∈ C1((R≥0);R) | ξ̇ is locally absolutely continuous}

(in Theorem 3.2.8 we shall see why this is the right space of outputs). The
behaviours for the system are then given by

B = {( f , ξ) ∈ U ×Y | mξ̈(t) = −mag + f (t), a.e. t ∈ dom( f )}

(again, we shall see in Theorem 3.2.8 why we can only ask that the equality
hold almost everywhere).
Note that there is no a priori reason to not allow the domain for inputs and
outputs to be any sub-time-domain of R≥0.

2. We give the general setting for Example 2.1.2–2. A deterministic finite state
automaton is a quintuple (Q,Y,Λ, δ, γ) where

(a) Q is a finite set (the state space),
(b) Y is a finite set (the output space),
(c) Λ is a finite set (the alphabet),
(d) δ : Q ×Λ→ Q (the transition function), and
(e) γ : Q→ Y (the output function).

To consider this as a general time system, we take T = Z≥0. An input signal
is then a partial time function µ : dom(µ) → Λ, where dom(µ) ⊆ Z≥0 is a sub-
time-domain of the form dom(µ) = {0, 1, . . . , k} or dom(µ) = T. Thus inputs
will be either finite sequences from the alphabet (in the case when dom(µ) =
{0, 1, . . . , k}) or infinite sequences in the alphabet (in the case when dom(µ) =
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Z≥0). Corresponding to an inputµ, we have a mappingθ : dom(µ)→ Q defined
recursively by prescribing some initial θ(0) ∈ Q, and then

θ(t + 1) = δ(θ(t), µ(t)).

In turn, this determines a mapping η : dom(µ)→ Y by η(t) = γ ◦ θ(t).
We then have the set of inputsU ⊆ U(Z≥0) of partial time functions with domains
as above and the set of outputs Y ⊆ Y(Z≥0) determined by the rules described
above. This then defines the setB ⊆ U ×Y of behaviours.

3. The binary encoder and decoder can be rendered a general time system by
allowing the inputs to vary as a function of discrete time T = Z≥0. Let us work
this out.
For the encoder, we take

Uenc = {0, 1}{0,1,...,2
n
−1}, Yenc = {0, 1}{0,1,...,n−1}.

The space of admissible inputs will be

Uenc = {µ ∈ U(Z≥0)
| µ(t) is one hot for every t ∈ dom(µ)}

while the space of admissible outputs will be

Yenc = Y(Z≥0).

Here it is natural to restrict the sub-time-domains of inputs and outputs to be
of the form S = {0, 1, . . . , k} for some k ∈ Z≥0. Then we have (µ, η) ∈ Benc if µ(t)
and η(t) satisfy the condition prescribed in Example 2.1.2–3.
Of course, the construction adapts in the obvious way to the case of a binary
decoder.
If one thinks of this as a way of converting keyboard output into strings of 0’s
and 1’s, then this is a way of converting text strings typed into a keyboard into
a string of 0’s and 1’s.

4. The convolution system of Example 2.1.14 is a general time system with T =
R≥0, U = Y = R, and U = Y = L1

loc(R≥0;R). •

The definition in this section of a general time system is not one that one can
work with in practice simply because it is too general, and we shall need to add
detail to it to arrive at something useful.

2.2.4 Completeness of general time systems

Let us begin with a few constructions concerning the compatibility of the ad-
missible outputs with the admissible inputs.
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2.2.12 Definition (Completeness, output completeness) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system.
(i) The system Σ is complete if the following are satisfied:

(a) U is extendible;
(b) if (µ, η) ∈ B and if µ′ is an extension of µ to T, then there exists η′ ∈ Y

for which (µ′, η′) ∈B .

(ii) The system Σ is output complete if, for any µ ∈ U and for any family (ηi)i∈I in
Y with the following properties:

(a) I is a totally ordered set with partial order denoted by ⪯;6

(b) dom(ηi) ⊆ dom(η j) if i ⪯ j;
(c) ∩i∈I dom(ηi) , ∅;
(d) dom(ηi) ⊆ dom(µ), i ∈ I;
(e) (µdom(ηi), ηi) ∈B , i ∈ I;
(f) there exists η ∈ Y(T) with dom(η) = S ≜ ∪i∈I dom(ηi) such that ηdom(ηi) = ηi,

i ∈ I,

then (µS, η) ∈B . •

The idea of completeness is that all behaviours can be extended to be defined
on the full time domain T. This might not happen for two reasons. First, it may be
the case that U is itself not extendible. Typically this is not the case, but an unwise
choice of inputs might cause this to happen. Second, even if U is extendible, the
outputs that appear as behaviours may not be. This has to do with the system
itself; we refer the reader to Example 2.2.21 as an instance of this. This attribute is
a true assumption in the sense that there are reasonable systems that do not have
this property. In Figure 2.4 we depict how one can think about completeness.

For output completeness, let us explain the significance of the various conditions
in the definition. The conditions (a) and (b) mean that the domains of the outputs
(ηi)i∈I are “nested,” while condition (c) means that there is a sub-time-domain
contained in all of the domains. Condition (d) means that each of the outputs ηi is
defined on a sub-time-domain of dom(µ), while condition (e) means that the input
µ, restricted to dom(ηi), gives a behaviour associated to ηi. The condition (f) is a
compatibility condition on the outputs (ηi)i∈I, declaring that, for every i, j ∈ I, ηi and
η j agree on the intersection of their domains, and agree with a function η : S → Y.
Given all of this, the condition of output completeness is that η is, like all of the

6Given the remaining conditions, this condition is made without loss of generality. Indeed, we
could instead induce a total order on I by requiring that i ⪯ j if dom(ηi) ⊆ dom(η j). The essential
feature if that the domains dom(ηi), i ∈ I, should be “nested.”
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T

Y
U

ηη′

µ

µ′

( )dom(µ) = dom(η)

Figure 2.4 A depiction of completeness, showing the extension
of an input µ to µ′ on the full time domain and the existence
of a corresponding output η′ agreeing with η on the original
domain

outputs ηi, i ∈ I, an output corresponding to an appropriate restriction of the input
µ. Naı̈vely, one can think of this condition as being that(

µS, lim
i∈I
ηi

)
∈B ,

hence the “completeness” terminology. The attribute of output completeness is
one that will be possessed by most systems of interest. In Figure 2.5 we depict how
one can think about output completeness.

Let us consider completeness and output completeness in a few examples.

2.2.13 Examples (Completeness, output completeness)
1. For the falling mass subject to a force from Example 2.2.11–1, we claim that it

is complete and output complete.
For completeness, first note that, if f ∈ U = L1

loc((T);R), then f can be extended
to a locally integrable signal on R≥0 in many different ways, e.g., by taking it to
be zero off dom( f ). Now suppose that f ∈ L1

loc(R≥0;R) and if ( f , ξ) ∈ B , then
the relation ξ̈(t) = −ag + f (t) directly gives

ξ(t) = ξ(0) + ξ̇(0)t −
1
2

agt2 +

∫ t

0

(∫ s

0
f (τ) dτ

)
ds.
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T

Y
η1

η2

η3

η3 η2 η1

Figure 2.5 A depiction of output completeness with a family of
outputs with nested domains giving rise to an output defined
on the union of their domains

The indefinite integral ∫ s

0
f (τ) dτ

exists for all s ∈ R≥0 since f is locally integrable. Moreover, as a function of s,
the resulting function is locally absolutely continuous, and so continuous. Thus
the indefinite iterated integral∫ t

0

(∫ s

0
f (τ) dτ

)
ds

exists for all t ∈ R≥0. This gives completeness.
For output completeness, let f ∈ L1

loc(dom( f );R), let (I,⪯) be a totally ordered
set, and let (ξi)i∈I be a family of outputs satisfying conditions (a)–(f) of Defini-
tion 2.2.12. Note that

ξi(t) = ξi(0) + ξ̇i(0)t −
1
2

agt2 +

∫ t

0

(∫ s

0
f (τ) dτ

)
ds, i ∈ I, t ∈ dom(ξi).

Now let S = ∪i∈I dom(ξi) and let ξ : S → R be such that ξdom(ξi) = ξi for i ∈ I. If
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t ∈ S, then t ∈ dom(ξi) for some i ∈ I, and, therefore,

ξ(t) = ξi(t) = ξi(0) + ξ̇i(0)t −
1
2

agt2 +

∫ t

0

(∫ s

0
f (τ) dτ

)
ds

= ξ(0) + ξ̇(0)t −
1
2

agt2 +

∫ t

0

(∫ s

0
f (τ) dτ

)
ds.

This shows that ( fS, ξ) ∈B , giving output completeness.
2. We claim that a deterministic finite state automaton is complete and output

complete.
Completeness is easy to see. Indeed, any input defined on a sub-time-domain
can be extended to the entire time-domain. Also, if an input is defined on the
entire time-domain, there is associated to it an admissible output, just because
the procedure for producing an output is recursive.
To see that the deterministic finite state automaton is also output complete, let
µ be an admissible input and let (ηi)i∈I be a family of admissible outputs satis-
fying conditions (a)–(f) of Definition 2.2.12. Suppose first that S = ∪i∈I dom(ηi)
is bounded. Then, since the time-domain is discrete and since all sub-time-
domains dom(ηi) are of the form {0, 1, . . . , ki}, there is some i∗ ∈ I such that
∪i∈I dom(ηi) = dom(ηi∗). If we take η = ηi∗ , we have (µS, η) ∈B .
Next suppose that S is not bounded, implying that dom(µ) = Z≥0. LetΨ : Q→
YZ≥0 be the mapping defined by asking that Ψ(q)(t) to be the output at time t
associated with choosing the initial state to satisfy θ(0) = q. For t ∈ Z≥0, define
an equivalence relation ∼t on Q by

q1 ∼t q2 ⇐⇒ Ψ(q1)(t′) = Ψ(q2)(t′) for t′ ≤ t.

Note that, if t1 ≤ t2, then

q1 ∼t2 q2 =⇒ q1 ∼t1 q2

Thus the number of equivalence classes associated with the equivalence relation
∼t increases with t. However, since Q is finite, there is a maximum number of
equivalence classes. This means that there exists t∗ ∈ Z≥0 such that, if, for all
q1, q2 ∈ Q and for all t ≥ t∗, if Ψ(q1)(t′) = Ψ(q2)(t′) for all t′ ≤ t, then it holds
that Ψ(q1)(t) = Ψ(q2)(t) for all t ∈ Z≥0. In particular, if we take i∗ ∈ I so that
sup dom(ηi∗) ≥ t∗, then taking η = ηi∗ gives (µ, η) ∈B .

3. An entirely similar argument as we just saw for the finite state automaton shows
that the binary encoder and binary decoder, as general time systems, are output
complete. Note that, with the restriction that admissible inputs be of finite
length in time, these systems are not complete since no input can be extended
to an admissible input defined on the entire time-domain. •
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2.2.5 Dynamical system representations and state space representations

In this section we give some important structure to general time systems, struc-
ture closely related to the notion of a state object and a response function explored
in Section 2.1.3 for general input/output systems. Here the ideas are adapted in
particular ways to account for time.

The first step in this process consists in making the following definition.

2.2.14 Definition (Initial state object, initial response function, subsequent re-
sponse function, response family) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system and let t0 ∈ T.
(i) An initial response function for Σ at t0 with initial state object XΣt0

is a map

ρΣt0
: XΣt0

×U≥t0 → Y≥t0

such that (µ, η) ∈B≥t0 if and only if there exists xt0 ∈ XΣt0
such that ρΣt0

(xt0 , µ) =
η.

(ii) A subsequent response function forΣ at t > T≥t0 from t0 with subsequent state
object XΣt,t0

is a map

ρΣt,t0
: XΣt,t0

× (U≥t0)>t → (Y≥t0)≥t

such that, if (µ, η) ∈ (B≥t0)≥t, then there exists xt ∈ XΣt,t0
such that ρΣt,t0

(xt, µ) = η.

(iii) A response family forΣ at t0 is a family ρΣt0
= (ρΣt,t0

)t∈T≥t0
of subsequent response

functions for Σ from t0 with associated subsequent state objects (XΣt,t0
)t∈T≥t0

. •

These definitions are sufficiently subtle as to require some explanation.
1. ρΣt0

: The idea of an initial response function is rather similar to that for a response
function for a general input/output system. A significant additional piece of
information is the time t0, which we think of as an “initial time.” Thus, for a
given input, XΣt0

parameterises all outputs as they pass through time t0.

2. ρΣt,t0
: The idea here is similar, but different, to that for ρΣt0

. Here we restrict our
attention to behaviours at time t that originated from time t0.

3. ρΣt0
: This gathers together all of the above.

In Figure 2.6 we illustrate how one might think of the initial and subsequent
response functions.

We now introduce another important player in state descriptions of general
time systems.
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T

Y

XΣ,t0 XΣ,t,t0

Figure 2.6 A depiction of initial and subsequent response func-
tions for a fixed input, with the solid lines denoting outputs
that pass through time t0

2.2.15 Definition (State transition family) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system, let t0 ∈ T, and let (Xt,t0)t∈T≥t0
be a family of sets. A family

of state transition maps from t0 is a collection Φt2,t1 : U[t1,t2) × Xt1,t0 → Xt2,t0 with
(i) t1, t2 ∈ T>t0 , for t1 ≤ t2,
(ii) Φt,t(µ[t,t), xt) = xt, t ∈ T>t0 , for xt ∈ Xt,t0 ,
(iii) Φt3,t2(µ[t2,t3),Φt2,t1(µ[t1,t2), xt1)) = Φt3,t1(µ[t1,t3), xt1), for t1, t2, t3 ∈ T>t0 , t1 ≤ t2 ≤ t3. •

The idea of a family of state transition maps is that state objects at time t1 are
mapped to state objects at t2 for t1 ≤ t2. The composition property (iii) is called
the semigroup property since it indicates how the different state transition maps
interact with the forward movement of time. In Figure 2.7 we depict how one
should think of a family of state transition maps.

Of course, a family of state transition maps is, itself, a meaningless thing for
describing the system, since the system appears nowhere in the properties of the
maps. To pull this all together, one needs a compatibility condition between a
response family and a family of state transition maps.

2.2.16 Definition ((Pre-)dynamical system representation) Let

Σ = (U,Y,T,U ,Y ,B )
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T

Y

XΣ,t0 XΣ,t1,t0 XΣ,t2,t0 XΣ,t3,t0

Φt2,t1
(µ|[t1, t2], ·) Φt3,t2

(µ|[t2, t3], ·)

Φt3,t1
(µ|[t1, t3], ·)

Figure 2.7 A depiction of a family of state transition maps, with
the maps for a fixed input being depicted

be a general time system, let t0 ∈ T, let (XΣt,t0
)t∈T≥t0

, let

ρΣt,t0
: XΣt,t0

× (U≥t0)≥t → (Y≥t0)≥t, t ∈ T≥t0 ,

be a subsequent response family for Σ at t0, and let

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2,

be a family of state transition maps.
(i) The subsequent response family and the family of state transition maps are

compatible if

ρΣt1,t0
(xt1 , µ≥t1)≥t2 = ρ

Σ
t2,t0

(ΦΣt2,t1
(µ[t1,t2), xt1), µ≥t2).

(ii) A pre-dynamical system representation for Σ at t0 consists of the three pieces
of data

XΣt,t0
, t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

× (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2,

where the subsequent response family ρΣt,t0
, t ∈ T≥t0 , and the family of state

transition maps ΦΣt2,t1
, t1, t2 ∈ T≥t0 , t1 ≤ t2, is compatible. •

Let us discuss the matter of existence of pre-dynamical system representations.
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2.2.17 Theorem (Existence of pre-dynamical system representations) If

Σ = (U,Y,T,U ,Y ,B )

is a complete general time system for which U is closed under concatenation and for which
dom(Σ) = U , then Σ possesses a pre-dynamical system representation.

Proof Since Σ is complete, we can assume that every behaviour is the restriction of
some behaviour defined on all of T. For this reason, we shall take, without loss of
generality,

U ⊆ UT, Y ⊆ YT,

i.e., we consider only behaviours defined on the entirety of the time-domain. In this
case

(U≥t0)≥t = U≥t, (Y≥t0)≥t = Y≥t, (B≥t0)≥t =B≥t.

Since dom(Σ) = U , dom(Σ≥t) = U≥t for every t ∈ T≥t0 .
Define

XΣt,t0
= {xt : U≥t → Y≥t | graph(xt) ⊆B≥t}.

We claim that, for any t ∈ T≥t0 and for any (µ≥t, η≥t) ∈ B≥t, there exists xt ∈ XΣt,t0
such

that η≥t = xt(µ≥t). Thus, for µ′
≥t ∈ U≥t, there exists η′

≥t ∈ Y≥t such that (µ′
≥t, η

′

≥t) ∈ B≥t.
Therefore, by the Axiom of Choice, there is a choice function

U≥t ∋ µ
′

≥t 7→ η′
≥t ∈ Y≥t;

denote this map by x′t. Now define xt : U≥t → Y≥t by

xt(µ′≥t) =

x′t(µ
′

≥t), µ′
≥t , µ≥t,

η≥t, µ′
≥t = µ≥t.

Clearly xt ∈ XΣt,t0
and xt(µ≥t) = η≥t.

Now define
ρΣt,t0

: XΣt,t0
×U≥t → Y≥t

(xt, µt) 7→ xt(µt).

Note that, if (µ≥t, η≥t) ∈B≥t, then (as we just showed) there exists xt ∈ XΣt,t0
such that

xt(µ≥t) = η≥t =⇒ ρΣt,t0
(xt, µ≥t) = η≥t.

Conversely, if xt ∈ XΣt,t0
and if η≥t = ρΣt,t0

(xtµ≥t), then xt(µ≥t) = η≥t, and so (µ≥t, η≥t) ∈
B≥t. Thus ρΣt,t0

, t ∈ T≥t0 , is a subsequent response family.
Next, for t1, t2 ∈ T≥t0 with t1 ≤ t2, define

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ Xt2,t0

by
ΦΣt2,t1

(µ[t1,t2), xt1)(µ′
≥t2

) = (xt1(µ[t1,t2) ∗ µ
′

≥t2
))≥t2 .
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Let us verify that this potential family of state transition maps satisfies the compatibility
condition with the subsequent response family defined above. Let (µ≥t1 , η≥t1) ∈ B≥t1

and compute

ρΣt1,t0
(xt1 , µ≥t1)≥t2 = (xt1(µ≥t1))≥t2

= (xt1(µ[t1,t2) ∗ µ≥t2)≥t2

= ΦΣt2,t1
(µ[t1,t2), xt1)(µ≥t2)

= ρΣt2,t0
(ΦΣt2,t1

(µ[t1,t2), xt1), µ≥t2),

as desired. Next we show that the mappings

ΦΣt2,t1
, t1, t2 ∈ T≥t0 , t1 ≤ t2,

define a family of state transition maps. First of all, since µ[t,t) ∗µ≥t = µ≥t, we have that
ΦΣt,t(µ≥t, xt) = xt. Also,

ΦΣt3,t2
(µ[t2,t3),Φ

Σ
t2,t1

(µ[t1,t2), xt1))(µ′
≥t3

) = (ΦΣt2,t1
(µ[t1,t2), xt1)(µ[t2,t3) ∗ µ

′

≥t3
))≥t3

= ((xt1(µ[t1,t2) ∗ µ[t2,t3) ∗ µ
′

≥t3
))≥t2)≥t3

= (xt1(µ[t1,t3) ∗ µ
′

≥t3
))≥t3

= ΦΣt3,t1
(µ[t1,t3), xt1)(µ′

≥t3
),

as desired. ■

While cute, the theorem is quite useless.

2.2.18 Remark (On the existence of pre-dynamical system representations) Here is
a short list of reasons why the theorem gets you nowhere in practice.
1. It is not constructive. In the proof we use the Axiom of Choice, always the

hallmark of an unsatisfying proof.
2. There are not well-defined states. The state object parameterising outputs at

time t vary as t varies. This means, for example, that one cannot compare states
at different times.

3. In practice, representations have structure. For specific and interesting classes
of systems, there are typically structured state objects, subsequent response
families, and state transition maps. We shall see this as we add more structure
to our systems. •

Let us address, albeit in an unsatisfying way, the issue pointed out above
about not being able to compare states at different times. The following definition
captures this scenario.
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2.2.19 Definition (Dynamical system representation) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system. A pre-dynamical system representation for Σ at t0

prescribed by the data

XΣt,t0
, t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

× (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2,

is a dynamical system representation if there exists a set XΣ such that XΣ = XΣt,t0
,

t ∈ T≥t0 . •

Let us show that dynamical system representations exist.

2.2.20 Theorem (Existence of dynamical system representations) If

Σ = (U,Y,T,U ,Y ,B )

is a complete general time system for which U is closed under concatenation and for which
dom(Σ) = U , then Σ possesses a dynamical system representation.

Proof We make the same notational simplifications resulting from completeness as
we did at the beginning of the proof of Theorem 2.2.17.

By Theorem 2.2.17, we suppose that we have a pre-dynamical system representa-
tion prescribed by the data

XΣt,t0
, t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

×U≥t → Y≥t, t ∈ T≥t0 ,

Φ
Σ

t2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2,

We let XΣ =
◦

∪t∈TXΣt,t0
and, for each t ∈ T, arbitrarily choose x∗t ∈ XΣt,t0

. Define

ρΣt,t0
: XΣ ×U≥t → Y≥t

by

ρΣt,t0
((t′, xt′), µ≥t) =

ρΣt,t0
(xt, µ≥t), t′ = t,

ρΣt,t0
(x∗t , µ≥t), t′ , t.

Let us show that this defines a family of subsequent response functions. Let t ∈ T≥t0

and let (µ≥t, η≥t) ∈B≥t. Then there exists xt ∈ XΣt,t0
such that

η≥t = ρ
Σ
t,t0

(xt, µ≥t) = ρΣt,t0
((t, xt), µ≥t).

Conversely, suppose that η≥t = ρΣt,t0
((t′, xt′), µ≥t) for (t′, xt′) ∈ XΣ. The definition of ρΣt,t0

then gives (µ≥t, η≥t) ∈B≥t, showing that ρΣt,t0
is a response family.
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Next, for t1, t2 ∈ Twith t1 ≤ t2, define

ΦΣt2,t1
: U[t1,t2) × XΣ → Y≥t

by

ΦΣt2,t1

(
µ[t1,t2), (t′, xt′)

)
=

(t2,Φ
Σ

t2,t1
(µ[t1,t2), xt1)), t′ = t1,(

t2,Φ
Σ

t2,t1
(µ[t1,t2), x∗t1

)
)
, t′ , t1.

We then have
ΦΣ(µ[t,t), (t, xt)) =

(
t,Φ

Σ

t2,t1
(µ[t,t), xt)

)
= (t, xt).

We also compute

ΦΣt3,t2
(µ[t2,t3),Φ

Σ
t2,t1

(µ[t1,t2), (t′, xt′))) = ΦΣt3,t2
(µ[t2,t3),Φ

Σ
t2,t1

(µ[t1,t2), (t1, x′t1
)))

= ΦΣt3,t2

(
µ[t2,t3),

(
t2,Φ

Σ

t2,t1
(µ[t1,t2), x′t1

)
))

=
(
t3,Φ

Σ

t3,t2

(
µ[t2,t3),Φ

Σ

t2,t1
(µ[t1,t2), x′t1

)
))

=
(
t3,Φ

Σ

t3,t1
(µ[t1,t3), x′t1

)
= ΦΣt3,t1

(µ[t1,t3), (t′, xt′)),

where

x′t1
=

xt1 , t′ = t1,

x∗t1
, t′ , t1.

Finally, we show the compatibility of the family of subsequent response functions and
the family of state transition maps. To this end, we compute

ρΣt1,t0
((t′, xt′), µ≥t1)≥t2 = ρ

Σ
t1,t0

((t1, x′t1
), µ≥t1)≥t2

=
(
ρΣt1,t0

(x′t1
, µ≥t1)

)
≥t2

= ρΣt2,t0

(
Φ
Σ

t2,t1
(µ[t1,t2), x′t1

), µ≥t2

)
= ρΣt2,t0

((
t2,Φ

Σ

t2,t1
(µ[t1,t2), x′t1

)
)
, µ≥t2

)
= ρΣt2,t0

(ΦΣt2,t1
(µ[t1,t2), (t′, xt′)), µ≥t2),

where

x′t1
=

xt1 , t′ = t1,

x∗t1
, t′ , t1,

as desired. ■

The same criticisms of Remark 2.2.18, with the exception of 2, apply to the
preceding theorem.

The assumption of completeness in the preceding theorems is necessary, and
indeed a lack of completeness makes any definition of a dynamical system rep-
resentation such as that in Definition 2.2.16 problematic. The following example
illustrates this.
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2.2.21 Example (Lack of completeness and nonexistence of pre-dynamical system
representations) We define a general time system with the following data:
1. U = R,
2. Y = R,
3. T = R≥0,
4. U = L1([0,T];R), T ∈ R>0,
5. Y = C0([0,T];R), T ∈ R>0, and
6. B = {(µ, η) ∈ U ×Y | η̇(t) = µ(t)η(t)2, a.e. t ∈ dom(µ)}.
We take t0 = R. We can determine that behaviours are given by pairs (µ, η) where
µ ∈ L1([0,T];R) and

η(t) =
η0

1 − η0

∫ t

0
µ(τ) dτ

(2.4)

for some η0 ∈ R (note that η(0) = η0). Thus this initial condition η0 at t = 0 prescribes
the solution for any t ∈ [0,T], and so we can take XΣ0 = R as parameterising all
outputs for every input µ.

Note that this solution will be defined as long as there exists no t ∈ [0,T] for
which η0

∫ t

0
µ(τ) dτ = 1. To illustrate the point we wish to make, it will suffice to

consider the case where µ is a constant function, say µ(t) = µ0. In this case, we
require that there exist no t ∈ [0,T] for which η0µ0t = 1. The essential observation
for our purposes is the following:

For every T ∈ R>0 and every η0 ∈ XΣ0 = R, there exists µ ∈ L1([0,T];R) such
that, if

η(t) =
η0

1 − η0

∫ t

0
µ(τ) dτ

,

then limt↑T|η(t)| = ∞. Indeed, we can take µ(t) = 1
η0T .

The main point of this is that there can be no map

U[0,T] × XΣt0︸︷︷︸
R

→ XΣT,t0︸︷︷︸
R

that maps the initial condition at t = 0 to a final condition at t = T for every input. •

The preceding example notwithstanding, the class of systems that will be of
most interest to us in this volume—linear systems—will have the completeness
property, and so pre-dynamical system and dynamical system representations are
worth thinking about.

Let us consider a few examples of dynamical system representations.
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2.2.22 Examples (Dynamical system representations)
1. Let us consider the mass in a gravitational field in the guise of Example 2.2.11–1.

Let us take t0 = 0 and provide a dynamical system representation for this system
by taking

(a) XΣ = R2,
(b) ρΣt,0 : R2

×U≥t → Y≥t is defined by

ρΣt,0((x0, v0), f≥t)(s) = x0 + (s − t)v0 −
1
2

ag(s − t)2 +

∫ s

t

(∫ τ

t
f (r) dr

)
dτ,

and
(c) ΦΣt2,t1

: U[t1,t2) ×R2
→ R2 is defined by

ΦΣt2,t1
( f[t1,t2), (x0, v0))

=

(
x0 + (t2 − t1)v0 −

1
2

ag(t2 − t1)2 +

∫ t2

t1

(∫ s

t1

f (τ) dτ
)

ds,

v0 −
1
2

ag(t2 − t1) +
∫ t2

t1

f (τ) dτ
)
.

The idea here is that the state is (x, v) where x is the position of the mass and
v is its velocity. The subsequent response function returns the position of the
mass if it starts at time t in a prescribed state and is subject to a force. The state
transition map returns the state at time t2 if one starts in a prescribed state at
time t1.
We note that the subsequent response functions and the state transition maps
are all defined for all states at every time. We shall see in the next example that
this is not always the case.

2. We now consider a deterministic finite state automaton (Q,Y,Λ, δ, γ) as a general
time system as in Example 2.2.11–2. We define a dynamical system represen-
tation for this general time system from t0 = 0 by taking

(a) XΣ = Q,
(b) ρΣt,0 : Q×U≥t → Y≥t is defined by the specification of the automaton, taking

a state at time s ∈ Z≥0 with s ≥ t to the output at that time according to the
rules.

(c) In a similar manner, ΦΣt2,t1
: U≥t ×Q→ Q is defined by the dynamics of the

automaton.

We note that ρΣt,0, and therefore alsoΦΣt2,t1
, may not have a meaningful definition

for all states in Q. As an example of this, consider the deterministic finite state
automaton with

Q = {s1, s2}, Y = {s1, s2}, Λ = {0},
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with γ the identity map, and with dynamics defined by the diagram

s1

0
(( s2

0
TT

(2.5)

In this case, the state will end up at s2 after at most one time step, and will
remain there forever after. Thus the value of ρΣt,0 on state s1 is immaterial for
t ≥ 1. •

We see that there is an important distinction between the two dynamical system
representations in the above examples, so let us characterise this.

2.2.23 Definition (Full pre-dynamical system representation) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system with pre-dynamical system representation at t0 prescribed
by the data

XΣt,t0
, t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

× (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2.

For t ∈ T≥t0 , denote

(B≥t0)≥t = {(µ≥t, η≥t) ∈ (B≥t0)≥t × (Y≥t0)≥t | η≥t = ρ
Σ
t,t0

(xt, µ≥t) for some xt ∈ XΣt,t0
}.

The pre-dynamical system representation is full if (B≥t0)≥t = (B≥t0)≥t for every
t ∈ T≥t0 . •

One easily sees that the dynamical system representation for the mass system
of Example 2.2.22–1 is full, while that for the deterministic finite state automaton
from Example 2.2.22–2 is full in some cases (e.g., for the example depicted in (2.1))
but not in others (e.g., for the example depicted in (2.5)).

As our final fleshing out of these more concrete representations of general time
systems, we have the following notion.

2.2.24 Definition ((Pre-)state space representation) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system and let t0 ∈ T. A pre-state space representation for Σ at
t0 is prescribed by the data

XΣt,t0
, t ∈ T≥t0 ,

γΣt,t0
: XΣt,t0

×U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2,

such that
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(i) the maps ΦΣt1,t2
, t1, t2 ∈ T≥t0 , t1 ≤ t2, are a family of state transition maps and

(ii) (µ, η) ∈B≥t0 if and only if there exists x ∈ XΣt0,t0
such that

η(t) = γΣt,t0
(ΦΣt,t0

(µ[t0,t), x), µ(t))

for t ∈ T≥t0 .
The maps γΣt,t0

, t ∈ T≥t0 are output functions. If there exists a set XΣ such that
XΣt,t0

= XΣ, then the pre-state space representation is a state space representation
with state space XΣ. •

The idea with a state space representation is that the time evolution is prescribed
by the state transition maps, while the output is merely prescribed as a function
of the state. Thus the determination of the state involves dynamics, while the
determination of the output from state is static, i.e., done for a fixed time.

Both examples we have of dynamical systems representations are, in fact,
amenable to state space representations.

2.2.25 Examples (State space representations)
1. For the mass system from Example 2.2.22–1, we have the state space XΣ = R2,

the input space U = R, and the output space Y = R, with the output function
defined by γ((x0, v0),u) = x0 giving a state space representation. Thus the output
function simply returns the evaluation of the output signal ξ at time t.

2. For the deterministic finite state automaton from Example 2.2.22–2, the state
space is XΣ = Q, the input space is U = Λ, and the output space is Y. This
system has a state space representation if we take γ to simply be the output
function defined as part of the system data. •

Many of the systems we consider in detail in this volume will come with natural
state space representation; indeed, Chapter 5 is devoted to a detailed study of a
class of such systems, while Chapters 7 and 8 consider specialised techniques for
the class of these systems that are linear and time-invariant.

It turns out that the existence of a state space representation for a system is
intimately connected to a specific character of the system in terms of how it depends
on time. We now turn our attention to such matters.

2.2.6 Causality in time systems

As the word “causal” suggests, the idea of a causal system is that inputs (causes)
determine outputs (effects). This general idea can be represented in a variety of
different, but interconnected, ways. In this section we shall explore these.

2.2.26 Assumption (Completeness assumption and consequences) It is often conve-
nient in this section to work with complete systems, since our notions of causality
will be often connected with (pre-)dynamical systems representations. As a con-
sequence, in this situation all behaviours signals are restrictions to their domain
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of behaviours defined on the entire time-domain. For this reason, for a complete
general time system, we can assume that U ⊆ UT and Y ⊆ YT. •

Let us start with the initial notions of causality for a system.

2.2.27 Definition (Causal, strongly causal system) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system and let t0 ∈ T.
(i) The system Σ is causal from t0 if, for any µ1, µ2 ∈ U and for any t ∈ T≥t0 , the

following implication holds:

(µ1)[t0,t] = (µ2)[t0,t] =⇒ B (µ1)[t0,t] =B (µ2)[t0,t].

(ii) The system Σ is strongly causal from t0 if, for any µ1, µ2 ∈ U and for any
t ∈ T≥t0 , the following implication holds:

(µ1)[t0,t) = (µ2)[t0,t) =⇒ B (µ1)[t0,t] =B (µ2)[t0,t]. •

The idea, then, of a causal system is that the set of outputs corresponding to
inputs that agree up to time t, also agrees up to time t. Said otherwise, the character
of an input up to time t determines all possible outputs up to time t.

Next we consider these notions of causality applied to initial response func-
tions.

2.2.28 Definition (Causal, strongly causal subsequent response function) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system satisfying Assumption 2.2.26, let t0 ∈ T, and let ρΣt,t0
: XΣt,t0

×

U≥t0 → Y≥t0 be a family of subsequent response functions from t0 with state space
XΣ. Let τ ∈ T≥t0 .

(i) The subsequent response function ρΣτ,t0
, is causal if, for any xτ ∈ XΣτ,t0

, for any
t ∈ T≥τ, and for any µ1, µ1 ∈ U≥τ, the following implication holds:

(µ1)[τ,t] = (µ2)[τ,t] =⇒ ρΣτ,t0
(xτ, (µ1)≥τ))[τ,t] = ρ

Σ
τ,t0

(xτ, (µ2)≥τ)[τ,t].

(ii) The subsequent response function ρΣτ,t0
is strongly causal if, for any xτ ∈ XΣτ,t0

,
for any t ∈ T≥τ, and for any µ1, µ1 ∈ U≥τ, the following implication holds:

(µ1)[τ,t) = (µ2)[τ,t) =⇒ ρΣτ,t0
(xτ, (µ1)≥τ)[τ,t] = ρ

Σ
τ,t0

(xτ, (µ2)≥τ)[τ,t]. •

The idea of these definitions is that, for every time t ≥ t0, equal inputs up to time
t with the same initial state give equal outputs from time t. One might expect there
to be some relationship between causal systems and systems with causal initial
response functions.
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2.2.29 Theorem (Relationship between causality and causal initial response func-
tions) For a general time system

Σ = (U,Y,T,U ,Y ,B ),

satisfying Assumption 2.2.26 and for t0 ∈ T, the following statements hold:
(i) if Σ has a causal (resp. strongly causal) initial response function from t0, then Σ is

causal (resp. strongly causal) from t0;
(ii) if Σ is output complete and causal (resp. strongly causal) from t0, thenΣ has a causal

(resp. strongly causal) initial response function from t0.
Proof (i) Let

ρΣt0
: XΣt0

×U≥t0 → Y≥t0

be a causal initial response function. Let µ1, µ2 ∈ U be such that, for t ∈ T≥t0 , (µ1)≤t =
(µ2)≤t. By hypothesis,

ρΣt0
(x, (µ1)≥t0)≤t = ρ

Σ
t0

(x, (µ2)≥t0)≤t,

and so

B (µ1)[t0,t] = {η[t0,t] | η ∈B (µ1)}

= {η[t0,t] | η≥t0 = ρ
Σ
t0

(x, (µ1)≥t0)}

= {η[t0,t] | η≥t0 = ρ
Σ
t0

(x, (µ1)≥t0)}

=B (µ2)[t0,t],

showing thatΣ is causal from t0. An entirely similar argument shows thatΣ is strongly
causal if it possesses a strongly causal initial response function.

(ii) In this part of the proof we assume that dom(Σ) = U . This is done for conve-
nience, and one can readily see that the conclusions are easily adapted to the general
case.

Let (µ∗, η∗) ∈B be arbitrarily chosen. Denote by

RΣ = {F : U ′
≥t0
→ Y≥t0 | U

′
⊆ U , graph(F) ⊆B≥t0 , F is causal (resp. strongly causal)}

the set of functional input/output systems that take values in B and that are causal
(resp. strongly causal) as general time systems. Note that RΣ is nonempty since we
can take U ′ = {µ∗} and F(µ∗) = η∗. Since Σ is causal (resp. strongly causal), it is evident
that F is a causal (resp. strongly causal) general time system. We define a partial order
onRΣ by F1 ⪯ F2 if dom(F1) ⊆ dom(F2) and F2|dom(F1) = F1. LetP ⊆RΣ be a totally
ordered subset and let UP = ∪F∈P dom(F) and define FP : UP → Y≥t0 by requiring
that FP |dom(F) = F for every F ∈ P . We claim that FP ∈RΣ. First of all, if µ≥t0 ∈ UP ,
then for F ∈ P such that µ≥t0 ∈ dom(F), we have

(µ≥t0 ,FP (µ≥t0)) = (µ≥t0 ,F(µ≥t0)) ∈B≥t0 .

Thus graph(FP ) ⊆ B≥t0 . Now let (µ1)≥t0 , (µ2)≥t0 ∈ UP be such that (µ1)[t0,t] = (µ2)[t0,t]
(resp. (µ1)[t0,t) = (µ2)[t0,t)). Let F ∈ P be such that (µ1)≥t0 , (µ2)≥t0 ∈ dom(F). Since F is
causal (resp. strongly causal), it follows thatB (µ1)[t0,t] =B (µ2)[t0,t]. Thus FP is causal,
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and this shows that the totally ordered set P has an upper bound. By Zorn’s Lemma,
RΣ has a maximal element that we denote by FΣ. We claim that dom(FΣ) = U≥t0 . This
we prove separately in the causal and strongly causal cases.

First let us consider the case where Σ is strongly causal. Assume that dom(FΣ) ,
U≥t0 and let µ0 ∈ U be such that (µ0)≥t0 < dom(FΣ). Let µ≥t0 ∈ dom(FΣ).

First suppose that there is no t ∈ T≥t0 for which µ[t0,t] = (µ0)[t0,t]. Define F′
Σ

so that
dom(F′

Σ
) = dom(FΣ) ∪ {µ0} and so that

F′Σ(µ≥t0) =

FΣ(µ≥t0), µ ∈ dom(FΣ),
η0, µ≥t0 = (µ0)≥t0 .

By our hypothesis, the causality of FΣ implies F′
Σ

is causal.
Thus we may consider the situation where there exists t ∈ T≥t0 such that µ[t0,t] =

(µ0)[t0,t]. Denote
T(µ, µ0) = ∪{[t0, t) | µ[t0,t) = (µ0)[t0,t)}

and τ(µ, µ0) = supT(µ, µ0). If t ∈ T(µ, µ0) we have µ[t0,t] = (µ0)[t0,t], and so causality of
Σ gives

B (µ)[t0,t] =B (µ0)[t0,t].

Since graph(FΣ) ⊆B≥t0 , there exists ηµ,t ∈B (µ0)≥t0 such that

(ηµ,t)[t0,t] = FΣ(µ≥t0)[t0,t].

We claim that there exists

ηµ : ∪t∈T(µ,µ0) [t0, t]→ Y

such that ηµ(s) = ηµ,t(s) for all s ∈ [t0, t]. Indeed, let t1, t2 ∈ T(µ, µ0) and let t ∈
[t0, t1] ∩ [t0, t2]. Then

ηµ,t1(t) = FΣ(µ≥t0)(t) = ηµ1,t2(t),

showing that ηµ,t1 = ηµ,t2 agree on the intersection of their domains. Thus the asserted
function ηµ exists. By output completeness of Σ, there exists ηµ ∈B (µ0)≥t0 such that

(ηµ)[t0,t] = (ηµ,t)[t0,t], t ∈ T(µ, µ0).

Now we claim that there exists

η : ∪ {[t0, t] | t ∈ T(µ, µ0), µ≥t0 ∈ dom(FΣ)} → Y

such that
η[t0,t] = (ηµ)[t0,t], t ∈ T(µ, µ0), µ≥t0 ∈ dom(FΣ).

Indeed, let t1, t2 ∈ T(µ, µ0), let t ∈ [t0, t1] ∩ [t0, t2], and let (µ1)≥t0 , (µ2)≥t0 ∈ B (µ0)≥t0 be
such that

(ηµ1)[t0,t′] = (ηµ1,t1)[t0,t′], t′ ∈ T(µ1, µ0),

and
(ηµ2)[t0,t′] = (ηµ2,t2)[t0,t′], t′ ∈ T(µ2, µ0).
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By our constructions above, this gives

(ηµ1)[t0,t] = FΣ((µ1)≥t0)[t0,t], (ηµ2)[t0,t] = FΣ((µ2)≥t0)[t0,t].

By definition of T(µ1, µ0) and T(µ2, µ0),

(µ1)[t0,t] = (µ0)[t0,t], (µ2)[t0,t] = (µ0)[t0,t].

Thus causality of FΣ from t0 gives

(ηµ1)[t0,t] = (ηµ2)[t0,t].

Thus there exists the asserted function η. Moreover, by output completeness, there
exists η0 ∈B (µ0)≥t0 such that

(η0)[t0,t] = (ηµ)[t0,t], t ∈ T(µ, µ0), µ≥t0 ∈ dom(FΣ).

Now define F′
Σ

so that dom(F′
Σ

) = dom(FΣ) ∪ {(µ0)≥t0} and

F′Σ(µ≥t0) =

FΣ(µ≥t0), µ≥t0 ∈ dom(FΣ),
η0, µ = µ0.

We claim that F′
Σ

is causal. Let (µ1)≥t0 , (µ2)≥t0 ∈ dom(F′
Σ

) and suppose that (µ1)[t0,t] =
(µ2)[t0,t]. If (µ1)≥t0 , (µ2)≥t0 ∈ dom(FΣ), then causality of FΣ gives

(F′Σ(µ1))[t0,t] = (F′Σ(µ2))[t0,t].

If (µ1)≥t0 ∈ dom(FΣ) and (µ2)≥t0 = (µ0)≥t0 , then, since (µ1)[t0,t] = (µ0)[t0,t], we must have
t ≤ τ(µ1, µ0). Therefore, making reference to our constructions above,

(FΣ((µ1)≥t0)[t0,t] = (ηµ1)[t0,t] = (η0)[t0,t].

From this we have

(F′Σ((µ1)≥t0)[t0,t] = (FΣ((µ1)≥t0)[t0,t] = (η0)[t0,t] = (F′Σ((µ2)≥t0)[t0,t],

giving causality of F′
Σ

. Thus F′
Σ
∈ RΣ and FΣ ⪯ F′

Σ
, which contradicts the maximality

of FΣ, and so we must have dom(FΣ) = U≥t0 .
Now we show that this same conclusion holds when Σ is assumed to be strongly

causal. Assume that dom(FΣ) , U≥t0 and let µ0 ∈ U be such that (µ0)≥t0 < dom(FΣ).
For µ≥t0 ∈ dom(FΣ), denote

T(µ, µ0) = ∪{[t0, t) | µ[t0,t) = (µ0)[t0,t)}

and τ(µ, µ0) = supT(µ, µ0). Note that, if µ≥t0 ∈ dom(FΣ), then

µ[t0,τ(µ,µ0)) = (µ0)[t0,τ(µ,µ0)),

and, since Σ is strongly causal from t0,

B (µ)[t0,τ(µ,µ0)] =B (µ0)[t0,τ(µ,µ0)].
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Since graph(FΣ) ⊆B≥t0 , there exists ηµ ∈B (µ0)≥t0 such that

(ηµ)[t0,τ(µ,µ0)] = FΣ(µ≥t0)[t0,τ(µ,µ0)].

We claim that there exists

η : ∪µ≥t0∈dom(FΣ) [t0, τ(µ, µ0))→ Y (2.6)

such that η(t) = ηµ(t) for every µ≥t0 ∈ dom(FΣ) and t ∈ [t0, τ(µ, µ0)). Suppose that

t ∈ [t0, τ(µ1, µ0)) ∩ [t0, τ(µ2, µ0))

for (µ1)≥t0 , (µ2)≥t0 ∈ dom(FΣ). Then

(µ1)[t0,t) = (µ2)[t0,t) = (µ0)[t0,t).

By strong causality of FΣ,

(FΣ((µ1)≥t0))[t0,t] = (FΣ((µ2)≥t0))[t0,t].

Since
(ηµ1)[t0,τ(µ1,µ0)] = (FΣ((µ1)≥t0))[t0,τ(µ1,µ0)].

and
(ηµ2)[t0,τ(µ2,µ0)] = (FΣ((µ2)≥t0))[t0,τ(µ2,µ0)],

we have
(ηµ1)[t0,t] = (FΣ((µ1)≥t0))[t0,t] = (FΣ((µ2)≥t0))[t0,t] = (ηµ2)[t0,t].

Thus η exists as in (2.6). Now, by output completeness, we conclude that there exists
η0 ∈B (µ0) such that

(η0)[t0,τ(µ,µ0)] = (ηµ)[t0,τ(µ,µ0)], µ≥t0 ∈ dom(FΣ).

Now define F′
Σ

so that dom(F′
Σ

) = dom(FΣ) ∪ {(µ0)≥t0} and

F′Σ(µ≥t0) =

FΣ(µ≥t0), µ≥t0 ∈ dom(FΣ),
η0, µ = µ0.

We claim that F′
Σ

is strongly causal. Let (µ1)≥t0 , (µ2)≥t0 ∈ dom(F′
Σ

) and suppose that
(µ1)[t0,t) = (µ2)[t0,t). If (µ1)≥t0 , (µ2)≥t0 ∈ dom(FΣ), then strong causality of FΣ gives

(F′Σ(µ1))[t0,t] = (F′Σ(µ2))[t0,t].

If (µ1)≥t0 ∈ dom(FΣ) and (µ2)≥t0 = (µ0)≥t0 , then, since (µ1)[t0,t) = (µ0)[t0,t), we must have
t ≤ τ(µ1, µ0). Therefore, making reference to our constructions above,

(FΣ((µ1)≥t0)[t0,τ(µ1,µ0)] = (ηµ1)[t0,τ(µ1,µ0)] = (η0)[t0,τ(µ1,µ0)].

From this we have

(F′Σ((µ1)≥t0)[t0,t] = (FΣ((µ1)≥t0)[t0,t] = (η0)[t0,t] = (F′Σ((µ2)≥t0)[t0,t],
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giving strong causality of F′
Σ

. Thus F′
Σ
∈ RΣ and FΣ ⪯ F′

Σ
, which contradicts the

maximality of FΣ, and so we must have dom(FΣ) = U≥t0 .
Now that we have shown that dom(FΣ) = U≥t0 , we can conclude the proof of the

theorem. We let

XΣt0
= {FΣ : U≥t0 → Y≥t0 | FΣ ∈RΣ, dom(FΣ) = U≥t0},

this set having been shown to be nonempty. We then define

ρΣt0
: XΣt0

×U≥t0 → Y≥t0

(FΣ, µ≥t0) 7→ FΣ(µ≥t0).

It is the easy to see that ρΣt0
is causal (resp. strongly causal) by definition ofRΣ. ■

We shall consider in Chapter 5 some large classes of causal general time systems.
Many of these systems arise as a consequence of the following theorem.

2.2.30 Theorem (Causal systems and state space representations) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system, let t0 ∈ T, and suppose that

{µ(t) | µ ∈ U } = U, t ∈ T≥t0 .

Then Σ is causal from t0 if and only it is has a state space representation at t0.
Proof Before we begin the specific proof, let us engage in a discussion of some general
concepts. Suppose that we have a pre-dynamical system representation for Σ at t0
prescribed by the data

XΣt,t0
, t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

× (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2.

Let us say that the pre-dynamical system representation is surjective if

ΦΣt,t0
(XΣt0,t0

×U[t0,t)) = XΣt,t0
, t ∈ T≥t0 .

The relevance, for our purposes, of the notion of a surjective pre-dynamical system
representation is the following result.

1 Lemma Let
Σ = (U,Y,T,U ,Y ,B )

be a general time system with surjective pre-dynamical system representation at t0 prescribed
by the data

XΣt,t0
, t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

× (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0
, t1, t2 ∈ T≥t0 , t1 ≤ t2.

Then the following statements are equivalent:



2022/03/07 2.2 General time systems 81

(i) ρΣt0,t0
is a causal initial response function from t0;

(ii) ρΣτ,t0
is a causal initial response function from τ for every τ ∈ T≥t0 .

Proof (i) =⇒ (ii) Let τ ∈ T≥t0 , let (µ1)≥τ, (µ2)≥τ ∈ U≥τ and let xτ ∈ XΣτ,t0
. By surjectivity

of the pre-dynamical system representation, let x∗ ∈ XΣt0,t0
and µ∗ ∈ U≥t0 be such that

ΦΣτ,t0
(x∗, µ∗[t0,τ)) = xτ. Then

ρΣτ,t0
(xτ, (µ1)≥τ) = ρΣτ,t0

(ΦΣτ,t0
(x∗, µ∗[t0,τ)), (µ1)≥τ) = ρΣτ,t0

(x∗, µ∗[t0,τ) ∗ (µ1)≥τ)≥τ

and, similarly,
ρΣτ,t0

(xτ, (µ2)≥τ) = ρΣτ,t0
(x∗, µ∗[t0,τ) ∗ (µ2)≥τ)≥τ.

Now let t ∈ T≥τ and suppose that

((µ1)≥τ)[τ,t] = ((µ2)≥τ)[τ,t].

Then
(µ∗[t0,τ) ∗ (µ1)≥τ)[t0,t] = (µ∗[t0,τ) ∗ (µ2)≥τ)[t0,t],

and so causality of ρΣt0,t0
implies that

ρΣτ,t0
(xτ, (µ1)≥τ)[t0,t] = ρ

Σ
τ,t0

(xτ, (µ2)≥τ)[t0,t].

Combining all of this,

ρΣτ,t0
(xτ, (µ1)≥τ)[t0,t] = ρ

Σ
τ,t0

(xτ, (µ2)≥τ)[t0,t],

showing that ρΣτ,t0
is causal, as claimed.

(ii) =⇒ (i) This is self-evident. ▼

Now we prove the theorem.
First of all, suppose that Σ has a state space representation at t0 prescribed by the

data

XΣ,

γΣt,t0
: XΣ ×U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.

Suppose that (µ1)[t0,t] = (µ2)[t0,t]. Then

η[t0,t] ∈B (µ1)[t0,t] ⇐⇒ η1(t) = γΣt,t0
(ΦΣt,t0

((µ1)[t0,t), x), µ1(t))

and
η[t0,t] ∈B (µ2)[t0,t] ⇐⇒ η1(t) = γΣt,t0

(ΦΣt,t0
((µ2)[t0,t), x), µ2(t)).

From this we conclude thatB (µ1)[t0,t] =B (µ2)[t0,t] and so Σ is causal from t0.
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Next suppose that Σ is causal from t0 and, by Theorem 2.2.29, let ρΣt0
be a causal

initial response function with initial state object XΣ. We now construct a surjective
pre-dynamical system representation for Σ. Let

XΣt,t0
= XΣ ×U[t0,t), t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

×U≥t → Y≥t

((x, µ[t0,t)), µ
′

≥t) 7→ ρΣt0
(x, µ[t0,t) ∗ µ

′

≥t)≥t,
t ∈ Tt,t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0

(µ′
≥t2
, (x, µ[t1,t2))) 7→ (µ[t1,t2)) ∗ µ′≥t2

, x),
t1, t2 ∈ T≥t0 , t1 ≤ t2.

It is a straightforward exercise to see that this is a pre-dynamical system representation
(Exercise 2.2.6). It is also evident that this pre-dynamical system representation is
surjective, and so, by the lemma above, ρΣτ,t0

is a causal initial response function from
τ for every τ ∈ T≥t0 . Define

γΣt,t0
: XΣt,t0

×U→ Y

((x, µ[t0,t)),u) 7→ ρΣt,t0
((x, µ[t0,t)), µ

′

≥t)(t),

where µ′ satisfies µ′(t) = u. Note that

γΣt,t0
((x, µ[t0,t)),u) = ρΣt0

(x, µ[t0,t)) ∗ µ
′

≥t)(t).

From causality of ρΣt0
we easily conclude that γΣt,t0

is well-defined, i.e., independent of
µ[t0,t)). One can readily verify that this data defines a pre-state space representation for
Σ from t0.

To define a state space representation, we follow closely the procedure from the

proof of Theorem 2.2.20. We let X
Σ
=

◦

∪t∈TXΣt,t0
and, for each t ∈ T, arbitrarily choose

x∗t ∈ XΣt,t0
. For t1, t2 ∈ Twith t1 ≤ t2, define

Φ
Σ

t2,t1
: U[t1,t2) × X

Σ
→ X

Σ

by

Φ
Σ

t2,t1

(
µ[t1,t2), (t′, xt′)

)
=

(t2,ΦΣt2,t1
(µ[t1,t2), xt1)), t′ = t1,(

t2,ΦΣt2,t1
(µ[t1,t2), x∗t1

)
)
, t′ , t1.

Also define
γΣt,t0

: XΣ ×U→ Y

by

γΣt,t0
((t′, x),u) =

γΣt,t0
(x,u), t′ = t,

γΣt,t0
(x∗t ,u), t′ , t.

We can proceed rather as in the proof of Theorem 2.2.20 to show that the data

XΣ,

Φ
Σ

t2,t1
, t1, t2 ∈ T≥t0 ,

γΣt,t0
, t ∈ T≥t0 ,

defines a state space representation for Σ from t0. ■
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Let us give an example of a system that is not causal and a class of systems that
are causal.

2.2.31 Examples (Causal and non-causal systems)
1. Since the notion of a general time system is so flexible, it is easy to give cooked

examples of such systems that are not causal. For example, let us take U = R,
Y = R, and T = R≥0. We take t0 = 0. Define U to be set of signals of the form

µa(t) =

0, t ∈ [0, a],
1, t ∈ (a,∞).

for a ∈ R≥0. Also let ηa(t) = a, a, t ∈ R≥0. Let

B = {(µa, ηa) | a ∈ R≥0}.

We claim that this system is not causal. Indeed, let t ∈ R and let a1, a2 > t be
distinct. Then (µa1)[0,t] = (µa2)[0,t], butB (µ1)[0,t] ,B (µ2)[0,t].

2. Let us consider a special class of general time systems. A general time system

Σ = (U,Y,T,U ,Y ,B )

is memoryless if, for each t ∈ T, there exists a mapping Φt : Ut → Y such that
Yt = Φt(Ut), where we recall from (2.3) the meaning of Ut and Yt. Thus a
memoryless system has the character that the outputs at time t are determined
solely by the inputs at time t. It is clear that a memoryless system is causal, but
not strongly causal.

3. We claim that a deterministic finite state automaton is causal as a time system.
This is easily seen directly since an output up to time t is uniquely parame-
terised by (a) the input up to time t and (b) the initial state. Also, if one wants
to hit this with a big hammer, one can note from Example 2.2.25–2 that a deter-
ministic finite state automata possesses a state space representation and, from
Theorem 2.2.30, a system with a state space representation is causal. •

Causal systems form a natural class, since systems that are not causal can be
thought of as “nonphysical,” in that the future needs to be known to know the
present. In Chapter 6 we shall consider large classes of causal systems, and it is
this class of systems whose explication will occupy us for much of this volume.

2.2.7 Past-determined time systems

We now turn to a more stringent variation of causality for time systems. It is a
property that is not possessed by all interesting systems, but is useful, when appli-
cable, because it allows one to determine whether future outputs are determined
by past measurable quantities, namely inputs and outputs. Most importantly, it
does not rely on the notion of an internal (and possibly not measurable) state.

The following definition is intended to capture this idea.
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2.2.32 Definition (Past-determined, strongly past-determined) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system satisfying Assumption 2.2.26, let t0 ∈ T, and let τ ∈ T≥t0 .
(i) The system Σ is past-determined from τ if:

(a) for any (µ, η) ∈ B[t0,τ) and for any µ′ ∈ U≥τ, there exists η′ ∈ Y≥τ such
that (µ ∗ µ′, η ∗ η′) ∈B ;

(b) for any (µ1, η1), (µ2, η2) ∈B and for any t ∈ T≥τ, the following implication
holds:

(µ1, η1)[t0,τ) = (µ2, η2)[t0,τ), (µ1)[t0,t] = (µ2)[t0,t] =⇒ (η1)[t0,t] = (η2)[t0,t].

(ii) The system Σ is strongly past-determined from τ if:

(a) for any (µ, η) ∈ B[t0,τ) and for any µ′ ∈ U≥τ, there exists η′ ∈ Y≥τ such
that (µ ∗ µ′, η ∗ η′) ∈B ;

(b) for any (µ1, η1), (µ2, η2) ∈B and for any t ∈ T≥τ, the following implication
holds:

(µ1, η1)[t0,τ) = (µ2, η2)[t0,τ), (µ1)[t0,t) = (µ2)[t0,t) =⇒ (η1)[t0,t] = (η2)[t0,t]. •

In order to understand the property of being past-determinable, let us introduce
the following idea.

2.2.33 Definition (Finitely observable7) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system and let t0 ∈ T and τ ∈ T≥t0 . The system Σ is finitely
observable from τ if, for any µ ∈ U and for any η1, η2 ∈ B (µ)≥t0 , the following
implication holds:

(η1)[t0,τ) = (η2)[t0,τ) =⇒ (η1)≥t0 = (η2)≥t0 . •

We may now give a characterisation of the property of being past-determined.

2.2.34 Proposition (Characterisation of past-determinacy) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system and let t0 ∈ T and τ ∈ T≥t0 . Suppose that U is closed under
concatenation. Then Σ is past-determined (resp. strongly past-determined) from τ if and
only if it is

7We shall consider in Section 9.4 the notion of “observability” for systems, and we comment
that this is not related to the notion of “finitely observable” we consider here.
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(i) causal (resp. strongly causal) from τ and
(ii) finitely observable from τ.

Proof Assume that Σ is past-determined from τ. Let µ1, µ2 ∈ U≥t0 satisfy (µ1)[τ,t] =
(µ2)[τ,t] for all t ∈ T≥τ and let (η1)≥t0 ∈ B (µ1)≥t0 . Then ((µ1)[t0,τ), (η1)[t0,τ)) ∈ B[t0,τ).
Past-determinacy then ensures that there exists (η2)≥τ such that

((µ1)[t0,τ) ∗ (µ2)≥τ, (η1)[t0,τ) ∗ (η2)≥τ) ∈B≥t0 .

Abbreviate η∗
≥t0
= (η1)[t0,τ) ∗ (η2)≥τ. Since (µ1)[τ,t] = (µ2)[τ,t] for t ∈ T≥τ, we must have

(µ1)[t0,τ) ∗ (µ2)≥τ = (µ2)≥t0 ,

and so ((µ2)≥t0 , η
∗

≥t0
) ∈B≥t0 . By construction we have (µ1, η1)[t0,τ) = (µ2, η∗)[t0,τ]. There-

fore, past-determinacy of Σ from τ, along with the fact that (µ1)[τ,t] = (µ2)[τ,t] for all
t ∈ T≥τ, implies that (η1)[t0,t] = η

∗

[t0,t]
for all t ∈ T≥τ. We thus conclude that

B (µ1)[t0,t] ⊆B (µ2)[t0,t].

The opposite inclusion follows similarly, and so we conclude that Σ is causal from τ.
One similarly shows that ifΣ is strongly past-determined from τ, thenΣ is strongly

causal from τ.
To show that Σ is finitely observable from τ, let η1, η2 ∈ B (µ) satisfy (η1)[t0,τ) =

(η2)[t0,τ). Therefore, (µ, η1)[t0,τ) = (µ, η2)[t0,τ] and µ[t0,t] = µ[t0,t], and past-determinacy of
Σ implies that (η1)[t0,t] = (η2)[t0,t] for all t ∈ T≥τ. Thus (η1)≥t0 = (η2)≥t0 , and we conclude
that Σ is finitely observable from τ.

Now suppose that (i) and (ii) in the statement of the proposition hold. Assume that

(µ1, η1)[t0,τ) = (µ2, η2)[t0,τ)

and (µ1)[t0,t] = (µ2)[t0,t] for all t ∈ T≥τ for (µ1, η1), (µ2, η2) ∈B . Since Σ is causal from τ,
there exists η∗ ∈B (µ2) such that η∗[t0,t]

= (η1)[t0,t]. Since t ≥ τ,

η∗[t0,τ) = (η1)[t0,τ) = (η2)[t0,τ).

Since η2, η∗ ∈B (µ2), finite observability gives η∗ = η2 and so

η∗[t0,t]
= (η1)[t0,t] = (η2)[t0,t]

for t ∈ T≥τ. This is the second half of the definition of past-determinacy. Similarly one
proves the second half of the definition for strong past-determinacy whenΣ is strongly
causal from τ.

For the first half of the definition of past-determinacy, let (µ, η) ∈ B[t0,τ) and let
µ′ ∈ U≥τ. Since U is closed under concatenation, µ∗ ≜ µ[t0,τ] ∗µ′≥τ ∈ U Since Σ is causal
from τ, we have

µ[t0,τ) = µ
∗

[t0,τ) =⇒ B (µ)[t0,τ) =B (µ∗)[t0,τ),

and so there exists η∗ ∈B (µ∗) such that η∗[t0,τ) = η[t0,τ). Now we write

(µ∗
≥t0
, η∗
≥t0

) = (µ[t0,τ] ∗ µ
′

≥τ, η[t0,τ) ∗ η
∗

≥τ),

and this gives the desired condition. ■

Let us relate past-determinacy with causality.
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2.2.35 Proposition (Past-determined systems are causal) A general time system

Σ = (U,Y,T,U ,Y ,B )

is causal (resp. strongly causal) from τ if it is past-determined (resp. strongly past-
determined) from τ.

Proof Let (µ[t0,τ), η[t0,τ)) ∈ B[t0,τ) and let µ′
≥τ ∈ U≥τ. By past-determinacy, there exists

η′τ such that
(µ[t0,τ) ∗ µ

′

≥τ, η[t0,τ) ∗ η
′

≥τ) ∈B≥t0 .

By Proposition 2.2.34, Σ is finitely observable from τ and this implies that the previous
condition uniquely defines η′

≥τ.
With this in mind, we construct a causal (resp. strongly causal) initial response

function from τ. To this end we define

XΣ = {(µ[t0,τ), η[t0,τ)) | (µ≥t0 , η≥t0) ∈B≥t0}

and define
ρΣτ,t0

: XΣ ×U≥τ → Y≥τ
by the requirement that

η′
≥τ = ρ

Σ
τ,t0

((µ[t0,τ), η[t0,τ)), µ′≥τ) ⇐⇒ (µ[t0,τ) ∗ µ
′

≥τ, η[t0,τ) ∗ η
′

≥τ) ∈B≥t0 .

It immediately follows from the second part of the definition of past-determinacy
(resp. strong past-determinacy) that ρΣτ,t0

is a causal (resp. strongly causal) initial re-
sponse function, showing that Σ is causal (resp. strongly causal) from τ. ■

In we shall see a large and important class of past-determined time systems.what?

The following example shows that the converse of the preceding result is not true.

2.2.36 Example (A general time system that is not past-determined) We consider a
deterministic finite state automaton (Q,Y,Λ, δ, γ) with

Q = {s0, s1}, Y = {0, 1}, Λ = {0, 1},

with the state transition map δ determined by the table

0 1

s0 s0 s0

s1 s1 s1

and the output function γ determined by the table

0 1

s0 0 0
s1 0 1

As we saw in Example 2.2.31–3, this system is causal. We claim that this system is
not past-determined. To see this, note that, if the initial state is s0, then the output
is 0 for all time, no matter what the input. However, if the initial state is s1, then an
input string with a 1 in the kth slot will produce an output of 1 in the (k + 1)st slot.
From this we can conclude that this system is not past-determined from any τ. •
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2.2.8 Stationarity in time systems

Stationarity is a property of time-invariance. As we shall see, the way in which
one expresses this is to say that the system is invariant under shifts of time, in a
suitable sense. Thus, in the development, one needs to have time-domains where
shifts make sense. This is where we make use of the idea of a time-domain for
stationarity, as in Definition 2.2.3.

Let us begin with the definitions. First we introduce some notation for time
shifts. We consider a stationary time-domain ((S,≤),T), t0 ∈ T, and a ∈ S. For a
sub-time-domain T′ ⊆ T≥t0 , let us say that a is T′-admissible if

{t ∈ T′ | t − a ∈ T≥t0} = T
′.

If a is T′-admissible, let us denote

T′a = {t − a ∈ T≥t0 | t ∈ T′}

and so define
τ̂a : T′a → T≥t0

t 7→ t + a.

Now let X be a set and let X ⊆ X(T). For ξ ∈ X≥t0 , suppose that a ∈ S is dom(ξ)-
admissible. This being the case, we denote by τ̂∗aξ the signal with domain dom(ξ)a

given by τ̂∗aξ(t) = ξ(t + a). We depict, shifted signals in Figure 2.8. With these

X

Tt0

X

Tt0

Figure 2.8 Shifting signals (dashed) in a stationary time-domain
by positive time (left) and negative time (right)

constructions, let us define another shift operator that shifts a signal that starts at
a time greater than t0 back to the time t0. Specifically, let ξ ∈ X≥t0 , let a ∈ T≥t0 , and
denote τ∗t0,aξ to be the signal with domain

dom(τ∗t0,aξ) = {t − (a − t0) | t ∈ dom(ξ)}
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and defined by
τ∗t0,aξ(t) = ξ(t + (a − t0)).

In Figure 2.9 we depict this operation.

X

Tt0 a

Figure 2.9 Shifting from an initial time a to an initial time t0

With these rather elementary and somewhat cumbersome bits of notation at
our disposal, we can easily give definitions of stationarity for time systems.

2.2.37 Definition ((Strongly) stationary general time system) Let ((S,≤),T) be a sta-
tionary time-domain, let

Σ = (U,Y,T,U ,Y ,B )

be a general time system, and let t0 ∈ T. The system
(i) is stationary from t0 if τ∗t0,t(U≥t0) = U≥t0 and τ∗t0,t(B≥t0) ⊆B≥t0 for every t ∈ T≥t0 ,

and
(ii) is strongly stationary from t0 if τ∗t0,t(B≥t0) =B≥t0 for every t ∈ T≥t0 . •

We wish to characterise stationary systems using dynamical systems represen-
tations. To this end, we make the following definitions.

2.2.38 Definition ((Strongly) time-invariant dynamical system representation) Let
((S,≤),T) be a stationary time-domain and let

Σ = (U,Y,T,U ,Y ,B )

be a general time system with dynamical system representation at t0 prescribed by
the data

XΣ,

ρΣt,t0
: XΣ × (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.

The dynamical system representation is
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(i) time-invariant from t0 if, for t1, t2 ∈ T≥t0 , for µ ∈ U≥t0 , and for x ∈ XΣ, it holds
that

(a) τ∗t0,t1
(U≥t0) ⊆ U≥t0 ,

(b) ρΣt1,t0
(x, µ≥t1) = τ̂

∗

t1−t0
ρΣt0

(x, τ̂∗
−(t1−t0)µ≥t1),

(c) ΦΣt2,t1
(x, µ[t1,t2)) = ΦΣt2−t1+t0,t0

(x, τ̂∗
−(t1−t0)µ[t1,t2)), and

(d) τ∗t0,t1
(Y≥t0) = Y≥t0 .

(ii) strongly time-invariant from t0 if, additionally, for every t ∈ T≥t0 ,

B≥t = {(µ≥t, η≥t) | η≥t = ρ
Σ
t,t0

(x, µ≥t) for some x ∈ XΣ}. •

Our main result is then the following.

2.2.39 Theorem ((Strongly) stationary systems and (strongly) time-invariant dynam-
ical system representations) Let ((S,≤),T) be a stationary time-domain, let

Σ = (U,Y,T,U ,Y ,B )

be a complete general time system, and let t0 ∈ T. Then:
(i) the following three statements are equivalent:

(a) Σ is stationary from t0;
(b) for any t1, t2 ∈ T≥t0 with t1 < t2,

τ∗t0,t2
(B≥t0) ⊆ τ

∗

t0,t1
(B≥t0);

(c) Σ possesses a dynamical system representation that is time-invariant from t0;

(ii) the following two statements are equivalent:

(a) Σ is strongly stationary from t0;
(b) Σ possesses a dynamical system representation that is strongly time-invariant

from t0.
Proof Since Σ is complete, we suppose that all behaviours are defined on T.

(i)(a) =⇒ (i)(c) Suppose that Σ is stationary from t0 and denote

XΣ = {x : U≥t0 → Y≥t0 | graph(x) ⊆B }.

Define
ρΣt0

: XΣ ×U≥t0 → Y≥t0

(x, µ≥t0) 7→ x(µ≥t0).

By definition, ρΣt0
is an initial response function for Σ from t0 with initial state object

XΣ. Now define ΦΣt,t0
: XΣ ×U[t0,t) → XΣ by requiring that, if

ΦΣt,t0
(x, µ[t0,t)) = x̂,
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then x̂(µ̂≥t0) = η̂≥t0 if and only if

(x(µ[t0,t) ∗ (τ̂∗t−t0
µ̂≥t0)))≥t = τ̂

∗

t−t0
η̂≥t0 .

We should show that this definition makes sense. First we verify thatΦΣt,t0
takes values

in XΣ. To see this, note that, if x̂(µ̂≥t0) = η̂≥t0 , then

x(µ[t0,t) ∗ τ̂
∗

t−t0
µ̂≥t0) = η[t0,t) ∗ τ̂

∗

t−t0
η̂≥t0

for some η[t0,t) ∈ Y[t0,t). Note that

µ̂≥t0 = τ̂
∗

t−t0
(µ[t0,t) ∗ τ̂

∗

t−t0
µ̂≥t0), η̂≥t0 = τ̂

∗

t−t0
(η[t0,t) ∗ τ̂

∗

t−t0
η̂≥t0)

so that (µ̂, η̂) ∈ τ̂t−t0(B ) ⊆B . Thus x̂ ∈B . Now let us show thatΦΣt,t0
is a single-valued

function. Suppose that η̂≥t0 , η̄≥t0 ∈ Y≥t0 satisfy

(x(µ[t0,t) ∗ (τ̂∗t−t0
µ̂≥t0)))≥t = τ̂

∗

t−t0
η̂≥t0 = τ̂

∗

t−t0
η̄≥t0 .

Then, since τ̂t−t0 is a bijection, η̂≥t−0 = η̄≥t0 , showing that x∗ is single-valued. Finally,
since τ∗t0,t

(U≥t0) = U≥t0 , it follows that x̂ is defined for every µ≥t0 ∈ U≥t0 .
Next we define the dynamical system representation by requiring that

ρΣt,t0
(x, µ≥t1) = τ̂∗t1−t0

ρΣt0
(x, τ̂−(t1−t0)µ≥t1),

ΦΣt2,t1
(x, µ[t1,t2)) = ΦΣt2−t1,t0

(x, τ̂∗
−(t1−t0)µ[t1,t2)).

Thus, provided we verify that this does indeed define a dynamical system representa-
tion, it is by construction time-invariant.

First we show that ρΣt,t0
, t ∈ T≥t0 , is a response family. Let (µ≥t, η≥t) ∈B≥t so that

(τ̂∗
−(t−t0)µ≥t, τ̂

∗

−(t−t0)η≥t) ∈ τ̂∗t0,t(B ) ⊆B .

Then there exists x ∈ XΣ such that

τ̂∗
−(t−t0)η≥t = ρ

Σ
t0

(x, τ̂∗
−(t−t0)µ≥t),

giving
η≥t = τ̂

∗

t−t0
ρΣt0

(x, τ̂∗
−(t−t0)µ≥t) = ρΣt,t0

(x, µ≥t),

which shows that ρΣt,t0
, t ∈ T≥t0 , is indeed a response family.

It is straightforward to check that ΦΣt2,t1
, t1, t2 ∈ T≥t0 comprise a state transition

function.
Next we claim that

(ρΣt0
(x, µ≥t0))≥t = ρ

Σ
t,t0

(ΦΣt,t0
(x, µ[t0,t)), µ≥t)

for every x ∈ XΣ and µ≥t0 ∈ U≥t0 . Denote

η≥t = (ρΣt0
(x, µ≥t0))≥t
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so that
η≥t = (x(µ≥t0))≥t = (x(µ[t0,t) ∗ µ≥t))≥t,

which gives, by definition of ΦΣt,t0
, x̂(τ̂∗t−t0

µ≥t) = τ̂∗t−t0
η≥t, where x̂ = ΦΣt,t0

(x, µ[t0,t1)). Thus
we compute

τ̂∗
−(t−t0)η≥t = ρ

Σ
t0

(ΦΣt,t0
(x, µ[t0,t)), τ̂

∗

−(t−t0)µ≥t)

= τ̂∗
−(t−t0)

◦ τ̂∗t−t0
ρΣt0

(ΦΣt,t0
(x, µ[t0,t)), τ̂

∗

−(t−t0)µ≥t)

= τ̂∗
−(t−t0)ρ

Σ
t,t0

(ΦΣt,t0
(x, µ[t0,t)), µ≥t),

giving our claim since τ̂t−t0 is a bijection.
Next we claim that ρΣt,t0

, t ∈ T≥t0 , and ΦΣt2,t1
, t1, t2 ∈ T≥t0 , are compatible. For this

we compute

(ρΣt1,t0
(x, µ≥t1))≥t2 = (τ̂∗t1−t0

ρΣt0
(x, τ̂∗

−(t1−t0)µ≥t1))≥t2

= τ̂∗t1−t0
(ρΣt0

(x, τ̂∗
−(t1−t0)µ≥t1)t2−t1+t0)

= τ̂∗t1−t0
ρΣt,t0

(ΦΣt1,t0
(x, τ̂∗

−(t1−t0)µ[t0,t1)), τ̂∗−(t1−t0)µ≥t2)

= τ̂∗t1−t0
τ̂∗t2−t1

ρΣt0
(ΦΣt1,t0

(x, τ̂∗
−(t1−t0)µ[t1,t2)), τ̂∗t1−t0

τ̂∗t2−t1
µ≥t2)

= τ̂∗t2−t0
ρΣt0

(ΦΣt2−t1+t0,t0
(x, τ̂∗

−(t−t0)µ[t1,t2)), τ̂−(t2−t0)µ≥t2)

= ρΣt2−t0,t0
(ΦΣt2,t1

(x, µ[t1,t2)), µ≥t2),

as desired.
(i)(c) =⇒ (i)(a) Let

XΣ,

ρΣt,t0
: XΣ × (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.

be a dynamical system representation that is time-invariant at t0. Now we have

(µ≥t0 , η≥t0) ∈ τ̂∗t0,t(B≥t0)

⇐⇒ (τ̂∗t−t0
µ≥t0 , τ̂

∗

t−t0
η≥t0) ∈B≥t

=⇒ τ̂∗t−t0
η≥t0 = ρ

Σ
t,t0

(x, τ̂∗t−t0
µ≥t0) for some x ∈ XΣ

⇐⇒ τ̂∗t−t0
η≥t0 = τ̂

∗

t−t0
ρΣt0

(x, τ̂∗(−t−t0)τ̂
∗

t−t0
µ≥t0) for some x ∈ XΣ

⇐⇒ η≥t0 = ρ
Σ
t0

(x, µ≥t0) for some x ∈ XΣ

⇐⇒ (µ≥t0 , η≥t0) ∈B ,

and so τ̂∗t0,t
(B ) ⊆B .

(i)(a) =⇒ (i)(b) Let t′2 = t2 − t1 + t0. We have

τ∗t0,t2
(B ) ⊆B =⇒ τ∗

−(t2−t1)τt0,t2(B ) ⊆ τ−(t2−t1)(B ).

Since
τ∗
−(t2−t1)τ

∗

t0,t2
(B ) = τ∗t1−t0

(B ),
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this part of the theorem follows.
(i)(b) =⇒ (i)(a) This is obvious.
(ii)(a) =⇒ (ii)(b) We use the fact that we have a time-invariant dynamical system

representation, as proved above. Using the fact that Σ is strongly stationary, we
compute

η≥t = ρ
Σ
t,t0

(x, µ≥t) for some x ∈ XΣ

⇐⇒ τ∗t−t0
η≥t = τ

∗

t−t0
ρΣt,t0

(x, τ∗
−(t−t0)τ

∗

t−t0
µ≥t) for some x ∈ XΣ

⇐⇒ τ̂∗t−t0
η≥t = ρ

Σ
t0

(x, τ̂∗t−t0
µ≥t) for some x ∈ XΣ

⇐⇒ (τ̂∗t−t0
µ≥t, τ̂

∗

t−t0
η≥t) ∈B

⇐⇒ (τ̂∗t−t0
µ≥t, τ̂

∗

t−t0
η≥t) ∈ τ̂∗t−t0

(B ) =B

⇐⇒ (µ≥t, η≥t) ∈ τ̂∗−(t−t0)B =B≥t,

giving this part of the theorem.
(ii)(b) =⇒ (ii)(a) Suppose that we have a dynamical system representation

XΣ,

ρΣt,t0
: XΣ × (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.

that is time-invariant at t0 and that satisfies

B≥t = {(µ≥t, η≥t) | η≥t = ρ
Σ
t,t0

(x, µ≥t) for some x ∈ XΣ}.

Then we have

η≥t = ρ
Σ
t0

(x, µ≥t) for some x ∈ XΣ

⇐⇒ τ̂∗
−(t−t0)η≥t = ρ

Σ
t,t0

(x, τ̂∗
−(t−t0)µ≥t) for some x ∈ XΣ

⇐⇒ (τ̂∗
−(t−t0)µ≥t, τ̂

∗

−(t−t0)η≥t) ∈ {(µ≥t, η≥t) | η≥t = ρ
Σ
t,t0

(x, µ≥t) for some x ∈ XΣ}

⇐⇒ (τ̂∗
−(t−t0)µ≥t, τ̂

∗

−(t−t0)η≥t) ∈ τ∗t0,tB≥t0

⇐⇒ (µ≥t, η≥t) ∈ τ∗t−t0
τ∗t0,t(B≥t0) = (B )≥t,

giving this part of the theorem. ■

While we will not consider such representations in this section, it is possible to
consider time-invariant state space representations.

2.2.40 Definition ((Strongly) time-invariant state space representation) Let ((S,≤),T)
be a stationary time-domain and let

Σ = (U,Y,T,U ,Y ,B )

be a general time system with state space representation at t0 prescribed by the
data

XΣ,

γΣt,t0
: XΣ ×U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.
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The state space representation is
time-invariant from t0 if, for t1, t2 ∈ T≥t0 , for µ ∈ U≥t0 , and for x ∈ XΣ, it holds that

(i) τ∗t0,t1
(U≥t0) ⊆ U≥t0 ,

(ii) γΣt1,t0
(x,u) = γΣt0,t0

(x,u),

(iii) ΦΣt2,t1
(x, µ[t1,t2)) = ΦΣt2−t1+t0,t0

(x, τ̂∗
−(t2−t1)µ[t1,t2)), and

(iv) τ∗t0,t1
(Y≥t0) = Y≥t0 . •

Let us consider some examples of stationary and nonstationary systems.

2.2.41 Examples (Stationary and nonstationary systems)
1. We claim that deterministic finite state automata are stationary. To see this,

suppose that we have a behaviour (µ, η) ∈ B for such a system. This, then, is
determined by an initial state θ(0) ∈ Q, an input µ ∈ ΛZ≥0 , the state sequence
(θ( j)) j∈Z≥0 determined by the dynamics δ, and the output sequence (η( j)) j∈Z≥0

determined by the output map γ. Given such a behaviour and given k ∈ Z≥0,
we have (τ̂∗kµ, τ̂

∗

kη) ∈ τ∗k(B ) defined by

τ∗kµ( j) = µ( j + k), τ∗kη( j) = η( j + k).

If we define τ∗kθ( j) = θ( j + k), then we see that the input sequence τ∗kµ and
the initial state τ∗kθ(0) give rise to the output τ∗kη, and so we conclude that
τ∗k(B ) ⊆B .
It is not generally the case that a deterministic finite state automaton is strongly
stationary. To see this, we consider the system described by the diagram (2.5).
We see that any behaviour (µ, η) of the form

µ( j) = 0, η( j) =

s1, j = 0,
s2, j ∈ Z>0,

j ∈ Z≥0,

cannot be recovered from a shifted behaviour (τ∗kµ
′, τ∗kη

′) for k ∈ Z>0. That is,
τ∗k(B ) ⊂B for k ∈ Z>0.

2. For the systems of most importance to us in this volume, those described by
differential and difference equations, we shall give in Sections 6.1.1 and 6.3.1
a concise description of those that are stationary. Here we consider a simple
example of this that gives some insight into the notion of stationarity.
Let U = L1

loc(R≥0;R) and let Y ⊆ AC(R≥0;R) be determined by

η̇(t) = a(t)η(t) + µ(t), µ ∈ U ,

for some a ∈ L1
loc(R≥0;R). We shall see in Example 4.3.6 that solutions of the

preceding equation satisfying η(t0) = y0 are given by

η(t) = Φ(t, t0)y0 + Φ(t, t0)
∫ t

t0

µ(τ)Φ(t0, τ)dτ
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where

Φ(t, t0) =
∫ t

t0

a(τ) dτ.

Let us first consider the case where a is constant, say a(t) = α, t ∈ R≥0. In this
case,

Φ(t, t0) = eα(t−t0),

and so, when α , 0 (we shall leave the case of α = 0 for the reader to work out),

η(t) = eα(t−t0)y0 +

∫ t

t0

eα(t−τ)µ(τ) dτ.

A behaviour is obtained by taking t0 = 0, so that a general behaviour (µ, η) has
the form

µ ∈ L1
loc(R≥0;R), η(t) = eαty0 +

∫ t

0
eα(t−τ)µ(τ) dτ, t ∈ R≥0.

Now let t1 ∈ R≥0 and compute

τ∗0,t1
µ(t) = eαt

(
e−αt1 y0 +

∫ t1

0
e−αsµ(s − t1) ds

)
︸                                 ︷︷                                 ︸

y′0

+

∫ t

0
eα(t−s)τ∗0,t1

µ(s) ds.

Thus the shifted behaviour is again a behaviour with the new initial condition
y′0. This shows that (τ∗0,t1

µ, τ∗0,t1
η) ∈ B , and so the system is stationary. It is

easy to see, by reversing the previous computations, that the system is, in fact,
strongly stationary.
In the case when a is not constant, then one can see that the system is not
stationary. We shall prove this in a more general setting in Proposition 6.1.7. •

2.2.9 Linear time systems

The next significant bit of structure we introduce for time systems is that of
linearity. Special classes of linear time systems will receive substantial attention in
subsequent chapters in this volume. Here we consider a fairly general framework
for linear time systems.

An essential observation when dealing with linear time systems is that, for a
field F, an F-vector space V, and a general time-domain T, the set VT is an F-vector
space, as demonstrated in Example I-4.5.2–8. Note that V(T) is not an F-vector
space since partial time functions cannot generally be added as they have different
domains. Nonetheless, we can make the following definition.
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2.2.42 Definition (Linearly closed set of partial time functions) Let F be a field, let V
be an F-vector space, and let T be a general time domain. A subset V ⊆ V(T) of
partial time functions is linearly closed if, for a ∈ F and for ν, ν1, ν2 ∈ V(T) with
dom(ν1) = dom(ν2), we have ν1 + ν2 ∈ V and aν ∈ V , where

(ν1 + ν2)(t) = ν1(t) + ν2(t), t ∈ dom(ν1) = dom(ν2),

and (aν)(t) = a(ν(t)) for t ∈ dom(ν). •

With this in mind, we make the following definition.

2.2.43 Definition (Linear time system) Let F be a field. An F-linear time system is a
general time system

Σ = (U,Y,T,U ,Y ,B )

for which
(i) U and Y are F-vector spaces,
(ii) U ⊆ U(T) and Y ⊆ Y(T) are linearly closed, and
(iii) B ⊆ (U ⊕ Y)(T) is linearly closed. •

For linear time systems, it is reasonable and convenient to restrict the generality
and work with signals all of which are restrictions of signals defined on the entire
time-domain. Such systems will of necessity be complete. Let us single out such
systems.

2.2.44 Definition (Full-time linear time system) Let F be a field. An F-linear time system

Σ = (U,Y,T,U ,Y ,B )

is full-time if
dom(µ) = dom(η) = dom(µ, η) = T

for every µ ∈ U , η ∈ Y , and (µ, η) ∈B . The core of such a system is the subspace

B (0) = {η ∈ Y | (0, η) ∈B }. •

If Σ is a full-time linear time system with time-domain T and if T′ ⊆ T is
a sub-time-domain, then the restrictions of inputs, outputs, and behaviours are
subspaces of the vector spaces of inputs, outputs, and behaviours, respectively.

Linear time systems have the feature that, under some mild assumptions, one
can draw useful conclusions about their system theoretic structure. Let us illustrate
this by giving a class of linear time systems that turn out to be very structured.
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2.2.45 Definition (Basic linear time system) Let F be a field. An F-linear time system

Σ = (U,Y,T,U ,Y ,B )

is basic if it is
(i) full-time,
(ii) strongly causal, and
(iii) strongly stationary, and
(iv) if it has a finite-dimensional core. •

We shall see that all of the linear systems we work with in this volume fit into
the category of basic linear time systems. Thus anything we can prove about this
class of systems will hold in generality for the linear systems we consider in detail
subsequently. Let us, therefore, begin to establish a few facts about basic linear
time systems.

We begin with the property of finite observability introduced in Defini-
tion 2.2.33.

2.2.46 Proposition (Basic linear time systems are finitely observable) Let F be a field
and let

Σ = (U,Y,T,U ,Y ,B ),

be an F-linear time system for which card(T) > 1. Let t0 ∈ T. Then the following
equivalent statements hold for t0 ∈ T:

(i) Σ is finitely observable from some τ ∈ T≥t0 ;
(ii) there exists τ ∈ T>t0 such that, if η ∈B (0)≥t0 satisfies η[t0,τ) = 0[t0,τ), then η≥t0 = 0≥t0 .

Proof Let us first show that the two conditions are equivalent. It is clear that (i)
implies (ii). Now, suppose that (ii) holds for some τ ∈ T>t0 and let µ ∈ U . Suppose
that, for η1, η2 ∈B (µ)≥t0 , we have

(η1)[t0,τ) = (η2)[t0,τ).

Then
(η1)[t0,τ) − (η2)[t0,τ) = 0.

Also,

(µ, η1), (µ, η2) ∈B≥t0 =⇒ (0, η1 − η2) ∈B≥t0 =⇒ η1 − η2 ∈B (0)≥t0 ,

and so we conclude that
η1 − η2 = 0 =⇒ η1 = η2.

Next we show that a basic linear time system satisfies (ii). We claim that the
assumption that card(T) > 1 implies that card(Tt0) ≥ card(Z>0). Indeed, we have
t ∈ Tt0 such that t , 0. Therefore, kt ∈ Tt0 for all k ∈ Z>0. We claim that the times kt,
k ∈ Z>0, are distinct. Suppose not, so that k1, k2 ∈ Z>0 satisfy k2 > k1 and

k1t = k2t =⇒ (k2 − k1)t = 0.
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Since t , 0, the property of the total order gives k1 = k2.
Given the preceding, let τ ∈ T≥t0 be such that card(T[t0,τ)) ≥ dimF(B (0)≥t0). Let

η ∈B (0)≥t0 have the property that η[t0,τ) = 0[t0,τ). Suppose that η , 0 so that there exists
T ∈ T≥τ such that

T = sup{t ∈ T≥t0 | η(t) = 0}.

Let δ > 0 be such that η(T + δ) , 0. Let t1, . . . , tk ∈ T[t0,T] with k ≥ dimF(B (0)≥t0) and
satisfying

t0 < t1 < · · · < τk = T.

Define η j = τ∗T−tk− j
η, j ∈ {0, 1, . . . , k}. For j ∈ {0, 1, . . . , k}, we then have

η ∈B (0)≥t0

=⇒ (0, η) ∈B≥t0

=⇒ (0≥t0+T−tk− j , η≥t0+T−tk− j) ∈B≥t0+T−tk− j = τ
∗

T−t j
(B≥t0)

=⇒ (0≥t0+T−tk− j , η≥t0+T−tk− j) = (τ∗T−t j
µ′, τ∗T−t j

η′) for some (µ′, η′) ∈B≥t0

=⇒ µ′ = τ∗t j−t0
0≥t0+T−tk− j = 0, η′ = τ∗T−tk− j

η≥t0+T−tk− j

=⇒ η′ = η j ∈B (0)≥t0 ,

using the fact that Σ is strongly stationary. We claim that η0, η1, . . . , ηk are linearly
independent. Indeed, suppose that

c0η0 + c1η1 + · · · + ckηk = 0

for some c0, c1, . . . , ck ∈ F. We then have

η j(tk− j + δ) = η(T + δ) = 0, j ∈ {0, 1, . . . , k},

and
η j(tk−l + δ) = η(T − (tk− j − tk−l) + δ) = 0, l ∈ {0, 1, . . . , j − 1},

since τk− j − tk−l > 0. Thus

η0(t0 + δ) = η1(t0 + δ) = · · · = ηk−1(t0 + δ) = 0

and so ckηk(t0 + δ) = 0, whence ck = 0. In like manner,

η0(t1 + δ) = η1(t1 + δ) = · · · = ηk−2(t1 + δ) = 0,

which gives ck−1ηk−1(t1 + δ) = 0, and so ck−1 = 0. Continuing in this way, c0 = c1 =
· · · = ck = 0, giving the asserted linear independence. This contradicts the fact that
dimF(B (0)≥t0) ≤ k, and so we must have η = 0. ■

This gives the following important corollary about the characteristics of basic
linear time systems.
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2.2.47 Corollary (Basic linear time systems are past-determined) Let F be a field, let

Σ = (U,Y,T,U ,Y ,B )

be an F-linear time system, and let t0 ∈ T. Then there exists τ ∈ T>t0 such that Σ is
strongly past-determined from τ.

Proof This follows immediately from Proposition 2.2.34. ■

Next we consider dynamical system and state space representations for basic
linear general time systems. One hopes that one can arrive at such representations
that preserve the linearity of the system. So let us first encode the desired properties
of these representations.

2.2.48 Definition (Linear dynamical system and state space representations) Let F
be a field and let

Σ = (U,Y,T,U ,Y ,B )

be a full-time linear time system and let t0 ∈ T.
(i) A dynamical system representation determined by the data

XΣ,

ρΣt,t0
: XΣ ⊕ (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) ⊕ XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2,

is F-linear if

(a) XΣ is an F-vector space and
(b) the mappings ρΣt,t0

, t ∈ T≥0, and ΦΣt2,t1
, t1, t2 ∈ T≥t0 , t1 ≥ t2, are F-linear.

(ii) A state space representation determined by the data

XΣ,

γΣt,t0
: XΣ ⊕ U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) ⊕ XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2,

is F-linear if

(a) XΣ is an F-vector space and
(b) the mappings γΣt,t0

, t ∈ T≥0, and ΦΣt2,t1
, t1, t2 ∈ T≥t0 , t1 ≥ t2, are F-linear.

A significant result for basic linear time systems is then the following.
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2.2.49 Proposition (Representations for basic linear time systems) Let F be a field.
For a basic F-linear time system

Σ = (U,Y,T,U ,Y ,B ),

the following statements hold for t0 ∈ T:
(i) Σ possesses a strongly causal, strongly stationary linear dynamical system represen-

tation from t0;
(ii) Σ possesses a strongly causal, strongly stationary linear state space representation

from t0.
Proof By Corollary 2.2.47 we have that Σ is past-determined from some τ ∈ T≥t0 .
Define

ρ′τ : U≥τ → Y≥τ

by requiring that

ρ′τ(µ≥τ) = η≥τ ⇐⇒ (0[t0,τ) ∗ µ≥τ, 0[t0,τ) ∗ η≥τ) ∈B≥t0 .

We claim that ρ′τ is well-defined. First of all, if µ≥τ ∈ U≥τ, let η′ be such that

(0[t0,τ) ∗ µ≥τ, η
′) ∈B≥t0 .

Then, by strong causality of Σ, we must have η′[t0,τ) = 0[t0,τ). Next, if

(0[t0,τ) ∗ µ≥τ, 0[t0,τ) ∗ η≥τ), (0[t0,τ) ∗ µ≥τ, 0[t0,τ) ∗ η
′

≥τ) ∈B≥t0 =⇒ η≥τ = η
′

≥τ

since Σ is past-determined from τ. This shows that ρ′τ is well-defined. It is also evident
that ρ′τ is F-linear.

Next define XΣ =B (0)≥t0 and define

ρ′′τ : XΣ → Y≥τ
η 7→ τ̂∗τ−t0

η.

Clearly ρ′′τ is linear.
Now define

ρΣτ : XΣ ⊕U≥τ → Y≥τ
(η, µ≥τ) 7→ ρ′τ(µ≥τ) + ρ

′′

τ (η).

Linearity of Σ, and the fact that τ̂∗t0,τ
(B (0)≥t0) = Bτ(0≥τ), shows that this mapping is

well-defined and linear. Moreover, let (µ≥τ, η≥τ) ∈B≥τ. Then we write

(µ≥τ, η≥τ) = (µ≥τ, ρ′τ(µ≥τ)) + (0≥τ, η≥τ − ρ′τ(µ≥τ)),

from which we deduce

(µ≥τ, ρ′τ(µ≥τ)) ∈B≥τ =⇒ η≥τ − ρ
′

τ(µ≥τ) ∈B≥τ(0≥τ) = τ̂τ−t0(XΣ),

and so
ητ = ρ

′

τ(µ≥τ) + ρ
′′

τ (η′) = ρΣτ (η, µ≥τ)
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for some η′ ∈ XΣ. This shows that ρΣτ is an initial response function forB≥τ.
We next claim that ρΣτ is strongly causal. Indeed,

µ[τ,t) = µ
′

[τ,t) =⇒ 0[t0,τ) ∗ µ[τ,t) = 0[t0,τ) ∗ µ
′

[τ,t) =⇒ (ρ′τ(µ≥τ))[τ,t] = (ρ′τ(µ
′

≥τ))[τ,t],

from which we deduce that ρΣτ is indeed strongly causal.
The above shows that ρΣτ is a linear, strongly causal initial response function for

B≥τ.
Now define

ρΣt0
: XΣ ⊕U≥t0 → Y≥t0

(η, µ) 7→ τ̂∗
−(τ−t0)ρ

Σ
τ (η, τ̂∗τ−t0

µ).

Strong stationarity ofΣ implies that ρΣt0
is a linear strong causal initial response function

forB≥t0 .
Now define

ρΣt,t0
: XΣ ⊕U≥τ → Y≥τ

(η, µ≥τ) 7→ τ̂∗
−(τ−t0)ρ

Σ
0 (η, τ̂∗τ−t0

µ≥τ)

and
ΦΣt,t0

: U[t0,t) ⊕ XΣ → XΣ

(µ[t0,t), η) 7→ τ̂∗
−(t−t0)ρ

Σ
t0

(η, µ[t0,t) ∗ 0≥t),

keeping in mind that XΣ =B (0)≥t0 . Finally, for t1, t2 ∈ T≥t0 with t1 ≤ t2, define

ΦΣt1,t2
: U[t1,t2) ⊕ XΣ → XΣ

(µ[t1,t2), η) 7→ ΦΣt2−t1+t0,t0
(τ̂−(τ−t0)(µ[t1,t2)), η).

One then shows, by direct computation, that the data

XΣ,

ρΣt,t0
: XΣ ⊕ (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) ⊕ XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2,

is an F-linear, strongly causal, and strongly stationary dynamical system representation
for Σ from t0.

Finally, if we define
γΣt,t0

: XΣ ⊕ U→ Y

(η,u) 7→ ρΣt,t0
(η, µ≥t)(t),

where µ≥t satisfies µ(t) = u. This, then, gives the data

XΣ,

γΣt,t0
: XΣ ⊕ U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) ⊕ XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2,

which is an F-linear, strongly stationary state space representation for Σ. ■

Let us give some examples of linear time systems, noting that in Sec-
tions 6.6, 6.8, 6.7, and 6.9 we shall consider large classes of such systems.
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2.2.50 Examples (Linear time systems)
1. The system of Example 2.2.41–2 is a R-linear time system. Since it is not

generally stationary, it is not generally a basic linear time system. It is, however,
a basic R-linear time system when a is constant.

2. The convolution system of Example 2.1.14 is a basic R-linear time system. •

Exercises

2.2.1 Let (T,≤) be a general time-domain with S1, S2 ⊆ T sub-time-domains such
that S2 follows S1. Show that S1 ∗ S2 is a sub-time-domain of T.

2.2.2 For each of the following general time-domains, describe explicitly the pairs
of sub-time-domains S1 and S2 for which S2 follows S1:
(a) (Z(∆),≤);
(b) (Q,≤);
(c) (R,≤).

2.2.3 Show that the continuous and discrete time domains of Definition IV-1.1.2
are additive time-domains in the sense of Definition 2.2.3.

2.2.4 Answer the following questions.
(a) Describe explicitly all possible stationary time-domains that are subsets

of the additive time-domain ((R,≤),R).
(b) Describe explicitly all possible stationary time-domains that are subsets

of the additive time-domain ((Z(∆),≤),Z(∆)).
2.2.5 (Only for students in countries that use dollars and cents as currency.) Con-

sider a soda machine for which a can of soda costs 50¢ and which takes
only quarters as inputs. Model this as a deterministic finite state automaton
(Q,Λ,Y, δ, µ).

2.2.6 Let
Σ = (U,Y,T,U ,Y ,B )

be a general time system and let ρΣt0
: XΣ ×U≥t0 → Y≥t0 be an initial response

function with initial state object XΣ. Define

XΣt,t0
= XΣ ×U[t0,t), t ∈ T≥t0 ,

ρΣt,t0
: XΣt,t0

×U≥t → Y≥t

((x, µ[t0,t)), µ
′

≥t) 7→ ρΣt0
(x, µ[t0,t) ∗ µ

′

≥t)≥t,
t ∈ Tt,t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣt1,t0

→ XΣt2,t0

(µ′
≥t2
, (x, µ[t1,t2))) 7→ (µ[t1,t2)) ∗ µ′≥t2

, x),
t1, t2 ∈ T≥t0 , t1 ≤ t2.

Show that this data describes a pre-dynamical system representation for Σ
at t0. (This is called the Nerode realisation.)
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Section 2.3

Some problems in general system theory

The preceding sections were dedicated to a description of a general system
theory, and to looking at specific structures within this theory, but still in a general
setting. While it is interesting to play around within this world of general system
theory structure, the fact of the matter is that the theory is aimed at solving prob-
lems. In this section we describe such problems, but maintain our general and
abstract setting. This generality and abstraction is helpful for understanding the
problems themselves in the absence of distracting additional structure.

2.3.1 Goal-seeking

Goal-seeking can be seen as additional structure within a system that accounts
for its behaviour. The additional structure is put in place to describe specific
attributes of the system. We shall give a general definition of what we mean by a
goal-seeking system, then illustrate the general concepts with a specific example.

We shall give the formal definition, which will be difficult to contextualise
initially, and then we will discuss in broad terms how this works. We hope that the
example that follows will make this more clear.

2.3.1 Definition (Goal-seeking system) A general input/output system Σ = (U ,Y ,B )
is a goal-seeking system if there exist

(i) a setM (the internal model space),
(ii) a totally ordered set (V,≤) (the value space),
(iii) a mapping G : M ×U ×Y → V (the goal function),
(iv) a subset F ⊆ U ×Y ×M (the internal goal-seeking system),
(v) a subset P ⊆M ×U ×Y (the parameterised systems), and
(vi) a subset E ⊆ U ×Y × V ×M (the the selection system)

that satisfy the following conditions:
(vii) E = {(µ, η, v, λ) | v = G(λ, µ, η), v ≤ G(λ′, µ′, η′), (λ′, µ′, η′) ∈M ×U ×Y };
(viii) F = {(µ, η, λ) | (µ, η,G(λ, µ, η), λ) ∈ E };
(ix) B = {(µ, η) | (λ, µ, η) ∈ P and (µ, η, λ) ∈ F for some λ ∈M }. •

Let us discuss the definition, and how one should think of how the components
fit together. In goal-seeking systems, one is seeking, given an input, an output
that is optimal in the sense that it minimises the goal function G. However, the
minimisation may be carried out over variables that are not strictly described by
the inputs and outputs, and this explains the introduction of the internal model
space M . The selection system E describes the set of optimal inputs, outputs,
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internal model variables, and values that are optimal in the sense set out in part (vii).
The selection system feeds into the the system through the internal goal-seeking
systemF . One should think ofF as describing, given an input µ and an output η,
the set of possible internal variables λ that are selected as optimal by the selection
system. The set of parameterised systems should be thought of as prescribing, for
each λ ∈M , a subset

Bλ = {(µ, η) ∈ U ×Y | (λ, µ, η) ∈ P }

of behaviours. Thus P selects, given an input µ, determines whether there exists
an internal variable λ and an output η for which the data (µ, λ, η) is optimal.

Let us illustrate this with an example.

2.3.2 Example (Length minimisation as goal-seeking) Let us consider a system de-
signed to produce a curve that connects points x0, x1 ∈ Rn while minimising
the length of the curve. Thus we consider the input space to be the singleton
U = {(x0, x1)} ⊆ Rn

×Rn and the output space is the set

Y = H1([0, 1];Rn) = {γ : [0, 1]→ Rn
| γ is

locally absolutely continuous and γ′ ∈ L2([0, 1];Rn)}

of absolutely continuous curves with domain [0, 1] and whose derivative is square
integrable. We know what the systemB ⊆ U ×Y is because we know that straight
lines minimise length; thus we know that the system is

B = {((x0, x1),γ) ∈ U ×Y | γ(t) = (1 − t)x0 + tx1, t ∈ [0, 1]}.

What we will do, however, is make this length minimisation a part of the system
by prescribing a goal-seeking structure.

We take
M = {γ ∈ Y | γ(0) = x0, γ(1) = x1}.

We take V = R with its standard total order and define the cost function G by the
length:

G : M ×U ×Y → V

(γ̂, (x0, x1),γ) 7→
∫ 1

0
∥γ̂′(t)∥dt.

We then take

E =

{
((x0, x1),γ, ℓ, γ̂) ∈ U ×Y × V ×M

∣∣∣∣∣∣∫ 1

0
∥γ̂′(t)∥dt = ℓ, ℓ ≤

∫ 1

0
∥γ′(t)∥dt, γ ∈M

}
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Thus E contains the solution to the problem: Find the curve connecting x0 and x1

of minimum length. This then gives

F = {((x0, x1),γ, γ̂) ∈ U ×Y ×M |
γ̂ is the curve of minimum length connecting x0 and x1}.

We next connect the solution to the optimisation problem to the larger system by
taking

P = {((x0, x1),γ, γ̂) ∈ U ×Y ×M | γ̂ = γ},

which gives

B = {((x0, x1),γ) ∈ U ×Y |
γ̂ is the curve of minimum length connecting x0 and x1}.

Note that the goal-seeking idea is contained in the definition of E , and one must
devise some method to show that

E = {((x0, x1),γ, ℓ, γ̂ ∈ U ×Y × V ×M |
γ̂(t) = (1 − t)x0 + tx1, t ∈ [0, 1], ∥x1 − x1∥ = ℓ}.

The idea is that this process is decoupled from the macroscopic input/output be-
haviour of the system. •

2.3.2 Decision problems

Decision problems are important in theoretical computer science, where they
are a part of the theory of computational complexity. The definition of a decision
problem is simple.

2.3.3 Definition (Decision problem) A decision problem is a functional input/output
system Σ = (U ,Y ,B ) where Y = {yes,no}. •

Many problems arise as decision problems, or can be converted to decision
problems.

2.3.4 Examples (Decision problem)
1. The automaton of Example 2.1.2–2 can be seen as providing an answer to the

question “Does a given input string w = w1w2 · · ·wk contain an even number of
number of zeros?” Indeed, the automaton is designed to return a “yes” answer
when qk = s1 and a “no” answer when qk = s2.

2. General input/output systems correspond to decision problems. Indeed, if
Σ = (U ,Y ,B ) is a general input/output system, then we associated to this the
decision problem Σdec = (Udec, {yes,no},Bdec) by taking Udec = U ×Y and

Bdec = {((µ, η),yes) | (µ, η) ∈B } ∪ {((µ, η),no) | (µ, η) <B }.
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3. There is a relationship between optimisation problems and decision problems.
Let us illustrate this concretely. Let us consider a graph (V,E) with vertices V

and edges E. For k ∈ Z>0, we consider a system Σk = (U , {yes,no},Bk), where
(a) U is the set of all pairs (v1, v2) ∈ V × V of vertices and
(b) ((v1, v2),yes) ∈ Bk if and only if there exists a path in the graph from v1 to

v2 with length at most k.
In this case, one can consider an optimisation problem: Given vertices (v1, v2),
find the shortest path in the graph connecting v1 and v2. A solution to this
optimisation problem, if it exists, can be obtained by considering in sequence
the systems Σ1,Σk, . . . and then noting that a shortest path will be obtained by
the smallest k for which ((v1, v2),yes) ∈Bk. •

2.3.3 Reachability

Reachability, more or less, answers the question, “Where can I go from here?”
There are many possible variations of reachability questions, and indeed the “cor-
rect” variation typically relies heavily on the precise properties of the system with
which one is working. Here we consider some simple examples of the sorts of
questions one might consider.

2.3.5 Example (Reachability problems)
1. A typical reachability problem can be posed as follows. Consider a dynamical

system representation given by the data

XΣ,

ρΣt,t0
: XΣ × (U≥t0)≥t → (Y>t0)≥t, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.

Suppose we are given x1, x2 ∈ XΣ and t1, t2 ∈ T≥t0 with t1 ≤ t2. We say that the
state x2 is reachable in time t2 from state x1 at time t1 if there exists µ∈[t1,t2) ∈ U[t1,t2)

such that x2 = Φ
Σ
t2,t1

(µ[t1,t2), x1). This sort of problem can be referred to as “state
reachability.”

2. If, additionally, we have a state space representation given by the data

XΣ,

γΣt,t0
: XΣ ×U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2,

then the preceding notion of controllability can be adapted to outputs. Thus,
given y1, y2 ∈ Y and t1, t2 ∈ T≥t0 with t1 ≤ t2. We say that the output y2 is
reachable in time t2 from output y1 at time t1 if there exists µ∈[t1,t2) ∈ U[t1,t2) and
x ∈ XΣ such that

ya = γ
Σ
ta,t0

(ΦΣta,t0
(µ[t0,ta), x)), a ∈ {1, 2}.

This sort of problem can be referred to as “output reachability.” •
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2.3.4 Observability

Observability is concerned with the extent to which a knowledge of the in-
put/output behaviour of a system determines its input/state behaviour. As with
reachability, there are specific forms of this sort of property, depending on the exact
attributes of the system. However, one can give a useful definition in the context
of time systems, so let us do this.

2.3.6 Definition (Observable general time system) Let

Σ = (U,Y,T,U ,Y ,B )

be a general time system, let t0 ∈ T, and suppose that Σ possesses a state space
representation at t0 prescribed by the data

XΣ,

γΣt,t0
: XΣ ×U→ Y, t ∈ T≥t0 ,

ΦΣt2,t1
: U[t1,t2) × XΣ → XΣ, t1, t2 ∈ T≥t0 , t1 ≤ t2.

Then Σ is observable if, for (µ1, η1), (µ2, η2) ∈B≥t0 , we have

(µ1, η1) = (µ2, η2) =⇒ ΦΣt,t0
((µ1)[t0,t), x) = ΦΣt,t0

((µ2)[t0,t), x)

for every x ∈ XΣ. •

The idea is that, if one knows the input/output behaviour, then the state be-
haviour is completely determined by the initial condition.

2.3.5 Stability

Stability has to do, loosely speaking, with the problem: Do behaviours that
are close at some time remain close for subsequent times? As with a number of
the topics in this section, the precise nature of stability depends on the structure
present in a specific context. A crucial such structure that often shows up in the
theory of stability is the nature of what “close” might mean. As well as this, there
are many sorts of refinements of what stability properties might be useful in any
given system theoretic problem. What we shall do, therefore, is consider a few
examples of stability problems that indicate the kinds of things one often looks for
in problems of stability.

2.3.7 Examples (Stability)
1. Let us consider a simple, but not perfectly concrete, example that shows the sort

of behaviour that is of interest in the theory of stability. Consider a ball rolling
along a hilly terrain prescribed by a function f as in Figure 2.10. We suppose f
is bounded from below.
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x

y = f(x)

Figure 2.10 Ball rolling over hilly terrain

Suppose first that the ball rolls without friction. Then one can easily imagine
that, at positions x where f has a strict local minimum, the position of the ball
will be “locally stable,” in the sense that, as long as one does not move far away
from the minimum point, the ball will be trapped by the terrain, and so remain
close to the minimum point. If, on the other hand, one starts near a strict local
maximum of f , then the position of the ball will be “unstable,” in the sense that
the only motion that will not move away from the local maximum is the special
motion where the ball is at rest at exactly the local maximum. With no friction
present, the ball will never get closer to a strict local minimum of f for longer
times.
If one has friction, however, eventually almost all motions of the ball will result
in the ball approaching a strict local minimum of f . The only motions that will
not have those attributes are those that approach an unstable position as time
goes to infinity. The stability possessed by the local minima of f with friction is
called “asymptotic stability.”
The preceding discussion had to do with stability of equilibria. One can also
talk about stability of nonequilibrium motions. Consider, for example, a motion
of the ball while it is trapped near a local minimum of f . This motion will be
periodic. One can wonder whether it is “stable,” in the sense that motions
starting nearby remain nearby. It turns out that this is interesting, and depends
on the exact shape of the graph of f . Generally speaking, these motions are not
stable, because nearby motions have different periods, and so will eventually
“separate” from the specific trajectory one is considering.

2. The stability discussed in the preceding example of the rolling ball refers to
the stability of the states of the system. Another sort of stability is that of
input/output stability. Here one is interested in the behaviour of the output for
certain sorts of inputs. A typical such property is what is called “bounded-input,
bounded-output” stability. As the name suggests, it has to do with whether,
given any bounded input, all resulting outputs are also bounded. In this case,
one has to be specific about what “bounded” might mean. •

We shall discuss stability at length in Chapters 10 and 11.
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2.3.6 Stabilisation

Stabilisation is, as one might expect, rather related to stability. However, here
one wishes to make use of the inputs of a system to render a possibly unstable be-
haviour a stable behaviour. As with stability, making this clear typically requires a
careful consideration of system structure. We shall, therefore, examine the problem
of stabilisation for a simple, widely used, example.

2.3.8 Example (Stabilisation) We consider a pendulum atop a cart as depicted in Fig-
ure 2.11. The cart is subject to a force F as shown, and the objective is to choose F

F

Figure 2.11 Pendulum atop a cart

in such a way that the pendulum is balanced in the upright position, despite this
position being naturally unstable. Often what one wants is to design F to be an
explicit function of the states of the system (these being the position of the cart,
the angle of the pendulum arm, and the velocities of these), and this is known as
“feedback stabilisation.”

A few important questions present themselves:
1. is it even possible to stabilise the pendulum in the upright position?
2. in designing a feedback stabiliser, how regular a function of the states is the

input?
3. from what set of states can the pendulum be stabilised? •

2.3.7 Classification and comparison

There are various sorts of questions that fall under the umbrella of the problems
we have in mind in this section. Here are a few of these:
1. given two systems, are they equivalent in some way, namely in some way that

they can be mapped one to the other according to some nice class of mappings?
2. for a given system, is there, among all systems equivalent to it, a “nice” one?
3. can the behaviours of a system be regarded as a subset of behaviours of another

system?
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4. are the behaviours of a system “projections” of the behaviours of a larger sys-
tem?

These sorts of questions all require some sort of notion of a transformation of
systems. The exact sort of transformation one wishes to allow will depend sub-
stantially on the structure of the systems under consideration, and the properties
of these systems in which one is interested.

Here we shall consider a simple sort of transformation associated with a general
input/output system, and this will allow us to provide a little context to the general
questions posed above.

2.3.9 Definition (Transformations for general input/output systems) Let Σ1 =
(U1,Y1,B1) and Σ2 = (U2,Y2,B2) be general input/output systems. A system
transformation from Σ1 to Σ2 is a pair of mappings Φ = (ϕin, ϕout) satisfying

ϕin : U1 → U2, ϕout : Y1 → Y2

and
(ϕin(µ), ψout(η)) ∈B2, (µ, η) ∈B1.

We denote by Φ : B1 →B2 the induced mapping satisfying

Φ(µ, η) = (ϕin(µ), ϕout(η)). •

Note that system transformations can be composed in the more or less obvious
way. To wit, if Σa = (Ua,Ya,Ba), a ∈ {1, 2, 3}, are general input/output systems and
if Φ = (ϕin, ϕout) and Ψ = (ψin, ψout) are system transformations from Σ1 to Σ2 and
from Σ2 to Σ3, respectively, we define a system transformationΨ ◦Φ from Σ1 to Σ2

by
Ψ ◦Φ = (ψin ◦ ϕin, ψout ◦ ϕout).

Thus a system transformation send behaviours to behaviours. Let us see how
this structure can address the questions above. We do this by making some related
definitions.

2.3.10 Definition (Types of system transformations) Let Σ1 = (U1,Y1,B1) and Σ2 =
(U2,Y2,B2) be general input/output systems and let Φ = (ϕin, ϕout) be a system
transformation from Σ1 to Σ2. The system transformation Φ is

(i) surjective if Φ(B1) =B2,
(ii) injective if Φ(µ, η) = Φ(µ′, η′) implies that (µ, η) = (µ′, η′),
(iii) left invertible if there exists a system transformation Ψ = (ψin, ψout) from Σ2

to Σ1 such thatΨ ◦Φ = (idU1 , idY1),
(iv) right invertible if there exists a system transformationΨ = (ψin, ψout) from Σ2

to Σ1 such that Φ ◦Ψ = (idU2 , idY2),
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(v) an epimorphism if, for any general input/output systemΣ3 = (U3,Y3,B3) and
any system transformationsΨ,Ψ′ from Σ2 to Σ3, we have

Ψ ◦Φ = Ψ′ ◦Φ =⇒ Ψ = Ψ′,

(vi) a monomorphism if, for any general input/output system Σ3 = (U3,Y3,B3)
and any system transformationsΨ,Ψ′ from Σ3 to Σ1, we have

Φ ◦Ψ = Φ ◦Ψ′ =⇒ Ψ = Ψ′,

(vii) an isomorphism if it is both left and right invertible. •

The reader will recognise some of these ideas from basic mappings between
sets; see Definitions I-1.3.6 and I-1.3.8. However, the relationships between these
notions of system transformations are not the same as those for sets that are given
in Proposition I-1.3.9. To see this, let us give some fairly elementary results and
fairly concocted examples that illustrate what is true and not true.

First we deal with the notions of “surjective,” “right invertible,” and “epimor-
phism.”

2.3.11 Proposition (Relationship between surjective, right invertible, and epimor-
phism) Let Σ1 = (U1,Y1,B1) and Σ2 = (U2,Y2,B2) be general input/output systems for
which dom(Σa) = Ua and rng(Σa) = Ya, a ∈ {1, 2}, and let Φ = (ϕin, ϕout) be a system
transformation from Σ1 to Σ2. Then the following statements hold:

(i) Φ is an epimorphism if and only if ϕin and ϕout are surjective;
(ii) if Φ is surjective, then it is an epimorphism;
(iii) if Φ is right invertible, then it is surjective.

Proof (i) Suppose first that ϕin and ϕout are surjective and let Ψ and Ψ′ be a system
transformation from Σ2 to a general input/output system Σ3. Then we have

Ψ ◦Φ = Ψ′ ◦Φ

=⇒ (ψin ◦ ϕin(µ), ψout ◦ ϕout(η)) = (ψ′in ◦ ϕin(µ), ψ′out ◦ ϕout(η)), (µ, η) ∈B1.

Since dom(Σ1) = U1, this implies that

ψin ◦ ϕin = ψ
′

in ◦ ϕin.

Using Proposition I-1.3.9(ii), we compose on the right by the right inverse of ϕin and
get ψin = ψ′in. Now, since rng(Σ1) = Y1, we similarly have ψout = ψ′out.

Now suppose that ϕin is not surjective. Thus ϕin(U1) ⊂ U2. Take U3 = {0, 1} and
define ψin, ψ′in : U2 → U3 by

ψin(µ) =

1, µ ∈ ϕin(U1),
0, otherwise,

, ψ′in(µ) = 1,
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for µ ∈ U2. Also take Y3 = {0} and define ψout, ψ′out : Y2 → Y3 by

ψout(η) = ψ′out(η), η ∈ Y2.

Then Ψ ◦ Φ = Ψ′ ◦ ϕ but Ψ , Ψ′. A similar argument can be fabricated for the case
when ϕout is not constructed.

(ii) One can easily see that, if Φ is surjective, then ϕin and ϕout are surjective. This
part of the result then follows from part (i).

(iii) This is simply one half of Proposition I-1.3.9(ii). ■

Let us show that the missing converses from the preceding result do not, in fact,
hold.

2.3.12 Examples (Epimorphisms need not be surjective, surjections need not be
right invertible)
1. Take U = Y and

B1 = {(µ, µ) ∈ U ×Y | µ ∈ U }, B2 = U ×Y .

Then define Φ by ϕin = ϕout = idU . One can easily show that Φ is an epimor-
phism, but is not surjective.

2. We take

U = {µ1, µ2, µ3}, Y = {η1, η2}, B = {(µ1, η1), (µ2, η2), (µ3, η2)}

and

U ′ = {µ′1, µ
′

2, µ
′

3}, Y
′ = {η′1, η

′

2}, B
′ = {(µ′1, η

′

1), (µ′2, η
′

2), (µ′3, η
′

2)}.

Suppose that Φ is a system transformation from Σ to Σ′ that satisfies

ϕin(µ1) = ϕin(µ2) = µ′1, ϕin(µ3) = µ′2

and
ϕout(η1) = η′1, ϕout(η2) = η′2.

Suppose that Φ has a right inverseΨ. The properties of Φ ensure that

ψin(µ′1) ∈ {µ1, µ2}, ψout(η′1) = η1, ψout(η′2) = η2.

If ψin(µ′1) = µ1 then
Ψ(µ′1, η

′

2) = (µ1, η2) <B .

If ψin(µ′1) = µ2 then
Ψ(µ′1, η

′

1) = (µ2, η1) <B ,

and soΨ is not a system transformation. •

First we deal with the notions of “injective,” “left invertible,” and “monomor-
phism.”
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2.3.13 Proposition (Relationship between injective, left invertible, and monomor-
phism) Let Σ1 = (U1,Y1,B1) and Σ2 = (U2,Y2,B2) be general input/output systems for
which dom(Σa) = Ua, a ∈ {1, 2}, and let Φ = (ϕin, ϕout) be a system transformation from
Σ1 to Σ2. Then the following statements hold:

(i) Φ is a monomorphism if and only if Φ is injective;
(ii) if ϕin and ϕout are injective, then Φ is a monomorphism;
(iii) if Φ is left invertible, then ϕin and ϕout are injective.

Proof (i) This is a consequence of Proposition I-1.3.9(i).
(ii) If ϕin and ϕout are injective, thenΦ is also injective. By part (i),Φ is a monomor-

phism.
(iii) IfΨ is a left inverse of Φ then we have

ψin ◦ ϕin = idU , ψout ◦ ϕout = idY ,

and we conclude that ϕin and ϕout are injective by Proposition I-1.3.9(i). ■

Again, the missing converses are not generally true.

2.3.14 Examples (Monomorphisms need not have injective components, mor-
phisms with injective components need not be left invertible)
1. We take

U = {µ1, µ2, µ3}, Y = {η1, η2, η3}, B = {(µ2, η1), (µ2, η3), (µ3, η2), (µ3, η3)}

and

U ′ = {µ′1, µ
′

2, µ
′

3}, Y
′ = {η′1, η

′

2}, B
′ = {(µ′1, η

′

1), (µ′1, η
′

2), (µ′2, η
′

1), (µ′3, η
′

2)}.

Suppose that Φ is a system transformation from Σ to Σ′ that satisfies

ϕin(µ1) = ϕin(µ2) = µ′1, ϕin(µ3) = µ′2

and
ϕout(η1) = ϕout(η2) = η′1, ϕout(η3) = η′2.

It is then an easy matter to check that Φ is injective (and so a monomorphism),
but that neither ϕin and ϕout are injective.

2. We take
U = {µ1, µ2}, Y = {η1, η2}, B = {(µ1, η1), (µ2, η2)}

and

U ′ = {µ′1, µ
′

2, µ
′

3}, Y
′ = {η′1, η

′

2}, B
′ = {(µ′1, η

′

1), (µ′2, η
′

2), (µ′3, η
′

1), (µ′3, η
′

2)}.

Suppose that Φ is a system transformation from Σ to Σ′ that satisfies

ϕin(µ1) = µ′1, ϕin(µ2) = µ′2
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and
ϕout(η1) = η′1, ϕout(η2) = η′2.

We see that ϕin and ϕout are injective. Suppose that Φ has a left inverse Ψ. The
properties of Φ ensure that

ψin(µ′3) ∈ {µ1, µ2}.

If ψin(µ′3) = µ1 then
Ψ(µ′3, η

′

2) = (µ1, η2) <B .

If ψin(µ′3) = µ2 then
Ψ(µ′3, η

′

1) = (µ2, η1) <B ,

and soΨ is not a system transformation. Thus Φ is not left invertible. •
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Chapter 3

Differential and difference equations:
General theory

Thus far we have considered a host of examples of systems from various areas of
application (Chapter 1) and considered a general—too general—setting for system
theory (Chapter 2). Having staked out the extreme positions of system theory
from the very applied to the very abstract, let us now fill in some part of the
middle by considering in detail a specific class of systems. In this volume, the
classes of systems we work with are almost exclusively described by differential
and difference equations. In this chapter we consider a fairly general setting for
equations of this sort in order that we can understand in context the particular
equations we study in detail subsequently. In Chapters 4 and 5 we shall study
the particular classes and there we shall devote substantial effort towards solving
differential and difference equations. However, it is generally impossible to solve a
differential or difference equation chosen at random from the bag of differential or
difference equations. For this reason, it is worth understanding what a differential
or difference equation is, rather than how to solve one. Thus in this chapter we
dedicate ourselves to the questions
1. What is a differential equation?
2. What is a difference equation?
3. What is a solution of a differential equation?
4. What is a solution of a difference equation?
5. Are there useful classes of differential equations?
6. Are there useful classes of difference equations?
The study of these questions is a little abstract and without context for someone
new to the subjects of differential and difference equations. However, as one
becomes more expert in these subjects, being able to be clear about answers to
these questions is important, and ultimately less confusing than not addressing
them.

Do I need to read this chapter? We present a point of view of differential and
difference equations that is a little different than the usual view of differential and
difference equations, and we use in chapters below the nonstandard language we
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develop here. Therefore, just from the point of view of the notation we shall use, a
reading of this chapter is essential. •
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Section 3.1

Classification of differential equations

In Section 1.1 we saw many examples of differential equations, and there were
many different types of differential equations represented in these examples. In
this section we provide some procedures for separating differential equations into
classes that are special. Such a process cannot be exhaustive, especially at the level
which we are able to treat the subject. Nonetheless, the classifications we provide
here give important first steps in any classification procedure, and allow us to
clearly distinguish the very few differential equations that we can treat in detail by
pointing these the special attributes of these equations.

Do I need to read this section? The language we present in this section will be
often used below.

3.1.1 Variables in differential equations

In all of the examples in Section 1.1 we pointed out the independent and
dependent variables. In this section we chat about this in a general sort of way.

The independent variables for a differential equation typically reside in an open
subset D ⊆ Rn for some n ∈ Z>0. These are the variables upon which our objects
of interest depend. In the case of n = 1, this variable is often thought of as time,
although it is also common for this single variable to be a spatial variable.

The dependent variables in a differential equation represent the quantities
whose behaviour, as functions of the independent variable, one wishes to under-
stand. We typically regard dependent variables as being in an open subset U ⊆ Rm

for some m ∈ Z>0. Very often, when one wishes to understand the behaviour of
a solution of a differential equation, one plots graphs of the dependent variables
as functions of the independent variables. For large numbers of variables, such
graphical representations become difficult, and one is forced to think abstractly to
understand the behaviour of solutions.

In cases where the number of independent variables is 1, as we mention above
this variable typically represents time or space. We shall assume, in general sit-
uations, that this variable represents time which we denote by “t.” In such cases
we represent derivatives of the dependent variables with a dot, e.g., ẋ for the first
derivative, ẍ for the second derivative, and so on. Thus

ẋ =
dx
dt
, ẍ =

d2x
dt2 .

In the case of a single independent variable which is regarded as a spatial variable,
we denote this spatial variable by “x.” Derivatives of this spatial variable we
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denote by a prime, e.g., y′ is the first derivative and y′′ is the second derivative.
Thus

y′ =
dy
dx
, y′′ =

d2y
dx2 .

Higher-order derivatives will be denoted by x(k) = dkx
dtk (for time derivatives) or

y(k) =
dk y
dxk (for spatial derivatives) in the usual way.

When there is more than one independent variable, we will not use this notation,
and indeed it is faulty to do so; stick to the partial derivative notation in this case.
Some commonly encountered notation in this case is to use subscripts to connote
the variable with which differentiation is occurring. For example, one sees

∂2u
∂x2 = uxx,

∂u
∂t
= ut,

∂2u
∂x∂t

= uxt.

Note that this notation is never to be used when dealing specifically with a single
independent variable.

Let us adapt this subscript notation to give a general notation for derivatives.
Let D ⊆ Rn be open and denote coordinates for D by (x1, . . . , xn). As we have
seen, the kth-order partial derivatives for a function u : D → U are those partial
derivatives

∂ua

∂x j1 · · · ∂x jk
, a ∈ {1, . . . ,m}, j1, . . . , jk ∈ {1, . . . ,n}.

We can use this to motivate notation for coordinates for Lk
sym(Rn;Rm). Indeed, we

shall use
ua

j1··· jk
, a ∈ {1, . . . ,m}, j1, . . . , jk ∈ {1, . . . ,n}, (3.1)

for coordinates. Thus a k-multilinear map from Rn to Rm can be denoted by

(v1, . . . ,vk) 7→

 n∑
j1,..., jk=1

u1
j1··· jk

v1, j1 · · · vk, jk , . . . ,
n∑

j1,..., jk=1

um
j1··· jk

v1, j1 · · · vk, jk

 .
Of course, this is all just a notational encoding of the derivative as defined in
Definitions II-1.4.2 and II-1.4.4, and using the symmetry of the derivative proved
in Theorem II-1.4.5. We shall also be interested in the space that contains derivatives
up to order k, and this is

L≤k
sym(Rn;Rm) = ⊕k

j=1L j
sym(Rn;Rm).

3.1.2 Differential equations and solutions

In this section we give a very general definition of what is meant by a differ-
ential equation. While the definition we give is well suited to the objectives of
classification in this section, we will not work deeply with this definition outside
this section.

First let us give this definition.
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3.1.1 Definition (Differential equation) A differential equation consists of a mapping

F : D ×U × L≤k
sym(Rn;Rm)→ Rl,

where k, l,m,n ∈ Z>0, and D ⊆ Rn and U ⊆ Rm, with D open. We also have the
following terminology:

(i) n is the number of independent variables;
(ii) m is the number of unknowns or states;
(iii) k is the order;
(iv) l is the number of equations;
(v) D ⊆ Rn is the domain for the differential equation;
(vi) U ⊆ Rm is the state space for the differential equation. •

To get an understanding of why the preceding definition might encode the
notion of a differential equation, let us define what we mean by a solution to a
differential equation.

3.1.2 Definition (Solution to a differential equation) Let

F : D ×U × L≤k
sym(Rn;Rm)→ Rl,

be a differential equation. A solution to the differential equation is a function
u : D′ → U of class Ck defined on an open subset D′ ⊆ D such that

F(x,u(x),Du(x), . . . ,Dku(x)) = 0, x ∈ D′. •

This definitions seem quite abstract at this point, so let us illustrate how this
works in all of our examples from Section 1.1. In doing this, we shall use the
notation (3.1) to denote coordinates for derivatives. Some of the examples are a
little tedious to write out in full detail, so we do not do so. However, we encourage
the interested reader to undertake to carry out the procedure we describe for any
of their favourite equations that we do not work out. For example, Star Wars nerds
will probably need to work out how to write Einstein’s field equations as a formal
differential equation in the sense of Definition 3.1.1.

3.1.3 Examples (Differential equations and solutions)
1. For the mass-spring-damper equation we derived in (1.1), we have n = 1, m = 1,

l = 1, and k = 2. We take D = R and U = R for concreteness. Thus we consider
all possible times and vertical displacements in the description of the system;
this is something that one generally chooses with the specific instantiation of
the problem. We use the coordinate t for independent variable time, y for
the unknown vertical displacement. Then we have coordinates yt and ytt for
derivatives. We then have

F : R ×R × L≤2
sym(R;R)→ R
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defined by
F(t, y, yt, ytt) = mytt + dyt + ky +mag.

A solution to this equation is then a mapping y : T → R defined on some
interval T′ ⊆ R that satisfies

F
(
t, y(t),

dy
dt

(t),
d2y
dt2 (t)

)
= m

d2y
dt2 (t) + d

dy
dt

(t) + ky(t) +mag = 0.

This, of course, is exactly the equation (1.1).
2. For the coupled mass-spring-damper equation of (1.2), we have n = 1, m = 2,

k = 2, and l = 2. We again take D = R and U = R for concreteness, and we use
t as the independent variable time, x1 and x2 as the states, the displacements of
the masses, and we denote the coordinates for the derivatives by

x1,t, x2,t, x1,tt, x2,tt.

The map
F : R ×R × L≤2

sym(R2;R2)→ R2

for this differential equation is then

F(t, x1, x2, x1,t, x2,t, x1,tt, x2,tt) = (mx1,tt + 2kx1 − kx2,mx2,tt − kx1 + 2kx2),

and a solution x : T→ R2 satisfies the equation

F
(
t, x1(t), x2(t),

dx1

dt
(t),

dx2

dt
(t),

d2x1

dt2 (t),
d2x2

dt2 (t)
)

=

(
m

d2x1

dt2 (t) + 2kx1(t) − kx2(t),m
d2x2

dt2 (t) − kx1(t) + 2kx2(t)
)
= (0, 0).

These equations are, of course, simply the equations (1.2) written in a different
form. We can unify the two forms of the equations a little more by writing

F(t, x, xt, xtt) =Mxtt + Kx,

where xt = (x1,t, x2,t) and xtt = (x1,tt, x2,tt).
3. For the simple pendulum equation of (1.3), we leave the working out of this as

a differential equation and the conditions for a solution as Exercise 3.1.1.
4. For Bessel’s equation (1.5), we leave the working out of this as a differential

equation and the conditions for a solution as Exercise 3.1.2.
5. For the equation (1.6) governing the current in a series RLC circuit, we leave the

working out of this as a differential equation and the conditions for a solution
as Exercise 3.1.3.



122 3 Differential and difference equations: General theory 2022/03/07

6. For the tank equations of (1.7), we leave the working out of this as a differential
equation and the conditions for a solution as Exercise 3.1.4.

7. For the logistical model (1.8) of a population, we leave the working out of this
as a differential equation and the conditions for a solution as Exercise 3.1.5.

8. For the Lotka–Volterra predator prey model of (1.9), we leave the working out of
this as a differential equation and the conditions for a solution as Exercise 3.1.6.

9. For the Rapoport production and exchange model of (1.10), we leave the work-
ing out of this as a differential equation and the conditions for a solution as
Exercise 3.1.7.

10. The Euler–Lagrange equations of (1.11) have n = 1, m = 1, k = 2, and l = 1. We
take D = [x1, x2] (let’s overlook, for the moment, the fact that this D is not open)
and U = R, and use x as the independent variable, y as the unknown, and yx

and yxx as variables for the required derivatives. The Lagrangian L is then a
function of x, y, and yx. The differential equation is then prescribed by the map

F : [x1, x2] ×R × L≤2
sym(R;R)→ R

given by

F(x, y, yx, yxx) =
∂2L
∂y2

x
yxx +

∂2L
∂yx∂y

yx −
∂L
∂y
.

A solution to these equations is then a function y : [x1, x2]→ R satisfying

F
(
x, y(x),

dy
dx

(x),
d2y
dx2 (x)

)
=
∂2L
∂y2

x

d2y
dx2 (x) +

∂2L
∂yx∂y

dy
dx

(x) −
∂L
∂y
= 0,

which is exactly the Euler–Lagrange equation.
11. In Maxwell’s equations (1.12), we have n = 4, m = 10, k = 1, and l = 1+1+3+3 =

8. To write the function F defining Maxwell’s equations is tedious because of the
largish number of variables. For example, if we include all required derivatives,
the number of arguments for F in this case is 4 + 10 + 40 = 54.

12. For the Navier–Stokes equations (1.14), along with the equations of continu-
ity (1.13), we have n = 4, m = 5, k = 1, and l = 3+1 = 4. In this case, the number
of variables is manageable, but the equations themselves are quite lengthy and
complicated. Thus we do not go through the details of writing down F in this
case.

13. For the heat equation (1.17), we have n = 2, m = 1, k = 2, and l = 1. For the
domain D, we will suppose that we are working with a rod of length ℓ and that
we consider positive times. Thus we take D = [0, ℓ] ×R≥0 (sweeping under the
rug the fact that D is not open). We also take U = R. We denote the independent
time/space variables as (x, t), the unknown temperature as u, and the required
derivatives are

ux, ut, uxx, uxt, utt,
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keeping in mind that utx = uxt by symmetry of derivatives. The map

F : [0, ℓ] ×R≥0 ×R × L≤2
sym(R2;R)→ R

is given by
F(x, t,u,ux,ut,uxx,uxt,uxx) = ut − kuxx.

A solution is then a function u : [0, ℓ] ×R≥0 → R satisfying

F
(
x, t,u(x, t),

∂u
∂x

(x, t),
∂u
∂t

(x, t),
∂2u
∂x2 (x, t),

∂2u
∂x∂t

(x, t),
∂2u
∂t2 (x, t)

)
=
∂u
∂t

(x, t) − k
∂2u
∂x2 (x, t) = 0,

which is just the heat equation, of course.
14. For the wave equation (1.18), we leave the working out of this as a differential

equation and the conditions for a solution as Exercise 3.1.8.
15. For the potential equation (1.19), we leave the working out of this as a differ-

ential equation and the conditions for a solution as Exercise 3.1.9.
16. For the Einstein field equations (1.20), we have n = 4, m = 10, k = 2 (can you

work out why?), and l = 10. These equations are extremely complicated to
write as a differential equation as per Definition 3.1.1, and so we do not do
this here. For example, the number of arguments of F in this case would be
4 + 10 + 40 + 100 = 154!

17. Finally, we consider the Schrödinger equation (1.21). For this equation we
have n = 4, m = 2, k = 2, and l = 2. Here, for simplicity, we take D = R4

and U = C ≃ R2. We use coordinates (x1, x2, x3, t) the independent variables,
(ψ1, ψ2) for the unknown real and imaginary parts of the wave function, and
the required derivatives are

ψ1,x1 , ψ1,x2 , ψ1,x3 , ψ1,t, ψ2,x1 , ψ2,x2 , ψ2,x3 , ψ2,t,

ψ1,x1x1 , ψ1,x1x2 , ψ1,x1x3 , ψ1,x1t, ψ1,x2x2 , ψ1,x2x3 , ψ1,x2t, ψ1,x3x3 , ψ1,x3t, ψ1,tt,

ψ2,x1x1 , ψ2,x1x2 , ψ2,x1x3 , ψ2,x1t, ψ2,x2x2 , ψ2,x2x3 , ψ2,x2t, ψ2,x3x3 , ψ2,x3t, ψ2,tt.

The map
F : R4

×R2
× L≤2

sym(R4;R2)→ R

defining the Schrödinger equation is

F(x1, x2, x3, t, ψ1, ψ2, ψ1,x1 , ψ1,x2 , ψ1,x3 , ψ1,t, ψ2,x1 , ψ2,x2 , ψ2,x3 , ψ2,t,

ψ1,x1x1 , ψ1,x1x2 , ψ1,x1x3 , ψ1,x1t, ψ1,x2x2 , ψ1,x2x3 , ψ1,x2t, ψ1,x3x3 , ψ1,x3t, ψ1,tt,

ψ2,x1x1 , ψ2,x1x2 , ψ2,x1x3 , ψ2,x1t, ψ2,x2x2 , ψ2,x2x3 , ψ2,x2t, ψ2,x3x3 , ψ2,x3t, ψ2,tt)

= (ℏψ2,t+
ℏ2

2µ (ψ1,x1x1+ψ1,x2x2+ψ1,x3,x3)−Vψ1,−ℏψ1,t+
ℏ2

2µ (ψ2,x1x1+ψ2,x2x2+ψ2,x3,x3)−Vψ2).
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A solution is then a map ψ : D′ → R2 defined on some open set D′ ⊆ R4 that
satisfies the equation (with the tedious arguments abbreviated)

F
(
x, t,ψ(x),

∂ψ

∂x
,
∂2ψ

∂x2

)
=

(
ℏ
∂ψ2

∂t
+ ℏ

2

2µ

(
∂2ψ1

∂x2
1

+
∂2ψ1

∂x2
2

+
∂2ψ1

∂x2
3

)
− Vψ1,

−ℏ
∂ψ1

∂t
+ ℏ

2

2µ

(
∂2ψ2

∂x2
1

+
∂2ψ2

∂x2
2

+
∂2ψ2

∂x2
3

)
− Vψ2

)
.

One can check that, indeed, these are the Schrödinger equations, broken into
their real and imaginary parts. •

Having now introduced what we mean by a solution to a differential equation,
let us point out that, in practice, one often has to be more careful about what a
solution is.

3.1.4 Remark (Relaxing the properties of a solution) In our definition of a solution
to a differential equation, we asked that the solution have the same number of
continuous derivatives as appear in the differential equation. This seems like
a natural thing to do. However, there are many instances where this idea of a
solution is too strong. We shall not pursue this in any generality here; it will come
up in specific instances and we will be sure to point this out when it happens. •

If this is a student’s first encounter with the subject of differential equations,
the preceding way of doing things may seem excessively complicated. Indeed, we
went through a lot of trouble to just write down equations that were comparatively
easy to write down in our modelling exercises of Section 1.1. The benefits of our
work will now be seen. Since we know what a differential equation is (it is the map
F), we can speak intelligently about its attributes. And it is this that we now do.

3.1.3 Ordinary differential equations

We begin with a consideration of differential equations with a single indepen-
dent variable, which we will think of as representing time. The states or unknowns
we will represent by x ∈ X ⊆ Rm, hereby changing the notation for state spaces
from U to X in the case of ordinary differential equations. Because of the simplicity
of the single independent variable, we can make a more concrete representation
for the derivatives. Specifically, we will denote the coordinates for the derivatives
up to order k by

(x(1), . . . , x(k)) ∈ L≤k
sym(R;Rn).

Thus x( j) represents the jth derivative with respect to time (this is not uncommon
notation, the only difference here is we are thinking of this as being a coordinate
rather than an actual derivative).
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3.1.5 Remark (Simplification of derivatives with one independent variable) Now,
we make a few observations to make things even more concrete:
1. because the domain is 1-dimensional, every multilinear map from R to Rm is

symmetric;

2. we have a natural isomorphism of the vector spaces Lk(R;Rm) with Rm by
assigning to the k-multilinear map T ∈ Lk(R;Rm) the element vT ∈ Rm given by

vT = T(1, . . . , 1).

The punchline of the preceding is that we can think of

Lk
sym(R;Rm) ≃ Rm =⇒ L≤k

sym(R;Rm) ≃ Rm
⊕ · · · ⊕Rm︸           ︷︷           ︸
k+1 times

.

While we will continue to write things using the notation on the left of these iso-
morphisms, we shall, when convenient, use the isomorphisms to simplify things. •

3.1.3.1 General ordinary differential equations With the preceding notation,
we have the following definition.

3.1.6 Definition (Ordinary differential equation) An ordinary differential equation is
a differential equation F subject to the following conditions:

(i) there is one independent variable, i.e., n = 1;
(ii) the independent variable takes values in an interval T ⊆ R called the time-

domain;
(iii) the state space is an open subset X ⊆ Rm;
(iv) there are the same number of equations as states, i.e., l = m;
(v) if the order of the differential equation is k, for each

(t, x, x(1), . . . , x(k−1)) ∈ T × X × L≤k−1
sym (R;Rm),

the equation
F(t, x, x(1), . . . , x(k−1), x(k)) = 0

can be uniquely solved to give

x(k) = F̂(t, x, x(1), . . . , x(k−1)).

We call F̂ : T×X×L≤k−1
sym (R;Rm)→ Rm the right-hand side for the ordinary differential

equation. •

We can give an alternative characterisation for solutions for ordinary differential
equations.
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3.1.7 Proposition (Solutions to ordinary differential equations) Let F be an ordinary
differential equation with time-domainT, state space X ⊆ Rm, and right-hand side F̂. Then
the following statements are equivalent for a Ck map ξ : T′ → X defined on a subinterval
T′ ⊆ T:

(i) ξ is a solution for F;
(ii) ξ satisfies the equation

dkξ
dtk

(t) = F̂
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk

(t)
)
.

Proof First suppose that ξ is a solution for F. Then

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
= 0.

The property (v) of Definition 3.1.6, we immediately have

dkξ

dtk
(t) = F̂

(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ

dtk
(t)

)
.

Next suppose that ξ satisfies the preceding equation. Fix t ∈ T and consider the
equation

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ

dtk
(t), x(k)

)
= 0.

By property (v) of Definition 3.1.6, there exists a unique x(k)
∈ Rm that solves this

equation and, moreover,

x(k) = F̂
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ

dtk
(t)

)
.

This means, however, that

x(k) =
dkξ

dtk
(t).

Thus

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ

dtk
(t),

dkξ

dtk
(t)

)
= 0,

i.e., ξ is a solution for F. ■

This last condition in Definition 3.1.6 is one that very often arises naturally
when looking at specific differential equations. To see how this arises, let us
consider the examples of Section 1.1 with one independent variable, and see how
their right-hand sides are naturally defined.
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3.1.8 Examples (Ordinary differential equations)
1. For the mass-spring-damper equation we derived in (1.1), we can use our

ordinary differential equation specific notation to write

F(t, y, y(1), y(2)) = my(2) + dy(1) + ky +mag.

Note that this is indeed an ordinary differential equation since (1) n = 1, (2) l =
m = 1, and (3) we can solve the equation

F(t, y, y(1), y(2)) = 0

for y(2) as
y(2) = 1

m (−dy(1)
− ky −mag).

Thus the right-hand side is

F̂(t, y, y(1)) = 1
m (−dy(1)

− ky −mag).

As per Proposition 3.1.7, a solution to the differential equation then satisfies

ÿ(t) = 1
m (−dẏ(t) − ky(t) −mag),

as expected.
2. For the coupled mass-spring-damper equation of (1.2), the differential equation

can be conveniently expressed as

F(t, x, x(1), x(2)) =Mx(2) + Kx.

This is an ordinary differential equation since (1) n = 1, (2) l = m = 2, and (3) we
can solve the equation

F(t, x, x(1), x(2)) = 0

for x(2) as
x(2) = −M−1Kx.

Thus the right-hand side of this ordinary differential equation is

F̂(t, x, x(1)) = −M−1Kx.

As per Proposition 3.1.7, a solution satisfies

ẍ(t) = −M−1Kx(t),

which is simply our original equation, rewritten.
3. For the simple pendulum equation of (1.3), we leave the working out of the

right-hand side and corresponding conditions for solutions as Exercise 3.1.10.
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4. For Bessel’s equation (1.5), we leave the working out of the right-hand side and
corresponding conditions for solutions as Exercise 3.1.11.

5. For the current in a series RLC circuit of (1.6), we leave the working out of the
right-hand side and corresponding conditions for solutions as Exercise 3.1.12.

6. For the tank flow model of (1.7), we leave the working out of the right-hand
side and corresponding conditions for solutions as Exercise 3.1.13.

7. For the logistical model population of (1.8), we leave the working out of the
right-hand side and corresponding conditions for solutions as Exercise 3.1.14.

8. For the Lotka–Volterra predator prey model of (1.9), we leave the working
out of the right-hand side and corresponding conditions for solutions as Exer-
cise 3.1.15.

9. For the Rapoport production and exchange model of (1.10), we leave the work-
ing out of the right-hand side and corresponding conditions for solutions as
Exercise 3.1.16.

10. Our final example, that of the Euler–Lagrange equations, shows that one must
sometimes take care with what is and is not an ordinary differential equation.
We let x denote the single independent variable, y the unknown, and we follow
our ordinary differential equation notation and denote derivatives by y(1) and
y(2). The Lagrangian is then a function of x, y, and y(1), and the Euler–Lagrange
equations are differential equations prescribed by

F(x, y, y(1), y(2)) =
∂2L

∂y(1)∂y(1)
y(2) +

∂2L
∂y(1)∂y

y(1)
−
∂L
∂y
.

This differential equation is an ordinary differential equation if and only if

∂2L
∂y(1)∂y(1)

is non-zero for every (x, y, y(1)). This is true, for example, if

L(x, y, y(1)) = (y(1))2.

It is not true, for example, when

L(x, y, y(1)) = f (x, y)

for any function of (x, y) or when

L(x, y, y(1)) = y(1).

Thus we cannot say that the Euler–Lagrange equations are ordinary differential
equations, in general, but must examine particular Lagrangians. •

Note that an ordinary differential equation F determines uniquely its right-
hand side F̂, but that it is possible that two different ordinary differential equations
can give rise to the same right-hand side. To resolve this ambiguity, we make the
following definition.
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3.1.9 Definition (Normalised ordinary differential equation) An ordinary differential
equation

F : T × X × L≤k
sym(R;Rm)→ Rm

with right-hand side
F̂ : T × X × L≤k−1

sym (R;Rm)→ Rm

is normalised if

F(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1))

for all
(t, x, x(1), . . . , x(k)) ∈ T × X × L≤k

sym(R;Rm). •

If F is an ordinary differential equation that is not normalised, we can alway
replace it with an ordinary differential equation F∗ that is normalised, according to
the formula

F∗(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)).

Moreover, by Proposition 3.1.7, t 7→ ξ(t) is a solution for F if and only if it is a
solution for F∗. In short, we can without loss of generality assume that an ordinary
differential equation is normalised. That being said, we will only rarely make this
assumption.

Now that we have defined what we mean, in general terms, by an ordinary
differential equation, let us examine certain special kinds of such equations.

We begin with a general and common sort of simplification that can be made
with the general definition.

3.1.10 Definition (Autonomous ordinary differential equation) An ordinary differen-
tial equation

F : T × X × L≤k
sym(R;Rm)→ Rm

is autonomous if there exists F0 : X × L≤k
sym(R;Rm)→ Rm so that

F(t, x, x(1), . . . , x(k)) = F0(x, x(1), . . . , x(k))

for every (t, x, x(1), . . . , x(k)) ∈ T×X×L≤k
sym(R;Rm). An ordinary differential equation

that is not autonomous is nonautonomous. •

Simply put, an autonomous ordinary differential equation is independent of
time.

One can equivalently characterise the notion of autonomous in terms of right-
hand sides.
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3.1.11 Proposition (Right-hand sides of autonomous ordinary differential equa-
tions) If an ordinary differential equation

F : T × X × L≤k
sym(R;Rm)→ Rm

with right-hand side
F̂ : T × X × L≤k−1

sym (R;Rm)→ Rm

is autonomous, then there exists

F̂0 : X × L≤k−1
sym (R;Rm)→ Rm

such that
F̂(t, x, x(1), . . . , x(k−1)) = F̂0(x, x(1), . . . , x(k−1)).

for every (t, x, x(1), . . . , x(k−1)) ∈ T × X × L≤k−1
sym (R;Rm).

Proof Suppose that F is autonomous. Let

(x, x(1), . . . , x(k−1)) ∈ X × L≤k−1
sym (R;Rm)

and let t1, t2 ∈ T. Then there exists a unique x(k)
1 , x

(k)
2 ∈ Lk

sym(R;Rm) such that

F(ta, x, x(1), . . . , x(k−1), x(k)
a ) = 0.

Moreover, since F is autonomous, we conclude that x(k)
1 = x(k)

2 . We also have

x(k)
a = F̂(ta, x, x(1), . . . , x(k−1)), a ∈ {1, 2},

and so
F̂(t1, x, x(1), . . . , x(k−1)) = F̂(t2, x, x(1), . . . , x(k−1)).

Thus F̂ is independent of t, which is the assertion of the proposition. ■

It is easy to see that the converse of the preceding proposition is not generally
true. This is because, while a differential equation uniquely determines its right-
hand side, a right-hand side does not uniquely determine a differential equation.
This is pursued in Exercise 3.1.20.

3.1.3.2 Linear ordinary differential equations Next we turn to a very impor-
tant class of ordinary differential equations, namely those that are linear.



2022/03/07 3.1 Classification of differential equations 131

3.1.12 Definition (Linear ordinary differential equation) Let

F : T ×Rm
⊕ L≤k

sym(R;Rm)→ Rm

be an ordinary differential equation with state space X = Rm. The ordinary differ-
ential equation F is:

(i) linear if, for each t ∈ T, the map

Ft : Rm
⊕ L≤k

sym(R;Rm)→ Rm

(x, x(1), . . . , x(k)) 7→ F(t, x, x(1), . . . , x(k))

is affine;
(ii) linear homogeneous if, for each t ∈ T, the map Ft is linear;
(iii) linear inhomogeneous if it is linear but not linear homogeneous. •

Before we get to examples, let us characterise linearity in terms of the right-hand
side of the ordinary differential equation.

3.1.13 Proposition (Right-hand sides of linear ordinary differential equations) Let

F : T ×Rm
⊕ L≤k

sym(R;Rm)→ Rm

be an ordinary differential equation with right-hand side

F̂ : T ×Rm
⊕ L≤k−1

sym (R;Rm)→ Rm

The following statements hold:
(i) if F is linear, then, for each t ∈ T, the map

F̂t : Rm
⊕ L≤k−1

sym (R;Rm)→ Rm

(x, x(1), . . . , x(k−1)) 7→ F̂(t, x, x(1), . . . , x(k−1))

is affine;

(ii) if F is linear homogeneous, then, for each t ∈ T, the map F̂t is linear;

(iii) if F is linear inhomogeneous, then, for each t ∈ T, the map F̂t is affine but not linear.
Proof (i) Fix t ∈ T. Since Ft is affine, there exists L0,t ∈ L(Rm;Rm),

L j,t ∈ L(L j
sym(R;Rm);Rm), j ∈ {1, . . . , k},

and bt ∈ Rm such that

Ft(x, x(1), . . . , x(k)) = Lk,t(x(k)) + · · · + L1,t(x(1)) + L0,t(x) + bt. (3.2)

Keeping in mind Remark 3.1.5, we have

L(L j
sym(R;Rm);Rm) ≃ L(Rm;Rm), j ∈ {1, . . . ,m},
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and so we can use this identification to think of x( j), j ∈ {1, . . . ,m}, as being in Rm and
the linear maps L j,t as being elements of L(Rm;Rm). We will denote by A j,t ∈ L(Rm;Rm)
the corresponding linear maps, so equation (3.2) reads

Ft(x, x(1), . . . , x(k)) = Ak,t(x(k)) + · · · + A1,t(x(1)) + A0,t(x) + bt.

Since F is an ordinary differential equation, Ak,t must be invertible, and we must also
have

F̂t(x, x(1), . . . , x(k−1)) = −A−1
k,t
◦A0,t(x) −A−1

k,t
◦A1,t(x(1)) − · · · −A−1

k,t
◦Ak−1,t(x(k−1)) −A−1

k,t (bt).

This gives the desired conclusion that F̂t is affine.
(ii) This follows from the calculations of part (i), but with bt = 0.
(iii) This follows from parts (i) and (ii). ■

As with Proposition 3.1.11, the converses to the statements in the preceding
result are generally false, and the reader can explore this in Exercise 3.1.21.

The proof of the proposition reveals the form for linear ordinary differential
equations, and we reproduce this here outside the proof for emphasis. To wit, a
differential equation

F : T ×Rm
⊕ L≤k

sym(R;Rm)→ Rm

is linear if and only if there exist maps

A j : T→ L(Rm;Rm), j ∈ {0, 1, . . . , k},

and b : T→ Rm such that

F(t, x, x(1), . . . , x(k)) = Ak(t)(x(k)) + · · · + A1(t)(x(1)) + A0(t)(x) + b(t). (3.3)

The right-hand side is then

−A−1
k (t) ◦ A0(t)(x) − A−1

k (t) ◦ A1(t)(x(1)) − · · · − A−1
k (t) ◦ Ak−1(t)(x(k−1)) − A−1

k (t)(b(t)).

Solutions to this ordinary differential equation are then functions t 7→ x(t) satisfying

dkx
dtk

(t) = −A−1
k (t) ◦ A0(t)(x(t)) − A−1

k (t) ◦ A1(t)
(dx

dt
(t)

)
− . . .

− A−1
k (t) ◦ Ak−1(t)

(
dk−1x
dtk−1

(t)
)
− A−1

k (t)(b(t)).

We shall study equations like this in great detail subsequently, particularly in the
case when the linear maps A0,A1, . . . ,Ak are independent of t. Indeed, equations
like this have a particular name.

3.1.14 Definition (Constant coefficient linear ordinary differential equation) A linear
ordinary differential equation given by (3.3) is a constant coefficient linear ordinary
differential equation if the functions A0,A1, . . . ,Ak are independent of t. •

Let us consider the examples of Section 1.1 in terms of their linearity.



2022/03/07 3.1 Classification of differential equations 133

3.1.15 Examples (Linear ordinary differential equations (or not))
1. The mass-spring-damper equation we derived in (1.1) is an autonomous linear

constant coefficient inhomogeneous ordinary differential equation. According
to the notation of (3.3), we have

A2 = m, A1 = d, A0 = k, b = −mag.

2. The coupled mass-spring-damper equation of (1.2) is an autonomous linear
constant coefficient homogeneous ordinary differential equations. According
to the notation of (3.3), we have

A2 =

[
m 0
0 m

]
, A1 = 0, A0 =

[
2k −k
−k 2k

]
, b = 0.

3. For the simple pendulum equation of (1.3), we leave the working out of its
attributes as Exercise 3.1.22.

4. For Bessel’s equation (1.3), we leave the working out of its attributes as Exer-
cise 3.1.22.

5. For the current in a series RLC circuit of simple pendulum equation of (1.6), we
leave the working out of its attributes as Exercise 3.1.22.

6. For the tank flow model of (1.7), we leave the working out of its attributes as
Exercise 3.1.22.

7. For the logistical population model of (1.8), we leave the working out of its
attributes as Exercise 3.1.22.

8. For the Lotka–Volterra predator prey model of (1.9), we leave the working out
of its attributes as Exercise 3.1.22.

9. For the Rapoport production and exchange model of (1.10), we leave the work-
ing out of its attributes as Exercise 3.1.22. •

3.1.3.3 Linear ordinary differential equations in vector spaces In Chapter 5
we will work with linear ordinary differential equations and will, at times, delve
quite deeply into the algebraic structure of such equations. This will be followed up
on when we work with linear systems described by differential equations. In these
cases, it is advantageous to consider state spaces that are abstract finite-dimensional
vector spaces, rather than the specific Rn. Indeed, the extra structure of Rn with
its annoying standard basis, standard inner product, etc., can be a real distraction
when ones goal is to understand other structure. In this short section we develop
the tools required to talk about differential equations with a finite-dimensional
R-vector space as state space.

The following is the basic definition.



134 3 Differential and difference equations: General theory 2022/03/07

3.1.16 Definition (System of linear ordinary differential equations) Let F ∈ {R,C}, let
T ⊆ R be an interval, and let V be an n-dimensional F-vector space.

(i) A system of linear ordinary differential equations in V is a map F : T×V⊕V→
V of the form

F(t, x, x(1)) = A1(t)(x(1)) + A0(t)(x) − b0(t)

for maps A0,A1 : T → L(V; V) and b0 : T → V, where A1(t) is invertible for
every t ∈ T.

(ii) The right-hand side of a system of linear ordinary differential equations F is
the map F̂ : T × V→ V is the map defined by

F̂(t, x) = −A1(t)−1
◦ A0(t)(x) + A1(t)−1(b0(t)).

We shall typically denote A(t) = −A1(t)−1
◦ A0(t) and b(t) = A1(t)−1(b0(t)).

(iii) The system of linear ordinary differential equations F

(a) is homogeneous if b(t) = 0 for every t ∈ T,
(b) is inhomogeneous if b(t) , 0 for some t ∈ T, and
(c) has constant coefficients if A is a constant map.

(iv) A solution for a system of linear ordinary differential equations F is a map
ξ ∈ C1(T′; V) defined on a subinterval T′ ⊆ T and satisfying

dξ
dt

(t) = A(t)(ξ(t)) + b(t), t ∈ T′. •

3.1.4 Partial differential equations

In the preceding section we called differential equations with one independent
variable, and satisfying a certain nondegeneracy condition, “ordinary differential
equations.” The other kind of differential equations are what we define next.

To do so, we introduce some useful general notation for the various variables
and for the derivative coordinates. Independent variables will be denoted by
x and states or unknowns by u. Then the list of the coordinates representing the
derivatives up to order k of the dependent variables with respect to the independent
variables will be denoted by

(u,u(1), . . . ,u(k)) ∈ U × L≤k
sym(Rn;Rm).

Note that, in the general case when n > 1, the simplifications of Remark 3.1.5 do
not apply, and each of the derivative variables lives in a different space.

3.1.4.1 General partial differential equations We begin with the definition.
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3.1.17 Definition (Partial differential equation) A partial differential equation is a dif-
ferential equation

F : D ×U × L≤k
sym(Rn;Rm)→ Rl

with the following properties:
(i) n > 1;
(ii) there exists (x,u,u(1), . . . ,u(k−1)) ∈ D×U×L≤k−1

sym (Rn;Rm) such that the function

u(k)
7→ F(x,u,u(1), . . . ,u(k−1),u(k))

is not constant. •

The second condition merits explanation. It serves a similar function to the
nondegeneracy condition (v) of Definition 3.1.6 for ordinary differential equation.
In the case of ordinary differential equations, we wished to be able to solve for the
highest-order derivative. For partial differential equations, this is asking too much
as it is typically not the case that the entire highest-order derivative can be solved for.
However, the condition we give is that F should not be everywhere independent
of the highest-order derivative. This is a condition that, while technically required
for a sensible notion of order for a partial differential equation, is always met in
practice.

There is not much to say about general partial differential equations. All of the
examples of Section 1.1 that have more than one independent variable are partial
differential equations as per Definition 3.1.17. The dichotomy into autonomous
and nonautonomous equations is not so interesting for partial differential equa-
tions, so we do not give the definition here, although it is possible to do so. We also
comment that there is no natural notion of a right-hand side for a partial differential
equation as there is for an ordinary differential equation.

Thus we begin our specialisation of partial differential equations with various
flavours of linearity.

3.1.4.2 Linear and quasilinear partial differential equations Let us provide
the appropriate definitions of linearity for partial differential equations.

3.1.18 Definition (Linear partial differential equation) Let

F : D ×Rm
⊕ L≤k

sym(Rn;Rm)→ Rl

be a partial differential equation with state space U = Rm. The partial differential
equation F is:

(i) linear if, for each x ∈ D, the map

Fx : Rm
⊕ L≤k

sym(Rn;Rm)→ Rl

(u,u(1), . . . ,u(k)) 7→ F(x,u,u(1), . . . ,u(k))

is affine;
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(ii) linear homogeneous if, for each x ∈ D, the map Fx is linear;
(iii) linear inhomogeneous if it is linear but not linear homogeneous. •

3.1.19 Definition (Quasilinear partial differential equation) A partial differential equa-
tion

F : D ×U × L≤k
sym(Rn;Rm)→ Rl

is quasilinear if, for each

(x,u,u(1), . . . ,u(k−1)) ∈ D ×U × L≤k−1
sym (Rn;Rm),

the map
u(k)
7→ F(x,u,u(1), . . . ,u(k))

is affine. •

We can immediately deduce from the definitions the following forms for the
various flavours of linear and quasilinear partial differential equations.

3.1.20 Proposition (Linear partial differential equations) Let

F : D ×Rm
⊕ L≤k

sym(Rn;Rm)→ Rl

be a partial differential equation with state space U = Rm. Then the following statements
hold:

(i) F is linear if and only if there exist maps

Aj : D→ L(Lj
sym(Rn;Rm);Rl), j ∈ {0, 1, . . . ,k},

and b : D→ Rl, with Ak not identically zero, such that

F(x,u,u(1), . . . ,u(k)) = Ak(x)(u(k)) + · · · +A1(x)(u(1)) +A0(x)(u) + b(x); (3.4)

(ii) F is linear homogeneous if and only if it has the form from part (i) with b(x) = 0 for
every x ∈ D;

(iii) F is linear inhomogeneous if and only if it has the form from part (i) with b(x) , 0
for some x ∈ D.

3.1.21 Proposition (Quasilinear partial differential equations) A partial differential equa-
tion

F : D ×U × L≤k
sym(Rn;Rm)→ Rl

is quasilinear if and only if there exist maps

A1 : D ×U × L≤k−1
sym (Rn;Rm)→ L(Lk

sym(Rn;Rm);Rl),

A0 : D ×U × L≤k−1
sym (Rn;Rm)→ Rl,

with A1 not identically zero, such that

F(x,u,u(1), . . . ,u(k)) = A1(x,u,u(1), . . . ,u(k−1))(u(k)) +A0(x,u,u(1), . . . ,u(k−1)).

The notion of having constant coefficients that we encountered for ordinary
differential equations also makes sense for partial differential equations.
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3.1.22 Definition (Constant coefficient linear partial differential equation) A linear
partial differential equation given by (3.4) is a constant coefficient linear partial
differential equation if the functions A0,A1, . . . ,Ak are constant. •

We leave to the reader in Exercise 3.1.25 the pleasure of classifying the example
partial differential equations of Section 1.1.

3.1.4.3 Elliptic, hyperbolic, and parabolic second-order linear partial dif-
ferential equations Many of the partial differential equations that arise from
physics are linear second-order equations with a single unknown, and there are
various classifications that can be applied to such equations that bear on the at-
tributes of the solutions to these equations.

Let us write the general form of such a differential equation. In doing so, let
us remind ourselves what our derivative notation means in this case. We will deal
with derivatives of a single variable of at most second-order, so the first derivative
u(1) represents a vector of partial derivatives

u(1) = (ux1 , . . . ,uxn)

and u(2) represents a matrix of partial derivatives

u(2) =


ux1x1 ux1x2 · · · ux1xn

ux2x1 ux2x2 · · · ux2xn
...

...
. . .

...
uxnx1 uxnx2 · · · uxnxn

 ,
keeping in mind that this matrix will be symmetric. With this in mind, a general
linear second-order partial differential equation will have the form

F(x,u,u(1),u(2)) =
n∑

j,k=1

A jk(x)ux jxk +

n∑
j=1

a j(x)ux j + b(x) (3.5)

for functions
A : D→ L(Rn;Rn), a : D→ Rn, b : D→ R.

We can, without loss of generality, suppose that A(x) is a symmetric matrix for
all x ∈ D.1 In this case, we know that the eigenvalues of A are real, allowing the
following definition.

1Indeed, suppose that A is not symmetric. Then write A as a sum of a symmetric and skew-
symmetric matrix:

A = 1
2 (A + AT)︸      ︷︷      ︸

A+

+ 1
2 (A − AT)︸      ︷︷      ︸

A−

,
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3.1.23 Definition (Elliptic, hyperbolic, parabolic) Let

F : D ×R ⊕ L≤2
sym(Rn;R)→ R

be a second-order linear partial differential equation, and so given by (3.5). Then F
is:

(i) elliptic at x ∈ D if all eigenvalues of A(x) are positive;
(ii) hyperbolic at x ∈ D if all eigenvalues of A(x) are nonzero;
(iii) parabolic at x ∈ D if all eigenvalues of A(x) are nonnegative, and at least one

of them is zero. •

Note that if F has constant coefficients, then the notion of being in one of
the three cases of elliptic, hyperbolic, or parabolic does not depend on x ∈ D.
Generally, however, it will. Thus the notions are most frequently applied in the
constant coefficient case. Let us consider examples that we have seen thus far, and
see where they sit relative to the elliptic/hyperbolic/parabolic classification.

3.1.24 Examples (Elliptic, hyperbolic, and parabolic partial differential equations)
1. The standard example of an elliptic partial differential equation is the potential

equation, or Laplace’s equation. The domain D ⊆ Rn is normally thought of as
being “space” in this case, so we denote coordinates for D by (x1, . . . , xn). Then
the differential equation is given by

F(x,u,u(1),u(2)) = ux1x1 + · · · + uxnxn .

Thus u : D′ → R is a solution if it satisfies

∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
= 0.

with A+ being symmetric and A− being skew-symmetric. Then we have

n∑
j,k=1

A−jkux jxk = −

n∑
j,k=1

A−kjux jxk = −

n∑
j,k=1

A−kjuxkx j = −

n∑
j,k=1

A−jkux jxk ,

and so we conclude that
n∑

j,k=1

A−jkux jxk = 0,

and so
n∑

j,k=1

A jkux jxk =

n∑
j,k=1

A+jkux jxk ,

giving our claim that we can assume that A is symmetric.
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We saw examples of how this equation arises in applications in Section 1.1.13.
Note that, in this case,

A =


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

 ,
so all eigenvalues are 1, i.e., are positive. This ensures that F in this case is
indeed elliptic.

2. The standard example of an hyperbolic partial differential equation is the wave
equation. In this case, the domain D is normally thought of as encoding time and
space, and so we denote coordinates by (t, x1, . . . , xn). The differential equation
is given by

F((t, x),u,u(1),u(2)) = −utt + ux1x1 + · · · + uxnxn .

Solutions u thus satisfy the equation

∂2u
∂t2 =

∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.

We saw that in Section 1.1.12 that the wave equation arises in the model of the
transverse vibrations of a taut string. In this case we have

A =


−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
. . .

...
0 0 0 · · · 1

 ,
and so the eigenvalues are−1, 1, . . . , 1, showing that this is indeed an hyperbolic
equation.

3. The usual example of a parabolic equation is the heat equation, which we
saw modelled the temperature distribution in a rod in Section 1.1.11. In this
case, like the wave equation, the domain D is coordinatised by time and space:
(t, x1, . . . , xn). The differential equation is

F((t, x),u,u(1),u(2)) = −ut + ux1x1 + · · · + uxnxn .

Solutions u : D′ → R satisfy

∂u
∂t
=
∂2u
∂x2

1

+ · · · +
∂2u
∂x2

n
.
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In this case

A =


0 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1

 ,
and so the eigenvalues are 0, 1, . . . , 1, showing that this is indeed a parabolic
equation. •

3.1.5 How to think about differential equations

A reader having read and understood the content of this section will have an
excellent understanding of what a differential equation is, and some of the special
classes of differential equations. The reader will subsequently embark on a mission
to actually solve some ordinary differential equations. Before doing so, it is worth
putting this process of solving differential equations into a general context.

First of all, let us state very clearly: if you reach into the bag of differential equations
and pull one out, it is extremely unlikely you will be able to solve it. This is rather
like what a student has already encountered in their study of differentiation and
integration; one has at hand a small but important collection of functions that
one can actually differentiate or integrate, and these are to be regarded as isolated
and valuable gems. But this does raise the question of what one can do with a
differential equation pulled at random from the bag of differential equations.

Let us explore this a little.
1. Analysis: Even if one cannot explicitly solve a given differential equation, there

are still sometimes things that can be done to get some insight into its behaviour.
Let us consider some of the things one might try to do.

(a) Understand steady-state behaviour: In some equations one has time t as the,
or one of the, independent variables. In such cases, it is often of interest to
understand the behaviour of solutions as t→∞. This behaviour is known
as steady-state behaviour. Sometimes the steady-state behaviour is not
interesting, as in “blows up to infinity.” But sometimes this behaviour is
all one really wants, and sometimes it can even be determined. We shall
see some instances of this sort of investigation in the text.

(b) Approximating solutions: Sometimes in a differential equation there are
effects that are dominant, and the remaining effects can be regarded as
“perturbations” of these dominant effects. If the dominant part of the
equations are something that one can understand, one can hope (pray,
really) that the perturbations do not materially affect the dominant be-
haviour. In practice, methods like this should be used with great care,
since the “perturbations,” while small, may have significant impact on the
character of solutions, particularly for long times in cases where time is
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one of the independent variables. However, there are cases where “pertur-
bation theory” can be applied to give useful conclusions. However, this is
not something we will get deeply into in any sort of general way.

(c) Equilibria and their stability: A special case of the preceding idea of ap-
proximation involves the study of equilibria. This is most easily discussed
by reference to ordinary differential equations, but the basic ideas can be
adapted by a flexible mind to partial differential equations. Suppose that
we have an ordinary differential equation

F : T × X × L≤k
sym(R;Rm)→ Rm.

An equilibrium is a point x0 ∈ X for which

F(t, x, 0, . . . , 0) = 0, t ∈ T.

Note that the constant function t 7→ x0 is then a solution of this differential
equation. The fact that it is constant is what leads to its being called an
“equilibrium.” One can then consider the stability of this equilibrium,
which loosely means the matter of whether solutions starting near x0 (i) re-
main near x0, (ii) approach x0 as t → ∞, or (iii) diverge away from x0. We
shall be precise about this in the text in various situations.

2. Numerical solution: One can attempt to use a computer to solve the differential
equation. For most ordinary differential equations, there are reliable methods
for solving them numerically. The situation with partial differential equations
is quite different, and significant science has been, is, and will be dedicated
to numerical techniques for solving partial differential equations. In the text
we will talk a little about using numerical methods to solve ordinary differen-
tial equations, and will give the reader some opportunity to use the standard
package Matlab® for plotting numerical solutions to differential equations.
While this is definitely not a text on numerical methods, it is worth understand-
ing a little bit of what is under the hood when one is using a computer package
to obtain numerical solutions to ordinary differential equations.
The basic step in converting an ordinary differential equation into something
that can be worked with numerically is to replace derivatives with algebraic
approximations. Suppose that one has a function t 7→ ξ(t). The obvious thing
to do to approximate the derivative of ξ is to work with the standard difference
quotient:

dξ
dt

(t) ≈
ξ(t + h) − ξ(t)

h
.

Here, h ∈ R>0 is to be thought of as small (in the limit as h → 0 we get the
actual derivative, if it exists), and is known as the time step. Even here, there
are multiple ways in which one might work with such a difference quotient; for
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example, here are two:

dξ
dt

(t) ≈
ξ(t) − ξ(t − h)

h
,

dξ
dt

(t) ≈
ξ(t + h

2 ) − ξ(t − h
2 )

h
.

The first rule is call the “forward difference,” the second the “backward differ-
ence,” and the third the “midpoint rule.” If one knows the value of ξ at time t0,
one can then get an approximation for the value of ξ at time t0 + h by

ξ(t0 + h) = h
dξ
dt

(t0) + ξ(t + 0),

then the value at time t0 + 2h by

ξ(t0 + 2h) = h
dξ
dt

(t0 + h) + ξ(t0 + h).

Then can, of course, be repeated, provided one has values for the derivatives.
However, if ξ is the solution to a first-order scalar ordinary differential equation
F with right-hand side F̂,

ξ̇(t) = F̂(t, ξ(t)),

then one indeed does have the values for the derivatives. Indeed, one have

ξ(t0 + h) = hF̂(t0, ξ(t0)) + ξ(t0),

ξ(t0 + 2h) = hF̂(t0 + h, ξ(t0 + h)) + ξ(t0 + h),
...

Thus we have determined a simple means of numerically generating an ap-
proximation for a solution for F given an initial condition!
We note, however, that any numerical computation package will use a much
more sophisticated method for approximating derivatives than the forward
difference method we have used above. Nonetheless, the basic principle is as
we have outlined it in our simple illustration above. This is explored in the
simple setting, where one can say a few precise facts, in Section 5.10.
A matter related to what one can do with a differential equation is the manner

in which one can think of a solution, since it is solutions in which we are interested.
No matter what else you do, here is how you should not think about solutions:

Be a grown up about what a solution is: A solution to a differential
equation, or any equation for that matter, is not a formula that you write
on the page as the byproduct of some algorithmic procedure. This way of
thinking about “solution” should remain in high school, which is where it was
unfortunately taught to you.
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So. . . how should you think about what a solution is?
For ordinary differential equations, a profitable way to think about it is to think

about curves, since a solution is indeed a curve t 7→ x(t). Let us focus on first-order
ordinary differential equations.2 In this case, ẋ(t) is the tangent vector to this curve,
and so the equation

ẋ(t) = F̂(t, x(t))

should be thought of as prescribing the tangent vectors to solution curves. What
becomes important, then is the vector F̂(t, x) one assigns to the point (t, x).

Let us be explicit about this in an example.

3.1.25 Example (Ordinary differential equations and vector fields) We consider the
autonomous first-order ordinary differential equation in two unknowns defined
by

F̂(t, (x1, x2)) = F̂0(x1, x2) = (x2,−x1 +
1
2x2(1 − x2

1)).

Thus solutions are defined by the equations

ẋ1(t) = x2(t),

ẋ2(t) = − x1(t) + 1
2x2(t)(1 − x1(t)2).

In Figure 3.1 we plot the vector field. Thus, at each point (x1, x2) ∈ R2 we draw an
arrow in the direction of

F0(x1, x2) = (x2,−x1 +
1
2x2(1 − x2

1)).

A solution to the differential equation will then be a curve t 7→ (x1(t), x2(t)) whose
tangent vector at (x1(t), x2(t)) points in the direction of F0(x1(t), x2(t)). In Figure 3.2
we show a few such solution curves; these are known in the business as integral
curves.

It is also not uncommon to look at plots of x1(t) and x2(t) as functions of t. In
Figure 3.3 we show such plots starting at a fixed point (x1(0), x2(0)) at t = 0.3

We hope that a reader will find looking at pictures like this, particularly Fig-
ure 3.2, more insightful than looking at some formula for the solution, produced
as a byproduct of some algorithmic procedure. Also, for this equation, there is no
algorithmic procedure for determining the solutions. . . but the pictures can still be
produced and offer insight. •

For partial differential equations, solutions are no longer curves, i.e., vector
functions of a single independent variable, but it is still worthwhile to think about,
and represent where possible, a solution as a graph of a function of the independent
variables.

2We shall see that a kth-order ordinary differential equation can always be converted into a first-
order ordinary differential equation, so the assumption of the equation being first-order is made
without loss of generality.

3As one varies (x1(0), x2(0)), one also varies these plots, and this is something we will consider
in Section 3.2.
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Figure 3.1 A vector field in R2

Exercises

3.1.1 Work out Example 3.1.3–3. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.2 Work out Example 3.1.3–4. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.3 Work out Example 3.1.3–5. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
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Figure 3.2 A few solution curves for the vector field of Figure 3.1
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Figure 3.3 Plots of the solutions as functions of time

(e) write the equation that must be satisfied by a solution.
3.1.4 Work out Example 3.1.3–6. Thus:

(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.
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3.1.5 Work out Example 3.1.3–7. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.6 Work out Example 3.1.3–8. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.7 Work out Example 3.1.3–9. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.8 Work out Example 3.1.3–14. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.9 Work out Example 3.1.3–15. Thus:
(a) identify n, m, k, and l;
(b) name the independent variables;
(c) name the states;
(d) write F as a map, explicitly denoting its domain and codomain;
(e) write the equation that must be satisfied by a solution.

3.1.10 Work out Example 3.1.8–3. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.11 Work out Example 3.1.8–4. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
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(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.12 Work out Example 3.1.8–5. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.13 Work out Example 3.1.8–6. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.14 Work out Example 3.1.8–7. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.15 Work out Example 3.1.8–8. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.16 Work out Example 3.1.8–9. Thus:
(a) write F using the ordinary differential equation notation for derivatives;
(b) show that F is an ordinary differential equation;
(c) write down the right-hand side;
(d) write the condition for a solution using Proposition 3.1.7.

3.1.17 For each of the following ordinary differential equations F, determine their
right-hand sides:
(a) F(t, x, x(1), x(2)) = 3(1 + t2)x(2);
(b) F(t, (x1, x2), (x(1)

1 , x
(1)
2 )) = (x(1)

2 + 2x1 − x2,−x(1)
1 − x2

1);
(c) F(t, x, x(1), x(2), x(3)) = −x(3) + t(x(1))2 + sin(x);
(d) F(t, (x1, x2), (x(1)

1 , x
(1)
2 )) = (−x(1)

1 + x(1)
2 + x2

1 − x2, 2x(1)
1 + 2x(1)

2 + cos(x2) − x1);
(e) F(t, x, x(1)) = x(1) + a(t)x.

3.1.18 For each of the following right-hand sides F̂, determine the associated
normalised ordinary differential equation F:

(a) F̂(t, x, x(1)) = 0;
(b) F̂(t, (x1, x2)) = (−x2

1,−2x2 + x2);
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(c) F̂(t, x, x(1), x(2)) = t(x(1))2 + sin(x);
(d) F̂(t, (x1, x2)) = (1

4 (x1 + 2x2
1 − 2x2 − cos(x2)), 1

4 (x1 − 2x2
1 + 2x2 − cos(x2)));

(e) F̂(t, x) = −a(t)x.

In the next exercise we shall show how autonomous ordinary differential equa-
tions are special in terms of their solutions. In order for the exercise to make sense,
we require the existence and uniqueness theorem we state below, Theorem 3.2.8.

3.1.19 Let
F : T × X × L≤k

sym(R;Rm)→ Rm

be an autonomous ordinary differential equation satisfying the conditions
of Theorem 3.2.8(ii), let

(x0, x
(1)
0 , . . . , x

(k−1)
0 ) ∈ X × L≤k−1

sym (R;Rm),

and let t1, t2 ∈ T. Let ξ1 : T→ X and ξ2 : T→ X be solutions for F satisfying

ξ1(t1) = ξ2(t2) = x0,
d jξ1

dt j (t1) =
d jξ2

dt j (t2) = x( j)
0 , j ∈ {1, . . . , k − 1}.

Answer the following questions.
(a) Show that ξ2(t) = ξ1(t+ t1 − t2) for all t ∈ T for which ξ2(t) is defined and

for which t + t1 − t2 ∈ T.
(b) Assuming that T = R and that all solutions are defined for all time for

simplicity, express your conclusion from part (a) as a condition on the
flow ΦF.

3.1.20 Let us consider the following two differential equations:

F1 : R ×R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1),

F2 : R ×R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ (1 + t2)x(1).

Answer the following questions.
(a) Show that both F1 and F1 are ordinary differential equations, and deter-

mine the right-hand sides F̂1 and F̂2.
(b) Show that both F̂1 and F̂2 are independent of t.
(c) Which of F1 and F2 is autonomous?

3.1.21 Let us consider the following two differential equations:

F1 : R ×R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1),

F2 : R ×R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ (1 + x2)x(1).

Answer the following questions.
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(a) Show that both F1 and F1 are ordinary differential equations, and deter-
mine the right-hand sides F̂1 and F̂2.

(b) Show that both F̂1 and F̂2 are linear.
(c) Which of F1 and F2 is linear?

3.1.22 Consider the ordinary differential equations of Examples 3.1.3–3 to 9.
(a) Which of the equations is autonomous?
(b) Which of the equations is linear?
(c) Which of the equations is linear and homogeneous?
(d) Which of the equations is linear and inhomogeneous?
(e) Which of the equations is a linear constant coefficient equation?

3.1.23 Let
F : T × X × L≤k

sym(R;Rm)→ Rm

be an ordinary differential equation with right-hand side F̂. As usual, let t
be the independent variable and x the state, with x( j)

∈ L j
sym(R;Rm) being the

coordinate for the jth derivative. As per Remark 3.1.5, we can think of x( j)

as being an element of Rm.
We will associate to F a first-order ordinary differential equation F1 with

time domain T and state space

X1 = X ×Rm
× · · · ×Rm︸           ︷︷           ︸
k−1 times

.

To do so, answer the following questions.
(a) Denote coordinates for the state space X1 by y0, y1, · · · , yk−1, and relate

these to (x, x(1), . . . , x(k−1)) by

y0 = x, y j = x( j), j ∈ {1, . . . , k − 1}.

If t 7→ x(t) is a solution for F, write down the corresponding differential
equations that must be satisfied by (y0, y1, . . . , yk−1).
Hint: For each j ∈ {0, 1, . . . ,k − 1}, write down ẏj(t), and express the result in
terms of the coordinates for X1.

(b) What is the right-hand side F̂1 corresponding to the equations you de-
rived in part (a)?

(c) Write down a first-order ordinary differential equation F1 with time
domain T and state space X1 whose right-hand side is the function F̂1

you determined in part (b).
(d) State precisely the relationship between solutions for F and solutions for

F1, and show that if solutions for F1 are of class C1, then solutions for F
are of class Ck.
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(e) Show that F1 can be taken to be linear if F is linear, and show that F1 is
homogeneous if and only if F is, in this case.

3.1.24 Consider the motion of a projectile fired with initial velocity V0 at an angle
to the ground of θ0. After firing, the projectile is subject to the forces of
gravity and of drag. The gravitational force is directed “downwards” and
has magnitude proportional to the mass of the projectile. The drag force is
proportional to the square of the velocity of the projectile and is directed
opposite to the direction of the velocity of the projectile.

Answer the following questions.
(a) What are m and k from Definition 3.1.6?
(b) Determine F?
(c) Is the equation autonomous?
(d) Put the equation into first-order form as in Exercise 3.1.23?

3.1.25 For the partial differential equations of Examples 3.1.3–11 to 17, de-
termine whether they are (a) linear homogeneous, (b) linear inhomoge-
neous, (c) quasilinear, and/or (d) has constant coefficients.

The next exercise concerns itself with the so-called method of characteristics for
simple second-order linear partial differential equations. Although the presenta-
tion is for a simple class of equations, the language and methodology we introduce
is readily generalised. The class of differential equations we consider are given by

F : D ×R ⊕ L≤2
sym(R2;R)→ R

(x, y,u,u(1),u(2)) 7→ auxx + 2bux,y + duyy + dux + euy + f u
(3.6)

for functions a, b, c, d, e, f , g : D→ R defined on an open subset D ofR2. The symbol
for the equation is the C-valued function

σ(F) : D ×R2
→ C

(x, y, ξ, η) 7→ −aξ2
− 2bξη − cη2 + idξ + ieη + f ,

defined by “substituting” iξ for ∂u
∂x and iη for ∂u

∂y . The principal symbol σ0(F) is the
quadratic part of the symbol

σ0(F)(x, y, ξ, η) = −aξ2
− 2bξη − cη2.

Consider a curve in D defined by ϕ(x, y) = 0. The curve is a characteristic if

σ0(F)
(
x, y,

∂ϕ

∂x
,
∂ϕ

∂y

)
= 0.

It turns out that it is possible for a solution of a partial differential equation to have
points of discontinuity, but one may determine that these are necessarily located
along characteristic curves.
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The above development outlines why the symmetric matrix[
a b
b c

]
is useful in determining some properties of a partial differential equation of the
form (3.6).

3.1.26 In the preceding, suppose that a, b, and c are constant, and define the
function fa,b,c : R2

→ R by

fa,b,c(ξ, η) = aξ2 + 2bξη + cη2,

and answer the following questions.
(a) Show that when b2

− ac = 0 the following statements hold:
(a) the curve fa,b,c(x, y) = 1 is a parabola for a > 0;
(b) through each point inR2 there passes a single characteristic for (3.6).
Show that the heat equation falls into this category.

(c) Show that when b2
− ac > 0 the following statements hold:

(a) the curve fa,b,c(x, y) = 1 is an hyperbola for a > 0;
(b) through each point in R2 there passes two characteristics for (3.6).
Show that the wave equation falls into this category.

(c) Show that when b2
− ac < 0 the following statements hold:

(a) the curve fa,b,c(x, y) = 1 is an ellipse for a > 0;
(b) the differential equation (3.6) possesses no characteristics curves.
Show that the potential equation falls into this category.

3.1.27 (Mini-project) We consider a model of an Hopfield neural network with n
neurons, where in Figure 3.4 we depict the jth neuron taking inputs from the

±v1

±v2

±vn

Rj1

Rj2

...

Rjn

Σ

Ij Cj rj

uj

+vj

−vj

Figure 3.4 A neuron in an Hopfield neural network

other neurons. A crucial ingredient in the network is the characteristic of the
amplifier which takes the input voltage u j and produces the output voltage
v j according to a nonlinear function g j : R→ [−Vmax,Vmax] that saturates the
input to a maximum amplitude of Vmax. For example, one might take

g j(u j) =
2Vmax

π
tan−1

( σπu j

2Vmax

)
.
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The inverting amplifier allows a selection of +v j or −v j to be given as input
to the other neurons. The state for the system is the voltages (v1, . . . , vn). The
model here was introduced by Hopfield [1982].

We wish to assemble all of this into an ordinary differential equation.
(a) What is the state space X for the system?
(b) What is the time-domain T for the system?
(c) What are the dynamics f?

Hint: For each neuron, apply Kirchhoff’s current law at the input to the
amplifier.

Do some explorations as follows.
(d) Do some research to describe what the model is used for and how the

ordinary differential equation model should behave to be useful.
Assume that the matrix of resistances R jk, j, k ∈ {1, . . . ,n}, is symmetric with
zero diagonal.
(e) Using a computer package for simulating ordinary differential equa-

tions, setup the system for simulation, and run some interesting simu-
lations for various initial conditions.
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Section 3.2

Existence and uniqueness of solutions for differential
equations

The preceding section concerning differential equations was of a taxonomic
nature. In this section we produce a few important results, especially for ordi-
nary differential equations. The results are concerned with two important ques-
tions: (1) does a given differential equation possess solutions; (2) how many solu-
tions does a differential equation possess? In mathematics, questions like this are
known as questions of “existence and uniqueness” (think about similar sorts of
questions for linear algebraic equations, as discussed in Section I-5.4.8.)

Do I need to read this section? If you are of the frame of mind where all equa-
tions obviously have unique solutions, then this section will appear to be pointless.
However, for those capable of more subtle thought, the results in this section are es-
sential for the understanding of the our subsequent and extensive use of differential
equations, particular ordinary differential equations.

The theoretical results notwithstanding, the notion of a flow introduced in
Definition 3.2.11 will be one of which we will frequently make use. •

3.2.1 Results for ordinary differential equations

We begin our discussion by looking in detail at ordinary differential equations,
where a fairly complete story can be told. We shall begin by framing the sort of
questions and answers we might expect by looking at some examples. Then we
state the principal existence and uniqueness theorems for solutions of ordinary
differential equations. We close the section by considering how all solutions of an
ordinary differential equation “fit together.”

Note that, by Exercise 3.1.23, it suffices to consider first-order ordinary differ-
ential equations, and so this is what we shall consider in this section.

3.2.1.1 Examples motivating existence and uniqueness of solutions for or-
dinary differential equations Our first three examples make use of the fact that,
when a differential has a right-hand side that is independent of the unknown, then
solutions are obtained by integration.

3.2.1 Example (An ordinary differential equation with no solutions (sometimes))
We consider the scalar nonautonomous first-order differential equation with time-
domain R and with right-hand side

F̂(t, x) =

t−1, t , 0,
0, t = 0.
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A solution to this differential equation satisfies

ẋ(t) = f (t),

where

f (t) =

t−1, t , 0,
0, t = 0.

Since we ask that a solution be a C1-function, the Fundamental Theorem of Calculus
gives that a solution should satisfy

x(t) = x(t0) +
∫ t

t0

f (τ) dτ.

We claim that, if t0t ≤ 0 and if t , t0, then the integral does not exist. Indeed, if
t0t ≤ 0, then one of the following four instances must hold: (1) t = 0; (2) t0 = 0;
(3) t < 0 < t0; (4) t0 < 0 < t. In all four of these instances, the integral will not
exist since the function f (t) = t−1 is not integrable about 0. Thus this differential
equation only can be solved when t and t0 are both on the same side of 0. •

3.2.2 Example (An ordinary differential equation with no solutions (all the time))
This example is beyond the abilities of a typical student taking a first course in

differential equations, but we present it because it shows something interesting.
We let f : R→ R be a function with the properties that (1) f takes values in [0, 1]

and (2) the integral of the restriction of f to any interval does not exist, cf. Exam-
ple III-2.4.3 and Example III-2.6.8–2. Given such an f , we define a scalar nonau-
tonomous ordinary differential equation with right-hand side F̂(t, x) = f (t). As in
Example 3.2.1, a solution of this differential equation is given by

x(t) = x(t0) +
∫ t

t0

f (τ) dτ.

In this case, because no matter how we choose t and t0, the integral of f |[t0, t] (or
f |[t, t0] if t < t0) does not exist, and so a solution cannot exist for any choice of t and
t0. •

3.2.3 Example (Solutions, when they exist, may not be continuously differentiable)
We made the comment in Remark 3.1.4 that our definition of solution in Defini-

tion 3.1.2 is sometimes too strong. Here we examine this idea in a simple case, and
then make some general observations about how to rectify this situation.

Let us define f : [0, 1]→ R by

f (t) =

1, t ∈ [0, 1
2 ],

0, t ∈ ( 1
2 , 1],
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and then define a scalar nonautonomous ordinary differential equation with right-
hand side F̂(t, x) = f (t). Following Example 3.2.1, we believe that a solution of this
differential equation is given by

x(t) =
∫ t

0
f (τ) dτ =

t, t ∈ [0, 1
2 ],

1
2 , t ∈ ( 1

2 , 1].

There is a problem with this “solution,” however, namely that it is not differentiable
at t = 1

2 , and so the equation ẋ(t) = F̂(t, x(t)) does not strictly hold.
It does hold, however, almost everywhere. Thus perhaps we should alter our

notion of solution to be that the equation is satisfied almost everywhere. This,
however, is not enough since it does not preserve uniqueness since there are non-
constant functions with almost everywhere zero derivative (Example I-3.2.27). A
moments though indicates that the requirement of local absolute continuity is the
right one for solutions of ordinary differential equations since it is for this class
of functions that the Fundamental Theorem of Calculus holds. The reader can
consider this a little more deeply in Example 3.2.1. •

3.2.4 Example (Uniqueness of solutions is not the right thing to ask for) Let us
now let f : R → R be a continuous function, which implies that the integral of
f |[a, b] exists for any a < b. As in our preceding two examples, we consider a
differential equation with right-hand side F(t, x) = f (t). And, as with the preceding
two examples, solutions to this differential equation satisfy

x(t) = x(t0) +
∫ t

t0

f (τ) dτ.

In this case, the integral exists for any t0 and t, and this shows that this differential
equation has many solutions. But what we notice is that, once we fix an initial time
t0 and an initial value x(t0) at this time, then the solution does become unique. •

3.2.5 Example (Solutions, when they exist, may have a limited domain of defini-
tion) The next example we consider shows that, even for seemingly well-behaved
right-hand sides, solutions to differential equations will not be defined for all time.
We consider a scalar autonomous ordinary differential equation with right-hand
side F̂(t, x) = x2. Thus solutions satisfy the equation

ẋ(t) = x(t)2.

This equation can be easily solved (we shall see how to solve a class of equations
including this one in Section 4.1.1) to give

x(t) =

0, x(t0) = 0,
x(t0)

x(t0)(t0−t)+1 , x(t0) , 0.
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(Alternatively, one can just verify by substitution that this is a solution of the
differential equation and satisfies “x(t0) = x(t0).”) Let us assume that x(t0) , 0. One
can see that the solution in this case is only defined for

x(t0)(t0 − t) + 1 , 0 ⇐⇒ t , t0 +
1

x(t0)
≜ t∗.

From this we conclude the following about solutions:
1. if x(t0) > 0, then limt↓−∞ x(t) = 0 and limt↑t∗ x(t) = ∞;
2. if x(t0) < 0, then limt↓t∗ x(t) = −∞ and limt↑∞ x(t) = 0.
The essential point is that although (1) solutions exist for any initial time t0 and
any initial value x(t0) at that time and (2) the differential equation is defined for all
times (and indeed is independent of time), solutions with initial values different
from 0 will not exist for all times. •

3.2.6 Example (Solutions may not be unique even when things seem nice) We
consider the scalar autonomous differential equation with right-hand side F̂(t, x) =
x1/3. We will show that there are infinitely many solutions t 7→ x(t) satisfying the
equation

ẋ(t) = x(t)1/3

with x(0) = 0. One can use the techniques of Section 4.1.1 to obtain the solution
t 7→ x0(t) given by

x0(t) =
(2
3

t
)3/2

.

However, x1(t) = 0 is also clearly a solution. Indeed, there is a family of solutions
of the form

x(t) =


x0(t + t−), t ∈ (−∞,−t−],
0, t ∈ (−t−, t+),
x0(t − t+), t ∈ [t+,∞),

where t−, t+ ∈ R>0. •

From the preceding examples, we draw the following conclusions about the
questions of existence and uniqueness of solutions to ordinary differential equa-
tions.
1. From Examples 3.2.1 and 3.2.2 we conclude that we must prescribe some

conditions on the right-hand side of F̂ of an ordinary differential equation if we
are to expect solutions to exist. This is hardly a surprise, of course. However,
just what are the right conditions is something that took smart people some
time to figure out, cf. the proof of Theorem 3.2.8 below.

2. From Example 3.2.3 we see that it is natural to relax the requirement that
solutions be continuously differentiable, and that local absolute continuity is
actually a more natural requirement.
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3. Example 3.2.4 shows that in the case when we have solutions, we will have
lots of them, so ordinary differential equations should not be expected to have
unique solutions. However, in the example we saw that perhaps the matter of
uniqueness can be resolved by asking that the unknown x take on a prescribed
value at a prescribed time t0. This is altogether akin to constants of integration
disappearing when fixed upper and lower limits for the integral are chosen.

4. Example 3.2.5 shows that, even when solutions exist for all initial times and
values of the unknown at these times, and even when the differential equation
is autonomous, it can arise that solutions only exist locally in time, i.e., solutions
cannot be defined for all times. It turns out that this is just a fact of life when
dealing with differential equations.

5. Finally, Example 3.2.6 shows that, even when the differential equation is au-
tonomous with a continuous right-hand side, it can happen that multiple, in-
deed infinitely many, solutions pass through the same initial value for the
unknown at the same time. This is a quite undesirable state of affairs, and
can be hypothesised away easily by conditions that are nearly always met in
practice.
With an excellent understanding of the context of the existence and uniqueness

problem bestowed upon us by these motivational examples, we can now state
precisely with the problem is, and provide some notation for stating the main
theorem.

Let us first state precisely the problem for whose solutions we consider existence
and uniqueness.

3.2.7 Definition (Initial value problem for ordinary differential equations) Let F be
an ordinary differential equation with right-hand side

F̂ : T × X→ Rm.

Let t0 ∈ T and x0 ∈ X. A map ξ : T′ → X is a solution for F with initial value x0 at
t0 if it satisfies the following conditions:

(i) T′ ⊆ T is an interval;
(ii) ξ is locally absolutely continuous;

(iii) ξ(t) = x0 +

∫ t

t0

F̂(τ, ξ(τ)) dτ for all t ∈ T′;

(iv) ξ(t0) = x0.
In this case, we say that ξ is a solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0. •

We note that the differential equation is not necessarily satisfied by a solution,
just since ξ need not be continuously differentiable. However, since ξ is locally
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absolutely continuous, we have

ξ(t) = x0 +

∫ t

t0

F̂(τ, ξ(τ)) dτ ⇐⇒ ξ̇(t) = F̂(t, ξ(t)), a.e. t ∈ T′, ξ(t0) = x0.

3.2.1.2 Principal existence and uniqueness theorems for ordinary differen-
tial equations The following is the principal existence and uniqueness result for
ordinary differential equations. In the statement of the result we make use of the
property of Lipschitzness, for which we refer to Section II-1.10.8.

3.2.8 Theorem (Existence and uniqueness of solutions for ordinary differential
equations) Let X ⊆ Rm be open, let T ⊆ R be an interval, and let F be a first-order
ordinary differential equation with right-hand side

F̂ : T × X→ Rm.

We have the following two statements.
(i) Existence for continuous ordinary differential equations. Suppose that F satis-

fies the following conditions:

(a) the map t 7→ F̂(t, x) is measurable for each x ∈ X;

(b) the map x 7→ F̂(t, x) is continuous for each t ∈ T;
(c) for each (t, x) ∈ T × X, there exists r, ρ ∈ R>0 and

g ∈ L1([t − ρ, t + ρ];R≥0)

such that

∥̂F(s,y)∥ ≤ g(s), (s,y) ∈ ([t − ρ, t + ρ] ∩ T) × B(r, x).

Then, for each (t0, x0) ∈ T × X, there exists a subinterval T′ ⊆ T, relatively open in
T and with t0 ∈ intT(T′), and a solution ξ : T′ → X for F such that ξ(t0) = x0.

(ii) Uniqueness for Lipschitz ordinary differential equations. Suppose that F satis-
fies the following conditions:

(a) the map t 7→ F̂(t, x) is locally integrable for each x ∈ X;

(b) the map x 7→ F̂(t, x) is locally Lipschitz for each t ∈ T;
(c) for each (t, x) ∈ T × X, there exist r, ρ ∈ R>0 and

g,L ∈ L1([t − ρ, t + ρ];R≥0)

such that

∥̂F(s,y)∥ ≤ g(s), (s,y) ∈ ([t − ρ, t + ρ] ∩ T) × B(r, x), (3.7)

and

∥̂F(s,y1)−F̂(s,y2)∥ ≤ L(s)∥y1−y2∥, s ∈ ([t−ρ, t+ρ]∩T), y1,y2 ∈ B(r, x).
(3.8)
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Then, for each (t0, x0) ∈ T × X, there exists a subinterval T′ ⊆ T, relatively open
in T and with t0 ∈ intT(T′), and a solution ξ : T′ → X for F such that ξ(t0) = x0.
Moreover, if T′′ is another such interval and η : T′′ → X is another such solution,
then η(t) = ξ(t) for all t ∈ T′′ ∩ T′.

Proof (i) Let us first prove a lemma.

1 Lemma For a continuous map ξ : T→ X, the function t 7→ F̂(t, ξ(t)) is locally integrable.

Proof First of all, let us show that t 7→ F̂(t, ξ(t)) is measurable. It suffices to prove
this when T is compact, so we make this assumption. Since ξ is continuous, by
Theorem III-2.9.2 there exists a sequence (ξ j) j∈Z>0 of piecewise constant functions con-
verging uniformly to ξ. That is, for each j ∈ Z>0 there exists a partition (T j,1, . . . ,T j,k j)
of T such that ξ j(t) = x j,l for some x j,l ∈ R

m when t ∈ T j,l for l ∈ {1, . . . , k j}. Then

F̂(t ξ j(t)) =
k j∑

l=1

F̂(t, x j,l)χT j,l ,

whereχA denotes the characteristic function of a subset A of a set S, and so t 7→ F̂(t, ξ j(t))
is measurable. Now, by continuity of x 7→ F̂(t, x),

lim
j→∞

F̂(t, ξ j(t)) = F̂(t, ξ(t))

and measurability of t 7→ F̂(t, ξ(t)) follows since the pointwise limit of measurable
functions is measurable by Proposition III-2.6.18(v).

Now let t, t0 ∈ T and suppose that t > t0. Then, by continuity of ξ, there exists a
compact set K ⊆ X such that ξ(s) ∈ K for every s ∈ [t0, t0 + t]. By assumption, there
exists a locally integrable function g : T → R≥0 such that ∥̂F(s, x)∥ ≤ g(s) for every
(s, x) ∈ T × K. Therefore, ∫ t

t0

∥̂F(s, ξ(s))∥ds ≤
∫ t

t0

g(s) ds < ∞.

The same statement holds if t < t0, flipping the limits of integration, and this gives the
desired local integrability. ▼

Let r ∈ R>0 be chosen so that B(r, x0) ⊆ X and let ρ ∈ R>0. By choosing r and ρ
sufficiently small, there exists

g ∈ L1([t0 − ρ, t0 + ρ];R≥0)

such that
∥̂F(t, x)∥ ≤ g(t), (t, x) ∈ ([t0 − ρ, t0 + ρ] ∩ T) × B(r, x0).

Then, since g is integrable, the function G+ : [t0, t0 + ρ] ∩ T→ R defined by

G+(t) =
∫ t

t0

g(s) ds (3.9)
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is continuous.
Let us suppose that t0 , supT so that we can choose ρ so that [t0, t0+ρ] ⊆ T. Thus,

since g is nonnegative, there exists T+ ∈ R>0 such that [t0, t0 + T+] ⊆ T and such that

G+(t) =
∫ t

t0

g(s) ds < r, t ∈ [t0, t0 + T+].

For the remainder of the proof, we consider r and T+ to be chosen as above.
Let C0([t0, t0+T+];Rm) be the Banach space of continuousRm-valued functions on

[t0, t0 + T+] equipped with the norm

∥ξ∥∞ = sup{∥ξ(t)∥ | t ∈ [t0, t0 + T+]}

(see Definition III-3.8.28). Let ξ0 ∈ C0([t0, t0 + T+];Rm) be defined by ξ0(t) = x0. Let
B+(r, ξ0) be the closed ball of radius r and centre ξ0 in C0([t0, t0+T+];Rm). Forα ∈ (0,T+],
let us define ξα ∈ B+(r, ξ0) by

ξα(t) =

x0, t ∈ [t0, t0 + α],

x0 +
∫ t

t0
F̂(s, ξα(s − α)) ds, t ∈ (t0 + α, t0 + T+].

It is not clear that this definition makes sense, so let us verify how it does. We
fix α ∈ (0,T+]. If t ∈ [t0, t0 + α], then the meaning of ξα(t) is unambiguous. If
t ∈ (t0+α, t0+2α]∩ [t0, t0+T+], then ξα(t) is determined from the already known value
of ξα on [t0, t0+α]. Similarly, if t ∈ (t0+2α, t0+3α]∩[t0, t0+T+], then ξα(t) is determined
from the already known value of ξα on [t0, t0 + 2α]. In a finite number of such steps,
one determines ξα on [t0, t0 + T+]. We now show that ξα ∈ B+(r, ξ0). If t ∈ [t0, t0 + α],
then ∥ξα(t) − x0∥ = 0. If t ∈ (t0 + α, t0 + 2α], then

∥ξα(t) − x0∥ =

∥∥∥∥∥∥
∫ t0+α

t0

0 ds +
∫ t

t0+α
F̂(s, x0) ds

∥∥∥∥∥∥
≤

∫ t0+α

t0

0 ds +
∫ t

t0+α
∥̂F(s, x0)∥ds ≤

∫ t

t0

g(s) ds < r.

By induction, if t ∈ (t0 + (k − 1)α, t0 + kα], then

∥ξα(t) − x0∥ ≤

k−2∑
j=0

∫ t0+( j+1)α

t0+ jα
g(s) ds +

∫ t

t0+(k−1)α
g(s) ds ≤ r,

giving ξα ∈ B+(r, ξ0), as desired.
We claim that the family (ξα)α∈(0,T+] is equicontinuous, i.e., for each ϵ ∈ R>0 there

exists δ ∈ R>0 such that

|t1 − t2| < δ =⇒ ∥ξα(t1) − ξα(t2)∥ < ϵ

for all α ∈ (0,T+]. So let ϵ ∈ R>0 and note that the function G+ : [t0, t0 + T+] → R
defined by (3.9) is continuous, and so uniformly continuous, its domain being compact.
Therefore, there exists δ ∈ R>0 such that

|t1 − t2| < δ =⇒ |G+(t1) − G+(t2)| < ϵ.
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Let δ be so chosen. Then, if |t1 − t2| < δ with t1 > t2,

∥ξα(t1) − ξα(t2)∥ =

∥∥∥∥∥∥
∫ t1

t0

F̂(s, ξα(t − α)) ds −
∫ t2

t0

F̂(s, ξα(t − α)) ds

∥∥∥∥∥∥
≤

∫ t1

t2

∥̂F(s, ξα(t − α))∥ds ≤
∫ t1

t2

g(s) ds = G+(t1) − G+(t2) < ϵ,

as desired.
Thus we have an equicontinuous family (ξα)α∈(0,T+] contained in the bounded

set B+(r, ξ0). Consider then the sequence (ξT+/ j) j∈Z>0 contained in this family.
By the Arzelà–Ascoli Theorem and the Bolzano–Weierstrass Theorem there exists ref

refan increasing sequence ( jk)k∈Z>0 such that the sequence (ξT+/ jk)k∈Z>0 converges in
C0([t0, t0 +T+];Rm), i.e., converges uniformly. Let us denote the limit by ξ+ ∈ B+(r, ξ0).
It remains to show that the ξ+ is a solution for F satisfying ξ+(t0) = x0. For this,
an application of Theorem III-2.7.28, continuity of F̂ in the second argument, and
equicontinuity of (ξα)α∈(0,T+] gives

ξ+(t) = lim
k→∞

ξT+/ jk(t) = x0 + lim
jk→∞

∫ t

t0

F̂(s, ξT+/ jk(s − T+/ jk)) ds

= x0 +

∫
t0

F̂(s, lim
α→0

ξα(s − α)) ds = x0 +

∫ t

t0

F̂(s, ξ+(s)) ds.

Therefore, by the lemma above, ξ+ is absolutely continuous and

ξ̇+(t) = F̂(t, ξ+(t))

for almost every t ∈ [t0, t0 + T+]. Thus ξ+ is a solution for F. Obviously ξ+(t0) = x0.
Next suppose that t0 , infT. Then there exists a ∈ R>0 such that [t0 − a, t0] ⊆ T.

As above, we let r ∈ R>0 be such that B(r, x0) ⊆ X. Define G− : (−∞, t0] ∩ T→ R by

G−(t) =
∫ t0

t
g(s) ds

so that G− is continuous. Since g is nonnegative, there exists T− ∈ R>0 such that
[t0, t0 − T−] ⊆ T and such that

G−(t) =
∫ t0

t
g(s) ds < r, t ∈ [t0 − T−, t0].

Now, with r and T− thusly defined, we can proceed as above to show the existence of
a solution ξ− : [t0 − T−, t0]→ X for F such that ξ−(t0) = x0.

The proof of this part of the theorem is complete if we define T′ and ξ as follows.
1. int(T) = ∅: The interval T′ = {t0} and the trivial solution ξ0(t) = x0 satisfies the

conclusions of the theorem.
2. t0 , supT and t0 = infT: The interval T′ = [t0, t0 + T+) and the solution ξ = ξ+ as

defined above satisfy the conclusions of the theorem.
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3. t0 = supT and t0 , infT: The interval T′ = [t0 − T−, t0) and the solution ξ = ξ− as
defined above satisfy the conclusions of the theorem.

4. t0 , supT and t0 , infT: The interval T′ = (t0 − T−, t0 + T+) and the solution

ξ(t) =

ξ−(t), t ∈ (t0 − T−, t0],
ξ+(t), t ∈ (t0, t0 + T+]

satisfy the conclusions of the theorem.
(ii) Note that the existence statement follows from part (i) since the hypotheses of

part (ii) imply those of part (i). However, we shall reprove this via an argument that
also ensures uniqueness.

Let r ∈ R>0 be such that B(r, x0) ⊆ X. Let ρ ∈ R>0. By choosing r and ρ sufficiently
small, there exist

g,L ∈ L1([t0 − ρ, t0 + ρ];R≥0)

such that
∥̂F(t, x)∥ ≤ g(t), (t, x) ∈ ([t0 − ρ, t0 + ρ] ∩ T) × B(r, x0)

and
∥̂F(t, x) − F̂(t, y)∥ ≤ L(t)∥x − y∥

for all t ∈ [t0 − ρ, t0 + ρ] ∩ T and x, y ∈ B(r, x0). Let us choose λ ∈ (0, 1).
We first consider the case where t0 , supT so that we can choose ρ sufficiently

small that [t0, t0 + ρ] ⊆ T. Define G+, ℓ+ : [t0, t0 + ρ]→ R by

G+(t) =
∫ t

t0

g(s) ds, ℓ+(t) =
∫ t

t0

L(s) ds.

Since g and L are nonnegative, we can choose T+ ∈ R>0 such that

G+(t) =
∫ t

t0

g(s) ds ≤ r, ℓ+(t) =
∫ t

t0

L(s) ds < λ

for t ∈ [t0, t0 + T+].
As in the proof of part (i), let ξ0 be the trivial function t 7→ x0, t ∈ [t0, t0 + T+],

and let B+(r, ξ0) be the ball of radius r and centre ξ0 in C0([t0, t0 + T+];Rm). Define
F+ : B+(r, ξ0)→ C0([t0, t0 + T+];Rm) by

F+(ξ)(t) = x0 +

∫ t

t0

F̂(s, ξ(s)) ds.

By the lemma from the proof of part (i), s 7→ F̂(s, ξ(s)) is locally integrable, showing
that F+ is well-defined and that F+(ξ) is absolutely continuous.

We claim that F+(B+(r, ξ0)) ⊆ B+(r, ξ0). Suppose that ξ ∈ B+(r, ξ0) so that

∥ξ(t) − x0∥ ≤ r, t ∈ [t0, t0 + T+].
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Then, for t ∈ [t0, t0 + T+],

∥F+(ξ)(t) − x0∥ =

∥∥∥∥∥∥
∫ t

t0

F̂(s, ξ(s)) ds

∥∥∥∥∥∥ ≤
∫ t

t0

∥̂F(s, ξ(s))∥ds ≤
∫ t

t0

g(s) ds ≤ r,

as desired.
We claim that F+|B+(r, ξ0) is a contraction mapping. That is, we claim that there

exists ρ ∈ [0, 1) such that

∥F+(ξ) − F+(η)∥∞ ≤ ρ∥ξ − η∥∞

for every ξ,η ∈ B+(r, ξ0). Indeed, let ξ,η ∈ B+(r, ξ0) and compute, for t ∈ [t0, t0 + T+],

∥F+(ξ)(t) − F+(η)(t)∥ =

∥∥∥∥∥∥
∫ t

t0

F̂(s, ξ(s)) ds −
∫ t

t0

F̂(s,η(s))

∥∥∥∥∥∥
≤

∫ t

t0

∥̂F(s, ξ(s)) − F̂(s,η(s))∥ds

≤

∫ t

t0

L(s)∥ξ(s) − η(s)∥ds ≤ ℓ+(t)∥ξ − η∥∞ ≤ λ∥ξ − η∥∞,

since ξ(s),η(s) ∈ B(r, x0) for every s ∈ [t0, t0 + T+]. This proves that F+|B+(r, ξ0) is a
contraction mapping.

By the Contraction Mapping Theorem, Theorem III-1.1.23, there exists a unique
fixed point for F+ which we denote by ξ+. Thus

ξ+(t) = F+(ξ+)(t) = x0 +

∫ t

t0

F̂(s, ξ+(s)) ds.

Differentiating the first and last expressions with respect to t shows that ξ+ is a solution
for F.

Now we consider the case when t0 , infT so there exists a ∈ R>0 such that
[t0 − a, t0] ⊆ T. We proceed as above, cf. the corresponding part of the proof of part (i),
to provide T− ∈ R>0 such that

G−(t) ≜
∫ t0

t
g(s) ds < r, ℓ−(t) ≜

∫ t0

t
L(s) ds < λ

for t ∈ [t0 − T−, t0]. We then define B−(r, ξ0) as the ball of radius r and centre ξ0 in
C0([t0 − T−, t0];Rm) and define F− : B−(r, x0)→ C0([t0 − T−, t0];Rm) by

F−(ξ)(t) = x0 +

∫ t

t0

F̂(s, ξ(s)) ds.

We show, as above, that F−(B−(r, ξ0)) ⊆ B−(r, ξ0) and that F−|B−(r, ξ0) is a contraction
mapping, so possessing a unique fixed point ξ−. This fixed point is a solution for F, as
above.
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We can then define an interval T′ and a solution ξ for F as at the end of the proof
of part (i). We now prove uniqueness of this solution on T′. Suppose that η : T′ → X
is another solution satisfying η(t0) = x0. Then

η̇(t) = F̂(t,η(t)), t ∈ T′.

Therefore, by the Fundamental Theorem of Calculus,

η(t) = η(t0) +
∫ t

t0

η̇(s) ds = x0 +

∫ t

t0

F̂(s,η(s))

for t ≥ t0 and

η(t) = η(t0) +
∫ t

t0

η̇(s) ds = x0 +

∫ t

t0

F̂(s,η(s))

for t ≤ t0. It then follows that η|[t0,∞) ∩ T′ is a fixed point for F+ and η|(−∞, t0] ∩ T′

is a fixed point for F−. Therefore, η agrees with ξ on T′ by the uniqueness part of the
Contraction Mapping Theorem.

Now suppose thatT′′ ⊆ R is some other interval containing t0 and that η : T′′ → X
is a solution for F satisfying η(t0) = x0. Suppose that ξ(t) , η(t) for some t ∈ T′′ ∩ T′.
Suppose that t < t0. Let

t1 = inf{t ∈ [t0,∞) ∩ T′′ ∩ T′ | ξ(t) , η(t)}.

Then ξ(t) = η(t) for t ∈ [t0, t1). Continuity of solutions implies that ξ(t1) = η(t1). Denote
x1 = ξ(t1). Note that both ξ and η are solutions for F satisfying ξ(t1) = η(t1) = x1. By
our above arguments for existence and uniqueness, there exists T+ ∈ R>0 and a unique
solution ζ on [t1, t1 + T+] satisfying ζ(t1) = x1. Thus ξ and η must agree with ζ on
[t1, t1 + T+] contradicting the definition of t1. A similar argument leads to a similar
contradiction when we assume that ξ and η disagree at some t ∈ T′′ ∩T′ with t < t0.■

The matter of checking the conditions of Theorem 3.2.8 is normally quite
straightforward, particularly since if we know that a function is differentiable,
then it is locally Lipschitz. Indeed, let us encode in the following result a situation
where the hypotheses of Theorem 3.2.8 are easily verified.

3.2.9 Corollary (An existence and uniqueness result that is easy to apply) Let X ⊆
Rm be open, letT ⊆ R be an interval, and let F be a first-order ordinary differential equation
with right-hand side

F̂ : T × X→ Rm.

If F̂ is of class C1 on T × X, then, for each (t0, x0) ∈ T × X, there exists a subinterval
T′ ⊆ T, relatively open in T and with t0 ∈ intT(T′), and a solution ξ : T′ → X for F such
that ξ(t0) = x0. Moreover, if T′′ is another such interval and η : T′′ → X is another such
solution, then η(t) = ξ(t) for all t ∈ T′′ ∩ T′.

We ask the reader to check that the hypotheses of Theorem 3.2.8 are satisfied for
the examples of Section 1.1 as Exercise 3.2.4. In Exercise 3.2.5 we ask the reader to
show which hypotheses of Theorem 3.2.8 are violated for the examples we gave
at the beginning of this section.
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3.2.1.3 Flows for ordinary differential equations With the above notions of
existence and uniqueness of solutions for initial value problems, in this section we
give some notation that ties together all solutions to all initial value problems. In
doing this, we naturally run up against the question of how solutions to initial
value problems depend on initial conditions. We shall at various points in the
text run into situations where this sort of dependence is important, so the results
in this section, while a bit technical, are certainly an essential part of any deep
understanding of ordinary differential equations.

First we introduce the notation.

3.2.10 Definition (Interval of existence, domain of solutions) Let F be an ordinary
differential equation with right-hand side

F̂ : T × X→ Rm,

and assume that F satisfies the conditions of Theorem 3.2.8(ii) for existence and
uniqueness of solutions for initial value problems.

(i) For (t0, x0) ∈ T × X, denote

JF(t0, x0) = ∪{J ⊆ T | J is an interval and there is a solution
ξ : J→ X for F satisfying ξ(t0) = x0}.

The interval JF(t0, x0) is the interval of existence for the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0.

(ii) The domain of solutions for F is

DF = {(t, t0, x0) ∈ T × T × X | t ∈ JF(t0, x0)}. •

We shall carefully enumerate various properties of intervals of existence and
domains of solutions, but to do this let us first introduce a very useful bit of
notation.

3.2.11 Definition (Flow of an ordinary differential equation) Let F be an ordinary
differential equation with right-hand side

F̂ : T × X→ Rm,

and assume that F satisfies the conditions of Theorem 3.2.8(ii) for existence and
uniqueness of solutions for initial value problems. The flow of F is the map
ΦF : DF → X defined by asking that ΦF(t, t0, x0) is the solution, evaluated at t, of the
initial value problem

ξ̇(τ) = F̂(τ, ξ(τ)), ξ(t0) = x0. •
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The definition, phrased differently, says that

d
dt
ΦF(t, t0, x0) = f (t,ΦF(t, t0, x0)), ΦF(t0, t0, x0) = x0.

For t, t0 ∈ T, it is sometimes convenient to denote

DF(t, t0) = {x ∈ X | (t, t0, x) ∈ DF},

and then
ΦF

t,t0
: DF(t, t0)→ X

x 7→ ΦF(t, t0, x).

Along similar lines, for t0 ∈ T, we denote

DF(t0) = {(t, x) ∈ T × X | (t, t0, x) ∈ DF},

and then
ΦF(t0) : DF(t0)→ X

(t, x) 7→ ΦF(t, t0, x).

Let us enumerate some of the more elementary properties of the flow.

3.2.12 Proposition (Elementary properties of flows of ordinary differential equa-
tions) Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rm,

and assume that F satisfies the conditions of Theorem 3.2.8(ii) for existence and uniqueness
of solutions for initial value problems. Then the following statements hold:

(i) for each (t0, x0) ∈ T × X, (t0, t0, x0) ∈ DF and ΦF(t0, t0, x0) = x0;
(ii) if (t2, t1, x) ∈ DF, then (t3, t2,ΦF(t2, t1, x)) ∈ DF if and only if (t3, t1, x) ∈ DF and, if

this holds, then
ΦF(t3, t1, x) = ΦF(t3, t2,Φ

F(t2, t1, x)).

(iii) if (t2, t1, x) ∈ DF, then (t1, t2,ΦF(t2, t1, x)) ∈ DF and ΦF(t1, t2,ΦF(t2, t1, x)) = x.
Proof (i) This is part of the definition of the flow.

(ii) Suppose that t2 ≥ t1 and t3 ≥ t2.
First suppose that (t2, t1, x) ∈ DF and (t3, t2,ΦF(t2, t1, x)) ∈ DF. We then have

solutions ξ1 : [t1, t2]→ X and ξ2 : [t2, t3]→ X to the initial value problems

ξ̇1(t) = F̂(t, ξ1(t)), ξ1(t1) = x,

and
ξ̇2(t) = F̂(t, ξ2(t)), ξ2(t2) = ΦF(t2, t1, x),
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respectively. Then define ξ : [t1, t3]→ X by

ξ(t) =

ξ1(t), t ∈ [t1, t2],
ξ2(t), t ∈ [t2, t3].

It is clear, then, that
ξ̇(t) = F̂(t, ξ(t)), ξ(t1) = x.

It is then also clear that
ξ(t3) = ΦF(t3, t2,Φ

F(t2, t1, x))

and that ξ(t3) = ΦF(t3, t1, x). This gives (t3, t1, x) ∈ DF.
Now suppose that (t2, t1, x) ∈ DF and (t3, t1, x) ∈ DF. Let ξ1 : [t1, t2] → X and

ξ3 : [t1, t3]→ X be the solutions to the initial value problems

ξ̇1(t) = F̂(t, ξ1(t)), ξ1(t1) = x,

and
ξ̇3(t) = F̂(t, ξ3(t)), ξ3(t1) = x,

respectively. Then, by uniqueness of solutions, the curve ξ2 : [t2, t3]→ X give by

ξ2(t) = ξ1(t) = ξ3(t)

satisfies the initial value problem

ξ̇2(t) = F̂(t, ξ2(t)), ξ2(t2) = ξ1(t2) = ΦF(t2, t1, x),

and so (t3, t2,ΦF(t2, t1, x)) ∈ DF.
The assertion that

ΦF(t3, t1, x) = ΦF(t3, t2,Φ
F(t2, t1, x))

follows from uniqueness of solutions.
In the cases that (1) t1 ≥ t2 and t3 ≤ t2, (2) t2 ≤ t1 and t3 ≥ t2, and (3) t3 ≤ t2 and

t2 ≤ t1, similarly styled arguments can be made, appropriately fussing with going in
“different directions” in cases (1) and (2).

(iii) This is a special case of (ii), using (i). ■

Useful mnemonics associated with parts (i)–(iii) are:

ΦF
t0,t0
= idX, (ΦF

t2,t1
)−1 = ΦF

t1,t2
, ΦF

t3,t2
◦ΦF

t2,t1
= ΦF

t3,t1
.

However, these really are just mnemonics, since they do not account carefully for
the domains of the mappings being used.

The following result encodes some less elementary properties of the flow of an
ordinary differential equation, including the regularity of the dependence on time
and state.
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3.2.13 Theorem (Properties of flows of ordinary differential equations) Let F be an
ordinary differential equation with right-hand side

F̂ : T × X→ Rm,

and assume that F satisfies the conditions of Theorem 3.2.8(ii) for existence and uniqueness
of solutions for initial value problems. Then the following statements hold:

(i) for (t0, x0) ∈ T × X, JF(t0, x0) is an interval that is a relatively open subset of T;
(ii) for (t0, x0) ∈ T × X, the curve

γ(t0,x0) : JF(t0, x0)→ X

t 7→ ΦF(t, t0, x0)

is well-defined and absolutely continuous;
(iii) for t, t0 ∈ T, DF(t, t0) is open in X;
(iv) for t, t0 ∈ T for which DF(t, t0) , ∅, ΦF

t,t0
is a locally bi-Lipschitz homeomorphism

onto its image;
(v) for t0 ∈ T, DF(t0) is relatively open in T × X;
(vi) for t0 ∈ T, the map

ΦF(t0) : DF(t0)→ X

(t, x) 7→ ΦF(t, t0, x)

is well-defined and continuous;
(vii) DF is relatively open in T × T × X;
(viii) the map

ΦF : DF → X

is continuous;
(ix) for (t0, x0) ∈ T × X and for ϵ ∈ R>0, there exists r, α ∈ R>0 such that

sup JF(t, x) > sup JF(t0, x0) − ϵ, inf JF(t, x) < inf JF(t0, x0) + ϵ

for all (t, x) ∈ (t0 − α, t0 + α) ∩ T × B(r, x0).
Proof (i) Since JF(t0, x0) is a union of intervals, each of which contains t0, it follows
that it is itself an interval. To show that it is an open subset of T, we show that, if
t ∈ JF(t0, x0), there exists ϵ ∈ R>0 such that

(−ϵ, ϵ) ∩ T ⊆ JF(t0, x0).

First let us consider the case when t is not an endpoint of T, in the event that T
contains one or both of its endpoints. In this case, by definition of JF(t0, x0), there is an
open interval J ⊆ T containing t0 and t, and a solution ξ : J → X of the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0.
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In particular, there exists ϵ ∈ R>0 such that (−ϵ, ϵ) ⊆ J ⊆ JF(t0, x0), which gives the
desired conclusion in this case.

Next suppose that t is the right endpoint ofT, which we assume is contained inT,
of course. In this case, by definition of JF(t0, x0), there is an interval J ⊆ T containing t0
and t, and a solution ξ : J→ X of the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0.

In this case, there exists ϵ ∈ R>0 such that

(−ϵ, ϵ) ∩ T = (−ϵ, t] ⊆ JF(t0, x0),

which gives the desired conclusion in this case.
A similar argument gives the desired conclusion when t is the left endpoint of T.
(ii) That γ(t0,x0) is defined in JF(t0, x0) was proved as part of the preceding part

of the proof. The assertion that γ(t0,x0) is locally absolutely continuous follows from
Theorem 3.2.8(ii).

We shall prove the assertions (iii)–(vi) of the theorem together, first by proving that
these conditions hold locally, and then giving an extension argument to give the global
version of the statement.

Let us first prove a few technical lemmata that will be useful to us.

1 Lemma Let T be an interval, and let α, β, ξ : T→ R, and t0 ∈ T be such that
(i) α is continuous,
(ii) β is nonnegative-valued and locally integrable,
(iii) ξ is nonnegative-valued and continuous, and

(iv) ξ(t) ≤ α(t) +
∫ t

t0

β(s)ξ(s) ds for all t ∈ T ∩ [t0,∞).

Then

ξ(t) ≤ α(t) +
∫ t

t0

α(s)β(s)e
∫ t

s β(τ) dτ ds, t ∈ T ∩ [t0,∞).

Moreover, if α is additionally nondecreasing, then we have

ξ(t) ≤ α(t)e
∫ t

t0
β(s) ds

, t ∈ T ∩ [t0,∞).

Proof Define

η(s) = e
−

∫ s
t0
β(τ) dτ

∫ s

t0

β(τ)ξ(τ) dτ

and calculate, for almost every s ∈ [t0, t],

dη
ds

(s) = − β(s)e
−

∫ s
t0
β(τ) dτ

∫ s

t0

β(τ)ξ(τ) dτ + β(s)ξ(s)e
−

∫ s
t0
β(τ) dτ

= β(s)e
−

∫ s
t0
β(τ) dτ

(
ξ(s) −

∫ s

t0

β(τ)ξ(τ) dτ
)

≤ α(s)β(s)e
−

∫ s
t0
β(τ) dτ

,
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using the hypotheses of the lemma. Therefore,

η(t) ≤
∫ t

t0

α(s)β(s)e
−

∫ s
t0
β(τ) dτ

ds.

Using the definition of η we then have∫ t

t0

β(s)ξ(s) ds ≤
∫ t

t0

α(s)β(s)e
∫ t

t0
β(s) ds

e
−

∫ s
t0
β(τ) dτ

ds

=

∫ t

t0

α(s)β(s)e
∫ t

s β(τ) dτds,

which immediately gives the first conclusion of the lemma.
For the second, we first note that, for almost every s ∈ [t0, t],

d
ds

e
∫ t

s β(τ) dτ = −β(s)e
∫ t

s β(τ) dτ.

Then ∫ t

t0

β(s)e
∫ t

s β(τ) dτds = −e
∫ t

s β(τ) dτ
∣∣∣s=t
s=t0
= e

∫ t
t0
β(τ) dτ

− 1.

Then we use the first part of the lemma and the additional assumption on α:

ξ(t) ≤ α(t) +
∫ t

t0

α(s)β(s)e
∫ t

s β(τ) dτds

≤ α(t) + α(t)
(∫ t

t0

eβ(s)ds
− 1

)
,

and the lemma follows. ▼

Now we give the initial part of the local version of the theorem.

2 Lemma Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rm,

and assume that F satisfies the conditions of Theorem 3.2.8(ii) for existence and uniqueness of
solutions for initial value problems. Then, for each (t0, x0) ∈ T × X, there exists r, α ∈ R>0
such that (t, t0, x) ∈ DF for each x ∈ B(r, x0) and t ∈ (t0 − α, t0 + α) ∩ T. Moreover,

(i) the map
B(r, x0) ∋ x 7→ ΦF

t,t0
(x) ∈ Rm

is Lipschitz for every t ∈ (t0 − α, t0 + α) ∩ T;
(ii) the map

(t0 − α, t0 + α) ∩ T × B(r, x0) ∋ (t, x) 7→ ΦF(t, t0, x)

is continuous.
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Proof First let r′ ∈ R>0 be such that B(r′, x0) ⊆ X and let r = r′
2 . As in the proof of

Theorem 3.2.8(ii), there exist locally integrable g,L : T→ R≥0 such that

∥̂F(t, x)∥ ≤ g(t), (t, x) ∈ T × B(r′, x0).

and
∥̂F(t, x1) − F̂(t, x2)∥ ≤ L(t)∥x1 − x2∥

for all t ∈ T and x1, x2 ∈ B(r′, x0). Let us choose λ ∈ (0, 1). As in the proof of
Theorem 3.2.8(ii), there exists α ∈ R>0 such that∣∣∣∣∣∣

∫ t

t0

g(s) ds

∣∣∣∣∣∣ ≤ r,

∣∣∣∣∣∣
∫ t

t0

L(s) ds

∣∣∣∣∣∣ < λ, t ∈ [t0 − α, t0 + α].

If x ∈ B(r, x0), then B(r, x) ⊆ B(r′, x0). Therefore,

∥̂F(t, y)∥ ≤ g(t), (t, y) ∈ T × B(r, x).

and
∥̂F(t, y1) − F̂(t, y2)∥ ≤ L(t)∥y1 − y2∥

for all t ∈ T and y1, y2 ∈ B(r, x). If ξ1 ∈ C0([t0 − α, t0 + α];Rm) is the constant function
ξ0(t) = x0, then the arguments from the proof of Theorem 3.2.8(ii) allow us to conclude
that there is a solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

in B(r, ξ0) ⊆ C0([t0 − α, t0 + α];Rm). This is the existence assertion of the lemma.
(i) Let x1, x2 ∈ B(r, x0) and let t ∈ [t0 − α, t0 + α]. Then

ΦF(t, t0, x1) = x1 +

∫ t

t0

F̂(s,ΦF(s, t0, x1)) ds, ΦF(t, t0, x2) = x2 +

∫ t

t0

F̂(s,ΦF(s, t0, x2)) ds,

for all t ∈ [t0 − α, t0 + α]. Therefore,

∥ΦF(t, t0, x1) −ΦF(t, t0, x2)∥ ≤ ∥x1 − x2∥ +

∫ t

t0

∥̂F(s,ΦF(s, t0, x1)) − F̂(s,ΦF(s, t0, x2))∥ds

≤ ∥x1 − x2∥ +

∫ t

t0

L(s)∥ΦF(s, t0, x1) −ΦF(s, t0, x2)∥ds

≤ ∥x1 − x2∥e
∫ t

t0
L(s) ds

≤ ∥x1 − x2∥eλ.

This shows that ΦF
t,t0
|B(r, x0) is Lipschitz, as claimed, when t ≥ t0. A similar computa-

tion gives the analogous conclusion when t ≤ t0.
(ii) Let t1, t2 ∈ (t0 − α, t0 + α) ∩ T be such that t1 ≤ t2. Just as above, we have

∥ΦF(t1, t0, x1) −ΦF(t2, t0, x)∥ ≤ ∥x1 − x2∥

+

∫ t1

t0

∥̂F(s,ΦF(s, t0, x1)) − F̂(s,ΦF(s, t0, x2))∥ds +
∫ t2

t1

∥̂F(s, t0,Φ
F(s, t0, x2))∥ds.
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Let ϵ ∈ R>0. By Lemma 1 from the proof of Theorem 3.2.8, there exists δ1 ∈ R>0
sufficiently small that, if |t2 − t1| < δ1, then∫ t2

t1

∥̂F(s, t0,Φ
F(s, t0, x2))∥ds <

ϵ
2
.

Since ΦF
t1,t0

is continuous, let δ2 ∈ R>0 be sufficiently small that, if ∥x1 − x2∥ < δ1, then

∥x1 − x2∥ +

∫ t1

t0

∥̂F(s,ΦF(s, t0, x1)) − F̂(s,ΦF(s, t0, x2))∥ds <
ϵ
2
.

Then, if |t1 − t2| < δ1 and ∥x1 − x2∥ < δ2,

∥ΦF(t1, t0, x1) −ΦF(t2, t0, x2)∥ < ϵ,

giving the desired conclusion. ▼

The next lemma is a refinement of the preceding one, giving the local version of
the theorem statement.

3 Lemma Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rm,

and assume that F satisfies the conditions of Theorem 3.2.8(ii) for existence and uniqueness of
solutions for initial value problems. Then, for each (t0, x0) ∈ T × X, there exists r, α ∈ R>0
such that

(i) (t, t0, x) ∈ DF for each x ∈ B(r, x0) and t ∈ (t0 − α, t0 + α) ∩ T,
(ii) the map

(t0 − α, t0 + α) × B(r, x0) ∋ (t, x) 7→ ΦF(t, t0, x)

is continuous, and
(iii) the map

B(r, x0) ∋ x 7→ ΦF
t,t0

(x) ∈ Rm

is a bi-Lipschitz homeomorphism onto its image for every t ∈ (t0 − α, t0 + α) ∩ T.

Proof Let r′, α′ be as in Lemma 2 and let r ∈ (0, r′] and α ∈ (0, α′] be such that

ΦF
t,t0

(x) ∈ B(r′, x0), x ∈ B(r, x0), t ∈ [t0 − α, t0 + α],

this being possible by Lemma 2(ii). Let t ∈ (t0 − α, t0 + α) ∩ T and denote

V = ΦF
t,t0

(B(r, x0)) ⊆ B(r′, x0).

Let x ∈ B(r, x0). Since y ≜ ΦF
t,t0

(x) ∈ B(r′, x0) and t ∈ [t0 − α′, t0 + α′] ∩ T, there exists
ρ ∈ R>0 such that, if y′ ∈ B(ρ, y), then (t0, t, y′) ∈ DF. Moreover, sinceΦF

t0,t
is continuous

(indeed, Lipschitz, with Lipschitz constant eλ, with λ as in the proof of Lemma 2) and
ΦF

t0,t
(y) = x, we may choose ρ sufficiently small that ΦF

t0,t
(y′) ∈ B(r, x0) if y′ ∈ B(ρ, y).

By Lemma 2, ΦF
t0,t
|B(ρ, y) is Lipschitz with Lipschitz constant eλ. Thus there is a

neighbourhood of x on which the restriction of ΦF
t t0 is invertible, Lipschitz, and with

a Lipschitz inverse. ▼
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We now need to show that the theorem holds globally. To this end, let (t0, x0) ∈ T×X
and denote by J+(t0, x0) ⊆ T the set of b > t0 such that, for each b′ ∈ [t0, b), there exists
a relatively open interval J ⊆ T and a r ∈ R>0 such that
1. b′ ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF,
3. J × B(r, x0) ∋ (t, x) 7→ ΦF(t, t0, x) ∈ X is continuous, and
4. for each t ∈ J, B(r, x0) ∋ x 7→ ΦF(t, t0, x) is a locally bi-Lipschitz homeomorphism

onto its image.
By Lemma 3, J+(t0, x0) , ∅. We then consider two cases.

The first case is J+(t0, x0) ∩ [t0,∞) = T ∩ [t0,∞). In this case, for each t ∈ T with
t ≥ t0, there exists a relatively open interval J ⊆ T and r ∈ R>0 such that
1. t ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF,
3. J × B(r, x0) ∋ (τ, x) 7→ ΦF(τ, t0, x) ∈ X is continuous, and
4. for each τ ∈ J, B(r, x0) ∋ x 7→ ΦF(τ, t0, x) is a locally bi-Lipschitz homeomorphism

onto its image.
The second case is J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞). In this case we let t1 =

sup J+(t0, x0) and note that t1 , supT. We claim that t1 ∈ JF(t0, x0). Were this not
the case, then we must have b ≜ sup JF(t0, x0) < t1. Since b ∈ J+(t0, x0), there must be
a relatively open interval J ⊆ T containing b such that t ∈ JF(t0, x0) for all t ∈ J. But,
since there are t’s in J larger than b, this contradicts the definition of JF(t0, x0), and so
we conclude that t1 ∈ JF(t0, x0). Let us denote x1 = Φ

F(t1, t0, x0). By Lemma 3, there
exists α1, r1 ∈ R>0 such that (t, t1, x) ∈ DF for every t ∈ (t1 − α1, t1 + α1) and x ∈ B(r1, x1),
and such that the map

(t1 − α1, t1 + α1) × B(r1, x1) ∋ (t, x) 7→ ΦF(t, t1, x)

is continuous, and the map

B(r1, x1) ∋ x 7→ ΦF(t, t1, x)

is a locally bi-Lipschitz homeomorphism onto its image for every t ∈ (t1 − α1, t1 + α1).
Since t 7→ ΦF(t, t0, x0) is continuous and ΦF(t1, t0, x0) = x1, let δ ∈ R>0 be such that
δ < α1

2 and ΦF(t, t0, x0) ∈ B(r1/4, x1) for t ∈ (t1 − δ, t1). Now let τ1 ∈ (t1 − δ, t1) and, by
our hypotheses on t1, there exists an open interval J and r′1 ∈ R>0 such that
1. τ1 ∈ J,
2. J × {t0} × B(r′1, x0) ⊆ DF,

3. J × B(r′1, x0) ∋ (τ, x) 7→ ΦF(τ, t0, x) ∈ X is continuous, and

4. for each τ ∈ J, B(r′1, x0) ∋ x 7→ ΦF(τ, t0, x) is a locally bi-Lipschitz homeomorphism
onto its image.

We also choose J and r′1 sufficiently small that

{ΦF(t, t0, x) | t ∈ J, x ∈ B(r′1, x0)} ⊆ B(r1/2, x1).
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Now we claim that

(τ1 − α1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF.

We first show that
[τ1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF. (3.10)

Indeed, we have (τ1, t0, x) ∈ DF for every x ∈ B(r′1, x0) since τ1 ∈ J. By definition of J,
ΦF(τ1, t0, x) ∈ B(r1/2, x1). By definition of τ1, t1 − τ1 < δ <

α1
2 . Then, by definition of α1

and r1,
(t1, τ1,Φ

F(τ1, t0, x)) ∈ DF

for every x ∈ B(r′1, x0). From this we conclude that (t1, t0, x) ∈ DF for every x ∈ B(r′1, x0).
Now, since

t ∈ [τ1, τ1 + α1) =⇒ t ∈ (t1 − α1, t1 + α1),

we have (t, t1,ΦF(t, t1, x)) ∈ DF for every t ∈ (τ1 − α1, τ1 + α1) and x ∈ B(r′1, x0). Since

ΦF(t, t1,Φ
F(t1, t0, x)) = ΦF(t, t0, x),

we conclude (3.10). A similar but less complicated argument gives

(τ1 − α1, τ1) × {t0} × B(r′1, x0) ⊆ DF.

Now we claim that the map

(τ1 − α1, τ1 + α1) × B(r′1, x0) ∋ (t, x) 7→ ΦF(t, t0, x)

is continuous. This map is continuous at

(t, x) ∈ (τ1 − α1, τ1] × B(r′1, x0)

by definition of τ1. For t ∈ (τ1, τ1 + α1) we have

ΦF(t, t0, x) = ΦF(t, τ1,Φ
F(τ1, t0, x)),

and continuity in this case follows since compositions of continuous maps are contin-
uous.

Next we claim that the map

B(r′1, x0) ∋ x 7→ ΦF(t, t0, x)

is a locally bi-Lipschitz homeomorphism onto its image for every t ∈ (τ1 − α1, τ1 + α1).
By definition of τ1, the map

ΦF
t,t0

: B(r′1, x0)→ B(r1/2, x1)

is a locally bi-Lipschitz homeomorphism onto its image for t ∈ (τ1 − α1, τ1]. We also
have that

ΦF
t,τ1

: B(r1, x1)→ X

is a locally bi-Lipschitz homeomorphism onto its image for t ∈ (τ1, τ1 + α1). Since
the composition of locally bi-Lipschitz homeomorphisms onto their image is a locally
bi-Lipschitz homeomorphisms onto its image, our assertion follows.

By our above arguments, we have an open interval J′ and r′1 ∈ R>0 such that
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1. t1 ∈ J′,
2. J′ × {t0} × B(r′1, x0) ⊆ DF,

3. J′ × B(r′1, x0) ∋ (t, x) 7→ ΦF(t, t0, x) ∈ X is continuous, and

4. for each t ∈ J′, B(r′1, x0) ∋ x 7→ ΦF(t, t0, x) is a locally bi-Lipschitz homeomorphism
onto its image.

This contradicts the fact that t1 = sup J+(t0, x0) and so the condition

J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞)

cannot obtain.
One similarly shows that it must be the case that J−(t0, x0)∩ (−∞, t0] = T∩ (−∞, t0]¡

where J−(t0, x0) has the obvious definition.
Finally, we note that ΦF

t,t0
injective by uniqueness of solutions for F. Now, asser-

tions (i)–(vi) of the theorem now follow since the notions of “continuous” and “locally
bi-Lipschitz homeomorphism” can be tested locally, i.e., in a neighbourhood of any
point.

We shall prove assertions (vii) and (viii) together. We let (t1, t0, x0) ∈ DF. As above,
there exists r1, α1 ∈ R>0 such that

(t1 − α1, t1 + α1) ∩ T × {t0} × B(r1, x0) ⊆ DF,

and the map (t, x) 7→ ΦF(t, t0, x0) is continuous on this domain. We claim that the map

(t, x) 7→ ΦF(t0, t, x) (3.11)

is continuous for (t, x) nearby (t0, x0). To see this, we proceed rather as in the proof of
Theorem 3.2.8, using the Contraction Mapping Theorem.

Let r ∈ R>0 be such that there exists a locally integrable g : T→ R≥0 such that

∥̂F(t, x)∥ ≤ g(t), (t, x) ∈ T × B(r, x0),

and also there exists a locally integrable L : T→ R≥0 such that

∥̂F(t, x) − F̂(t, y)∥ ≤ L(t)∥x − y∥

for all t ∈ T and x, y ∈ B(r, x0). Let us choose λ ∈ (0, 1). Let us suppose that t ≤ t0.
Define G−, ℓ− : (−∞, t0] ∩ T→ R by

G−(t) =
∫ t0

t
g(s) ds, ℓ+(t) =

∫ t0

t
L(s) ds.

Since g and L are nonnegative, we can choose T− ∈ R>0 such that

G−(t) =
∫ t0

t
g(s) ds ≤

r
2
, ℓ−(t) =

∫ t0

t
L(s) ds < λ

for t ∈ [t0 −T−, t0]. For x ∈ B(r/2, x0), let ξ0 be the trivial function t 7→ x, t ∈ [t0 −T−, t0],
and let B−(r, ξ0) be the ball of radius r and centre ξ0 in C0([t0 − T−, t0];Rm). Define
F− : B−(r, ξ0)→ C0([t0 − T−, t0];Rm) by

F−(ξ)(t) = x +
∫ t0

t
F̂(s, ξ(s)) ds.
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By the lemma from the proof of Theorem 3.2.8, s 7→ F̂(s, ξ(s)) is locally integrable,
showing that F− is well-defined and that F−(ξ) is absolutely continuous.

We claim that F−(B−(r, ξ0)) ⊆ B−(r, ξ0). Suppose that ξ ∈ B−(r, ξ0) so that

∥ξ(t) − x0∥ ≤ r, t ∈ [t0 − T−, t0].

Then, for t ∈ [t0 − T−, t0],

∥F−(ξ)(t) − x0∥ ≤ ∥x − x0∥ +

∥∥∥∥∥∥
∫ t0

t
F̂(s, ξ(s)) ds

∥∥∥∥∥∥
≤

r
2
+

∫ t0

t
∥̂F(s, ξ(s))∥ds ≤

r
2
+

∫ t0

t
g(s) ds ≤ r,

as desired.
We claim that F−|B−(r, ξ0) is a contraction mapping. That is, we claim that there

exists ρ ∈ [0, 1) such that

∥F−(ξ) − F−(η)∥∞ ≤ ρ∥ξ − η∥∞

for every ξ,η ∈ B−(r, ξ0). Indeed, let ξ,η ∈ B−(r, ξ0) and compute, for t ∈ [t0 − T−, t0],

∥F−(ξ)(t) − F−(η)(t)∥ =

∥∥∥∥∥∥
∫ t0

t
F̂(s, ξ(s)) ds −

∫ t0

t
F̂(s,η(s))

∥∥∥∥∥∥
≤

∫ t0

t
∥̂F(s, ξ(s)) − F̂(s,η(s))∥ds

≤

∫ t0

t
L(s)∥ξ(s) − η(s)∥ds ≤ ℓ−(t)∥ξ − η∥∞ ≤ λ∥ξ − η∥∞,

since ξ(s),η(s) ∈ B(r, x0) for every s ∈ [t0, t0 + T+]. This proves that F−|B−(r, ξ0) is a
contraction mapping.

By the Contraction Mapping Theorem, Theorem III-1.1.23 there exists a unique
fixed point for F− which we denote by ξ−. Thus

ξ−(t) = F−(ξ+)(t) = x +
∫ t0

t
F̂(s, ξ−(s)) ds.

Differentiating the first and last expressions with respect to t shows that ξ+ is a solution
for F, and we moreover have ξ(t0) = x. This show that, if x ∈ B(r/2, x0) and t ∈
[t0 − T−, t0], then we have ΦF(t0, t, x) ∈ B(r, x0) and

ΦF(t0, t, x) = x +
∫ t0

t
F̂(s,ΦF(t0, s, x) ds.

A similar argument, of course, can be fabricated for t ≥ t0, and we conclude that there
exists α0 ∈ R>0 and r0 ∈ R>0 such that

ΦF(t0, t, x) ∈ B(r1, x0), (t, x) ∈ (t0 − α0, t0 + α0) ∩ T × B(r0, x0).
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Finally, we show that the map (3.11) is continuous on (t0−α0, t0+α0)∩T×B(r0, x0).
Note that, as in the proof of Lemma 2 above and assuming that τ2 ≥ τ1,

∥ΦF(t0, τ1, x1) −ΦF(t0, τ2, x2)∥ ≤ ∥x1 − x2∥

+

∫ t0

τ2

∥̂F(s,ΦF(t0, s, x1)) − F̂(s,ΦF(t0, s, x2))∥ds +
∫ τ2

τ1

∥̂F(s,ΦF(t0, s, x1))∥ds.

Let ϵ ∈ R>0. By Lemma 1 from the proof of Theorem 3.2.8, there exists δ1 ∈ R>0
sufficiently small that, if |τ2 − τ1| < δ1, then∫ τ2

τ1

∥̂F(s,ΦF(t0, s, x2))∥ds <
ϵ
2
.

Since ΦF
t0,τ2

is continuous, let δ2 ∈ R>0 be sufficiently small that, if ∥x1 − x2∥ < δ2, then

∥x1 − x2∥ +

∫ t0

τ2

∥̂F(s,ΦF(t0, s, x1)) − F̂(s,ΦF(t0, s, x2))∥ds <
ϵ
2
.

Then, if |t1 − t2| < δ1 and ∥x1 − x2∥ < δ2,

∥ΦF(t0, τ1, x1) −ΦF(t0, τ2, x2)∥ < ϵ,

given the desired continuity.
Finally, if (t′, t′0, x) ∈ (t − α, t + α) ∩ T × (t0 − α0, t0 + α0) ∩ T × B(r0, x0), then

ΦF(t′, t0,Φ
F(t0, t′0, x)) = ΦF(t′, t′0, x),

which shows both that DF is open and that ΦF is continuous, since the composition of
continuous mappings is continuous.

(ix) Let T+ = sup JF(t0, x0). Then (T+ − ϵ, t0, x0) ∈ DF. Since DF is open, there exists
r ∈ R>0 such that

{T+ − ϵ
2 } × (t0 − α, t0 + α) ∩ T × B(r, x0) ⊆ DF.

In other words, [t0,T+ − ϵ
2 ] ⊆ JF(t, x) for every (t, x) ∈ (t0 −α, t0 +α)∩T×B(r, x0). Thus,

for such (t, x),
sup JF(t, x) ≥ T− − ϵ

2 > T− − ϵ = sup JF(t0, x0) − ϵ,

as claimed. A similar argument holds for the left endpoint of intervals of convergence.
■

3.2.2 (Lack of) results for partial differential equations

The questions of existence and uniqueness of solutions for partial differential
equations is far more difficult than for ordinary differential equations. Situations
range from relatively simple cases where one can prove existence and uniqueness
directly by writing down solutions, to equations where proving an existence and
uniqueness result becomes a triumph of analysis, resulting in a paper in the Annals
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of Mathematics. Thus it is not possible to have a comprehensive discussion of
a theory of existence and uniqueness for general partial differential equations.
Instead we content ourselves with some mostly vague observations about the
nature of the problem.

First we note that all of the examples of Section 3.2.1 can be turned into partial
differential equations is an entirely artificial way, merely by artificially adding an
extra independent variable. This is not an interesting thing to do, except that it
ensures that all of the conclusions 1–5 enumerated after these examples equally
apply to partial differential equations.

Let us list some of the difficulties that arise in arriving at existence and unique-
ness theorems for partial differential equations.
1. For ordinary differential equations, we saw that appropriate combinations of

continuity, boundedness, and Lipschitz hypotheses ensured existence, and of-
ten uniqueness, of solutions. For partial differential equations, this is no longer
true. A partial differential equation with lots of nice properties can fail to have
any solutions. Moreover, this failure of solutions to exist can arise in various
ways. So any attempt at a general theorem is dead from the start, and one must
make assumptions on the sort of partial differential equation for solutions to
even exist, cf. the discussion of elliptic, hyperbolic, and parabolic equations in
Section 3.1.4.

2. For ordinary differential equations, we saw that to uniquely prescribe a solution
one must specify an initial value of the state at some time to arrive at an initial
value problem. For partial differential equations, this process is more difficult.
Typically one must specify values of the solution along some surface or some
such thing. This is known as prescribing “Cauchy data.” However, the type of
Cauchy data that is to be specified is not as easy a matter to understand as for or-
dinary differential equations. For many problems arising from physics, e.g., the
heat, wave, and potential equations, the “natural” prescriptions of values for the
solution and/or its derivatives at “boundaries” of the domain is often correct.
However, these partial differential equations are “nice.” In general, finding the
analogue of initial conditions for ordinary differential equations is quite hard
for partial differential equations.

3. The properties of a solution of an ordinary differential equation as it depends
on the independent variable are quite easy: it is of class C1 (or, more generally,
locally absolutely continuous). For partial differential equations, finding the
right attributes for a solution beforehand is often crucial to proving existence
and uniqueness theorems for an equation.
We shall say nothing more about the subject of existence and uniqueness theo-

rems for partial differential equations, except to say this:
Go to
http://www.claymath.org/millennium-problems/navier-stokes-equation

to win $1,000,000! •

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
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Exercises

3.2.1 For a function f : [0, 1]→ R, consider an ordinary differential equation with
right-hand side

F̂ : [0, 1] ×R→ R
(t, x) 7→ f (t).

Answer the following questions.
(a) Suppose that f is almost everywhere differentiable with zero derivative

almost everywhere, but that f is not constant (Example I-3.2.27). Show
that there exist at least two solutions to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(0) = 0.

(b) Show that, if f is absolutely continuous, then ξ : [0, 1] → R satisfies the
initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(0) = 0

if and only if

ξ(t) =
∫ t

0
f (τ) dτ.

3.2.2 Which of the following maps are locally Lipschitz?
(a) f : R→ R

x 7→
√
|x|;

(b) f : R>0 → R

x 7→
√
|x|;

(c) f : R→ R
x 7→ |x|;

(d) f : [0, π]→ R
x 7→ sin(x);

(e) f : R>0 → R

x 7→ x−1.

3.2.3 For the ordinary differential equations F with right-hand sides F̂ as given,
determine which, if either, of the parts of Theorem 3.2.8 apply, and indicate
what conclusions, if any, you can make about existence and uniqueness of
solutions for F. Here are the right-hand sides:

(a) F̂ : R ×R→ R

(t, x) 7→
√
|t|x;
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(b) F̂ : R>0 ×R→ R

(t, x) 7→
x
t

;

(c) F̂ : R × [0, 1]→ R

(t, x) 7→

1, x ∈ [0, 1
2 ],

−1, x ∈ ( 1
2 , 1];

(d) F̂ : R ×R→ R
(t, x) 7→ |xt|;

(e) F̂ : R ×R→ R

(t, x) 7→ x2.

3.2.4 For the ordinary differential equations of Examples 3.1.3–1 to 9, show that
the hypotheses of Theorem 3.2.8 hold, and so these equations possess unique
solutions, at least for small times around any initial time.

3.2.5 In each of Examples 3.2.1–3.2.6, state the hypotheses of Theorem 3.2.8 that
are violated by the example.

3.2.6 Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rm

and suppose that, for each x0 ∈ X, there exist M, r ∈ R>0 such that∣∣∣∣∣∣∣∂F̂ j

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, j, k ∈ {1, . . . ,n}, (t, x) ∈ T × B(r, x0).

Show that
∂
∂t
ΦF(t0, t, x) +

n∑
j=1

F̂ j(t, x)
∂
∂x j
ΦF(t0, t, x) = 0.

3.2.7 We consider a partial differential equation

F : R3
×R × L(R3;R)→ R3

defined by

F((x1, x2, x3),u, (u1,u2,u3)) = (u1 − f1(x),u2 − f2(x),u3 − f3(x)),

for a given continuously differentiable mapping f : R3
→ R3. Show that, if

F possesses a solution u of class C2, then ∇ × f = 0.
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Section 3.3

Classification of difference equations

Next we conduct the classification exercise, conducted in the preceding section
for differential equations, to difference equations. As with differential equations,
the objective here is to clarify what a difference equation is and what a solution is.
We also describe various important classes of difference equations.

Do I need to read this section? The language we present in this section will be
often used below.

3.3.1 Variables in difference equations

We first describe the sort of domains that are used for difference equations. Let
n ∈ Z>0 and let h1, . . . , hn ∈ R>0. We then denote h = (h1, . . . , hn) and

Zn(h) = Z(h1) × · · · ×Z(hn).

Thus Zn(h) is a lattice in Rn with lattice gaps depending on the component, as
depicted in Figure 3.5. With this notation, we make the following definition.

h1

h2

Figure 3.5 A lattice in R2

3.3.1 Definition (Discrete domain) A discrete domain in Rn is a subset of the form
D = Zn(h) ∩U, where U ⊆ Rn is an open set and for some h ∈ Rn

>0. •

Note that this amounts to saying that a discrete domain is a subset of Zn(h).
We phrase the definition as we do to emphasise the idea that one might think of a
discrete domain as a discretisation of a domain for a differential equation.
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The notions of “derivative” and “order” of a differential equation are clear. For
difference equations, we use the following notions.

3.3.2 Definition (Forward and backward differences) Let D ⊆ Zn(h) and let f : D →
Rm. For j ∈ {1, . . . ,n}, denote

D+j = {x ∈ D | x + h je j ∈ D}

and
D−j = {x ∈ D | x − h je j ∈ D}.

(i) The jth forward difference for f is

∆+j f : D+j → R
m

x 7→
f (x + h je j) − f (x)

h j
.

(ii) The jth backward difference for f is

∆−j f : D−j → R
m

x 7→
f (x) − f (x − h je j)

h j
.

•

The idea of a forward and backward difference is that it is the discrete analogue
of the derivative. When thinking of time derivatives, it is natural, for reasons of
causality, to work with backward differences. However, for spatial derivatives, for-
ward differences are also useful. Just like one constructs higher-order derivatives
by iterating differentiation, one can iterate forward and backward differences. Let
us set up the notation for doing this.

Let α ∈ {+,−}k be a sequence of k entries of pluses and minuses. Write

α = (α1, . . . , αk).

We shall use the following awkward, but sensible, notation, for α ∈ {+,−} and
x, y ∈ Rn:

xαy =

x + y, α = +,

x − y, α = −.

This notation can be extended to any situation where objects can be added. Now
D ⊆ Zn(h) be a discrete domain, let α ∈ {+,−}k, and let j ∈ {1, . . . ,n}k. For l ∈
{1, . . . , k}, let I(k, l) denote the set of sublists of length l of the list (1, . . . , k). Thus, if
k = 4, then

I(4, 1) = {(1), (2), (3), (4)},
I(4, 2) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
I(4, 3) = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)},
I(4, 4) = {(1, 2, 3, 4)}.
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Then, denote

Dα
j =

x ∈ D

∣∣∣∣∣∣∣
l∑

r=1

xαirh jir e jir ∈ D, (i1, . . . , il) ∈ I(k, l), l ∈ {1, . . . , k}

 .
The notation required to do this in generality is tedious, but the idea is not compli-
cated, per se. Let us illustrate in the case of m = 4 and α = (+,−,+,−). Here, a point
x ∈ D is in Dα

j if and only if the points

x + h j1e j1 ,

x − h j2e j2 ,

x + h j3e j3 ,

x − h j4e j4 ,

x + h j1e j1 − h j2e j2 ,

x + h j1e j1 + h j3e j3 ,

x + h j1e j1 − h j4e j4 ,

x − h j2e j2 + h j3e j3 ,

x − h j2e j2 − h j4e j4 ,

x + h j3e j3 − h j4e j4 ,

x + h j1e j1 − h j2e j2 + h j3e j3 ,

x + h j1e j1 − h j2e j2 − h j4e j4 ,

x + h j1e j1 + h j3e j3 − h j4e j4 ,

x − h j2e j2 + h j3e j3 − h j4e j4 ,

x + h j1e j1 − h j2e j2 + h j3e j3 − h j4e j4

are all in D. For x ∈ Dα
j , we denote

Dα
j (x) =

 l∑
r=1

xαirh jir e jir

∣∣∣∣∣∣∣ (i1, . . . , il) ∈ I(k, l), l ∈ {1, . . . , k}

 ⊆ D.

We can then define
∆αj f : Dα

j → R
m

x 7→ ∆α1
j1
· · ·∆αk

jk
f (x).

We call ∆αj f (x) the kth-order partial difference for f associated with α and j. These
partial differences, depending on α and j, are rather like the partial derivatives of
calculus.

As the partial derivatives from calculus conglomerate to give the various higher-
order derivatives, the partial differences do the same. To do this, we make a
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construction. We denote by A2 the Abelian group with elements {+,−} with the
following group operations:

++ = +, +− = −, −+ = −, −− = +.

Now consider the tensor product A2 ⊗ Rn of Z-modules.4 By virtue of being a
tensor product, A2 ⊗ Rn has the structure of an Abelian group and so elements
can be added. It becomes a R-vector space with scalar multiplication defined by
a(α ⊗ v) = α ⊗ (av). A basis for this vector space is given by

{+ ⊗ e j | j ∈ {1, . . . ,n}}, {− ⊗ e j | j ∈ {1, . . . ,n}},

and so dimR(A2 ⊗Rn) = 2n.
With the preceding construction, we make the following definition.

3.3.3 Definition (Total difference) For h ∈ Rn
>0, for a discrete domain D ⊆ Zn(h), for

f : D→ Rm, and for k ∈ Z>0, the kth-total difference of f at

x ∈ ∩{Dα
j | α ∈ {+,−}

k, j ∈ {1, . . . ,n}k}

is ∆k f (x) ∈ Lm(A2 ⊗Rn;Rm) defined by

∆k f (x)(α1 ⊗ e j1 , . . . , αk ⊗ e jk) = ∆
α
j f (x), α ∈ {+,−}k, j ∈ {1, . . . ,n}k. •

We shall denote the first-total difference by ∆ f .
Note that the definition of ∆k f (x), applied to arbitrary arguments, is made by

making use of multilinearity.
Let us next see that, like usual partial derivatives, the partial differences are

symmetric in a certain sense. To establish this, we introduce the following notation
for α ∈ {+,−}k, j ∈ {1, . . . ,n}k, and σ ∈ Sk:

σ(α) = (ασ(1), . . . , ασ(k)), σ( j) = ( jσ(1), . . . , jσ(k)).

With this notation, we have the following lemma.

3.3.4 Lemma (Symmetry of the total difference) For h ∈ Rn
>0, for a discrete domain

D ⊆ Zn(h), for f : D → Rm, for k ∈ Z>0, for α ∈ {+,−}k, for j ∈ {1, . . . ,n}k, and for
σ ∈ Sk, we have

∆σ(α)
σ(j) f(x) = ∆αj f(x), x ∈

⋂
σ′∈Sm

Dσ′(α)
σ′(j) .

4We refer to Section I-5.6.3 for the presentation of tensor products of vector spaces, and this
notion is easily extended to tensor products of Abelian groups. In any case, we concretely describe
the desired tensor product here.
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Proof We prove the result by induction on k. For k = 2 the assertion of the lemma
is a mere calculation. Suppose the lemma true for k = r and let α ∈ {+,−}r+1 and
j ∈ {1, . . . ,n}r+1. By the induction hypothesis,

∆
σ(α)
σ( j) f (x) = ∆αj f (x), x ∈

⋂
σ′∈Sr+1

Dσ′(α)
σ′( j) ,

for any permutation σ of the last r terms in the list {1, . . . , r+1}. We shall show that this
equality holds for any transposition of {1, . . . , r+ 1}. To do this, we need only show that
it holds for transpositions involving the first component in the list. By the induction
hypothesis, it suffices to show that this holds for the transposition (2 1). However, the
conclusion holds in this case by applying the result for k = 2 to the function

∆α3
j3
· · ·∆αr+1

jr+1
f .

Since Sr+1 is generated by transpositions by Theorem I-4.1.36, the lemma follows. ■

Based on the lemma, let us denote

Lk
⊗sym(A2 ⊗R

n;Rm) =
{
A ∈ Lk(A2 ⊗R

n;Rm)
∣∣∣ A(ασ(1) ⊗ e jσ(1) , . . . , ασ(k) ⊗ e jσ(k))

= A(α1 ⊗ e j1 , . . . , αk ⊗ e jk), α ∈ {+,−}
k, j ∈ {1, . . . ,n}k

}
.

In the usual way, we denote

L≤k
⊗sym(A2 ⊗R

n;Rm) = ⊕k
j=1L j

⊗sym(A2 ⊗R
n;Rm).

Notationally, it is complicated to reproduce for partial differences the notation
for partial derivatives from Section 3.1.1. However, for a function u defined on a
subset D′ ⊆ D of a discrete domain, we denote the kth partial differences by

uαj , α ∈ {+,−}k, j ∈ {1, . . . ,n}k,

keeping in mind the symmetries of Lemma 3.3.4. The subset D′ must be selected
in such a manner that the partial differences are well-defined. We shall be careful
about this in the next section. Here, let us list the coordinates for L≤2

⊗sym(R2;R), so
that one can see how this works:

u+1 ,u
−

1 ,u
+
2 ,u

−

2 ,u
++
11 u+−11 ,u

−−

11 ,u
++
12 ,u

+−
12 ,u

−+
12 ,u

−−

12 ,u
++
22 ,u

+−
22 ,u

−−

22 .

We shall say that a function

u : Lk
⊗sym(Rn;Rn)→ Rl

depends on (α, j) ∈ {+,−}k × {1, . . . , n}k if the function obtained by fixing all partial
differences other than uαj at some value is not a constant function.
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3.3.2 Difference equations and solutions

In Section 3.1.2, we considered a differential equation as a function of the
unknown and its derivatives. We shall do the same for difference equations, instead
working with functions of the unknown and its partial differences. A complication
that arises is that certain partial differences may not be defined at certain points in
a discrete domain since partial differences depend on distant points. With this in
mind, we make the following definition.

3.3.5 Definition (Difference equation) A difference equation consists of a mapping

F : DF ×U × L≤k
⊗sym(Rn;Rm)→ Rl,

where k, l,m,n ∈ Z>0, and for some DF ⊆ D and U ⊆ Rm, with D ⊆ Zn(h) for some
h ∈ Rn

>0, with the requirement that, for each (x,u) ∈ DF ×U and r ∈ {1, . . . , k},

F|{x} × {u} ×L≤r
⊗sym(Rn;Rm) depends on (α, j) ∈ {+,−}r × {1, . . . ,n}r ⇐⇒ Dα

j (x) ⊆ D.

We also have the following terminology:
(i) n is the number of independent variables;
(ii) m is the number of unknowns or states;
(iii) k is the order;
(iv) l is the number of equations;
(v) D ⊆ Zn(h) is the domain for the difference equation;
(vi) DF ⊆ D is the free domain for the difference equation;
(vii) U ⊆ Rm is the state space for the difference equation. •

The free domain in the definition is made such that all partial differences upon
which the equation depends are well-defined at points in DF.

In order to understand the relevance of this definition, it is perhaps best to think
first about solutions.

3.3.6 Definition (Solution to a difference equation) Let

F : DF ×U × L≤k
⊗sym(Rn;Rm)→ Rl

be a difference equation with DF ⊆ D ⊆ Zn(h). A solution to the difference equation
is a function u : D′ → U defined on a subset D′ ⊆ DF such that

F(x,u(x),∆u(x), . . . ,∆ku(x)) = 0, x ∈ D′. •

We shall not systematically go through the difference equation examples from
Sections 1.1.17–1.1.20. Most of these difference equations are ordinary difference
equations that we will work with in detail in Section 3.3.3 below. Instead we shall
give a single example that illustrates the essential ideas.
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3.3.7 Example (Discrete heat equation in a finite rod) We consider the heat flow in a
rod of length ℓ. We discretise the rod into N equal length segments. Thus we take
h1 =

ℓ
N . We also discretise time into intervals of length h2. This gives the discrete

domain
D = {( j1h1, j2h2) ∈ Z2(h1, h2) | j1 ∈ {0, 1, . . . ,N}, j2 ∈ Z≥0}.

As we saw in Section 1.1.20, the physics suggests the equation

u( j1h1, j2h2) − u( j1h1, ( j2 − 1)h2)
= k

(
u(( j1 − 1)h1, ( j2 − 1)h2) − 2u( j1h1, ( j2 − 1)h2) + u(( j1 + 1)h1, ( j2 − 1)h2)

)
(3.12)

governing the temperature distribution u : D → R, where k ∈ R>0 is the diffusion
coefficient. We recognise this to be equivalent to

∆−1 u( j1h1, j2h2) = k∆+−22 u( j1h1 j2h2).

We render this a difference equation by taking

DF = {( j1h1, j2h2) ∈ D | j1 ∈ {1, . . . ,N − 1}, j ∈ Z>0}

and

F : DF ×R × L≤2
⊗sym(R2;R)→ R

((x, y),u, (u+1 ,u
−

1 ,u
+
2 ,u

−

2 ,u
++
11 u+−11 ,u

−−

11 ,u
++
12 ,u

+−
12 ,u

−+
12 ,u

−−

12 ,u
++
22 ,u

+−
22 ,u

−−

22 )) 7→ u−1 − ku+−22 .

A solution of this equation defined on D will be a function u : D → R satisfy-
ing (3.12). •

3.3.3 Ordinary difference equations

In this section we specialise to a class of difference equations with one indepen-
dent variable. Apart from having only one independent variable, the equation we
consider are characterised by employing only forward differences. We shall use
the following notation for iterated forward differences:

∆k,+ f = ∆+1 · · ·∆
+
1︸    ︷︷    ︸

k times

f .

We begin by giving an explicit formula for iterated forward differences.

3.3.8 Lemma (Iterated forward differences in one variable) Let h ∈ R>0, let D ⊆ Z(h)
be a discrete domain, let f : D → Rm, and let k ∈ Z≥0. If t ∈ T is such that t + jh ∈ D,
j ∈ {0, 1, . . . ,k}, then

∆k,+f(t) =
1
hk

k∑
j=0

(−1)k−j

(
k
j

)
f(t + jh).
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Proof This is proved by induction on k. For k = 0 the assertion is that f (t) = f (t), which
certainly holds. Assume now the assertion holds for k = r. Then, using Exercise I-2.2.2,

∆r+1,+ f (t) =
1
h
(
∆r,+ f (t + h) − ∆r,+ f (t)

)
=

1
hr+1

 r∑
j=0

(−1)r− j
(
r
j

)
f (t + jh + h) −

r∑
j=0

(−1)r− j
(
r
j

)
f (t + jh)


= −

1
hr+1

 r+1∑
j=1

(−1)r− j
(

r
j − 1

)
+

r∑
j=0

(−1)r− j
(
r
j

) f (t + jh)

= −
1

hr+1

(−1)r f (t) +
r∑

j=1

(−1) j
((

r
j

)
+

(
r

j − 1

))
f (t + jh) − f (t + (r + 1)h)


= −

1
hr+1

(−1)r f (t) +
r∑

j=1

(−1)r− j
(
r + 1

j

)
f (t + jh) − f (t + (r + 1)h)


=

1
hr+1

r+1∑
j=0

(−1)r− j
(
r + 1

j

)
f (t + jh),

as desired. ■

If we restrict to forward differences in one variable, then the total differences
take values in L≤k

sym(R;Rm) (by taking those elements of L≤k
⊗sym(R;Rm) associated with

α = (+, . . . ,+)). We shall use the following variables to label points in L≤k
sym(R;Rm) ⊆

L≤k
⊗sym(R;Rm):

(x(+,1), . . . , x(+,k)),

echoing the notation used for derivative variables.

3.3.3.1 General ordinary difference equations We can now give the defini-
tion.

3.3.9 Definition (Ordinary difference equation) An ordinary difference equation is a
difference equation F subject to the following conditions:

(i) there is one independent variable, i.e., n = 1;
(ii) the independent variable takes values in a subset T = I ∩ Z(h) called the

time-domain, where I ⊆ R is an interval;
(iii) the free domain is

TF = {t ∈ T | t + kh ∈ T};

(iv) the state space is an open subset X ⊆ Rm;
(v) there are the same number of equations as states, i.e., l = m;
(vi) F depends only on forward partial differences;
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(vii) if the order of the difference equation is k, for each

(t, x, x(+,1), . . . , x(+,k−1)) ∈ TF × X × L≤k−1
sym (R;Rm),

the equation
F(t, x, x(+,1), . . . , x(+,k)) = 0

can be uniquely solved to give

x(+,k) = F(t, x, x(+,1), . . . , x(+,k−1)).

We call F : TF×X×L≤k
sym(R;Rm)→ Rm the difference right-hand side for the ordinary

difference equation. •

The reader will notice that we have not immediately defined the “right-hand
side” as we did for ordinary differential equations. This is because we wish to make
an immediate alteration in the way in which we think about ordinary difference
equations. To do this, we note from Lemma 3.3.8 that we have

∆r,+ f (t) = h−r f (t + rh) +
1
hr

r−1∑
j=0

(−1)r− j

(
r
j

)
f (t − jh), r ∈ {0, 1, . . . , k}. (3.13)

and thus we have a bijective mapping between the representations

( f (t), f (t + h), . . . , f (t + kh))↔ ( f (t),∆1,+ f (t), . . . ,∆k,+ f (t))

of the forward differences up to order k. Thus a solution ξ : T→ X to a difference
equation F satisfies

G(t, ξ(t), ξ(t + h), . . . , ξ(t + kh)) = 0

where the mapping G is determined by F, using the relations (3.13). (We shall
not explicitly determine this formula, since is does not play a rôle in our study of
ordinary difference equations.) The property (vii) in the definition of an ordinary
difference equation, along with (3.13), then gives

ξ(t + kh) = F̂(t, ξ(t + h), . . . , ξ(t + (k − 1)h)),

for a mapping F̂ : TF × X × L≤k−1
sym (R;Rm) → Rm. This is the mapping we call the

right-hand side for F.
Corresponding to our switching from using forward differences to use shifts in

time, we make a change in our variables for difference equations. Specifically, we
write the shifted variables as x( j), j ∈ {0, 1, . . . , k}, and note that these are defined in
terms of x(+, j), j ∈ {0, 1, . . . , k}, by

x(+, j) =
1
h j

j∑
l=0

(−1) j−l

(
j
l

)
x(l),

as per Lemma 3.3.8. Thus the variables we use mirror in appearance those for
ordinary differential equations.

Let us summarise the preceding discussion with the following result.
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3.3.10 Proposition (Solutions to ordinary difference equations) Let F be an ordinary
difference equation with time-domain T ⊆ Z(h), state space X ⊆ Rm, and right-hand
side F̂. Then the following statements are equivalent for a map ξ : T′ → X defined on a
sub-time-domain T′ ⊆ T:

(i) ξ is a solution for F:
(ii) ξ satisfies the equation

ξ(t + kh) = F̂(t, ξ(t + h), . . . , ξ(t + (k − 1)h)), t ∈ TF.

Proof This follows by arguments mirroring those in Proposition 3.1.7, making use of
the discussion above leading to the definition of F̂. ■

The reader can work out how to formulate ordinary difference equations and
solutions for the problems of Sections 1.1.17–1.1.19 in Exercises 3.3.1–3.3.3

As with ordinary differential equations, multiple ordinary difference equations
can give rise to the same right-hand side. The following definition resolves this
ambiguity in favour of one distinguished form of the difference equation.

3.3.11 Definition (Normalised ordinary difference equations) An ordinary difference
equation

F : T × X × L≤k
sym(R;Rm)→ Rm

with right-hand side
F̂ : T × X × L≤k−1

sym (R;Rm)→ Rm

is normalised if

F(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1))

for all
(t, x, x(1), . . . , x(k−1)) ∈ T × X × L≤k−1

sym (R;Rm). •

Of course, given an ordinary difference equation F, we can effectively replace it
with the normalised ordinary difference equation F∗ defined by

F∗(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)),

and the solutions of F and F∗ agree.
Next we consider a simplification of the structure of ordinary difference equa-

tions, a simplification that will commonly hold in practice, and which will be
common for us to work with subsequently.
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3.3.12 Definition (Autonomous ordinary difference equation) An ordinary difference
equation

F : T × X × L≤k
sym(R;Rm)→ Rm

is autonomous if there exists F0 : X × L≤k
sym(R;Rm)→ Rm such that

F(t, x, x(1), . . . , x(k)) = F0(x, x(1), . . . , x(k))

for every (t, x, x(1), . . . , x(k)) ∈ T × X × L≤k
sym(R;Rm). An ordinary difference equation

that is not autonomous is nonautonomous. •

We can characterise autonomous ordinary difference equations by their right-
hand sides.

3.3.13 Proposition (Right-hand sides of autonomous ordinary difference equations)
If an ordinary difference equation

F : T × X × L≤k
sym(R;Rm)→ Rm

with right-hand side
F̂ : T × X × L≤k−1

sym (R;Rm)→ Rm

is autonomous, then there exists

F̂0 : X × L≤k−1
sym (R;Rm)→ Rm

such that
F̂(t, x, x(1), . . . , x(k−1)) = F̂0(x, x(1), . . . , x(k−1)).

for every (t, x, x(1), . . . , x(k−1)) ∈ T × X × L≤k−1
sym (R;Rm).

Proof The proof is a simple adaptation of that for Proposition 3.1.11. ■

As with ordinary differential equations, the converse of this result is not gener-
ally true, although this is not interesting, cf. Exercise 3.1.20.

3.3.3.2 Linear ordinary difference equations Now we turn to an important
class of ordinary difference equations, a class that will occupy much of our subse-
quent attention to difference equations below.

3.3.14 Definition (Linear ordinary difference equation) Let

F : T ×Rm
⊕ L≤k

sym(R;Rm)→ Rm

be an ordinary difference equation with state space X = Rm. The ordinary difference
equation F is:
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(i) linear if, for each t ∈ T, the map

Ft : Rm
⊕ L≤k

sym(R;Rm)→ Rm

(x, x(1), . . . , x(k)) 7→ F(t, x, x(1), . . . , x(k))

is affine;
(ii) linear homogeneous if, for each t ∈ T, the map Ft is linear;
(iii) linear inhomogeneous if it is linear but not linear homogeneous. •

Let us characterise linearity in terms of the right-hand side of the ordinary
difference equation.

3.3.15 Proposition (Right-hand sides of linear ordinary difference equations) Let

F : T ×Rm
⊕ L≤k

sym(R;Rm)→ Rm

be an ordinary difference equation with right-hand side

F̂ : T ×Rm
⊕ L≤k−1

sym (R;Rm)→ Rm

The following statements hold:
(i) if F is linear, then, for each t ∈ T, the map

F̂t : Rm
⊕ L≤k−1

sym (R;Rm)→ Rm

(x, x(1), . . . , x(k−1)) 7→ F̂(t, x, x(1), . . . , x(k−1))

is affine;

(ii) if F is linear homogeneous, then, for each t ∈ T, the map F̂t is linear;

(iii) if F is linear inhomogeneous, then, for each t ∈ T, the map F̂t is affine but not linear.
Proof The proof can be carried our like that for Proposition 3.1.13. ■

As with Proposition 3.3.13, the converses to the statements in the preceding
result are generally false, cf. Exercise 3.1.21.

As we indicated after the proof of Proposition 3.1.13, one can be more explicit
about the form of a linear ordinary difference equation. To wit, a difference equation

F : T ×Rm
⊕ L≤k

sym(R;Rm)→ Rm

is linear if and only if there exist maps

A j : T→ L(Rm;Rm), j ∈ {0, 1, . . . , k},

and b : T→ Rm such that

F(t, x, x(1), . . . , x(k)) = Ak(t)(x(k)) + · · · + A1(t)(x(1)) + A0(t)(x) + b(t). (3.14)
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The right-hand side is then

−A−1
k (t) ◦ Ak−1(t)(x(k−1)) − · · · − A−1

k (t) ◦ A0(t)(x) − A−1
k (t)(b(t)).

Solutions to this ordinary difference equation are then functions t 7→ x(t) satisfying

x(t + kh) = −A−1
k (t) ◦ Ak−1(t) (x(t − (k − 1)h)) − · · · − A−1

k (t) ◦ A0(t) (x(t)) − A−1
k (t)(b(t)).

We shall study equations like this in great detail subsequently, particularly in the
case when the linear maps A0,A1, . . . ,Ak are independent of t. Indeed, equations
like this have a particular name.

3.3.16 Definition (Constant coefficient linear ordinary difference equation) A linear
ordinary difference equation given by (3.14) is a constant coefficient linear ordinary
difference equation if the functions A0,A1, . . . ,Ak are independent of t. •

3.3.3.3 Linear ordinary difference equations in vector spaces In Sec-
tion 3.1.3.3 we considered linear ordinary differential equations whose state space
is an abstract finite-dimensional R-vector space. We wish to carry out the same
sort of abstraction for difference equations, and for the same reasons.

The definitions we need are the following.

3.3.17 Definition (System of linear ordinary difference equations) Let F ∈ {R,C}, let
T ⊆ Z(h) be a discrete time-domain, and let V be an n-dimensional F-vector space.

(i) A system of linear ordinary difference equations in V is a map F : T×V⊕V→ V
of the form

F(t, x, x(1)) = A1(t)(x(1)) + A0(t)(x) − b0(t)
for maps A0,A1 : T → L(V; V) and b0 : T → V, where A1(t) is invertible for
every t ∈ T.

(ii) The right-hand side of a system of linear ordinary difference equations F is
the map F̂ : T × V→ V is the map defined by

F̂(t, x) = −A1(t)−1
◦ A0(t)(x) + A1(t)−1(b0(t)).

We shall typically denote A(t) = −A1(t)−1
◦ A0(t) and b(t) = A1(t)−1(b0(t)).

(iii) The system of linear ordinary difference equations F
(a) is homogeneous if b(t) = 0 for every t ∈ T,
(b) is inhomogeneous if b(t) , 0 for some t ∈ T, and
(c) has constant coefficients if A is a constant map.

(iv) A solution for a system of linear ordinary difference equations F is a map
ξ ∈ VT′ defined on a sub-time-domain T′ ⊆ T and satisfying

ξ(t + h) = A(t)(ξ(t)) + b(t), t ∈ T′ ∩ TF. •

Note that, because we are considering difference equations of order 1, we always
have

TF = {t ∈ T | t + h ∈ T}.
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3.3.4 Partial difference equations

We consider in this section the analogue for difference equations of the sorts
of differential equations considered in Section 3.1.4. To do so, we introduce some
useful general notation for the various variables and for the total differences. Inde-
pendent variables will be denoted by x and states or unknowns by u. Then the list
of the coordinates representing the total differences up to order k of the dependent
variables with respect to the independent variables will be denoted by

(u,u(⊗,1), . . . ,u(⊗,k)) ∈ U × L≤k
⊗sym(Rn;Rm).

3.3.4.1 General partial difference equations We begin with the definition.

3.3.18 Definition (Partial difference equation) A partial difference equation is a differ-
ence equation

F : D ×U × L≤k
⊗sym(Rn;Rm)→ Rl

with the following properties:
(i) n > 1;
(ii) there exists (x,u,u(⊗,1), . . . ,u(⊗,k−1)) ∈ D×U×L≤k−1

⊗sym(Rn;Rm) such that the func-
tion

u(k)
7→ F(x,u,u(⊗,1), . . . ,u(⊗,k−1),u(⊗,k))

is not constant. •

As with partial differential equations, the second condition is that F should
not be everywhere independent of the highest-order derivative. This is a condition
that, while technically required for a sensible notion of order for a partial difference
equation, is always met in practice.

As with general partial differential equations, there is not a lot one can say
about general partial difference equations. Thus we turn to a consideration of such
difference equations in the presence of additional structure.

3.3.4.2 Linear and quasilinear partial difference equations Let us provide
the appropriate definitions of linearity for partial difference equations.

3.3.19 Definition (Linear partial difference equation) Let

F : D ×Rm
⊕ L≤k

⊗sym(Rn;Rm)→ Rl

be a partial difference equation with state space U = Rm. The partial difference
equation F is:

(i) linear if, for each x ∈ D, the map

Fx : Rm
⊕ L≤k

⊗sym(Rn;Rm)→ Rl

(u,u(⊗,1), . . . ,u(⊗,k)) 7→ F(x,u,u(⊗,1), . . . ,u(⊗,k))

is affine;



2022/03/07 3.3 Classification of difference equations 195

(ii) linear homogeneous if, for each x ∈ D, the map Fx is linear;
(iii) linear inhomogeneous if it is linear but not linear homogeneous. •

3.3.20 Definition (Quasilinear partial difference equation) A partial difference equation

F : D ×U × L≤k
⊗sym(Rn;Rm)→ Rl

is quasilinear if, for each

(x,u,u(⊗,1), . . . ,u(⊗,k−1)) ∈ D ×U × L≤k−1
⊗sym(Rn;Rm),

the map
u(⊗,k)

7→ F(x,u,u(⊗,1), . . . ,u(⊗,k))
is affine. •

We can immediately deduce from the definitions the following forms for the
various flavours of linear and quasilinear partial difference equations.

3.3.21 Proposition (Linear partial difference equations) Let

F : D ×Rm
⊕ L≤k

⊗sym(Rn;Rm)→ Rl

be a partial difference equation with state space U = Rm. Then the following statements
hold:

(i) F is linear if and only if there exist maps

Aj : D→ L(Lj
⊗sym(Rn;Rm);Rl), j ∈ {0, 1, . . . ,k},

and b : D→ Rl, with Ak not identically zero, such that

F(x,u,u(⊗,1), . . . ,u(⊗,k)) = Ak(x)(u(⊗,k))+· · ·+A1(x)(u(⊗,1))+A0(x)(u)+b(x); (3.15)

(ii) F is linear homogeneous if and only if it has the form from part (i) with b(x) = 0 for
every x ∈ D;

(iii) F is linear inhomogeneous if and only if it has the form from part (i) with b(x) , 0
for some x ∈ D.

3.3.22 Proposition (Quasilinear partial difference equations) A partial difference equa-
tion

F : D ×U × L≤k
⊗sym(Rn;Rm)→ Rl

is quasilinear if and only if there exist maps

A1 : D ×U × L≤k−1
⊗sym(Rn;Rm)→ L(Lk

⊗sym(Rn;Rm);Rl),

A0 : D ×U × L≤k−1
⊗sym(Rn;Rm)→ Rl,

with A1 not identically zero, such that

F(x,u,u(⊗,1), . . . ,u(⊗,k)) = A1(x,u,u(⊗,1), . . . ,u(⊗,k−1))(u(⊗,k))+A0(x,u,u(⊗,1), . . . ,u(⊗,k−1)).

The notion of having constant coefficients that we encountered for ordinary
difference equations also makes sense for partial difference equations.
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3.3.23 Definition (Constant coefficient linear partial difference equation) A linear par-
tial difference equation given by (3.15) is a constant coefficient linear partial dif-
ference equation if the functions A0,A1, . . . ,Ak are constant. •

3.3.4.3 Elliptic, hyperbolic, and parabolic second-order linear partial differ-
ence equations Many of the partial difference equations that arise from physics
are linear second-order equations with a single unknown, and there are various
classifications that can be applied to such equations that bear on the attributes of
the solutions to these equations.

Let us explicitly write the form of a class of such equations. Unlike with partial
differential equations, for difference equations one must keep track of forward and
backward partial differences. This makes it rather tedious to consider all possible
second-order linear partial difference equations. What we will do, therefore, is
simply consider the classical examples of such equations.

3.3.24 Examples (Elliptic, hyperbolic, and parabolic partial difference equations)
We shall not be too fussy here with the free domain DF, but focus instead on the
equation F.
1. The standard example of an elliptic partial difference equation is the potential

equation, or Laplace’s equation. The domain D ⊆ Zn(h) is normally thought
of as being “space” in this case, so we denote coordinates for D by (x1, . . . , xn).
Frequently, h = (h, . . . , h), i.e., the discretisation is the same in all coordinate
directions. We consider the second partial differences

∆+,−j,k u(x) =
1
h2

(
u(x − he j) − 2u(x) + u(x + hek)

)
, j, k ∈ {1, . . . ,n}.

Then the difference equation is given by

F(x,u,u(⊗,1),u(⊗,2)) = u+,−1,1 + · · · + u+,−n,n .

Thus u : D′ → R is a solution if it satisfies
n∑

j=1

(u(x − he j) − 2u(x) + u(x + he j)) = 0.

2. The standard example of an hyperbolic partial difference equation is the wave
equation. In this case, the domain D is normally thought of as encoding time
and space, and so we denote coordinates by (t, x1, . . . , xn). Here we use backward
differences in time, and the same spatial differences as in the potential equation
above. The discretisation is assumed to be h1 in the time coordinate and h2 in
the spatial coordinate. The difference equation is then given by

F((t, x),u,u(⊗,1),u(⊗,2)) = −u−,−t,t + u+,−1,1 + · · · + u+,−n,n .
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Solutions u thus satisfy the equation

u(t− 2h1, x)− 2u(t− h1, x)+ u(t, x) =
h2

1

h2
2

n∑
j=1

(u(t, x− h2e j)− 2u(t, x)+ u(t, x+ h2e j)).

3. The usual example of a parabolic difference equation is the heat equation, which
we saw modelled the temperature distribution in a rod in Section 1.1.20. In this
case, like the wave equation, the domain D is coordinatised by time and space:
(t, x1, . . . , xn). The differential equation is

F((t, x),u,u(⊗,1),u(⊗,2)) = −u−t + u+,−1,1 + · · · + u+,−n,n .

Solutions u : D′ → R satisfy

u(t, x) − u(t − h1, x) =
h1

h2
2

n∑
j=1

(u(t, x − h2e j) − 2u(t, x) + u(t, x + h2e j)). •

3.3.5 How to think about difference equations

We shall consider systematic ways of solving some ordinary difference equa-
tions, but before we do so, it is interesting to think about some conceptual aspects
of difference equations. Many of the problems attached to difference equations
resemble those for differential equations discussed in Section 3.1.5.

Let us enumerate some ways of thinking about difference equations.
1. Character of difference equations: Note that differential equations in-

volve. . . well. . . derivatives. In contrast, difference equations are purely al-
gebraic equations. This sometimes makes it more straightforward to obtain
numerical solutions using the computer, since the need to approximate deriva-
tives is obviated. However, matters like existence and uniqueness of solutions
are still relevant for difference equations, especially partial difference equations
(we shall consider the matter of existence and uniqueness of solutions for ordi-
nary difference equations in Section 3.4). It is also generally no easier to obtain
“closed-form” solutions, even when these can be obtained.

2. Analysis: The issues of examining steady-state behaviour, approximating solu-
tions, and studying equilibria and their stability—discussed when we discussed
how to think about differential equations—arise also for ordinary difference
equations.

3. Numerical solution: For ordinary difference equations, numerical solution is
natural, and indeed the numerical solution of ordinary differential equations
produces an ordinary difference equation, i.e., the ordinary differential equation
is replaced with an ordinary difference equation with a small discretisation
interval. For partial difference equations, the matter of numerical solution is
not an entirely trivial one, and is the subject of much study.
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For ordinary differential equations, we saw in Example 3.1.25 that one can
represent solutions as curves in the state space. For ordinary difference equations,
the same idea is valid, except curves are not continuous but discrete. Let us
illustrate this with an example.

3.3.25 Example (Ordinary difference equations and discrete curves)

Exercises

3.3.1 For the completely unrealistic rabbit population model of Section 1.1.17, do
the following:
(a) identify the time-domain, the free time-domain, and the state space for

the ordinary difference equation;
(b) write F using the ordinary difference equation notation for derivatives;
(c) show that F is an ordinary difference equation;
(d) write down the right-hand side;
(e) write the condition for a solution using Proposition 3.3.10.

3.3.2 For the simple bank balance model of Section 1.1.18, do the following:
(a) identify the time-domain, the free time-domain, and the state space for

the ordinary difference equation;
(b) write F using the ordinary difference equation notation for derivatives;
(c) show that F is an ordinary difference equation;
(d) write down the right-hand side;
(e) write the condition for a solution using Proposition 3.3.10.

3.3.3 For the simple national income model of Section 1.1.18, do the following:
(a) identify the time-domain, the free time-domain, and the state space for

the ordinary difference equation;
(b) write F using the ordinary difference equation notation for derivatives;
(c) show that F is an ordinary difference equation;
(d) write down the right-hand side;
(e) write the condition for a solution using Proposition 3.3.10.

3.3.4 Consider signals defined on a discrete time-domain contained inZ(h). Con-
sider the forward difference operator in a single independent variable

∆1,+ f (t) =
1
h

( f (t + h) − f (t)).

Prove the following statements:
(a) ∆1,+(α) = 0, if α is a constant function;
(b) ∆1,+(alt)( jh) = 2

halt(t + h), where alt(t) = (−1)t/h;

(c) ∆1,+(Pa)(t) = ah
−1
h Pa(t), where Pa(t) = at/h;

(d) ∆1,+(pow j)(t) =
∑ j−1

l=0 hl− jt j, where pow j(t) = t j;
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(e) ∆1,+( f g)(t) = (∆1,+ f )(t)g(t) + f (t + h)(∆1,+g)(t).
3.3.5 Prove the higher-order Leibniz Rule for iterated forward differences:

∆k,+( f g)(t) =
k∑

j=0

(
k
j

)
∆k− j,+ f (t + jh)∆ j,+g(t).

3.3.6 State and prove the ”Fundamental Theorem of Calculus” for forward finite
differences in a single variable.

3.3.7 Let
F : T × X × L≤k

sym(R;Rm)→ Rm

be an ordinary difference equation with right-hand side F̂. Suppose that
T ⊆ Z(h). As usual, let t be the independent variable and x the state,
with x(+, j)

∈ L j
sym(R;Rm) being the coordinate for the jth derivative. As per

Remark 3.1.5, we can think of x(+, j) as being an element of Rm.
We will associate to F a first-order ordinary difference equation F1 with

time domain T′ and state space

X1 = X ×Rm
× · · · ×Rm︸           ︷︷           ︸
k−1 times

.

To do so, answer the following questions.
(a) Denote coordinates for the state space X1 by y0, y1, · · · , yk−1, and relate

these to (x, x(+,1), . . . , x(+,k−1)) by

y0 = x, y j = x( j), j ∈ {1, . . . , k − 1}.

If t 7→ x(t) is a solution for F, write down the corresponding difference
equations that must be satisfied by (y0, y1, . . . , yk−1).
Hint: For each j ∈ {0, 1, . . . ,k − 1}, write down yj(t) in terms of x(t − lh),
l ∈ {0, 1, . . . ,k − 1}, and express the result in terms of the coordinates for X1.

(b) What is the right-hand side F̂1 corresponding to the equations you de-
rived in part (a)?

(c) Write down a first-order ordinary difference equation F1 with time do-
main T′ and state space X1 whose right-hand side is the function F̂1 you
determined in part (b). Part of the problem is to defineT′ appropriately.

(d) State precisely the relationship between solutions for F and solutions for
F1.

(e) Show that F1 can be taken to be linear if F is linear, and show that F1 is
homogeneous if and only if F is, in this case.

In the next exercise we shall show how autonomous ordinary differential equa-
tions are special in terms of their solutions. In order for the exercise to make sense,
we require the existence and uniqueness theorem we state below, Theorem 3.4.2.
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3.3.5 Let
F : T × X × L≤k

sym(R;Rm)→ Rm

be an autonomous ordinary difference equation satisfying the conditions of
Theorem 3.4.2, let

(x0, x
(1)
0 , . . . , x

(k−1)
0 ) ∈ X × L≤k−1

sym (R;Rm),

and let t1, t2 ∈ T. Let ξ1 : T→ X and ξ2 : T→ X be solutions for F satisfying

ξ1(t1) = ξ2(t2) = x0, ξ1(t1 + jh) = ξ2(t2 + jh) = x( j)
0 , j ∈ {1, . . . , k − 1}.

Answer the following questions.
(a) Show that ξ2(t) = ξ1(t + t1 − t2) for all t ∈ T for which ξ(t) is defined and

for which t + t1 − t2 ∈ T.
(b) Assuming that T = R and that all solutions are defined for all time for

simplicity, express your conclusion from part (a) as a condition on the
flow ΦF.

3.3.6 Consider the ordinary difference equations of Sections 1.1.17–1.1.19.
(a) Which of the equations is autonomous?
(b) Which of the equations is linear?
(c) Which of the equations is linear and homogeneous?
(d) Which of the equations is linear and inhomogeneous?
(e) Which of the equations is a linear constant coefficient equation?

3.3.7 (Mini-project) We consider a nonlinear generalisation of a model of the econ-
omy known as the Leontief input-output model. In this model, examined
by Chander [1983], the economy is divided into n individual sectors and in
each sector of the economy a single good is produced that is either traded,
consumed, or reinvested. For j ∈ {1, . . . ,n}, by x j ∈ R≥0 we denote the quan-
tity of the jth good. For j, k ∈ {1, . . . , k}, we denote by a jk(xk) the amount
of the jth good used to quantity xk of the kth good. For j ∈ {1, . . . ,n}, we
denote by d j the final demand for the jth good. If the economy is in equilib-
rium, i.e., exactly as much of each good is produced as needed, then it holds
that

x j −

n∑
k=1

a jk(xk) = d j, j ∈ {1, . . . ,n}.

We make two assumptions.
1. We assume that, for j, k ∈ {1, . . . ,n}, a jk : R≥0 → R is of class C1, a jk(0) = 0,

a′jk(s) ≥ 0 for s ∈ R≥0. This roughly means that one requires more of good
j if one produces more of good k.
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2. We assume that there exists p1, . . . , pn ∈ R≥0 and v1, . . . , vn ∈ R>0 such that

pk ≥

n∑
k=1

p ja′jk(s) + v j, s ∈ R≥0, k ∈ {1, . . . ,n}.

This assumption has the following interpretation. The quantity p j is the
price of good j (which can be set) so that the sum in the preceding expres-
sion can be thought of as the rate of increase in production cost for good
k when the prices are set to p1, . . . , pn. The assumption, then, is that prices
can be set in such a way that positive value (the quantities v1, . . . , vn) is
added when production is increased.

If we suppose that at the end of the kth cycle, we are at a nonequilibrium
production vector x(k), then we adjust the production at the beginning of the
(k + 1)st cycle by

x(k + 1) = a(x(k)) + d.

We wish to assemble all of this into an ordinary difference equation.
(a) What is the state space X for the system?
(b) What is the time-domain T for the system?
(c) What are the dynamics f?
Do some explorations as follows.
(d) Do some research to describe what the model is used for and how the

ordinary differential equation model should behave to be useful.
(e) With the stated assumptions, prove the following theorem.

Theorem For each d ∈ Rn
≥0, there exists a unique x∗ ∈ Rn

≥0 such that
(i) x∗ = a(x∗) + d and
(ii) for any x(0) ∈ Rn

≥0, it holds that limk→∞ x(k) = x∗.

Hint: Use the Contraction Mapping Theorem, Theorem III-1.1.23.
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Section 3.4

Existence and uniqueness of solutions for difference equations

We consider in this section the matter of existence and uniqueness of solutions
for difference equations, mirroring what we did in Section 3.2 for differential
equations. As we shall see, the theory for difference equations does not track
exactly that for differential equations. None of the complications of Section 3.2.1.1
arise for difference equations. On the other hand, sets of solutions for difference
equations possess a different sort of structure than their counterparts for differential
equations.

Do I need to read this section? As with Section 3.2 for differential equations,
the theoretical results of this section are not required knowledge for much of what
we shall do subsequently. However, the results for ordinary difference equations
are far simpler than those for ordinary differential equations. Moreover, the flow
notation we introduce in Definition 3.4.3 will be useful at many points in the text. •

3.4.1 Results for ordinary difference equations

It is possible to give a pretty complete characterisation of existence and unique-
ness of solutions for ordinary difference equations. This is because the results are,
in summary, solutions exist and are unique. To set this up properly, we first need
a precise formulation of the problem whose solutions exist and are unique. We
restrict ourselves to ordinary difference equations of order one, noting that this can
be done without loss of generality by Exercises 3.3.7 and 3.4.2.

3.4.1 Definition (Initial value problem for ordinary difference equations) Let F be an
ordinary difference equation with right-hand side

F̂ : T × X→ Rm

with time-domainT ⊆ Z(h). Let t0 ∈ TF and x0 ∈ X. A map ξ : T′ → X is a solution
for F with initial value x0 at t0 if it satisfies the following conditions:

(i) T′ ⊆ T is a sub-time-domain;
(ii) ξ(t + h) = F̂(t, ξ(t)) for each t ∈ TF ∩ T′;
(iii) ξ(t0) = x0.

In this case, we say that ξ is a solution to the initial value problem

ξ(t + h) = F̂(t, ξ(t)), ξ(t0) = x0. •

3.4.1.1 Principal existence and uniqueness theorems for ordinary difference
equations It is now possible to state the analogue of Theorem 3.2.8 for ordinary
difference equations.
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3.4.2 Theorem (Existence and uniqueness of solutions for ordinary difference
equations) Let X ⊆ Rm be open, let T ⊆ R be an interval, and let F be a first-order
ordinary difference equation with right-hand side

F̂ : T × X→ Rm.

Then, for each (t0, x0) ∈ TF × X, there exists a sub-time-domain T′ ⊆ T with t0 ∈ T′,
and a solution ξ : T′ → Rm for F such that ξ(t0) = x0. Moreover, if T′′ is another
such sub-time-domain and η : T′′ → Rm is another such solution, then η(t) = ξ(t) for all
t ∈ T′′ ∩ T′. Finally, if F̂ takes values in X, then the preceding conclusions hold for any
sub-time-domain T′ ⊆ T≥t0 .

Proof Define ξ : T≥t0 → R
m recursively by

ξ(t0) = x0, ξ(t0 + kh) = F̂(t0 + (k − 1)h, ξ(t0 + (k − 1)h)).

Clearly this construction is well-defined for t ∈ T≥t0 , as long as ξ(t + h) ∈ X, and this
gives the existence assertion. Moreover, by its very construction, ξ is the only solution
to the initial value problem. Finally, if F̂ takes values in X, this construction can be
made for every t ∈ T≥t0 . ■

Let us contrast this to the result of Theorem 3.2.8 for ordinary differential
equations.
1. Unlike Theorem 3.2.8, there are no hypotheses required on the right-hand side

F̂. That is, we do not require any regularity of F̂, either in t or in x. We shall
see in Section 3.4.1.2 that there are additional conditions one can place on F̂
that will give additional properties of solutions or, more properly, the set of
solutions.

2. The sub-time-domain T′ on which a solution exists is only asserted to consist
of times larger than t0. This is because, in general, solutions may not exist for
times smaller than t0. We shall discuss matters like this in Section 3.4.1.2.

3. Unlike with ordinary differential equations where solutions generally exist only
for small times, solutions for ordinary difference equations exist for all times
larger than t0, as long as solutions remain in X. Ordinary difference equations
for which F̂ takes values in X will be called complete.

3.4.1.2 Flows for ordinary difference equations In Section 3.2.1.3 we went
to some significant lengths to define the flow for an ordinary differential equation.
For ordinary difference equations, we have similar characterisations, but there are
some differences that we will mention as we go along.

First of all, we can directly define the flow by virtue of the fact that there are no
hypotheses required for F.



204 3 Differential and difference equations: General theory 2022/03/07

3.4.3 Definition (Flow of an ordinary difference equation) Let F be an ordinary dif-
ference equation with right-hand side

F̂ : T × X→ Rm.

(i) The interval of existence for the initial value problem

ξ(t + h) = F̂(t, ξ(t)), ξ(t0) = x0,

is

JF(t0, x0) = ∪{T′ ⊆ T| there is a solution
for the initial value problem defined on T′}.

(ii) The domain of solutions for F is

DF = {(t, t0, x0) ∈ T × T × X | t ∈ JF(t0, x0)}.

(iii) We use the notation

DF(t, t0) = {x ∈ X | (t, t0, x) ∈ DF}.

(iv) The flow of F is the map ΦF : DF → Rm defined by asking that ΦF(t, t0, x0) is
the solution, evaluated at t, of the initial value problem

ξ(τ + h) = F̂(τ, ξ(τ)), ξ(t0) = x0. •

As we have already discussed, for general ordinary difference equations, solu-
tions are not defined for times smaller than the initial time. The following simple
example illustrates this.

3.4.4 Example (Ordinary difference equation with restricted domain of definition)
Let X ⊆ Rm be an open set, letT ⊆ Z(h) be a time-domain, and let F be the first-order
ordinary difference equation with right-hand side

F̂(t, x) = x̄, (t, x) ∈ T × X,

for some x̄ ∈ X. Note that, for any initial value problem

ξ(t + h) = F̂(t, ξ(t)), ξ(t0) = x0,

the solution satisfies ξ(t) = x̄ for t ∈ T>t0 . Therefore, if x0 , x̄, it is not possible for
the solution to the initial value problem to be defined for t < t0. Indeed, suppose
such a solution is defined at t0 − h. Then we must have

ξ(t0) = F̂(t0 − h, ξ(t0 − h)) = x0 , x̄. •

The example motivates the introduction of the following special and important
class of ordinary difference equations.
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3.4.5 Definition (Invertible ordinary difference equation) An ordinary difference
equation F with right-hand side

F̂ : T × X→ Rm

is invertible if it is complete and if, for every t ∈ T, the mapping x 7→ F̂(t, x) is a
bijection. •

The importance of invertible ordinary difference equations is given to us by the
following result.

3.4.6 Theorem (Existence and uniqueness of solutions for invertible ordinary dif-
ference equations) Let X ⊆ Rm be open, let T ⊆ R be an interval, and let F be an
invertible first-order ordinary difference equation with right-hand side

F̂ : T × X→ X.

Then, for each (t0, x0) ∈ TF × X, there exists a unique solution ξ : T → X for F such that
ξ(t0) = x0. In particular, DF = T × T × X.

Proof Let
F̂−1 : T × X→ X

be defined by

F̂−1(t, F̂(t, x)) = F̂(t, F̂−1(t, x)) = x, (t, x) ∈ T × X.

Define ξ : T≥t0 → X recursively by

ξ(t0) = x0, ξ(t0 + kh) = F̂(t0 + kh, ξ(t0 + (k − 1)h)),

for t ≥ t0 and by

ξ(t0) = x0, ξ(t0 − kh) = F̂−1(t0 − kh, ξ(t0 − (k − 1)h)),

for t ≤ t0. Clearly this construction is well-defined on T, and gives the existence
assertion. Moreover, by its very construction, ξ is the only solution to the initial value
problem. ■

Let us give some properties of flows that follow directly from the definition.

3.4.7 Proposition (Elementary properties of flow for ordinary difference equations)
Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rm.

Then the following statements hold:
(i) for each (t0, x0) ∈ T × X, (t0, t0, x0) ∈ DF and ΦF(t0, t0, x0) = x0;
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(ii) if, for t1, t2 ∈ T with t1 ≤ t2, (t2, t1, x) ∈ DF, then, for t3 ∈ T with t2 ≤ t3,
(t3, t2,ΦF(t2, t1, x)) ∈ DF if and only if (t3, t1, x) ∈ DF and, if this holds, then

ΦF(t3, t1, x) = ΦF(t3, t2,Φ
F(t2, t1, x)).

(iii) if F is invertible and if (t2, t1, x) ∈ DF, then (t1, t2,ΦF(t2, t1, x)) ∈ DF and
ΦF(t1, t2,ΦF(t2, t1, x)) = x.

Proof The proof mirrors that of Proposition 3.2.12, with suitable notational modifi-
cations. ■

An important facet of flows for ordinary differential equations is their reg-
ularity, and great effort was devoted to proving this regularity in the proof of
Theorem 3.2.13. For ordinary difference equations, we have the following simple
result concerning the regularity of flows.

3.4.8 Theorem (Properties of flows of ordinary difference equations) Let F be an
ordinary differential equation with right-hand side

F̂ : T × X→ Rm.

If F̂ is continuous, then the following statements hold:
(i) for (t0, x0) ∈ T × X, JF(t0, x0) is a sub-time-domain of T;
(ii) for (t0, x0) ∈ T × X, the curve

γ(t0,x0) : JF(t0, x0)→ Rm

t 7→ ΦF(t, t0, x0)

is well-defined and continuous;
(iii) for t, t0 ∈ T with t ≥ t0, DΣ(t, t0) is open;
(iv) for t, t0 ∈ T with t ≥ t0 for which DΣ(t, t0) , ∅, ΦΣt,t0

is continuous;
(v) for t0 ∈ T, DΣ(t0) is relatively open in T × X ×U ;
(vi) for t0 ∈ T, the map

ΦΣ(t0) : DΣ(t0)→ X

(t, x) 7→ ΦΣ(t, t0, x)

is well-defined and continuous;
(vii) DΣ is relatively open in T × T × X ×U ;
(viii) the map

ΦΣ : DΣ → X

is continuous;
(ix) for (t0, x0) ∈ T × X ×U and for ϵ ∈ R>0, there exists r, ρ ∈ R>0 such that

sup JΣ(t0, x) > sup JΣ(t0, x0) − ϵ, inf JΣ(t0, x) < inf JΣ(t0, x0) + ϵ,

for all x ∈ B(r, x0).
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Proof Parts (i) and (ii) follow since T is discrete, and so all functions from any subset
of T are continuous ().continuous maps for

discrete topology (iii) Let x ∈ DF(t, t0). Thus
ΦF(t, t0, x) ∈ X.

Since
ΦF(t, t0, x) = ΦF

t,t−h
◦ · · · ◦ΦF

t0+h,t0
(x)

and since
ΦF
τ+h,τ(y) = F̂(τ, y), τ ∈ TF, y ∈ X,

and we thus conclude that
x 7→ ΦF(t, t0, x)

is continuous. Combining this with openness of X, we conclude that there is a neigh-
bourhood of x that maps to X, giving the desired conclusion.

(iv) This we proved in the preceding part of the proof.
(v) Let (t, x) ∈ DF(t0). Thus

ΦF(t, t0, x) ∈ X.

For τ ∈ T, define
Φτ : X→ X

y 7→ F̂(τ, x)

so that
ΦF(τ + h, τ, x) = Φτ(x).

Thus

ΦF(t0 + h, t0, x) = Φt0(x),

ΦF(t0 + 2h, t0, x) = Φt0+h ◦Φt0(x),
...

ΦF(t, t0, x) = Φt−h ◦Φt−2h ◦ · · · ◦Φt0+h ◦Φt0(x).

This shows that
x 7→ ΦF(t, t0, x)

is continuous by continuity of F̂. Now, openness of X gives a neighbourhood N of x
to X. This gives the neighbourhood {t} ×N in DΣ(t0) that maps to X, keeping in mind
that the topology on T is the discrete topology.

(vi) This was proved in the preceding part of the proof.
(vii) The proof here can be carried out as was the proof of part (v).
(viii) This follows from part (vii) in the same manner as part (vi) follows from

part (v).
(ix) In this discrete-time case, the assertion will follow if we can show that, for

t, t0 ∈ Twith t ≥ t0 and for x ∈ DΣ(t, t0), there is a neighbourhood N of x in X such that,
if x′ ∈ N, then x′ ∈ DΣ(t, t0). This, however, follows from part (v). ■
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For ordinary differential equations in Theorem 3.2.13 (and in Section 5.1.1.4
below), we devote much effort to determining the manner of dependence on initial
conditions. For ordinary difference equations, these questions are trivial since, by
the very definition of the flow of an ordinary difference equation, the regularity of

DF(t, t0) ∋ x 7→ ΦF(t, t0, x) ∈ Rm

is exactly determined by regularity of the right-hand side

X ∋ x 7→ F̂(t, x) ∈ Rm,

provided the sort of regularity is preserved by composition, e.g., continuity, differ-
entiability, being an homeomorphism, etc.

3.4.2 (Lack of) results for partial difference equations

Much of the discussion for partial differential equations from Section 3.2.2
carries over to partial difference equations. What one does not have for partial dif-
ference equations is the subtleties concerning regularity that often arise in the study
of partial differential equations. Nonetheless, matters of existence and uniqueness
in any general setting for partial difference equations are not possible. We shall
not, therefore, engage in any deep discussion of these matters here.

Exercises

3.4.1
3.4.2 Let

F : T × X × L≤k
sym(R;Rm)→ Rm

be an ordinary difference equation with right-hand side F̂. Suppose that
T ⊆ Z(h). As per Exercise 3.3.7, let F1 be the associated first-order ordinary
difference equation with state space

X1 = X ×Rm
× · · · ×Rm︸           ︷︷           ︸
k−1 times

.

Answer the following questions.
(a) Formulate the notion of an initial value problem for the kth-order ordi-

nary difference equation F.
(b) State precisely the relationship between the initial conditions for the initial

value problem from part (a) and the initial value problem for F1 from
Definition 3.4.1.

3.4.3 Consider the partial difference equation

F : Z3
×R ×R⊗,1 → R3
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given by

F((x1, x2, x3),u, (u+1 ,u
+
2 ,u

+
3 ,u

−

1 ,u
−

2 ,u
−

3 )) = (u−1 − f1(x),u−2 − f2(x),u−3 − f3(x)).

Show that if F has a solution u, then

∆−j fk(x) = ∆−k f j(x), j, k ∈ {1, 2, 3}, x ∈ Z3.
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Chapter 4

Scalar ordinary differential and ordinary
difference equations

In this chapter, we begin our studies in earnest, doing what one does with differ-
ential and difference equations: where possible, solve them and/or understand the
nature of their solutions or sets of solutions. We shall study ordinary differential
and difference equations with a single state and arbitrary order.

For differential equations, in the notation of Section 3.1.3, we consider an
ordinary differential equation with time domain T ⊆ R, state space U ⊆ R, and
with right-hand side

F̂ : T ×U × L≤k−1
sym (R;R)→ R

that gives an equation

dkξ

dtk
(t) = F̂

(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ

dtk−1
(t)

)
that must be satisfied by solutions t 7→ ξ(t).

For difference equations, in the notation of Section 3.3.3, we consider an ordi-
nary difference equation with time domain T ⊆ Z(h), state space U ⊆ R, and with
right-hand side

F̂ : T ×U × L≤k−1
sym (R;R)→ R

that gives an equation

ξ(t) = F̂ (t, ξ(t − h), . . . , ξ(t − kh))

that must be satisfied by solutions t 7→ ξ(t).
There is not much one can say in any generality about such equations, except to

say that we can use Theorems 3.2.8 and 3.4.2 to assert the existence and unique-
ness of solutions, at least for small times (making use of Exercises 3.1.23 and 3.3.7).
Thus we focus in this chapter on special equations for which one can say something
useful. In Section 4.1 we consider very special classes of first-order differential and
difference equations that can, in some sense, be solved. In Sections 4.2 and 4.3
we consider linear differential equations, first homogeneous equations then in-
homogeneous equations. The results in these sections are echoed for difference
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equations in Sections 4.6 and 4.7. In Section 4.4 we consider an important aspect
of the subject of differential equations, where distributions play a fundamental
rôle.

Do I need to read this chapter? Many of the results and techniques in this chap-
ter are prerequisite for our treatments of system theory, particularly in Sec-
tions 6.6, 6.8, 6.7, and 6.9. •
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Section 4.1

General first-order scalar ordinary differential and difference
equations

In this section we study the simplest sort of differential and difference equations,
those of first-order with a scalar state. Even for these very simple systems, there are
limits on what one can say. However, there are some interesting and useful special
classes of these equations for which some techniques exist to obtain formulae for
solutions.

Do I need to read this section? The techniques in this section are useful, when
they can be applied. They should, therefore, be regarded as an essential part of the
toolkit for any mathematician or scientist. •

4.1.1 First-order scalar ordinary differential equations

In this short section we consider a very special class of first-order scalar differen-
tial equation, one that can sometimes be solved explicitly. The following definition
encodes what we are after.

4.1.1 Definition (Separable scalar differential equation) A differential equation F : T×
U × L1

sym(R;R)→ R is separable if it has the form

F(t, x, x(1)) = f1(x)x(1)
− f0(t). •

We note that a separable differential equation is an ordinary differential equation
if and only if f1(x) is nonzero for every x ∈ U, because in this case we can solve for
x(1) for a given (t, x) ∈ T ×U by

x(1) =
f0(t)
f1(x)

= F̂(t, x).

Note that t 7→ x(t) is a solution to a separable differential equation if

f1(x(t))
dx
dt

(t) = f0(t), x(t0) = x0

for some (t0, x0) ∈ T × U. There is a naı̈ve way to “solve” such an equation. First
do some (a priori meaningless) manipulations:

f1(x)
dx
dt
= f0(t) =⇒

∫ x(t)

x0

f1(ξ) dξ =
∫ t

t0

f0(τ) dτ.

If F1 and F0 are antiderivatives of f1 and f0, respectively, we have

F1(x(t)) − F1(x0) = F0(t) − F0(t0).
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This is an equation that you pray you can solve for x(t).
This naı̈ve procedure does, in fact, work, as the following result indicates.

4.1.2 Proposition (Solutions for separable differential equations) Let T ⊆ R be a
time-domain, let U ⊆ R be an open set, let f0 : T → R and f1 : U → R be continuous
functions for which f1(x) , 0 for every x ∈ U. Let F0 and F1 be antiderivatives of f0 and
f1, respectively. Let (t0, x0) ∈ T ×U. Then the following statements hold:

(i) if T′ ⊆ T is a subinterval containing t0 and if a class C1-function ξ : T′ → U
satisfies

F1(ξ(t)) − F1(x0) = F0(t) − F0(t0), t ∈ T′,

then ξ is a solution to the separable ordinary differential equation

F(t, x, x(1)) = f1(x)x(1)
− f0(t)

satisfying the initial condition ξ(t0) = x0;
(ii) if there exists a subinterval T′ ⊆ T and a solution ξ : T′ → U to F satisfying

ξ(t0) = x0, then

F1(ξ(t)) − F1(x0) = F0(t) − F0(t0), t ∈ T′.

Proof (i) Let us define
G : T ×U→ R

by
G(t, x) = F1(x) − F1(x0) − F0(t) + F0(t0),

noting that G(t, ξ(t)) = 0. Note that G is of class C1 and that

∂G
∂x

(t, ξ(t)) , 0, t ∈ T′

Thus, by the Implicit Function Theorem, there exists a relatively open interval T′t ⊆ T
′
ref

containing t and a unique map ξt : T → U of class C1 such that ξt(t) = ξ(t) and that
G(τ, ξt(τ)) = 0 for all τ ∈ T′t. Therefore, by the Chain Rule,

0 =
d

dτ
G(τ, ξt(τ)) =

d
dτ

(F1(ξt(τ)) − F1(x0) − F0(τ) + F0(t0)) = f1(ξt(τ))ξ̇t(τ) − f0(τ),

giving ξt as a solution to F.
It remains to show that ξ(τ) = ξt(τ) for every t ∈ T′ and every τ ∈ T′t. Let T′′ ⊂ T′

be the largest subinterval such that ξ(τ) = ξt(τ) for every t ∈ T′′ and every τ ∈ T′t. We
claim that T′′ = T′. We need only show that T′ ⊆ T′′. Let t ∈ T′. By construction, we
have ξt(t) = ξ(t). Note that, for every τ ∈ T′t we have G(τ, ξ(τ)) = 0. Moreover, ξ|T′t is of
class C1. Thus the uniqueness part of the Implicit Function Theorem gives ξt(τ) = ξ(τ)
for all τ ∈ T′t. Therefore, t ∈ T′′. From this we conclude that, indeed ξ(τ) = ξt(τ) for
every τ ∈ T′t, and this shows that ξ is a solution for F, since ξt is a solution for F.
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(ii) We have, for all t ∈ T′,

f1(ξ(t))ξ̇(t) − f0(t) = 0

=⇒
d
dt

(F1(ξ(t)) − F0(t)) = 0

=⇒ F1(ξ(t)) − F1(x0) − F0(t) + F0(t0)

since ξ is continuous, and using the Fundamental Theorem of Calculus. ■

Now let us look at some examples.

4.1.3 Examples (Separable ordinary differential equations)
1. Consider the ordinary differential equation

F(t, x, x(1)) = x(1)
− ax

for a ∈ R, which is defined for (t, x) ∈ R × R, i.e., T = R and U = R. Solutions
of this differential equation satisfy

ẋ(t) = ax(t).

This is not immediately in the form of a separable equation, but it can be
converted into the separable equation

F̃(t, x, x(1)) =
x(1)

x
− a,

but only at the cost of limiting the state space to be Ũ = R\ {0}. But let us do this
and see what happens. We have f1(x) = x−1 and f0(t) = a and so F1(x) = ln(|x|)
and F0(t) = at. Thus, by Proposition 4.1.2, a solution t 7→ ξ(t) with values in Ũ
will satisfy

ln(|ξ(t)|) − ln(|ξ(t0)|) = a(t − t0)

⇐⇒ ln
(∣∣∣∣∣ ξ(t)
ξ(t0)

∣∣∣∣∣) = a(t − t0)

⇐⇒

∣∣∣∣∣ ξ(t)
ξ(t0)

∣∣∣∣∣ = ea(t−t0)

⇐⇒ |ξ(t)| = |ξ(t0)|ea(t−t0).

Now, since ξ must be of class C1, in particular continuous, it follows that the
sign of ξ(t) must be the same as that of ξ(t0), and so we have

ξ(t) = ξ(t0)ea(t−t0).

Note that this only applies when ξ(t0) , 0. However, if ξ(t0) = 0 then we
immediately have the solution as ξ(t) = 0 for all t.
We will encounter this differential equation as a special case of various other
sorts of differential equations in the sequel.
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2. Next we consider the differential equation

F(t, x, x(1)) = x(1)
− x2

with (t, x) ∈ R × R that we initially investigated in Example 3.2.5. Again, this
equation is not in the form of a separable ordinary differential equation, but can
be converted into the separable equation

F̃(t, x, x(1)) =
x(1)

x2 − 1

with f0(x) = x−2 and f1(t) = 1. Again, in making this conversion, we must
restrict our state to be in Ũ = R \ {0}. We then have

F1(x) = −x−1, F0(t) = t.

Therefore, skipping the details, a solution t 7→ ξ(t) satisfies

−
1
ξ(t)
+

1
ξ(t0)

= t − t0 =⇒ ξ(t) =
ξ(0)

ξ(t0)(t0 − t) + 1
,

just as in Example 3.2.5. As we saw in this previous example, the solution
cannot be defined on the entire time interval R. Also, we can recover the
solution with the initial condition ξ(t0) = 0 by noting that, in this case, the
solution is ξ(t) = 0.

3. Here we consider the differential equation

F(t, x, x(1)) = x(1)
− x1/3

first considered in Example 3.2.6. As with our other examples, this one is not
separable by can be converted to a separable equation on the reduced state
space U′ = R \ {0}:

F̃(t, x, x(1)) =
x(1)

x1/3 − 1.

We then have

F1(x) =
3x2/3

2
, F0(t) = t

and so solutions t 7→ ξ(t) are determined by

3ξ(t)2/3

2
−

3ξ(t0)2/3

2
= t − t0 =⇒ ξ(t) =

(2t − 2t0 + 3ξ(t0)2/3)3/2

3
√

3
.

Again, if we include the possibility that ξ(t0) = 0, we arrive at the situation
described in Example 3.2.6.
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4. Finally, we consider the separable ordinary differential equation

F(t, x, x(1)) = (x4 + x2 + 1)x(1)
− e−t2

with f1(x) = x4 + x2 + 1 and f0(t) = e−t2 with (t, x) ∈ R ×R. Here we have

F1(x) =
x5

5
+

x3

3
+ x, F0(t) =

√
π

2
erf(t),

where erf is the error function defined by

erf(t) =
2
√
π

∫ t

0
e−τ

2
dτ.

Thus a solution t 7→ ξ(t) satisfies

ξ(t)5

5
+
ξ(t)3

3
+ ξ(t) −

ξ(t0)5

5
−
ξ(t0)3

3
− ξ(t0) =

√
π

2
(erf(t) − erf(t0)).

This is an implicit equation that will be unpleasant to solve. Note that one
might have five possible solutions for ξ(t) at a given time, since we have the
solution as the root of a fifth-order polynomial. •

4.1.2 First-order scalar ordinary difference equations

Techniques analogous to those in the preceding section for differential equations
are less interesting for difference equations. Indeed, the governing equation for a
difference equation analogous to a separable differential equation is

f1(ξ(( j − 1)h))∆−ξ( j) = f0( j), ξ(k0h) = x0,

with f1 being nowhere zero. Using the definition of ∆− this gives

ξ( jh) = ξ(( j − 1)h) + h
f0( j)

f1(( j − 1)h)
.

This can be immediately solved to give

ξ(kh) = x0 + h
k−1∑
j=k0

f0( jh)
f1(( j − 1)h)

,

which is not all that interesting, and makes no particular use of the “separation”
property of the equation.

In Example 4.7.5 we shall consider general linear scalar first-order difference
equations.
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Exercises

4.1.1 Solve the following initial value problems, taking care to provide the domain
of definition for the solution:
(a) tξ̇(t) = 2(ξ(t) − 4), ξ(1) = 5;
(b) (t2 + 1)ξ̇(t) = tξ(t), ξ(0) = 1;
(c) ξ̇(t) = ξ(t) tan(t), ξ(0) = 1;
(d) ξ̇(t) = tξ(t) + 2t + ξ(t) + 2, ξ(0) = −1.

4.1.2 Solve the following initial value problems, taking care to provide the domain
of definition for the solution:
(a) ξ̇(t) + tξ(t) = t, ξ(1) = 5;
(b) tξ̇(t) + ξ(t) = t + 1, ξ(1) = 0;
(c) ξ̇(t) + etξ(t) = et, ξ(0) = x0;
(d) (1 + t)ξ̇(t) + tan(t)ξ(t) = sec(t), ξ(π4 ) = 0.
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Section 4.2

Scalar linear homogeneous ordinary differential equations

Now we turn to scalar linear ordinary differential equations, looking first in this
section at the homogeneous case. That is to say, we consider differential equations
with T ⊆ R an interval, the state space U = R, and right-hand sides of the form

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x (4.1)

for functions a0, a1, . . . , ak−1 : T→ R. Thus solutions t 7→ ξ(t) satisfy

dkξ(t)
dtk

(t) + ak−1(t)
dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0.

In this section we shall (1) investigate the character of the solutions, (2) investigate
the set of all solutions in the general case, and (3) provide a procedure for, in
principle, solving the equations in the constant coefficient case.

Do I need to read this section? This section contains tools that are standard for
anyone claiming to know something about ordinary differential equations. •

4.2.1 Equations with time-varying coefficients

We start by working with the general situation where the coefficients
a0, a1, . . . , ak−1 depend on time. In this case, we will study the properties of solutions
and sets of solutions, and as well introduce an important tool, the “Wronskian,”
for dealing with linear ordinary differential equations.

4.2.1.1 Solutions and their properties We begin by listing the general prop-
erties of solutions. First let us be sure that the equations with which we are dealing
possess solutions.

4.2.1 Proposition (Local existence and uniqueness of solutions for scalar lin-
ear homogeneous ordinary differential equations) Consider the linear homo-
geneous ordinary differential equation F with right-hand side (4.1) and suppose that
a0, a1, . . . , ak−1 ∈ L1

loc(T;R). Let

(t0, x0, x
(1)
0 , . . . , x

(k−1)
0 ) ∈ T ×R ⊕ L≤k−1

sym (R;R).

Then there exists an interval T′ ⊆ T and a map ξ : T′ → R of class Ck−1, with locally
absolutely continuous (k − 1)st derivative, that is a solution for F and which satisfies

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t0) = x(k−1)

0 .
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Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ : T̃′ → R is another Ck−1-solution,
with locally absolutely continuous (k − 1)st derivative, for F satisfying

ξ̃(t0) = x0,
dξ̃
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ̃

dtk−1
(t)(t0) = x(k−1)

0 ,

then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
Proof This is Exercise 4.2.1. ■

The proposition indicates the importance of the following class of functions for
a continuous time-domain T and for r ∈ Z≥0:

ACr
loc(T;R) = { f ∈ Cr(T;R) | f (r) is locally absolutely continuous}.

As we have seen in Example 3.2.5, a solution to a general ordinary differential
equation will not be defined for all times inT, even for seemingly “nice” differential
equations. One might then wonder whether linear ordinary differential equations
are sufficiently nice to permit solutions defined for all time. This is, indeed, the
case.

4.2.2 Proposition (Global existence of solutions for scalar linear homogeneous
ordinary differential equations) Consider the linear homogeneous ordinary differential
equation F with right-hand side (4.1) and suppose that a0, a1, . . . , ak−1 ∈ L1

loc(T;R). If
ξ ∈ ACk−1

loc (T′;R) is a solution for F, then there exists a solution ξ ∈ ACk−1
loc (T;R) for

which ξ|T′ = ξ.
Proof Note that, as per Exercise 3.1.23, we can convert the differential equation F into
a first-order differential equation linear homogeneous differential equation with states
(x, x(1), . . . , x(k−1)). Thus the result will follow from the analogous result for first-order
systems of equations, and this is stated and proved as Proposition 5.2.2. ■

Now that we know the domain of definition of a scalar linear homogeneous
ordinary differential equation, we can talk in a reasonable manner about the set of
all solutions of such equations, as the structure of these is what is most interesting
about the equations. Thus we consider a scalar linear homogeneous ordinary
differential equation

F : T ×R ⊕ L≤k−1
sym (R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 ∈ L1
loc(T;R). Let us denote by

Sol(F) =
{
ξ ∈ ACk−1

loc (T;R)

∣∣∣∣∣∣
dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0, a.e. t ∈ T
}
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the set of solutions for F. The following result is then the main structural result for
the class of differential equations we are considering in this section. We note that
ACk−1

loc (T;R) is a R-vector space by virtue of Propositions I-3.2.10 and III-2.9.29.

4.2.3 Theorem (Vector space structure of sets of solutions) Consider the linear ho-
mogeneous ordinary differential equation F with right-hand side (4.1) and suppose that
the functions a0, a1, . . . , ak−1 ∈ L1

loc(T;R). Then Sol(F) is a k-dimensional subspace of
ACk−1

loc (T;R).
Proof We first show that Sol(F) is a subspace. Let ξ, ξ1.ξ2 ∈ Sol(F) and α ∈ R. Then
we immediately have

dk(ξ1 + ξ2)
dtk

(t) + ak−1(t)
dk−1)ξ1 + ξ2

dtk−1
(t) + · · · + a1(t)

d(ξ1 + ξ2)
dt

(t) + a0(t)(ξ1 + ξ2)(t)

=
dkξ1

dtk
(t) + ak−1(t)

dk−1ξ1

dtk−1
(t) + · · · + a1(t)

dξ1

dt
(t) + a0(t)ξ1(t)

+
dkξ2

dtk
(t) + ak−1(t)

dk−1ξ2

dtk−1
(t) + · · · + a1(t)

dξ2

dt
(t) + a0(t)ξ2(t) = 0 + 0 = 0

and

dk(αξ)
dtk

(t) + ak−1(t)
dk−1(αξ)

dtk−1
(t) + · · · + a1(t)

d(αξ)
dt

(t) + a0(t)(αξ)(t)

= α

(
dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t)
)
= 0,

using linearity of differentiation.
Next we prove that the dimension of Sol(F) is k. We shall do this by showing that,

for a given t0 ∈ T, the map

σt0 : Sol(F)→ Rk

ξ 7→

(
ξ(t0),

dξ
dt

(t0), . . . ,
dk−1ξ

dtk−1
(t0)

)
is an isomorphism ofR-vector spaces. Since the map is surjective by the existence part
of Proposition 4.2.1, it suffices to show that it is an injective linear map. Linearity of
σt0 is immediate since the identities(

(ξ1 + ξ2)(t0),
d(ξ1 + ξ2)

dt
(t0), . . . ,

dk−1(ξ1 + ξ2)
dtk−1

(t0)
)

=

(
ξ1(t0),

dξ1

dt
(t0), . . . ,

dk−1ξ1

dtk−1
(t0)

)
+

(
ξ2(t0),

dξ2

dt
(t0), . . . ,

dk−1ξ2

dtk−1
(t0)

)
,

by definition of the vector space structure for Sol(F). To show that σt0 is injective,
it suffices so show that, if σt0(ξ) = 0, then ξ is the zero vector in Sol(F) (by Exer-
cise I-4.5.23) i.e., that ξ(t) = 0 for all t ∈ T. So, suppose that σt0(ξ) = 0. Then

ξ(t0) = 0,
dξ
dt

(t0) = 0, . . . ,
dk−1ξ

dtk−1
(t0) = 0.
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Consider the function ζ : T→ R given by ζ(t) = 0 for all t ∈ T. Then ζ ∈ Sol(F) and

ζ(t0) = 0,
dζ
dt

(t0) = 0, . . . ,
dk−1ζ

dtk−1
(t0) = 0.

Therefore, by Proposition 4.2.1, ξ = ζ, giving the theorem. ■

Being a finite-dimensional R-vector space, the set Sol(F) of solutions to the
scalar linear homogeneous differential equation F is capable of possessing a basis.
One has a special name for a basis of Sol(F), i.e., a set of k linearly independent
solutions for F.

4.2.4 Definition (Fundamental set of solutions) Consider the linear homogeneous
ordinary differential equation F with right-hand side (4.1) and suppose that
a0, a1, . . . , ak−1 ∈ L1

loc(T;R). A set {ξ1, . . . , ξk} of linearly independent elements of
Sol(F) is a fundamental set of solutions for F. •

There is not much more one can say easily, in general, about scalar linear
homogeneous ordinary differential equations with coefficients that depend on time.
There is, however, one case where they can be solved “explicitly,” and this is when
k = 1.

4.2.5 Example (First-order scalar linear homogeneous equations) The differential
equation we consider here is given by

F : T ×R ⊕ L1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1) + a(t)x,

for a ∈ L1
loc(T;R). Thus a solution t 7→ ξ(t) satisfies

ξ̇(t) + a(t)ξ(t) = 0.

Note that F is equivalent to the separable equation

F̃(t, x, x(1)) =
x(1)

x
+ a(t)

with f1(x) = x−1 and f0(t) = −a(t). Thus we can apply the methods of Section 4.1.1
to solve this equation; indeed, note that Example 4.1.3–1 is a special case that
we have already treated in this manner.1 Let t0 ∈ T and x0 ∈ R. We have the
antiderivatives

F1(x) = ln(|x|) − ln(|x0|), F0(t) = −
∫ t

t0

a(τ) dτ.

1An astute reader will note that this is not quite true since a is not continuous, but only locally
integrable. Nonetheless, we shall produce the unique solution, which one can verify by substituting
it into the differential equation.
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In the same manner as Example 4.1.3–1, we conclude that

ξ(t) = ξ(t0)e−
∫ t

t0
a(τ) dτ

.

Note that this solution is also valid when ξ(t0) = 0, although this is not covered by
this solution method, since we had to eliminate 0 from the state space to make the
equation a separable equation. •

4.2.1.2 The Wronskian, and its properties and uses In this section we present
a fairly simple construction that turns out to have great importance in the treatment
of linear differential equations. We first make a simple general definition that seems
to not be a priori relating to differential equations.

4.2.6 Definition (Wronskian2) LetT ⊆ R be an interval and let f1, . . . , fk ∈ Ck−1(T;R) for
k ∈ Z>0. The Wronskian for the functions f1, . . . , fk is the function W( f1, . . . , fk) : T→
R defined by

W( f1, . . . , fk)(t) = det



f1(t) f2(t) · · · fk(t)
d f1

dt
(t)

d f2

dt
(t) · · ·

d fk

dt
(t)

...
...

. . .
...

dk−1 f1

dtk−1
(t)

dk−1 f2

dtk−1
(t) · · ·

dk−1 fk

dtk−1
(t)


. •

An essential feature of the Wronskian is that it gives a sufficient condition
for measuring the linear independence of finite sets of functions in the space of
functions. More precisely, we have the following result, which again is not a priori
related to differential equations.

4.2.7 Proposition (The Wronskian and linear independence) Let T ⊆ R be an interval
and let f1, . . . , fk ∈ Ck−1(T;R) for k ∈ Z>0. If W(f1, . . . , fk)(t) , 0 for some t ∈ T, then
the set {f1, . . . , fk} is linearly independent in Ck−1(T;R).

Proof We prove the contrapositive, i.e., that, if the functions { f1, . . . , fk} are linearly
dependent, then W( f1, . . . , fk)(t) = 0 for all t ∈ T.

So suppose that { f1, . . . , fk} is linearly dependent, and let c1, . . . , ck ∈ R, not all zero,
be such that

c1 f1 + · · · + ck fk = 0.

Then, for any j ∈ {1, . . . , k − 1},

c1
d j f1
dt j + · · · + cn

d j fn
dt j = 0.

2After Josef Hoëné de Wronski (1778–1853). Wronski was a “philosopher mathematician,” and as
a consequence he (1) published a lot of rubbish and (2) had a high opinion of himself. Nevertheless,
he apparently had a few good days, and the Wronskian, one supposes, must be a result of one of
these.
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Assembling these relationships for j ∈ {0, 1, . . . , k − 1} gives the single equation

f1(t) f2(t) · · · fk(t)
d f1
dt

(t)
d f2
dt

(t) · · ·
d fk
dt

(t)
...

...
. . .

...
dk−1 f1
dtk−1

(t)
dk−1 f2
dtk−1

(t) · · ·
dk−1 fk
dtk−1

(t)




c1
c2
...

ck

 =

0
0
...
0

 .

This means that the matrix on the left has a nontrivial kernel (since this kernel contains
(c1, . . . , ck)) and so must have zero determinant. ■

Note that the converse of the preceding result is not generally true, as demon-
strated by the following example.

4.2.8 Example (The Wronskian is not adequate to characterise linear indepen-
dence) Let T = [−1, 1] and consider the two functions f1, f2 : [−1, 1] → R of class
C1 defined by

f1(t) = t2, f2(t) = t|t|.

We have
d f1

dt
(t) = 2t,

d f2

dt
= 2|t|

We thus have

W( f1, f2)(t) = det
[
t2 t|t|
2t 2|t|

]
= 2t2

|t| − 2t2
|t| = 0.

However, the set { f1, f2} is linearly independent. Indeed, suppose that c1, c2 ∈ R
satisfy

c1 f1(t) + c2 f2(t) = 0, t ∈ [−1, 1].

Then, taking t = −1, we get c1 − c2 = 0 and taking t = 1 we get c1 + c2 = 0. The only
way both of these equations can be satisfied is when c1 = c2 = 0. •

Thus the Wronskian is not quite the thing for precisely characterising the linear
independence of general sets of functions. However, it is just the thing when the
set of functions under consideration are solutions to a scalar linear homogeneous
ordinary differential equation.

4.2.9 Proposition (Wronskians and linear independence in Sol(F)) Consider the linear
homogeneous ordinary differential equation F with right-hand side (4.1) and suppose that
a0, a1, . . . , ak−1 ∈ L1

loc(T;R). Then the following statements are equivalent for ξ1, . . . , ξk ∈

Sol(F):
(i) {ξ1, . . . , ξk} is linearly independent;
(ii) W(ξ1, . . . , ξk)(t) , 0 for some t ∈ T;
(iii) W(ξ1, . . . , ξk)(t) , 0 for all t ∈ T.
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Proof (i) =⇒ (ii) We prove the contrapositive, i.e., we prove that, if W(ξ1, . . . , ξk)(t) = 0
for all t ∈ T, then {ξ1, . . . , ξk} is linearly dependent.

So suppose that W(ξ1, . . . , ξk)(t) = 0 for all t ∈ T, which means that there exists
c1, . . . , ck ∈ R, not all zero, such that

ξ1(t) ξ2(t) · · · ξk(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

...
...

. . .
...

dk−1ξ1

dtk−1
(t)

dk−1ξ2

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)




c1
c2
...

ck

 =

0
0
...
0


for all t ∈ T. If we simply expand this out, we see that it is equivalent to

c1σt(ξ1) + · · · + ckσt(ξk) = 0

for all t ∈ T, recalling the isomorphism σt : Sol(F)→ Rk, defined for some t ∈ T, from
the proof of Theorem 4.2.3. Since σt is linear, this gives

σt(c1ξ1 + · · · + ckξk) = 0, t ∈ T.

Injectivity of σt then gives
c1ξ1 + · · · + ckξk = 0,

showing linear dependence of {ξ1, . . . , ξk}.
(ii) =⇒ (iii) From Proposition 4.2.7, noting that ξ1, . . . , ξk are of class ACk−1

loc , and
so of class Ck−1, the assumption of (ii) implies that {ξ1, . . . , ξk} is linearly independent.
Suppose now that there exists t′ ∈ T such that W(ξ1, . . . , ξk)(t′) = 0. Then there exists
c1, . . . , ck ∈ R, not all zero, such that

ξ1(t′) ξ2(t′) · · · ξk(t′)
dξ1

dt
(t′)

dξ2

dt
(t′) · · ·

dξk

dt
(t′)

...
...

. . .
...

dk−1ξ1

dtk−1
(t′)

dk−1ξ2

dtk−1
(t′) · · ·

dk−1ξk

dtk−1
(t′)




c1
c2
...

ck

 =

0
0
...
0

 . (4.2)

Now, define ξ : T→ R by
ξ = c1ξ1 + · · · + ckξk.

By Theorem 4.2.3, ξ ∈ Sol(F). Moreover, the equation (4.2) gives

ξ(t′) = 0,
dξ
dt

(t′) = 0, . . . ,
dk−1ξ

dtk
(t′) = 0.

By Proposition 4.2.1, we conclude that ξ(t) = 0 for all t ∈ T. This contradicts the linear
independence of {ξ1, . . . , ξk}.

(iii) =⇒ (i) This follows from Proposition 4.2.7, noting that ξ1, . . . , ξk are of class
ACk−1

loc , and so of class Ck−1. ■

The following result gives an interesting characterisation of the Wronskian,
further illustrating the fact that, when applied to solutions of scalar linear homoge-
neous ordinary differential equations, it serves to characterise linear independence
of sets of solutions.
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4.2.10 Proposition (Abel’s formula) Consider the scalar linear homogeneous ordinary differ-
ential equation F with right-hand side (4.1) and suppose that a0, a1, . . . , ak−1 ∈ L1

loc(T;R).
If {ξ1, . . . , ξk} are linearly independent, then, for any t0, t ∈ T,

W(ξ1, . . . , ξk)(t) =W(ξ1, . . . , ξk)(t0)e−
∫ t

t0
ak−1(τ) dτ

.

Proof This is Exercise 5.2.4, which can be proved using some attributes of systems of
linear ordinary differential equations in Section 5.2. ■

One of the sort of peculiar features of the Wronskian is that it can be used to
actually write down a differential equation, at least when the coefficient functions
are continuous, which guarantees that the solutions are of class Ck.

4.2.11 Proposition (A Wronskian representation of a differential equation) Consider
the scalar linear homogeneous ordinary differential equation F with right-hand side (4.1)
and suppose that the functions a0, a1, . . . , ak−1 : T→ R are continuous. Let {ξ1, . . . , ξk} be
a fundamental set of solutions for F. Then, for ξ ∈ Ck(T;R) and t ∈ T,

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0ξ(t) =
W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

.

In particular,

Sol(F) =
{
ξ ∈ Ck(T;R)

∣∣∣∣∣ W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

= 0, t ∈ T
}
.

Proof First of all, note by Proposition 4.2.9 that W(ξ1, . . . , ξk)(t) is never zero, so this
is valid to appear in denominators, as in the statement of the proposition.

We shall prove the last assertion first. First suppose that ξ ∈ Sol(F), then

ξ = c1ξ1 + · · · + ckξk

for some (unique) constants c1, . . . , ck ∈ R. Therefore, the functions {ξ, ξ1, . . . , ξk} are
linearly dependent, cf.

−c1ξ1 − · · · − ckξk + 1ξ = 0.

Therefore, differentiating this equation k-times gives

ξ1(t) ξ2(t) · · · ξk(t) ξ(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

dξ
dt

(t)
...

...
. . .

...
...

dk−1ξ1

dtk−1
(t)

dk−1ξ2

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)

dk−1ξ

dtk−1
(t)

dkξ1

dtk
(t)

dkξ2

dtk
(t) · · ·

dkξk

dtk
(t)

dkξ

dtk
(t)




−c1
−c2
...
−ck
1


=


0
0
...
0
0


for all t ∈ T. From this we immediately conclude that W(ξ1, . . . , ξk, ξ)(t) = 0 for all
t ∈ T, and so

ξ ∈

{
ξ̃ ∈ Ck(T;R)

∣∣∣∣∣∣ W(ξ1, . . . , ξk, ξ̃)(t)
W(ξ1, . . . , ξk)(t)

= 0
}
.
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Now note that, if we expand the determinant W(ξ1, . . . , ξk, ξ) about the last column,
we get an expression of the form

W(ξ1, . . . , ξk, ξ)(t)

=W(ξ1, . . . , ξk)(t)
dkξ

dtk
(t) + bk−1(t)

dk−1ξ

dtk−1
(t) + · · · + b1(t)

dξ
dt

(t) + a0(t)ξ(t)

for some continuous functions a0, a1, . . . , ak−1 : T → R. By Proposition 4.2.9 it follows
that {

ξ ∈ Ck(T;R)
∣∣∣∣∣ W(ξ1, . . . , ξk, ξ)(t)

W(ξ1, . . . , ξk)(t)
= 0, t ∈ T

}
is the set of solutions to a kth-order scalar linear homogeneous ordinary differential
equation. Moreover, since we clearly have W(ξ1, . . . , ξk, ξ j) = 0 for every j ∈ {1, . . . , k},
(it is the determinant of a (k + 1) × (k + 1) matrix with two equal columns), it follows
that {ξ1, . . . , ξk} is a fundamental set of solutions for this differential equation. Thus we
have shown that

Sol(F) =
{
ξ ∈ Ck(T;R)

∣∣∣∣∣ W(ξ1, . . . , ξk, ξ)(t)
W(ξ1, . . . , ξk)(t)

= 0
}
.

To prove the first assertion, we shall show that the set of solutions for a kth-
order scalar linear homogeneous ordinary differential equation uniquely determines
its coefficients. That is, we show that if two such equations F and G with right-hand
sides

F̂(t, x, x(1), . . . , x(k−1)) = − ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

Ĝ(t, x, x(1), . . . , x(k−1)) = − bk−1(t)x(k−1)
− · · · − b1(t)x(1)

− b0(t)x

satisfy Sol(F) = Sol(G), then a j = b j, j ∈ {0, 1, . . . , k − 1}. Let us consider the differential
equation

H(t, x, x(1), . . . , x(k−1)) = F(t, x, x(1), . . . , x(k−1)) − G(t, x, x(1), . . . , x(k−1)).

Note that this is not necessarily a (k − 1)st-order ordinary differential equation, since
we may have ak−1 = bk−1. However, suppose that F̂ , Ĝ and let j be the largest element
of {0, 1, . . . , k − 1} such that a j , b j. Thus there exists t0 ∈ T so that a j(t0) , b j(t0). Since
a j and b j are continuous, there is an interval T′ ⊆ T around t0 such that a j(t) , b j(t) for
all t ∈ T′. We then define an ordinary differential equation H′ with right-hand side

Ĥ′ : T′ ×R ⊕ Lle j−1
sym (R;R)→ R

(t, x, x(1), . . . , x( j−1)) 7→ −
a j−1(t) − b j−1(t)

a j(t) − b j(t)
x( j−1)

− · · · −
a1(t) − b1(t)
a j(t) − b j(t)

x(1)

−
a0(t) − b0(t)
a j(t) − b j(t)

x.

This jth-order ordinary differential equation has ξ1, . . . , ξk as linearly independent
solutions, and this is in contradiction with Theorem 4.2.3. Thus we must have F̂ = Ĝ,
as claimed. ■
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4.2.2 Equations with constant coefficients

Having said about as much as one can say, in general, about the situation with
time-varying coefficients, we now turn to the case of constant coefficient scalar
linear homogeneous ordinary differential equations. If

F : T ×R ⊕ L≤k
sym(R;R)→ R

is such an equation, then its right-hand side must be given by

F̂(t, x, x(1), . . . , x(k)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x (4.3)

for a0, a1, . . . , ak−1 ∈ R. Thus a solution t 7→ ξ(t) satisfies the equation

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = 0. (4.4)

These equations are, of course, a special case of the equations considered in Sec-
tion 4.2.1, and so all statements made about the general case of time-varying
coefficients hold in the special case of constant coefficients. In particular, Propo-
sitions 4.2.1 and 4.2.2, and Theorem 4.2.3 hold for equations of the form (4.4).
However, for these constant coefficient equations, it is possible to explicitly de-
scribe the character of the solutions, and this is what we undertake to do.

The trick, motivated to some extent by Example 4.1.3–1, is to assume a solution
of the form ξ(t) = aert for a, r ∈ R, and see what happens. A direct substitution into
the equation (4.4) shows that, with ξ in this assumed form,

dk(aert)
dtk

+ak−1
dk−1(aert)

dtk−1
+ · · ·+a1

d(aert)
dt

+a0(aert) = aert(rk+ak−1rk−1+ · · ·+a1r+a0) = 0.

Since we are looking for nontrivial solutions, we suppose that a , 0, in which case
ξ(t) = aert is a solution for F if and only if

rk + ak−1rk−1 + · · · + a1r + a0 = 0.

With this as backdrop, we make the following definition.

4.2.12 Definition (Characteristic polynomial of a scalar linear homogeneous differ-
ential equation with constant coefficients) Consider the linear homogeneous
ordinary differential equation F with constant coefficients and with right-hand
side (4.3). The characteristic polynomial of F is

PF = Xk + ak−1Xk−1 + · · · + a1X + a0 ∈ R[X]. •

Now we systematically develop the methodology for solving scalar linear ho-
mogeneous ordinary differential equations with constant coefficients.
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4.2.2.1 Complexification of scalar linear ordinary differential equations It
turns out that to solve constant coefficient linear ordinary differential equations,
one needs to work with complex numbers. To do this systematically, we introduce
the notion of “complexification,” by which a real equation is converted into a
complex one. This is rather elementary in this setting, but will be less elementary
in Section 5.2.2. Thus it will do not harm, and maybe do some good, to treat this
systematically here.

First let us understand the notation for derivatives of C-valued functions of a
single real variable, i.e., functions of time. Let T ⊆ R be an interval and suppose
that we have a mapping ζ : T → C. Since we have C ≃ R2, it makes sense to say
that ζ is of class Ck for any k ∈ Z≥0: it is of class Ck if and only if both its real and
imaginary parts are of class Ck. Moreover, if we write ζ as a sum of its real and
imaginary parts, ζ(t) = ξ(t) + iη(t), then we have

d jζ

dt j =
d jξ

dt j + i
d jη

dt j .

Thus derivatives of order j are just C-valued functions of t. Thus we can follow the
same line of reasoning as Remark 3.1.5 and make the identification L j

sym(R;C) ≃ C.
Here is the basic and quite elementary construction.

4.2.13 Definition (Complexification of scalar linear ordinary differential equation)
Consider the linear homogeneous ordinary differential equation F with constant
coefficients and with right-hand side (4.3). The complexification of F is the mapping

FC : T × C ⊕ L≤k
sym(R;C)→ C

(t, z, z(1), . . . , z(k)) 7→ z(k) + ak−1z(k−1) + · · · + a1z(1) + a0z.

A solution for FC is ζ ∈ ACk−1
loc (T;C) that satisfies

dkζ

dtk
(t) + ak−1

dk−1ζ

dtk−1
(t) + · · · + a1

dζ
dt

(t) + a0ζ(t) = 0.

By Sol(FC) we denote the set of solutions for FC. •

Everything we said in Section 4.2.1 about scalar linear homogeneous ordinary
differential equations holds in the case of the complex differential equation FC, even
when the coefficients are not constant. In particular, Propositions 4.2.1 and 4.2.2,
and Theorem 4.2.3 hold in this case to give us the basic attributes of the complex
differential equation, merely by replacing the appropriate occurrences of the sym-
bol “R” with the symbol “C.” In particular, Sol(FC) is a k-dimensional C-vector
space if F has order k.

An essential result for returning to “reality” after complexification is the fol-
lowing simple result.
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4.2.14 Lemma (Real and imaginary parts of complex solutions are solutions) Con-
sider the linear homogeneous ordinary differential equation F with constant coefficients,
with right-hand side (4.3) and with complexification FC. If ζ : T→ C is a solution for FC,
then Re(ζ) and Im(ζ) are solutions for F.

Proof Since ζ is a solution for FC, we have

dkζ

dtk
(t) + ak−1

dk−1ζ

dtk−1
(t) + · · · + a1

dζ
dt

(t) + a0ζ(t) = 0.

Now we note that Re: C→ R and Im: C→ R areR-linear maps. Since the coefficients
a0, a1, . . . , ak−1 are real, this gives

0 = Re
(

dkζ

dtk
(t) + ak−1

dk−1ζ

dtk−1
(t) + · · · + a1

dζ
dt

(t) + a0ζ(t)
)

=
dk Re(ζ)

dtk
(t) + ak−1

dk−1 Re(ζ)
dtk−1

(t) + · · · + a1
d Re(ζ)

dt
(t) + a0 Re(ζ)(t),

showing that Re(ζ) is a solution for F. In like manner, of course, Im(ζ) is also a solution
for F. ■

4.2.2.2 Differential operator calculus We introduce a simple object that will be
used to say a few simple things about our constant coefficient ordinary differential
equations.

4.2.15 Definition (Scalar differential operator with constant coefficients) Let F ∈
{R,C}, let T ⊆ R be an interval, and let k ∈ Z≥0. A kth-order scalar differen-
tial operator with constant coefficients in F is a mapping

D : C∞(T;F)→ C∞(T;F)

of the form

D( f )(t) = dk
dk f
dt

(t) + dk−1
dk−1 f
dtk−1

(t) + · · · + d1
d f
dt

(t) + d0 f (t),

for d0, d1, . . . , dk ∈ Fwith dk , 0. The symbol for such an object is

σ(D) = dkXk + dk−1Xk−1 + · · · + d1X + d0 ∈ F[X]. •

Note that, while the domain and range of D in the preceding definition is the
set of infinitely differentiable functions, clearly the definition makes sense when
applied to functions that are at least k-times continuously differentiable. Indeed,
we can think of D as a mapping from Ck+m(T;F) to Cm(T;F) for any m ∈ Z≥0.
The definition as stated just allows us to not fuss about this sort of thing for the
purposes of our discussion.
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Note that differential operators of the sort we are talking about have a product
given by composition. Thus, if D1 and D1 are k1th- and k2th-order scalar differen-
tial operators with constant coefficients, then we define a (k1 + k2)th-order scalar
differential operator D1D2 with constant coefficients by D1D2( f ) = D1(D2( f )).

A simplifying observation about scalar differential operators with constant co-
efficients is the following.

4.2.16 Proposition (The symbol of a product is the product of the symbols) Let
F ∈ {R,C}, let T ⊆ R be an interval, let k1,k2 ∈ Z≥0. If D1 and D1 are k1th- and k2th-
order scalar differential operators with constant coefficients, then σ(D1D2) = σ(D1)σ(D2).

Proof Let us write

σ(D1) =
k1∑
j=0

d1, jX j, σ(D2) =
k2∑
j=0

d2, jX j.

Then, for f ∈ C∞(T;F),

D1D2( f ) =
k1∑
j=0

d1, j
d j

dt j

 k2∑
l=0

d2,l
dl f
dtl

 = k1+k2∑
k=0

k∑
j=0

d1, jd2,k− j
dk f
dtk

.

Since

σ(D1)σ(D2) =
k1+k2∑
k=0

k∑
j=0

d1, jd2,k− jXk,

the result follows. ■

4.2.17 Corollary (The product for differential operators is commutative) Let F ∈
{R,C}, let T ⊆ R be an interval, let k1,k2 ∈ Z≥0. If D1 and D1 are k1th- and k2th-
order scalar differential operators with constant coefficients, then D1D2 = D2D1.

Proof This follows from the following facts: (1) polynomial multiplication is commu-
tative; (2) the mapping that assigns σ(D) to D is injective. ■

4.2.2.3 Bases of solutions Now we construct a family of solutions for a scalar
linear homogeneous ordinary differential equation. We do this via a procedure.

4.2.18 Procedure (Basis of solutions for scalar linear homogeneous ordinary differ-
ential equations with constant coefficients) Given a scalar linear homogeneous
ordinary differential equation

F : T ×R ⊕ L≤k−1
sym (R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

do the following.
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1. Let FC be the complexification of F,
2. Consider the kth-order scalar differential operator DF with constant coefficients

in C defined by
σ(DFC) = Xk + ak−1Xk + · · · + a1X + a0.

3. Let r1, . . . , rs be the distinct roots of σ(DF) and let m(r j), j ∈ {1, . . . , s}, be the
multiplicity of the root r j. Thus

σ(DFC) = (X − r1)m(r1)
· · · (X − rs)m(rs).

4. Fix j ∈ {1, . . . , s} and consider the following cases.
(a) r j ∈ R: Define functions ξr j,l : T→ R, l ∈ {1, . . . ,m(r j)}, by

ξr j,l(t) = tl−1er jt, l ∈ {1, . . . ,m(r j)}.

(b) r j ∈ C \ R: Note that, since r j is complex and not real, r j is also a root of
σ(DFC). We will work only with one of these roots, so we write r j = σ j + iω j

with ω j > 0. Define functions µr j,l, νr j,l : T→ R by

µr j,l(t) = tl−1eσ jt cos(ω jt), νr j,l(t) = tl−1eσ jt sin(ω jt), l ∈ {1, . . . ,m(r j)}.

5. Note that the result of the above steps is k functions. We will show that these
functions form a basis for Sol(F). •

4.2.19 Theorem (Basis of solutions for scalar linear homogeneous ordinary differ-
ential equations with constant coefficients) Given a scalar linear homogeneous
ordinary differential equation with constant coefficients

F: T ×R ⊕ L≤k−1
sym (R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

define k functions as in Procedure 4.2.18. Then these functions form a basis for Sol(F).
Proof First we show that each of the functions defined in Procedure 4.2.18 is a solution
for F.

First we consider the functions ξr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j) − 1}, associated
with a real root r j of the characteristic polynomial for F. Since

σ(DFC) = (X − r1)m(r1)
· · · (X − rs)m(rs),

by Corollary 4.2.17 we can write

σ(DFC) = P(X − r j)m(r j)

for some P ∈ C[X]. Therefore, it suffices to show that, for r ∈ R and for m, l ∈ Z≥0 with
m ∈ Z>0 and l < m, we have ( d

dt
− r

)m
P(t)ert = 0, (4.5)

where P is any polynomial function of degree l ∈ {0, 1, . . . ,m − 1}. To prove (4.5), we
first prove a simple lemma.
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1 Lemma Let m ∈ Z>0 and r ∈ C. If ξ : T→ C is of class Cm then( d
dt
− r

)m
(ξ(t)ert) = ert dmξ

dtm (t).

Proof We prove this by induction on m. For m = 1 we have( d
dt
− r

)
(ξ(t)ert) =

dξ
dt

(t)ert + rξ(t)ert
− rξ(t)ert = ert dξ

dt
(t),

giving the lemma when m = 1. Now suppose that the lemma holds when m = k. Then( d
dt
− r

)k+1
(ξ(t)ert) =

( d
dt
− r

) ( d
dt
− r

)k
(ξ(t)ert)

=
( d
dt
− r

)
ert dkξ

dtk
(t)

= rert dkξ

dtk
(t) + ert dk+1ξ

dtk+1
(t) − r

dkξ

dtk
(t)

= ert dk+1ξ

dtk+1
(t),

as desired. ▼

Now, if P is a polynomial function of degree l ∈ {0, 1, . . . ,m}, by the Lemma 1 we
have ( d

dt
− r

)m
P(t)ert = ert dmP

dtm (t) = 0.

Thus shows that the functions ξr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j) − 1}, are solutions for F.
Next we consider the functions

µr j,l = tleσ jt cos(ω jt), νr j,l = tleσ jt sin(ω jt), l ∈ {0, 1, . . . ,m(r j) − 1},

corresponding to a complex root r j = σ j + iω j, ω j > 0, of the characteristic polynomial
of F. In this case, we argue, exactly as in the case of a real root above, that the C-
valued functions ζr j,l(t) = tler jt, l ∈ {0, 1, . . . ,m(r j) − 1}, are solutions for FC. Then, by
Lemma 4.2.14, we have that

µr j,l(t) = tleσ jt cos(ω jt)

= Re(tleσ jt(cos(ω jt) + i sin(ω jt))

= Re(tleσ jteiω jt) = Re(ζr j,l(t))

and, similarly,
νr j,l = tleσ jt sin(ω jt) = Im(ζr j,l(t))

are solutions for F for l ∈ {0, 1, . . . ,m(r j) − 1}.
Our above arguments show that the functions produced in Procedure 4.2.18 are

solutions. Moreover, since Procedure 4.2.18 produces k solutions for F, by Theo-
rem 4.2.3 it suffices to show that these solutions are linearly independent to show that
they form a basis for Sol(F). We achieve this with the aid of the following lemma.
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2 Lemma Let T ⊆ R be an interval containing more than one point. Let r1, . . . , rs ∈ R be
distinct and let P1, . . . ,Ps be C-valued polynomial functions on T. If

P1(t)er1t + · · · + Ps(t)erst = 0, t ∈ T,

then Pj(t) = 0 for all j ∈ {1, . . . , s} and t ∈ T.

Proof We prove the lemma by induction on s. For s = 1 we have, for r1 ∈ R and a
polynomial function P1,

P1(s)er1t = 0, t ∈ T,
=⇒ P1(t) = 0, t ∈ T,

giving the result in this case. Now suppose that the lemma is true for s = k and suppose
that

P1(t)er1t + · · · + Pk(t)erkt + Pk+1(t)erk+1t = 0, t ∈ T,

for distinct r1, . . . , rk, rk+1 ∈ R and for polynomial functions P1, . . . ,Pk,Pk+1. Then

P1(t)e(r1−rk+1)t + · · · + Pk(t)e(rk−rk+1)t + Pk+1(t) = 0, t ∈ T. (4.6)

Now let us differentiate this expression m times with respect to t, using the Leibniz Rule
for higher-order derivatives stated in Proposition I-3.2.11. After m differentiations we
get

Pm
1 (t)e(r1−rk+1)t + · · · + Pm

k (t)e(rk−rk+1)t +
dmPk+1

dtm (t) = 0, t ∈ T,

where

Pm
j (t) =

m∑
l=0

(r j − rk+1)l
(
m
l

)
dm−lP j

dtm−l
(t). (4.7)

Since r j − rk+1 , 0, Pm
j is a polynomial function whose degree is the same as the degree

of P j. Now, for m sufficiently large (larger than the degree of Pk+1, to be precise),
dmPk+1

dtm = 0. With m so chosen, we have

Pm
1 (t)e(r1−rk+1)t + · · · + Pm

k (t)e(rk−rk+1)t = 0, t ∈ T.

By the induction hypothesis, Pm
j (t) = 0 for j ∈ {1, . . . , k} and t ∈ T. Now, in the

expression (4.7) for Pm
j , note that the highest polynomial degree term in t in the sum

occurs when l = m, and this term is (r j − rk+1)mP j(t). For the polynomial Pm
j to vanish,

this term in the sum must vanish, i.e., P j(t) = 0 for every j ∈ {1, . . . , k} and t ∈ T.
Finally, (4.6) then gives Pk+1(t) = 0 for all t ∈ T, giving the result. ▼

Now we can show that the solutions produced by Procedure 4.2.18 are linearly
independent. Suppose that there are s1 distinct real roots, r1, . . . , rs1 , and s2 distinct
complex roots,

ρ j = σ1 + iω j, . . . , ρs2 = σs2 + iωs2 ,

with ω1, . . . , ωs2 > 0, for the characteristic polynomial of F. Thus s1 + 2s2 = k. Suppose
that we have k scalars

c j,l, j ∈ {1, . . . , s1}, l ∈ {0, 1, . . . ,m(r j) − 1}, (4.8)
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and
a j,l, b j,l, j ∈ {1, . . . , s2}, l ∈ {0, 1, . . . ,m(ρ j) − 1}, (4.9)

satisfying

(c1,0 + c1,1t + · · · + c1,m(r1)−1tm(r1)−1)er1t + . . .

+ (cs1,0 + cs1,1t + · · · + cs1,m(rs1 )−1tm(rs1 )−1)er1t

+ (a1,0 + a1,1t + · · · + a1,m(ρ1)−1tm(ρ1)−1)eσ1t cos(ω1t)

+ (b1,0 + b1,1t + · · · + b1,m(ρ1)−1tm(ρ1)−1)eσ1t sin(ω1t) + . . .

+ (as2,0 + as2,1t + · · · + as2,m(ρs2 )−1tm(ρs2 )−1)eσs2 t cos(ωs2t)

+ (bs2,0 + bs2,1t + · · · + bs2,m(ρs2 )−1tm(ρs2 )−1)eσs2 t sin(ωs2t) = 0, t ∈ T.

By Lemma 2, the polynomial functions

c1,0 + c1,1t + · · · + c1,m(r1)−1tm(r1)−1, . . . ,

cs1,0 + cs1,1t + · · · + cs1,m(rs1 )−1tm(rs1 )−1,

a1,0 + a1,1t + · · · + a1,m(ρ1)−1tm(ρ1)−1,

b1,0 + b1,1t + · · · + b1,m(ρ1)−1tm(ρ1)−1, . . . ,

as2,0 + as2,1t + · · · + as2,m(ρs2 )−1tm(ρs2 )−1,

bs2,0 + bs2,1t + · · · + bs2,m(ρs2 )−1tm(ρs2 )−1

must all vanish. But this implies that the scalars (4.8) and (4.9) must all vanish. This
gives the desired linear independence. ■

4.2.2.4 Some examples As concerns the general theory of scalar linear ho-
mogeneous ordinary differential equations, the matter is settled pretty much by
Theorem 4.2.19. It remains to consider a few examples.

We first consider an “academic” example, one that illustrates Procedure 4.2.18,
but which has no particular deep meaning.

4.2.20 Example (“Academic” example) We consider the 4th-order scalar linear homo-
geneous ordinary differential equation F with right-hand side

F̂(t, x, x(1), x(2), x(3)) = −5x + 8x(1)
− 2x(2).

Thus solutions t 7→ ξ(t) to this equation satisfy

d4ξ

dt4 (t) + 2
d2ξ
dt2 (t) − 8

dξ
dt

(t) + 5ξ(t) = 0.

The characteristic polynomial is

PF = X4 + 2X2
− 8X + 5
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which can be verified to have roots and multiplicities

r1 = 1, m(r1) = 2, ρ1 = −1 + 2i, m(ρ1) = 1.

Of course, we also have the root ρ1 = −1 − 2i, but the bookkeeping for this is
dealt with when we produce two solutions corresponding to ρ1. According to
Procedure 4.2.18 the 4 solutions that form a basis for Sol(F) are then

ξr1,0(t) = et, ξr1,1(t) = tet, µρ1,0(t) = e−t cos(2t), νρ1,0(t) = e−t sin(2t).

Thus any solution for F can be written as

ξ(t) = c1et + c2tet + c3e−t cos(2t) + c4e−t sin(2t).

To prescribe a specific solution, according to Proposition 4.2.1, we specify initial
conditions. For simplicity, let us do this at t = 0:

ξ(0) = x0,
dξ
dt

(0) = x + 0(1),
d2ξ
dt2 (0) = x(2)

0 ,
d3ξ
dt

(0) = x(3)
0 . (4.10)

To use these conditions to determine c1, c2, c3, c4 is a tedious problem in linear
algebra. We compute

dξ
dt

(t) = c1et + c2(et + tet) + c3(−e−t cos(2t) − 2e−t sin(2t))

+ c4(2e−t cos(2t) − e−t sin(2t)),

d2ξ
dt2 (t) = c1et + c2(2et + tet) + c3(−3e−t cos(2t) + 4e−t sin(2t))

+ c4(−4e−t cos(2t) − 3e−t sin(2t)),

d3ξ
dt3 (t) = c1et + c2(3et + tet) + c3(11e−t cos(2t) + 2e−t sin(2t))

+ c4(−2e−t cos(2t) + 11e−t sin(2t)).

Evaluating these at t = 0 gives the equations

c1 + c3 = x0,

c1 + c2 − c3 + 2c4 = x(1)
0 ,

c1 + 2c2 − 3c3 − 4c4 = x(2)
0 ,

c1 + 3c2 + 11c3 − 2c4 = x(3)
0 .

These are four linear equations in four unknowns that, because of Proposition 4.2.1,
we know possesses unique solutions. These can be solved to give

c1 =
1

16 (15x0 + x(1)
0 + x(2)

0 − x(3)
0 ),

c2 =
1
8 (−5x0 + 3x(1)

0 + x(2)
0 + x(3)

0 ),

c3 =
1

16 (x0 − x(1)
0 − x(2)

0 + x(3)
0 ),

c4 =
1
8 (−x0 + 2x(1)

0 − x(2)
0 ).

Go ahead and plug numbers into this bad boy, if this is your thing. •
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The next two examples are intended to illustrate the how the behaviour of the
roots of the characteristic polynomial affect the behaviour of solutions.

4.2.21 Example (First-order system behaviour) Here we consider a general 1st-order
scalar linear homogeneous ordinary differential equation F with right-hand side

F̂(t, x) = −
x
τ

for τ ∈ R. Solutions t 7→ ξ(t) satisfy

dξ
dt
+ τ−1ξ(t) = 0.

This is an easy equation to solve. It characteristic polynomial is PF = X+τ−1 which
has the single real root r1 = −τ−1. Thus, by Procedure 4.2.18, any solution has the
form ξ(t) = ce−t/τ. To determine c, we use initial conditions as in Proposition 4.2.1.
We take a general initial time t0 and prescribe ξ(t0) = x0. Thus

ξ(t0) = ce−t0/τ =⇒ c = x0et0/τ,

and so ξ(t) = x0e−(t−t0)/τ.
Let us think about this solution for a moment. When τ > 0, this is exponential

decay and when τ < 0 it is exponential growth. In Figure 4.1 we graph ξ(t) as a

0.0 0.5 1.0 1.5 2.0

0

2

4

6

Figure 4.1 Solutions of a first-order scalar linear homogeneous
ordinary differential equation with ξ(0) = 1

function of t for a few different τ’s. Note that τ is not the rate of growth or decay, but
the inverse of this. This is sometimes known as the time constant for the equation,
since the units for τ are time. We can see that small (in magnitude) τ’s give rise to
relatively faster growth or decay. When τ = ∞ (whatever that means), the decay
or growth is infinitely slow, i.e., solutions neither grow nor decay. •
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4.2.22 Example (Second-order system behaviour) We next consider a certain form of
2nd-order scalar linear homogeneous ordinary differential equation, namely such
an equation F with right-hand side

F̂(t, x, x(1)) = −ω2
0x − 2ζω0x(1)

for ω0 ∈ R>0 and ζ ∈ R. The equations (1.1) for a mass-spring-damper and (1.6)
for the current in a series RLC circuit are of this general form. A solution t 7→ ξ(t)
satisfies

d2ξ
dt2 (t) + 2ζω0

dξ
dt

(t) + ω2
0ξ(t) = 0.

The characteristic polynomial is

PF = X2 + 2ζω0X + ω2
0.

The roots of this equation are found using the quadratic formula, and their character
depends on discriminant which is ∆ = 2ω2

0(ζ2
− 1). When ∆ > 0 the roots are real

and when ∆ < 0 the roots are complex. To be precise, the roots are the following:
1. ζ2 > 1: two distinct real roots

r1 = ω0(−ζ +
√
ζ2 − 1), m(r1) = 1, r2 = ω0(−ζ −

√
ζ2 − 1), m(r2) = 1;

2. ζ = 1: one repeated real root

r1 = −ω0ζ, m(r2) = 2;

3. ζ2 < 1: a complex conjugate pair of roots with

ρ1 = ω0(−ζ + i
√

1 − ζ2), m(ρ1) = 1.

This then gives rise, according to Procedure 4.2.18, to the following solutions of
the differential equation:

1. ζ2 > 1: ξ(t) = c1eω0(−ζ+
√
ζ2−1)t + c2eω0(−ζ−

√
ζ2−1)t;

2. ζ2 = 1: ξ(t) = c1e−ω0ζt + c2te−ω0ζt;
3. ζ2 < 1: ξ(t) = c1e−ω0ζt cos(ω0

√
1 − ζ2t) + c2e−ω0ζt sin(ω0

√
1 − ζ2t).

To determine the constants c1 and c2, one applies initial conditions. Let us keep
things simple and prescribe initial conditions

ξ(0) = x0,
dξ
dt

(0) = x(1)
0 .

Skipping the tedious manipulations. . .
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1. ζ2 > 1:

c1 =
ω0(ζ +

√
ζ2 − 1)x0 + x(1)

0

2ω0
√
ζ2 − 1

,

c2 =
−ω0(ζ −

√
ζ2 − 1)x0 − x(1)

0

2ω0
√
ζ2 − 1

;

2. ζ2 = 1:

c1 = x0,

c2 = ω0ζx0 + x(1)
0 ;

3. ζ2 < 1:

c1 = x0,

c2 =
ω0ζx0 + x(1)

0

ω0
√

1 − ζ2
.

In Figure 4.2 we graph solutions for fixed ω0 and varying ζ. We ζ > 0 we say the

0 2 4 6 8 10
-2

-1

0

1

2

Figure 4.2 Solutions of a second-order scalar linear homoge-
neous ordinary differential equation with ω0 = 1, ξ(0) = 1,
and dξ

dt (0) = 0

equation is positively damped, when ζ = 0 we say the equation is undamped, and
when ζ < 0 we say the equation is negatively damped. In practice, systems are
positively damped, or possibly undamped. So let us focus on this situation for a
moment. Here we break things down into ζ < 1, which is called underdamped,
ζ = 1 which is called critically damped, and ζ > 1 which is called overdamped.
The underdamped case is distinguished by there being oscillations in the motion,
corresponding to the imaginary part of the roots. In the critical and overdamped
cases, we do not get this oscillation. •
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Exercises

4.2.1 Consider the ordinary differential equation F with right-hand side given
by (4.1).
(a) Convert this to a first-order equation with k states, following Exer-

cise 3.1.23.
(b) Show that, if a0, a1, . . . , ak ∈ L1

loc(T;R), then the resulting first-order equa-
tion satisfies the conditions of Theorem 3.2.8 for existence of a unique
solution t 7→ ξ(t) satisfying the initial conditions

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t)(t0) = x(k−1)

0

at time t0 ∈ T.
4.2.2 Let a, b, c, ω, ϕ ∈ R and define

ξ1(t) = a cos(ωt + ϕ), ξ2(t) = b cos(ωt) + c sin(ωt).

Show that ξ1, ξ2 ∈ Sol(F) where F is the second-order scalar linear homoge-
neous ordinary differential equation with constant coefficients whose right-
hand side is

F̂(t, x, x(1)) = −ω2x.

Explain in at least two ways why this is not a violation of Proposition 4.2.1
concerning uniqueness of solutions.

4.2.3 In each of the following cases, show that the functions given are a basis for
Sol(F) with F as given:
(a) take

F(t, x, x(1), x(2)) = x(2)
− x

and
ξ1(t) = et, ξ2(t) = e−t;

(b) take
F(t, x, x(1), x(2), x(3)) = x(3) + 4x(2) + 4x(1)

and
ξ1(t) = 1, ξ2(t) = e−2t, ξ3(t) = te−2t.

(c) take
F(t, x, x(1), x(2)) = x(2) + ω2x

and
ξ1(t) = cos(ωt), ξ2(t) = sin(ωt).
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(d) take
F(t, x, x(1), x(2)) = t2x(2) + tx(1)

− x

and
ξ1(t) = t, ξ2(t) = t−1

(here the time-domain must be an interval not containing 0).
4.2.4 For each of the ordinary differential equations F of Exercise 4.2.3, give the

general form of a solution of the differential equation, i.e., the general form
of t 7→ ξ(t) satisfying

F
(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
= 0.

4.2.5 For each of the ordinary differential equations F of Exercise 4.2.3 for which
you found a general form of their solution in Exercise 4.2.4, give the solution
satisfying the given initial conditions:
(a) ξ(0) = 1 and ξ̇(0) = 1;
(b) ξ(0) = 1, ξ̇(0) = 1, and ξ̈(0) = 1;
(c) ξ(0) = 1 and ξ̇(0) = 0;
(d) ξ(1) = 1 and ξ̇(1) = 1.

4.2.6 If possible, find the characteristic polynomial for the following scalar ordi-
nary differential equations:
(a) F(t, x, x(1)) = x(1) + tx;
(b) F(t, x, x(1)) = x(1) + 3x;
(c) F(t, x, x(1), x(2)) = 2x(2)

− x(1) + 8x;
(d) F(t, x, x(1), x(2)) = x(2) +

ag

ℓ sin(x);
(e) F(t, x, x(1), x(2)) = x(2) + ω2x;
(f) F(t, x, x(1), . . . , x(k)) = akx(k) + · · · + a1x(1) + a0x.

4.2.7 Find the unique lowest order normalised scalar linear homogeneous or-
dinary differential equation with constant coefficients whose characteristic
polynomial has the following roots:
(a) {−1, 2};
(b) {2 + 2i, 2 − 2i,−2};
(c) {− 1

τ }, τ ∈ R \ {0};
(d) {−a,−a, 2}, a ∈ R;
(e) {ω0(−ζ + i

√
1 − ζ2), ω0(−ζ − i

√
1 − ζ2)}, ω0, ζ ∈ R, ω0 , 0, |ζ| ≤ 1;

(f) {σ + iω, σ − iω}, σ,ω ∈ R, ω , 0.
4.2.8 Find the unique lowest order normalised scalar linear homogeneous ordi-

nary differential equation with the following functions as a fundamental set
of solutions:
(a) ξ1(t) = e−t and ξ2(t) = e2t;
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(b) ξ1(t) = e2t cos(2t), ξ2(t) = e2t sin(2t), ξ3(t) = e−2t;
(c) ξ1(t) = e−t/τ, τ ∈ R \ {0};
(d) ξ1(t) = e−at, ξ2(t) = te−at, a ∈ R, and ξ3(t) = e2t;
(e) ξ1(t) = e−ω0ζt cos(ω0

√
1 − ζ2t) and ξ2(t) = e−ω0ζt sin(ω0

√
1 − ζ2t), ω0, ζ ∈

R, ω0 , 0, |ζ| ≤ 1;
(f) ξ1(t) = eσt cos(ωt) and ξ2(t) = eσt sin(ωt), σ,ω ∈ R, ω , 0.

4.2.9 In Proposition 4.2.11 it is proved that the set of solutions for a scalar linear
inhomogeneous ordinary differential with continuous coefficients uniquely
determines the differential equation. Show how you would, given a fun-
damental set of solutions to a homogeneous such equation, with constant
coefficients, recover the coefficients in the differential equation.

4.2.10 Solve the following initial value problems:
(a) ξ̇(t) + 3ξ(t) = 0, ξ(0) = 4;
(b) ξ̈(t) − 4ξ̇(t) + 4ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1;
(c) ξ̈(t) − 4ξ̇(t) − 4ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1;
(d)

...
ξ(t) − 7ξ̈(t) + 15ξ̇(t) − 9ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;

(e)
...
ξ(t) + 3ξ̈(t) + 4ξ̇(t) + 2ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1, ξ̈(0) = 2;

(f)
....
ξ(t) +

...
ξ(t) + ξ̈(t) + ξ̇(t) + ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 0, ξ̈(0) = 0,

...
ξ(0) = 0.



244 4 Scalar ordinary differential and ordinary difference equations 2022/03/07

Section 4.3

Scalar linear inhomogeneous ordinary differential equations

In this section we still consider scalar linear ordinary differential equations, but
now we consider the inhomogeneous case. We still have the time-domain T and
the state space U = R, but now we have a right-hand side of the form

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0x + b(t) (4.11)

for functions a0, a1, ak−1, b : T→ R. Thus solutions t 7→ ξ(t) satisfy

dkξ(t)
dtk

(t) + ak−1(t)
dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t).

We shall proceed in this section much as in the preceding section, first saying some
things about the general case, and then focussing on the case where F has constant
coefficients, as in this case there is more that can be said.

Do I need to read this section? This section contains tools that are standard for
anyone claiming to know something about ordinary differential equations. •

4.3.1 Equations with time-varying coefficients

We begin by stating some general properties of general scalar linear inhomoge-
neous ordinary differential equations.

4.3.1.1 Solutions and their properties First we state the local existence and
uniqueness result that one needs to get off the ground for any class of differential
equations.

4.3.1 Proposition (Local existence and uniqueness of solutions for scalar linear
homogeneous ordinary differential equations) Consider the linear inhomogeneous
ordinary differential equation F with right-hand side equation (4.11) and suppose that
a0, a1, . . . , ak−1 ∈ L1

loc(T;R). Let

(t0, x0, x
(1)
0 , . . . , x

(0)
k−1) ∈ T ×R ⊕ L≤k−1

sym (R;R).

Then there exists an interval T′ ⊆ T and a map ξ ∈ ACk−1
loc (T′;R) that is a solution for F

and which satisfies

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t)(t0) = x(k−1)

0 .
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Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ ∈ ACk−1
loc (T̃′;R) is another solution for

F satisfying

ξ̃(t0) = x0,
dξ̃
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ̃

dtk−1
(t)(t0) = x(k−1)

0 ,

then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
Proof This is Exercise 4.3.1. ■

As with homogeneous equations, for the scalar linear inhomogeneous ordinary
differential equations we can show that solutions exist for all times.

4.3.2 Proposition (Global existence of solutions for scalar linear inhomogeneous
ordinary differential equations) Consider the linear in homogeneous ordinary differ-
ential equation F with right-hand side equation (4.11) and suppose that a0, a1, . . . , ak−1, b ∈
L1

loc(T;R). If ξ ∈ ACk−1
loc (T′;R) is a solution for F, then there exists a solution

ξ ∈ ACk−1
loc (T;R) for which ξ|T′ = ξ.

Proof Note that, as per Exercise 3.1.23, we can convert the differential equation F into
a first-order differential equation linear homogeneous differential equation with states
(x, x(1), . . . , x(k−1)). Thus the result will follow from the analogous result for first-order
systems of equations, and this is stated and proved as Proposition 5.3.2. ■

As in the homogeneous case, we can now talk sensibly about the set of all
solutions for F. Thus we can define

Sol(F) =
{
ξ ∈ ACk−1

loc (T;R)

∣∣∣∣∣∣
dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t), a.e. t ∈ T
}

which is exactly this set of all solutions for F. While Sol(F) was a vector space in the
homogeneous case, in the inhomogeneous case this is no longer the case. However,
the set of all solutions for the homogeneous case plays an important rôle, even in
the homogeneous case. To organise this discussion, we let Fh be the “homogeneous
part” of F. Thus the right-hand side of Fh is

F̂h(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x.

As in Theorem 4.2.3, Sol(Fh) is a R-vector space of dimension k. We can now state
the character of Sol(F).

4.3.3 Theorem (Affine space structure of sets of solutions) Consider the linear in-
homogeneous ordinary differential equation F with right-hand side equation (4.11) and
suppose that a0, a1, . . . , ak−1, b ∈ L1

loc(T;R). Let ξp ∈ Sol(F). Then

Sol(F) = {ξ + ξp | ξ ∈ Sol(Fh)}.
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Proof First note that, by Theorem 4.2.3, Sol(F) , ∅ and so there exists some ξp ∈

Sol(F). We have, of course,

dkξp

dtk
(t) + ak−1(t)

dk−1ξp

dtk−1
(t) + · · · + a1(t)

dξp

dt
(t) + a0(t)ξp(t) = b(t). (4.12)

Next let ξ ∈ Sol(F) so that

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t). (4.13)

Subtracting (4.12) from (4.13) we get

dk(ξ − ξp)

dtk
(t) + ak−1(t)

dk−1(ξ − ξp)

dtk−1
(t) + · · · + a1(t)

d(ξ − ξp)
dt

(t) + a0(t)(ξ − ξp)(t) = 0,

i.e., ξ − ξp ∈ Sol(Fh). In other words, ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh).
Conversely, suppose that ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh). Then

dkξ̃

dtk
(t) + ak−1(t)

dk−1ξ̃

dtk−1
(t) + · · · + a1(t)

dξ̃
dt

(t) + a0(t)ξ̃(t) = 0. (4.14)

Adding (4.12) and (4.14) we get

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

i.e., ξ ∈ Sol(F). ■

It is interesting to make some comments on the preceding theorem in the lan-
guage of basic problems in linear algebra.

4.3.4 Remark (Comparison of Theorem 4.3.3 with systems of linear algebraic equa-
tions) The reader should compare here the result of Theorem 4.3.3 with the situ-
ation concerning linear algebraic equations of the form L(u) = v0, for vector spaces
U and V, a linear map L ∈ L(U; V), and a fixed v0 ∈ V. In particular, we can make
reference to Section I-5.4.8. In the setting of scalar linear inhomogeneous ordinary
differential equations, we have

U = ACk−1
loc (T;R),

V = L1
loc(T;R),

L( f )(t) =
dk f
dtk

(t) + ak−1(t)
dk−1 f
dtk−1

(t) + · · · + a1(t)
d f
dt

(t) + a0(t) f (t),

v0 = b.

Then Propositions 4.3.1 and 4.3.2 tell us that L is surjective, and so v0 ∈ image(L).
Thus we are in case (ii) of Proposition I-5.4.48, which exactly the statement of
Theorem 4.3.3. Note that L is not injective, since Theorem 4.2.3 tells us that
dimR(ker(L)) = k. •
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Note that Theorem 4.3.3 tells us that, to solve a scalar linear inhomogeneous
ordinary differential equation, we must do two things: (1) find some solution for
the equation; (2) find all solutions for the homogeneous part. Then we know
our solution will be found amongst the set of sums of these. Generally, both
of these things is impossible, in any general way. We do know, however, that
Procedure 4.2.18 can be used, in principle, to find all solutions for the homogeneous
part in the constant coefficient case. Thus one need only find some solution of the
equation in this case. Upon finding such a solution, one calls it a particular
solution. Note that there are many particular solutions. Indeed, Proposition 4.2.1
tells us that there is one solution for every set of initial conditions. So one should
always speak of a particular solution, not the particular solution.

4.3.1.2 Finding a particular solution using the Wronskian So. . . how do we
find a particular solution? In this section we outline a general (and not very
efficient) way of arriving at some such solution, using the Wronskian of Defini-
tion 4.2.6. To state the result, suppose that we have a fundamental set of solutions
{ξ1, . . . , ξk} for Fh, where F has right-hand side (4.11), and denote

Wb, j(ξ1, . . . , ξk)(t)

= det



ξ1(t) · · · ξ j−1(t) 0 ξ j+1(t) · · · ξk(t)
...

. . .
...

...
...

. . .
...

dk−2ξ1

dtk−2
(t) · · ·

dk−2ξ j−1

dtk−2
(t) 0

dk−2ξ j+1

dtk−2
(t) · · ·

dk−2ξk

dtk−2
(t)

dk−1ξ1

dtk−1
(t) · · ·

dk−1ξ j−1

dtk−1
(t) b(t)

dk−1ξ j+1

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)


,

for j ∈ {1, . . . , k}, i.e., Wb, j(ξ1, . . . , ξk)(t) is the determinant of the matrix used to
compute the Wronskian, but with the jth column replaced by (0, . . . , 0, b(t)).

We then have the following result.

4.3.5 Proposition (A particular solution using Wronskians) Consider the linear in-
homogeneous ordinary differential equation F with right-hand side equation (4.11) and
suppose a0, a1, . . . , ak−1, b ∈ L1

loc(T;R). Let {ξ1, . . . , ξk} be a fundamental set of solutions
for Fh and let t0 ∈ T. Then the function ξp : T→ R defined by

ξp(t) =
k∑

j=1

ξj(t)
∫ t

t0

Wb,j(ξ1, . . . , ξk)(τ)
W(ξ1, . . . , ξk)(τ)

dτ, a.e. t ∈ T,

is a particular solution for F.
Proof Let us define

c j(t) =
∫ t

t0

Wb, j(ξ1, . . . , ξk)(τ)

W(ξ1, . . . , ξk)(τ)
dτ, j ∈ {1, . . . , k}, a.e. t ∈ T,
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so that
dc j

dt
(t) =

Wb, j(ξ1, . . . , ξk)(t)
W(ξ1, . . . , ξk)(t)

, j ∈ {1, . . . , k}, a.e. t ∈ T.

Note that this is equivalent, by Cramer’s Rule for linear systems of algebraic equations
(Proposition I-5.3.12), to the set of equations

ξ1(t) ξ2(t) · · · ξk(t)
dξ1

dt
(t)

dξ2

dt
(t) · · ·

dξk

dt
(t)

...
...

. . .
...

dk−1ξ1

dtk−1
(t)

dk−1ξ2

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)





dc1

dt
(t)

dc2

dt
(t)
...

dck

dt
(t)


=


0
0
...

b(t)

 , a.e. t ∈ T. (4.15)

Note that the proposition is then that

ξp(t) =
k∑

j=1

c j(t)ξ j(t), a.e. t ∈ T,

defines a particular solution for F. This we shall prove by direct computation.
We compute

dξp

dt
(t) =

k∑
j=1

dc j

dt
(t)ξ j(t) +

k∑
j=1

c j(t)
dξ j

dt
(t) =

k∑
j=1

c j(t)
dξ j

dt
(t)

for t ∈ T, using the first of equations (4.15). Repeatedly differentiating and using
successive equations from (4.15), we deduce that

dlξp

dt j (t) =
k∑

j=1

c j(t)
dlξ

dtl
(t), l ∈ {0, 1, . . . , k − 1}, a.e. t ∈ T.

We also have, using the last of equations (4.15),

dkξp

dtk
(t) =

k∑
j=1

dc j

dt
(t)

dk−1ξ j

dtk−1
(t) +

k∑
j=1

c j(t)
dkξ j

dtk
(t) =

k∑
j=1

c j(t)
dkξ j

dtk
(t) + b(t).

Therefore, combining these calculations,

dkξp

dtk
(t) + ak−1(t)

dk−1ξp

dtk−1
(t) + · · · + a1(t)

dξp

dt
(t) + a0(t)ξ(t)

=

k∑
j=1

c j(t)

dkξ j

dtk
(t) + ak−1(t)

dk−1ξ j

dtk−1
(t) + · · · + a1(t)

dξ j

dt
(t) + a0(t)ξ j(t)

 + b(t) = b(t),

using the fact that ξ1, . . . , ξk are solutions for Fh. Thus ξp is indeed a particular solution.
■

Let us illustrate this result on an example.
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4.3.6 Example (First-order scalar linear inhomogeneous ordinary differential equa-
tions) We consider here the first-order equation F with right-hand side

F̂(t, x) = −a(t)x + b(t)

for a, b ∈ L1
loc(T;R). We have seen in Example 4.2.5 that a fundamental set of

solutions is given by {ξ1(t)}, with

ξ1(t) = e−
∫ t

t0
a(τ) dτ

for some t0 ∈ T. Therefore,

W(ξ1)(t) = det
[
ξ1(t)

]
= ξ1(t), W(ξ1)b,1 = det

[
b(t)

]
= b(t).

Thus

ξp(t) = ξ1(t)
(∫ t

t0

b(τ)
ξ1(τ)

dτ
)

= e−
∫ t

t0
a(τ) dτ

∫ t

t0

b(τ)e
∫ τ

t0
a(σ) dσdτ

defines a particular solution for F. Thus, as in Theorem 4.3.3, any solution for F
has the form

ξ(t) = Ce−
∫ t

t0
a(τ) dτ

+ e−
∫ t

t0
a(τ) dτ

∫ t

t0

b(τ)e
∫ τ

t0
a(σ) dσdτ

for some C ∈ R. In we apply an initial condition ξ(t0) = x0, then we see that C = x0.
Therefore, finally, we have the solution

ξ(t) = x0e−
∫ t

t0
a(τ) dτ

+ e−
∫ t

t0
a(τ) dτ

∫ t

t0

b(τ)e
∫ τ

t0
a(σ) dσdτ

to the initial value problem

dξ
dt

(t) + a(t)ξ(t) = b(t), ξ(t0) = x0.

Because we have expressed the solution of a differential equation as an integral,
we declare victory!3

•

4.3.1.3 The continuous-time Green’s function In this section we describe an-
other means of determining a particular solution. In this case, what we arrive at is
a description of a particular solution that allows for the inhomogeneous term “b”
to be plugged into an integral. We shall see a close variant of this in Section 5.3
when we discuss linear inhomogeneous systems of equations.

The result is the following.
3Because victories are few and far between in the business of solving differential equations.
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4.3.7 Theorem (Existence of, and properties of, the continuous-time Green’s func-
tion) Consider the linear homogeneous ordinary differential equation F with right-hand
side equation (4.1) and suppose that a0, a1, . . . , ak−1 ∈ L1

loc(T;R). Then there exists

GF : T × T→ R

with the following properties:

(i)
∂lGF

∂tl
is continuous for l ∈ {0, 1, . . . ,k − 2};

(ii)
∂k−1GF

∂tk−1
is continuous on

{(t, τ) ∈ T × T | t , τ};

(iii) for τ ∈ T, we have

lim
t↑τ

∂lGF

∂tl
(t, τ) = 0, lim

t↓τ

∂lGF

∂tl
(t, τ) = 0, l ∈ {0, 1, . . . ,k − 2},

and

lim
t↑τ

∂k−1GF

∂tk−1
(t, τ) = 0, lim

t↓τ

∂k−1GF

∂tk−1
(t, τ) = 1;

(iv) for t ∈ T \ {τ} we have

∂kGF

∂tk
(t, τ) + ak−1(t)

∂k−1GF

∂tk−1
(t, τ) + · · · + a1(t)

∂GF

∂t
(t, τ) + a0(t)GF(t, τ) = 0;

(v) if b ∈ L1
loc(T;R), if t0 ∈ T, and if ξp,b : T≥t0 → R is given by

ξp,b(t) =
∫ t

t0

GF(t, τ)b(τ) dτ,

then ξp,b solves the initial value problem

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

ξ(t0) = · · · =
dk−1ξ

dtk−1
(t0) = 0.

Moreover, there is only one such function satisfying all of the above properties.
Proof For τ ∈ T, let ξτ : T→ R be the solution to the initial value problem

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0,

ξ(τ) = · · · =
dk−2ξ

dtk−2
(τ) = 0,

dk−1ξ

dtk−1
(τ) = 1.
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Let {ξ1, . . . , ξk} be a fundamental set of solutions and write

ξτ(t) =
k∑

j=1

c j(τ)ξ j(t), t ∈ T≥τ.

The specified initial conditions for ξτ can then be written in matrix form as

ξ1(τ) · · · ξk(τ)
dξ1

dt
(τ) · · ·

dξk

dt
(τ)

...
. . .

...
dk−1ξ1

dtk−1
(τ) · · ·

dk−1ξk

dtk−1
(τ)




c1(τ)
c2(τ)
...

ck(τ)

 =

0
0
...
1

 .

Following the construction preceding the statement of Proposition 4.3.5, denote

W j(ξ1, . . . , ξk)(t)

= det



ξ1(t) · · · ξ j−1(t) 0 ξ j+1(t) · · · ξk(t)
...

. . .
...

...
...

. . .
...

dk−2ξ1

dtk−2
(t) · · ·

dk−2ξ j−1

dtk−2
(t) 0

dk−2ξ j+1

dtk−2
(t) · · ·

dk−2ξk

dtk−2
(t)

dk−1ξ1

dtk−1
(t) · · ·

dk−1ξ j−1

dtk−1
(t) 1

dk−1ξ j+1

dtk−1
(t) · · ·

dk−1ξk

dtk−1
(t)


,

for j ∈ {1, . . . , k}. Then

c j(τ) =
W j(ξ1, . . . , ξk)(τ)
W(ξ1, . . . , ξk)(τ)

.

This allows us to conclude that c1, . . . , ck ∈ C0(T;R).
Now define

GF(t, τ) =

ξτ(t), t ≥ τ,
0, t < τ.

.

With this definition of GF, let us check off the assertions of the theorem.
First note that, since ξτ ∈ ACk−1

loc (T;R), the partial derivatives ∂lGF
∂tl , l ∈ {0, 1, . . . , k−1},

are immediately continuous on

{(t, τ) ∈ T × T | t , τ}.

Now let τ ∈ T and let ((t j, τ j)) j∈Z>0 be a sequence inT×T converging to (τ, τ). If t j < τ j,
then

∂lGF

∂tl
(t j, τ j) = 0, l ∈ {0, 1, . . . , k − 2}.

Thus, without loss of generality, suppose that t j ≥ τ j, j ∈ Z>0. The initial conditions
for ξτ then ensure that

lim
j→∞

∂lGF

∂tl
(t j, τ j) = lim

j→∞

k∑
j=1

c j(τ j)
∂lξτ
∂tl

(t j) = 0, l ∈ {0, 1, . . . , k − 2}.
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This gives continuity of ∂lGF
∂tl , l ∈ {0, 1, . . . , k − 2}, on T × T. This gives parts (i) and (ii).

By definition, we have parts (iii) and (iv).
Let b ∈ L1

loc(T;R) and, for t0 ∈ T, define ξp,b : T≥t0 → R by

ξp,b(t) =
∫ t

t0

GF(t, τ)b(τ) dτ.

For part (v), we must show that ξp,b solves the initial value problem in the theorem
statement. We can inductively compute

dlξp,b

dtl
(t) = lim

τ↑t

∂l−1GF

∂tl−1
(t, τ)b(t) +

∫ t

t0

∂lGF

∂tl
(t, τ)b(τ) dτ, l ∈ {0, 1, . . . , k}.

Since

lim
τ↑t

∂l−1GF

∂tl−1
(t, τ) = 0, l ∈ {0, 1, . . . , k − 1},

by parts (i) and (iii), we have

dlξp,b

dtl
(t) =

∫ t

t0

∂lGF

∂tl
(t, τ)b(τ) dτ, l ∈ {0, 1, . . . , k − 1}. (4.16)

Similarly, by parts (i) and (iii), we have

dkξp,b

dtk
(t) = b(t) +

∫ t

t0

∂kGF

∂tk
(t, τ)b(τ) dτ. (4.17)

Combining (4.16) and (4.17), and using part (iv), we have, for t ∈ T≥t0 ,

∂kξp,b

∂tk
(t) + ak−1(t)

dk−1ξp,b

dtk−1
(t) + · · · + a1(t)

dξp,b

dt
(t) + a0(t)ξp,b(t) = b(t),

giving (v).
The final uniqueness assertion of the theorem is obtained from the following

observations:
1. for t < τ, t 7→ GF(t, τ) is the unique element of Sol(F) with initial conditions

lim
t↑τ

∂lGF

∂tl
(t, τ) = 0, l ∈ {0, 1, . . . , k − 1};

2. for t ≥ τ, t 7→ GF(t, τ) is the unique element of Sol(F) with initial conditions

∂lGF

∂tl
(τ, τ) = 0, l ∈ {0, 1, . . . , k − 2},

∂k−1GF

∂tk−1
(τ, τ) = 1.

These, combined with Proposition 4.3.1, give the theorem. ■

Of course, we can give a name to the function GF from the preceding theorem.
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4.3.8 Definition (Continuous-time Green’s function) Consider the linear homoge-
neous ordinary differential equation F with right-hand side equation (4.11) and
suppose that a0, a1, . . . , ak−1 ∈ L1

loc(T;R). The function GF of Theorem 4.3.7 is the
continuous-time Green’s function for F. •

There are a few observations one can make about the continuous-time Green’s
function.

4.3.9 Remarks (Attributes of the continuous-time Green’s function)
1. As we observed in Remark 4.3.4, the mapping

LF : ACk−1
loc (T;R)→ L1

loc(T;R)

ξ 7→ Fh

(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
is surjective, and so, for any b ∈ L1

loc(T;R), there exists one (indeed, many by
Theorem 4.3.3), solution of the differential equation with solutions

Fh

(
t, ξ(t),

dξ
dt

(t), . . . ,
dkξ

dtk
(t)

)
= b(t).

One can think of the mapping

b 7→
(
t 7→

∫ t

t0

GF(t, τ)b(τ) dτ
)

(4.18)

as prescribing a right-inverse of LF. Of course, the prescription of a particular
right-inverse amounts to a prescription for choosing initial conditions, since
initial conditions are what distinguish elements of Sol(F). We refer the reader
to Exercise 4.3.2 for just what initial condition choice is being made by the
assignment (4.18).

2. There is also a physical interpretation of the mapping t 7→ GF(t, τ). For t < τ,
the solution is zero, until something happens at t = τ. At t = τ, we imagine the
system being given an “impulse” i.e., a short duration, large magnitude input.
If the area under the graph of this impulse is 1, this will give a jolt to the kth
derivative of GF at t = τ. This discontinuity when integrated, will give an input
of 1 to the (k − 1)st derivative, resulting in the initial conditions of part (iii) of
Theorem 4.3.7.
This nonsense can be made precise using the theory of distributions, and we do
this in Theorem 4.4.5 below. In system theory, this is connected to the “impulse
response” which plays an important rôle, as we shall see in . • what

Let us give the simplest possible example to illustrate the use of the continuous-
time Green’s function.



254 4 Scalar ordinary differential and ordinary difference equations 2022/03/07

4.3.10 Example (Continuous-time Green’s function for first-order scalar linear ordi-
nary differential equation) We consider the first order equation F with right-hand
side

F̂(t, x) = −a(t)x.

Let us take T to be the time-domain for the equation. The way one determines
the continuous-time Green’s function is by first taking τ ∈ T and then solving the
initial value problem

ξ̇(t) + a(t)ξ(t) = 0, ξ(τ) = 1,

just as prescribed in part (iii) of Theorem 4.3.7. However, in Example 4.2.5 we
obtained the solution to this initial value problem as

ξ(t) = e−
∫ t
τ

a(s) ds.

Then the continuous-time Green’s function is given by

GF(t, τ) =

0, t < τ,

e−
∫ t
τ

a(s) ds, t ≥ τ.

Therefore, given b ∈ L1
loc(T;R), the solution to the initial value problem

dξ
dt

(t) + a(t)ξ(t) = b(t), ξ(t0) = 0,

is given by

ξp,b(t) =
∫ t

t0

e−
∫ t
τ

a(s) dsb(τ) dτ.

Note that this is, in this first-order case, the same particular solution as in Exam-
ple 4.3.6 using the Wronskian method of Proposition 4.3.5. This is simply because
both solutions satisfy the same initial value problem. To rectify that the solutions
are, in fact the same, can be done by a change of integration variable. •

We plot the graph of GF in the case of T = [0,∞) and a(t) = 1 in Figure 4.3. •

4.3.11 Remark (Continuous-time Green’s function for constant coefficient equa-
tions and convolution) Suppose that F is a kth-order scalar linear inhomogeneous
ordinary differential equation with constant coefficients, and take T = [0,∞). As
in the statement of Theorem 4.3.7, for each τ ∈ T, t 7→ GF(t, τ) is a solution for F
satisfying the initial conditions

∂ jGF

∂t j (τ, τ) = 0, j ∈ {0, 1, . . . , k − 2},

∂k−1GF

∂tk−1
(τ, τ) = 1.
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Figure 4.3 The continuous-time Green’s function for a scalar lin-
ear ordinary differential equation with constant coefficients

Since F has constant coefficients, it is autonomous, and so by Exercise 3.1.19 there
exists HF : T→ R such that GF(t, τ) = HF(t−τ). Then, if we add an inhomogeneous
term b to F, the particular solution of Theorem 4.3.7(v) is

ξp,b(t) =
∫ t

0
HF(t − τ)b(τ) dτ.

Integrals of the type ∫
f (t − τ)g(τ) dτ

are known as convolution integrals. These arise in system theory, Fourier theory,
and approximation theory, for example. We shall consider convolution in the
context of transform theory in . • better forward refs

4.3.2 Equations with constant coefficients

We now specialise the general discussion from the preceding section to equa-
tions with constant coefficients. Thus we are looking at scalar linear inhomoge-
neous ordinary differential equations with right-hand sides given by

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + b(t) (4.19)

for a0, a1, . . . , ak−1 ∈ R and b : T→ R. Thus a solution t 7→ ξ(t) satisfies the equation

dkξ(t)
dtk

(t) + ak−1
dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = b(t). (4.20)

These equations are, of course, a special case of the equations considered in Sec-
tion 4.3.1, and so all statements made about the general case of time-varying
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coefficients hold in the special case of constant coefficients. In particular, Propo-
sitions 4.3.1 and 4.3.2, and Theorem 4.3.3 hold for equations of the form (4.20).
However, for these constant coefficient equations, it is possible to say some things
a little more explicitly, and this is what we undertake to do.

4.3.2.1 The “method of undetermined coefficients” We present in this section
a so-called method for solving scalar linear inhomogeneous ordinary differential
equations with constant coefficients. With this method, one guesses a form of
particular solution based on the form of the function b, and then does algebra to
determine the precise solution. The advantages to this method are
1. it does not require first finding a fundamental set of solutions, as in Proposi-

tion 4.3.5,
2. it is in principle possible for a brainless monkey to apply the method, and
3. it is an excellent source of mindless computations that students can be forced

to do for marks in homework and on exams.
The disadvantages of the method are
1. it only works for very specific functions b, and so does not work most of the

time,
2. even when it does work, it is tedious and likely to produce errors when used in

the hands of most humans,
3. it is 2016, for crying out loud, and there are computer packages that do this sort

of thing in their sleep!
What we shall do is (1) describe when the method applies, (2) describe how one
uses the method, and (3) reiterate the silliness of the method at the end of the
discussion.

First let us indicate the sorts of “b’s” we allow.

4.3.12 Definition (Pretty uninteresting function) Let T ⊆ R be an interval. A function
f : T→ R is pretty uninteresting if it has one of the following three forms:

(i) f (t) = tmert for m ∈ Z≥0 and r ∈ R;
(ii) f (t) = tmeσt cos(ωt) for m ∈ Z≥0, σ ∈ R, and ω ∈ R>0;
(iii) f (t) = tmeσt sin(ωt) for m ∈ Z≥0, σ ∈ R, and ω ∈ R>0.

The nonnegative integer m in the above forms is the order of f and is denoted by
o( f ). If f : T→ R has the form

f (t) = c1 f1(t) + · · · + cr fr(t)

where c1, . . . , cr ∈ R and each of f1, . . . , fr is pretty uninteresting, then f is also
pretty uninteresting. •

Here are some examples of useful pretty uninteresting functions.
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4.3.13 Examples (Examples of interesting pretty uninteresting functions)
1. Consider the function 1≥0 : [0,∞) → R defined by 1≥0(t) = 1 for all t ∈ [0,∞).

This is a “step function” and is pretty uninteresting. Often it is taken to be
defined on all of R, and to be zero for negative times. The idea is that it gives
an input to a differential equation that “switches on” at t = 0. Among the many
particular solutions for a differential equation with b = 1≥0, there is one that is
known as the “step response,” and it is determined by a specific choice of initial
condition. Students going on to take a course in system theory will learn about
this.

2. Next consider the function Hω : [0,∞) → R defined by Hω(t) = sin(ωt) for
ω ∈ R>0. This is an example of an “harmonic” function, and specifically is
a “sinusoid.” In this case, one can think of prescribing a “b” of this form
as “shaking” a differential equation. It can be interesting to know how the
behaviour of the system will vary as we change ω. This gives rise in system
theory to something called the “frequency response.” •

We now state a few elementary properties of pretty uninteresting functions.

4.3.14 Lemma (Properties of pretty uninteresting functions) Let T ⊆ R be an interval,
let f, f1, . . . , fr : T → R be pretty uninteresting functions, and consider a scalar linear
homogeneous ordinary differential equation F with constant coefficients with right-hand
side of the form (4.19). Define normalised scalar linear inhomogeneous ordinary differential
equations Fj, j ∈ {1, . . . , r}, by

Fj(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)) − fj(t).

Then the following statements hold:
(i) there exists a unique normalised scalar linear homogeneous ordinary differential

equation Ff of order o(f) such that

Ff

(
t, f(t),

df
dt

(t), . . . ,
do(f)f
dto(f)

(t)
)
= 0, t ∈ T;

(ii) if ξj ∈ Sol(Fj), j ∈ {1, . . . , r}, and if

g = c1f1 + · · · + crfr

is also pretty uninteresting, then, if ξ = c1ξ1 + · · · + crξr, then ξ ∈ Sol(Fg), where

Fj(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)) − g(t).

Proof (i) An examination of Procedure 4.2.18 and the attendant Theorem 4.2.19 shows
that F f can be defined by defining their characteristic polynomials as follows:
1. f (t) = tmert: take

PF f = (X − r)m+1;
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2. f (t) = tmeσt cos(ωt) or f (t) = tmeσt sin(ωt): take

PF f = ((X − σ)2 + ω2)m+1.

(ii) This is a mere verification, once one understands the symbols involved. ■

The differential equation F f in the first part of the lemma we call the annihilator
of the pretty uninteresting function f . The following examples illustrate how one
finds the annihilator in practice, based on the proof of the first part of the lemma.

4.3.15 Examples (Annihilator)
1. Consider the function f (t) = 1. This is the pretty uninteresting function t 7→ tkert

with k = 0 and r = 0. This corresponds, from Procedure 4.2.18, to a root r = 0
of a polynomial with multiplicity 1. Thus PF f = X, and so

F f (t, x, x(1)) = x(1).

2. Now consider f (t) = e−2t. This is the pretty uninteresting function t 7→
tkeσt cos(ωt) with k = 0, σ = −2, and ω = 0. This corresponds to a root r = −2 of
a polynomial with multiplicity 1. Thus PF f = X + 2 and so

F f (t, x, x(1)) = x(1) + 2x.

3. Next we take f (t) = 2e3t sin(2t)+ t2. This is an also pretty uninteresting function,
being a linear combination of f1(t) = e3t sin(2t) and f2(t) = t2.
Note that f1 is the pretty uninteresting function t 7→ tkeσt sin(ωt) with k = 0,
σ = 3, and ω = 2. This function is associated, via Procedure 4.2.18, with a root
ρ = 3+ 2i of a polynomial with multiplicity 1. Of course, we must also have the
root ρ̄ = 3 − 2i.
Note that f2 is the pretty uninteresting function t 7→ tkeσt cos(ωt) with k = 2,
σ = 0, and ω = 0. This is associated with a root r = 0 with multiplicity 3.
Putting this all together,

PF f = (X − (3 + 2i))(X − (3 − 2i))X3 = X5
− 6X4 + 13X3. •

The second part of the lemma points out, in short, the obvious fact that if “b” is
also pretty uninteresting, then one can obtain a particular solution by obtaining a
particular solution for each of its pretty uninteresting components, and then sum-
ming these with the same coefficients as in the also pretty uninteresting function.
The point of this is that, to obtain a particular solution for an also pretty uninter-
esting “b,” it suffices to know how to do this for a pretty uninteresting b. Thus we
deliver the following construction.
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4.3.16 Procedure (Method of undetermined coefficients) We let F be a normalised
scalar linear inhomogeneous ordinary differential equation with constant coeffi-
cients with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + f (t),

where f is pretty uninteresting. Do the following.
1. Let F f be the annihilator of f .
2. Let G f be the normalised scalar linear homogeneous ordinary differential equa-

tion whose characteristic polynomial is PG f = PF f PFh .
3. Using Procedure 4.2.18, find

(a) pretty uninteresting functions ξ1, . . . , ξk for which {ξ1, . . . , ξk} is a funda-
mental set of solutions for Fh and

(b) pretty uninteresting functions η1, . . . , ηo( f )+1 for which
{ξ1, . . . , ξk, η1, . . . , ηo( f )+1} is a fundamental set of solutions for G f .

4. For (as yet) undetermined coefficients c1, . . . , co( f )+1 ∈ R, denote

ξp = c1η1 + · · · + co( f )+1ηo( f )+1.

5. Determine c1, . . . , co( f )+1 by demanding that ξp be a particular solution for F.
We shall show that this procedure makes sense and defines a particular solution
for F. •

Let us verify that the preceding procedure gives what we want.

4.3.17 Proposition (Validity of the method of undetermined coefficients) Let F be a
normalised scalar linear inhomogeneous ordinary differential equation with constant coef-
ficients with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + f(t),

where f is pretty uninteresting. Then all steps in Procedure 4.3.16 are unambiguously
defined, and the result is a particular solution for F.

Proof In the proof we shall assume that f (t) = to( f )ert for r ∈ R. Entirely similar
reasoning works for the other two sorts of pretty uninteresting functions.

From Procedure 4.2.18 we know that PF f = (X − r)o( f )+1. Let us suppose that

PFh = (X − r)m(r)P,

where P does not have r as a root. Therefore,

PG f = (X − r)m(r)+o( f )+1P.

Then, according to Procedure 4.2.18, among the pretty uninteresting solutions for Fh
are

t 7→ t jert, j ∈ {0, 1, . . . ,m(r) − 1}.
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The rest of the pretty uninteresting solutions for Fh have nothing to do with the root
“r” of the characteristic polynomial, and are not interesting to us here. Now the o( f )+1
pretty uninteresting solutions for G f that are added to those for Fh are

t 7→ t jert, j ∈ {m(r), . . . ,m(r) + o( f )},

again according to Procedure 4.2.18. This demonstrates the viability of the first three
steps of Procedure 4.2.18. We now need to show that one can solve for the coefficients
c1, . . . , co( f )+1 to obtain a particular solution for F. If

ξp(t) = c1tm(r)ert + · · · + co( f )+1tm(r)+o( f )ert,

then Lemma 1 from the proof of Theorem 4.2.19 shows that(
dm(r)

dtm(r)
− r

)
ξp(t)

is an also pretty uninteresting function associated with the root r whose highest order
(as a pretty uninteresting function) term is of order o( f ). By Corollary 4.2.17, and since
the derivative of a pretty uninteresting function of order m associated with the root r
is an also pretty uninteresting function of order m associated with the root r (as can be
verified by a direct computation), we have that

Fh

t, ξp(t),
dξp

dt
(t), . . . ,

dkξp

dtk
(t)


is an also pretty uninteresting function of order o( f ). Therefore, we can use the equality

Fh

t, ξp(t),
dξp

dt
(t), . . . ,

dkξp

dtk
(t)

 = f (t)

to solve for the coefficients c1, . . . , co( f )+1, as asserted in Procedure 4.2.18. ■

While the preceding discussion does indeed provide a means of solving, in
principle, scalar linear inhomogeneous ordinary differential equations with also
pretty uninteresting “b’s,” it does tend to be a lot of work, cf. Example 4.3.18, and
there are precisely zero equations that can be solved by this procedure that cannot
far more easily be solved with a computer.

4.3.2.2 Some examples We carry on with the three examples of Section 4.2.2.4.
Thus we first give an “academic” example to illustrate Procedure 4.3.16. Then we
consider a first- and second-order system with specific “b’s,” in order to discuss
some features of the solutions in these cases.
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4.3.18 Example (“Academic” example) We continue the example of Example 4.2.20,
now adding an inhomogeneous term. Specifically, we consider the 4th-order scalar
linear homogeneous ordinary differential equation F with right-hand side

F̂(t, x, x(1), x(2), x(3)) = −5x + 8x(1)
− 2x(2) + tet + 2 cos(2t).

Thus solutions t 7→ ξ(t) to this equation satisfy

d4ξ

dt4 (t) + 2
d2ξ
dt2 (t) − 8

dξ
dt

(t) + 5ξ(t) = tet + 2cos(2t).

The right-hand side of this equation has the form b(t) = f1(t) + 2 f2(t) for the two
pretty uninteresting functions

f1(t) = tet, f2(t) = cos(2t).

We find two particular solutions ξp,1 and ξp,2, satisfying

d4ξp,1

dt4 (t) + 2
d2ξp,1

dt2 (t) − 8
dξp,1

dt
(t) + 5ξp,1(t) = tet

and
d4ξp,2

dt4 (t) + 2
d2ξp,2

dt2 (t) − 8
dξp,2

dt
(t) + 5ξp,2(t) = cos(2t),

and then, by Lemma 4.3.14(ii),

ξp = ξp,1 + 2ξp,2

is a particular solution.
Let us find ξp,1 corresponding to f1(t) = tet. The annihilator F f1 of f1 has

characteristic polynomial PF f1
= (X − 1)2. We have

PF f1
PFh = (X − 1)2(X − 1)2(X2 + 2X + 5) = (X − 1)4(X2 + 2X + 5)

as the characteristic polynomial of F f1 ◦ Fh. According to Procedure 4.2.18, a
fundamental set of solutions, each of which is a pretty uninteresting function, is
given by

e−t cos(2t), e−t sin(2t), et, tet, t2et, t3et.

The first four of these are solutions for Fh. So we form our candidate particular
solution from the last two functions:

ξp,1(t) = c1t2et + c2t3et.

To determine c1 and c2, we compute(
d4

dt4 + 2
d2

dt2 − 8
d
dt
+ 5

)
ξp,1(t) = (16c1 + 24c2)et + 48c2tet.
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Thus we have

16c1 + 24c2 = 0, 48c2 = 1 =⇒ c1 = −
1

32
, c2 =

1
48
.

Thus

ξp,1(t) = −
t2et

32
+

t3et

48
.

Now we find ξp,2 corresponding to f2 = cos(2t). Here the annihilator F f2 of f2

has characteristic polynomial PF f2
= X2 + 4. We have

PF f2
PFh = (X2 + 4)(X4 + 2X2

− 8X + 5).

Thus the fundamental set of solutions for F f2 ◦ Fh is given by

e−t cos(2t), e−t sin(2t), et, tet, cos(2t), sin(2t).

Since the first four of these are solutions for Fh, we have

ξp,2(t) = c1 cos(2t) + c2 sin(2t).

To determine c1 and c2 we compute(
d4

dt4 + 2
d2

dt2 − 8
d
dt
+ 5

)
ξp,2(t) = (13c1 − 16c2) cos(2t) + (16c1 + 13c2)sin(2t).

Therefore,

13c1 − 16c2 = 1, 16c1 + 13c2 = 0 =⇒ c1 =
13

425
, c2 =

16
425

.

Thus
ξp,2 =

13
425

cos(2t) +
16

425
sin(2t).

Finally, we have the particular

ξp(t) = −
t2et

32
+

t3et

48
+

13
425

cos(2t) +
16

425
sin(2t).

Thus, as per Theorem 4.3.3, any solution ξ of F can be written we

ξ(t) = c1et + c2tet + c3e−t cos(2t) + c4e−t sin(2t)−
t2et

32
+

t3et

48
+

26
425

cos(2t) +
32
425

sin(2t).

To determine the constants c1, c2, c3, c4, we use the initial conditions

ξ(0) = x0,
dξ
dt

(0) = x + 0(1),
d2ξ
dt2 (0) = x(2)

0 ,
d3ξ
dt

(0) = x(3)
0 .
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These do not have the same solution as in Example 4.2.20 because of the presence
of the particular solution. Some unpleasant computation gives the equations

c1 + c3 = −
26

425
+ x0,

c1 + c2 − c3 + 2c4 = −
64

425
+ x(1)

0 ,

c1 + 2c2 − 3c3 − 4c4 =
2089
6800

+ x(2)
0 ,

c1 + 3c2 + 11c3 − 2c4 =
4521
6800

+ x(3)
0

that have to be solved. Here’s what you get:

c1 =
15
16

x0 +
1

16
x(1)

0 +
1
16

x(2)
0 −

1
16

x(3)
0 −

303
3400

,

c2 = −
5
8

x0 +
3
8

x(1)
0 +

1
8

x(2)
0 +

1
8

x(3)
0 +

2809
27200

,

c3 =
1

16
x0 −

1
16

x(1)
0 −

1
16

x(2)
0 +

1
16

x(3)
0 +

19
680

,

c4 = −
1
8

x0 +
1
4

x(1)
0 −

1
8

x(2)
0 −

3721
54400

.

Alternatively, one can use Mathematica® as illustrated in Section 4.9.1. You will
then get back a reliable answer after about 15 seconds of typing. You can decide
which method you think is best in practice. •

The next two examples give an illustration of where pretty uninteresting func-
tions are interesting in application.

4.3.19 Example (First-order system with step input) The differential equation we
consider here is an inhomogeneous version of the equation considered in Exam-
ple 4.2.21. We take the first-order scalar linear inhomogeneous ordinary differential
equation F with constant coefficients and with right-hand side

F̂(t, x) = −
x
τ
+ 1.

Thus solutions t 7→ ξ(t) to this differential equation satisfy

dξ
dt

(t) +
1
τ
ξ(t) = 1.

We have already determined that a solution to the homogeneous equation will
have the form ξ(t) = ce−t/τ, taking the convention that 1

τ = 0 when “τ = ∞.”
So next we find a particular solution. The annihilator F f of the pretty uninter-

esting function f (t) = 1 has characteristic polynomial PF f = X. The characteristic
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polynomial for Fh is PFh = X + 1
τ . Thus we must list the fundamental solutions for

G f , where
PG f = X(X + 1

τ ).

There are two cases.
First, when τ , ∞, the fundamental solutions are t 7→ e−t/τ and t 7→ 1, using

Procedure 4.2.18. The first of these is a solution for the homogeneous equation, so
we take a particular solution to be a multiple of the second: ξp(t) = c. To find c we
substitute into the differential equation:( d

dt
+

1
τ

)
ξp =

c
τ
.

To be a particular solution, we must have c
τ = 1 and so c = τ. Thus ξp(t) = τ.

The other case arises when τ = ∞, and in this case the fundamental solutions
for G f are t 7→ 1 and t 7→ t, again using Procedure 4.2.18. In this case, the first of
these functions is a solution for the homogeneous system, and so a multiple of the
second will be a particular solution, i.e., ξp(t) = ct. To determine c we require that
ξp be a particular solution:

d
dt
ξp(t) = c,

from which we deduce that c = 1. Thus ξp(t) = t.
In summary, a particular solution is

ξp(t) =

τ, τ , ∞,

t, t = ∞.

Therefore, any solution has the form

ξ(t) = ce−t/τ + ξp(t).

In case τ , ∞, one normally takes the initial condition ξ(0) = 0 to get c = −τ and so

ξ(t) = τ(1 − e−t/τ).

To allow a fruitful comparison of the effects of changing τ, let us normalise this
solution by multiplying by 1

τ to get the step response

1F(t) = 1 − e−t/τ.

In Figure 4.4 we graph this step response for varying values of τ ∈ R>0. We note
that as τ gets smaller, the step response rises more quickly, i.e., responds faster. •
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Figure 4.4 The step response of a first-order system

4.3.20 Example (Second-order system with sinusoidal input) Next we consider the
second-order differential equation of Example 4.2.22, but with a sinusoidal inho-
mogeneous term. Thus we take the second-order scalar linear inhomogeneous
ordinary differential equation F with right-hand side

F̂(t, x, x(1)) = −ω2
0x − 2ζω0x(1) + A sin(ωt)

for A, ω ∈ R>0. Solutions t 7→ ξ(t) then satisfy

d2ξ
dt2 (t) + 2ζω0

dξ
dt

(t) + ω2
0ξ(t) = A sin(ωt).

In Example 4.2.22 we carefully and thoroughly investigated the nature of the
solutions for the homogeneous system. There we saw, for example, that as long
as ζ > 0, solutions to the homogeneous equation decay to zero as t → ∞. For
ζ = 0, solutions were periodic. Here we will thus focus on ζ ∈ R≥0 and on the
nature of the particular solution. When ζ ∈ R>0, this means that we are looking
at the “steady-state” behaviour of the system, i.e., what we see after a long time.
When ζ = 0, we do not have this steady-state interpretation, but nonetheless we
will interpret these solutions in light of our understanding of what happens when
ζ ∈ R>0.

The annihilator F f for the pretty uninteresting function f (t) = A sin(ωt) has
characteristic polynomial PF f = X2+ω2. We have two cases to consider for particular
solutions.

The first case is when ζ ∈ R>0 or when ζ = 0 andω , ω0. Here the characteristic
polynomial for G f in Procedure 4.3.16 is

PG f = (X2 + ω2)(X2 + 2ζω0X + ω2
0).
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The fundamental solutions for G f associated to this polynomial, according to Pro-
cedure 4.2.18, are

ξ1(t), ξ2(t), cos(ωt), sin(ωt),

where ξ1 and ξ2 are homogeneous solutions as determined in Example 4.2.22.
Thus a particular solution will be of the form

ξp(t) = c1 cos(ωt) + c2 sin(ωt).

To determine c1 and c2 we require that ξp be a particular solution. Thus we compute(
d2

dt2 + 2ζω0
d
dt
+ ω2

0

)
ξp(t)

= (c1(ω2
0 − ω

2) + c22ζω0ω) cos(ωt) + (−c22ζω0ω + c2(ω2
0 − ω

2)) sin(ωt).

We must, therefore, have

c1(ω2
0 − ω

2) + c22ζω0ω = 0,

−c22ζω0ω + c2(ω2
0 − ω

2) = A,
=⇒

c1 =
2ζω0ωA

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

,

c2 =
(ω2

0 − ω
2)A

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

Thus a particular solution is

ξp(t) =
2ζω0ωA

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

cos(ωt) +
(ω2

0 − ω
2)A

ω4 + ω4
0 − 2ω2

0ω
2(1 − 2ζ2)

sin(ωt).

The other case is when ζ = 0 and ω = ω0. Here the characteristic polynomial
for G f in Procedure 4.3.16 is

PG f = (X2 + ω2)2

The fundamental solutions for G f associated to this polynomial, according to Pro-
cedure 4.2.18, are

ξ1(t), ξ2(t), t cos(ωt), t sin(ωt),

where ξ1 and ξ2 are homogeneous solutions as determined in Example 4.2.22.
Therefore, a particular solution will have the form

ξp(t) = c1t cos(ω0t) + c2t sin(ω0t).

To determine c1 and c2 we ask that this be a particular solution. Thus we compute(
d2

dt2 + ω
2
0

)
ξp(t) = 2c2ω0 cos(ω0t) − 2c1ω0 sin(ω0t).
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Therefore, we must have

2c2ω0 = 0, 2c1ω0 = A, =⇒ c1 =
A

2ω0
, c2 = 0,

and so the particular solution we obtain is

ξp(t) =
At

2ω0
cos(ω0t).

Therefore, in summary, a particular solution is

ξp(t) =


At

2ω0
cos(ω0t), ζ = 0, ω = ω0,

2ζω0ωA
ω4+ω4

0−2ω2
0ω

2(1−2ζ2) cos(ωt) +
(ω2

0−ω
2)A

ω4+ω4
0−2ω2

0ω
2(1−2ζ2) sin(ωt), otherwise.

Any solution will be a sum of this solution, plus some solution to the homogeneous
equation as determined in Example 4.2.22.

In Figure 4.5 we graph particular solutions for various ζ’s and ω’s, keeping A
and ω0 fixed. We make the following observations.
1. For small values ofω (compared toω0), the response ξp(t) is quite closely aligned

in amplitude and phase with the input f (t).
2. For small values of ζ, i.e., small damping, as ω→ ω0 the response gets large in

amplitude and the phase shift is about 1
4 of a period.

3. For not so small values of ζ, the amplitude as ω→ ω0 does not grow so much,
but the phase still shifts by about 1

4 of a period.
4. As the frequency ω gets large (compared to ω0), the amplitude decays to zero,

and the response and input are out of phase, i.e., the phase shift is about 1
2 of a

period.
One can see in the previous description the genesis of what happens when
ζ = 0, i.e., the response amplitude grows over time. This phenomenon is called
“resonance,” meaning that the excitation from the inhomogeneous term has the
same frequency as the natural frequency of the system.

The matters touched above in the preceding discussion are captured in system
theory by the notion of “frequency response.” •

4.3.3 Notes

[Duffy 2015]

Exercises

4.3.1 Consider the ordinary differential equation F with right-hand side given
by (4.11).
(a) Convert this to a first-order equation with k states, following Exer-

cise 3.1.23.
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Figure 4.5 Response (in blue) of a second-order system with
ω0 = 1 to a sinusoidal input with A = 1 (in red) for vary-
ing ζ and ω (left: ζ = 0.1, ω ∈ {0.5, 1, 2}; middle: ζ = 0.5,
ω ∈ {0.5, 2, 1}; right: ζ = 0.9, ω ∈ {0.5, 1, 2}
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(b) Show that, if a0, a1, . . . , ak, b ∈ L1
loc(T;R), then the resulting first-order

equation satisfies the conditions of Theorem 3.2.8 for existence of a
unique solution t 7→ ξ(t) satisfying the initial conditions

ξ(t0) = x0, ξ(t0 + h) = x(1)
0 , . . . , ξ(t0 + (k − 1)h) = x(k−1)

0

at time t0 ∈ T.
4.3.2 Consider the ordinary differential equation F with right-hand side given

by (4.11). Answer the following questions.
(a) Show that the particular particular solution

ξp,b(t) =
∫ t

t0

GF(t, τ)b(τ) dτ

satisfies the initial value problem

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

ξ(t0) = 0,
dξ
dt

(t0) = 0, . . . ,
dk−1ξ

dtk−1
(t0) = 0.

(b) Show that the solution to the initial value problem

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = b(t),

ξ(t0) = x0,
dξ
dt

(t0) = x(1)
0 , . . . ,

dk−1ξ

dtk−1
(t0) = x(k−1)

0

is given by ξ(t) = ξh + ξp,b, where ξh is the solution to the homogeneous
initial value problem

dkξh

dtk
(t) + ak−1(t)

dk−1ξh

dtk−1
(t) + · · · + a1(t)

dξh

dt
(t) + a0(t)ξh(t) = 0,

ξh(t0) = x0,
dξh

dt
(t0) = x(1)

0 , . . . ,
dk−1ξh

dtk−1
(t0) = x(k−1)

0 .

4.3.3 Find the annihilator for each of the following also pretty uninteresting func-
tions f :
(a) f (t) = 2t2 + 3t − 5;
(b) f (t) = (t2 + 2t + 1)et;
(c) f (t) = te2t cos(t) + e2t sin(t);
(d) f (t) = t3e−t sin(3t) + t2e−t cos(3t).

4.3.4 For the following scalar linear inhomogeneous ordinary differential equa-
tions F, determine the general form of their solutions:
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(a) F(t, x, x(1), x(2)) = x(2) + 2x(1) + x − 3et;
(b) F(t, x, x(1), x(2)) = x(2)

− 5x(1) + 6x − 2e3t
− cos(t);

(c) F(t, x, x(1), x(2)) = x(2)
− 2x(1) + 5x − tet sin(2t);

(d) F(t, x, x(1), x(2)) = x(2) + 4x − t cos(2t) + sin(2t);
(e) F(t, x, x(1), x(2), x(3)) = x(3)

− x − tet;
(f) F(t, x, x(1), . . . , x(4)) = x(4) + 4x(2) + 4x − cos(2t) − sin(2t).

4.3.5 Solve the initial value problem for the following scalar linear inhomogeneous
differential equations F with the stated initial conditions:
(a) F(t, x, x(1), x(2)) = x(2) + 2x(1) + x − 3et, and ξ(0) = 1, ξ̇(0) = 1;
(b) F(t, x, x(1), x(2)) = x(2)

− 5x(1) + 6x − 2e3t
− cos(t), and ξ(0) = 0, ξ̇(0) = 1;

(c) F(t, x, x(1), x(2)) = x(2)
− 2x(1) + 5x − tet sin(2t), and ξ(0) = 1, ξ̇(0) = 0;

(d) F(t, x, x(1), x(2)) = x(2) + 4x − t cos(2t) + sin(2t), and ξ(0) = 2, ξ̇(0) = 1;
(e) F(t, x(1), x(2), x(3)) = x(3)

− x − tet, and ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;
(f) F(t, x, x(1), . . . , x(4)) = x(4)+4x(2)+4x−cos(2t)−sin(2t), andξ(0) = 0, ξ̇(0) = 0,

ξ̈(t) = 0,
...
ξ(t) = 0.

4.3.6 Suppose a mass m falls under the influence of gravity with gravitational
acceleration ag and suppose that the force due to air resistance is proportional
to velocity, i.e., given by ρv, where v is the velocity.
(a) Use Newton’s laws of force balance to write the equations governing

the falling velocity of the mass.
(b) Obtain the solution to the differential equation from part (a), supposing

the mass is at rest at t = 0.
(c) What is the terminal velocity of the mass?
(d) What are the units of m, ag, and ρ, in terms of mass, length, and time

units?
(e) Combine the physical constants m, ag, and ρ in such a way that the units

for the combined expression are “length/time,” i.e., velocity. How does
this constant compare to the terminal velocity you computed in part (c)?

4.3.7 Let P ∈ R[X] be given by

P = Xk + ak−1Xk−1 + · · · + a1X + a0,

and suppose that r ∈ R is not a root of P. Show that

ξp(t) =
ert

P̂(r)

is a particular solution of the differential equation

F(t, x, x(1), . . . , x(k)) = x(k) + ak−1x(k−1) + · · · + a1x(1) + a0x − ert.

4.3.8 For the following scalar linear homogeneous ordinary differential equations
with time-domain T = [0,∞), find their continuous-time Green’s function:
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(a) F(t, x, x(1), x(2)) = x(2) + x(1);
(b) F(t, x, x(1), x(2)) = x(2) + ω2x, ω ∈ R>0;
(c) F(t, x, x(1), x(2)) = x(2)

− 2x(1) + x.



272 4 Scalar ordinary differential and ordinary difference equations 2022/03/07

Section 4.4

Scalar linear inhomogeneous ordinary differential equations
with distributions as right-hand side

In our development of continuous-time linear system theory, an important rôle
will be played by ordinary differential equations involving distributions. In this
section we shall undertake a systematic development of this theory for scalar equa-
tions. Our objectives will be twofold: (1) provide distributional characterisations of
results already obtained; (2) provide new general results for differential equations
with distributions as right-hand side.

Do I need to read this section? The results and techniques we employ in this
section we be an important part of a full understanding of the theory of linear
systems. •

4.4.1 Definitions and preliminary constructions

Since the differential equations we consider in this section do not fall precisely
into any of the classes of equations thus far considered, let us define precisely
the objects with which we are dealing in this section. We shall consider ordinary
differential equations with time-domainT = R for simplicity, since we are working
with spaces of distributions, which we have considered to be defined on R. This
can be done without loss of generality since an ordinary differential equation with
time-domain T ⊂ R can be extended to one with time-domain R by taking the
right-hand side to be zero for times outside T.

Here is the class if differential equations we work with in this section.

4.4.1 Definition (Scalar linear ordinary differential equations with distribution forc-
ing) A scalar linear ordinary differential equation with distribution forcing is a
pair (F, β) where:

(i) F is a scalar linear homogeneous ordinary differential equation with right-
hand side

F̂ : R ×R × L≤k−1
sym (R;R)→ R

(t, x, x(1), . . . , x(k−1)) 7→ −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 ∈ L1
loc(R;R);

(ii) β ∈ D ′(R;R).
A solution for a scalar linear ordinary differential equation with distribution forcing
(F, β) is a distribution θ ∈ D ′(R;R) such that, for each j ∈ {0, 1, . . . , k − 1}, either
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(iii) distribution θ( j) has a well-defined value on a jϕ for ϕ ∈ D (R;R), denoted by

⟨a jθ
( j);ϕ⟩ ≜ ⟨θ( j); a jϕ⟩,

or
(iv) θ( j) is a regular distribution associated with some fθ( j) ∈ C0(R;R) and the

regular distribution θa jϕ has a well-defined value on fθ( j) , denoted by

⟨a jθ
( j);ϕ⟩ ≜ ⟨θa jϕ; fθ( j)⟩,

and the equation

⟨θ(k);ϕ⟩ + ⟨ak−1θ
(k−1);ϕ⟩ + · · · + ⟨a1θ

(1);ϕ⟩ + ⟨a0θ;ϕ⟩ = ⟨β;ϕ⟩, ϕ ∈ D (R;R),

is satisfied. •

The dichotomous meaning of the symbol ⟨a jθ( j);ϕ⟩ employed in the definition
of a solution is convenient and gives precise meaning to the expression

θ(k) + ak−1θ
(k−1) + · · · + a1θ

(1) + a0θ = β.

Let us consider a few cases where we might employ this notation.

1. If a j ∈ L1
loc(R;R) and if θ = θξ is a regular distribution for which ξ ∈ ACk−1(R;R),

then, for j ∈ {0, 1, . . . , k − 1}, θ( j)
ξ is a regular distribution associated with a

continuous signal, and so

⟨a jθ
( j);ϕ⟩ = ⟨θa jϕ; ξ( j)

⟩ =

∫
R

a j(t)ξ( j)(t)ϕ(t) dt

makes sense.
2. If a j ∈ Cr(R;R) and if θ is a distribution of order r + j for some r ∈ Z>0, then

⟨a jθ
( j);ϕ⟩ = ⟨θ( j); a jϕ⟩

makes sense since θ( j) has order r, cf. Proposition IV-3.2.49.
3. Note that both of the above situations might arise in the same equation.

Another construction of which we shall make use is that of the formal adjoint
of an ordinary differential equation. We will define this for a differential equation
with infinitely differentiable time-varying coefficients.
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4.4.2 Definition (Formal adjoint of a scalar linear ordinary differential equation) Let
F be an homogeneous scalar linear ordinary differential equation with right-hand
side

F̂ : R ×R × L≤k−1
sym (R;R)→ R

(t, x, x(1), . . . , x(k−1)) 7→ −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 ∈ C∞(R;R). The formal adjoint of F is the homogeneous scalar
linear ordinary differential equation F∗ with right-hand side

F̂∗ : R ×R × L≤k−1
sym (R;R)→ R

(t, x, x(1), . . . , x(k−1)) 7→ −a∗k−1(t)x(k−1)
− · · · − a∗1(t)x(1)

− a∗0(t)x,

where a∗0, a
∗

1, . . . , a
∗

k−1 ∈ C∞(R;R) satisfy

a∗j =
k− j∑
l=0

(−1)l+ j−k+1

(
l + j

l

)
a(l)

l+ j, j ∈ {0, 1, . . . , k − 1}. •

We note that the restriction to the equations with infinitely differentiable coeffi-
cients is a significant specialisation of the general cases considered in Sections 4.2.1
and 4.3.1. The reason that we make this simplification in the cases that we do is
that we wish to be able to give these equations a general distribution as an argu-
ment, and so need a time-domain suited to distributions and we need to be able
to multiply the distribution by the coefficient functions, cf. Example IV-3.2.11–2.
Indeed, by assuming that these coefficients are smooth, we can make use of the
definition of a solution above with

⟨a jθ
( j);ϕ⟩ = ⟨θ( j); a jϕ⟩,

and allowing an arbitrary distribution θ as a possible solution. This then makes the
following mapping sensible for a scalar linear homogeneous ordinary differential
equation with smooth time-varying coefficients a0, a1, . . . , ak−1 ∈ C∞(R;R):

LF : D ′(R;R)→ D ′(R;R)

θ 7→ θ(k) + ak−1θ
(k−1) + · · · + a1θ

(1) + a0θ.

Making use of this notation, the principal value of the formal adjoint, for our
purposes, is the following result.

4.4.3 Lemma (Characterisation of the formal adjoint) Let F be an homogeneous scalar
linear ordinary differential equation with right-hand side

F̂ : R ×R × L≤k−1
sym (R;R)→ R

(t, x, x(1), . . . , x(k−1)) 7→ −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 ∈ C∞(R;R). Then the formal adjoint F∗ satisfies

⟨LF(θ);ϕ⟩ = (−1)k
⟨θ; LF∗(ϕ)⟩, θ ∈ D ′(R;R), ϕ ∈ D (R;R).
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Proof We have, using the higher-order Leibniz rule (Proposition I-3.2.11),

⟨LF(θ);ϕ⟩ =
k∑

j=0

⟨θ( j); a jϕ⟩ =
k∑

j=0

(−1) j
⟨θ; (a jϕ)( j)

⟩

=

k∑
j=0

j∑
r=0

(−1) j
(

j
r

)
⟨θ; a( j−r)

j ϕ(r)
⟩ =

k∑
r=0

k∑
j=r

(−1) j
(

j
r

)
⟨θ; a( j−r)

j ϕ(r)
⟩

=

k∑
r=0

k−r∑
j=0

(−1) j+r
(

j + r
r

)
⟨θ; a( j)

j+rϕ
(r)
⟩.

(We use the convention that ak(t) = 1, t ∈ R.) Noting that the term involving r = k is

(−1)k
⟨θ;ϕ(k)

⟩,

this can be written as

⟨LF(θ);ϕ⟩ = (−1)k
〈
θ;ϕ(k) +

k−1∑
r=0

k−r∑
j=0

(−1) j+r−k
(

j + r
j

)
a( j)

j+rϕ
(r)

〉
,

which gives the desired result. ■

4.4.2 Equations with time-varying coefficients

In this section we consider a few results that are valid for scalar linear ordi-
nary differential equations with time-varying coefficients. There is no completely
general theory here, in part because the notion of a solution for such equations
involves some sort of compatibility between the regularity of the time-varying
coefficients and the regularity of the solution, as evidenced by the definition of
solution in Definition 4.4.1. Thus we shall consider a few partial results. First
we consider the case of infinitely differentiable time-varying coefficients, since in
this case there will be no restrictions on distributional solutions, cf. the comments
following Definition 4.4.2. Next we work in the general setting of equations with
locally integrable time-varying coefficients, and give a distributional interpretation
of the continuous-time Green’s function of Definition 4.3.8.

4.4.2.1 Solutions and their properties In this section we consider scalar linear
homogeneous ordinary differential equations F with right-hand side

F̂ : R ×R × L≤k−1
sym (R;R)→ R

(t, x, x(1), . . . , x(k−1)) 7→ −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0x,
(4.21)

where a0, a1, . . . , ak−1 ∈ C∞(R;R). We then have the corresponding mappings

LF : D (R;R)→ D (R;R)
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and
LF : D ′(R;R)→ D ′(R;R)

defined by

LF(ϕ)(t) =
dkϕ

dtk
(t) + ak−1(t)

dk−1ϕ

dtk−1
(t) + · · · + a1(t)

dϕ
dt

(t) + a0(t)ϕ(t), ϕ ∈ D (R;R),

and
LF(θ) = θ(k) + akθ

(k−1) + · · · + a1θ
(1) + a0θ, θ ∈ D ′(R;R).

For β ∈ D ′(R;R), we denote

Sol(F, β) = {θ ∈ D ′(R;R) | LF(θ) = β}.

We have the following analogue of Theorem 4.3.3.

4.4.4 Theorem (Affine space structure for sets of solutions) Let F be a scalar linear
homogeneous ordinary differential equation with right-hand side (4.21) for a0, a1, . . . , ak−1 ∈

C∞(R;R). If, for β ∈ D ′(R;R), the set Sol(F, β) is nonempty, then it is an affine subspace
of D ′(R;R).

Proof This is a direct consequence of Proposition I-5.4.48. ■

There is an important point of difference here with Theorem 4.3.3, namely that
we do not assert that Sol(F, β) is nonempty. To this end, we next establish some
situations when Sol(F, β) is indeed nonempty. In doing so, we make use of the
formal adjoint L∗F from Definition 4.4.2.

4.4.2.2 A distributional interpretation of the continuous-time Green’s func-
tion An interesting connection can be made between the continuous-time Green’s
function of Theorem 4.3.7 and the inhomogeneous equation with an appropriate
delta-function as right-hand side. The following theorem gives the desired result.

4.4.5 Theorem (The continuous-time Green’s function as a solution to a distribu-
tional differential equation) Let F be a scalar linear homogeneous ordinary differential
equation with T = R, right-hand side (4.1), and suppose that a0, a1, . . . , ak−1 ∈ L1

loc(R;R).
For s ∈ T, let θs be the regular distribution corresponding to the locally integrable function
t 7→ GF(t, s). Then θs is a solution to (F, τ∗sδ).

Proof As in the proof of Theorem 4.3.7, let ξs : T → R be the solution to the initial
value problem

dkξ

dtk
(t) + ak−1(t)

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0,

ξ(s) = · · · =
dk−2ξ

dtk−2
(s) = 0,

dk−1ξ

dtk−1
(s) = 1,



2022/03/074.4 Scalar linear inhomogeneous ordinary differential equations with distributions as right-hand side277

so that θs is the distribution associated with the locally integrable function ξsτ∗s1≥0.
Using a simple induction, we then have, for l ∈ {0, 1, . . . , k},

(ξsτ
∗

s1≥0)(l) =

l−1∑
j=0

ξ
( j)
s (s)(τ∗sδ)(l− j−1) + ξ(l)

s τ
∗

s1≥0.

(All products of distributions with functions are to be interpreted in the sense of
Proposition IV-3.2.49 and Corollary IV-3.7.28.) By using the initial conditions for ξs,
we have

(ξsτ
∗

s1≥0)(k) = ξ(k)
s τ
∗

s1≥0 + τ
∗

sδ, (ξsτ
∗

s1≥0)( j) = ξ
( j)
s τ
∗

s1≥0, j ∈ {0, 1, . . . , k − 1}.

Referring to the discussion following Definition 4.4.1, we have, for ϕ ∈ D (R;R),

⟨a jθ
( j)
s ;ϕ⟩ =

∫
R

a j(t)1≥0(t − s)ξs(t)ϕ(r) dt, j ∈ {0, 1, . . . , k − 1},

and
⟨akθ

(k)
s ;ϕ⟩ = ⟨θ(1)

ξs(τ∗s1≥0)(k−1) ;ϕ⟩,

keeping in mind that ak = 1. Thus

θ(k)
s + ak−1θ

(k−1)
s + · · · + a1θ

(1)
s + a0θs

= (ξ(k)
s + ak−1ξ

(k−1)
s + · · · + a1ξ

(1)
s + a0ξs)τ∗s1≥0 + τ

∗

sδ = τ
∗

sδ,

as claimed. ■

The theorem makes precise our informal discussion of “pulses” applied at initial
times in Remark 4.3.9–2. Let us undertake an informal discussion of this so as to
get some insight into how one might thing about this. The differential equation we
are considering is

dkξ

dtk
+ ak−1(t)

dk−1ξ

dtk−1
+ · · · +

dξ
dt
+ a0(t)ξ = δ(t − s),

and as initial conditions we take

lim
t↑s

d jξ

dt j (t) = 0, j ∈ {0, 1, . . . , k − 1}.

We then apply Theorem 4.3.7(v) in a direct (and not entirely precise) way. Thus
the solution to the initial value problem is

ξ(t) =
∫ t

s
GF(t, τ)δ(t − s) dτ = GF(t, s). (4.22)

Note that there are some ways in which this formula does not quite jive with our
intuition about solutions to initial value problems. First of all, dk−1GF(t,s)

dtk−1 (s) has two
different values, 0 for the limit from the left and 1 for the limit from the right. This
inconsistency is a result of the fact that the delta-function is not an. . . er. . . function.
Thus the integral in (4.22) does not have the usual continuity properties with respect
to the limits of integration. However, if one closes ones eyes to this, then this gives
a nice interpretation of the continuous-time Green’s function.
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4.4.3 Equations with constant coefficients

Next we turn to the consideration of scalar linear ordinary differential equations
with distribution forcing (F, β), where F is a constant coefficient equation. In this
case there is a great deal more that one can say about solutions of these equations,
especially if one restricts β and solutions to lie in particular subspaces of distri-
butions. Of particular interest are the subspaces D ′+(R;F) and D ′

−
(R;R) of causal

and acausal distributions (see Definition IV-3.2.17). We shall see that, for constant
coefficient equations, an important rôle is played by convolution.

4.4.3.1 Solutions and their properties We state the basic existence and unique-
ness results for constant coefficient equations. The character of the results is similar
to, but not identical to, results for non-distributional equations. Essential differ-
ences arise as a result of the fact that one cannot prescribe initial conditions for
distributions as one does to obtain uniqueness of solutions in the usual case.

The following simple result illustrates one of the special features of constant
coefficient equations. In stating the result, we recall from that distributions withwhat

compact support can be convolved with arbitrary distributions.

4.4.6 Lemma (Convolution and scalar linear ordinary differential equations with
constant coefficients) Let F be a scalar linear homogeneous ordinary differential equa-
tion with constant coefficients. If θ ∈ D ′(R;R), then

LF(θ) = LF(δ) ∗ θ.

Proof We suppose that

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x.

We then compute

LF(θ) = LF(δ ∗ θ) = (δ ∗ θ)(k) + ak−1(δ ∗ θ)(k−1) + · · · + a1(δ ∗ θ)(1) + a0(δ ∗ θ)

= (δ(k) + ak−1δ
(k−1) + · · · + a1δ

(1) + a0δ) ∗ θ,

using and . ■convolution with delta

derivative of

convolution With the lemma at hand, we can easily prove the basic existence and uniqueness
theorem for (F, β), where F has constant coefficients.

4.4.7 Theorem (Existence and uniqueness of solutions for constant coefficient
scalar linear inhomogeneous ordinary differential equations with distribu-
tion forcing) Let F be a scalar linear homogeneous ordinary differential equation with
constant coefficients. Then the following statements hold:

(i) if β ∈ D ′(R;R), then card(Sol(F, β)) ≥ 2;
(ii) if β ∈ D ′+(R;R), then card(Sol(F, β) ∩D ′+(R;R)) = 1;
(iii) if β ∈ D ′

−
(R;R)), then card(Sol(F, β) ∩D ′

−
(R;R)) = 1.
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Proof Let us first establish the existence of two distribution solutions θ to the equation
LF(θ) = δ. We suppose that

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x.

Let ξ0 ∈ C∞(R;R) be the solution to the initial value problem

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = 0,

ξ(0) = · · · =
dk−2ξ

dtk−1
(0) = 0,

dk−1ξ

dtk−1
(0) = 1,

and denote ξ+ = 1≥0ξ0 and ξ− = −σ∗1≥0ξ0. Note that θξ+ ∈ D
′
+(R;R) and θξ− ∈

D ′
−

(R;R).
From Theorem 4.4.5 we have LF(θξ+) = δ. We claim that LF(θξ−) = δ. Since

(σ∗1≥0)(1) = −δ, we have

(ξ0σ
∗1≥0)(l) = −

l−1∑
j=0

ξ
( j)
0 (0)(σ∗δ)(l− j−1) + ξ(l)

0 σ
∗1≥0,

similarly to what we saw in the proof of Theorem 4.4.5. Thus

(ξ0σ
∗1≥0)(k) = ξ(k)

0 σ
∗1≥0 − σ

∗δ, (ξ0σ
∗1≥0)( j) = ξ

( j)
0 σ
∗1≥0, j ∈ {0, 1, . . . , k − 1}.

Thus we have

θ(k)
ξ−
+ ak−1θ

(k−1)
ξ−
+ · · · + a1θ

(1)
ξ−
+ a0θξ−

= (−ξ(k)
0 − ak−1ξ

(k−1)
0 − · · · − a1ξ

(1)
− a0ξ)σ∗1≥0 + σ

∗δ = +δ,

noting that σ∗δ = δ. Thus LF(θξ−) = δ, as claimed.
Note that this immediately gives

LF(δ) ∗ θξ+ = LF(δ ∗ θξ+) = LF(θξ+) = δ.

Similarly,
LF(δ) ∗ θξ− = δ,

showing that both θξ+ and θξ− are multiplicative inverses of LF(δ) in the ringD ′(R;R)
with the convolution product.

Now we proceed with the proof of the theorem, using the notation just introduced.
(i) We have, using Lemma 4.4.6 and the computations above,

LF(θξ+ ∗ β) = LF(δ) ∗ (θξ+ ∗ β) = (LF(δ) ∗ θξ+) ∗ β = δ ∗ β = β,

and so θξ+ ∗ β ∈ Sol(F, β). We similarly have θξ− ∗ β ∈ Sol(F, β).
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(ii) Suppose that θ1, θ2 ∈ Sol(F, β) ∩D+(R;R). Then

LF(θ1) = β, LF(θ2) = β
=⇒ LF(δ) ∗ θ1 = β, LF(δ) ∗ θ2 = β

=⇒ θ1 = θξ+ ∗ β, θ2 = θξ+ ∗ β

=⇒ θ1 = θ2.

Here we use the fact that θξ+ is the unique inverse of LF(δ) inD ′+(R;R), by . what

(iii) This follows in the same manner as the previous part of the theorem. ■

In summary, distributional equations for constant coefficient equations always
have solutions, and if we look for solutions inD ′+(R;R) (resp.D ′

−
(R;R)) for equa-

tions where the forcing is in D ′+(R;R) (resp. D ′
−
(R;R)), then solutions are unique.

Moreover, the proof of the theorem furnishes formulae for the unique solutions in
D ′+(R;R) andD ′

−
(R;R). Let us present this, outside the stodgy confines of a proof,

in the case ofD ′+(R;R).

4.4.8 Corollary (Solutions to distributional differential equations inD ′
+

(R;R)) For a
scalar linear homogeneous ordinary differential equation F with constant coefficients and
with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

let ξ+(t) = GF(t, 0), noting that, for t ≥ 0, ξ+ is the solution to the initial value problem

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = 0,

ξ(0) = · · · =
dk−2ξ

dtk−1
(0) = 0,

dk−1ξ

dtk−1
(0) = 1,

while ξ+(t) = 0 for t < 0. Then the unique solution inD ′+(R;R) to (F, β) for β ∈ D ′+(R;R)
is θξ+ ∗ β.

Note that the uniqueness of solutions inD ′+(R;R) andD ′
−
(R;R) are in contrast

to the situation in Proposition 4.3.2 where, to achieve uniqueness, one needs to
also prescribe initial conditions. One might then wonder whether the rôle of
initial conditions can be mimicked for distributional differential equations. This is
possible, and is presented in Proposition 4.4.11 below.

4.4.3.2 Distributional solutions of equations non-distributional equations
In this section we further connect solutions to distributional equations to their
non-distributional counterparts by constructing the distributional solution to a
non-distributional equation, including initial conditions.

Let us get started by noting that, if F is a scalar linear homogeneous ordi-
nary differential equation with constant coefficients and if b ∈ L1

loc(R;R) satisfies
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inf supp(b) > −∞, then there is a unique solution θ ∈ D ′+(R;R) to (F, θb). This is a
consequence of Theorem 4.4.7(ii). One might then wonder whether there are other
distributional solutions, not in D ′+(R;R), to (F, θb). The following result indicates
the constraints on other such solutions.

4.4.9 Proposition (Uniqueness of distributional solutions to non-distributional
equations) Let F be a scalar linear homogeneous ordinary differential equation with
right-hand side

F̂ : R ×R × L≤k−1
sym (R;R)→ R

(t, x, x(1), . . . , x(k−1)) 7→ −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

and let b ∈ L1
loc(R;R) satisfy inf supp(b) > −∞. Then, if θ ∈ Sol(F, θb), we have

⟨θ;ϕ⟩ = ⟨θξ;ϕ⟩, ϕ ∈ D ((inf supp(b),∞);R),

where ξ satisfies

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = b(t), t ∈ (inf supp(b),∞).

In particular,
Sol(F, 0) = {θξ | ξ ∈ Sol(F)},

i.e., solutions to the homogeneous equation inD ′(R;R) are exactly the regular distributions
associated to the usual solutions of the homogeneous equation.

Proof Let us first extend the notion of the order of a distribution given in Defini-
tion IV-3.2.47. Let T ⊆ R be a compact interval. The T-order of a distribution
θ ∈ D ′(R;R) is the smallest r ∈ Z≥0 for which there exists f ∈ L1

loc(R;R) such that

⟨θ;ϕ⟩ = ⟨θ(r+1)
f ;ϕ⟩, ϕ ∈ D (T;R).

Thus it makes sense to say that a distribution of T-order −1 is one that agrees with a
regular distribution θ f on T where f < ACloc(R;R). Similarly, we shall say that θ has
T-order −2 if it agrees on Twith a regular distribution θ f for a signal f ∈ ACloc(R;R),
but f < AC1

loc(R;R). More generally, we shall see that θ has T-order −r if θ agrees on
T with a regular distribution θ f for a signal f ∈ ACr−2

loc (R;R), but f < ACr−1
loc (R;R). A

distribution of T-order −∞ is then one that agrees on T with the regular distribution
associated with an infinitely differentiable function.

Now suppose that supp(β) ⊆ [t0,∞) and letT ⊆ (t0,∞) be compact. Ifθ ∈ D ′(R;R)
is in Sol(F, β), then we have

θ(k) = θb − ak−1θ
(k−1)
− · · · − a1θ

(1)
− a0θ. (4.23)

Suppose that g has T-order q and let r be the T-order of θ(k). We claim that r = q.
Indeed, suppose that r > q. The orders of θ, θ(1), . . . , θ(k−1) are then less than or equal
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to r − 1. This means that the order of the right-hand side of (4.23) is less than or equal
to r − 1, whereas the order of the left-hand side is r. This is a contradiction of the
assumption that r > q. Similar, the assumption that r < q leads to a contradiction.
Therefore, r = q, meaning that the T-order of θ(k) is the same as that of θb. Thus θ(k),
and hence θ, must agree with a regular distribution on (t0,∞). Thus θ = θξ where ξ is
a solution of the inhomogeneous equation with right-hand side b.

The final assertion of the proposition is a mere specialisation of the first part of the
result, noting that supp(0) = ∅. ■

An important consequence of the preceding result is the following complete
characterisation of Sol(F, β) for β ∈ D ′+(R;R). Of course, a similar result holds for
D ′
−
(R;R).

4.4.10 Corollary (Characterisation of Sol(F, β) for β ∈ D ′
+

(R;R)) Let F be a scalar linear
homogeneous ordinary differential equation with constant coefficients, let β ∈ D ′+(R;R),
and let θ0 be the unique solution to (F, β) inD ′+(R;R), as in Theorem 4.4.7(ii). Then

Sol(F, β) = {θ0 + θξ | ξ ∈ Sol(F)}.

Proof If θ ∈ Sol(F, β) then LF(θ−θ0) = 0. By Proposition 4.4.11, this means that θ−θ0
is a regular distribution associated to a solution of the homogeneous equation F. ■

Now let us see how we can resolve the seeming paradox of the uniqueness
of solutions asserted in Proposition 4.4.9 with the non-uniqueness arising from
Proposition 4.3.2 (due to dependence on initial conditions). We do this by conjuring
a distribution as right-hand side that incorporates the initial conditions.

4.4.11 Proposition (Distributional solutions of non-distributional equations with ini-
tial conditions) For a scalar linear homogeneous ordinary differential equation F with
constant coefficients and with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

for b ∈ L1
loc(R;R), and for t0 ∈ R, the following statements are equivalent for ξ : R→ R:

(i) ξ = τ∗t0
1≥0ξt0 , where ξt0 satisfies the initial value problem

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = b(t),

ξ(t0) = x0,
dξ
dt

(t0) = x1, . . . ,
dk−1ξ

dtk−1
(t0) = xk−1;

(ii) the distribution θξ is the unique solution inD ′+(R;R) to (F, β), where

β = θbτ∗t0 1≥0 +

k−1∑
j=0

k−j−1∑
l=0

aj+l+1xlτ
∗

t0
δ(j)
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Moreover, θξ is the unique solution inD ′(R;R) to (F, β).
Proof Suppose that ξ is as in part (i). As in the proof of Theorem 4.4.5, we have

(ξt0τ
∗

t0
1≥0)(l) =

l−1∑
j=0

ξ
( j)
t0

(t0)(τ∗t0
δ)(l− j−1) + ξ(l)

t0
τ∗t0

1≥0.

Therefore,

LF(θξ) =
k∑

l=0

al(ξt0τ
∗

t0
1≥0)(l)

= a0ξt0τ
∗

t0
1≥0 +

k∑
l=1

al

 l−1∑
j=0

x j(τ∗t0
δ)(l− j−1) + ξ(l)

t0
τ∗t0

1≥0


= LF(θξt0

)τ∗t0
1≥0 +

k−1∑
l=0

l∑
j=0

al+1x jτ
∗

t0
δ(l− j)

= θbτ∗t0 1≥0 +

k−1∑
j=0

k−1∑
j=l

al+1x jτ
∗

t0
δ(l− j)

= θbτ∗t0 1≥0 +

k−1∑
j=0

k− j−1∑
l=0

a j+l+1xlτ
∗

t0
δ( j),

which is exactly condition (ii). It is evident from the preceding calculations that the
conditions are, in fact, equivalent. ■

4.4.4 Notes

[Gates, Jr 1956]

Exercises

4.4.1 Let F be a scalar linear homogeneous ordinary differential equation with
constant coefficients and let β ∈ D ′+(R;R). As in Theorem 4.4.7(ii), let θ0

be the unique solution to (F, β) in D ′+(R;R). Show that supp(θ0) ⊆ [t0,∞) if
supp(β) ⊆ [t0,∞).

4.4.2 Let F be a scalar linear ordinary differential equation with with constant
coefficients given by

F(t, x, x(1), . . . , x(k)) = x(k) + ak−1x(k−1) + · · · + a1x(1) + a0x.

Show, by direct computation, that the unique solution in D ′+(R;R) to the
equation

θ(k) + ak−1θ
(k−1) + · · · + a1θ

(1) + a0θ = δ
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is given by θ = θ1≥0ξ, where ξ is the solution to the initial value problem

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1(t)

dξ
dt

(t) + a0(t)ξ(t) = 0,

ξ(0) = · · · =
dk−2ξ

dtk−2
(0) = 0,

dk−1ξ

dtk−1
(0) = 1.

Demonstrate that you understand each part of the computation by pointing
to the place in the text where your assertion is defined or shown to make
sense.
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Section 4.5

Laplace transform methods for scalar ordinary differential
equations

Laplace transforms can be used to study various sorts of differential equations,
both partial and ordinary. In this section, we will stick to considering the applica-
tion of Laplace transform techniques to the study of scalar linear ordinary differ-
ential equations with constant coefficients. We shall consider systems of equations
in Section 5.4. The techniques we illustrate here can be thought of as the pro-
totypical application of transform methods in the theory of differential equations
and, moreover, is one of the more elementary applications of transform theory.
Thus this section can be seen as having a twofold purpose: (1) to demonstrate
the basic philosophy of transform analysis in the study of differential equations;
(2) to develop fully an application of the Laplace transform to ordinary differential
equations. To both ends, the emphasis will be on seeing how transforms can be
helpful in understanding differential equations, rather than in solving differential
equations (although we shall see that the latter is a part of the story).

Do I need to read this section? This is a section that can, maybe, be skipped. It
will have its best context in the setting of transfer functions in Chapter 7. •

4.5.1 Scalar homogeneous equations

We begin our discussion with scalar linear homogeneous ordinary differential
equations with constant coefficients, first considered in detail in Section 4.2.2.
Thus, as in that section we are working with differential equations

F : R≥0 ×R ⊕ L≤k
sym(R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x (4.24)

for a0, a1, . . . , ak−1 ∈ R. Given Propositions IV-9.1.19 and IV-9.1.20, the causal CLT
is particularly well suited for working with ordinary differential equations with
initial conditions. Thus we shall consider the initial value problem

dkξ

dtk
(t) + ak−1

dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = 0,

ξ(0) = x0,
dξ
dt

(0) = x(1)
0 , · · · ,

dk−1ξ

dtk−1
(0) = x(k−1)

0 . (4.25)

We shall now take the causal CLT of this initial value problem. To do so, it is tacitly
assumed that all members of Sol(F) and their derivatives are in LT∞,+(R≥0;C) so
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that we may use the derivative rule of Proposition IV-9.1.19 or IV-9.1.20. This is
true, however, since all members of Sol(F) are also pretty uninteresting functions,
and so are in LT∞,+(R≥0;C), when restricted to the domain R≥0, as we saw in
Example IV-9.1.9–6. Another way to think of taking the causal CLT of the equation,
were one to not know a priori that solutions were Laplace transformable, would
be to go ahead and take the transform assuming this is so, and then see if the
assumption is valid by seeing if the equation can be solved (or by some other
means). In any case, the following result records what happens when we take the
causal CLT of the initial value problem.

4.5.1 Proposition (Causal CLT of scalar homogeneous equation) The causal CLT of
the initial value problem (4.25) has the solution

L ∞

C (ξ)(z) =

∑k
j=0

∑j−1
l=0 ajzlξ(j−l−1)(0)

zk + ak−1zk−1 + · · · + a1z + a0
,

with the convention that ak = 1.
Proof By Corollary IV-9.1.22 we have

L ∞C

(
d jξ

dt j

)
(z) = z jL ∞C (ξ)(z) −

j−1∑
l=0

zlξ( j−l−1)(0), j ∈ {0, 1, . . . , k}.

Therefore, with the stated convention that ak = 1,

L ∞C

 k∑
j=0

a j
d jξ

dt j

 = k∑
j=0

a j

z jL ∞C (ξ)(z) −
j−1∑
l=0

zlξ( j−l−1)(0)

 ,
and solving this equation forL ∞C (ξ)(z) gives the asserted conclusion. ■

To obtain the solution to the initial value problem in the time-domain, we
should apply the inverse transform to the expression from the proposition. To
do this, one could, in principle, apply the definition of the inverse causal CLT
using the Fourier–Mellin integral (Definition IV-9.1.14). However, in cases where
one can actually compute the inverse transform, it is not typically done in this
way. Indeed, typically one “looks up” the answer. However, to do this requires a
manipulation of the form of the expression from the proposition, and we outline
this in the following procedure.

4.5.2 Procedure (Partial fraction expansion) While we shall apply the procedure to
a C-valued function of a complex variable (namely, the causal CLT of something),
the construction is best explained in algebraic terms, so we present it in this way.
Algebraically, the problem we are considering is a way of expressing a rational
function, i.e., a quotient RN,D =

N
D of polynomials N and D, in a manner where the

roots of D and their multiplicities are accounted for properly.
Given two polynomials N,D ∈ R[X] with real coefficients, with D monic, with

no common roots, and with deg(N) < deg(D), do the following.
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1. Find all roots of D and their multiplicities. Let the real roots be denoted by
r1, . . . , rl and let m(r j), j ∈ {1, . . . , l}, be the multiplicity of the root r j. Let the
complex roots be denote by ρ j = σ j + iω j, σ j ∈ R, ω j ∈ R>0, j ∈ {1, . . . , p} (along
with the complex conjugate roots σ j − iω j) and let m(ρ j), j ∈ {1, . . . , p}, be the
multiplicity of the root ρ j.

2. Write

RN,D =

l∑
j=1

m(r j)∑
k=1

a j,k

(X − r j)k
+

p∑
j=1

m(ρ j)∑
k=1

α j,kX + β j,k

((X − σ j)2 + ω2
j )

k
(4.26)

for constants a j,k ∈ R, j ∈ {1, . . . , l}, k ∈ {1, . . . ,m(r j)}, and α j,k, β j,k ∈ R, j ∈
{1, . . . , p}, k ∈ {1, . . . ,m(ρ j)}, that are to be determined.

3. Express the right-hand side of (4.26) in the form

P
(X − r1)m(r1) · · · (X − rl)m(rl)((X − σ1)2 + ω2

1)m(ρ1) · · · ((X − σp)2 + ω2
p)m(ρp)

,

for some polynomial P ∈ R[X].
4. By matching coefficients of powers of the indeterminate X, arrive at a set of linear

algebraic equations for the constants a j,k ∈ R, j ∈ {1, . . . , l}, k ∈ {1, . . . ,m(r j)}, and
α j,k, β j,k ∈ R, j ∈ {1, . . . , p}, k ∈ {1, . . . ,m(ρ j)}. It is a fact that these linear algebraic
equations have a unique solution.

5. The partial fraction expansion of RN,D is then the right-hand side of the expres-
sion (4.26) with the constants as computed in the previous step. •

The idea of a partial fraction expansion in practice is straightforward, albeit
quite tedious.

4.5.3 Examples (Partial fraction expansion)
1. We take N = 5X + 4 and D = X2 + X − 2 so that

RN,D =
5X + 4

X2 + X − 2
.

We determine the roots of D to be r1 = 1 and r2 = −2, with m(r1) = m(r2) = 1.
We then write

5X + 4
X2 + X − 2

=
a1,1

X − 1
+

a2,1

X + 2
=

(a1,1 + a2,1)X + 2a1,1 − a2,1

(X − 1)(X + 2)
.

Thus, matching coefficients of powers of X in the numerator, we must have

a1,1 + a2,1 = 5, 2a1,1 − a2,1 = 4 =⇒ a1,1 = 3, a2,1 = 2.

Thus the partial fraction expansion is

RN,D =
3

X − 1
+

2
X + 2

.
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2. We take N = −3X2 + 5X + 2 and D = X3
− 3X2 + X − 3, so that

R =
−3X2 + 5X + 2

X3 − 3X2 + X − 3
.

The roots of the denominator polynomial are r1 = 3, ρ1 = i, and ρ̄1 = −i. We
then write

−3X2 + 5X + 2
X3 − 3X2 + X − 3

=
a1,1

X − 3
+
α1,1X + β1,1

(X − 0)2 + 1

=
(a1,1 + α1,1)X2 + (β1,1 − 3α1,1)X + a1,1 − 3β1,1

(X − 3)(X2 + 1)
.

Matching coefficients of powers of X in the numerator, we must have

a1,1 + α1,1 = −3, β1,1 − 3α1,1 = 5, a1,1 − 3β1,1 = 2
=⇒ a1,1 = −1, α1,1 = −2, β1,1 = −1.

The partial fraction expansion is

RN,D = −
1

X − 3
−

2X + 1
X2 + 1

.

3. We take N = 2X2 + 1 and D = X3 + 3X2 + 3X + 1 so that

RN,D =
2X2 + 1

X3 + 3X2 + 3X + 1
.

The denominator polynomial has a single root r1 = −1 which has multiplicity
m(r1) = 3. We write

2X2 + 1
X3 + 3X2 + 3X + 1

=
a1,1

X + 1
+

a1,2

(X + 1)2 +
a1,3

(X + 1)3

=
a1,1X2 + (2a1,1 + a1,2)X + a1,1 + a1,2 + a1,3

(X + 1)3 .

Thus, matching coefficients of powers of X in the numerator,

a1,1 = 2, 2a1,1 + a1,2 = 0, a1,1 + a1,2 + a1,3 = 1
=⇒ a1,1 = 2, a1,2 = −4, a1,3 = 3.

Thus the partial fraction expansion is

RN,D =
2

X + 1
−

4
(X + 1)2 +

3
(X + 1)3 . •
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There are complex function methods for computing the coefficients in a partial
fraction decomposition, but we shall not present this here, mainly because this
method for solving initial value problems offers very little in terms of insight,
and nothing over the methods we learned in Procedure 4.2.18 for solving scalar
linear homogeneous ordinary differential equations with constant coefficients. So
presenting multiple methods for computing partial fraction expansions seems a
little silly.

Now let us see how one uses the partial fraction expansion to compute the
inverse causal CLT of the expression from Proposition 4.5.1. This is most easily
done via examples.

4.5.4 Examples (Solving scalar homogeneous equations using the causal CLT)
1. Consider the initial value problem

ξ̈(t) + ξ̇(t) − 2ξ(t) = 0, ξ(0) = 5, ξ̇(0) = −1.

Taking the causal CLT of the initial value problem gives

z2L ∞

C (ξ)(z) − zξ(0) − ξ̇(0) + zL ∞

C (ξ)(z) − ξ(0) − 2L ∞

C (ξ)(z) = 0

=⇒ L ∞

C (ξ)(z) =
5z + 4

z2 + z − 2
.

Borrowing our partial fraction expansion from Example 4.5.3–1 we have

L ∞

C (ξ)(z) =
3

z − 1
+

2
z + 2

.

Thus, referring to Example IV-9.1.15–2,

ξ(t) = 3et + 2e−2t.

2. Consider the initial value problem
...
ξ(t) − 3ξ̈(t) + ξ̇(t) − 3ξ(t) = 0, ξ(0) = −3, ξ̇(0) = −4, ξ̈(0) = −7.

Taking the causal CLT of the initial value problem gives

z3L ∞

C (ξ)(z) − z2ξ(0) − zξ̇(0) − ξ̈(0) − 3z2L ∞

C (ξ)(z) + 3zξ(0)

+ 3ξ̇(0) + zL ∞

C (ξ)(z) − ξ(0) − 3L ∞

C (ξ)(z) = 0

=⇒ L ∞

C (ξ)(z) =
−3z2 + 5z + 2

z3 − 3z2 + z − 3
.

Borrowing our partial fraction expansion from Example 4.5.3–1 we have

L ∞

C (ξ)(z) = −
1

z − 3
−

2z + 1
z2 + 1

.

Thus, referring to Example IV-9.1.15–2 and Example IV-9.1.15–4,

ξ(t) = −e3t
− 2 cos(t) − sin(t).
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3. Consider the initial value problem
...
ξ(t) + 3ξ̈(t) + 3ξ̇(t) + ξ(t) = 0, ξ(0) = 2, ξ̇(0) = −6, ξ̈(0) = 13.

Taking the causal CLT of the initial value problem gives

z3L ∞

C (ξ)(z) − z2ξ(0) − zξ̇(0) − ξ̈(0) + 3z2L ∞

C (ξ)(z) − 3zξ(0) − 3ξ̇(0)
+ 3zL ∞

C (ξ)(z) − 3ξ(0) +L ∞

C (ξ)(z) = 0

=⇒ L ∞

C (ξ)(z) =
2z2 + 1

z3 + 3z2 + 3z + 1
.

Borrowing our partial fraction expansion from Example 4.5.3–1 we have

L ∞

C (ξ)(z) =
2

z + 1
−

4
(z + 1)2 +

3
(z + 1)3 .

Thus, referring to Example IV-9.1.15–2,

ξ(t) = 2e−t
− 4te−t +

3
2

t2e−t. •

The above business about partial fraction expansions gives a reader who likes
doing algorithmic computations a venue to exercise this skill. However, it is not
really the point of the causal CLT. The really useful feature of the causal CLT for
linear differential equations, and not just those equations that are scalar and ho-
mogeneous, is that initial value problems are converted into algebraic expressions.
The use of partial fraction expansions to determine the inverse causal CLT of these
algebraic expressions is something of a novelty act.

4.5.2 Scalar inhomogeneous equations

We next consider scalar linear inhomogeneous ordinary differential equations,
first considered in Section 4.3.2. Thus we are working with scalar ordinary differ-
ential equations with right-hand sides given by

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + b(t) (4.27)

for a0, a1, . . . , ak−1 ∈ R and b : R≥0 → R. The initial value problem we consider is
then

dkξ(t)
dtk

(t) + ak−1
dk−1ξ

dtk−1
(t) + · · · + a1

dξ
dt

(t) + a0ξ(t) = b(t),

ξ(0) = x0,
dξ
dt

(0) = x(1)
0 , · · · ,

dk−1ξ

dtk−1
(0) = x(k−1)

0 . (4.28)
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If b ∈ L1
loc(R≥0;R), then the solution to the initial value problem (4.28) is given by

ξ(t) = ξh(t) +HF ∗ b(t), where ξh satisfies the homogeneous initial value problem

dkξh(t)
dtk

(t) + ak−1
dk−1ξh

dtk−1
(t) + · · · + a1

dξh

dt
(t) + a0ξh(t) = 0,

ξh(0) = x0,
dξh

dt
(0) = x(1)

0 , · · · ,
dk−1ξh

dtk−1
(0) = x(k−1)

0 ,

where HF(t−τ) = GF(t, τ) and where GF is the Green’s function from Section 4.3.1.3.
This follows from Remark 4.3.11 and Exercise 4.3.2.

We wish to provide an interpretation of this strategy using the causal CLT
and the connection of the transform and convolution from Proposition IV-9.1.10.
As with inhomogeneous equations above, we take the causal CLT of the equa-
tion (4.28). However, unlike in the homogeneous case, here taking the transform
is not generally valid; indeed, it is valid if and only if b ∈ LT1,+(R≥0;R). To
apply the convolution result from Proposition IV-9.1.10, we further assume that
b ∈ LT∞,+(R≥0;R).

First let us give determine the causal CLT of the Green’s function in this case.

4.5.5 Proposition (Causal CLT and the Green’s function) Consider the scalar linear
homogeneous ordinary differential equation F with right-hand side (4.24). Let GF be the
Green’s function and denote HF(t − τ) = GF(t, τ). Then the causal CLT of HF is given by

L ∞

C (HF)(z) =
1

zk + ak−1zk−1 + · · · + azz + a0
.

Proof According to Remark 4.3.11, GF(t, τ) = HF(t − τ), where HF satisfies the initial
value problem

dkHF

dtk
(t) + ak−1

dk−1HF

dtk−1
(t) + · · · + a1

dHF

dt
(t) + a0HF(t) = 0,

HF(0) = 0,
dHK

dt
(0) = 0, . . . ,

dk−2HF

dtk−2
(0) = 0,

dk−1HF

dtk−1
(0) = 1.

Therefore, according to Proposition 4.5.1,

LC(HF)(z) =
1

zk + ak−1zk−1 + · · · + azz + a0
,

as claimed. ■

By combining Proposition 4.5.1 with the preceding result and the convolution
solution ξ(t) = ξh(t) + HF ∗ b(t) of the initial value problem (4.28), we obtain the
following result.
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4.5.6 Proposition (Causal CLT of scalar inhomogeneous equation) Consider the
scalar ordinary differential equation with right-hand side (4.27), and suppose that
b ∈ LT∞,+(R≥0;R). The causal CLT of the solution of the initial value problem (4.28)
is given by

L ∞

C (ξ)(z) =

∑k
j=0

∑j−1
l=0 ajzlξ(j−l−1)(0) +L ∞

C (b)(z)

zk + ak−1zk−1 + · · · + a1z + a0
,

with the convention that ak = 1.

There are two ways in which the proposition has value. One is theoretical
and one is that it provides another tedious algorithmic procedure—augmenting
the “method of undetermined coefficients”—for computing solutions when the
inhomogeneous term is an also pretty uninteresting function. Let us consider
these in turn.

Next let us turn to a less interesting but somehow more concrete application of
the causal CLT in the study of scalar linear inhomogeneous ordinary differential
equations. Specifically, we consider such an equation F with right-hand side (4.27),
and where b is an also pretty uninteresting function. In this case, as we see
from Example IV-9.1.9, the causal CLT L ∞

C (b) of b will be a rational function
of the complex variable z whose numerator polynomial has degree strictly less
than that of the denominator polynomial. Therefore, as per Proposition 4.5.6,
the causal CLT L ∞

C (ξ) of the solution ξ of the initial value problem (4.28) will
itself be such a rational function of z. Thus we can perform a partial fraction
expansion ofL ∞

C (ξ) as per Procedure 4.5.2, and then perform the inversion of the
causal CLT as per Example 4.5.4 to obtain the solution. This is not something
to be belaboured—not least because we already have the often easier “method of
undetermined coefficients” for such situations–and we content ourselves with an
illustration via a example.

4.5.7 Example (Solving scalar inhomogeneous equations using the causal CLT)
We consider the initial value problem

ξ̈(t) + ω2ξ(t) = sin(ωt), ξ(0) = x0, ξ̇(0) = x(1)
0 ,

for ω ∈ R>0. Using Example IV-9.1.9–4 we compute the causal CLT of this initial
value problem:

z2L ∞

C (ξ)(z) − zx0 − x(1)
0 + ω

2L ∞

C (ξ)(z) =
ω

z2 + ω2

=⇒ L ∞

C (ξ)(z) =
ω

(z2 + ω2)2 +
zx0 + x(1)

0

z2 + ω2 .

Using Example IV-9.1.15–4 and Example IV-9.1.15–5 we have

ξ(t) = x0 cos(ωt) +
x(1)

0

ω
sin(ωt) −

t
2ω

cos(ωt) +
1

2ω2 sin(ωt). •
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Exercises

4.5.1 Determine the Laplace transform of the solution of the following initial value
problems:
(a) ξ̇(t) + 3ξ(t) = 0, ξ(0) = 4;
(b) ξ̈(t) − 4ξ̇(t) + 4ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1;
(c) ξ̈(t) − 4ξ̇(t) − 4ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1;
(d)

...
ξ(t) − 7ξ̈(t) + 15ξ̇(t) − 9ξ(t) = 0, ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;

(e)
...
ξ(t) + 3ξ̈(t) + 4ξ̇(t) + 2ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 1, ξ̈(0) = 2;

(f)
....
ξ(t) +

...
ξ(t) + ξ̈(t) + ξ̇(t) + ξ(t) = 0, ξ(0) = 0, ξ̇(0) = 0, ξ̈(0) = 0,

...
ξ(0) = 0.

NB. These are the same initial value problems you worked out in Exer-
cise 4.2.10.

4.5.2 Using partial fraction expansion, determine the solution to the initial value
problems from Exercise 4.5.1.

4.5.3 Determine the Laplace transform of the solution for the following scalar
linear inhomogeneous differential equations F with the stated initial condi-
tions:
(a) F(t, x, x(1), x(2)) = x(2) + 2x(1) + x − 3et, and ξ(0) = 1, ξ̇(0) = 1;
(b) F(t, x, x(1), x(2)) = x(2)

− 5x(1) + 6x − 2e3t
− cos(t), and ξ(0) = 0, ξ̇(0) = 1;

(c) F(t, x, x(1), x(2)) = x(2)
− 2x(1) + 5x − tet sin(2t), and ξ(0) = 1, ξ̇(0) = 0;

(d) F(t, x, x(1), x(2)) = x(2) + 4x − t cos(2t) + sin(2t), and ξ(0) = 2, ξ̇(0) = 1;
(e) F(t, x(1), x(2), x(3)) = x(3)

− x − tet, and ξ(0) = 1, ξ̇(0) = 1, ξ̈(0) = 1;
(f) F(t, x, x(1), . . . , x(4)) = x(4)+4x(2)+4x−cos(2t)−sin(2t), andξ(0) = 0, ξ̇(0) = 0,

ξ̈(t) = 0,
...
ξ(t) = 0.

NB. These are the same initial value problems you worked out in Exer-
cise 4.3.5.

4.5.4 Using partial fraction expansion, determine the solution to the initial value
problems from Exercise 4.5.3.
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Section 4.6

Scalar linear homogeneous ordinary difference equations

In this section we shall mirror the results given in Section 4.2 for differential
equations for difference equations. Here the equations have time-domain T =
I ∩Z(h) for an interval I and state space U = R. The right-hand sides we consider
are then of the form

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x (4.29)

for functions a0, a1, . . . , ak−1 : T→ R. Thus solutions t 7→ ξ(t) satisfy

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = 0.

We recall that the free domain is

TF = {t ∈ T | t + kh ∈ T}.

This means that we only use the values of the coefficients on TF, although we will
not be fussy about this. We shall (1) examine the character of solution, (2) examine
the set of all solutions, and (3) provide an in-principle procedure for solving these
equations in the constant coefficient case.

Do I need to read this section? This section contains tools that are standard for
anyone claiming to know something about ordinary difference equations. •

4.6.1 Equations with time-varying coefficients

We start by a consideration of the general situation where the coefficients
a0, a1, . . . , ak−1 depend on time. We shall, as we did with the corresponding dif-
ferential equations, consider the properties of solutions and sets of solutions. We
shall also introduce the discrete-time analogue of the Wronskian, the so-called
“Casoratian.”

4.6.1.1 Solutions and their properties Let us state the adaptation to our cur-
rent setting of the existence and uniqueness results of Section 3.4.

4.6.1 Proposition (Existence and uniqueness of solutions for scalar linear homo-
geneous ordinary difference equations) Consider the linear homogeneous ordinary
difference equation F with right-hand side (4.29). Let

(t0, x0, x
(1)
0 , . . . , x

(k−1)
0 ) ∈ TF ×R ⊕ L≤k−1

sym (R;R).
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Then there exists a unique ξ : T≥t0 → R that is a solution for F and which satisfies

ξ(t0) = x0, ξ(t0 + h) = x(1)
0 , . . . , ξ(t0 + (k − 1)h) = x(k−1)

0 . (4.30)

If F is invertible, then there exists a unique ξ : T → R that is a solution for F and which
satisfies (4.30).

Proof Since the state space is U = R, it follows that F is complete and so the first asser-
tion follows from Theorem 3.4.2. The second assertion follows from Theorem 3.4.6.■

There are some important differences between the preceding theorem and its
counterpart Proposition 4.2.2 for differential equations.
1. There are no regularity requirements in Proposition 4.6.1 on the coefficients of

the difference equation, nor any regularity conclusions for solutions. This is a
consequence of the discreteness of the time-domain.

2. Generally, one can only assert existence forward in time. For solutions to exist
backwards in time also requires invertibility of the difference equation. This is
in contrast to differential equations in Proposition 4.2.2, where one always has
solutions for all forward and all backward times.

3. For kth-order difference equations, one specifies k initial conditions at k dif-
ferent times. This is in contrast to kth-order differential equations where, in
Proposition 4.2.2, one prescribes k initial conditions at the same time.
The second of the above points leads us to understand the character of invertible

scalar linear ordinary difference equations, and the following result gives this.

4.6.2 Proposition (Invertible scalar linear homogeneous ordinary difference equa-
tions) A scalar linear homogeneous ordinary difference equation F with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 : T→ R, is invertible if and only if a0(t) , 0 for every t ∈ TF.
Proof This is most easily proved by writing the kth-order scalar equation as a first-
order vector equation in k variables, as in Exercise 3.3.7. Upon doing so, one can use
Proposition 5.6.2 to get the desired result. ■

As with differential equations, we can consider the space of solutions. Thus we
consider a scalar linear homogeneous ordinary difference equation F with right-
hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

where a0, a1, . . . , ak−1 : T→ R. For t0 ∈ TF, let us denote by

Solt0(F) =
{
ξ ∈ RT≥t0

∣∣∣
ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = 0, t ∈ TF,≥t0

}
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the set of solutions for F starting from t0. In case F is invertible, we can define

Sol(F) =
{
ξ ∈ RT

∣∣∣
ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = 0, t ∈ TF

}
.

The following result is then the main structural result for the class of differential
equations we are considering in this section.

4.6.3 Theorem (Vector space structure of sets of solutions) Consider the linear homo-
geneous ordinary differential equation F with right-hand side (4.29). Then, for t0 ∈ TF,
Solt0(F) is a k-dimensional subspace of RT≥t0 . If F is additionally invertible, then Sol(F) is
a k-dimensional subspace of RT.

Proof That Solt0(F) and Sol(F) are subspaces is easily shown, rather similarly to the
proof of Theorem 4.2.3. To prove that the subspaces are of dimension k, we shall
consider Solt0(F) with the case of Sol(F) following similarly.

We show that the mapping

σt0 : Solt0(F)→ Rk

ξ 7→ (ξ(t0), ξ(t0 + h), . . . , ξ(t0 + (k − 1)h))

is an isomorphism of R-vector spaces. The map is surjective by the existence part
of Proposition 4.6.1. Linearity of σt0 is easily shown, cf. the proof of Theorem 4.2.3.
Given this linearity, to show injectivity of σt0 it suffices to show that ker(σt0) = {0} by
Exercise I-4.5.23. Suppose, then, that σt0(ξ) = 0 so that

ξ(t0) = 0, ξ(t0 + h) = 0, . . . , ξ(t0 + (k − 1)h) = 0.

It then follows directly by induction that ξ(t0 + jh) = 0 for all j ∈ Z≥0, and so ξ = 0. ■

4.6.4 Definition (Fundamental set of solutions) Consider the linear homogeneous
ordinary difference equation F with right-hand side (4.29).

(i) A set {ξ1, . . . , ξk} of linearly independent elements of Solt0(F) is a fundamental
set of solutions for F from t0.

(ii) If F is invertible, then a set {ξ1, . . . , ξk} of linearly independent elements of
Solt0(F) is a fundamental set of solutions for F. •

As with differential equations, there is not much one can say in general about
time-varying linear equations. We, therefore, content ourselves by considering a
simple example in detail.

4.6.5 Example (First-order scalar linear homogeneous equations) We consider a
first-order scalar linear homogeneous ordinary difference equation given by

F : T ×R × L1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1) + a(t)x,
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for some a : T → R. We take T ⊆ Z(h). Solutions then satisfy an initial value
problem

ξ(t + h) + a(t)ξ(t) = 0, ξ(t0) = x0. (4.31)

We shall write points in T as jh for j ∈ Z, and we write t0 = j0h. We claim that the
solution to this equation is

ξ( j0h) = x0, ξ( jh) = (−1) j− j0

j−1∏
l= j0

a(lh)x0, j ∈ T> j0h.

We shall simply verify that this does indeed satisfy the initial value problem. First
of all, the initial condition is satisfied by declaration. To see that ξ satisfies the
difference equation, we use induction to compute

ξ(( j0 + 1)h) = (−1)( j0+1)− j0

 j0∏
l= j0

a(lh)

 x0 = −a( j0h)ξ( j0h)

and then, for j > j0,

ξ(( j + 1)h) = −a( jh)ξ( jh) = − a( jh)(−1) j− j0

 j−1∏
l= j0

a(lh)

 x0

= (−1)( j+1)− j0

 j∏
l= j0

a(lh)

 x0,

as claimed.
We note that F is invertible if and only if a(t) , 0 for every t ∈ T. Indeed, if

a(t) , 0 for every t ∈ T, we have the inverse difference equation

F−1 : T ×R × L≤1
sym(R;R)→ R

(t, x, x(1)) 7→ x(1)
− a(t + h)−1x.

In this case, for j < j0, we can define the solution to the initial value problem (4.31)
by

ξ( jh) = (−1) j0− j

 j0−1∏
l= j

a(lh)−1

 x0.

We leave to the reader the simple verification that the resulting function

ξ( jh) =


(−1) j0− j

(∏ j0−1
l= j a(lh)−1

)
x0, j < j0,

x0, j = j0,

(−1) j− j0
(∏ j−1

l= j0
a(lh)

)
x0, j > j0,

is indeed a solution to the initial value problem (4.31) when F is invertible. •
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We encourage the reader to compare the solution to this difference equation
to the solution to the corresponding differential equation given in Example 4.2.5,
and to come to peace with the idea that they are one and the same thing, mutatis
mutandis.4

4.6.1.2 The Casoratian, and its properties and uses We give in this sec-
tion the analogue for difference equations of the Wronskian introduced in Sec-
tion 4.2.1.2.

4.6.6 Definition (Casoratian5) Let T ⊆ Z(h) be a discrete time-domain and let
f1, . . . , fk : T→ R. Denote

Tk = {t ∈ T | t + (k − 1)h ∈ T}.

The Casoratian for the functions f1, . . . , fk is the function C( f1, . . . , fk) : Tk → R
defined by

C( f1, . . . , fk)(t) = det


f1(t) f2(t) · · · fk(t)

f1(t + h) f2(t + h) · · · fk(t + h)
...

...
. . .

...
f1(t + (k − 1)h) f2(t + (k − 1)h) · · · fk(t + (k − 1)h)

 .
If Tk = ∅, we take the convention that C( f1, . . . , fk)(t) = 0 for t ∈ T. •

An essential feature of the Casoratian is that it gives a sufficient condition
for measuring the linear independence of finite sets of functions in the space of
functions. More precisely, we have the following result, which again is not a priori
related to differential equations.

4.6.7 Proposition (The Casoratian and linear independence) LetT ⊆ Z(h) be a discrete
time-domain and let f1, . . . , fk : T → R. If C(f1, . . . , fk)(t) , 0 for some t ∈ Tk, then the
set {f1, . . . , fk} is linearly independent in RT.

Proof We prove the contrapositive, i.e., that, if the functions { f1, . . . , fk} are linearly
dependent, then C( f1, . . . , fk)(t) = 0 for all t ∈ Tk.

So suppose that { f1, . . . , fk} is linearly dependent, and let c1, . . . , ck ∈ R, not all zero,
be such that

c1 f1 + · · · + ck fk = 0.

Then, for any j ∈ {1, . . . , k − 1} and t ∈ Tk,

c1 f1(t + jh) + · · · + cn fn(t + jh) = 0.

4A key part of this, as shall become apparent after awhile, is that integrals for differential
equations get replaced by sums for difference equations (as expected), while exponentials for
differential equations get replaced by products (perhaps less expected initially).

5After Felice Casorati (1835–1890), an Italian mathematician who made contributions in the areas
of differential equations and complex analysis.
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Assembling these relationships for j ∈ {0, 1, . . . , k − 1} gives the single equation
f1(t) f2(t) · · · fk(t)

f1(t + h) f2(t + h) · · · fk(t + h)
...

...
. . .

...
f1(t + (k − 1)h) f2(t + (k − 1)h) · · · fk(t + (k − 1)h)



c1
c2
...

ck

 =

0
0
...
0

 .
This means that the matrix on the left has a nontrivial kernel (since this kernel contains
(c1, . . . , ck)) and so must have zero determinant. ■

Note that the converse of the preceding result is not generally true, as demon-
strated by the following example.

4.6.8 Example (The Casoratian is not adequate to characterise linear indepen-
dence) Let T = Z and consider the two functions f1, f2 : Z→ R defined by

f1(t) =

1, t = 0,
0, otherwise,

f1(t) =

1, t = 2,
0, otherwise.

We then directly verify that C( f1, f2)(t) = 0 for all t ∈ Z. However, f1 and f2 are
linearly independent. Indeed, suppose that c1, c2 ∈ R satisfy

c1 f1(t) + c2 f2(t) = 0, t ∈ Z.

Then, taking t = 0, we get c1 = 0 and taking t = 2 we get c2 = 0. •

Thus the Casoratian is not quite the thing for precisely characterising the linear
independence of general sets of functions. By examining the previous example, as
astute reader may be able to guess the correct condition for the linear independence
of discrete-time signals. We refer to Exercise 4.6.1 for a spelling out of these
conditions. As with the Wronskian and differential equations, the Casoratian is
just the thing when the set of functions under consideration are solutions to a scalar
linear homogeneous ordinary difference equation, especially when that difference
equation is invertible.

4.6.9 Proposition (Casoratians and linear independence in Sol(F)) Consider the linear
homogeneous ordinary difference equation F with right-hand side (4.29). Then the following
statements are equivalent for t0 ∈ TF and for ξ1, . . . , ξk ∈ Solt0(F):

(i) {ξ1, . . . , ξk} is linearly independent;
(ii) C(ξ1, . . . , ξk)(t) , 0 for some t ∈ TF,≥t0 .

If, additionally, F is invertible, then the preceding statements are equivalent to the following:
(iii) C(ξ1, . . . , ξk)(t) , 0 for all t ∈ TF,≥t0 .

Proof (i) =⇒ (ii) We prove the contrapositive, i.e., we prove that, if C(ξ1, . . . , ξk)(t) = 0
for all t ∈ TF,≥t0 , then {ξ1, . . . , ξk} is linearly dependent.
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So suppose that C(ξ1, . . . , ξk)(t) = 0 for all t ∈ TF,≥t0 , which means that there exists
c1, . . . , ck ∈ R, not all zero, such that

ξ1(t) ξ2(t) · · · ξk(t)
ξ1(t + h) ξ2(t + h) · · · ξk(t + h)

...
...

. . .
...

ξ1(t + (k − 1)h) ξ2(t + (k − 1)h) · · · ξk(t + (k − 1)h)



c1
c2
...

ck

 =

0
0
...
0


for all t ∈ TF,≥t0 . If we simply expand this out, we see that it is equivalent to

c1σt0(ξ1) + · · · + ckσt0(ξk) = 0,

where σt0 : Solt0(F)→ Rk is the isomorphism defined by

σt0(ξ) = (ξ(t0), ξ(t0 + h), . . . , ξ(t0 + (k − 1)h),

cf. the proof of Theorem 4.6.3. Since σt0 is linear, this gives

σt0(c1ξ1 + · · · + ckξk) = 0, t ∈ TF.

Injectivity of σt0 then gives
c1ξ1 + · · · + ckξk = 0,

showing linear dependence of {ξ1, . . . , ξk}.
(ii) =⇒ (i) This follows from Proposition 4.6.7.
(ii) =⇒ (iii) From Proposition 4.6.7 the assumption of (ii) implies that {ξ1, . . . , ξk} is

linearly independent. Suppose now that there exists t ∈ TF such that C(ξ1, . . . , ξk)(t) =
0. Then there exists c1, . . . , ck ∈ R, not all zero, such that

ξ1(t) ξ2(t) · · · ξk(t)
ξ1(t + h) ξ2(t + h) · · · ξk(t + h)

...
...

. . .
...

ξ1(t + (k − 1)h) ξ2(t + (k − 1)h) · · · ξk(t + (k − 1)h)



c1
c2
...

ck

 =

0
0
...
0

 . (4.32)

Now, define ξ : T≥t0 → R by
ξ = c1ξ1 + · · · + ckξk.

By Theorem 4.6.3, ξ ∈ Sol(F). Moreover, the equation (4.32) gives

ξ(t) = 0, ξ(t + h) = 0, . . . , ξ(t + (k − 1)h) = 0.

By Proposition 4.6.1 in the case that F is invertible, we conclude that ξ(t) = 0 for all
t ∈ T. This contradicts the linear independence of {ξ1, . . . , ξk}.

It is evident that (iii) =⇒ (ii). ■

The following result gives an interesting characterisation of the Casoratian.
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4.6.10 Proposition (Abel’s formula) Consider the scalar linear homogeneous ordinary differ-
ence equation F with right-hand side (4.29). If {ξ1, . . . , ξk} are linearly independent, then,
for any t0 ∈ TF and j ∈ Z≥0 such that t0 + jh ∈ T,

C(ξ1, . . . , ξk)(t0 + jh) = C(ξ1, . . . , ξk)(t0)(−1)kj

 j−1∏
l=1

a0(t0 + lh)


Proof We have

C(ξ1, . . . , ξk)(( j + 1)h) = det


ξ1(( j + 1)h) ξ2(( j + 1)h) · · · ξk(( j + 1)h)
ξ1(( j + 2)h) ξ2(( j + 2)h) · · · ξk(( j + 2)h)

...
...

. . .
...

ξ1(( j + k)h) ξ2(( j + k)h) · · · ξk(( j + k)h)

 .
By the satisfaction of the difference equation, we have

ξl(( j + k)h) = −a0( jh)ξl( jh) −
k−1∑
r=1

ar( jh)ξl(( j + r)h), l ∈ {1, . . . , k}.

This means that the last row of C(ξ1, . . . , ξk)(( j + 1)h) is of the form[
−a0( jh)ξ1( jh) + ∗1 −a0( jh)ξ2( jh) + ∗2 · · · −a0( jh)ξk( jh) + ∗k

]
,

where ∗l means a linear combination of

ξl(( j + 1)h), . . . , ξl(( j + k − 1)h), l ∈ {1, . . . , k}.

Thus the last row of C(ξ1, . . . , ξk)(( j + 1)h) is[
−a0( jh)ξ1( jh) −a0( jh)ξ2( jh) · · · −a0( jh)ξk( jh)

]
,

plus a linear combination of the first k − 1 rows. By properties of determinants and
elementary row operations, this gives

C(ξ1, . . . , ξk)(( j + 1)h) = det


ξ1(( j + 1)h) ξ2(( j + 1)h) · · · ξk(( j + 1)h)
ξ1(( j + 2)h) ξ2(( j + 2)h) · · · ξk(( j + 2)h)

...
...

. . .
...

−a0( jh)ξ1( jh) −a0( jh)ξ2( jh) · · · −a0( jh)ξk( jh)


cf. Exercise I-5.3.1. Again using the properties of determinants and row operations as
in Exercise I-5.3.1, we have

C(ξ1, . . . , ξk)(( j + 1)h) = −a0( jh) det


ξ1(( j + 1)h) ξ2(( j + 1)h) · · · ξk(( j + 1)h)
ξ1(( j + 2)h) ξ2(( j + 2)h) · · · ξk(( j + 2)h)

...
...

. . .
...

ξ1( jh) ξ2( jh) · · · ξk( jh)

 .
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By k − 1 row permutations, we can move the last row of the matrix on the right to the
first row. By one final use of the properties of determinants and row operations as in
Exercise I-5.3.1, we have

C(ξ1, . . . , ξk)(( j + 1)h) = (−1)ka0( jh)C(ξ1, . . . , ξk)( jh).

We can now apply Example 4.6.5 to get the result. ■

As with its Wronskian brother, one of the sort of peculiar features of the Caso-
ratian is that it can be used to actually write down a difference equation.

4.6.11 Proposition (A Casoratian representation of a difference equation) Consider
the scalar linear homogeneous ordinary differential equation F with right-hand side (4.29).
Let {ξ1, . . . , ξk} be a fundamental set of solutions for F and let t0 ∈ TF. If F is invertible
then, for ξ ∈ RT≥t0 and t ∈ TF,≥t0 ,

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0ξ(t) =
C(ξ1, . . . , ξk, ξ)(t)
C(ξ1, . . . , ξk)(t)

.

In particular,

Solt0(F) =
{
ξ ∈ RT≥t0

∣∣∣∣∣ C(ξ1, . . . , ξk, ξ)(t)
C(ξ1, . . . , ξk)(t)

= 0, t ∈ TF,≥t0

}
.

Proof First of all, note by Proposition 4.6.9 that C(ξ1, . . . , ξk)(t) is never zero, so this
is valid to appear in denominators, as in the statement of the proposition.

We shall prove the last assertion first. First suppose that ξ ∈ Solt0(F), then

ξ = c1ξ1 + · · · + ckξk

for some (unique) constants c1, . . . , ck ∈ R. Therefore, the functions {ξ, ξ1, . . . , ξk} are
linearly dependent, cf.

−c1ξ1 − · · · − ckξk + 1ξ = 0.

Therefore,
ξ1(t) ξ2(t) · · · ξk(t) ξ(t)

ξ1(t + h) ξ2(t + h) · · · ξk(t + h) ξ(t + h)
...

...
. . .

...
...

ξ1(t + (k − 1)h) ξ2(t + (k − 1)h) · · · ξk(t + (k − 1)h) ξ(t + (k − 1)h)
ξ1(t + kh) ξ2(t + kh) · · · ξk(t + kh) ξ(t + kh)




−c1
−c2
...
−ck
1


=


0
0
...
0
0


for all t ∈ TF,≥t0 . From this we immediately conclude that C(ξ1, . . . , ξk, ξ)(t) = 0 for all
t ∈ TF,≥t0 , and so

ξ ∈

{
ξ̃ ∈ RT≥t0

∣∣∣∣∣∣ C(ξ1, . . . , ξk, ξ̃)(t)
C(ξ1, . . . , ξk)(t)

= 0, t ∈ TF,≥t0

}
.
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Now note that, if we expand the determinant C(ξ1, . . . , ξk, ξ) about the last column,
we get an expression of the form

C(ξ1, . . . , ξk, ξ)(t)
= C(ξ1, . . . , ξk)(t)ξ(t + kh) + bk−1(t)ξ(t + (k − 1)h) + · · · + b1(t)ξ(t + h) + b0(t)ξ(t)

for some functions b0, b1, . . . , bk−1 : T→ R. By Proposition 4.6.9 it follows that{
ξ ∈ RT≥t0

∣∣∣∣∣ C(ξ1, . . . , ξk, ξ)(t)
C(ξ1, . . . , ξk)(t)

= 0, t ∈ T≥t0

}
is the set of solutions to a kth-order scalar linear homogeneous ordinary difference
equation. Moreover, since we clearly have C(ξ1, . . . , ξk, ξ j) = 0 for every j ∈ {1, . . . , k},
(it is the determinant of a (k + 1) × (k + 1) matrix with two equal columns), it follows
that {ξ1, . . . , ξk} is a fundamental set of solutions for this differential equation. Thus we
have shown that

Sol(F) =
{
ξ ∈ RT≥t0

∣∣∣∣∣ C(ξ1, . . . , ξk, ξ)(t)
C(ξ1, . . . , ξk)(t)

= 0, t ∈ TF,≥t0

}
.

To prove the first assertion, we shall show that the set of solutions for a kth-
order scalar linear homogeneous ordinary difference equation uniquely determines its
coefficients. That is, we show that if two such equations F and G with right-hand sides

F̂(t, x, x(1), . . . , x(k−1)) = − ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x,

Ĝ(t, x, x(1), . . . , x(k−1)) = − bk−1(t)x(k−1)
− · · · − b1(t)x(1)

− b0(t)x

satisfy Solt0(F) = Solt0(G), then a j(t) = b j(t), t ∈ TF,≥t0 , j ∈ {0, 1, . . . , k−1}. Let us consider
initial conditions

ξ(t) = c0, ξ(t + h) = c1, . . . , ξ(t + (k − 1)h) = ck−1.

The equality of the sets of solutions implies that

ξ(t+ kh)+ ak−1(t)ck−1+ · · ·+ a1(t)c1+ a0(t)c0 = ξ(t+ kh)+ bk−1(t)ck−1+ · · ·+ b1(t)c1+ b0(t)c0.

This immediately gives

(ak−1(t) − bk−1(t))ck−1 + · · · + (a1(t) − b1(t))c1 + (a0(t) − b0(t))c0 = 0

for every (c0, c1, . . . , ck−1) ∈ Rk. This gives a j(t) = b j(t), t ∈ TF,≥t0 , j ∈ {0, 1, . . . , k − 1}, as
claimed. ■

4.6.2 Equations with constant coefficients

Having said about as much as one can say, in general, about the scalar homo-
geneous linear ordinary difference equations with time-varying coefficients, we



304 4 Scalar ordinary differential and ordinary difference equations 2022/03/07

now turn to the case of constant coefficient scalar linear homogeneous ordinary
difference equations. If

F : T ×R ⊕ L≤k
sym(R;R)→ R

is such an equation, then its right-hand side must be given by

F̂(t, x, x(1), . . . , x(k)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x (4.33)

for a0, a1, . . . , ak−1 ∈ R. Thus a solution t 7→ ξ(t) satisfies the equation

ξ(t + kh) + ak−1ξ(t + (k − 1)h) + · · · + a1ξ(t + h) + a0ξ(t) = 0. (4.34)

These equations are, of course, a special case of the equations considered in Sec-
tion 4.6.1, and so all statements made about the general case of time-varying
coefficients hold in the special case of constant coefficients. In particular, Proposi-
tion 4.6.1 and Theorem 4.6.3 hold for equations of the form (4.34). However, for
these constant coefficient equations, it is possible to explicitly describe the character
of the solutions, and this is what we undertake to do.

The trick, motivated to some extent by our approach to scalar linear ordinary
differential equations, is to assume a solution of the form ξ( jh) = ar j for a, r ∈ R, and
see what happens. First of all, we note that

ξ(( j + l)h) = ar j+l = arlr j.

Thus, a direct substitution into the equation (4.34) shows that, with ξ in this as-
sumed form,

ar j+k + ak−1(ar j+k−1) + · · · + a1(ar j+1) + a0(ar j) = ar j(rk + ak−1rk−1 + · · · + a1r + a0) = 0.

Since we are looking for nontrivial solutions, we suppose that a , 0, in which case
ξ( jh) = ar j is a solution for F if and only if

rk + ak−1rk−1 + · · · + a1r + a0 = 0.

With this as backdrop, we make the following definition.

4.6.12 Definition (Characteristic polynomial of a scalar linear homogeneous differ-
ence equation with constant coefficients) Consider the linear homogeneous
ordinary difference equation F with constant coefficients and with right-hand
side (4.33). The characteristic polynomial of F is

PF = Xk + ak−1Xk−1 + · · · + a1X + a0 ∈ R[X]. •

Note that, if r is a root of the characteristic polynomial, the corresponding solu-
tion for F is t 7→ rt/h. If r = 0, then the corresponding solution is zero, a possibility
that does not arise for constant coefficient ordinary differential equations.

Now we systematically develop the methodology for solving scalar linear ho-
mogeneous ordinary differential equations with constant coefficients.



2022/03/07 4.6 Scalar linear homogeneous ordinary difference equations 305

4.6.2.1 Complexification of scalar linear ordinary difference equations It
turns out that to solve constant coefficient linear ordinary difference equations, one
needs to work with complex numbers. To do this systematically, we introduce
the notion of “complexification,” by which a real equation is converted into a
complex one. This is rather elementary in this setting, but will be less elementary
in Section 5.6.2. Thus it will do not harm, and maybe do some good, to treat this
systematically here.

First let us understand the notation for forward differences of C-valued func-
tions of a single discrete real variable, i.e., functions of discrete time. Let T ⊆ Z(h)
be a discrete time-domain and suppose that we have a mapping ζ : T → C. If we
write ζ as a sum of its real and imaginary parts, ζ(t) = ξ(t) + iη(t), then we have

ζ(t + jh) = ξ(t + jh) + iη(t + jh).

Thus forward differences of order j are just C-valued functions of t. Thus we can
follow the same line of reasoning as Remark 3.1.5 and make the identification
Lk

sym(R;C) ≃ C.
Here is the basic and quite elementary construction.

4.6.13 Definition (Complexification of scalar linear ordinary difference equation)
Consider the scalar linear homogeneous ordinary difference equation F with con-
stant coefficients and with right-hand side (4.33). The complexification of F is the
mapping

FC : T × C ⊕ L≤k
sym(R;C)→ C

(t, z, z(1), . . . , z(k)) 7→ z(k) + ak−1z(k−1) + · · · + a1z(1) + a0z.

A solution for FC from t0 is ζ ∈ CT≥t0 that satisfies

ζ(t + kh) + ak−1ζ(t + (k − 1)h) + · · · + a1ζ(t + h) + a0ζ(t) = 0.

By Solt0(FC) we denote the set of solutions for FC from t0. If F is invertible, then we
denote by Sol(FC) the set of solutions for FC. •

Everything we said in Section 4.6.1 about scalar linear homogeneous ordinary
difference equations holds in the case of the complex differential equation FC, even
when the coefficients are not constant. In particular, Proposition 4.6.1 and Theo-
rem 4.6.3 hold in this case to give us the basic attributes of the complex differential
equation, merely by replacing the appropriate occurrences of the symbol “R” with
the symbol “C.” In particular, Solt0(FC) and Sol(FC) are k-dimensional C-vector
spaces if F has order k.

An essential result for returning to “reality” after complexification is the fol-
lowing simple result.
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4.6.14 Lemma (Real and imaginary parts of complex solutions are solutions) Con-
sider the linear homogeneous ordinary difference equation F with constant coefficients, with
right-hand side (4.33) and with complexification FC. Let t0 ∈ TF. If ζ : T≥t0 → C is a
solution for FC, then Re(ζ) and Im(ζ) are solutions for F.

Proof This is elementary, rather like the proof of Lemma 4.2.14. ■

4.6.2.2 Difference operator calculus We introduce a simple object that will be
used to say a few simple things about our constant coefficient ordinary difference
equations.

4.6.15 Definition (Scalar forward difference operator with constant coefficients) Let
F ∈ {R,C}, let T ⊆ Z(h) be a discrete time-domain, and let k ∈ Z≥0. Let

T′ ⊆ {t ∈ T | t + kh ∈ T}.

A kth-order scalar difference operator with constant coefficients in F is a mapping

D : FT → FT
′

of the form

D( f )(t) = dk f (t + kh) + dk−1 f (t + (k − 1)h) + · · · + d1 f (t + h) + d0 f (t),

for d0, d1, . . . , dk ∈ Fwith dk , 0. The symbol for such an object is

σ(D) = dkXk + dk−1Xk−1 + · · · + d1X + d0 ∈ F[X]. •

Note that the codomain of D has to be restricted so that the forward differences
make sense. Since we will be composing forward difference operators, we do
not demand that D be defined on the largest possible domain where it makes
sense. Indeed, forward difference operators of the sort we are talking about have
a product given by composition. Thus, if D1 and D1 are k1th- and k2th-order scalar
differential operators with constant coefficients, then we define a (k1 + k2)th-order
scalar differential operator D1D2 with constant coefficients by D1D2( f ) = D1(D2( f )).
The domain of D1D2 must be such that the operator makes sense.

A simplifying observation about scalar forward difference operators with con-
stant coefficients is the following.

4.6.16 Proposition (The symbol of a product is the product of the symbols) Let F ∈
{R,C}, let T ⊆ Z(h) be a discrete time-domain, let k1,k2 ∈ Z≥0. If D1 and D1 are
k1th- and k2th-order scalar difference operators with constant coefficients, then σ(D1D2) =
σ(D1)σ(D2).

Proof This follows rather in the manner of Proposition 4.2.16. ■
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4.6.17 Corollary (The product for forward difference operators is commutative) . Let
F ∈ {R,C}, letT ⊆ Z(h) be a discrete time-domain, let k1,k2 ∈ Z≥0. If D1 and D1 are k1th-
and k2th-order scalar differential operators with constant coefficients, then D1D2 = D2D1.

Proof The follows as does Corollary 4.2.17. ■

4.6.2.3 Bases of solutions Now we construct a family of solutions for a scalar
linear homogeneous ordinary difference equation. We do this via a procedure.

4.6.18 Procedure (Basis of solutions for scalar linear homogeneous ordinary differ-
ence equations with constant coefficients) Given a scalar linear homogeneous
ordinary differential equation

F : T ×R ⊕ L≤k−1
sym (R;R)→ R

with discrete time-domain T ⊆ Z(h) and right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

and t0 ∈ TF, do the following.
1. Let FC be the complexification of F,
2. Consider the kth-order scalar differential operator DF with constant coefficients

in C defined by
σ(DFC) = Xk + ak−1Xk + · · · + a1X + a0.

3. Let r1, . . . , rs be the distinct roots of σ(DF) and let m(r j), j ∈ {1, . . . , s}, be the
multiplicity of the root r j. Thus

σ(DFC) = (X − r1)m(r1)
· · · (X − rs)m(rs).

4. Fix j ∈ {1, . . . , s} and consider the following cases.
(a) r j = 0: Define functions ξ0,l : T≥t0 → R, l ∈ {1, . . . ,m(0)} by

ξ0,l(t) =

1, t = t0 + (l − 1)h,
0, otherwise.

(b) r j ∈ R \ {0}: Define functions ξr j,l : T→ R, l ∈ {1, . . . ,m(r j)}, by

ξr j,l(t) = tl−1rt/h
j , l ∈ {1, . . . ,m(r j)}.

(c) r j ∈ C \ R: Note that, since r j is complex and not real, r j is also a root of
σ(DFC). We will work only with one of these roots, so we write r j = ρ jeiθ j

with ρ j ∈ R>0 and θ j ∈ (0, π). Define functions µr j,l, νr j,l : T→ R by

µr j,l(t) = tlρt/h
j cos(θ j

t
h ), νr j,l(t) = tlρt/h

j sin(θ j
t
h ), l ∈ {0, 1, . . . ,m(r j) − 1}.

5. Note that the result of the above steps is k functions. We will show that these
functions form a basis for Sol(F). •
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4.6.19 Theorem (Basis of solutions for scalar linear homogeneous ordinary differ-
ence equations with constant coefficients) Given a scalar linear homogeneous
ordinary difference equation with constant coefficients

F: T ×R ⊕ L≤k−1
sym (R;R)→ R

with discrete time-domain T ⊆ Z(h) and with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

define k functions as in Procedure 4.6.18. If t0 ∈ TF, then these functions, restricted to
T≥t0 , form a basis for Solt0(F). If F is invertible, then the functions from parts 4(b) and 4(c)
of Procedure 4.6.18 form a basis for Sol(F).

Proof First we show that each of the functions defined in Procedure 4.6.18 is a solution
for F.

First we consider the functions ξ0,l, l ∈ {1, . . . ,m(0)}, associated to a zero root of the
characteristic polynomial. Since the zero root has multiplicity m(0), solutions to the
difference equation we are considering satisfy

ξ(t + kh) + ak−1ξ(t + (k − 1)h) + · · · + am(0)ξ(t +m(0)h) = 0. (4.35)

Therefore, for any initial conditions of the form

ξ(t0) = x0, . . . , ξ(t0 + (m(0) − 1)h) = xm(0)−1, ξ(t0 +m(0)h) = · · · = ξ(t0 + (k − 1)h) = 0,

all solutions will satisfy ξ(t0 + jh) = 0 for j ≥ m(0). In particular, ξ0,1, . . . , ξ0,m(0) are
solutions.

Next we consider the functions ξr j,l(t) = tlrt/h
j , l ∈ {0, 1, . . . ,m(r j) − 1}, associated

with a real root r j of the characteristic polynomial for F. Since

σ(DFC) = (X − r1)m(r1)
· · · (X − rs)m(rs),

by Corollary 4.6.17 we can write

σ(DFC) = P(X − r j)m(r j)

for some P ∈ C[X]. Let us denote the forward difference operator

Dr( f )(t) = f (t + h) − r f (t).

It suffices to show that, for r ∈ R and for m, l ∈ Z≥0 with m ∈ Z>0 and l < m, we have

Dm
r (P(t)rt/h) = 0, (4.36)

where P is any polynomial function of degree l ∈ {0, 1, . . . ,m − 1}. To prove (4.36), we
first prove a simple lemma.
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1 Lemma Let m ∈ Z>0 and r ∈ C. If ξ ∈ CT then

Dm
r (ξ(t)rt/h) = hmrt/h+m∆m,+ξ(t).

Proof We prove this by induction on m. For m = 1 we have

Dr(ξ(t)rt/h) = ξ(t + h)rt/h+1
− rξ(t)rt/h = hrt/h+1∆1,+(ξ)(t),

giving the lemma when m = 1. Now suppose that the lemma holds when m = k. Then

Dk+1
r (ξ(t)rt/h) = DrDk

r(ξ(t)tr/h) = Dr(hkrt/h+k∆k,+ξ(t))

= hkrt/h+k+1∆k,+ξ(t + h) − rhkrt/h+k∆k,+ξ(t)

= hkrt/h+k+1(∆k,+ξ(t + h) − ∆k,+ξ(t))

= hk+1krt/h+k+1∆k+1,+ξ(t),

as desired. ▼

Now, if P is a polynomial function of degree l ∈ {0, 1, . . . ,m}, by the Lemma 1 we
have

Dm
r (P(t)rt/h) = hmrt/h+m∆m,+P(t).

By Exercise 3.3.4(d), ∆1,+P(t) is a polynomial of degree l − 1, just as we have for
derivatives. Therefore, ∆m,+P(t) = 0. Thus shows that the functions ξr j,l(t) = tlrt/h

j ,
l ∈ {0, 1, . . . ,m(r j) − 1}, are solutions for F.

Next we consider the functions

µr j,l = tlρt/h
j cos(θ j

t
h ), νr j,l = tlρt/h

j sin(θ j
t
h ), l ∈ {0, 1, . . . ,m(r j) − 1},

corresponding to a complex root r j = ρ jeiθ j , ρ j > 0, θ j ∈ (0, π), of the characteristic
polynomial of F. In this case, we argue, exactly as in the case of a real root above, that
the C-valued functions ζr j,l(t) = tlrt/h

j , l ∈ {0, 1, . . . ,m(r j)− 1}, are solutions for FC. Then,
by Lemma 4.6.14, we have that

µr j,l(t) = tlρt/h
j cos(θ j

t
h )

= Re(tlρt/h
j (cos(θ j

t
h ) + i sin(θ j

t
h ))

= Re(tlρt/h
j eiθ jt/h) = Re(ζr j,l(t))

and, similarly,
νr j,l = tlρt/h

j sin(θ j
t
h ) = Im(ζr j,l(t))

are solutions for F for l ∈ {0, 1, . . . ,m(r j) − 1}.
Our above arguments show that the functions produced in Procedure 4.6.18 are

solutions. Moreover, since Procedure 4.6.18 produces k solutions for F, by Theo-
rem 4.2.3 it suffices to show that these solutions are linearly independent to show that
they form a basis for Sol(F).
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To undertake this, let us first dispense with the solutions ξ0,l, l ∈ {1, . . . ,m(0)},
corresponding to the zero eigenvalue. First of all, these solutions are linearly inde-
pendent, and so yield m(0) linearly independent solutions. Let us show that none of
these m(0) solutions are contained in the subspace spanned by the remaining k −m(0)
solutions. To see this, let ξ be a solution in the subspace spanned by the remaining
k −m(0) solutions. By the equation (4.35) that must be satisfied by solutions, we must
have ξ(t0 + jh) , 0 for some j ≥ m(0), and this precludes ξ from being in the subspace
spanned by ξ0,l, l ∈ {1, . . . ,m(0)}. Thus the solutions for the zero root span a subspace
complementary to that spanned by the remaining solutions.

Now we must show that the remaining solutions are linearly independent. We
achieve this with the aid of the following lemma.

2 Lemma Let T ⊆ R be an interval containing more than one point. Let r1, . . . , rs ∈ R \ 0 be
distinct and let P1, . . . ,Ps be C-valued polynomial functions on T. If

P1(t)rt/h
1 + · · · + Ps(t)r

t/h
s = 0, t ∈ T,

then Pj(t) = 0 for all j ∈ {1, . . . , s} and t ∈ T.

Proof We prove the lemma by induction on s. For s = 1 we have, for r1 ∈ R and a
polynomial function P1,

P1(s)rt/h
1 = 0, t ∈ T,

=⇒ P1(t) = 0, t ∈ T,

giving the result in this case. Now suppose that the lemma is true for s = k and suppose
that

P1(t)rt/h
1 + · · · + Pk(t)rt/h

k + Pk+1(t)rt/h
k+1 = 0, t ∈ T,

for distinct r1, . . . , rk, rk+1 ∈ R \ {0} and for polynomial functions P1, . . . ,Pk,Pk+1. Then

P1(t)
(

r1

rk+1

)t/h

+ · · · + Pk(t)
(

rk

rk+1

)t/h

+ Pk+1(t) = 0, t ∈ T. (4.37)

Now let us apply the iterated forward difference operator ∆m,+, using the Leibniz Rule
for higher-order forward differences stated as Exercise 3.3.5. After applying ∆m,+ we
get

Pm
1 (t)

(
r1

rk+1

)t/h

+ · · · + Pm
k (t)

(
rk

rk+1

)t/h

+ ∆m,+Pk+1(t) = 0, t ∈ T,

where

Pm
j (t) =

m∑
l=0

1
hm−l

( r j

rk+1

)h

− 1

m−l (
r j

rk+1

)lh (
m
l

)
∆l,+P j(t), (4.38)

after also making use of Exercise 3.3.4(c). Since r j , rk+1, Pm
j is a polynomial function

whose degree is the same as the degree of P j. Now, for m sufficiently large (larger than
the degree of Pk+1, to be precise), ∆m,+Pk+1 = 0. With m so chosen, we have

Pm
1 (t)

(
r1

rk+1

)t/h

+ · · · + Pm
k (t)

(
rk

rk+1

)t/h

= 0, t ∈ T,
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By the induction hypothesis, Pm
j (t) = 0 for j ∈ {1, . . . , k} and t ∈ T. Now, in the

expression (4.38) for Pm
j , note that the highest polynomial degree term in t in the sum

occurs when l = 0, and this term is

1
hm

( r j

rk+1

)h

− 1

m

P j(t).

For the polynomial Pm
j to vanish, this term in the sum must vanish, i.e., P j(t) = 0 for

every j ∈ {1, . . . , k} and t ∈ T. Finally, (4.37) then gives Pk+1(t) = 0 for all t ∈ T, giving
the result. ▼

Now we can show that the solutions produced by Procedure 4.6.18 and associated
with the nonzero roots are linearly independent. Suppose that there are s1 distinct
nonzero real roots with 1

h th-powers, r1, . . . , rs1 , and s2 distinct complex roots with
1
h th-powers

ρ1eiθ1 , . . . , ρs2eiθs2 ,

with ρ1, . . . , ρs2 > 0 and θ1, . . . , θs2 ∈ (0, π), for the characteristic polynomial of F. Thus
s1 + 2s2 = k −m(0). Suppose that we have k −m(0) scalars

c j,l, j ∈ {1, . . . , s1}, l ∈ {0, 1, . . . ,m(r j) − 1}, (4.39)

and
a j,l, b j,l, j ∈ {1, . . . , s2}, l ∈ {0, 1, . . . ,m(ρ j) − 1}, (4.40)

satisfying

(c1,0 + c1,1t + · · · + c1,m(r1)−1tm(r1)−1)rt/h
1 + . . .

+ (cs1,0 + cs1,1t + · · · + cs1,m(rs1 )−1tm(rs1 )−1)rt/h
1

+ (a1,0 + a1,1t + · · · + a1,m(ρ1)−1tm(ρ1)−1)ρt/h
1 cos(θ1

t
h )

+ (b1,0 + b1,1t + · · · + b1,m(ρ1)−1tm(ρ1)−1)ρt/h
1 sin(θ1

t
h ) + . . .

+ (as2,0 + as2,1t + · · · + as2,m(ρs2 )−1tm(ρs2 )−1)ρt/h
s2

cos(θs2
t
h )

+ (bs2,0 + bs2,1t + · · · + bs2,m(ρs2 )−1tm(ρs2 )−1)ρt/h
s2

sin(θs2
t
h ) = 0, t ∈ T.

By Lemma 2, the polynomial functions

c1,0 + c1,1t + · · · + c1,m(r1)−1tm(r1)−1, . . . ,

cs1,0 + cs1,1t + · · · + cs1,m(rs1 )−1tm(rs1 )−1,

a1,0 + a1,1t + · · · + a1,m(ρ1)−1tm(ρ1)−1,

b1,0 + b1,1t + · · · + b1,m(ρ1)−1tm(ρ1)−1, . . . ,

as2,0 + as2,1t + · · · + as2,m(ρs2 )−1tm(ρs2 )−1,

bs2,0 + bs2,1t + · · · + bs2,m(ρs2 )−1tm(ρs2 )−1

must all vanish. But this implies that the scalars (4.39) and (4.40) must all vanish. This
gives the desired linear independence. ■
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4.6.2.4 Some examples The matter of carrying out Procedure 4.6.18 for dif-
ference equations is rather like carrying out the analogous Procedure 4.2.18 for
differential equations. Thus what we give here are examples that illustrate some
interesting behaviours for difference equations.

4.6.20 Example (First-order system behaviour) We consider the general 1st-order scalar
linear homogeneous ordinary difference equation F defined onT ⊆ Z(h) with right-
hand side

F̂(t, x) = −ρx

for ρ ∈ R. Solutions t 7→ ξ(t) satisfy

ξ(t + h) + ρξ(t) = 0.

This is an easy equation to solve. It characteristic polynomial is PF = X+ρwhich has
the single real root r1 = −ρ. Thus, by Procedure 4.6.18, any solution has the form
ξ(t) = c(−ρ)t/h. To determine c, we use initial conditions as in Proposition 4.6.1. We
take a general initial time t0 and prescribe ξ(t0) = x0. Thus

ξ(t0) = c(−ρ)t0/h =⇒ c = x0(−ρ)−t0/h,

and so ξ(t) = x0(−ρ)(t−t0)/h.
Let us think about this solution for a moment, and especially compare it to that

obtained in Example 4.2.21 for the corresponding differential equation.
When ρ ∈ R<0, then the situation bears a strong resemblance to that observed

for differential equations. Here, if −ρ > 1, then we have exponential growth; this
is analogous to the case of τ > 0 in Example 4.2.21. If −ρ < 1, then we have
exponential decay; this is analogous to the case of τ < 0 in Example 4.2.21. Finally,
if ρ = 1, then solutions are constant, equal to the initial condition; this is analogous
to the case of τ = 0 in Example 4.2.21. The idea one should take away from this
is that one should regard −ρ in this case as being analogous to e−1/τ in the case of
Example 4.2.21.

Next we think about the case when ρ ∈ R>0. This case has no analogue in
Example 4.2.21. Indeed, all solutions for the difference equation oscillate, and
this oscillatory behaviour is not possible for first-order linear homogeneous scalar
differential equations. In this case, if |ρ| < 1 then the oscillations decay in amplitude,
if |ρ| > 1 then the oscillations grow in amplitude, and if |ρ| = 1 then the amplitude
of the oscillations is constant. For the reason that there is, in general, no solution
for the difference equation when ρ ∈ R>0, one often disregards this possibility.

Finally, we consider the case of ρ = 0. This corresponds, by Proposition 4.6.2, to
the case when F is not invertible. In this case, the behaviour is simply that all initial
conditions give rise to solutions that are identically zero after the initial time. This
is behaviour that one does not see with the corresponding differential equation in
Example 4.2.21.

In Figure 4.6 we graph ξ(t) as a function of t for a few different ρ’s. •
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Figure 4.6 Solutions of a first-order scalar linear homogeneous
ordinary differential equation with ξ(0) = 1 and h = 0.1. On
the left we have ρ = −1.2 (top), ρ = −0.8 (middle) and ρ = −1
(bottom). We have ρ = 1.2 (top), ρ = 0.8 (middle) and ρ = 1
(bottom).

4.6.21 Example (Second-order system behaviour) Here we consider the second-order
scalar linear homogeneous difference equation F with right-hand side

F̂(t, x, x(1)) = −ρ2x + 2ρ f (θ0)x(1)

for ρ ∈ R>0 and for f ∈ {cos, cosh, 1}, and where we take θ ∈ (0, π) if f = cos and
θ ∈ R>0 if f = cosh. As we shall see, the strange definitions enable simple forms
for solutions. Solutions satisfy

ξ(t + 2h) − 2ρ f (θ0)ξ(t + h) + ρ2ξ(t) = 0.

By assuming that ρ is nonzero, we ensure that the difference equation is invertible.
We have the following cases characterising the forms of solutions:
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1. f = cos: ξ(t) = c1ρt/h cos(θ0
t
h ) + c2ρt/h sin(θ0

t
h );

2. f = cosh: ξ(t) = c1(ρeθ0)t/h + c2(ρe−θ0)t/h;
3. f = 1: ξ(t) = c1ρt/h + c2tρt/h.
The initial conditions are

ξ(0) = x0, ξ(h) = x(1)
0 .

If we solve for the constants using the initial conditions we get
1. f = cosθ:

c1 = x0,

c2 = − x0 cot(θ0) +
x(1)

0

ρ
csc(θ0);

2. f = cosh:

c1 =
(ρx0 − eθ0x(1)

0

ρ(1 − e2θ0)
,

c2 =
eθ0(eθ0ρx0 − x(1)

0 )
ρ(e2θ0 − 1)

;

3. f = 1:

c1 = x0,

c2 = −
−ρx0 + x(1)

0

ρh
.

Correspondingly to the differential equation in Example 4.2.22, we shall say
the equation is positively damped if either (1) f = cos and ρ < 1 or (2) f = cosh
and ρeθ0 < 1. The equation is negatively damped if either (1) f = cos and ρ > 1 or
(2) f = cosh and ρeθ0 > 1. When either (1) f = cos and ρ = 1 or (2) f = cosh and
ρeθ0 = 1, the equation is undamped. Let us concentrate on the positively damped
case. Here we say that the equation is underdamped if f = cos and is overdamped
if f = cosh. The equation is critically damped when f = 1.

In Figures 4.7 and 4.8 we show the plots of the solutions in the various cases. •

Exercises

4.6.1 Let T ⊆ Z(h) be a discrete time-domain and let f1, . . . , fk : T→ R.
(a) Show that f1, . . . , fk are linearly independent in RT if and only if there

exists t1, . . . , tk ∈ T such that

det


f1(t1) · · · fk(t1)
...

. . .
...

f1(tk) · · · fk(tk)

 , 0.
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Figure 4.7 Solutions of a second-order scalarlinear homoge-
neous ordinary differential equation with ξ(0) = 1 and ξ(h) =
2. In all cases we have h = 0.1 and θ0 = 0.5. On the left we
have f = cos and ρ = 0.95 (top), ρ = 1.05 (middle), and ρ = 1
(bottom). On the right we have f = cosh and ρ = 0.95 (top),
ρ = 1.05 (middle), and ρ = 1 (bottom).

(b) Using your part (a), explain why the Casoratian is generally a poor
device for showing the linear independence of an arbitrary collection of
elements of RT for a discrete time-domain T.
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Figure 4.8 Solutions of a second-order scalarlinear homoge-
neous ordinary differential equation with ξ(0) = 1 and ξ(h) =
2. In all cases we have h = 0.1, θ0 = 0.5, and f = 1. In top we
have ρ = 0.95 (left), ρ = 1.05 (right), and in bottom we have
ρ = 1 (bottom).
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Section 4.7

Scalar linear inhomogeneous ordinary difference equations

In this section we still consider scalar linear ordinary difference equations, but
now we consider the inhomogeneous case. We still have the time-domainT ⊆ Z(h)
and the state space U = R, but now we have a right-hand side of the form

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0x + b(t) (4.41)

for functions a0, a1, ak−1, b : T→ R. Thus solutions t 7→ ξ(t) satisfy

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = b(t).

We shall proceed in this section much as in the preceding section, first saying some
things about the general case, and then focussing on the case where F has constant
coefficients, as in this case there is more that can be said.

Do I need to read this section? This section contains tools that are standard for
anyone claiming to know something about ordinary difference equations. •

4.7.1 Equations with time-varying coefficients

We begin by stating some general properties of general scalar linear inhomoge-
neous ordinary difference equations.

4.7.1.1 Solutions and their properties First we state the local existence and
uniqueness result that one needs to get off the ground for any class of difference
equations.

4.7.1 Proposition (Existence and uniqueness of solutions for scalar linear inho-
mogeneous ordinary difference equations) Consider the linear inhomogeneous
ordinary difference equation F with right-hand side equation (4.41). Let

(t0, x0, x
(1)
0 , . . . , x

(0)
k−1) ∈ TF ×R ⊕ L≤k−1

sym (R;R).

Then there exists a unique ξ : T≥t0 → R that is a solution for F and which satisfies

ξ(t0) = x0, ξ(t0 + h) = x(1)
0 , . . . , ξ(t0 + (k − 1)h) = x(k−1)

0 . (4.42)

If F is invertible, then there exists a unique ξ : T → R that is a solution for F and which
satisfies (4.42).

Proof This is Exercise 4.7.1. ■
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The comments following Proposition 4.6.1 concerning the comparison in the
homogeneous case between difference equations and differential equations are also
valid here.

As in the homogeneous case, we can now talk sensibly about the set of all
solutions for F. Thus we can define

Solt0(F) =
{
ξ ∈ RT≥t0

∣∣∣
ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = b(t), t ∈ TF,≥t0

}
.

which is exactly this set of all solutions for F from t0. In case F is invertible, we can
define

Sol(F) =
{
ξ ∈ RT

∣∣∣
ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = 0, t ∈ TF

}
.

While Solt0(F) and Sol(F) were vectors space in the homogeneous case, in the
inhomogeneous case this is no longer the case. However, the sets of solutions
for the homogeneous case play an important rôle, even in the homogeneous case.
To organise this discussion, we let Fh be the “homogeneous part” of F. Thus the
right-hand side of Fh is

F̂h(t, x, x(1), . . . , x(k−1)) = −ak−1(t)x(k−1)
− · · · − a1(t)x(1)

− a0(t)x.

As in Theorem 4.6.3, Sol(Fh) is a R-vector space of dimension k. We can now state
the character of Sol(F).

4.7.2 Theorem (Affine space structure of sets of solutions) Consider the linear in-
homogeneous ordinary difference equation F with right-hand side equation (4.41). Let
ξp ∈ Solt0(F). Then

Solt0(F) = {ξ + ξp | ξ ∈ Solt0(Fh)}.

Moreover, if F is additionally invertible and if ξp ∈ Sol(F). Then

Sol(F) = {ξ + ξp | ξ ∈ Sol(Fh)}.

Proof This can be proved, mutatis mutandis, as is Theorem 4.3.3. ■

It is interesting to make some comments on the preceding theorem in the lan-
guage of basic problems in linear algebra.

4.7.3 Remark (Comparison of Theorem 4.7.2 with systems of linear algebraic equa-
tions) The reader should compare here the result of Theorem 4.7.2 with the situ-
ation concerning linear algebraic equations of the form L(u) = v0, for vector spaces
U and V, a linear map L ∈ L(U; V), and a fixed v0 ∈ V. In particular, we can make



2022/03/07 4.7 Scalar linear inhomogeneous ordinary difference equations 319

reference to Section I-5.4.8. In the setting of scalar linear inhomogeneous ordinary
difference equations, we have

U = RT≥t0 ,

V = RT≥t0 ,

L( f )(t) = f (t + kh) + ak−1(t) f (t + (k − 1)h) + · · · + a1(t) f (t + h) + a0(t) f (t),
v0 = b.

Then Proposition 4.7.1 tells us that L is surjective, and so v0 ∈ image(L). Thus we
are in case (ii) of Proposition I-5.4.48, which exactly the statement of Theorem 4.7.2.
Note that L is not injective, since Theorem 4.6.3 tells us that dimR(ker(L)) = k. •

Note that Theorem 4.7.2 tells us that, to solve a scalar linear inhomogeneous
ordinary difference equation, we must do two things: (1) find some solution for
the equation; (2) find all solutions for the homogeneous part. Then we know
our solution will be found amongst the set of sums of these. Generally, both
of these things is impossible, in any general way. We do know, however, that
Procedure 4.6.18 can be used, in principle, to find all solutions for the homogeneous
part. Thus one need only find some solution of the equation in the constant
coefficient case. Upon finding such a solution, one calls it a particular solution.
Note that there are many particular solutions. Indeed, Proposition 4.6.1 tells us that
there is one solution for every set of initial conditions. So one should always speak
of a particular solution, not the particular solution.

4.7.1.2 Finding a particular solution using the Casoratian So. . . how do we
find a particular solution? In this section we outline a general (and not very
efficient) way of arriving at some such solution, using the Casoratian of Defini-
tion 4.6.6. To state the result, suppose that we have a fundamental set of solutions
{ξ1, . . . , ξk} for Fh, where F has right-hand side (4.41), and denote

Cb, j(ξ1, . . . , ξk)(t)

= det


ξ1(t) · · · ξ j−1(t) 0 ξ j+1(t) · · · ξk(t)
...

. . .
...

...
...

. . .
...

ξ1(t + (k − 2)h) · · · ξ j−1(t + (k − 2)h) 0 ξ j+1(t + (k − 2)h) · · · ξk(t + (k − 2)h)
ξ1(t + (k − 1)h) · · · ξ j−1(t + (k − 1)h) b(t − h) ξ j+1(t + (k − 1)h) · · · ξk(t + (k − 1)h)

 ,
for j ∈ {1, . . . , k}, i.e., Cb, j(ξ1, . . . , ξk)(t) is the determinant of the matrix used to
compute the Casoratian, but with the jth column replaced by (0, . . . , 0, h−1b(t − h)).

We then have the following result.

4.7.4 Proposition (A particular solution using Casoratians) Consider the linear in-
homogeneous ordinary difference equation F with right-hand side equation (4.41). Let
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{ξ1, . . . , ξk} be a fundamental set of solutions for Fh and let t0 ∈ TF. Suppose that Fh is
invertible. Then the function ξp : T→ R defined by

ξp(t) =
k∑

j=1

ξj(t)
(t−t0)/h∑

l=1

Cb,j(ξ1, . . . , ξk)(t0 + lh)
C(ξ1, . . . , ξk)(t0 + lh)

, t ∈ T≥t0 ,

is a particular solution for F from t0.
Proof Let us define

c j(t) =
(t−t0)/h∑

l=1

Cb, j(ξ1, . . . , ξk)(t0 + lh)

C(ξ1, . . . , ξk)(t0 + lh)
, j ∈ {1, . . . , k}, t ∈ T≥t0 ,

so that

∆1,+c j(t) =
1
h

(c j(t + h) − c j(t))

=
1
h

(t+h−t0)/h∑
l=1

Cb, j(ξ1, . . . , ξk)(t0 + lh)

C(ξ1, . . . , ξk)(t0 + lh)
−

(t−t0)/h∑
l=1

Cb, j(ξ1, . . . , ξk)(t0 + lh)

C(ξ1, . . . , ξk)(t0 + lh)


=

1
h

Cb, j(ξ1, . . . , ξk)(t + h)

C(ξ1, . . . , ξk)(t + h)
.

Note that this is equivalent, by Cramer’s Rule for linear systems of algebraic equations
(Proposition I-5.3.12), to the set of equations

ξ1(t + h) ξ2(t + h) · · · ξk(t + h)
ξ1(t + 2h) ξ2(t + 2h) · · · ξk(t + 2h)

...
...

. . .
...

ξ1(t + kh) ξ2(t + kh) · · · ξk(t + kh)



h∆1,+c1(t)
h∆1,+c2(t)

...
h∆1,+ck(t)

 =


0
0
...

b(t)

 , t ∈ T≥t0 . (4.43)

Note that the proposition is then that

ξp(t) =
k∑

j=1

c j(t)ξ j(t), t ∈ T≥t0 ,

defines a particular solution for F. This we shall prove by direct computation.
We compute

ξp(t + h) =
k∑

j=1

c j(t + h)ξ j(t + h)

=

k∑
j=1

(c j(t + h) − c j(t))ξ j(t + h) +
k∑

j=1

c j(t)ξ j(t + h)

= h
k∑

j=1

∆1,+c j(t)ξ j(t + h) +
k∑

j=1

c j(t)ξ j(t + h) =
k∑

j=1

c j(t)ξ j(t + h)
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for t ∈ T≥t0 , using the first of equations (4.43). Repeatedly shifting by h and using
successive equations from (4.43), we deduce that

ξp(t + lh) =
k∑

j=1

c j(t)ξ j(t + lh), l ∈ {0, 1, . . . , k − 1}, t ∈ T≥t0 .

We also have, using the last of equations (4.43),

ξp(t + kh) =
k∑

j=1

c j(t + h)ξ j(t + kh)

=

k∑
j=1

(c j(t + h) − c j(t))ξ j(t + kh) +
k∑

j=1

c j(t)ξ(t + kh)

= h
k∑

j=1

∆1,+c j(t)ξ j(t + kh) +
k∑

j=1

c j(t)ξ(t + kh)

= b(t) +
k∑

j=1

c j(t)ξ(t + kh).

Therefore, combining these calculations,

ξp(t + kh) + ak−1(t)ξp(t + (k − 1)h) + · · · + a1(t)ξp(t + h) + a0(t)ξ(t)

=

k∑
j=1

c j(t)
(
ξ j(t + kh) + ak−1(t)ξ j(t + (k − 1)h) + · · · + a1(t)ξ j(t + h) + a0(t)ξ j(t)

)
+ b(t)

= b(t),

using the fact that ξ1, . . . , ξk are solutions for Fh. Thus ξp is indeed a particular solution.
■

Let us illustrate the procedure of the preceding result with an example.

4.7.5 Example (First-order scalar linear inhomogeneous ordinary difference equa-
tions) We consider here the first-order equation F with right-hand side

F̂(t, x) = −a(t)x + b(t)

for a, b ∈ RT. We have seen in Example 4.6.5 that a fundamental set of solutions
for F from t0 is given by {ξ1(t)}, with

ξ1( j0h) = 1, ξ1( jh) = (−1) j− j0

j−1∏
l= j0

a(lh), j ∈ T> j0h.

Therefore,

C(ξ1)(t) = det
[
ξ1(t)

]
= ξ1(t), C(ξ1)b,1 = det

[
b(t − h)

]
= b(t − h).
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Thus ξp( j0h) = 0 (by convention) and, for j > j0,

ξp( jh) = ξ1( jh)
j−1∑
l= j0

b(lh)
ξ1((l + 1)h)

=

(−1) j− j0

j−1∏
l= j0

a(lh)

 j−1∑
l= j0

b(lh)

(−1)l+1− j0
∏l

r= j0 a(rh)

defines a particular solution for F. Thus, as in Theorem 4.7.2, any solution for F
has the form

ξ(t) = C(−1) j− j0

j−1∏
l= j0

a(lh) +

(−1) j− j0

j−1∏
l= j0

a(lh)

 j−1∑
l= j0

b(lh)

(−1)l+1− j0
∏l

r= j0 a(rh)

for some C ∈ R. In we apply an initial condition ξ(t0) = x0, then we see that C = x0.
Therefore, finally, we have the solution

ξ(t) = x0(−1) j− j0

j−1∏
l= j0

a(lh) +

(−1) j− j0

j−1∏
l= j0

a(lh)

 j−1∑
l= j0

b(lh)

(−1)l+1− j0
∏l

r= j0 a(rh)

to the initial value problem

ξ(t + h) + a(t)ξ(t) = b(t), ξ(t0) = x0.

Because we have expressed the solution of a differential equation as a sum, we
declare victory!6

•

4.7.1.3 The discrete-time Green’s function In this section we describe another
means of determining a particular solution. In this case, what we arrive at is a
description of a particular solution that allows for the inhomogeneous term “b” to
be plugged into an integral. We shall see a close variant of this in Section 5.7 when
we discuss linear inhomogeneous systems of equations.

The result is the following.

4.7.6 Theorem (Existence of, and properties of, the discrete-time Green’s function)
Consider the linear homogeneous ordinary difference equation F with right-hand side

equation (4.29). Then there exists

GF : T × T→ R

with the following properties:

6Because victories are few and far between in the business of solving difference equations.
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(i) for τ ∈ T, we have GF(t, τ) = 0 for t < τ and

GF(τ + (k − 1)h, τ) = 1, GF(τ + lh, τ) = 0, l ∈ {0, 1, . . . ,k − 2};

(ii) for t ∈ T≥τ we have

GF(t+kh, τ)+ak−1(t)GF(t+ (k−1)h, τ)+ · · ·+a1(t)GF(t+h, τ)+a0(t)GF(t, τ) = 0;

(iii) if b ∈ RT, if t0 ∈ TF, and if ξp,b : T≥t0 → R is given by

ξp,b(t) =
(t−t0−h)/h∑

l=0

GF(t − h, t0 + lh)b(t0 + lh),

then ξp,b solves the initial value problem

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = b(t),
ξ(t0) = · · · = ξ(t0 + (k − 1)h) = 0.

Moreover, there is only one such function satisfying all of the above properties.
Proof For τ ∈ T, let ξτ : T→ R be the solution to the initial value problem

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = 0,
ξ(τ) = · · · = ξ(τ + (k − 2)h) = 0, ξ(τ + (k − 1)h) = 1.

Let {ξ1, . . . , ξk} be a fundamental set of solutions from τ and write

ξτ(t) =
k∑

j=1

c j(τ)ξ j(t), t ∈ T≥τ.

The specified initial conditions for ξτ can then be written in matrix form as
ξ1(τ) · · · ξk(τ)

ξ1(τ + h) · · · ξk(τ + h)
...

. . .
...

ξ1(τ + (k − 1)h) · · · ξk(τ + (k − 1)h)



c1(τ)
c2(τ)
...

ck(τ)

 =

0
0
...
1

 .
Following the construction preceding the statement of Proposition 4.7.4, denote

C j(ξ1, . . . , ξk)(t)

= det


ξ1(t) · · · ξ j−1(t) 0 ξ j+1(t) · · · ξk(t)
...

. . .
...

...
...

. . .
...

ξ1(t + (k − 2)h) · · · ξ j−1(t + (k − 2)h) 0 ξ j+1(t + (k − 2)h) · · · ξk(t + (k − 2)h)
ξ1(t + (k − 1)h) · · · ξ j−1(t + (k − 1)h) 1 ξ j+1(t + (k − 1)h) · · · ξk(t + (k − 1)h)

 ,
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for j ∈ {1, . . . , k}. Then

c j(τ) =
C j(ξ1, . . . , ξk)(τ)
C(ξ1, . . . , ξk)(τ)

.

Note that the denominator in the preceding expression is nonzero since ξ1, . . . , ξk are
fundamental solutions from τ.

Now define

GF(t, τ) =

ξτ(t), t ≥ τ,
0, t < τ.

.

With this definition of GF, let us check off the assertions of the theorem. The first two
assertions follow immediately from the definition, so we only verify part (iii).

Let b ∈ RT and, for t0 ∈ TF, define ξp,b : T≥t0 → R by

ξp,b(t) =
(t−t0−h)/h∑

l=0

GF(t − h, t0 + lh)b(t0 + lh).

For part (iii), we must show that ξp,b solves the initial value problem in the theorem
statement. We can take

ξp,b(t0) = · · · = ξp,x0(t0 + (k − 1)h) = 0,

and so then we need only verify that the difference equation holds. We compute

ξp,b(t + h) =
(t−t0)/h∑

l=0

GF(t, t0 + lh)b(t0 + lh)

=

(t−t0−h)/h∑
l=0

GF(t, t0 + lh)b(t0 + lh) + GF(t, t)b(t)

=

(t−t0−h)/h∑
l=0

GF(t, t0 + lh)b(t0 + lh).

We can then recursively compute

ξp,b(t +mh) =
(t−t0−h)/h∑

l=0

GF(t + (m − 1)h, t0 + lh)b(t0 + lh), m ∈ {0, 1, . . . , k − 1},

and

ξp,b(t + kh) =
(t−t0−h)/h∑

l=0

GF(t + (k − 1)h, t0 + lh)b(t0 + lh) + GF(t + (k − 1)h, t)b(t).

Combining the preceding two formulae and using part (ii), we have, for t ∈ T≥t0 ,

ξp,b(t + kh) + ak−1(t)ξp,b(t + (k − 1)h) + · · · + a1(t)ξp,b(t + h) + a0(t)ξp,b(t) = b(t),

giving (iii).
The final uniqueness assertion of the theorem is obtained from the following

observations:
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1. for t < τ, t 7→ GF(t, τ) is the zero element of Sol(F);
2. for t ≥ τ, t 7→ GF(t, τ) is the unique element of Solτ(F) with initial conditions

GF(τ + lh, τ) = 0, l ∈ {0, 1, . . . , k − 2},
GF(τ + (k − 1)h, τ) = 1.

These, combined with Proposition 4.7.1, give the theorem. ■

Of course, we can give a name to the function GF from the preceding theorem.

4.7.7 Definition (Discrete-time Green’s function) Consider the linear homogeneous
ordinary difference equation F with right-hand side equation (4.41). The function
GF of Theorem 4.7.6 is the discrete-time Green’s function for F. •

There are a few observations one can make about the discrete-time Green’s
function.

4.7.8 Remarks (Attributes of the discrete-time Green’s function)
1. As we observed in Remark 4.7.3, the mapping

LF : RT≥t0 → RT≥t0

ξ 7→ Fh (t, ξ(t), ξ(t + h), . . . , ξ(t + kh))

is surjective, and so, for any b ∈ RT≥t0 , there exists one (indeed, many by
Theorem 4.7.2), solution of the difference equation with solutions

Fh (t, ξ(t), ξ(t + h), . . . , ξ(t + kh)) = b(t).

One can think of the mapping

b 7→

t 7→
(t−t0−h)/h∑

l=0

GF(t − h, t0 + lh)b(t0 + lh)

 (4.44)

as prescribing a right-inverse of LF. Of course, the prescription of a particular
right-inverse amounts to a prescription for choosing initial conditions, since
initial conditions are what distinguish elements of Solt0(F). We refer the reader
to Exercise 4.7.2 for just what initial condition choice is being made by the
assignment (4.44).

2. There is also a physical interpretation of the mapping t 7→ GF(t, τ). For t < τ,
the solution is zero, until something happens at t = τ. At t = τ, we imagine
the system being given an “impulse” input. Unlike in the continuous-time case
where one needs distribution theory to make precise the notion of an impulse,
in the discrete time case this is elementary as one can give an input that is zero,
except at the time of the impulse where it has value 1. The reader can make this
precise in Exercise 4.7.3. •

Let us give the simplest possible example to illustrate the use of the discrete-time
Green’s function.
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4.7.9 Example (Discrete-time Green’s function for first-order scalar linear ordinary
differential equation) We consider the first order equation F with right-hand side

F̂(t, x) = −a(t)x.

Let us take T ⊆ Z(h) to be the time-domain for the equation. The way one
determines the continuous-time Green’s function is by first taking τ ∈ T and then
solving the initial value problem

ξ(t + h) + a(t)ξ(t) = 0, ξ(τ) = 1,

just as prescribed in part (iii) of Theorem 4.7.6. However, in Example 4.6.5 we
obtained the solution to this initial value problem as

ξ(t) = (−1)(t−τ)/h
(t−τ−h)/h∏

l=τ/h

a(lh)

Then the continuous-time Green’s function is given by

GF(t, τ) =


0, t < τ,

(−1)(t−τ)/h
(t−τ−h)/h∏

l=τ/h

a(lh), t ≥ τ.

Therefore, given b ∈ RT, the solution to the initial value problem

ξ(t + h) + a(t)ξ(t) = b(t), ξ(t0) = 0,

is given by

ξp,b(t) =
(t−t0−h)/h∑

l=0

(−1)(t−t0+lh)/h
(t−t0+lh−h)/h∏

l=(t0+lh)/h

a((l − 1)h)b(t0 + lh).

Note that this is, in this first-order case, the same particular solution as in Exam-
ple 4.7.5 using the Casoratian method of Proposition 4.7.4. This is simply because
both solutions satisfy the same initial value problem. To rectify that the solutions
are, in fact the same, can be done by a change of summation variable. •

4.7.10 Remark (Discrete-time Green’s function for constant coefficient equations
and convolution) Suppose that F is a kth-order scalar linear inhomogeneous
ordinary differential equation with constant coefficients, and take T = [0,∞). As
in the statement of Theorem 4.7.6, for each τ ∈ T, t 7→ GF(t, τ) is a solution for F
satisfying the initial conditions

GF(τ + jh, τ) = 0, j ∈ {0, 1, . . . , k − 2},
GF(τ + (k − 1)h, τ) = 1.
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Since F has constant coefficients, it is autonomous, and so by Exercise 3.3.5 there
exists HF : T→ R such that GF(t, τ) = HF(t−τ). Then, if we add an inhomogeneous
term b to F, the particular solution of Theorem 4.7.6(iii) is

ξp,b(t) =
(t−h)/h∑

l=0

HF(t − h − lh)b(lh).

Sums of the type ∑
f (t − τ)g(τ)

are known as convolution sums. These arise in system theory and Fourier theory,
for example. We shall consider convolution in the context of transform theory in
. • what

4.7.2 Equations with constant coefficients

We now specialise the general discussion from the preceding section to equa-
tions with constant coefficients. Thus we are looking at scalar linear inhomoge-
neous ordinary difference equations with right-hand sides given by

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + b(t) (4.45)

for a0, a1, . . . , ak−1 ∈ R and b : T→ R. Thus a solution t 7→ ξ(t) satisfies the equation

ξ(t + kh) + ak−1ξ(t + (k − 1)h) + · · · + a1ξ(t + h) + a0ξ(t) = b(t). (4.46)

These equations are, of course, a special case of the equations considered in Sec-
tion 4.7.1, and so all statements made about the general case of time-varying
coefficients hold in the special case of constant coefficients. In particular, Proposi-
tion 4.7.1 and Theorem 4.7.2 hold for equations of the form (4.46). However, for
these constant coefficient equations, it is possible to say some things a little more
explicitly, and this is what we undertake to do.

4.7.2.1 The “method of undetermined coefficients” We present in this section
a so-called method for solving scalar linear inhomogeneous ordinary difference
equations with constant coefficients. With this method, one guesses a form of
particular solution based on the form of the function b, and then does algebra to
determine the precise solution. The “pros” and cons of the method for difference
equations are the same as those for differential equations, so we refer the reader
back to the beginning of Section 4.3.2.1 for this discussion.

First let us indicate the sorts of “b’s” we allow.
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4.7.11 Definition (Pretty uninteresting function) Let T ⊆ Z(h) be a discrete time-
domain. A function f : T→ R is pretty uninteresting if it has one of the following
three forms:

(i) f (t) =

1, t = t̂,
0, t , t̂,

for t̂ ∈ T;

(ii) f (t) = tmrt/h for m ∈ Z≥0 and r ∈ R \ {0};
(iii) f (t) = tmρt/h cos(θh t) for m ∈ Z≥0, ρ ∈ R>0, and θ ∈ (0, π);
(iv) f (t) = tmρt/h sin(θh t) for m ∈ Z≥0, ρ ∈ R>0, and θ ∈ (0, π).

For t0 ∈ Twith t̂ ≥ t0, the t0-order in the form (i) is h−1(t̂− t0) and is denoted by o( f ).
The nonnegative integer m in the forms (ii)–(iv) is the order of f and is denoted by
o( f ). If f : T→ R has the form

f (t) = c1 f1(t) + · · · + cr fr(t)

where c1, . . . , cr ∈ R and each of f1, . . . , fr is pretty uninteresting, then f is also
pretty uninteresting. •

Note that the signal from part (i) of the definition is τ∗
−t̂

P, the shifted pulse
function, cf. Example IV-1.1.9–5.

Here are some examples of useful pretty uninteresting functions.

4.7.12 Examples (Examples of interesting pretty uninteresting functions)
1. Consider the function 1≥0 : Z≥0 → R defined by 1≥0(t) = 1 for all t ∈ Z≥0. This is

a “step function” and is pretty uninteresting. Often it is taken to be defined on
all of Z, and to be zero for negative times. The idea is that it gives an input to
a differential equation that “switches on” at t = 0. Among the many particular
solutions for a difference equation with b = 1≥0, there is one that is known as the
“step response,” and it is determined by a specific choice of initial condition.
We shall consider this in .what

2. Next consider the function Hθ : Z≥0 → R defined by Hθ(t) = sin(θh t) for θ ∈
Z(0, π). This is an example of an “harmonic” function, and specifically is
a “sinusoid.” In this case, one can think of prescribing a “b” of this form
as “shaking” a difference equation. It can be interesting to know how the
behaviour of the system will vary as we change θ. This gives rise in system
theory to something called the “frequency response.” •

We now state a few elementary properties of pretty uninteresting functions.

4.7.13 Lemma (Properties of pretty uninteresting functions) Let T ⊆ Z(h) be a discrete
time-domain, let t0 ∈ T, let f, f1, . . . , fr : T→ R be pretty uninteresting functions, and con-
sider a scalar linear homogeneous ordinary difference equation F with constant coefficients
with right-hand side of the form (4.45). Define normalised scalar linear inhomogeneous
ordinary difference equations Fj, j ∈ {1, . . . , r}, by

Fj(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)) − fj(t).
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Then the following statements hold:
(i) there exists a unique normalised scalar linear homogeneous ordinary difference equa-

tion Ff of order o(f) such that

Ff (t, f(t), f(t + h), . . . , f(t + o(f))) = 0, t ∈ T≥t0 ;

(ii) if ξj ∈ Sol(Fj), j ∈ {1, . . . , r}, and if

g = c1f1 + · · · + crfr

is also pretty uninteresting, then, if ξ = c1ξ1 + · · · + crξr, then ξ ∈ Solt0(Fg), where

Fj(t, x, x(1), . . . , x(k)) = x(k)
− F̂(t, x, x(1), . . . , x(k−1)) − g(t).

Proof (i) An examination of Procedure 4.6.18 and the attendant Theorem 4.6.19 shows
that F f can be defined by defining their characteristic polynomials as follows:
1. f = τ∗

−t̂
P: take

PF f = Xo( f )+1

2. f (t) = tmrt/h: take
PF f = (X − r)m+1;

3. f (t) = tmρt/h cos(θh t) or f (t) = tmρt/h sin(θh t): take

PF f = (X2
− 2ρ cos(θ)X + ρ2)m+1.

(ii) This is a mere verification, once one understands the symbols involved. ■

The differential equation F f in the first part of the lemma we call the annihilator
of the pretty uninteresting function f . The following examples illustrate how one
finds the annihilator in practice, based on the proof of the first part of the lemma.

4.7.14 Examples (Annihilator) We shall work with the time-domain T = Z and take
t0 = 0.
1. Consider the function f (t) = P. As in Procedure 4.6.18, this corresponds to

a root of 0 with multiplicity 1 of the characteristic polynomial. Thus we have
PF f = X, and so

F f (t, x, x(1)) = x(1).

2. Consider the function f (t) = 1. This is the pretty uninteresting function t 7→ tkrt

with k = 0 and r = 1. This corresponds, from Procedure 4.6.18, to a root r = 1
of a polynomial with multiplicity 1. Thus PF f = X − 1, and so

F f (t, x, x(1)) = x(1)
− x.



330 4 Scalar ordinary differential and ordinary difference equations 2022/03/07

3. Now consider f (t) = (−2)t. This is the pretty uninteresting function t 7→ tkrt

with k = 0 and r = −2. This corresponds to a root r = −2 of a polynomial with
multiplicity 1. Thus PF f = X + 2 and so

F f (t, x, x(1)) = x(1) + 2x.

4. Next we take f (t) = 2 3t sin(2t)+ t2. This is an also pretty uninteresting function,
being a linear combination of f1(t) = 3t sin(2t) and f2(t) = t2. Note that f1 is the
pretty uninteresting function t 7→ tkρt sin(θt) with k = 0, ρ = 3, and θ = 2. This
function is associated, via Procedure 4.6.18, with a root ρ = 3e2i of a polynomial
with multiplicity 1. Of course, we must also have the root ρ̄ = 3e−2i.
Note that f2 is the pretty uninteresting function t 7→ tkρt cos(θt) with k = 2,
σ = 0, and θ = 0. This is associated with a root r = 0 with multiplicity 3.
Putting this all together,

PF f = (X − 3e2i)(X − 3e−2i)X3 = X5
− 6 cos(2)X4 + 9X3. •

The second part of the lemma points out, in short, the obvious fact that if “b” is
also pretty uninteresting, then one can obtain a particular solution by obtaining a
particular solution for each of its pretty uninteresting components, and then sum-
ming these with the same coefficients as in the also pretty uninteresting function.
The point of this is that, to obtain a particular solution for an also pretty uninter-
esting “b,” it suffices to know how to do this for a pretty uninteresting b. Thus we
deliver the following construction.

4.7.15 Procedure (Method of undetermined coefficients) We let F be a normalised
scalar linear inhomogeneous ordinary difference equation with constant coeffi-
cients with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + f (t),

where f is pretty uninteresting. Do the following.
1. Let F f be the annihilator of f .
2. Let G f be the normalised scalar linear homogeneous ordinary differential equa-

tion whose characteristic polynomial is PG f = PF f PFh .
3. Using Procedure 4.6.18, find

(a) pretty uninteresting functions ξ1, . . . , ξk for which {ξ1, . . . , ξk} is a funda-
mental set of solutions for Fh and

(b) pretty uninteresting functions η1, . . . , ηo( f )+1 for which
{ξ1, . . . , ξk, η1, . . . , ηo( f )+1} is a fundamental set of solutions for G f .

4. For (as yet) undetermined coefficients c1, . . . , co( f )+1 ∈ R, denote

ξp = c1η1 + · · · + co( f )+1ηo( f )+1.
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5. Determine c1, . . . , co( f )+1 by demanding that ξp be a particular solution for F.
We shall show that this procedure makes sense and defines a particular solution
for F. •

Let us verify that the preceding procedure gives what we want.

4.7.16 Proposition (Validity of the method of undetermined coefficients) Let F be a nor-
malised scalar linear inhomogeneous ordinary difference equation with constant coefficients
with right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + f(t),

where f is pretty uninteresting. Then all steps in Procedure 4.7.15 are unambiguously
defined, and the result is a particular solution for F from t0.

Proof We first consider the case where f = τ∗
−t̂

P, for t̂ ≥ t0. Then o( f ) = h−1(t̂ − t0).
From Procedure 4.6.18 we have PF f = Xo( f )+1. Let us write

PFh = Xm(0)P,

where P does not have a zero root. Therefore,

PG f = Xm(0)+o( f )+1P.

Then, according to Procedure 4.6.18, among the pretty uninteresting solutions for Fh
are

τ∗
−(t0+ jh)P, j ∈ {0, 1, . . . ,m(0) − 1}.

The rest of the pretty uninteresting solutions for Fh have nothing to do with the root
“r” of the characteristic polynomial, and are not interesting to us here. Now the o( f )+1
pretty uninteresting solutions for G f that are added to those for Fh are

τ∗
−(t0+ jh)P, j ∈ {m(0), . . . ,m(0) + o( f )},

again according to Procedure 4.6.18. This demonstrates the viability of the first three
steps of Procedure 4.6.18. We now need to show that one can solve for the coefficients
c1, . . . , co( f )+1 to obtain a particular solution for F. If

ξp(t) = c1τ
∗

−(t0+m(0)h)P + · · · + co( f )+1τ
∗

−(t0+(m(0)+o( f ))h)P,

then (4.48) gives

Fh

(
t, ξp(t), ξp(t + h), . . . , ξp(t + kh)

)
=

k∑
j=m(0)

a jξp(t + jh)

=

k∑
j=m(0)

o( f )+1∑
a=1

a jcaτ−(t0+(m(0)+a−1)h)P(t + jh)

=

k∑
j=m(0)

a jch−1(t−t0)+ j−(m(0)−1). (4.47)
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Note that the sum is meaningful for

0 ≤ h−1(t − t0) + j −m(0) ≤ o( f ).

For t = o( f )h, we thus must have j ∈ {m(0)}. For t = (o( f ) − 1)h, we must have
j ∈ {m(0),m(0) + 1}. If we write the corresponding equations obtained by setting the
expression (4.48) equal to f for times t = o( f )h, t = (o( f ) − 1)h, . . ., we get

am(0)c1 = 1,
am(0)+1c1 + am(0)c2 = 0,

...

Thus we can recursively solve for c1, then c2, and so on.
Next we shall assume that f (t) = to( f )rt/h for r ∈ R \ {0}. Entirely similar reasoning

works for the remaining two sorts of pretty uninteresting functions.
From Procedure 4.6.18 we know that PF f = (X − r)o( f )+1. Let us suppose that

PFh = (X − r)m(r)P, (4.48)

where P does not have r as a root. Therefore,

PG f = (X − r)m(r)+o( f )+1P.

Then, according to Procedure 4.6.18, among the pretty uninteresting solutions for Fh
are

t 7→ t jrt/h, j ∈ {0, 1, . . . ,m(r) − 1}.

The rest of the pretty uninteresting solutions for Fh have nothing to do with the root
“r” of the characteristic polynomial, and are not interesting to us here. Now the o( f )+1
pretty uninteresting solutions for G f that are added to those for Fh are

t 7→ t jrt/h, j ∈ {m(r), . . . ,m(r) + o( f )},

again according to Procedure 4.6.18. This demonstrates the viability of the first three
steps of Procedure 4.6.18. We now need to show that one can solve for the coefficients
c1, . . . , co( f )+1 to obtain a particular solution for F. If

ξp(t) = c1tm(r)rt/h + · · · + co( f )+1tm(r)+o( f )rt/h,

then Lemma 1 from the proof of Theorem 4.6.19 shows that Dm(r)
r ξp is an also pretty

uninteresting function whose highest order (as a pretty uninteresting function) term
is of order o( f ). By Corollary 4.6.17, and since the forward differences of a pretty
uninteresting function of order m are also pretty uninteresting function of order m (as
can be verified by a direct computation), we have that

Fh

(
t, ξp(t), ξp(t + h), . . . , ξp(t + kh)

)
is an also pretty uninteresting function of order o( f ) associated with the root r. There-
fore, we can use the equality

Fh

(
t, ξp(t), ξp(t + h), . . . , ξp(t + kh)

)
= f (t)

to solve for the coefficients c1, . . . , co( f )+1, as asserted in Procedure 4.6.18. ■
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While the preceding discussion does indeed provide a means of solving, in
principle, scalar linear inhomogeneous ordinary difference equations with also
pretty uninteresting “b’s,” it does tend to be a lot of work, and there are precisely
zero equations that can be solved by this procedure that cannot far more easily be
solved with a computer.

4.7.2.2 Some examples Here we consider two interesting examples, one with
a first-order difference equation with a step function as right-hand side and the
other with a second order difference equation with harmonic right-hand side. Since
much of the behaviour exhibited by these systems resembles that for differential
equations exhibited in Examples 4.3.19 and 4.3.20, we shall not go into as much
detail here as we did with the differential equation examples.

4.7.17 Example (First-order system with step input) The difference equation we con-
sider here is an inhomogeneous version of the equation considered in Exam-
ple 4.6.20. We take the first-order scalar linear inhomogeneous ordinary difference
equation F with constant coefficients and with right-hand side

F̂(t, x) = −ρx + 1.

Thus solutions t 7→ ξ(t) to this difference equation satisfy

ξ(t + h) + ρξ(t) = 1.

We have already determined that a solution to the homogeneous equation will
have the form ξ(t) = c(−ρ)t/h, when ρ , 0. When ρ = 0, then the homogeneous
equation is not invertible, and so the homogeneous solutions from t0 will be

ξ(t) =

c, t = t0,

0, t > t0.

So next we find a particular solution. The annihilator F f of the pretty uninterest-
ing function f (t) = 1 has characteristic polynomial PF f = X − 1. The characteristic
polynomial for Fh is PFh = X + ρ. Thus we must list the fundamental solutions for
G f , where

PG f = (X − 1)(X + ρ).

There are two cases.
First, when ρ , −1, the fundamental solutions are t 7→ (−ρ)t/h (when ρ , 0) or

the impulse at t0 (when ρ = 0), and t 7→ 1, using Procedure 4.6.18. The first of
these is a solution for the homogeneous equation, so we take a particular solution
to be a multiple of the second: ξp(t) = c. To find c we substitute into the differential
equation:

ξ(t + h) + ρξ(t) = (1 + ρ)c.
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To be a particular solution, we must have (1 + ρ)c = 1 and so c = 1/(1 + ρ). Thus
ξp(t) = 1/(1 + ρ).

Next we consider the case when ρ = −1, and in this case the fundamental
solutions for G f are t 7→ 1 and t 7→ t, again using Procedure 4.6.18. In this case, the
first of these functions is a solution for the homogeneous system, and so a multiple
of the second will be a particular solution, i.e., ξp(t) = ct. To determine c we require
that ξp be a particular solution:

ξ(t + h) − ξ(t) = c(t + h) − ct = ch,

from which we deduce that ch = 1. Thus ξp(t) = t
h .

In summary, a particular solution is

ξp(t) =

 1
1+ρ , ρ , −1,
t
h , ρ = −1.

Let us now determine the full solution, including initial conditions at t0 = 0. We
have three cases.
1. ρ < {0,−1}: Any solution has the form

ξ(t) = c(−ρ)t/h +
1

1 + ρ
.

Applying the initial condition ξ(0) = 0 gives c = − 1
1+ρ and so

ξ(t) =
1

1 + ρ
(1 − (−ρt/h)).

To allow a fruitful comparison of the effects of changing ρ, let us normalise this
solution by multiplying by 1 + ρ to get the step response

1F(t) = 1 − (−ρ)t/h.

2. ρ = −1: Here any solution has the form

ξ(t) = c +
t
h
.

Applying the initial condition ξ(0) = 0 gives c = 0 and so the solution is

1F(t) =
t
h
.

3. ρ = 0: Here we have any solution from 0 given by

ξ(t) =

c + 1, t = 0,
1, t > 0.
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The initial condition ξ(0) = 0 gives c = −1 and so

ξ(t) =

0, t = 0,
1, t > 0.

In Figure 4.9 we graph this step response for a couple of values of ρ ∈ R<0.
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Figure 4.9 The step response of a first-order system for ρ = −0.9
(left) and ρ = −0.7 (right)

We note that as −ρ gets smaller in magnitude, the step response rises more
quickly, i.e., responds faster. •

4.7.18 Example (Second-order system with sinusoidal input) Next we consider a
special case of the second-order differential equation of Example 4.6.21, but with
a sinusoidal inhomogeneous term. Thus we take the second-order scalar linear
inhomogeneous ordinary differential equation F with right-hand side

F̂(t, x, x(1)) = −ρ2x + 2ρ cos(θ0)x(1) + A sin(θh t)

for A, θ ∈ R>0. Solutions t 7→ ξ(t) then satisfy

ξ(t + 2h) − 2ρ cos(θ0)ξ(t + h) + ρ2ξ(t) = A sin(θh t).

In Example 4.6.21 we carefully and thoroughly investigated the nature of the
solutions for the homogeneous system. There we saw, for example, that as long
as ρ ∈ (0, 1), solutions to the homogeneous equation decay to zero as t → ∞. For
ρ = 1, solutions were periodic. Here we will thus focus on ρ ∈ (0, 1] and on the
nature of the particular solution. When ρ ∈ (0, 1), this means that we are looking
at the “steady-state” behaviour of the system, i.e., what we see after a long time.
When ζ = 0, we do not have this steady-state interpretation, but nonetheless we
will interpret these solutions in light of our understanding of what happens when
ζ ∈ R>0.
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The annihilator F f for the pretty uninteresting function f (t) = A sin(θh t) has
characteristic polynomial PF f = X2+θ2. We have two cases to consider for particular
solutions.

The first case is when ζ , 1 or when ζ = 1 and θ , θ0. Here the characteristic
polynomial for G f in Procedure 4.7.15 is

PG f = (X2 + θ2)(X2
− 2ρ cos(θ0)X + ρ2).

The fundamental solutions for G f associated to this polynomial, according to Pro-
cedure 4.6.18, are

ξ1(t), ξ2(t), cos(θh t), sin(θh t),

where ξ1 and ξ2 are homogeneous solutions as determined in Example 4.6.21.
Thus a particular solution will be of the form

ξp(t) = c1 cos(θh t) + c2 sin(θh t).

To determine c1 asnd c2 we require that ξp be a particular solution. Thus we
compute

ξp(t + 2h) − 2ρ cos(θ0)ξp(t + h) + ρ2ξp(t)

(c1ρ
2
− 2c1ρ cos(θ) cos(θ0) + c1 cos(2θ) − 2c2ρ sin(θ) cos(θ0) + c2 sin(2θ)) cos(θh t)

+ (2c1ρ sin(θ) cos(θ0) − c1 sin(2θ) + c2ρ
2
− 2c2ρ cos(θ) cos(θ0) + c2 cos(2θ)) sin(θh t),

upon employing some standard trigonometric identities. We can solve these equa-
tions to give

c1 = −
2A sin(θ)(cos(θ) − ρ cos(θ0))

ρ4 − 4(ρ2 + 1)ρ cos(θ) cos(θ0) + 2ρ2 cos2(θ) + ρ2 cos(2θ) + 2ρ2 cos(2θ0) + ρ2 + 1
,

c2 =
A(ρ(ρ − 2 cos(θ) cos(θ0)) + cos(2θ))

ρ4 − 4(ρ2 + 1)ρ cos(θ) cos(θ0) + 2ρ2 cos2(θ) + ρ2 cos(2θ) + 2ρ2 cos(2θ0) + ρ2 + 1
.

Thus a particular solution is

ξp(t) = c1 cos(θh t) + c2 sin(θh t),

with c1 and c2 as just defined.
The other case is when ρ = 1 and θ = θ0. Here the characteristic polynomial for

G f in Procedure 4.7.15 is
PG f = (X2 + θ2)2

The fundamental solutions for G f associated to this polynomial, according to Pro-
cedure 4.6.18, are

ξ1(t), ξ2(t), t cos(θh t), t sin(θh t),
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where ξ1 and ξ2 are homogeneous solutions as determined in Example 4.6.21.
Therefore, a particular solution will have the form

ξp(t) = c1t cos(θh t) + c2t sin(θh t).

To determine c1 and c2 we ask that this be a particular solution. Thus we compute,
after a tedious computation,

ξp(t + 2h) − 2 cos(θ)ξp(t + h) + ξp(t)

= 2h sin(θ)(−c1 sin(θ) + c2 cos(θ)) cos(θh t) − 2h sin(θ)(c1 cos(θ) + c2 sin(θ)) sin(θh t).

We can now solve for c1 and c2 to get

c1 = −
A cot(θ)

2h
,

c2 = −
A
2h
,

and so the particular solution we obtain is

ξp(t) = −
A cot(θ)

2h
cos(θh t) −

A
2h

sin(θh t).

In both of the above cases, any solution will be a sum of the obtained partic-
ular solution, plus some solution to the homogeneous equation as determined in
Example 4.6.21.

In Figure 4.10 we graph particular solutions for various θ’s, keeping other
parameters fixed. The observations one makes here echo those made in Exam-
ple 4.3.20. •

Exercises

4.7.1 Consider the ordinary difference equation F with right-hand side given
by (4.41).
(a) Convert this to a first-order equation with k states, following Exer-

cise 3.3.7.
(b) Show that the resulting first-order equation satisfies the conditions of

Theorem 3.4.2 for existence of a unique solution t 7→ ξ(t) satisfying the
initial conditions

ξ(t0) = x0, ξ(t0 + h) = x(1)
0 , . . . , ξ(t0 + (k − 1)h) = x(k−1)

0

at time t0 ∈ T.
4.7.2 Consider the ordinary difference equation F with right-hand side given

by (4.41). Answer the following questions.
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Figure 4.10 Response (in blue) of a second-order system with
h = 0.01, ρ = 0.9, and θ0 = 1 to a sinusoidal input with A = 1
(in red) for varying θ (top left: θ = 0.2; top right: θ = 0.9;
bottom: θ = 2)

(a) Show that the particular particular solution

ξp,b(t) =
(t−t0−h)/h∑

l=0

GF(t, t0 + lh)b(t0 + lh),
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satisfies the initial value problem

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = b(t),
ξ(t0) = 0, ξ(t0 + h) = 0, . . . , ξ(t0 + (k − 1)h) = 0.

(b) Show that the solution to the initial value problem

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ(t + h) + a0(t)ξ(t) = b(t),

ξ(t0) = x0, ξ(t0 + h) = x(1)
0 , . . . , ξ(t0 + (k − 1)h) = x(k−1)

0

is given by ξ(t) = ξh + ξp,b, where ξh is the solution to the homogeneous
initial value problem

ξh(t + kh) + ak−1(t)ξh(t + (k − 1)h) + · · · + a1(t)ξh(t + h) + a0(t)ξh(t) = 0,

ξh(t0) = x0, ξh(t0 + h) = x(1)
0 , . . . , ξh(t0 + (k − 1)h) = x(k−1)

0 .

4.7.3 Let T ⊆ Z(h) and consider a scalar linear homogeneous ordinary difference
equation F with right-hand side given by (4.29). Show that the solutions to
the following initial value problems are the same:

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ1(t + h) + a0(t)ξ(t) = 0,
ξ(t0) = 0, ξ(t + h) = 0, . . . , ξ(t + (k − 1)h) = 1,

and

ξ(t + kh) + ak−1(t)ξ(t + (k − 1)h) + · · · + a1(t)ξ1(t + h) + a0(t)ξ(t) = 1,
ξ(t0) = 0, ξ(t + h) = 0, . . . , ξ(t + (k − 1)h) = 0.

(The point is that the solution to an impulse at t0 with zero initial condition
can be determined by the homogeneous equation with the initial conditions
that show up for the Green’s function.)



340 4 Scalar ordinary differential and ordinary difference equations 2022/03/07

Section 4.8

Laplace transform methods for scalar ordinary difference
equations

Jut as the causal CLT can be used to study various sorts of differential equations,
the causal DLT can be used to study difference equations. In this section, we will
stick to considering the application of Laplace transform techniques to the study
of scalar linear ordinary difference equations with constant coefficients. We shall
consider systems of equations in Section 5.8.

Do I need to read this section? This is a section that can, maybe, be skipped. It
will have its best context in the setting of transfer functions in Chapter 7. •

4.8.1 Scalar homogeneous equations

We begin our discussion with scalar linear homogeneous ordinary difference
equations with constant coefficients, first considered in detail in Section 4.6.2.
Thus, as in that section we are working with difference equations

F : Z≥0(h) ×R ⊕ L≤k
sym(R;R)→ R

with right-hand side

F̂(t, x, x(1), . . . , x(k)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x (4.49)

for a0, a1, . . . , ak−1 ∈ R. Given Proposition IV-9.2.16, the causal DLT is particularly
well suited for working with ordinary difference equations with initial conditions.
Thus we shall consider the initial value problem

ξ(t + kh) + ak−1ξ(t + (k − 1)h) + · · · + a1ξ(t + h) + a0ξ(t) = 0,

ξ(0) = x0, ξ(h) = x(1)
0 , · · · , ξ(k − 1)h) = x(k−1)

0 . (4.50)

We shall now take the causal DLT of this initial value problem. To do so, it is tacitly
assumed that all members of Sol(F) and their derivatives are in LT1,+(Z≥0(h);C) so
that we may use the difference rule of Proposition IV-9.2.16. This is true, however,
since all members of Sol(F) are also pretty uninteresting functions, and so are in
LT1,+(Z≥0(h);C), when restricted to the domainZ≥0(h), as we saw in . Another waywhat?

to think of taking the causal DLT of the equation, were one to not know a priori that
solutions were Laplace transformable, would be to go ahead and take the transform
assuming this is so, and then see if the assumption is valid by seeing if the equation
can be solved (or by some other means). In any case, the following result records
what happens when we take the causal DLT of the initial value problem.



2022/03/074.8 Laplace transform methods for scalar ordinary difference equations341

4.8.1 Proposition (Causal DLT of scalar homogeneous equation) The causal DLT of
the initial value problem (4.50) has the solution

L 1
D (ξ)(z) =

∑k
j=0

∑j−1
l=0 aj(hz)l+1ξ((j − l − 1)h)

zk + ak−1zk−1 + · · · + a1z + a0
,

with the convention that ak = 1.
Proof By Corollary IV-9.2.17 we have

L 1
D (τ∗

− jhξ)(z) = z jL 1
D (ξ)(z) −

j−1∑
l=0

(hz)l+1ξ(( j − l − 1)h), j ∈ {0, 1, . . . , k}.

Therefore, with the stated convention that ak = 1,

L 1
D

 k∑
j=0

a jτ
∗

− jhξ

 = k∑
j=0

a j

z jL 1
D (ξ)(z) −

j−1∑
l=0

(hz)l+1ξ(( j − l − 1)h)

 ,
and solving this equation forL 1

D (ξ)(z) gives the asserted conclusion. ■

To obtain the solution to the initial value problem in the time-domain, we
should apply the inverse transform to the expression from the proposition. To
do this, one could, in principle, apply the definition of the inverse causal DLT of
Theorem IV-9.2.13. However, in cases where one can actually compute the inverse
transform, it is not typically done in this way. Indeed, typically one “looks up” the
answer, and one can do this using partial fraction expansion as in Procedure 4.5.2.
Let us see how one uses the partial fraction expansion to compute the inverse
causal DLT of the expression from Proposition 4.8.1. This is most easily done via
examples.

4.8.2 Examples (Solving scalar homogeneous equations using the causal DLT)
1.

Our comments about using partial fraction expansions to solve homogeneous
scalar linear ordinary differential equations applies here as well.

4.8.2 Scalar inhomogeneous equations

We next consider scalar linear inhomogeneous ordinary difference equations,
first considered in Section 4.7.2. Thus we are working with scalar ordinary differ-
ence equations with right-hand sides given by

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x + b(t) (4.51)

for a0, a1, . . . , ak−1 ∈ R and b : Z≥0(h)→ R. The initial value problem we consider is
then

ξ(t + kh) + ak−1ξ(t + (k − 1)h) + · · · + a1ξ(t + h) + a0ξ(t) = b(t),

ξ(0) = x0, ξ(h) = x(1)
0 , · · · , ξ((k − 1)h) = x(k−1)

0 . (4.52)
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If b ∈ ℓloc(Z≥0(h);R), then the solution to the initial value problem (4.52) is given by
ξ(t) = ξh(t) +HF ∗ b(t), where ξh satisfies the homogeneous initial value problem

ξh(t + kh) + ak−1ξh(t + (k − 1)h) + · · · + a1ξh(t + h) + a0ξh(t) = 0,

ξh(0) = x0, ξh(h) = x(1)
0 , · · · , ξh((k − 1)h) = x(k−1)

0 ,

where HF(t−τ) = GF(t, τ) and where GF is the Green’s function from Section 4.7.1.3.
This follows from Remark 4.7.10 and Exercise 4.7.2.

We wish to provide an interpretation of this strategy using the causal DLT
and the connection of the transform and convolution from Propositions IV-9.2.9
and IV-9.2.10. As with inhomogeneous equations above, we take the causal DLT
of the equation (4.52). However, unlike in the homogeneous case, here taking the
transform is not generally valid; indeed, it is valid if and only if b ∈ LT1,+(Z≥0(h);R).
To apply the convolution result from Propositions IV-9.2.9 and IV-9.2.10, we further
assume that b ∈ LT1,+(Z≥0(h);R).

First let us give determine the causal DLT of the Green’s function in this case.

4.8.3 Proposition (Causal DLT and the Green’s function) Consider the scalar linear
homogeneous ordinary difference equation F with right-hand side (4.49). Let GF be the
Green’s function and denote HF(t − τ) = GF(t, τ). Then the causal DLT of HF is given by

L 1
D (HF)(z) =

hz
zk + ak−1zk−1 + · · · + azz + a0

.

Proof According to Remark 4.7.10, GF(t, τ) = HF(t − τ), where HF satisfies the initial
value problem

HF(t + kh) + ak−1HF((k − 1)h) + · · · + a1HF(t + h) + a0HF(t) = 0,
HF(0) = 0, HK(h) = 0, . . . , HF((k − 2)h)(0) = 0, HF((k − 1)h) = 1.

Therefore, according to Proposition 4.8.1,

LD(HF)(z) =
hz

zk + ak−1zk−1 + · · · + azz + a0
,

as claimed. ■

By combining Proposition 4.8.1 with the preceding result and the convolution
solution ξ(t) = ξh(t) + HF ∗ b(t) of the initial value problem (4.52), we obtain the
following result.

4.8.4 Proposition (Causal DLT of scalar inhomogeneous equation) Consider the
scalar ordinary difference equation with right-hand side (4.51), and suppose that b ∈
LT1,+(Z≥0(h);R). The causal DLT of the solution of the initial value problem (4.52) is
given by

L 1
D (ξ)(z) =

∑k
j=0

∑j−1
l=0 aj(hz)l+1ξ((j − l − 1)h) +L 1

D (b)(z)

zk + ak−1zk−1 + · · · + a1z + a0
,

with the convention that ak = 1.



2022/03/074.8 Laplace transform methods for scalar ordinary difference equations343

There are two ways in which the proposition has value. One is theoretical
and one is that it provides another tedious algorithmic procedure—augmenting
the “method of undetermined coefficients”—for computing solutions when the
inhomogeneous term is an also pretty uninteresting function. Let us consider
these in turn.

Next let us turn to a less interesting but somehow more concrete application
of the causal DLT in the study of scalar linear inhomogeneous ordinary difference
equations. Specifically, we consider such an equation F with right-hand side (4.51),
and where b is an also pretty uninteresting function. In this case, as we see from
, the causal DLT L 1

D (b) of b will be a rational function of the complex variable z what?

whose numerator polynomial has degree strictly less than that of the denomina-
tor polynomial. Therefore, as per Proposition 4.8.4, the causal DLT L 1

D (ξ) of the
solution ξ of the initial value problem (4.52) will itself be such a rational function
of z. Thus we can perform a partial fraction expansion of L 1

D (ξ) as per Proce-
dure 4.5.2, and then perform the inversion of the causal DLT as per Example 4.8.2
to obtain the solution. This is not something to be belaboured—not least because
we already have the often easier “method of undetermined coefficients” for such
situations–and we content ourselves with an illustration via a example.

4.8.5 Example (Solving scalar inhomogeneous equations using the causal DLT)

Exercises

4.8.1
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Section 4.9

Using a computer to work with scalar ordinary differential
equations

We thank Jack Horn for putting together the Mathematica® and Matlab® results in
this section.

In Sections 4.2 and 4.3 we have discussed the character of, and solved very
specific examples of, scalar linear ordinary differential equations. This, however,
represents a tiny subset (but, arguably, an important tiny subset) of the differential
equations one might encounter in practice. Moreover, even in the simple examples
where the analytical methods we have learnt are applicable, to apply them is
often extremely tedious and error-prone. Therefore, in this section we illustrate
how computers can make working with differential equations, specifically scalar
ordinary differential equations, a bearable undertaking.

In the we listed a couple of computer packages—some symbolic, some numer-list packages

ical, some both—available for working with differential equations. We shall not
attempt to illustrate how all of these work, but choose two as illustrative. We
choose Mathematica® to illustrate a computer algebra package7 and Matlab® to
illustrate a numerical package. There is no reason for this choice, other than per-
sonal familiarity (in the case of Mathematica®) and ease of access (in the case of
Matlab®).

4.9.1 Using Mathematica® to obtain analytical and/or numerical solutions

For some ordinary differential equations, one can simply plug them into a
computer algebra package, and out will pop the answer. So, this is always worth
a shot.

Our first example illustrates this in Mathematica®.

4.9.1 Example (Solving simple scalar ordinary differential equation) The first ordi-
nary differential equation we will solve is the simple first order equation:

dy
dt

(t) =
−ty(t)

2 − y(t)
.

The following Mathematica® script will use the DSolve command to solve this
ordinary differential equation, then plot the solution.

soln = DSolve[{y′[t] == (−t ∗ y[t])/(2 − y[t]), y[0] == 1}, y[t], t]soln = DSolve[{y′[t] == (−t ∗ y[t])/(2 − y[t]), y[0] == 1}, y[t], t]soln = DSolve[{y′[t] == (−t ∗ y[t])/(2 − y[t]), y[0] == 1}, y[t], t]

Plot[y[t]/.soln, {t, 0, 5}]Plot[y[t]/.soln, {t, 0, 5}]Plot[y[t]/.soln, {t, 0, 5}]
7Mathematica® also does numerical computations, and indeed was used to produce the nu-

merical results used in the book.
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This gives the output{{
y[t]→ −2ProductLog

[
−

1
2

√
e−1− t2

2

]}}

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Note that, as arguments to DSolve we give the conditions for a solution to the
differential, as well as initial conditions. The syntax y[t]/.soln simply means
that one should replace y[t]with its value as determined by the assignment soln.
Also, the “;” at the end of a Mathematica® command line means that the output
will be suppressed. •

While DSolve is a useful command, it is also possibe to solve ordinary differen-
tial equations using Mathematica® as an assistive tool, rather than just having it
belt out solutions.

4.9.2 Example (Solving ordinary differential equations without using DSolve) We
illustrate Procedure 4.2.18 for the fourth-order equation

d4s
dx

(x) −
d2s
dx

(x) + 9s(x) = 0.

First we must find the roots of the characteristic polynomial.

CharPoly = a∧4 − 10a∧2 + 9 == 0;CharPoly = a∧4 − 10a∧2 + 9 == 0;CharPoly = a∧4 − 10a∧2 + 9 == 0;

roots = Solve[CharPoly, a];roots = Solve[CharPoly, a];roots = Solve[CharPoly, a];

Next, we will find the general solution.

S1 = C1 ∗ Exp[a ∗ x]/.roots[[1]];S1 = C1 ∗ Exp[a ∗ x]/.roots[[1]];S1 = C1 ∗ Exp[a ∗ x]/.roots[[1]];

S2 = C2 ∗ Exp[a ∗ x]/.roots[[2]];S2 = C2 ∗ Exp[a ∗ x]/.roots[[2]];S2 = C2 ∗ Exp[a ∗ x]/.roots[[2]];

S3 = C3 ∗ Exp[a ∗ x]/.roots[[3]];S3 = C3 ∗ Exp[a ∗ x]/.roots[[3]];S3 = C3 ∗ Exp[a ∗ x]/.roots[[3]];

S4 = C4 ∗ Exp[a ∗ x]/.roots[[4]];S4 = C4 ∗ Exp[a ∗ x]/.roots[[4]];S4 = C4 ∗ Exp[a ∗ x]/.roots[[4]];

GenSol = S1 + S2 + S3 + S4;GenSol = S1 + S2 + S3 + S4;GenSol = S1 + S2 + S3 + S4;
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Once we have the general solution, we will create a system of equations using the
given initial conditions to find the values for C1, C2, C3, and C4.

A1 = GenSol == 5/.x→ 0;A1 = GenSol == 5/.x→ 0;A1 = GenSol == 5/.x→ 0;

A2 = D[GenSol, x] == −1/.x→ 0;A2 = D[GenSol, x] == −1/.x→ 0;A2 = D[GenSol, x] == −1/.x→ 0;

A3 = D[GenSol, {x, 2}] == 21/.x→ 0;A3 = D[GenSol, {x, 2}] == 21/.x→ 0;A3 = D[GenSol, {x, 2}] == 21/.x→ 0;

A4 = D[GenSol, {x, 3}] == −49/.x→ 0;A4 = D[GenSol, {x, 3}] == −49/.x→ 0;A4 = D[GenSol, {x, 3}] == −49/.x→ 0;

Const = Solve[{A1,A2,A3,A4}, {C1,C2,C3,C4}];Const = Solve[{A1,A2,A3,A4}, {C1,C2,C3,C4}];Const = Solve[{A1,A2,A3,A4}, {C1,C2,C3,C4}];

Sol = GenSol/.ConstSol = GenSol/.ConstSol = GenSol/.Const

This gives the solution{
2e−3x

− e−x + 4ex}
We can verify this by using DSolve:

expr = s””[x] − 10s”[x] + 9s[x] == 0;expr = s””[x] − 10s”[x] + 9s[x] == 0;expr = s””[x] − 10s”[x] + 9s[x] == 0;

DSolve[{expr, s[0] == 5, s′[0] == −1, s”[0] == 21, s”’[0] == −49}, s[x], x]DSolve[{expr, s[0] == 5, s′[0] == −1, s”[0] == 21, s”’[0] == −49}, s[x], x]DSolve[{expr, s[0] == 5, s′[0] == −1, s”[0] == 21, s”’[0] == −49}, s[x], x]{{
s[x]→ e−3x

(
2 − e2x + 4e4x

)}}
As you can see, both methods give the same result. •

Let us now work with a particular example with some physical motivation.

4.9.3 Example (Skydiver) Next we will look at another example, this time a second-
order equation. Consider a skydiver jumping from a plane. Using Newton’s laws
of force balance, the governing equation is found to be:

d2y
dt

(t) = −ag +
ρ

m

(
dy
dt

(t)
)2

.

The following script will solve the ordinary differential equation, and plot the
jumpers position and velocity for the first twenty seconds.

m = 80;m = 80;m = 80;

g = 9.81;g = 9.81;g = 9.81;

p = 1.225;p = 1.225;p = 1.225;

sol = DSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m), y[0] == 500, y′[0] == 0}, y[t], t];sol = DSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m), y[0] == 500, y′[0] == 0}, y[t], t];sol = DSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m), y[0] == 500, y′[0] == 0}, y[t], t];

a[t] = y[t]/.sol;a[t] = y[t]/.sol;a[t] = y[t]/.sol;
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b[t] = D[a[t], t];b[t] = D[a[t], t];b[t] = D[a[t], t];

position = Plot[a[t], {t, 0, 20}]position = Plot[a[t], {t, 0, 20}]position = Plot[a[t], {t, 0, 20}]

velocity = Plot[Evaluate[b[t]], {t, 0, 20}]velocity = Plot[Evaluate[b[t]], {t, 0, 20}]velocity = Plot[Evaluate[b[t]], {t, 0, 20}]
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Figure 4.11 Parachuter’s position (left) and velocity (right)

As can be seen from the plots, the parachuter’s velocity asymptotically reaches a
value determined as the inertial forces balance the aerodynamic drag forces. •

In the above examples, we obtained analytical solutions for the differential
equations. Typically this is not possible, and one must obtain numerical solutions.

4.9.4 Example (Solving ordinary differential equations numerically) In this example
we will show that mathematica also has the ability to solve differential equations
numerically as well, again modelling a parachuter jumping from a plane. The
NDSolve command works very similarly to the DSolve command, however it solves
the ordinary differential equation, returning a numerical solution. We work again
with the parachuter equation

d2y
dt

(t) = −ag +
ρ

m

(
dy
dt

(t)
)2

.

The Mathematica® code is as follows.

NumericalSol = NDSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m),NumericalSol = NDSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m),NumericalSol = NDSolve[{y”[t] == −g + (p ∗ y′[t]∧2) ∗ (1/m),
y[0] == 500, y′[0] == 0}, y, {t, 0, 20}];y[0] == 500, y′[0] == 0}, y, {t, 0, 20}];y[0] == 500, y′[0] == 0}, y, {t, 0, 20}];

Plot[Evaluate[y[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y[t]/.NumericalSol], {t, 0, 20}]

Plot[Evaluate[y′[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y′[t]/.NumericalSol], {t, 0, 20}]Plot[Evaluate[y′[t]/.NumericalSol], {t, 0, 20}]

As you can see, the results are nearly identical when compared to the analytically
obtained solutions. •
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Figure 4.12 Parachuter’s position (left) and velocity (right)

4.9.2 Using Matlab® to obtain numerical solutions

Matlab® is a very powerful tool for solving complicated differential equations.
However, the process is not quite as simple as Mathematica®. To use the ode45
solver, you must first create a function that is your ordinary differential equation
in the form dy

dt (t) = F(t, y(t)). This function must then be passed into another script
that will solve it. If one types
odeexamples

at the Matlab® prompt, you will be given you a list of examples and from these
you can easily figure out how to do commonplace things using Matlab®. To edit
an example file named foo.m, type
edit foo.m

To run this file type
foo

in Matlab®.
We will now consider the same two examples we covered in the section on

Mathematica®.

4.9.5 Example (Solving simple scalar ordinary differential equation) Below is the
function that contains the same ordinary differential equation from Exercise 4.9.1.
We will pass this into the following main script that will find the solution.

1 function [ dydt ] = Example1( t,y )

2
3 dydt = (-t*y)/(2-y);

4
5 end

Next we have the main script that will solve this ordinary differential equation.
Note that ode45has three input arguments: the ordinary differential equation iteslf,
time, and initial conditions. The plot that is produced by this script can be found
in Figure 4.13.
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1 clc

2 clear all

3 close all

4 %% Solving Numerically
5
6 t = linspace(0,5);

7 y0 = 1;

8
9 solution = ode45(@(t,y)Example1(t,y),t,y0);

10
11 %% Plotting
12
13 figure(1)

14 plot(solution.x,solution.y,'b')
15 xlabel('Time [s]');
16 ylabel('y(t)');
17
18 print -deps Example1Plot
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Figure 4.13 Plot generated by Matlab® for Exercise 4.9.5
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Of course, the numerical result here agrees closely with the plot of the analytical
result produced in Exercise 4.9.1. •

Next we consider the parachuter example initiated in Exercise 4.9.3.

4.9.6 Example (Skydiver) Next we will consider the same skydiver example as in
Exercise 4.9.3. Again we must create a function containing the ordinary differential
equation that will then be passed into the main script.

1 function [ dydt ] = Parachute(t,y)

2
3 m = 80; %Mass, in kg, of the parachuter and their gear

4 g = 9.81; %Gravitational constant

5 p = 1.225; %Density of air in kg/mˆ3

6
7 dydt = [y(2); -g+p*y(2).ˆ2*(1/m)];

8 end

Here is the main script. The plots generated by this script can be found in
Figure 4.14.

1 clc

2 close all

3 clear all

4
5 t = linspace(0,20);

6
7 y0 = [500 0];

8
9 y = ode45(@(t,y)Parachute(t,y),t,y0);

10
11 figure(1)

12
13 subplot(2,1,1)

14 plot(y.x,y.y(1,:))

15 ylabel('Height [m]');
16 xlabel('Time [s]');
17
18 subplot(2,1,2)

19 plot(y.x,y.y(2,:))

20 ylabel('Velocity [m/s]');
21 xlabel('Time [s]');

Again, of course, the numerical results agree with those produced by Mathemat-
ica®, both analytically and numerically. •
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Figure 4.14 Position and velocity graphs of the parachuter Ex-
ercise 4.9.6
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This version: 2022/03/07

Chapter 5

Systems of ordinary differential and
ordinary difference equations

In this chapter we extend our discussion of scalar differential and difference
equations in Chapter 4 to systems of equations. Thus, in the notation of Sec-
tion 3.1.3, we consider an ordinary differential equation with time-domain T ⊆ R,
state space U ⊆ Rm, and with right-hand side

F̂ : T ×U × L≤k
sym(R;Rm)→ Rm

giving the equation

dkξ
dtk

(t) = F̂
(
t, ξ(t),

dξ
dt

(t), . . . ,
dk−1ξ
dtk−1

(t)
)

for solutions t 7→ ξ(t). In the notation of Section 3.3.3, we consider an ordinary
difference equation with time-domain T ⊆⊆ Z(h), state space U ⊆ Rm, and with
right-hand side

F̂ : T ×U × L≤k
sym(R;Rm)→ Rm

giving the equation

ξ(t + kh) = F̂ (t, ξ(t), ξ(t + h), . . . , ξ(t + (k − 1)h))

for solutions t 7→ ξ(t). When we studied scalar equations in Chapter 4, we retained
this higher-order form of the equations, because doing so allowed us to continue
working with scalar equations. However, every scalar equation of order k can
be represented as a first-order equation with k unknowns, cf. Exercises 3.1.23
and 3.3.7. In fact, in that exercise we see how to convert a kth-order differential or
difference equation in m unknowns into a first-order equation in km unknowns. The
point is that, since in this chapter we are working already with vector equations,
we will always suppose that our equations are first-order. Also, we will swap
around our lettering from Sections 3.1.3 and 3.3.3 and suppose that U is an open
subset of Rn. Thus we have a right-hand side

F̂ : T ×U→ Rn
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and solutions satisfy
dξ
dt

(t) = F̂(t, ξ(t))

(for differential equations) or

ξ(t + h) = F̂(t, ξ(t))

(for difference equations). Note, however, that physically it may still be interesting
to retain the higher-order form, even for vector equations, cf. the equation (1.2)
modelling a coupled mass-spring system.

As with scalar ordinary differential and difference equations, there is little that
one can say in much generality about general systems of ordinary differential or
difference equations. Therefore, we focus almost entirely on linear equations in
this chapter. One of the reasons that linear systems are so important is that, even
for systems that are not linear, a first step towards understanding them is often
to linearise them. Thus we shall begin in Section 5.1 with a discussion of lineari-
sation. The next two sections, 5.2 and 5.3, deal with linear systems of ordinary
differential equations in some detail. In Section 5.5 we study, essentially, graphical
representations for two-dimensional systems of ordinary differential equations, not
necessarily linear. While the planar nature of the systems we consider limits the
generality of the ideas we discuss, it is nonetheless the case that the ideas seen here
form the basis for any serious further study of ordinary differential equations in
more advanced treatments of the subject. In Sections 5.6–5.9 we mirror the results
for described above, now for difference equations. In Section 5.11 we introduce
numerical consideration of systems of ordinary differential equations.

Do I need to read this chapter? Many of the results and techniques in this chap-
ter are prerequisite for our treatments of system theory, particularly in Sec-
tions 6.6, 6.8, 6.7, and 6.9. •
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Section 5.1

Linearisation

As we have said, if one is given a completely general system of ordinary differen-
tial or difference equations, there is little that one can do. However, sometimes one
might be able to find an isolated solution to the differential or difference equation,
and then it becomes interesting to know what one can say given this information.
The first thing one typically tries is linearisation, i.e., look at the “first-order” vari-
ation of solutions from the given solution. In this section we present this method
in some detail. We shall not at this point say much about what one can do after
linearisation; our main objective is to understand why it might be interesting to fo-
cus our attention on linear systems, which is exactly what we do in the subsequent
two sections. We shall see in Section 10.5 that linearisation is the foundation of a
key set of techniques and results concerning stability.

Do I need to read this section? Some of the results in this section are quite tech-
nical, and the technical details are not an essential feature of much of what follows.
But, in order to understand the importance of linear systems of differential and dif-
ference equations, linearisation is very important, and the reader ought to embrace
this. •

5.1.1 Linearisation of ordinary differential equations

We begin by considering linearisation for systems of ordinary differential equa-
tions. We first consider linearisation along arbitrary solutions, and then specialise
to the case of equilibrium solutions. In practice, it is linearisation about equilibria
that is most commonly used in practice, but linearisation along general solutions
is something that arises in crucial ways once one starts engaging in more sophisti-
cated undertaking in control theory, none of which shall be done here.

5.1.1.1 Linearisation along solutions Suppose that we have a system of ordi-
nary differential equations F with right-hand side F̂ : T×X→ Rn and that we have
a solution ξ0 : T′ → X for F. We wish to understand what happens to solutions
“nearby” this fixed solution ξ0.

To do this, we suppose that the map

F̂t : X→ Rn

x 7→ F̂(t, x)

is of class C1. We denote

DF̂(t, x) = DF̂t(x), t ∈ T.
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We then suppose that we have a solution ξ : T′ → X for F for which the deviation
ν ≜ ξ − ξ0 is small. Let us try to understand the behaviour of ν. Naı̈vely, we can
do this as follows:

ξ̇(t) =
d(ξ0 + ν)

dt
(t) = F̂(t, ξ0(t) + ν(t)) = F̂(t, ξ0(t)) +DF̂(t, ξ0(t)) · ν(t) + · · · .

We will not here try to be precise about what “· · · ” might mean, but merely say
that the idea of the preceding equation is that we approximate using the constant
and first-order terms in the Taylor expansion, and then pray that this gives us
something meaningful. Note that, since ξ0 is a solution for F, the approximation
we arrive at is

ν̇(t) ≈ DF̂(t, ξ0(t)) · ν(t).

Meaningful or not, the preceding naı̈ve calculations give rise to the following
definition.

5.1.1 Definition (Linearisation of an ordinary differential equation along a solution)
Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn,

supposing that F̂t is of class C1 for every t ∈ T. For a solution ξ0 : T′ → X for F,
the linearisation of F along ξ0 is the linear ordinary differential equation FL,ξ0 with
right-hand side

F̂L,ξ0 : T′ ×Rn
→ Rn

(t,v) 7→ DF̂(ξ0(t)) · v.
•

Note that a solution t 7→ ν(t) for the linearisation of F along ξ0 satisfies

ν̇(t) = A(t)(ν(t)),

where
A(t) = DF̂(t, ξ0(t)).

This is indeed a linear ordinary differential equation. We note that, even when
F is autonomous, the linearisation will generally be nonautonomous, due to the
dependence of the reference solution ξ0 on time.

Note that there is an alternative view of linearisation that can be easily devel-
oped, one where linearisation is of the equation, not just along a solution. The
construction we make is the following.
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5.1.2 Definition (Linearisation of an ordinary differential equation) Let F be an ordi-
nary differential equation with right-hand side

F̂ : T × X→ Rn,

supposing that F̂t is of class C1 for every t ∈ T. The linearisation of F is the ordinary
differential equation FL with right-hand side

F̂L : T × (X ×Rn)→ Rn
⊕Rn

(t, (x,v)) 7→ (̂F(t, x),DF̂(t, x)(v)).
•

Solutions of the linearisation of F are then curves t 7→ (ξ(t),ν(t)) satisfying

ξ̇(t) = F̂(t, ξ(t)),

ν̇(t) = DF̂(t, ξ(t)) · ν(t).

We see, then, that in this version of linearisation we carry along the original differ-
ential equation F as part of the linearisation. This is, in no way, incompatible with
the definition of linearisation along a solution ξ0, since one needs F to provide the
solution.

Let us illustrate how this works in an example. Finding nonlinear ordinary
differential equations whose nontrivial solutions we can explicitly compute is not
easy,1 so we are sort of stuck with systems with one state. However, this will suffice
for the illustrative purposes here.

5.1.3 Example (Linearisation of an ordinary differential equation along a solution)
We work here with the logistical population model of (1.8). This is the scalar

first-order ordinary differential equation with right-hand side

F̂(t, x) = kx(1 − x).

Solutions t 7→ ξ(t), therefore, satisfy

ξ̇(t) = kξ(t)(1 − ξ(t)).

This equation is separable and so can be solved using the method from Section 4.1.1.
We skip the details, and instead just say that

ξ0(t) =
x0ekt

1 + x0(ekt − 1)

is the solution for F satisfying ξ0(0) = x0, as long as x0 < {0, 1} (we shall consider
the cases x0 ∈ {0, 1} in Example 5.1.7–1). We have

DF̂(t, x) · v = k(1 − 2x)v,
1We shall see in the next section that working with trivial solutions is easier.
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and so the linearisation FL,ξ0 about the solution ξ0 has the right-hand side

F̂L,ξ0(t, v) =
k(1 − x0(ekt + 1))

1 + x0(ekt − 1)
v.

Thus a solution t 7→ ν(t) for the linearisation satisfies

ν̇(t) =
k(1 − x0(ekt + 1))

1 + x0(ekt − 1)︸               ︷︷               ︸
a(t)

ν(t).

This equation can actually be solved, as we saw in Example 4.2.5:

ν(t) = v0e−
∫ t

0 a(τ) dτ = v0ek(t−t0) (1 + x0(ekt0 − 1))2

(1 + x0(e−kt − 1))2
, 2

where ν(t0) = v0. Just what conclusions we can draw from this are not clear. . . nor
should they be. . . The connection between a differential equation and its linearisa-
tion is not so clear at the moment. In Section 5.1.1.3 we shall describe the flow of
the linearisation in some detail, and in doing so will arrive at a precise interpreta-
tion of linearisation. •

5.1.1.2 Linearisation about equilibria In this section we consider what
amounts to a special case of linearisation about a solution. The solution we consider
is a very particular sort of solution, as given by the following definition.

5.1.4 Definition (Equilibrium state for an ordinary differential equation) Let F be an
ordinary differential equation with right-hand side

F̂ : T × X→ Rn.

A state x0 ∈ X is an equilibrium state if F̂(t, x0) = 0 for every t ∈ T. •

The following result gives the relationship between equilibrium states and
solutions.

5.1.5 Proposition (Equilibrium states and constant solutions) Let F be an ordinary
differential equation with right-hand side

F̂ : T × X→ Rn.

A state x0 ∈ X is an equilibrium state if and only if the constant function t 7→ x0 is a
solution for F.

2Integration courtesy of Mathematica®.
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Proof Let us denote by ξ0 the constant function t 7→ x0.
First suppose that x0 is an equilibrium state. Then ξ̇0(t) = 0 for every t ∈ T and

F̂(t, ξ0(t)) = 0 and so
ξ̇0(t) = F̂(t, ξ0(t)), t ∈ T,

and thus ξx0
is a solution.

Next suppose that ξ0 is a solution. Then

0 = ξ̇0(t) = F̂(t, ξ0(t)) = F̂(t, x0), t ∈ T,

so giving that x0 is an equilibrium state. ■

Note that, as a consequence of the preceding simple result, we can linearise
about the constant solution t 7→ x0 in the event that x0 is an equilibrium state. Let
us, however, use some particular language in this case.

5.1.6 Definition (Linearisation of an ordinary differential equation about an equi-
librium state) Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn,

supposing that F̂t is of class C1 for every t ∈ T, and let x0 be an equilibrium state.
The linearisation of F about x0 is the linear ordinary differential equation FL,x0 with
right-hand side

F̂L,x0 : T ×Rn
→ Rn

(t,v) 7→ DF̂(t, x0) · v.
•

A solution t 7→ ν(t) for FL,x0 satisfies

ν̇(t) = A(t)(ν(t)),

where
A(t) = DF̂(t, x0).

Thus we see that the linearisation about an equilibrium point is indeed a linear
ordinary differential equation, just as it should be since the same is true of the
linearisation about an arbitrary solution. What is special here, however, is that the
linearisation is autonomous if F is autonomous. Thus the linearisation when F is
autonomous is a linear ordinary differential equation with constant coefficients.

5.1.7 Examples (Linearisation of an ordinary differential equation about an equi-
librium state)
1. Let us first return to the linearisation of the logistical population model of

Example 5.1.3. We have
F̂(t, x) = kx(1 − x),
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and so there are two equilibrium states, x0 = 0 and x0 = 1. In Example 5.1.3 we
computed the derivative of F̂ to be DF̂(t, x) · v = k(1 − 2x)v. We thus have the
linearisations about x0 = 0 and x0 = 1 given by

F̂L,0(t, v) = kv, F̂L,1(t, v) = −kv.

The solutions then satisfy the equations

ν̇0(t) = kν0(t), ν̇1(t) = −kν1(t),

respectively. These are easily solved using Procedure 4.2.18 to give

ν0(t) = ν0(0)ekt, ν1(t) = ν1(0)e−kt.

We see that we have exponential growth for the solutions of the linearisation
about x0 = 0 and exponential decay for the solutions about x0 = 1.
It turns out that this behaviour of the linearisations about the equilibrium state
is an accurate approximation of the behaviour of the actual system near these
states. We do not develop this here, but will address matters such as this in .what?

2. Let us consider the simple pendulum model of (1.3). This is a scalar second-
order equation F whose right-hand side is

F̂(t, x, x(1)) = −
ag

ℓ
sin(x).

In order to fit this differential equation into our linearisation framework, we
must convert it into a first-order equation, as in Exercise 3.1.23. Doing this
gives the first-order ordinary differential equation F with right-hand side

F(t, (x1, x2)) =
(
x2,−

ag

ℓ
sin(x)

)
.

This differential equation has equilibria xn = (nπ, 0), n ∈ Z, corresponding
to periodically repeated copies of the “down” and “up” rest positions of the
pendulum. We shall work with two of these, x0 = (0, 0) and x1 = (π, 0), as they
are representative. We compute

DF̂(t, (x1, x2)) · (v1, v2) =
[

0 1
−

ag

ℓ cos(x) 0

] [
v1

v2

]
.

Now, if we compute this at the two equilibria, we have

DF(t, x0) · v =
[

0 1
−

ag

ℓ 0

] [
v1

v2

]
, DF(t, x1) · v =

[
0 1
ag

ℓ 0

] [
v1

v2

]
.

A solution t 7→ ν(t) of the linearisations satisfies[
ν̇1(t)
ν̇2(t)

] [
0 1
−

ag

ℓ 0

] [
ν1(t)
ν2(t)

]
,

[
ν̇1(t)
ν̇2(t)

] [
0 1
ag

ℓ 0

] [
ν1(t)
ν2(t)

]
.



2022/03/07 5.1 Linearisation 363

It is possible to solve these equation using Procedure 5.2.23 below, and it turns
out that the solutions are[

ν1(t)
ν2(t)

]
=

[
cos(

√
ag/ℓt)

√
ℓ/ag sin(

√
ag/ℓt)

−
√

ag/ℓ sin(
√

ag/ℓt) cos(
√

ag/ℓt)

] [
ν1(0)
ν2(0)

]
,[

ν1(t)
ν2(t)

]
=

[
cosh(

√
ag/ℓt)

√
ℓ/ag sinh(

√
ag/ℓt)√

ag/ℓ sinh(
√

ag/ℓt) cosh(
√

ag/ℓt)

] [
ν1(0)
ν2(0)

]
.

In Section 1.1.2 we said a few quite informal things about how this process of
linearisation is reflected in the behaviour of the pendulum near the “down” and
“up” equilibria. This is reflected in the behaviour of the linearisations, in that,
about the “down” equilibrium, the motion for the linearisation is periodic, and,
about the “up” equilibrium, the motion diverges from (0, 0) most of the time.
We shall be more rigorous about this in . • what?

Summary of linearisation constructions In this section we have illustrated
the idea of linearisation in a few different contexts. The take away from these
constructions is as follows.
1. The linearisation of an ordinary differential equation F about a solution ξ0 gives

rise to a linear ordinary differential equation that will generally be time-varying,
even when F is autonomous.

2. It is possible to linearise an equation with n states in its entirety, to give an
ordinary differential equation with 2n states.

3. The linearisation of an ordinary differential equation about an equilibrium state
gives rise to a linear ordinary differential equation, and this linear equation is
autonomous if F is autonomous.

4. At this point, we know nothing about what the linearisation of F says about F.
However, what is true is that linear ordinary differential equations, even with
constant coefficients, arise naturally in the context of linearisation, and so are
worthy of some study.

5.1.1.3 The flow of the linearisation In this section, in contrast with the pre-
ceding sections, we give a very precise characterisation of linearisation. It has the
benefit of being precise, but the drawback of being complicated. However, the
constructions we give in this section are of some importance in subjects like opti-
mal control theory. We shall do three things: (1) provide conditions under which
the flow of an ordinary differential equation is differentiable in state and initial
time, as well as final time with respect to which it is always differentiable almost
everywhere; (2) give explicit formulae for the derivatives; (3) give an interpretation
of these derivatives in terms of “wiggling” of initial conditions in state and time.

We shall first investigate thoroughly the properties of the flow of an ordinary
differential equation that has more regularity properties than are required for the
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basic existence and uniqueness theorem, Theorem 3.2.8. In order to state the
result we want, we will make use of some ideas that we will not develop fully
until Section 5.2. Let us suppose that we have a system of ordinary differential
equations F with right-hand side

F̂ : T × X→ Rn,

and let (t0, x0) ∈ T × X. We then have the solution

t 7→ ξ0(t) ≜ ΦF(t, t0, x0)

defined for t ∈ JF(t0, x0). We then define

A(t0,x0) : JF(t0, x0)→ L(Rn;Rn)

t 7→ DF̂(t,ΦF(t, t0, x0)).

Now consider the linear time-varying differential equation FT
(t0,x0) with right-hand

side
F̂T

(t0,x0) : JF(t0, x0) ×Rn
→ Rn

(t,v) 7→ A(t0,x0)(t) · v.

To describe solutions of this linear ordinary differential equation, we consider first
the following ordinary differential equation. For t ∈ JF(t0, x0)×Rn, we consider the
following initial value problem:

dΨ
ds

(s) = A(t0,x0)(s) ◦Ψ(s), Ψ(t) = In.

As we shall see in the proof of the theorem immediately following, this initial
value problem has solutions defined for all s ∈ JF(t0, x0). Moreover, we denote the
solution at time s byΦA(t0 ,x0)(s, t); the associated map

ΦA(t0 ,x0) : JF(t0, x0) × JF(t0, x0)→ L(Rn;Rn)

is what we shall call the “state transition map” in Section 5.6.1.2, and we shall use
some of the results from this section in the proof below. In particular, we shall use
the fact that the solution to the initial value problem

dν
ds

(s) = A(t0,x0)(s) · ν(s), ν(t) = v0

is
ν(s) =ΦA(t0 ,x0)(s, t) · v0, s ∈ JF(t0, x0).

With the preceding background, we can now state the theorem.
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5.1.8 Theorem (Differentiability of flows for ordinary differential equations) Let F be
an ordinary differential equation with right-hand side

F̂ : T × X→ Rn,

and make the following assumptions:

(i) the map t 7→ F̂(t, x) is measurable for each x ∈ X;

(ii) the map x 7→ F̂(t, x) is continuously differentiable for each t ∈ T;
(iii) for each (t, x) ∈ T × X, there exist r, ρ ∈ R>0 and

g0,g1 ∈ L1([t0 − ρ, t0 + ρ];R≥0)

such that
(a) ∥̂F(s,y)∥ ≤ g0(s) for (s,y) ∈ ([t0 − ρ, t0 + ρ] ∩ T) × B(r, x) and

(b)

∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(s,y)

∣∣∣∣∣∣∣ ≤ g1(t) for (s,y) ∈ ([t0−ρ, t0+ρ]∩T)×B(r, x) and j,k ∈ {1, . . . ,n}.

Then the following statements hold:
(iv) for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0) → X is a C1-diffeomorphism onto its image and its

derivative is given by DΦF
t,t0

(x0) =ΦA(t0 ,x0)(t, t0);
(v) the map

DΦF : DF → L(Rn;Rn)

(t, t0, x) 7→ DΦF
t,t0

(x)
is continuous;

(vi) for (t0, x0) ∈ T × X, the set

IF(t0, x0) = {t ∈ T | t0 ∈ JF(t, x0)}

is an open interval, the map

ιF,t0,x0 : IF(t0, x0)→ X

t 7→ ΦF(t0, t, x0)

is locally absolutely continuous, and its derivative at a time t where it is differentiable
is given by

d
dt
ΦF(t0, t, x0) = −ΦA(t0 ,x0)(t0, t) · F̂(t, x0).

Proof Let us first show that the hypotheses of the theorem imply those of Theo-
rem 3.2.8(ii). Let x ∈ X and let r ∈ R>0 and g0, g1 : T → R≥0 be as in the statement of
the theorem. To do so, we need to fuss with the manner in which various norms for
matrices are related. For A ∈ L(Rn;Rm), we denote by |||A||| the norm induced by the
Euclidean norms for Rn and Rm, as in Section II-1.1.4. Let us also denote

∥A∥∞ = max{|A jk| | j, k ∈ {1, . . . ,n}}.

Finally, let us denote by ∥A∥Fr the Frobenius norm of A as in Section II-1.1.5. Let us
now make a couple of observations.
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1. The Frobenius norm of A is the Euclidean norm of A thought of as a vector inRnm

by listing all of its components.
2. By Proposition II-1.1.11(iv), it follows that

∥A∥Fr ≤
√

nm∥A∥∞.

3. By Theorem II-1.1.14(v), |||A||| is the largest eigenvalue of ATA.
4. By a choice of basis for Rn in which ATA is diagonal, we have

∥A∥Fr =

 n∑
j=1

|λ j|
2


2

,

where λ1, . . . , λn are the real eigenvalues of A.
5. Combining the preceding two observations with Proposition II-1.1.11(vi), we have

|||A||| ≤ ∥A∥Fr.

6. Thus |||A||| ≤
√

nm∥A∥∞.
Now, for y1, y2 ∈ B(r, x), the Mean Value Theorem (Theorem II-1.4.38) gives∥∥∥̂F(t, y1) − F̂(t, y2)

∥∥∥ ≤ sup{|||DF̂(y)||| | y ∈ B(r, x)}∥y1 − y2∥

≤ ng1(t)∥y1 − y2∥,

giving the desired conclusion.
(iv) By virtue of the proof of Theorem 3.2.13 there exists r, r′, α ∈ R>0 such that, if

x ∈ B(r, x0) and t ∈ [t0−α, t0+α], thenΦF(t, t0, x) is defined and takes values in B(r′, x0).
Moreover, we have

ΦF(t, t0, x) = x +
∫ t

t0

F̂(s,ΦF(s, t0, x)) ds

in this case. We note that r′, r, and α depend on g0 and L0 according to the required
inequalities ∣∣∣∣∣∣

∫ t

t0

g0(s) ds

∣∣∣∣∣∣ < r′

2
,

∣∣∣∣∣∣
∫ t

t0

L0(s) ds

∣∣∣∣∣∣ < λ
for some λ ∈ (0, 1).

By choosing r′ and α small enough, there exists g1 ∈ L1([t0 − α, t0 + α];R≥0) such
that ∣∣∣∣∣∣∣∂F̂ j

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤ g1(t), (t, x) ∈ ([t0 − α, t0 + α] ∩ T) × B(r′, x0).

We claim that, if x ∈ B(r, x0), then the ordinary differential equation FT
(t0,x0) with right-

hand side
F̂T

(t0,x0) : (t0 − α, t0 + α) ×Rn
→ Rn

(t,v) 7→ DF̂(t,ΦF(t, t0, x)) · v
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possesses unique solutions on (t0 − α, t0 + α). To show this, we note by Lemma 1 from
the proof of Theorem 3.2.8 that

t 7→ DF̂(t,ΦF(t, t0, x))

is locally integrable. Our assertion then follows from Proposition 5.2.2 below.
Now we show that, for each t ∈ (t0 − α, t0 + α), ΦF

t,t0
is differentiable at each

x sufficiently close to x0. Let ρ ∈ (0, r) be small enough that B(ρ, x) ⊆ B(r, x0) for
every x ∈ B(r, x0). Let h ∈ B(ρ, 0). By the Fundamental Theorem of Calculus, for
x ∈ B(r − ρ, x0), we have∫ 1

0
DF̂(t, x + sh) · h ds = F̂(t, x + h) − F̂(t, x).

Therefore,

F̂(t, x + h) − F̂(t, x) −DF̂(t, x) · h =
∫ 1

0
(DF̂(t, x + sh) −DF̂(t, x)) · h ds (5.1)

Define

Mt(h) = sup
{∫ 1

0
|||DF̂(t, x + sh) −DF̂(t, x)|||ds

∣∣∣∣∣∣ x ∈ B(r − ρ, x0)
}
,

and note that Mt is continuous for h small3 and that Mt(0) = 0. For x ∈ B(r − ρ, x0) and
h ∈ B(ρ, 0), consider the initial value problems

ξ̇0(t) = F̂(t, ξ0(t)), ξ0(t0) = x,

and
ξ̇1(t) = F̂(t, ξ1(t)), ξ1(t0) = x + h.

Denote δ(t) = ξ1(t) − ξ0(t). We then have

δ̇(t) = F̂(t, ξ0(t) + δ(t)) − F̂(t, ξ0(t))

= DF̂(t, ξ0(t))︸       ︷︷       ︸
A(t0 ,x)(t)

·δ(t) +
∫ 1

0
(DF̂(t, ξ0(t) + sδ(t)) −DF̂(t, ξ0(t))) · δ(t) ds︸                                                      ︷︷                                                      ︸

e(t)

,

3The argument here is as follows. We can suppose that we are working in a compact subset of
X if h is small, and so the function

(h, x) 7→
∫ 1

0
|||DF̂(t, x + sh) −DF̂(t, x)|||ds

is uniformly continuous by the Heine–Cantor Theorem (Theorem II-1.3.33). The continuity of the
function obtained by taking the supremum then follows from Exercise II-1.3.4.
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using (5.1). Note that

∥e(t)∥ ≤
∫ 1

0
∥DF̂(t, ξ0(t) + sδ(t)) −DF̂(t, ξ0(t)) · δ(t)∥ds

≤

∫ 1

0
|||DF̂(t, ξ0(t) + sδ(t)) −DF̂(t, ξ0(t))||| ∥δ(t)∥ds

≤ ∥δ(t)∥Mt(δ(t)).

Let ν be the solution to the initial value problem

ν̇(t) = A(t0,x)(t) · ν(t), ν(t0) = h.

Now, for fixed t ∈ (t0 − α, t0 + α), we have

δ(t) =ΦA(t0 ,x)(t, t0) · h +
∫ t

t0

ΦA(t0 ,x)(t, τ)e(τ) dτ,

by Corollary 5.3.3, noting that δ(t0) = h. HereΦA(t0 ,x) is the state transition map from
Section 5.2.1.2. Thus

δ(t) = ν(t) +
∫ t

t0

ΦA(t0 ,x)(t, τ)e(τ) dτ.

Thus

∥δ(t) − ν(t)∥ ≤
∫ t

t0

|||ΦA(t0 ,x)(t, τ)||| ∥e(τ)∥dτ ≤ (t − t0)|||ΦA(t0 ,x)(t, ·)|||∞∥e∥∞

≤ (t − t0)|||ΦA(t0 ,x)(t, ·)|||∞∥δ(t)∥Mt(δ(t)),

where the ∞-norm is over the interval [t0, t]. As in the proof of Lemma 2(i) from the
proof of Theorem 3.2.13, we have

∥δ(t)∥ ≤ C∥h∥

for some C ∈ R>0. Therefore,

∥δ(t) − ν(t)∥ ≤ C′∥h∥Mt(δ(t)),

where C′ = Cα|||ΦA(t0 ,x)(t, ·)|||∞. Restoring the pre-abbreviation notation, this reads

ΦF(t, t0, x + h) −ΦF(t, t0, x) −ΦA(t0 ,x)(t, t0) · h

∥h∥
≤ C′Mt(δ(t)).

Since limh→0 δ(t) = 0 by continuity of solutions with respect to initial conditions and
by definition of Mt, we have

lim
h→0

ΦF(t, t0, x + h) −ΦF(t, t0, x) −ΦA(t0 ,x)(t, t0) · h

∥h∥
= 0,
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which shows that ΦF
t,t0

is differentiable on B(r, x0) and for every t ∈ (t0 − α, t0 + α), and
that, moreover, the derivative satisfies the initial value problem

d
dt

DΦF
t,t0

(x) = DF̂(t,ΦF(t, t0, x)) ◦DΦF
t,t0

(x), DΦF
t0,t0

(x) = In.

Next we show that ΦF
t,t0

is continuously differentiable. To show this, let x ∈ B(r, x0)
and let ρ be such that x+h ∈ B(ρ, x0). As we showed in the preceding part of the proof,

DΦF
t,t0

(x + h) =ΦA(t0 ,x+h)(t, t0) = In +

∫ t

t0

A(t0,x+h)(τ) ◦ΦA(t0 ,x+h)(τ, t0) dτ.

We have

|||ΦA(t0 ,x+h)(t, t0)−ΦA(t0 ,x)(t, t0)|||

≤

∫ t

t0

|||A(t0,x+h)(τ) ◦ΦA(t0 ,x+h)(τ, t0) − A(t0,x)(τ) ◦ΦA(t0 ,x)(τ, t0)|||dτ

≤

∫ t

t0

|||A(t0,x+h)(τ) ◦ΦA(t0 ,x+h)(τ, t0) − A(t0,x+h)(τ) ◦ΦA(t0 ,x)(τ, t0)|||dτ

+

∫ t

t0

|||A(t0,x+h)(τ) ◦ΦA(t0 ,x)(τ, t0) − A(t0,x)(τ) ◦ΦA(t0 ,x)(τ, t0)|||dτ

≤

∫ t

t0

g1(τ)|||ΦA(t0 ,x+h)(t, t0) −ΦA(t0 ,x)(t, t0)|||dτ

+ |||ΦA(t0 ,x) |||∞

∫ t

t0

|||A(t0,x+h)(τ) − A(t0,x)(τ)|||dτ.

By Lemma 1 from the proof of Theorem 3.2.13, we have

|||ΦA(t0 ,x+h)(t, t0) −ΦA(t0 ,x)(t, t0)||| ≤ |||ΦA(t0 ,x) |||∞e
∫ t

t0
g1(τ) dτ

∫ t

t0

|||A(t0,x+h)(τ) − A(t0,x)(τ)|||dτ.

By the Dominated Convergence Theorem,

lim
h→0

∫ t

t0

|||A(t0,x+h)(τ) − A(t0,x)(τ)|||dτ = 0,

which gives
lim
h→0
|||DΦF

t,t0
(x + h) −DΦF

t,t0
(x)||| = 0,

which, for t ∈ (t0 − α, t0 + α), gives the continuity of the derivative of ΦF
t,t0

on B(r, x0).
The final part of the proof of the local part of the proof is to show that ΦF

t,t0
is

invertible with a continuously differentiable inverse. Let r′, α′ ∈ R>0 and let r ∈ (0, r′]
and α ∈ (0, α′] as above, and so such that

ΦF
t,t0

(x) ∈ B(r′, x0), x ∈ B(r, x0), t ∈ [t0 − α, t0 + α].
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Let t ∈ (t0 − α, t0 + α) ∩ T and denote

V = ΦF
t,t0

(B(r, x0)) ⊆ B(r′, x0).

Let x ∈ B(r, x0). Since y ≜ ΦF
t,t0

(x) ∈ B(r′, x0) and t ∈ [t0 − α′, t0 + α′] ∩ T, there
exists ρ ∈ R>0 such that, if y′ ∈ B(ρ, y), then (t0, t, y′) ∈ DF. Moreover, since ΦF

t0,t
is

continuous (indeed, continuously differentiable) and ΦF
t0,t

(y) = x, we may choose ρ
sufficiently small that ΦF

t0,t
(y′) ∈ B(r, x0) if y′ ∈ B(ρ, y). By the preceding part of the

proof, ΦF
t0,t
|B(ρ, y) is continuously differentiable. Thus there is a neighbourhood of x

on which the restriction of ΦF
t t0 is invertible, continuously differentiable, and with a

continuously differentiable inverse.
To complete this part of the proof, we need to prove the statement globally. To this

end, let (t0, x0) ∈ T × X and denote by J+(t0, x0) ⊆ T the set of b > t0 such that, for each
b′ ∈ [t0, b), there exists a relatively open interval J ⊆ T and a r ∈ R>0 such that
1. b′ ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF, and
3. for each t ∈ J, B(r, x0) ∋ x 7→ ΦF(t, t0, x) is a C1-diffeomorphism onto its image.
By the local part of the proof above, J+(t0, x0) , ∅. We then consider two cases.

The first case is J+(t0, x0) ∩ [t0,∞) = T ∩ [t0,∞). In this case, for each t ∈ T with
t ≥ t0, there exists a relatively open interval J ⊆ T and r ∈ R>0 such that
1. t ∈ J,
2. J × {t0} × B(r, x0) ⊆ DF, and
3. for each τ ∈ J, B(r, x0) ∋ x 7→ ΦF(τ, t0, x) is a C1-diffeomorphism onto its image.

The second case is J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞). In this case we let t1 =
sup J+(t0, x0) and note that t1 , supT. We claim that t1 ∈ JF(t0, x0). Were this not
the case, then we must have b ≜ sup JF(t0, x0) < t1. Since b ∈ J+(t0, x0), there must be a
relatively open interval J ⊆ T containing b such that t ∈ JF(t0, x0) for all t ∈ J. But, since
there are t’s in J larger than b, this contradicts the definition of JF(t0, x0), and so we
conclude that t1 ∈ JF(t0, x0). Let us denote x1 = Φ

F(t1, t0, x0). By our local conclusions
from the first part of the proof, there exists α1, r1 ∈ R>0 such that (t, t1, x) ∈ DF for every
t ∈ (t1 − α1, t1 + α1) and x ∈ B(r1, x1), and such that the map

B(r1, x1) ∋ x 7→ ΦF(t, t1, x)

is a C1-diffeomorphism onto its image for every t ∈ (t1−α1, t1+α1). Since t 7→ ΦF(t, t0, x0)
is continuous and ΦF(t1, t0, x0) = x1, let δ ∈ R>0 be such that δ < α1

2 and ΦF(t, t0, x0) ∈
B(r1/4, x1) for t ∈ (t1 − δ, t1). Now let τ1 ∈ (t1 − δ, t1) and, by our hypotheses on t1, there
exists an open interval J and r′1 ∈ R>0 such that
1. τ1 ∈ J,
2. J × {t0} × B(r′1, x0) ⊆ DF, and

3. for each τ ∈ J, B(r′1, x0) ∋ x 7→ ΦF(τ, t0, x) is a C1-diffeomorphism onto its image.
We also choose J and r′1 sufficiently small that

{ΦF(t, t0, x) | t ∈ J, x ∈ B(r′1, x0)} ⊆ B(r1/2, x1).
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Now we claim that

(τ1 − α1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF.

We first show that
[τ1, τ1 + α1) × {t0} × B(r′1, x0) ⊆ DF. (5.2)

Indeed, we have (τ1, t0, x) ∈ DF for every x ∈ B(r′1, x0) since τ1 ∈ J. By definition of J,
ΦF(τ1, t0, x) ∈ B(r1/2, x1). By definition of τ1, t1 − τ1 < δ <

α1
2 . Then, by definition of α1

and r1,
(t1, τ1,Φ

F(τ1, t0, x)) ∈ DF

for every x ∈ B(r′1, x0). From this we conclude that (t1, t0, x) ∈ DF for every x ∈ B(r′1, x0).
Now, since

t ∈ [τ1, τ1 + α1) =⇒ t ∈ (t1 − α1, t1 + α1),

we have (t, t1,ΦF(t, t1, x)) ∈ DF for every t ∈ (τ1 − α1, τ1 + α1) and x ∈ B(r′1, x0). Since

ΦF(t, t1,Φ
F(t1, t0, x)) = ΦF(t, t0, x),

we conclude (5.2). A similar but less complicated argument gives

(τ1 − α1, τ1) × {t0} × B(r′1, x0) ⊆ DF.

Next we claim that the map

B(r′1, x0) ∋ x 7→ ΦF(t, t0, x)

is a C1-diffeomorphism onto its image for every t ∈ (τ1 − α1, τ1 + α1). By definition of
τ1, the map

ΦF
t,t0

: B(r′1, x0)→ B(r1/2, x1)

is a C1-diffeomorphism onto its image for t ∈ (τ1 − α1, τ1]. We also have that

ΦF
t,τ1

: B(r1, x1)→ X

is a C1-diffeomorphism onto its image for t ∈ (τ1, τ1 + α1). Since the composition
of C1-diffeomorphisms onto their image is a C1-diffeomorphism onto its image, our
assertion follows.

By our above arguments, we have an open interval J′ and r′1 ∈ R>0 such that
1. t1 ∈ J′,
2. J′ × {t0} × B(r′1, x0) ⊆ DF, and

3. for each t ∈ J′, B(r′1, x0) ∋ x 7→ ΦF(t, t0, x) is a C1-diffeomorphism onto its image.
This contradicts the fact that t1 = sup J+(t0, x0) and so the condition

J+(t0, x0) ∩ [t0,∞) ⊂ T ∩ [t0,∞)

cannot obtain.
One similarly shows that it must be the case that J−(t0, x0)∩ (−∞, t0] = T∩ (−∞, t0]¡

where J−(t0, x0) has the obvious definition.
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Now we note thatΦF
t,t0

injective by uniqueness of solutions for F. Now, assertion (iv)
of the theorem now follows since the notion of “C1-diffeomorphism” can be tested
locally, i.e., in a neighbourhood of any point.

To conclude, we must show that the derivative satisfies the initial value problem

d
dt

DΦF(t, t0, x0) = DF̂(t,ΦF(t, t0, x0)) ◦DΦF(t, t0, x0), DΦF(t0, t0, x0) = In,

on JF(t0, x0). Let J+(t0, x0) (reusing the notation from the preceding part of the proof) be
the set of t ≥ t0 such that τ 7→ DΦF(τ, t0, x0) satisfies the preceding initial value problem
on [t0, t1]. Note that J+(t0, x0) , ∅ by our arguments in the first part of the proof. Let
t1 = sup J+(t0, x0). We claim that t1 = sup JF(t0, x0). If t1 = t0 there is nothing to prove.
So suppose that t1 > t0 and suppose that t1 , sup JF(t0, x0). Therefore, t1 ∈ JF(t0, x0)
and so there exists α1 ∈ R>0 such that (t1 −α1, t1 +α2) ⊆ JF(t0, x0). Let x1 = Φ

F(t1, t0, x0).
Note that our arguments from the first part of the proof show that, on (t1 − α1, t1 + α1),
t 7→ DΦF(t, t1, x1) satisfies the initial value problem

d
dt

DF(t, t1, x1) = DF̂(t,ΦF(t, t1, x1)) ◦DΦF(t, t1, x1), DΦF(t1, t1, x1) = In.

Now define Ξ : [t0, t1 + α1)→ L(Rn;Rn) by

Ξ(t) =

DΦF(t, t0, x0), t ∈ [t0, t1],
DΦF(t, t1, x1), t ∈ (t1, t1 + α1).

As we showed in the first part of the proof, if we denote A(t) = DF̂(t,ΦF(t, t0, x0)), then,
since

ΦF(t, t0, x0) = ΦF(t, t1,Φ
F(t1, t0, x0)) = ΦF(t, t1, x1)

for t ∈ [t1, t1 + α1), we have Ξ(t) =ΦA(t0 ,x0)(t, t0) for t ∈ [t0, t1 + α1). Thus we have

d
dt

DF(t, t1, x1) = DF̂(t,ΦF(t, t1, x1)) ◦DΦF(t, t1, x1), DΦF(t1, t1, x1) = In,

on [t0, t1 + α1), which contradicts the definition of J+(t0, x0). Thus we must have
t1 = sup JF(t0, x0). A similar argument can be made for t < t0, and we have thus
completed this part of the proof.

(v) Let us consider the ordinary differential equation F1 with right-hand side

F̂1 : T × X × L(Rn;Rn)→ Rn
× L(Rn;Rn)

(t, x,X) 7→ (̂F(t, x),DF̂(t, x) ◦ X).

This ordinary differential equation satisfies the conditions of Theorem 3.2.8(ii). More-
over, as we saw from the previous part of the proof, JF1(t0, (x0,X0)) = JF(t0, x0) for every
X0 ∈ L(Rn;Rn). Thus

DF1 = {(t, t0, (x0,X0)) | (t, t0, x0) ∈ DF}.

From Theorem 3.2.13 we know that ΦF1 is continuous. Moreover, from the first part
of the proof,

ΦF1(t, t0, (x0,X0)) = (ΦF(t, t0, x0),DΦF
t,t0

(x0) ◦ X).
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From this, the desired conclusion follows.
(vi) We will show something more than is stated in this part of the theorem. The

setup we will make is the following. We suppose that we have a, b ∈ T with a < b and
x0 ∈ X, and we suppose that, for some ρ ∈ R>0, we have a solution

[a − ρ, b + ρ] ∋ t 7→ ΦF(t, a, x0).

Let us abbreviate ξ0(t) = ΦF(t, a, x0). Then, according to Theorem 3.2.13, there exists
r ∈ R>0 such that, if τ ∈ [a, b] and if (t, x) ∈ (τ − r, τ + r) × B(r, ξ0(τ)), then the solution

s 7→ ΦF(s, t, x)

is defined for s ∈ [a − ρ, b + ρ].4 We denote

Wr = ∪τ∈[a,b](τ − r, τ + r) × B(r, ξ0(τ)).

We shall show that, for t0, t1 ∈ [a, b], if x0 = ξ0(t0) and if ξ0 is differentiable at t0, then
the function

Wr ∋ (t, x) 7→ ΦF(t1, t, x)

is differentiable at (t0, x0), and that its derivative is the linear map

(σ,v) 7→ΦA(t0 ,x0)(t1, t0) · (v − σξ̇0(t0)).

This implies the conclusions of the theorem, since the conclusions of the theorem are
only about the function of t, not of t and x.

We make some preliminary constructions. Let B ∈ R>0 be such that

∥ΦA(t0 ,ξ0(t0))(t1, t0) · v∥ ≤ B∥v∥, t1, t0 ∈ [a − ρ, b + ρ],

this being possible by part (v). Now define

σ(τ) = sup{|||ΦA(t0+τ,x0)(t1, t0 + τ) −ΦA(t0 ,x0)(t1,t0)(t1, t0)||| | t0, t1 ∈ [a, b]}.

By uniform continuity, σ is continuous and limτ→0 σ(τ) = 0. Now let t0, t1 ∈ [a, b], let
x0 = ξ0(t0), and suppose that ξ0 is differentiable at t0. Denote

v0(τ) =
∥ξ0(t0 + τ) − ξ0(t0) − τξ̇0(t0)∥

|τ|
,

and note that v0 is continuous for small τ and that limτ→0 v0(τ) = 0. Next denote

D(τ,h) =

sup

∥ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · h∥

∥h∥

∣∣∣∣∣∣∣ t1 ∈ [a, b]

 .
Note that D is continuous and that lim(τ,h)→(0,0) D(τ,h) = 0.

4The existence of such r ∈ R>0 follows from a compactness argument, using compactness of
{(τ, ξ0(τ)) | τ ∈ [a, b]}.
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Now we estimate

∥ΦA(t0+τ,x0)(t1, t0+τ) · (x0 + h − ξ0(t0 + τ)) −ΦA(t0 ,x0)(t1, t0) · (h − τξ̇0(t0))∥

≤ ∥ΦA(t0+τ,x0)(t1, t0 + τ) · (ξ0(t0 + τ) − x0 − τξ̇0(t0))∥

+ ∥ΦA(t0+τ,x0)(t1, t0 + τ) · (h − τξ̇0(t0)) −ΦA(t0 ,x0)(t1, t0) · (h − τξ̇0(t0))∥

≤ f1(τ)(|τ| + ∥h∥),

where
f1(τ) = Bv0(τ) + (1 + ∥ξ̇0(t0)∥)σ(τ).

Note that f1 is continuous for small τ and limτ→0 f1(τ) = 0.
Now we estimate

∥ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · (x0 + h − ξ0(t0 + τ))∥

= ∥ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0 + τ, ξ0(t0 + τ))
−ΦA(t0+τ,x0)(t1, t0 + τ) · (x0 + h − ξ0(t0 + τ))∥

≤ ∥ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0 + τ, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · h∥

+ ∥ΦF(t1, t0 + τ, ξ0(t0 + τ)) −ΦF(t1, t0 + τ, x0)
−ΦA(t0+τ,x0)(t1, t0 + τ) · (ξ0(t0 + τ) − x0)∥

≤ D(τ,h)(|τ| + ∥h∥) +D(τ, ξ0(t0 + τ) − x0)(|τ| + ∥ξ0(t0 + τ) − x0∥).

By Taylor’s Theorem, we have

ξ0(t0 + τ) − x0 = τ(R(τ) + ξ̇(t0))

for a continuous function R for which limτ→0 R(τ) = 0. Thus, for small τ,

∥ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0+τ,x0)(t1, t0 + τ) · (x0 + h − ξ0(t0 + τ))∥

≤ f2(τ,h)(|τ| + ∥h∥),

where
f2(τ,h) = D(τ,h) + (1 + ∥ξ̇(t0)∥)D(τ, ξ0(t0 + τ) − x0).

We note that f2 is continuous and that lim(τ,∥h∥) f2(τ,h) = 0.
Combining the preceding two estimates we have

∥ΦF(t1, t0 + τ, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τξ̇0(t0))∥

≤ ( f1(τ) + f2(τ,h))(|τ| + ∥h∥).

We thus conclude this part of the theorem. ■

The proof of the theorem immediately gives the following result.



2022/03/07 5.1 Linearisation 375

5.1.9 Corollary (Flow of ordinary differential equations of class C1) Let F be an
ordinary differential equation with right-hand side

F̂ : T × X→ Rn.

If F̂ is of class C1, then ΦF : DF → X is of class C1.
Proof From the proof of part (vi) of the preceding theorem, we have

∥ΦF(t1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τ0ξ̇0(t0))∥

≤ f (τ0,h)(|τ0| + ∥h∥)

for a continuous function f satisfying lim(τ0,h)→(0,0) f (τ0,h) = 0. Note that, under
the hypotheses of the corollary, this conclusion holds for every (t1, t0, x0) ∈ DF since
solutions for F are of class C1 in this case.

Now we have

ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0)

= ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1 + τ1, t0, x0)

+ ΦF(t1 + τ1, t0, x0) −ΦF(t1, t0, x0).

This then gives

∥ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τ0ξ̇0(t0)) − τ1ξ̇0(t1)∥

≤ ∥ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1 + τ1, t0, x0) −ΦA(t0 ,x0)(t1 + τ1, t0) · (h − τ0ξ̇0(t0))∥

+
∣∣∣∣∣∣∣∣∣∣∣∣ΦA(t0 ,x0)(t1 + τ1, t0) −ΦA(t0 ,x0)(t1 + τ1, t0)

∣∣∣∣∣∣∣∣∣∣∣∣ ∥h − τ0ξ̇0(t0)∥

+ ∥ΦF(t1 + τ1, t0, x0) −ΦF(t1, t0, x0) − τ1ξ̇0(t1)∥

Arguments like those from the proof of part (vi) of the preceding theorem then give

∥ΦF(t1 + τ1, t0 + τ0, x0 + h) −ΦF(t1, t0, x0) −ΦA(t0 ,x0)(t1, t0) · (h − τ0ξ̇0(t0)) − τ1ξ̇0(t1)∥

≤ f (τ1, τ0,h)(|τ1| + |τ0| + ∥h∥),

where f is a continuous function satisfying

lim
(τ1,τ0,h)→(0,0,0)

f (τ1, τ0,h) = 0.

From this we conclude that the ΦF is differentiable, and, moreover, that the derivative
at (t1, t0, x0) ∈ DF is given by the linear map

(σ1, σ0,v) 7→ΦA(t0 ,x0)(t1, t0) · (v − σ0ξ̇0(t0)) − σ1ξ̇0(t1).

In the proof of part (iv) of the preceding theorem we showed that (t1, t0, x0) 7→
ΦA(t0 ,x0)(t1, t0) is continuous. Since the map

(t1, t0, x0) 7→
d
dt

∣∣∣∣∣
t=t1

ΦF(t, t0, x0) = F̂(t1,Φ
F(t1, t0, x0))

is also continuous, we conclude in this case that ΦF is continuously differentiable. ■

The next construction is a natural one, intuitively; it involves “wiggling” the
initial data for an ordinary differential equation.
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5.1.10 Definition (Variation of initial data) Let F be an ordinary differential equation
with right-hand side

F̂ : T × X→ Rn,

and let ξ0 : T′ → X be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and
x0 ∈ X. A variation of the initial data (t0, x0) in the direction of (τ,v) ∈ R×Rn is the
curve

s 7→ (t0 + sτ, x0 + sv),

which we assume takes values in T × X for small s ∈ R>0. •

For s small, one can then consider “perturbations” of the solution t 7→ ξ0(t) =
ΦF(t, t0, x0), by which we mean the solutions t 7→ ΦF(t, t0 + sτ, x0 + sv). Note, by
Theorem 3.2.13(ix), that if (t, t0, x0) ∈ DF, then (t, t0+sτ, x0+sv) ∈ DF for s sufficiently
small. Thus we can ask for the “first-order effect” of the variation of the initial data
on the solution at the final time t. Precisely, this is

d
ds

∣∣∣∣∣
s=0
ΦF(t, t0 + sτ, x0 + sv) ∈ Rn.

This is sufficiently interesting a quantity that we give it a name.

5.1.11 Definition (Infinitesimal variation corresponding to variation of initial data)
Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn,

and let ξ0 : T′ → X be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and
x0 ∈ X. The infinitesimal variation associated with the variation of the initial data
(t0, x0) in the direction of (τ,v) ∈ R ×Rn is

d
ds

∣∣∣∣∣
s=0
ΦF(t, t0 + sτ, x0 + sv) ∈ Rn,

when the derivative exists. •

The following result, which is an immediate consequence of Theorem 5.1.8,
gives the formula for this first-order effect.

5.1.12 Corollary (The infinitesimal variation corresponding to a variation of initial
data) Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn

satisfying the hypotheses of Theorem 5.1.8, and let ξ0 : T′ → X be a solution for F satisfying
ξ0(t0) = x0 for some t0 ∈ T′ and x0 ∈ X. The infinitesimal variation associated with the
variation of the initial data (t0, x0) in the direction of (τ,v) ∈ R ×Rn is given by

d
ds

∣∣∣∣∣
s=0
ΦF(t, t0 + sτ, x0 + sv) =ΦA(t0 ,x0)(t, t0) · v − τΦA(t0 ,x0)(t, t0) · F̂(t0, x0).

Proof This follows from Theorem 5.1.8 and the Chain Rule. ■
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5.1.1.4 While we’re at it: ordinary differential equations of class Cm In the
previous section we considered ordinary differential equations depending con-
tinuously differentiably on state (Theorem 5.1.8) and on state and time (Corol-
lary 5.1.9). In this section we extend these results to case where we assume more
differentiability.

Let us start with just differentiability in state.

5.1.13 Theorem (Higher-order differentiability of flows for ordinary differential equa-
tions) Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn,

let m ∈ Z>0, and make the following assumptions:

(i) the map t 7→ F̂(t, x) is measurable for each x ∈ X;

(ii) the map x 7→ F̂(t, x) is of class Cm for each t ∈ T;
(iii) for each (t, x) ∈ T × X, there exist r, ρ ∈ R>0 and

g0,g1, . . . ,gm ∈ L1([t0 − ρ, t0 + ρ];R≥0)

such that
(a) ∥̂F(s,y)∥ ≤ g0(s) for (s,y) ∈ ([t0 − ρ, t0 + ρ] ∩ T) × B(r, x) and

(b)

∣∣∣∣∣∣∣ ∂l̂Fj

∂xk1 · · · ∂xkl

(s,y)

∣∣∣∣∣∣∣ ≤ gl(s) for (t,y) ∈ ([t0−ρ, t0+ρ]∩T)×B(r, x), j,k1, . . . ,kl ∈

{1, . . . ,n}, and l ∈ {1, . . . ,m}.
Then, for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0)→ X is a Cm-diffeomorphism onto its image.

Proof It suffices to prove the theorem locally, since once this is done, one can use an
argument like that in the proof of Theorem 5.1.8(iv) to get the global result.

We recursively define ordinary differential equations FL,m, m ∈ Z>0, by FL,1 = FL
and then by FL,m+1 = (FL,m)L. We have

F̂L,m : T × X × (Rn)2m−1
→ (Rn)2m,

and one can verify that the components of

F̂L,m(t, x,v1, . . . ,v2m−1)

are linear combinations of expressions of the form

DkF̂(x) · (v j1 , . . . ,v jk)

for some j1, . . . , jk ∈ {1, . . . , 2m− 1}. Let us draw the important conclusion from this. In
the proof of Theorem 5.1.8, we saw that if the hypotheses of the present theorem hold
for m = 1, then the hypotheses of Theorem 3.2.13 hold for FL,1, and so the mapping

(x,v1) 7→ ΦFL,1
t,t0

(x,v1)) = (ΦF
t,t0

(x),DΦF
t,t0

(x) · v)
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is a locally bi-Lipschitz homeomorphism. This shows, in particular, thatΦF
t,t0

is of class
C1. Similarly, if F satisfies the hypotheses of the present theorem for m = 2, then FL,1
satisfies the hypotheses of Theorem 5.1.8 and so the mapping

(x,v1,v2,v3) 7→ ΦFL,2
t,t0

(x,v1,v2,v3)

= (ΦFL,1
t,t0

(x,v1),DΦFL,1
t,t0

(x,v1) · (v2,v3))

= (ΦF
t,t0

(x),DΦF
t,t0

(x) · v1,D2ΦF
t,t0

(x) · (v1,v2),DΦF
t,t0

(x) · v3).

is a locally bi-Lipschitz homeomorphism. This shows that ΦF
t,t0

is of class C2. One can
continue this process for arbitrary m. ■

Using the preceding theorem, it is fairly easy to characterise the flows of ordi-
nary differential equations that depend regularly jointly on time and state.

5.1.14 Corollary (Higher-order differentiability in state and time of flows for ordinary
differential equations) Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn

and suppose that F̂ is of class Cm for some m ∈ Z>0. Then the mapping ΦF : DF → X is of
class Cm.

Proof The inductive constructions from the proof of Theorem 5.1.13, using the regu-
larity conclusions of Corollary 5.1.9 in place of those of Theorem 5.1.8, give the result
in this case. ■

Immediate consequences of the preceding two results are the following.

5.1.15 Corollary (Infinite differentiability of flows for ordinary differential equations)
Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn

and make the following assumptions:

(i) the map t 7→ F̂(t, x) is measurable for each x ∈ X;

(ii) the map x 7→ F̂(t, x) is of class C∞ for each t ∈ T;
(iii) for each (t, x) ∈ T × X, there exist r, ρ ∈ R>0 and

gj ∈ L1([t0 − ρ, t0 + ρ];R≥0), j ∈ Z≥0,

such that
(a) ∥̂F(s,y)∥ ≤ g0(s) for (s,y) ∈ (([t0 − ρ, t0 + ρ] ∩ T) × B(r, x) and

(b)

∣∣∣∣∣∣∣ ∂l̂Fj

∂xk1 · · · ∂xkl

(s,y)

∣∣∣∣∣∣∣ ≤ gl(s) for (s,y) ∈ ([t0−ρ, t0+ρ]∩T)×B(r, x), j,k1, . . . ,kl ∈

{1, . . . ,n}, and l ∈ Z>0.
Then, for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0)→ X is a C∞-diffeomorphism onto its image.



2022/03/07 5.1 Linearisation 379

5.1.16 Corollary (Infinite differentiability in state and time of flows for ordinary dif-
ferential equations) Let F be an ordinary differential equation with right-hand side

F̂ : T × X→ Rn

and suppose that F̂ is of class C∞. Then ΦF : DF → X is of class C∞.

5.1.2 Linearisation of ordinary difference equations

Now we turn to the linearisation of systems of ordinary difference equations. We
shall mirror the constructions of the preceding sections for differential equations,
but in the discrete-time there are far fewer difficulties since one does not have to
fuss with the precise nature of time dependence as one does in the continuous-time
case.

5.1.2.1 Linearisation along solutions Suppose that we have a system of ordi-
nary difference equations F with right-hand side F̂ : T ×X→ Rn and that we have
a solution ξ0 : T′ → X for F. We wish to understand what happens to solutions
“nearby” this fixed solution ξ0.

To do this, we suppose that the map

F̂t : X→ Rn

x 7→ F̂(t, x)

is of class C1. We denote

DF̂(t, x) = DF̂t(x), t ∈ T.

We then suppose that we have a solution ξ : T′ → X for F for which the deviation
ν ≜ ξ − ξ0 is small. Let us try to understand the behaviour of ν. Naı̈vely, we can
do this as follows:

ξ(t + h) = (ξ0 + ν)(t + h) = F̂(t, ξ0(t) + ν(t)) = F̂(t, ξ0(t)) +DF̂(t, ξ0(t)) · ν(t) + · · · .

We will not here try to be precise about what “· · · ” might mean, but merely say
that the idea of the preceding equation is that we approximate using the constant
and first-order terms in the Taylor expansion, and then pray that this gives us
something meaningful. Note that, since ξ0 is a solution for F, the approximation
we arrive at is

ν(t + h) ≈ DF̂(t, ξ0) · ν(t).

Meaningful or not, the preceding naı̈ve calculations give rise to the following
definition.
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5.1.17 Definition (Linearisation of an ordinary difference equation along a solution)
Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rn,

supposing that F̂t is of class C1 for every t ∈ T. For a solution ξ0 : T′ → X for F,
the linearisation of F along ξ0 is the linear ordinary difference equation FL,ξ0 with
right-hand side

F̂L,ξ0 : T′ ×Rn
→ Rn

(t,v) 7→ DF̂(ξ0(t)) · v.
•

Note that a solution t 7→ ν(t) for the linearisation of F along ξ0 satisfies

ν(t + h) = A(t)(ν(t)),

where
A(t) = DF̂(t, ξ0(t)).

This is indeed a linear ordinary difference equation. We note that, even when
F is autonomous, the linearisation will generally be nonautonomous, due to the
dependence of the reference solution ξ0 on time.

Note that there is an alternative view of linearisation that can be easily devel-
oped, one where linearisation is of the equation, not just along a solution. The
construction we make is the following.

5.1.18 Definition (Linearisation of an ordinary difference equation) Let F be an ordi-
nary difference equation with right-hand side

F̂ : T × X→ Rn,

supposing that F̂t is of class C1 for every t ∈ T. The linearisation of F is the ordinary
difference equation FL with right-hand side

F̂L : T × (X ×Rn)→ Rn
⊕Rn

(t, (x,v)) 7→ (̂F(t, x),DF̂(t, x)(v)).
•

Solutions of the linearisation of F are then mappings t 7→ (ξ(t),ν(t)) satisfying

ξ(t + h) = F̂(t, ξ(t)),

ν(t + h) = DF̂(t, ξ(t)) · ν(t).

We see, then, that in this version of linearisation we carry along the original differ-
ence equation F as part of the linearisation. This is, in no way, incompatible with
the definition of linearisation along a solution ξ0, since one needs F to provide the
solution.

5.1.2.2 Linearisation about equilibria In this section we consider what
amounts to a special case of linearisation about a solution. The solution we consider
is a very particular sort of solution, as given by the following definition.
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5.1.19 Definition (Equilibrium state for an ordinary difference equation) Let F be an
ordinary difference equation with right-hand side

F̂ : T × X→ Rn.

A state x0 ∈ X is an equilibrium state if F̂(t, x0) = x0 for every t ∈ T. •

The following result gives the relationship between equilibrium states and
solutions.

5.1.20 Proposition (Equilibrium states and constant solutions) Let F be an ordinary
difference equation with right-hand side

F̂ : T × X→ Rn.

A state x0 ∈ X is an equilibrium state if and only if the constant function t 7→ x0 is a
solution for F.

Proof Let us denote by ξ0 the constant function t 7→ x0.
First suppose that x0 is an equilibrium state. Then ξ0(t + h) = x0 for every t ∈ T

and F̂(t, ξ0(t)) = x0 and so

ξ0(t + h) = F̂(t, ξ0(t)), t ∈ T,

and thus ξx0
is a solution.

Next suppose that ξ0 is a solution. Then

x0 = ξ0(t + h) = F̂(t, ξ0(t)) = F̂(t, x0), t ∈ T,

so giving that x0 is an equilibrium state. ■

Note that, as a consequence of the preceding simple result, we can linearise
about the constant solution t 7→ x0 in the event that x0 is an equilibrium state. Let
us, however, use some particular language in this case.

5.1.21 Definition (Linearisation of an ordinary difference equation about an equilib-
rium state) Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rn,

supposing that F̂t is of class C1 for every t ∈ T, and let x0 be an equilibrium state.
The linearisation of F about x0 is the linear ordinary difference equation FL,x0 with
right-hand side

F̂L,x0 : T ×Rn
→ Rn

(t,v) 7→ DF̂(t, x0) · v.
•
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A solution t 7→ ν(t) for FL,x0 satisfies

ν(t + h) = A(t)(v),

where
A(t) = DF̂(t, x0).

Thus we see that the linearisation about an equilibrium point is indeed a linear
ordinary difference equation, just as it should be since the same is true of the
linearisation about an arbitrary solution. What is special here, however, is that the
linearisation is autonomous if F is autonomous. Thus the linearisation when F is
autonomous is a linear ordinary difference equation with constant coefficients.

5.1.2.3 The flow of the linearisation In this section, in contrast with the pre-
ceding sections, we give a very precise characterisation of linearisation. In contrast
to the situation with differential equations, the conclusions of the results in this
section follow almost immediately from their hypotheses.

We shall first investigate thoroughly the properties of the flow of an ordinary
difference equation that has more regularity properties than are required for the
basic existence and uniqueness theorem, Theorem 3.4.2. In order to state the result
we want, we will make use of some ideas that we will not develop fully until
Section 5.6. Let us suppose that we have a system of ordinary difference equations
F with right-hand side

F̂ : T × X→ Rn,

and let (t0, x0) ∈ T × X. We then have the solution

t 7→ ξ0(t) ≜ ΦF(t, t0, x0)

defined for t ∈ JF(t0, x0) ∩ T≥t0 . We then define

A(t0,x0) : JF(t0, x0) ∩ T≥t0 → L(Rn;Rn)

t 7→ DF̂(t,ΦF(t, t0, x0)).

Now consider the linear time-varying difference equation FT
(t0,x0) with right-hand

side
F̂T

(t0,x0) : JF(t0, x0) ∩ T≥t0 ×R
n
→ Rn

(t,v) 7→ A(t0,x0)(t) · v.

To describe solutions of this linear ordinary difference equation, we consider first
the following ordinary difference equation. For t ∈ JF(t0, x0)∩T≥t0×R

n, we consider
the following initial value problem:

Ψ(s + h) = A(t0,x0)(s) ◦Ψ(s), Ψ(t) = In.
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As a linear ordinary difference equation, this initial value problem has solutions
defined for all s ∈ JF(t0, x0) ∩ T≥t. Moreover, we denote the solution at time s by
ΦA(t0 ,x0)(s, t); the associated map

ΦA(t0 ,x0) : PF(t0, x0)→ L(Rn;Rn)

is what we shall call the “state transition map” in Section 5.6.1.2, and we shall use
some of the results from this section in the proof below. Here we denote

PF(t0, x0) = {(s, t) ∈ JF(t0, x0) ∩ T≥t0 × JF(t0, x0) ∩ T≥t0 | s ≥ t}.

In particular, we shall use the fact that the solution to the initial value problem

ν(s + h) = A(t0,x0)(s) · ν(s), ν(t) = v0

is
ν(s) =ΦA(t0 ,x0)(s, t) · v0, s ∈ JF(t0, x0) ∩ T≥t.

With the preceding background, we can now state the theorem.

5.1.22 Theorem (Differentiability of flows for ordinary difference equations) Let F be
an ordinary difference equation with right-hand side

F̂ : T × X→ Rn,

and make the following assumption:

(i) the map x 7→ F̂(t, x) is continuously differentiable for each t ∈ T;
Then the following statements hold:

(ii) for t, t0 ∈ T, ΦF
t,t0

: DF(t, t0) → X is of class C1 and its derivative is given by
DΦF

t,t0
(x0) =ΦA(t0 ,x0)(t, t0);

(iii) the map
DΦF : DF → L(Rn;Rn)

(t, t0, x) 7→ DΦF
t,t0

(x)

is continuous.
Proof (ii) We note that

ΦF
t,t0
= F̂t−h ◦ · · · ◦ F̂t0+h ◦ F̂t0 .

In a similar vein,

ΦA(t0 ,x0)(t, t0) = A(t0,x0)(t − h) ◦ · · · ◦ A(t0,x0)(t0 + h) ◦ A(t0,x0)(t0).

Since
A(t0,x0)(t) = DF̂(t,ΦF

t,t0
),

this part of the result follows from the Chain Rule (Theorem II-1.4.49).
(iii) In the present discrete-time case, this simply follows since x 7→ DΦF

t,t0
(x) is

continuous, since all functions defined on a topological space with the discrete topology
are continuous (). ■ ref
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Note that we have no analogue of Corollary 5.1.9 here since differentiability is
not a meaningful concept for discrete-time functions.

The next construction is a natural one, intuitively; it involves “wiggling” the
initial data for an ordinary differential equation. Note here that we cannot “wiggle”
the initial condition in time in the discrete-time case/

5.1.23 Definition (Variation of initial state) Let F be an ordinary difference equation with
right-hand side

F̂ : T × X→ Rn,

and let ξ0 : T′ → X be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and
x0 ∈ X. A variation of the initial state x0 in the direction of v ∈ Rn is the curve

s 7→ x0 + sv,

which we assume takes values in T × X for small s ∈ R>0. •

For s small, one can then consider “perturbations” of the solution t 7→ ξ0(t) =
ΦF(t, t0, x0), by which we mean the solutions t 7→ ΦF(t, t0, x0 + sv). Thus we ask for
the “first-order effect” of the variation of the initial state on the solution at the final
time t. Precisely, this is

d
ds

∣∣∣∣∣
s=0
ΦF(t, t0, x0 + sv) ∈ Rn.

This is sufficiently interesting a quantity that we give it a name.

5.1.24 Definition (Infinitesimal variation corresponding to variation of initial state)
Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rn,

and let ξ0 : T′ → X be a solution for F satisfying ξ0(t0) = x0 for some t0 ∈ T′ and
x0 ∈ X. The infinitesimal variation associated with the variation of the initial state
x0 in the direction of v ∈ Rn is

d
ds

∣∣∣∣∣
s=0
ΦF(t, t0, x0 + sv) ∈ Rn,

when the derivative exists. •

The following result, which is an immediate consequence of Theorem 5.1.22,
gives the formula for this first-order effect.
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5.1.25 Corollary (The infinitesimal variation corresponding to a variation of initial
state) Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rn

satisfying the hypotheses of Theorem 5.1.22, and let ξ0 : T′ → X be a solution for F
satisfying ξ0(t0) = x0 for some t0 ∈ T′ and x0 ∈ X. The infinitesimal variation associated
with the variation of the initial state x0 in the direction of v ∈ Rn is given by

d
ds

∣∣∣∣∣
s=0
ΦF(t, t0, x0 + sv) =ΦA(t0 ,x0)(t, t0) · v.

Proof This follows from Theorem 5.1.22 and the Chain Rule. ■

5.1.2.4 While we’re at it: ordinary difference equations of class Cm In the
previous section we considered ordinary differential equations depending continu-
ously differentiably on state (Theorem 5.1.22). In this section we extend this result
to case where we assume more differentiability.

Let us start with just differentiability in state.

5.1.26 Theorem (Higher-order differentiability of flows for ordinary difference equa-
tions) Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rn,

let m ∈ Z>0, and make the following assumption:

(i) the map x 7→ F̂(t, x) is of class Cm for each t ∈ T.
Then, for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0)→ X is of class Cm.

Proof Theorem 5.1.22 follows since compositions of C1-maps are of class C1. Simi-
larly, compositions of Cm-maps are of class Cm (Theorem II-1.4.51). ■

An immediate consequence of the preceding theorem is the following.

5.1.27 Corollary (Infinite differentiability of flows for ordinary difference equations)
Let F be an ordinary difference equation with right-hand side

F̂ : T × X→ Rn.

and make the following assumption:

(i) the map x 7→ F̂(t, x) is of class C∞ for each t ∈ T.
Then, for t, t0 ∈ T, ΦF

t,t0
: DF(t, t0)→ X is of class C∞.
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Exercises

5.1.1 Let F be a linear homogeneous ordinary differential equation with constant
coefficients in a finite-dimensional R-vector space X and with right-hand
side F̂(t, x) = A(x), as in Section 5.2.2. Answer the following questions.
(a) Write an explicit formula for the flow for F.
(b) Determine the linearisation FL of F as in Definition 5.1.2.
(c) Write an explicit formula for the flow of FL.
(d) What can you say about the linearisation about the equilibrium

0, i.e., about the zero trajectory?
5.1.2 Let F be a kth-order scalar ordinary differential equation with right-hand

side
F̂ : T × X × L≤k−1

sym (R;R)→ R.

Let F1 be the first-order ordinary differential equation with k states, as in
Exercise 3.1.23. Denote the state for F by x ∈ X and the state for F1 by
y ∈ X1 = X ×Rk−1, as in Exercise 3.1.23.
(a) Argue that the correct definition of an equilibrium state for the kth-order

ordinary differential equation F is a state x0 ∈ X such that

F̂(t, x0, 0, . . . , 0) = 0.

(b) Show that x0 ∈ X is an equilibrium for F as in part (a) if and only if
(x0, 0, . . . , 0) is an equilibrium state for F1.

Now let x0 ∈ X be an equilibrium state for F, as in part (a), with y0 =
(x0, 0, . . . , 0) ∈ X1 the associated equilibrium state for F1.
(c) Determine the linearisation of F1 about an equilibrium state y0 =

(x0, 0, . . . , 0).
(d) Show that the linearisation of F1 is a first-order linear ordinary differ-

ential equation with k states that comes from a kth-order scalar linear
ordinary differential equation, and determine explicitly the coefficients
in this scalar equation in terms of F̂.

5.1.3 For the ordinary differential equations F with the given time-domains, state
spaces, and right-hand sides, determine their equilibrium states and the
linearisations about these equilibrium states:

(a) T = R, X = R, and F̂(t, x) = x − x3;
(b) T = R, X = R, and F̂(t, x) = a(t)x, a ∈ C0(T;R) not identically zero;
(c) T = R, X = R, and F̂(t, x) = cos(x);
(d) T = R, X = R2, and F̂(t, (x1, x2)) = (x2, x1 − x3

1);

(e) T = R, X = R2, and F̂(t, (x1, x2)) = (x2, a(t)x1), a ∈ C0(T;R) not identically
zero;
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(f) T = R, X = R2, and F̂(t, (x1, x2)) = (x2, cos(x1));
(g) T = R, X = R2

>0, and F̂(t, (x1, x2)) = (αx1 − βx1x2, δx1x2 − γx2), α, β, δ, γ ∈
R>0.

5.1.4 Let F be a linear homogeneous ordinary difference equation with constant
coefficients in a finite-dimensional R-vector space X and with right-hand
side F̂(t, x) = A(x), as in Section 5.6.2. Answer the following questions.
(a) Write an explicit formula for the flow for F.
(b) Determine the linearisation FL of F as in Definition 5.1.18.
(c) Write an explicit formula for the flow of FL.
(d) What can you say about the linearisation about the equilibrium

0, i.e., about the zero trajectory?
more exercises for

difference equations
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Section 5.2

Systems of linear homogeneous ordinary differential equations

In this section we shall begin our study of systems of linear ordinary differential
equations by working with homogeneous systems. We will follow our develop-
ment of Section 3.1.3.3 and consider the state space to be a finite-dimensional
R-vector space V. Thus we work with a system of linear homogeneous ordinary
differential equations F in a finite-dimensionalR-vector space X, whose right-hand
side, therefore, takes the form

F̂ : T × X→ X
(t, x) 7→ A(t)(x)

(5.3)

for a map A : T → L(X; X). Thus we are looking at differential equations whose
solutions t 7→ ξ(t) satisfy

ξ̇(t) = A(t)(ξ(t)).

Our treatment will be structured in the same way as was the treatment in Section 4.2
for scalar equations, to emphasise the similarities between the two theories.

Do I need to read this section? This material is fundamental to the study of lin-
ear system theory. •

5.2.1 Equations with time-varying coefficients

We begin by a consideration of general systems with time-varying coeffi-
cients, i.e., for which A is not a constant function of time.

5.2.1.1 Solutions and their properties First let us verify that the basic exis-
tence and uniqueness result holds for the differential equations we are consider-
ing.

5.2.1 Proposition (Local existence and uniqueness of solutions for systems of lin-
ear homogeneous ordinary differential equations) Consider the system of linear
homogeneous ordinary differential equations F with right-hand side (5.3) and suppose that
A ∈ L1

loc(T; L(X; X)). Let (t0, x0) ∈ T × X. Then there exists an interval T′ ⊆ T and
ξ ∈ ACloc(T′; X) that is a solution for F and which satisfies ξ(t0) = x0. Moreover, if
T̃′ ⊆ T is another subinterval and if ξ̃ ∈ ACloc(T̃′; X) is another solution for F satisfying
ξ̃(t0) = x0, then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.

Proof By choosing a basis for X, we can take X = Rn so that A is an n × n matrix-
valued function, which we denote as A in the usual way. (This is legitimate by
Exercise 5.2.1.) We denote the components of A(t) by A j

k(t), j, k ∈ {1, . . . ,n}. Let
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g ∈ L1
loc(T;R≥0) be such that |A j

k(t)| ≤ g(t) for t ∈ T. We recall the following formula
from Proposition II-1.1.11(i): for v ∈ Rn,

n∑
j=1

|v j| ≤
√

n

 n∑
j=1

|v j|
2


1/2

.

Now let a, b ∈ T, a < b, be such that t0 ∈ [a, b]. The following estimate will be
useful for us: for any x1, x2 ∈ Rn and t ∈ [a, b],

∥̂F(t, x1) − F̂(t, x2)∥ = ∥A(t)(x1) − A(t)(x2)∥ = ∥A(t)(x1 − x2)∥

=

 n∑
j=1

 n∑
k=1

A j
k(t)(x1,k − x2,k)


2

1/2

≤

 n∑
j=1

 n∑
k=1

|A j
k(t)(x1,k − x2,k)|


2

1/2

≤

 n∑
j=1

g(t)
n∑

k=1

|x1,k − x2,k|


2

1/2

=

g(t)2
n∑

j=1

 n∑
k=1

|x1,k − x2,k|


2

1/2

≤

g(t)2
n∑

j=1

n∑
k=1

|x1,k − x2,k|
2


1/2

≤

ng(t)2
n∑

k=1

|x1,k − x2,k|
2


1/2

=
√

ng(t)

 n∑
k=1

|x1,k − x2,k|
2


1/2

=
√

ng(t)∥x1 − x2∥.

Let us take h(t) =
√

ng(t), noting that h is locally integrable. We consider the
Banach space C0([a, b];Rn) with the norm

∥ f∥∞,h,t0 = sup
{∥∥∥∥∥ f (t)e−2

∫ t
t0

h(s) ds
∥∥∥∥∥ ∣∣∣∣∣ t ∈ [a, b]

}
.

Let us define
F+ : C0([a, b];Rn)→ C0([a, b];Rn)

by

F+(ξ)(t) = x0 +

∫ t

t0

A(s)(ξ(s)) ds.
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We now estimate, for t ∈ [a, b],

∥F+(ξ1)(t) − F+(ξ2)(t)∥ =

∥∥∥∥∥∥
∫ t

t0

A(s)(ξ1(s) − ξ2(s)) ds

∥∥∥∥∥∥
≤

∫ t

t0

∥A(s)(ξ1(s) − ξ2(s))∥ds

≤

∫ t

t0

∥ξ1(s) − ξ2(s)∥e
−2

∫ s
t0

h(τ) dτh(s)e
2
∫ s

t0
h(τ) dτ ds

≤
1
2
∥ξ1 − ξ2∥∞,h,t0

∫ t

t0

d
ds

e
2
∫ s

t0
h(τ) dτ

ds

≤
1
2
∥ξ1 − ξ2∥∞,h,t0e

2
∫ t

t0
h(s) ds

.

From this we conclude that

∥F+(ξ1) − F+(ξ2)∥∞,L ≤
1
2
∥ξ1 − ξ2∥∞,L.

Now one argues just as in the proof of Theorem 3.2.8(ii), using the Contraction Mapping
Theorem to conclude the existence of a unique solution ξ+ for F on [a, b]. Moreover,
since

ξ(t) = x0 +

∫ t

t0

A(s)(ξ(s)) ds,

we see that ξ is locally absolutely continuous and satisfies the initial conditions. ■

Next, as for scalar linear ordinary differential equations, we show that solutions
exist for all time.

5.2.2 Proposition (Global existence of solutions for systems of linear homoge-
neous ordinary differential equations) Consider the system of linear homoge-
neous ordinary differential equations F with right-hand side (5.3) and suppose that
A ∈ L1

loc(T; L(X; X)). If ξ : T′ → X is a solution for F, then there exists a solution
ξ : T→ X for which ξ|T′ = ξ.

Proof Note that in the proof of Proposition 5.2.1 we showed that solutions of the
initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x0,

exist on any interval [a, b] ⊆ T containing t0. So let t ∈ T and let [a, b] be an interval
containing both t0 and t. We then have a solution for the initial value problem that is
defined at t. Since t ∈ T is arbitrary, the result follows. ■

Now we can discuss the set of all solutions of a system of linear homogeneous
ordinary differential equation F with right-hand side

F̂ : T × X→ X
(t, x) 7→ A(t)(x).
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To this end, we denote by

Sol(F) =
{
ξ ∈ ACloc(T; X)

∣∣∣ ξ̇(t) = A(t)(ξ(t)), a.e. t ∈ T
}

the set of solutions for F. The following result is then the main structural result
about the set of solutions to a system of linear homogeneous ordinary differential
equations.

5.2.3 Theorem (Vector space structure of sets of solutions) Consider the system of
linear homogeneous ordinary differential equations F in the n-dimensional R-vector space
X with right-hand side (5.3) and suppose that A ∈ L1

loc(T; L(X; X)). Then Sol(F) is an
n-dimensional subspace of ACloc(T; X).

Proof Fix t0 ∈ T and define
σt0 : Sol(F)→ X

ξ 7→ ξ(t0).

We claim that σt0 is an isomorphism of vector spaces. First, the verification of the
linearity of σt0 follows from the equalities

(ξ1 + ξ2)(t0) = ξ1(t0) + ξ2(t0), (aξ)(t0) = a(ξ(t0)),

which themselves follow from the definition of the vector space structure in ACloc(T; X).
Next let us show that σt0 is injective by showing that ker(σt0) = {0}. Indeed, suppose
that σt0(ξ) = 0. Then, by the uniqueness assertion of Proposition 5.2.1, it follows
that ξ(t) = 0 for every t ∈ T, as desired. To show that σt0 is surjective, let x0 ∈ X.
Then, by the existence assertion of Proposition 5.2.1, there exists ξ ∈ Sol(F) such that
ξ(t0) = x0, i.e., such that σt0(ξ) = x0. ■

The following corollary, immediate from the proof of the theorem, gives an easy
check on the linear independence of subsets of Sol(F).

5.2.4 Corollary (Linear independence in Sol(F)) Consider the system of linear homoge-
neous ordinary differential equations F in the n-dimensional R-vector space X with right-
hand side (5.3) and suppose that A ∈ L1

loc(T; L(X; X)). Then a subset {ξ1, . . . , ξk} ⊆ Sol(F)
is linearly independent if and only if, for some t ∈ T, the subset {ξ1(t), . . . , ξk(t)} ⊆ X is
linearly independent.

As with scalar linear homogeneous ordinary differential equations, the theorem
allows us to give a special name to a basis for Sol(F).

5.2.5 Definition (Fundamental set of solutions) Consider the system of linear homo-
geneous ordinary differential equations F in the n-dimensional R-vector space X
with right-hand side (5.3) and suppose that A ∈ L1

loc(T; L(X; X)). A set {ξ1, . . . , ξn} of
linearly independent elements of Sol(F) is a fundamental set of solutions for F. •

5.2.1.2 The continuous-time state transition map We now present a partic-
ular way of organising a fundamental set of solutions into one object that, for all
intents and purposes, completely characterises Sol(F). This we organise as the
following theorem.
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5.2.6 Theorem (Existence of, and properties of, the continuous-time state transi-
tion map) Consider the system of linear homogeneous ordinary differential equations
F in the n-dimensional R-vector space X with right-hand side (5.3) and suppose that
A ∈ L1

loc(T; L(X; X)). Then there exists a unique map Φc
A : T × T → L(X; X) with the

following properties:
(i) for each t0 ∈ T, the function

Φc
A,t0

: T→ L(X; X)

t 7→ Φc
A(t, t0)

is locally absolutely continuous and satisfies the initial value problem

d
dt
Φc

A,t0
(t) = A(t) ◦Φc

A,t0
(t), Φc

A,t0
(t0) = idX;

(ii) the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x0,

is t 7→ Φc
A(t, t0)(x0);

(iii) det(Φc
A(t, t0)) = e

∫ t
t0

tr(A(s)) ds (the Abel–Jacobi–Liouville formula);
(iv) for t, t0, t1 ∈ T, Φc

A(t, t0) = Φc
A(t, t1) ◦Φc

A(t1, t0);
(v) for each t, t0 ∈ T, Φc

A(t, t0) is invertible and Φc
A(t, t0)−1 = Φc

A(t0, t).
Proof First of all, we define Φc

A by the condition in part (i). That is to say, we define
Φc

A by
∂Φc

A

∂t
(t, t0) = A(t) ◦Φc

A(t, t0), Φc
A(t0, t0) = idX .

Note that this is an initial value problem associated with the system of linear homoge-
neous ordinary differential equations FA in L(X; X) with right-hand side

F̂A : T × L(X; X)→ L(X; X)
Φc

A 7→ A(t) ◦Φc
A;

note the mapping Φc
A 7→ A(t) ◦ Φc

A is linear, cf. Proposition I-5.4.16. Thus, by Proposi-
tion 5.2.1, it possesses a unique solution which, by Proposition 5.2.2, exists in all of T.
This proves the existence and uniqueness and part (i).

(ii) We compute

d
dt
Φc

A(t, t0)(x0) =
∂Φc

A

∂t
(t, t0)(x0) = A(t) ◦Φc

A(t, t0)(x0)

andΦc
A(t0, t0)(x0) = x0, which shows that t 7→ Φc

A(t, t0)(x0) solves the stated initial value
problem. By uniqueness of such solutions, this part of the theorem follows.

(iii) We start with a lemma.
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1 Lemma LetT ⊆ R be an interval and let A : T→ L(Rn;Rn) be a locally absolutely continuous
map. For j,k ∈ {1, . . . ,n}, let Cjk(t) be the (j,k)th cofactor of A(t), i.e., (−1)j+k times the
determinant of the (n− 1)× (n− 1) matrix formed by deleting the jth row and kth column from
A(t). Then

d(det A)
dt

(t) =
n∑

j,k=1

Cjk(t)Ȧj
k(t)

for almost every t ∈ T.

Proof The row/column expansion rule for determinants gives

det A(t) =
n∑

k=1

A j
k(t)C jk(t)

for any j ∈ {1, . . . ,n}. Using the Chain Rule,

d(det A)
dt

(t) =
n∑

j,k=1

∂(det A)

∂A j
k

Ȧ j
k(t) =

n∑
j,k=1

C jk(t)Ȧ j
k(t),

because C jk does not depend on the ( j, k)th component of A. ▼

We choose a basis {e1, . . . , en} for X and denote by A(t) the matrix representative
of A(t) and by Φc

A(t, t0) the matrix representative of Φc
A(t, t0). (That we can reduce to

X = Rn is justified by Exercises 5.2.1 and 5.2.2.) For j, k ∈ {1, . . . ,n}, denote by C jk(t, t0)
the ( j, k)th cofactor of Φc

A(t, t0), i.e., (−1) j+k times the determinant of the matrix Φc
A(t, t0)

with the jth row and kth column removed. Also let C(t, t0) be the matrix formed from
these cofactors. Denote by Φ jk(t, t0) the ( j, k)th component of Φc

A. Using the lemma,

d
dt

detΦc
A(t, t0) =

n∑
j,k=1

C jk(t, t0)
d
dt
Φ jk(t, t0)

= tr
(
C(t, t0)T d

dt
Φc

A(t, t0)
)

= tr(Φc
A(t, t0)C(t, t0)TA(t)),

using part (i), the definition of trace and transpose, and the easily verified fact that
tr(AB) = tr(BA) for n × n matrices A and B. Now we note that

Φc
AC(t, t0)T = detΦc

AIn

using Cramer’s Rule for matrix inversion. Thus we arrive at

d
dt

detΦc
A(t, t0) = detΦc

A(t, t0)A(t).

This equation is a first-order scalar linear homogeneous ordinary differential equation,
and we have seen how to solve these in Example 4.2.5. Applying the computations
there to the present equation, and using the fact that detΦc

A(t, t0) = det In = 1, we get
this part of the theorem.
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(iv) We compute

d
dt

(Φc
A(t, t1) ◦Φc

A(t1, t0)) = A(t) ◦Φc
A(t, t0) ◦Φc

A(t1, t0)

and
Φc

A(t1, t1) ◦Φc
A(t1, t0) = Φc

A(t1, t0).

We also have
d
dt
Φc

A(t, t0) = A(t) ◦Φc
A(t, t0).

That is to say, both t 7→ Φc
A(t, t0) and t 7→ Φc

A(t, t1) ◦Φc
A(t1, t0) satisfy the initial problem

d
dt
Φ(t) = A(t) ◦Φ(t), Φ(t1) = Φc

A(t1, t0).

By uniqueness of solutions for systems of linear homogeneous ordinary differential
equations, we conclude that Φc

A(t, t0) = Φc
A(t, t1) ◦Φc

A(t1, t0), as desired.
(v) The invertibility of Φc

A(t, t0) follows from part (iii). The specific formula for the
inverse follows from the formula

idX = Φ
c
A(t0, t0) = Φc

A(t0, t) ◦Φc
A(t, t0),

which itself follows from part (iv). ■

Let us formally name the mapping Φc
A defined in the theorem.

5.2.7 Definition (Continuous-time state transition map) Consider the system of lin-
ear homogeneous ordinary differential equations F in the n-dimensional R-vector
space X with right-hand side (5.3) and suppose that A ∈ L1

loc(T; L(X; X)). The map
Φc

A : T × T → L(X; X) from Theorem 5.2.6 is the continuous-time state transition
map. •

One imagines that it is possible to compute the continuous-time state transition
map if one is given a fundamental set of solutions. The following procedure gives
an explicit means of doing this.

5.2.8 Procedure (Determining the continuous-time state transition map from a fun-
damental set of solutions) Given a system of linear homogeneous ordinary dif-
ferential equations F in the n-dimensional R-vector space X with right-hand side
equation

F̂(t, x) = A(t)(x),

with A ∈ L1
loc(T; L(X; X)), and given a fundamental set of solutions {ξ1, . . . , ξn}, do

the following.
1. Choose a basis {e1, . . . , en}.
2. Let ξ j : T→ Rn be the components of ξ j, j ∈ {1, . . . ,n}, i.e.,

ξ j(t) = ξ1, j(t)e1 + · · · + ξ j,n(t)en.

If X = Rn, one can just take the components of ξ j, j ∈ {1, . . . ,n}, in the standard
basis, as usual.
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3. Assemble the matrix function Ξ : T→ L(Rn;Rn) by making the components of
ξ1(t), . . . , ξ j(t) the columns of Ξ(t):

Ξ(t) =


ξ1,1(t) ξ2,1(t) · · · ξn,1(t)
ξ1,2(t) ξ2,2(t) · · · ξn,2(t)
...

...
. . .

...
ξ1,n(t) ξ2,n(t) · · · ξn,n(t)

 .
(Be sure you understand that ξ j,k(t) is the kth component of ξ j(t).) We call the
matrix-valued function Ξ : T→ L(Rn;Rn) a fundamental matrix for F.

4. DefineΦ(t, t0) = Ξ(t)Ξ(t0)−1.
5. ThenΦ(t, t0) is the matrix representative of Φc

A(t, t0) in the basis {e1, . . . , en}. •

Let us verify that the preceding procedure does indeed yield the continuous-
time state transition map.

5.2.9 Proposition (Determining the continuous-time state transition map from a
fundamental set of solutions) Consider the system of linear homogeneous ordinary
differential equations F in the n-dimensional R-vector space X with right-hand side (5.3)
and suppose that A ∈ L1

loc(T; L(X; X)). Then Procedure 5.2.8 will produce the continuous-
time state transition map.

Proof By choosing a basis {e1, . . . , en} as in Procedure 5.2.8, we can assume that X = Rn.
(This is legitimate by virtue of Exercises 5.2.1 and 5.2.2.) Let us denote by A(t) the
matrix representative of A(t). DefiningΦ(t, t0) as in the given procedure, we have

∂Φ
∂t

(t, t0) = Ξ̇(t)Ξ(t0)−1.

Noting that each of ξ j, j ∈ {1, . . . ,n}, is a solution for F, we have

ξ̇ j,k(t) =
n∑

l=1

Ak
l (t)ξ j,l(t), j ∈ {1, . . . ,n}, t ∈ T.

Therefore, in matrix notation,[
ξ̇1(t) · · · ξ̇(t)

]
= A(t)

[
ξ1(t) · · · ξ(t)

]
=⇒ Ξ̇(t) = A(t)Ξ(t), t ∈ T.

Therefore,
∂Φ
∂t

(t, t0) = A(t)Ξ(t)Ξ(t0)−1 = A(t)Φ(t, t0).

Moreover, Φ(t0, t0) = In. Thus t 7→ Φ(t, t0) satisfies the matrix representative of the
initial value problem satisfied by t 7→ Φc

A(t, t0), i.e.,Φ(t, t0) is the matrix representative
of Φc

A(t, t0). ■

In general, it cannot be expected to find the continuous-time state transition map
for a system of linear homogeneous ordinary differential equations. However, to
illustrate Procedure 5.2.8, let us give a “cooked” example.
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5.2.10 Example (Computing the continuous-time state transition map) We take the
system of linear homogeneous ordinary differential equations F in R2 with right-
hand side

F̂ : (0,∞) ×R2
→ R2

(t, (x1, x2)) 7→
(1

t
x1 − x2,

1
t2 x1 +

2
t

x2

)
.

Solutions t 7→ (x1(t), x2(t)) satisfy[
ẋ1(t)
ẋ2(t)

]
=

[
1
t −1
1
t2

2
t

]
︸   ︷︷   ︸

A(t)

[
x1(t)
x2(t)

]
.

A direct verification shows that the functions ξ1, ξ2 : (0,∞)→ R2 defined by

ξ1 = (t2,−t), ξ2(t) = (−t2 ln(t), t + t ln(t))

are solutions of F. To verify that these are linearly independent we compute

det
[

t2
−t2 ln(t)

−t t + t ln(t)

]
= t3.

As this determinant is nowhere zero, we conclude the desired linear independence.
Now we determine the continuous-time state transition map in this case. In the

notation of Procedure 5.2.8, we have

Ξ(t) =
[

t2
−t2 ln(t)

−t t + t ln(t)

]
,

and then a tedious computation gives

Φc
A(t, t0) = Ξ(t)Ξ(t0)−1 =

−
t2(ln(t/t0)−1)

t2
0

−
t2 ln(t/t0)

t0
t ln(t/t0)

t2
0

t(ln(t/t0)+1)
t0

 . •

5.2.1.3 The Peano–Baker series In this section we will provide a series rep-
resentation for the continuous-time state transition map for a system of linear
ordinary differential equations. This is presented for two reasons: (1) as an illus-
tration of series methods in ordinary differential equations, as these arise in many
important contexts; (2) as an illustration, in an elementary setting, of iterative pro-
cedure used in the proof of Theorem 3.2.8. It is by no means being suggested that
the series representation we give for the continuous-time state transition map is
useful for computation.
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We let T ⊆ R be an interval and let A ∈ L1
loc(T; L(X; X)). By its definition, the

continuous-time state transition map (t, t0) 7→ Φc
A(t, t0) is determined from the initial

value problem
d
dt
Φ(t) = A(t) ◦Φ(t), Φ(t0) = idX .

Let us fix t, t0 ∈ T and take t > t0, for concreteness. By the Fundamental Theorem
of Calculus (in the form of Theorem III-2.9.33), this is equivalent to

Φ(t) = idX +

∫ t

t0

A(τ) ◦Φ(s) ds. (5.4)

Let us informally iterate to find a solution. We define Φ0 : [t0, t] → L(X; X) by
Φ0(τ) = idX. This will, generally, not satisfy the integral equation (5.4). So, let us
substitute this zeroth-order approximation into the same integral equation to get
(hopefully) a better approximation Φ1 : [t0, t]→ L(X; X):

Φ1(τ) = Φ0(τ) +
∫ t

t0

A(τ) ◦Φ0(τ) dτ = idX +

∫ t

t0

A(τ) dτ.

We now continue this process iteratively, assuming that, if we have defined
Φk : [t0, t]→ L(X; X), we define Φk+1 : [t0, t]→ L(X; X) by

Φk+1(τ) = Φk(τ) +
∫ t

t0

A(τ) ◦Φk(τ) dτ.

It is pretty clear that

Φk(t) −Φk−1(t) =
∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

A(t1) ◦ A(t2) ◦ · · · ◦ A(tk) dtk · · ·dt2dt1︸                                                               ︷︷                                                               ︸
Ik(t,t0)

.

Thus we can make the following definition.

5.2.11 Definition (Peano–Baker series) For an interval T ⊆ R, for t0 ∈ T, and for
A ∈ L∞loc(T; L(X; X)), the series

I∞(t, t0) = idX +

∞∑
k=1

Ik(t, t0)

is the t0-Peano–Baker series for A. •

Of course, the definition is quite meaningless without addressing whether the
series converges. The main result of this section is now the following.
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5.2.12 Theorem (Convergence of the Peano–Baker series) Let X be a finite-dimensional
R-vector space. For an interval T ⊆ R, for t0 ∈ T, and for A ∈ L1

loc(T; L(X; X)), the t0-
Peano–Baker series converges uniformly on every compact subinterval of T, and, moreover,
I∞(t, t0) = Φc

A(t, t0).
Proof Let T+ > t0. We will show that the t0-Peano–Baker series converges uniformly
to t 7→ Φc

A(t, t0) on [t0,T+]. A similar proof can be concocted for T− < t0. Then, given
a compact subinterval T′ ⊆ T. the theorem follows by taking T− and T+ such that
T′ ⊆ [T−,T+].

We let {e1, . . . , en} be a basis for X. We let A(t) be the matrix representative of
A(t) and let Ik(t, t0) be the matrix representative for Ik(t, t0). Note that, because the
matrix representation for a composition of linear maps is the product of the matrix
representations (Theorem I-5.4.22), we have∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

A(t1)A(t2) · · ·A(tk) dtk · · ·dt2dt1.

For B ∈ L(Rn;Rn) denote by ∥B∥Fr the Frobenius norm of B. Recall from
Proposition II-1.1.16(vi) that

∥BC∥ ≤ ∥B∥∥C∥. (5.5)

We also use the following lemma.

1 Lemma If T ⊆ R is an interval and if f ∈ L1
loc(T;R), then∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

f(t1)f(t2) · · · f(tk) dtk · · ·dt2dt1 =
1
k!

(∫ t

t0

f(τ) dτ
)k

.

Proof For k = 1 the claim is a tautology. So suppose the claim true for k = m and
compute ∫ t

t0

∫ t1

t0

· · ·

∫ tm

t0

f (t1) f (t2) · · · f (tm+1) dtm+1 · · ·dt2dt1

=

∫ t

t0

1
k!

(∫ t1

t0

f (τ) dτ
)m

dt1

=

∫ t

t0

1
(m + 1)!

d
dt1

(∫ t1

t0

f (τ) dτ
)m+1

dt1

=
1

(m + 1)!

(∫ t

t0

f (τ) dτ
)m+1

,

as claimed. ▼

Let ϵ ∈ R>0. Since the series

∞∑
k=0

1
k!

(∫ t

t0

∥A(τ)∥Fr dτ
)k
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converges uniformly on [t0,T+] (converging to e
∫ t

t0
∥A(τ)∥Fr dτ

), there exists N ∈ Z>0 such
that, if r, s ≥ N with r > s, then

r∑
k=s+1

1
k!

(∫ t

t0

∥A(τ)∥Fr dτ
)k

< ϵ, t ∈ [t0,T+].

Therefore, for r, s ≥ N with r > s, we have∥∥∥∥∥∥∥
r∑

k=1

Ik(t, t0) −
s∑

k=1

Ik(t, t0)

∥∥∥∥∥∥∥
Fr

≤

r∑
k=s+1

∥Ik(t, t0)∥Fr

≤

r∑
k=s+1

∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

∥A(t1)A(t2) · · ·A(tk)∥Fr dtk · · ·dt2dt1

≤

r∑
k=s+1

∫ t

t0

∫ t1

t0

· · ·

∫ tk−1

t0

∥A(t1)∥Fr ∥A(t2)∥Fr · · · ∥A(tk)∥Fr dtk · · ·dt2dt1

≤

r∑
k=s+1

∫ t

t0

∫ t

t0

· · ·

∫ t

t0

∥A(t1)∥Fr ∥A(t2)∥Fr · · · ∥A(tk)∥Fr dtk · · ·dt2dt1

≤

r∑
k=s+1

1
k!

(∫ t

t0

∥A(τ)∥Fr dτ
)k

< ϵ

using (5.5) and Lemma 1. This shows that the sequence of functions

t 7→ idX +

m∑
k=1

Ik(t, t0), m ∈ Z>0,

is uniformly Cauchy, and so uniformly convergent, cf. Theorem I-3.6.5.
Finally, we show that I∞(t, t0) = Φc

A(t, t0). By the Fundamental Theorem of Calculus
(in the form of Theorem III-2.9.33) the function

t 7→ Ik(t, t0)

is locally absolutely continuous. Moreover, a direct calculation using the definitions
gives

İk+1(t, t0) = A(t)Ik(t, t0), k ∈ Z>0.

Therefore, the series
∞∑

k=1

İk(t, t0) = A(t)
∞∑

k=1

Ik−1(t, t0),

with the convention that I0(t, t0) = In, converges uniformly. Thus the series of term-by-
term derivatives converges uniformly, and so term-by-term differentiation of I∞(t, t0)
is permissible. Moreover,

İ∞(t, t0) = A(t)I∞(t, t0)

and I∞(t0, t0) = In. Thus the matrix representative of t 7→ I∞(t, t0) satisfies the same
initial value problem as t 7→ Φc

A(t, t0), and the uniqueness assertion of Proposition 5.2.1
gives the result, at least for matrix representatives. That the conclusion also holds in X
is a consequence of Exercise 5.2.2. ■
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5.2.1.4 The adjoint equation In this section we consider a differential equation
“dual” to a system of linear homogeneous ordinary differential equations. To do
this, we ask the reader to recall from Definition I-5.7.1 the notion of the dual to
a vector space and from Definition I-5.7.19 the notion of the dual of a linear map
between vector spaces. With these notions as backdrop, we can now define the
adjoint equation.

5.2.13 Definition (Adjoint of a system of linear homogeneous ordinary differential
equations) Consider the system of linear homogeneous ordinary differential equa-
tions F in the n-dimensional R-vector space X with right-hand side (5.3). The ad-
joint equation for F is the system F∗ of linear homogeneous ordinary differential
equations in X∗ with right-hand side

F̂∗ : T × X∗ → X∗

(t, p) 7→ −A∗(t)(p).
•

Thus solutions t 7→ p(t) for the adjoint equation satisfy

ṗ(t) = −A∗(t)(p(t)).

Let us give the continuous-time state transition map for the adjoint equation.

5.2.14 Proposition (Continuous-time state transition map for the adjoint equation)
Consider the system of linear homogeneous ordinary differential equations F in the

n-dimensional R-vector space X with right-hand side (5.3) and suppose that A ∈

L1
loc(T; L(X; X)). Then A∗ ∈ L1

loc(T; L(X∗; X∗)) and the continuous-time state transition
map for the adjoint equation is defined by Φc

−A∗(t, t0) = Φc
A(t0, t)∗ for t, t0 ∈ T.

Proof The local integrability of A∗ follows from choosing a basis for X so that A be-
comes the matrix-valued function A : T→ L(Rn;Rn). In this case, A∗(t) has the matrix
representative A(t)T (Theorem I-5.7.22(iii)), which shows that the matrix representa-
tive of A is locally integrable if and only if the matrix representative of A∗ is locally
integrable.

By Theorem 5.2.6(v) we have

Φc
A(t, t0) ◦Φc

A(t0, t) = idX .

Differentiating this with respect to time we get

0 =
d
dt
Φc

A(t, t0) ◦Φc
A(t0, t) =

( d
dt
Φc

A(t, t0)
)
◦Φc

A(t0, t) + Φc
A(t, t0) ◦

( d
dt
Φc

A(t0, t)
)
,

from which we derive

d
dt
Φc

A(t0, t) = −Φc
A(t0, t) ◦

( d
dt
Φc

A(t, t0)
)
◦Φc

A(t0, t)

= −Φc
A(t0, t) ◦ A(t) ◦Φc

A(t, t0) ◦Φc
A(t0, t)

= −Φc
A(t0, t) ◦ A(t). (5.6)
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Taking the dual of this equation, and using Proposition I-5.7.20(ii), we have

d
dt
Φc

A(t0, t)∗ = −A∗(t) ◦Φc
A(t0, t)∗.

Since (Φc
A)∗(t0, t0) = idX∗ , we thus see that t 7→ (Φc

A)∗(t, t0) satisfies the initial value
problem that defines the continuous-time state transition map for the adjoint equation,
and so the uniqueness assertion of Proposition 5.2.1 gives the result. ■

We have not yet addressed the important question, “Why should one care
about the adjoint equation?” We convert this question into another question with
the following result.

5.2.15 Proposition (A property of the adjoint equation) Consider the system of linear
homogeneous ordinary differential equations F in the n-dimensionalR-vector space X with
right-hand side (5.3) and suppose that A ∈ L1

loc(T; L(X; X)). Let t0 ∈ T, x0 ∈ X, and
p0 ∈ X∗, and denote x(t) = Φc

A(t, t0)(x0) and p(t) = (Φc
A)∗(t0, t)(p0). Then

⟨p(t); x(t)⟩ = ⟨p0; x0⟩.

Proof We compute

d
dt
⟨p(t); x(t)⟩ = ⟨ṗ(t); x(t)⟩ + ⟨p(t); ẋ(t)⟩

= − ⟨A∗(t)(p(t));Φc
A(t, t0)(x0)⟩ + ⟨(Φc

A)∗(t0, t)(p0); A(t)(x(t))⟩
= − ⟨A∗(t) ◦ (Φc

A)∗(t0, t)(p0);Φc
A(t, t0)(x0)⟩ + ⟨(Φc

A)∗(t0, t)(p0); A(t) ◦Φc
A(t, t0)(x0)⟩

= 0.

Since the function t 7→ ⟨p(t); x(t)⟩ is locally absolutely continuous, it follows that this
function is constant by Lemma III-2.9.32. ■

When α ∈ X∗ and v ∈ X satisfy α(v) = 0, we say that α annihilates v. This
is a sort of “orthogonality condition,” although it most definitely is not an actual
orthogonality condition, there being no inner product in sight. One of the upshots
of the preceding result is the following corollary, saying that the adjoint equation
preserves the annihilation condition.

5.2.16 Corollary (The geometric meaning of the adjoint equation) Consider the system
of linear homogeneous ordinary differential equations F in the n-dimensionalR-vector space
X with right-hand side (5.3) and suppose that A ∈ L1

loc(T; L(X; X)). Let t0 ∈ T, x0 ∈ X,
and p0 ∈ X∗, and denote x(t) = Φc

A(t, t0)(x0) and p(t) = (Φc
A)∗(t0, t)(p0). If ⟨p0; x0⟩ = 0,

then ⟨p(t); x(t)⟩ = 0 for all t ∈ T.

It is this property of the adjoint equation that makes it an important tool in
optimal control theory, but this is not a subject into which we shall dwell deeply
here.
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5.2.2 Equations with constant coefficients

We now consider the special case of systems of linear homogeneous equations
with constant coefficients, i.e., those systems of linear ordinary differential equa-
tions F in a vector space X with right-hand sides

F̂(t, x) = A(x), (5.7)

for A ∈ L(X; X). As with the scalar version of such equations that we studied in
Section 4.2.2, there is a great deal more that we can say about such equations,
beyond the general assertions in the preceding section. Indeed, one can say that,
in principle, one can “solve” such equations, and we shall present a procedure for
doing so.

Before we do so, however, we reiterate that the ordinary differential equations
we are considering in this section are special cases of the time-varying equations
of the preceding section, so all of the general statements made there apply here
as well. In particular, Propositions 5.2.1 and 5.2.2, and Theorem 5.2.3 hold for
equations of the form (5.7).

We have already seen in Theorem 5.2.3 that linear algebra plays a rôle in
the theory of systems of linear homogeneous ordinary differential equations. We
shall see in this section that this rôle is amplified for equations with constant
coefficients. The material required for this was developed comprehensively in
Sections I-5.4.9, I-5.4.10, and I-5.8.10, among other places. Let us summarise the
essential points of this development as we shall need them. We let X be a finite-
dimensionalR-vector space and let L ∈ L(X; X). As in Definition I-4.5.60, we let XC
be the complexification of X and, as in Definition I-5.4.62, we let LC ∈ L(XC; XC) be
the complexification of L. We suppose we have distinct real eigenvalues

ℓ1, . . . , ℓr

for L and distinct complex eigenvalues

λ1 = σ1 + iω1, . . . , λs = σs + iωs,

along with their complex conjugates. We let ma(ℓ j,L), j ∈ {1, . . . , r}, and ma(λ j,L),
j ∈ {1, . . . , s}, be the algebraic multiplicities (see Definition I-5.4.57).
1. For each j ∈ {1, . . . , r}, there is a generalised eigenspace

W(ℓ j,L) = ker((ℓ j idX −L)ma(ℓ j,L))

of X of R-dimension ma(ℓ j,L) that is L-invariant (Proposition I-5.8.31).
2. For each j ∈ {1, . . . , s}, there is a generalised eigenspace

W(λ j,LC) = ker((λ j idXC −LC)ma(λ j,L))

of XC of C-dimension ma(λ j,L) that is LC-invariant (Proposition I-5.8.31).
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3. For each j ∈ {1, . . . , s}, there is a subspace W(λ j,L) of X ofR-dimension 2ma(λ j,L)
that is L-invariant (part (I-vi) of Theorem I-5.4.67).

4. We have

X =W(ℓ1,L) ⊕ · · · ⊕W(ℓr,L) ⊕W(λ1,L) ⊕ · · · ⊕W(λs,L) (5.8)

(Corollary I-5.8.32). In particular,

r∑
j=1

ma(ℓ j,L) + 2
s∑

j=1

ma(λ j,L) = dimR(X)

This decomposition of X into L-invariant subspaces will form the basis for Pro-
cedure 5.2.23 where we determine the continuous-time state transition map for
a system of linear homogeneous ordinary differential equations with constant
coefficients.

5. There exists

(a) p j ∈ Z>0, j ∈ {1, . . . , r},

(b) k j ∈ Z
p j

>0, j ∈ {1, . . . , r},
(c) q j ∈ Z>0, j ∈ {1, . . . , s},

(d) l j ∈ Z
q j

>0, j ∈ {1, . . . , s}, and
(e) a basisB for X

such that

[L]BB =



J(ℓ1,k1) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · J(ℓr,kr) 0 · · · 0
0 · · · 0 J(σ1, ω1, l1) · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · J(σs, ωs, ls)


,

where the top r diagonal blocks are Jordan arrangements for the real eigenvalues
(Definition I-5.8.43) and the lower s diagonal blocks areR-Jordan arrangements
for the complex eigenvalues (Definition I-5.8.73). Moreover, this form of the
matrix representative is unique up to reordering of the diagonal blocks. This is
all proved in Theorem I-5.8.74.

5.2.2.1 Complexification of systems of linear ordinary differential equations
In Section 4.2.2.1 we complexified a scalar linear homogeneous ordinary differen-
tial equation with constant coefficients. The reason we had to do so was that the
characteristic polynomial for such an equation will generally have complex roots,
and these complex roots lead naturally to complex solutions of the differential
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equation. It is only after taking real and imaginary parts of a complex solution
that we recover the real solutions. The same sort of thing happens with systems of
linear homogeneous ordinary differential equations with constant coefficients. In
this case, the issue that arises is that one will generally have complex eigenvalues.

The process of complexification is an easy one, and requires no words like
“everything we have done in the real case also works in the complex case,” since we
are working with systems defined on abstract R-vector spaces, and XC is certainly
a R-vector space.

5.2.17 Definition (Complexification of a system of linear ordinary differential equa-
tions) Consider the system of linear homogeneous ordinary differential equations
F with constant coefficients and with right-hand side (5.7). The complexification
of F is the system of linear homogeneous ordinary differential equations FC with
constant coefficients given by

FC : T × XC × XC → XC
(t, z,w) 7→ w − AC(z).

•

A solution for FC is a locally absolutely continuous map ζ : T→ XC that satisfies

ζ̇(t) = AC(ζ(t)).

Note that, as XC = X × X, we can write ζ(t) = (ξ(t), η(y)) for locally absolutely
continuous maps ξ, η : T → X that are the real part and imaginary part of ζ,
respectively.

As in the scalar case, the real and imaginary parts of a solution separately satisfy
the uncomplexified differential equation.

5.2.18 Lemma (Real and imaginary parts of complex solutions are solutions) Con-
sider the system of linear homogeneous ordinary differential equations F with constant
coefficients, with right-hand side (5.7) and with complexification FC. If ζ : T → XC is a
solution for FC, then Re(ζ) and Im(ζ) are solutions for F.

Proof Given ζ : T → XC we write ζ(t) = (ξ(t), η(t)) so that ξ = Re(ζ) and η = Im(ζ).
Since ζ is a solution for FC, we have

ζ̇(t) = (ξ̇(t), η̇(t)) = AC(ζ(t)) = (A(ξ(t)),A(η(t))

by definition of AC. Equating the second and fourth terms in this string of equalities
gives the lemma. ■

5.2.2.2 The operator exponential In this section we consider the constant co-
efficient version of the continuous-time state transition map.
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5.2.19 Definition (Operator exponential) Let F ∈ {R,C}, X be a finite-dimensional F-
vector space, and let L ∈ L(X; X). The operator exponential of L is the linear map
eL
∈ L(X; X) defined by eL = Φc

A(1, 0), where A : [0, 1] → L(X; X) is defined by
A(t) = L for all t ∈ [0, 1]. •

What we call the “operator exponential” will almost universally be called the
“matrix exponential” because it is defined as we have defined it, but in the case
where X = Rn and so L is an n × n matrix. Since we work with abstract vector
spaces, our terminology in perhaps better suited to our setting.

Let us give some alternative characterisations and properties of the operator
exponential.

5.2.20 Theorem (Properties of the operator exponential) Let F ∈ {R,C}, let X be a
finite-dimensional F-vector space, and let L,M ∈ L(X; X). Then the following statements
hold:

(i) eL = idX +

∞∑
k=1

Lk

k!
;

(ii) if F = C, then eL is a C-linear map;
(iii) d

dte
Lt = L ◦ eLt = eLt

◦ L;
(iv) e0 = idX;
(v) for α ∈ F, eα idX = eα idX ;
(vi) eLt

◦ eMs = eLt+sM for all s, t ∈ R if and only if L ◦M = M ◦ L;
(vii) eL is invertible and (eL)−1 = e−L;
(viii) if U ⊆ X is L-invariant, then it is also eL-invariant;
(ix) the solution to the initial value problem

ξ̇(t) = L(ξ(t)), ξ(t0) = x0,

is ξ(t) = eL(t−t0)(x0).
Proof (i) Let A : [0, 1] → L(X; X) be defined by A(t) = L for t ∈ [0, 1]. Adapting the
notation of Section 5.2.1.3, if we define

Ik =

∫ 1

0

∫ t1

0
· · ·

∫ tk−1

0
A(t1) ◦ A(t2) ◦ · · · ◦ A(tk) dtk · · ·dt2dt1,

then

eA = idX +

∞∑
k=1

Ik,

and we know the series converges by virtue of Theorem 5.2.12. Note that

Ik = Lk
∫ 1

0

∫ t1

0
· · ·

∫ tk−1

0
dtk · · ·dt2dt1 =

Lk

k!
,
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which can be proved by an application of Lemma 1 from the proof of Theorem 5.2.12.
This part of the result then follows.

(ii) Since eL is R-linear, we have

eL(v1 + v2) = eL(v1) + eL(v2).

Now let v ∈ X and a ∈ C. We have

eL(av) = av +
∞∑

k=1

Lk

k!
(av) = a

v +
∞∑

k=1

Lk

k!
(v)

 = a expL(v),

using part (i) and C-linearity of L, and hence also of Lk for every k ∈ Z>0.
(iii) As we say in the proof of Theorem 5.2.12, both series

∞∑
k=0

Lktk

k!
,

and the series
∞∑

k=1

Lktk−1

(k − 1)!
= L ◦

 ∞∑
k=0

Lktk

k!

 =
 ∞∑

k=0

Lktk

k!

 ◦ L.

of term-by-term derivatives with respect to t, converge uniformly on any bounded
time-domain. Therefore,

d
dt

eLt = L ◦ eLt = eLt
◦ L.

(iv) This follows from part (i).
(v) By part (i) we have

eα idX = idX +

∞∑
k=1

idk
X α

k

k!
=

1 +
∞∑

k=1

αk

k!

 idX = eα idX,

as desired.
(vi) Suppose that L ◦M = M ◦ L. This gives

(L +M)k =

k∑
j=0

(
k
j

)
L jMk− j,

using the Binomial Formula. (Note that this does require that L ◦M = M ◦ L.) Then

eLt+Ms = idX +
∑
k=1

(Lt +Ms)k

k!

= idX +

∞∑
k=1

k∑
j=0

L jt jMk− jsk− j

j!(k − j)!

=

idX +

∞∑
j=1

L jt j

j!


idX +

∞∑
k=1

Mksk

k!
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for all t ∈ R.
Now suppose that eLt+Ms = eLt ◦ eMs for all s, t ∈ R. We then compute, taking s = t,

d
dt

e(L+M)t = (L +M) ◦ e(L+M)t

and
d
dt

eLt
◦ eMt = L ◦ eLt

◦ eMt + eLt
◦M ◦ eMt.

Next
d2

dt2 e(L+M)t = (L +M)2e(L+M)t

and

d2

dt2 eLt
◦ eMt = L2

◦ eLt
◦ eMt + L ◦ eLt

◦M ◦ eMt + L ◦ eLt
◦M ◦ eMt + eLt

◦M2
◦ eMt.

Evaluating the two second-derivatives at t = 0 and equating them gives

(L +M)2 = L2 + 2L ◦M +M2

=⇒ L2 + L ◦M +M ◦ L +M2 = L2 + 2L ◦M +M2

=⇒ M ◦ L = L ◦M,

as desired.
(vii) That eL is invertible is a consequence of its definition and Theorem 5.2.6(v).

By parts (iv) and (vi), we have

idX = eL−L = eLe−L,

from which we conclude that (eL)−1 = e−L.
(viii) Let U be an L-invariant subspace of X and let u ∈ U. We claim that U is also

Lk-invariant for every k ∈ Z>0. This we prove by induction, it obviously being true
when k = 1. Suppose it true for k = m and let u ∈ U. Then Lm+1(u) = L ◦ Lm(u). Since
Lm(u) ∈ U and since U is L-invariant, we immediately have Lm+1(u) ∈ U, showing that,
indeed, U is Lk-invariant for every k ∈ Z>0. Using part (i) we then haveidX +

m∑
k=1

Lk

k!

 (u) = u +
m∑

k=1

Lk(u)
k!
∈ U.

Thus we have the sequence (um)m∈Z>0 in X given by

um = u +
m∑

k=1

Lk(u)
k!

.

Since U is closed by Corollary III-3.6.19, we have

eL(u) = u +
∞∑

k=1

Lk(u)
k!
= lim

m→∞
um ∈ U,
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as desired.
(ix) Using (iii) we compute

d
dt

eL(t−t0)(x0) = L ◦ eL(t−t0)(x0).

We also have eL(t−t0)(x0), when evaluated at t = t0, is x0 by part (iv). Thus t 7→ eL(t−t0)(x0)
does indeed satisfy the stated initial value problem. ■

5.2.21 Remark (eL
◦ eM = eL+M does not imply L ◦ M = M ◦ L) Let X = R3 and define

L,M ∈ L(R3;R3) by the matrices 0 6π 0
−6π 0 0

0 0 0

 ,
0 0 0
0 0 8π
0 −8π 0

 ,
respectively. Using Procedure 5.2.26 below, we can compute eL = eM = eL+M = idR3 ,
and so eLeM = eL+M. However, we do not have L ◦M = M ◦ L, as may be verified by
a direct computation. •

Let us consider the representation of the operator exponential in a basis.

5.2.22 Proposition (The matrix representation of the operator exponential is the op-
erator exponential of the matrix representation) Let F ∈ {R,C}, let X be an
n-dimensional F-vector space, let L ∈ L(X; X), and let B = {e1, . . . , en} be a basis for X.
Then

[eL]BB = e[L]B
B .

Proof This follows from the definition of the operator exponential and Exercise 5.2.2.
■

5.2.2.3 Bases of solutions Now, for equations with constant coefficients, we
construct “explicitly” a basis for Sol(F).

5.2.23 Procedure (Basis of solutions for a system of linear homogeneous ordinary
differential equations with constant coefficients) Given a system of linear ho-
mogeneous ordinary differential equations

F : T × X ⊕ X→ X

in an n-dimensional R-vector space X and with right-hand side

F̂(t, x) = A(x),

do the following.
1. Choose a basis {e1, . . . , en} for X. Let A be the matrix representative of A with

respect to this basis. If X = Rn, one can just take A to be the usual matrix
associated with A ∈ L(Rn;Rn).
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2. Compute the characteristic polynomial PA = det(XIn − A).
3. Compute the roots of PA, i.e., the eigenvalues of AC, and organise them as

follows. We have distinct real eigenvalues

ℓ1, . . . , ℓr

and distinct complex eigenvalues

λ1 = σ1 + iω1, . . . , λs = σ2 + iωs,

ω1, . . . , ωs ∈ R>0, along with their complex conjugates.
4. Let m j = ma(ℓ j,A), j ∈ {1, . . . , r}, and µ j = ma(λ j,A), j ∈ {1, . . . , s}, be the algebraic

multiplicities.
5. For j ∈ {1, . . . , r}, let {x j,1, . . . , x j,m j} be a basis for

W(ℓ j,A) = ker((ℓ jIn − A)m j).

6. For j ∈ {1, . . . , s}, let {z j,1, . . . , z j,µ j} be a basis for

W(λ j,AC) = ker((λ jIn − AC)µ j).

Write z j,k = a j,k + ib j,k for each k ∈ {1, . . . , µ j}. Then

{a j,1, b j,1, . . . ,a j,µ j , b j,µ j}

is a basis for W(λ j,A).
7. For j ∈ {1, . . . , r} and k ∈ {1, . . . ,m j}, define

ξ j,k(t) = eℓ jt

(
In +

(A − ℓ jIn)t
1!

+ · · · +
(A − ℓ jIn)m j−1tm j−1

(m j − 1)!

)
x j,k.

8. For j ∈ {1, . . . , s} and k ∈ {1, . . . , µ j}, define

α j,k(t) = eσ jt



µ j−1∑
m=0

⌈
m−1

2 ⌉∑
l=0

(−1)lω2l
j tm

(2l)!(m − 2l)!
(A − σ jIn)m−2l

 (cos(ω jt)a j,k − sin(ω jt)b j,k)

−


µ j−1∑
m=0

⌊
m−1

2 ⌋∑
l=0

(−1)l+1ω2l+1
j tm

(2l + 1)!(m − 2l − 1)!
(A − σ jIn)m−2l−1

 (cos(ω jt)b j,k + sin(ω jt)a j,k)


(5.9)
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and

β j,k(t) = eσ jt



µ j−1∑
m=0

⌈
m−1

2 ⌉∑
l=0

(−1)lω2l
j tm

(2l)!(m − 2l)!
(A − σ jIn)m−2l

 (cos(ω jt)b j,k + sin(ω jt)a j,k)

+


µ j−1∑
m=0

⌊
m−1

2 ⌋∑
l=0

(−1)l+1ω2l+1
j tm

(2l + 1)!(m − 2l − 1)!
(A − σ jIn)m−2l−1

 (cos(ω jt)a j,k − sin(ω jt)b j,k)

 ,
(5.10)

where, for x ∈ R, ⌊x⌋ is greatest integer less than or equal to x and ⌈x⌉ is smallest
integer greater than or equal to x.

9. For j ∈ {1, . . . , r} and k ∈ {1, . . . ,m j}, let ξ j,k : T → X be the function whose
components with respect to the basis {e1, . . . , en} are the components of ξ j,k.

10. For j ∈ {1, . . . , s} and k ∈ {1, . . . , µ j}, let α j,k, β j,k : T → X be the functions whose
components with respect to the basis {e1, . . . , en} are the components of α j,k and
β j,k, respectively.

11. Then the n functions

ξ j,k, j ∈ {1, . . . , r}, k ∈ {1, . . . ,m j},

α j,k, β j,k, j ∈ {1, . . . , s}, k ∈ {1, . . . , µ j},

are a basis for Sol(F). •

Of course, we should verify that the procedure does, indeed, produce a basis
for Sol(F).

5.2.24 Theorem (Basis of solutions for a system of linear homogeneous ordinary
differential equations with constant coefficients) Given a system of linear homo-
geneous ordinary differential equations

F: T × X ⊕ X→ X

in an n-dimensional R-vector space X and with right-hand side

F̂(t, x) = A(x),

define n functions as in Procedure 5.2.23. Then these functions for a basis for Sol(F).
Proof By virtue of Exercise 5.2.1, we can choose a basis {e1, . . . , en} for X and so assume
that X = Rn.

Let us first fix j ∈ {1, . . . , r} and show that ξ j,k, k ∈ {1, . . . ,m j}, are solutions for F.
Let t0 ∈ T. Let us also fix k ∈ {1, . . . ,m j}. By Theorem 5.2.20(ix), the unique solution to
the initial value problem

ξ̇(t) = Aξ(t), ξ(t0) = eAt0x j,k,
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is
t 7→ eA(t−t0)eAt0x j,k = eAtx j,k,

using Theorem 5.2.20(vi) and the obvious fact that the matrices tA and t0A commute.
Now we have

eAtx j,k = eℓ jtIne(A−ℓ jIn)t = eℓ jte(A−ℓ jIn)tx j,k

using parts (v) and (vi) of Theorem 5.2.20. Now, since x j,k ∈W(ℓ j,A),

eℓ jte(A−ℓ jIn)tx j,k = eℓ jt
m j−1∑
m=0

(A − ℓ jIn)mtm

m!
x j,k,

using Theorem 5.2.20(i). However, this last expression is exactly ξ j,k(t), showing that
this is indeed a solution for F.

Next we show that, still keeping j ∈ {1, . . . , r} fixed, the m j solutions ξ j,k, k ∈
{1, . . . ,m j}, are linearly independent. As we have seen,

ξ j,k(t0) = eAt0x j,k, k ∈ {1, . . . ,m j}.

Thus, for c1, . . . , cm j ∈ R, we have

c1ξ j,k(t0) + · · · + cm jξ j,m j
(t0) = 0

=⇒ c1eAt0x j,1 + · · · + cm je
At0x j,m j = 0

=⇒ eAt0(c1x j,1 + · · · + cm jx j,m j) = 0

=⇒ c1x j,1 + · · · + cm jx j,m j = 0

=⇒ c1 = · · · = cm j = 0,

since x j,1, . . . , x j,m j are constructed as being linearly independent. By Corollary 5.2.4
we conclude that ξ j,1, . . . , ξ j,m j

are indeed linearly independent.
Now we fix j ∈ {1, . . . , s} and work with the complex eigenvalue λ j = σ j+ iω j. First

of all, let us define ζ j,k : T→ Cn, k ∈ {1, . . . , µ j}, by

ζ j,k = eACtz j,k.

Then, exactly as above for the real eigenvalues, we have

ζ j,k(t) = eλ jt
µ j−1∑
m=0

(AC − λ jIn)mtm

m!
z j,k.

Moreover, ζ j,k, k ∈ {1, . . . , µ j}, are solutions for FC. Therefore, by Lemma 5.2.18, the real
and imaginary parts of ζ j,k are solutions for F. To determine the real and imaginary
parts, we first make use of the following lemma.
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1 Lemma For a C-vector space X, for L ∈ L(X; X), for b ∈ C, and for m ∈ Z≥0,

(L + i b idX)m =

⌈
m−1

2 ⌉∑
j=0

(
m
2j

)
(−1)jb2jLm−2j + i

⌊
m−1

2 ⌋∑
j=0

(
m

2j + 1

)
(−1)j(b2j+1Lm−2j−1).

Proof By the Binomial Formula, and since L and idX commute, we have

(L + i b idX) =
m∑

j=0

(
m
j

)
(i b) jLm−1.

The stated formula is obtained by separating this expression into its real and imaginary
parts. ▼

With the lemma, one verifies that

Re


µ j−1∑
m=0

(AC − λ jIn)mtm

m!

 =
µ j−1∑
m=0

⌈
m−1

2 ⌉∑
l=0

(−1)lω2l
j tm

(2l)!(m − 2l)!
(A − σ jIn)m−2l

and

Im


µ j−1∑
m=0

(AC − λ jIn)mtm

m!

 =
µ j−1∑
m=0

⌊
m−1

2 ⌋∑
l=0

(−1)l+1ω2l+1
j tm

(2l + 1)!(m − 2l − 1)!
(A − σ jIn)m−2l−1.

Some tedious manipulations, one can then verify that

α j,k(t) = Re

eλ jt

In +
(AC − λ jIn)t

1!
+ · · · +

((AC − λ jIn)t)µ j−1

(µ j − 1)!

 z j,k

 ,
β j,k(t) = Im

eλ jt

In +
(AC − λ jIn)t

1!
+ · · · +

((AC − λ jIn)t)µ j−1

(µ j − 1)!

 z j,k


for k ∈ {1, . . . , µ j}. This shows that α j,k and β j,k are solutions for F for k ∈ {1, . . . , µ j}.

Now we verify that
α j,1, . . . ,α j,µ j ,β j,1, . . . ,β j,µ j

are linearly independent. As above in the real case, the complex solutions ζ j,1, . . . ,ζ j,µ j

for FC are linearly independent. Now let t0 ∈ T and c1, . . . , cµ j , d1, . . . , dµ j ∈ R, and note
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that
µ j∑

k=1

(ckα j,k(t0) + dkβ j,k(t0)) = 0

=⇒

µ j∑
k=1

(ck Re(ζ j,k)(t0) + dk Im(ζ j,k)(t0)) = 0

=⇒

µ j∑
k=1

(ck Re(eACt0z j,k) + dk Im(eACt0z j,k))

=⇒

µ j∑
k=1

(ckeACt0a j,k + dkeACt0b j,k) = 0

=⇒

µ j∑
k=1

(cka j,k + dkb j,k) = 0

=⇒ c1 = · · · = cµ j = d1 = · · · = dµ j = 0,

using the fact that, since A is real, eACt0 is also real and, using Theorem I-5.4.68(i), this
gives the linear independence of

α j,1, . . . ,α j,µ j ,β j,1, . . . ,β j,µ j
,

as claimed.
Now we have m1 + · · ·+mr + 2(µ1 + · · ·+µs) = n solutions for F. It remains to show

that the collection of all of these solutions are linearly independent. Let us suppose
that

c1,1ξ1,1(t) + · · · + c1,m1ξ1,m1
(t)︸                               ︷︷                               ︸

∈W(ℓ1,A)

+ · · · + cr,1ξr,1(t) + · · · + cr,mrξr,mr(t)︸                             ︷︷                             ︸
∈W(ℓr,A)

+ d1,1a1,1(t) + · · · + d1,µ1a1,µ1(t)︸                               ︷︷                               ︸
∈W(λ1,A)

+ · · · + ds,1as,1(t) + · · · + ds,µsas,µs(t)︸                             ︷︷                             ︸
∈W(λs,A)

+ e1,1b1,1(t) + · · · + e1,µ1b1,µ1(t)︸                              ︷︷                              ︸
∈W(λ1,A)

+ · · · + es,1bs,1(t) + · · · + es,µsbs,µs(t)︸                            ︷︷                            ︸
∈W(λs,A)

= 0,

for suitable scalar coefficients. Since the generalised eigenspaces intersect in {0} by
Proposition I-5.4.60, and since the generalised eigenspaces are invariant under eAt

for all t ∈ T by Theorem 5.2.20(viii), for the preceding equation to hold, each of its
components in each of the generalised eigenspaces must be zero, i.e.,

c j,1ξ j,1(t) + · · · + c j,m jξ j,m j
(t) = 0, j ∈ {1, . . . , r},

and

d j,1a j,1(t) + · · · + d j,µ ja j,µ j(t) + e j,1b j,1(t) + · · · + e j,µ jb j,µ j(t) = 0, j ∈ {1, . . . , s}.
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This implies that all coefficients must be zero, since we have already shown the linear
independence of the solutions with initial conditions in each of the subspaces W(ℓl,A),
j ∈ {1, . . . , r}, and W(λ j,A), j ∈ {1, . . . , s}. Thus we have the desired linear independence,
and thus the theorem follows. ■

From the proof of the theorem, we provide the following comment on how one
might deal with complex eigenvalues in practice.

5.2.25 Remark (Computing solutions associated with complex eigenvalues) The
formulae (5.9) and (5.10) of Procedure 5.2.23, while fun to look at, are typically
not the best ways to work out solutions associated with complex eigenvalues.
However, the proof of the preceding theorem tells us an alternative that is easier in
easy examples (although using a computer algebra package is even easier). Indeed,
in the proof we saw that

α j,k(t) = Re
(
eλ jt

(
In +

(AC − λ jIn)t
1!

+ · · · +
((AC − λ jIn)t)µ j−1

(µ j − 1)!

)
z j,k

)
,

β j,k(t) = Im
(
eλ jt

(
In +

(AC − λ jIn)t
1!

+ · · · +
((AC − λ jIn)t)µ j−1

(µ j − 1)!

)
z j,k

)
for k ∈ {1, . . . , µ j}. Thus, in practice, one might simply compute

ζ j,k(t) = eλ jt

(
In +

(AC − λ jIn)t
1!

+ · · · +
((AC − λ jIn)t)µ j−1

(µ j − 1)!

)
z j,k,

k ∈ {1, . . . , s}, and simply takes its real and imaginary parts as linearly independent
solutions. •

We can now give an algorithm for computing, in principle, the operator ex-
ponential. The following procedure, while given for computing eA, obviously
may be used as well to compute the continuous-time state transition matrix
Φc

A(t, t0) = eA(t−t0) for a system of linear homogeneous ordinary differential equa-
tions with constant coefficients.

5.2.26 Procedure (Operator exponential) Given an n-dimensionalR-vector space X and
A ∈ L(X; X), do the following.
1. Choose a basis {e1, . . . , en} and let A be the matrix representative of A. If X = Rn,

one can just take A to be the usual matrix associated with A ∈ L(Rn;Rn).
2. Using Procedure 5.2.23, determine a fundamental set of solutions ξ1, . . . , ξn,

defined on all of R, for the system of linear homogeneous ordinary differential
equations F in Rn with right-hand side

F̂(t, x) = Ax.
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3. Define

Ξ(t) =


ξ1,1(t) ξ2,1(t) · · · ξn,1(t)
ξ1,2(t) ξ2,2(t) · · · ξn,2(t)
...

...
. . .

...
ξ1,n(t) ξ2,n(t) · · · ξn,n(t)

 ,
where ξ j,k is the kth component of ξ j.

4. Using Procedure 5.2.8 calculate

eAt = Φc
A(t, 0) = Ξ(t)Ξ(0)−1.

5. We then have eA as the linear map whose matrix representative is eA. •

5.2.2.4 Some examples Obviously, carrying out Procedure 5.2.23 for a mod-
erately complicated linear transformation A is not something one would want to
do more than once a day, and that once a day for at most a week or so. Because I
am very manly, I did this four times in one day.

5.2.27 Example (Simple 2×2 example) We take X = R2 and let A ∈ L(R2;R2) be defined
by the matrix

A =
[
−7 4
−6 3

]
.

The characteristic polynomial for A is

PA = X2 + 4X + 3 = (X + 1)(X + 3).

Thus the eigenvalues for A are ℓ1 = −1 and ℓ2 = −3. Since the eigenvalues are dis-
tinct, the algebraic and geometric multiplicities will be equal, and the generalised
eigenvectors will simply be eigenvectors. An eigenvector for ℓ1 = −1 is x1,1 = (2, 3)
and an eigenvector for ℓ2 = −3 is x2,1 = (1, 1). Procedure 5.2.23 then gives two
linearly independent solutions as

ξ1,1(t) = e−t

[
2
3

]
, ξ2,1(t) = e−3t

[
1
1

]
.

Thus we have determined a fundamental matrix to be

Ξ(t) =
[

2e−t e−3t

3e−2t e−3t

]
,

by assembling the linearly independent solutions into the columns of this matrix.
It is then an easy calculation to arrive at

eAt = Ξ(t)Ξ(0)−1 =

[
3e−3t

− 2e−t
−2e−3t + 2e−t

3e−3t
− 3e−t

−2e−3t + 3e−t

]
•
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5.2.28 Example (A 3× 3 example with multiplicity) We take X = R3 with the linear map
A ∈ L(R3;R3) determined by the matrix A more interesting case is the following:

A =

−2 1 0
0 −2 0
0 0 −1

 .
Since the matrix is upper triangular, the eigenvalues are the diagonal elements:
ℓ1 = −2 and ℓ2 = −1. The algebraic multiplicity of ℓ1 is 2. However, we readily see
that dimR(ker(ℓ1I3 − A)) = 1 and so the geometric multiplicity is 1. So we need to
compute generalised eigenvectors in this case. We have

(A − λ1I3)2 =

0 0 0
0 0 0
0 0 1

 ,
and the generalised eigenvectors span the kernel of this matrix, and so we may
take x1,1 = (1, 0, 0) and x1,2 = (0, 1, 0) as generalised eigenvectors. Applying Proce-
dure 5.2.23 gives

ξ1,1(t) = e−2t

100
 + te−2t

0 1 0
0 0 0
0 0 1


100


=

e
−2t

0
0


and

ξ1,2(t) = e−2t

010
 + te−2t

0 1 0
0 0 0
0 0 1


010


=

te
−2t

e−2t

0

 .
Finally we determine that x2,1 = (0, 0, 1) is an eigenvector corresponding to ℓ2 = −1,
and so this gives the solution

ξ2,1(t) =

 0
0

e−t

 .
Thus we arrive at our three linearly independent solutions. We assemble these into
the columns of a matrix to determine a fundamental matrix

Ξ(t) =

e
−2t te−2t 0
0 e−2t 0
0 0 e−t

 .
It so happens that in this example we lucked out and eAt = Ξ(t) since Ξ(0) = I3. •
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5.2.29 Example (A simple example with complex eigenvalues) Here we take X = R3

with A ∈ L(R3;R3) determined by the matrix

A =

−1 1 0
−1 −1 0
0 0 −2

 .
The characteristic polynomial is

PA = X3 + 4X2 + 6X + 4.

One ascertains that the eigenvalues are then λ1 = −1 + i, λ̄1 = −1 − i, ℓ1 = −2.
Let’s deal with the complex eigenvalue first, using Remark 5.2.25 rather than the
complicated formulae (5.9) and (5.10) of Procedure 5.2.23 for complex eigenvalues.
We have

A − λ1I3 =

−i 1 0
−1 −i 0
0 0 −1 − i

 ,
from which we glean that an eigenvector is z1,1 = (−i, 1, 0). Using Remark 5.2.25,
the complex solution is then

ζ1,1(t) = e(−1+i)t

−i
1
0

 .
Using Euler’s formula, eiθ = cosθ + i sinθ, we have

ζ1,1(t) = e−t

−i cos t + sin t
cos t + i sin t

0

 = e−t

sin t
cos t

0

 + ie−t

− cos t
sin t

0

 ,
thus giving

α1,1(t) = e−t

sin t
cos t

0

 , β1,1(t) = e−t

− cos t
sin t

0

 .
Corresponding to the real eigenvalue ℓ1 we readily determine that

ξ1,1 = e−2t

001


is a corresponding solution. This gives three linearly independent real solutions
α1,1(t), β1,1(t), and ξ1,1(t). Putting these into the columns of a matrix gives a funda-
mental matrix

Ξ(t) =

e−t sin t −e−t cos t 0
e−t cos t e−t sin t 0

0 0 e−2t

 .
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A straightforward computation yields

eAt = Ξ(t)Ξ(0)−1 =

 e−t cos t e−t sin t 0
−e−t sin t e−t cos t 0

0 0 e−2t

 . •

5.2.30 Example (An example of complex eigenvalues with multiplicity) Our final ex-
ample has X = R4 and A ∈ L(R4;R4) determined by the matrix

A =


0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

 .
The eigenvalues are determined to be λ1 = i and λ̄1 = −i, both with algebraic
multiplicity 2. One readily determines that the kernel of iI4−A is one-dimensional,
and so the geometric multiplicity of these eigenvalues is just 1. Thus we need to
compute complex generalised eigenvectors. We compute

(A − iI4)2 = 2


−1 −i −i 1
i −1 −1 −i
0 0 −1 −i
0 0 i −1


and one checks that z1,1 = (0, 0,−i, 1) and z1,2 = (−i, 1, 0, 0) are two linearly inde-
pendent generalised eigenvectors. We compute

(A − iI4)z1,1 =


−i
1
0
0

 , (A − iI4)z1,2 =


0
0
0
0

 .
We now determine the two linearly independent real solutions corresponding to
z1,1. We have

ζ1,1(t) = eit(u1 + t(A − iI4)z1,1) = eit


0
0
−i
1

 + teit


−i
1
0
0


= (cos t + i sin t)



0
0
0
1

 + i


0
0
−1
0

 + t


0
1
0
0

 + it


−1
0
0
0


 =


t sin t
t cos t
sin t
cos t

 + i


−t cos t
t sin t
− cos t
sin t

 .
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Therefore,

α1,1(t) =


t sin t
t cos t
sin t
cos t

 , β1,1(t) =


−t cos t
t sin t
− cos t
sin t

 .
For z2,1 we have

ζ1,2(t) = eit(u2 + t(A − iI4)u2) = eit


−i
1
0
0


= (cos t + i sin t)



0
1
0
0

 + i


−1
0
0
0


 =


sin t
cos t

0
0

 + i


− cos t
sin t

0
0

 ,
and so we have

α1,2(t) =


sin t
cos t

0
0

 , β1,2(t) =


− cos t
sin t

0
0

 .
Thus we have the four real linearly independent solutions α1,1, α1,2, β1,1, and β1,2.
The corresponding fundamental matrix is

Ξ(t) =


t sin t −t cos t sin t − cos t
t cos t t sin t cos t sin t
sin t − cos t 0 0
cos t sin t 0 0

 .
A little manipulation gives

eAt = Ξ(t)Ξ(0)−1 =


cos t sin t t cos t t sin t
− sin t cos t −t sin t t cos t

0 0 cos t sin t
0 0 − sin t cos t

 . •

Exercises

5.2.1 Let X be an n-dimensional R-vector space and let F be a system of linear
ordinary differential equations in X with right-hand side

F̂(t, x) = A(t)(x) + b(t)

for A : T→ L(X; X) and b : T→ X. Let {e1, . . . , en} be a basis for X and write

b(t) =
n∑

j=1

b j(t)e j, A(t)(e j) =
n∑

k=1

Ak
j(t)ek, j ∈ {1, . . . ,n},
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for functions b j : T → R, j ∈ {1, . . . ,n}, and Ak
j : T → R, j, k ∈ {1, . . . ,n}. This

defines b : T→ Rn and A : T→ L(Rn;Rn). Denote by F the system of linear
ordinary differential equations in Rn given by

F(t, x, x(1)) = x(1)
− A(t)x − b(t).

Answer the following questions.
(a) Show that ξ : T′ → X is a solution for F if and only if the function

ξ : T′ → Rn, defined by

ξ(t) =
n∑

j=1

ξ j(t)e j,

is a solution for F.
Now let {ẽ1, . . . , ẽn} be another basis for X and let P be the change of basis
matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Define b̃ : T→ Rn, Ã : T→ L(Rn;Rn), and F̃ as above, for this new basis.
(b) Show that b̃(t) = Pb(t) and Ã(t) = P−1A(t)P for every t ∈ T.

Hint: Use the change of basis formulae from Proposition I-5.4.26 and from
Theorem I-5.4.32.

(c) Show that, if ξ : T′ → Rn is a solution for F, then ξ̃ : T′ → Rn is a solution
for F̃ if and only if ξ̃(t) = P−1ξ(t) for every t ∈ T.

5.2.2 Let X be an n-dimensional R-vector space and let F be a system of linear
homogeneous ordinary differential equations with right-hand side

F̂(t, x) = A(t)(x)

for A ∈ L1
loc(T; L(X; X)). Let {e1, . . . , en} be a basis for X and let A(t) be the

matrix representative for A(t), t ∈ T, and let F be the corresponding system
of linear homogeneous ordinary differential equations inRn with right-hand
side

F̂(t, x) = A(t)x.

cf. Exercise 5.2.1.
(a) Show that, for every t, t0 ∈ T, the matrix representative of Φc

A(t, t0) is
Φc

A(t, t0).
Now let {ẽ1, . . . , ẽn} be another basis for X and let P be the change of basis
matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Define Ã : T→ L(Rn;Rn) and F̃ as above, for this new basis.
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(b) Show that, for every t, t0 ∈ T,

Φc
Ã(t, t0) = P−1Φc

A(t, t0)P.

5.2.3 Consider the system of linear homogeneous ordinary differential equations
F with right-hand side equation (5.3) and suppose that A ∈ L1

loc(T; L(X; X)).
Recall from the proof of Theorem 5.2.3 the maps

σt : Sol(F)→ X
ξ 7→ ξ(t)

, t ∈ T,

that were shown to be isomorphisms.
(a) Show that

Φc
A(t, t0) = σt ◦ σ

−1
t0

for each t, t0 ∈ T.
(b) Use this to give alternative proofs of parts (iv) and (v) of Theorem 5.2.6.

5.2.4 Consider a scalar linear homogeneous ordinary differential equation F with
right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −a0(t)x − a1(t)x(1)
− · · · − ak−1(t)x(k−1),

for a0, a1, . . . , ak−1 ∈ L1
loc(T;R).

(a) Following Exercise 3.1.23, convert this kth order scalar system into a first
order system F1 of linear homogeneous ordinary differential equations
in Rk, i.e., find the matrix function A : T→ L(Rk;Rk) in this case.

(b) For a solution t 7→ ξ(t) for F, what is the corresponding solution t 7→ ξ(t)
for F1?

(c) Show that, given a fundamental set of solutions {ξ1, . . . , ξk} for F, the so-
lutions {ξ1, . . . , ξk} for F1 from part (b) are a fundamental set of solutions
for F1.

(d) Show that
d
dt
Φc

A(t, t0) =
W(ξ1, . . . , ξn)(t)
W(ξ1, . . . , ξn)(t0)

.

(e) Show that

W(ξ1, . . . , ξk)(t) =W(ξ1, . . . , ξk)(t0)e−
∫ t

t0
ak−1(τ) dτ

.

5.2.5 Let F ∈ {R,C}, let X be an n-dimensional F-vector space, and let L ∈ L(X; X).
Let B = {e1, . . . , en} and B ′ = {ẽ1, . . . , ẽn} be bases for X and let P be the
change of basis matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Let L and L̃ be the matrix representatives for L in theB and B̃ , respectively.
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(a) Use part (b) of Exercise 5.2.2 to show that

[eL]B̃
B̃
= P−1[eL]BBP.

(b) Use Theorem 5.2.20(i) and Proposition 5.2.22 to arrive at the same con-
clusion.

5.2.6 Consider the first-order scalar linear homogeneous ordinary differential
equation with right-hand side F̂(t, x) = a(t)x for a ∈ L1

loc(T;R). Determine
the continuous-time state-transition map in this case, thinking of this as a
system of linear homogeneous ordinary differential equations in the one-
dimensional vector space R.

5.2.7 Let λ ∈ F ∈ {R,C} and consider the linear map A ∈ L(Fn;Fn) determined by
the n × n-matrix

A =



λ 0 · · · 0 0 0 0 0 · · · 0 0
0 λ · · · 0 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 · · · λ 0 0 0 0 · · · 0 0
0 0 · · · 0 λ 0 0 0 · · · 0 0
0 0 · · · 0 0 λ 1 0 · · · 0 0
0 0 · · · 0 0 0 λ 1 · · · 0 0
0 0 · · · 0 0 0 0 λ · · · 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 · · · 0 0 0 0 0 · · · λ 1
0 0 · · · 0 0 0 0 0 · · · 0 λ



.

We suppose the lower right block is a k × k-matrix and the upper left block,
therefore, is a (n − k) × (n − k)-matrix.

Answer the following questions.
(a) What are the eigenvalues of A?
(b) For each of the eigenvalues of A, determine its algebraic multiplicity.
(c) For each of the eigenvalues of A, determine its eigenspace.
(d) For each of the eigenvalues of A, determine its geometric multiplicity.
(e) For each of the eigenvalues of A, determine its generalised eigenspace.
(f) For each of the eigenvalues ℓ of A, determine the smallest m ∈ Z>0 for

which W(ℓ,A) = ker((A − ℓIn)m).
5.2.8 For each of the following linear maps A ∈ L(Rn;Rn), given by an n×n-matrix,

determine the
1. eigenvalues,
2. eigenvectors,
3. generalised eigenvectors,
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4. algebraic multiplicities of each eigenvalue, and
5. geometric multiplicities of each eigenvalue.
Here are the linear maps:

(a) A =
[
2 −5
0 3

]
;

(b) A =
[
−1 −2
1 −3

]
;

(c) A =
[
4 −1
4 0

]
;

(d) A =

5 0 −6
0 2 0
3 0 −4

;
(e) A =

5 0 −6
1 2 −1
3 0 −4

;
(f) A =

4 2 −4
2 0 −4
2 2 −2

;

(g) A =


2 1 0 1
1 3 −1 3
0 1 2 1
1 −1 −1 −1

;

(h) A =


−7 0 0 −4
−13 −2 −1 −8

6 1 0 4
15 1 0 9

;

(i) A =


1 4 −2 0 9
0 −2 1 2 −6
−2 4 −1 3 0
−9 4 1 0 2
4 0 3 −1 3

.

5.2.9 For each of the following Rn-valued functions ξ of time, indicate whether
they can be the solution of a system of linear homogeneous ordinary differ-
ential equations with constant coefficients. If they can be, find a matrix A for
which the function satisfies ξ̇(t) = Aξ(t). If they cannot be, explain why not.
(a) ξ(t) = (et, e−t);
(b) ξ(t) = (cos(t) − sin(t), cos(t) + sin(t));
(c) ξ(t) = (et + e2t, 0, 0);
(d) ξ(t) = (t, 0, 1);
(e) ξ(t) = (et, et + e2t, 0);
(f) ξ(t) = (cos(t) + sin(t), cos(t) + sin(t)).

5.2.10 Let F be a scalar linear homogeneous ordinary differential equation with
right-hand side

F̂(t, x, x(1), . . . , x(k−1)) = −ak−1x(k−1)
− · · · − a1x(1)

− a0x,

for a0, a1, . . . , ak−1 ∈ R.
(a) Following Exercise 3.1.23, convert F into a first-order system of linear

homogeneous ordinary differential equations F1 in Rk and with right-
hand side

F̂1(t, x) = Ax,

explicitly identifying A ∈ L(Rk;Rk).
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(b) Show that the characteristic polynomial PF of F is the same as the char-
acteristic polynomial PA of A.

5.2.11 Determine eAt for the linear transformations A ∈ L(Rn;Rn) from Exer-
cise 5.2.8.

5.2.12 For the linear transformations A ∈ L(Rn;Rn) of Exercise 5.2.11, determine
the solution to the initial value problem

ξ̇(t) = Aξ(t), ξ(0) = x0,

with x0 as follows:

(a) x0 = (0, 1);
(b) x0 = (2,−3);
(c) x0 = (1, 1);
(d) x0 = (−3,−1, 0);
(e) x0 = (1, 0, 1);

(f) x0 = (4, 1, 2);
(g) x0 = (1,−1, 0, 1);
(h) x0 = (−1,−1, 3,−2);
(i) x0 = (0, 0, 0, 0, 0).

5.2.13 For the scalar linear homogeneous ordinary differential equations of Exer-
cise 4.2.10, do the following:
(a) convert these to a first-order system of linear homogeneous ordinary

differential equations, explicitly identifying A;
(b) using the fundamental solutions obtained during the solution of the

problems from Exercise 4.2.10, compute eAt;
(c) solve the initial value problems from Exercise 4.2.10 using the operator

exponential.
5.2.14 Let ℓ ∈ R and k ∈ Z>0. Consider the Jordan block

J(ℓ, k) =


ℓ 1 0 · · · 0 0
0 ℓ 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · ℓ 1
0 0 0 · · · 0 ℓ

 .
Do the following.
(a) Solve the initial value problems

ξ̇ j(t) = J(ℓ, k)ξ j(t), ξ j(0) = e j, IVP j

j ∈ {1, . . . , k}, recursively, first by solving IVPk, then by solving IVPk−1,
and so on. At each stage you should be solving a scalar linear, possibly
inhomogeneous, ordinary differential equation, and so the methods of
Sections 4.2.2 and 4.3.2 can be used.

(b) Use your calculations to determine eJ(ℓ,k)t.
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Alternatively, compute eJ(ℓ,k)t as follows.
(c) What are the eigenvalues of J(ℓ, k)?
(d) What are the geometric and algebraic multiplicities of the eigenvalues?
(e) Compute

(J(ℓ, k) − ℓIn) j, j ∈ {0, 1, . . . , k − 1},

probably using mathematical induction on j.
(f) Use your answers from the preceding three questions to explicitly com-

pute eJ(ℓ,k)t using Procedure 5.2.23.
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Section 5.3

Systems of linear inhomogeneous ordinary differential
equations

In this section we extend our discussion of homogeneous equations in Sec-
tion 5.2 to inhomogeneous equations. Thus we are talking about systems of linear
ordinary differential equations F in a finite-dimensional R-vector space X with
right-hand side

F̂ : T × X→ X
(t, x) 7→ A(t)(x) + b(t)

(5.11)

for maps b : T → X and A : T → L(X; X). In our treatment of scalar equations in
Section 5.3, we gave no fewer than three methods for working with inhomogeneous
equations, two general methods (using Wronskians in Section 4.3.1.2 and the
theory of continuous-time Green’s function in Section 4.3.1.3) and one method that
only works for inhomogeneous terms that are pretty uninteresting (the “method
of undetermined coefficients in Section 4.3.2.1). We shall not be so expansive for
systems of linear inhomogeneous equations, and shall really only consider “the”
method for working with such equations, since this method is as tractable as any
other method in practice (which is to say, not very tractable at all, barring the use
of a computer algebra package), and is exceptionally powerful in developing the
theory of systems of linear ordinary differential equations.

As we have done in all preceding developments of linear ordinary differential
equations, we work first in the general time-varying case, and then in the case of
constant coefficients.

Do I need to read this section? The material in this section is fundamental to the
theory of linear systems. •

5.3.1 Equations with time-varying coefficients

We state the, by now, more or less obvious results concerning existence and
uniqueness, now for systems of linear inhomogeneous ordinary differential equa-
tions.

5.3.1 Proposition (Local existence and uniqueness of solutions for systems of lin-
ear inhomogeneous ordinary differential equations) Consider the system of linear
inhomogeneous ordinary differential equations F with right-hand side (5.11) and suppose
that b ∈ L1

loc(T; X) and A ∈ L1
loc(T; L(X; X)). Let (t0, x0) ∈ T × X. Then there exists an

interval T′ ⊆ T and a map ξ ∈ ACloc(T′; X) that is a solution for F and which satisfies
ξ(t0) = x0. Moreover, if T̃′ ⊆ T is another subinterval and if ξ̃ ∈ ACloc(T̃′; X) is another
solution for F satisfying ξ̃(t0) = x0, then ξ̃(t) = ξ(t) for every t ∈ T̃′ ∩ T′.
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Proof By Proposition 5.2.1, there exists a compact interval T′ ⊆ T and a solution
ξh : T→ X for Fh satisfying ξh(t0) = x0. Moreover, ξh(t) = Φc

A(t, t0)(x0). Now define

ξ : T′ → X

t 7→ Φc
A(t, t0)(x0) +

∫ t

t0

Φc
A(t, τ)(b(τ)) dτ.

Note that the integral defining ξ exists since both τ 7→ Φc
A(t, τ) is continuous (and so

bounded on [t0, t]) and since τ 7→ b(τ) is locally integrable, the first holding for every
t ∈ T′. In order to verify that ξ so defined is a solution for F, we will use the following
lemma.

1 Lemma LetT ⊆ R be a compact interval and let g : T×T→ Rn have the following properties:
(i) for almost every t ∈ T, the map τ 7→ g(t, τ) is locally integrable;
(ii) for almost every τ ∈ T, the map t 7→ g(t, τ) is absolutely continuous;
(iii) the mapping (t, τ) 7→ g(t, τ) is locally integrable;

(iv) the mapping (t, τ) 7→
∥∥∥∥∂g
∂t (t, τ)

∥∥∥∥ is locally integrable.

Then, for any t0 ∈ T, the function

G : T→ Rn

t 7→
∫ t

t0

g(t, τ) dτ

is locally absolutely continuous and

dG
dt

(t) =
∫ t

t0

∂g
∂t

(t, τ) dτ + g(t, t).

Proof Local integrability of τ 7→ g(t, τ) ensures that the integral in the definition of G
exists. Consider the function

G̃ : T × T→ Rn

(t1, t2) 7→
∫ t1

t0

g(t2, τ) dτ.

By the Fundamental Theorem of Calculus in the form of Theorem III-2.9.33, t1 �→
G̃(t1, t2) is locally absolutely continuous for each t2 ∈ T and

∂G̃
∂t1

(t1, t2) = g(t2, t1), a.e. t1 ∈ T, t2 ∈ T.

Our hypotheses ensure that one can use Theorem III-2.9.17 to assert that, for almost
every fixed t1, t2 7→ G̃(t1, t2) is locally absolutely continuous and we can differentiate
G̃ with respect to t2 inside the integral:

∂G̃
∂t2

(t1, t2) =
∫ t1

t0

∂g
∂t2

(t2, τ) dτ.
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Now define
δ : T→ T × T

t 7→ (t, t).

Clearly δ is differentiable and
G(t) = G̃ ◦ δ(t).

Thus G is locally absolutely continuous by Exercise II-1.10.6. Using the Chain Rule,

dG
dt

(t) =
∂G̃
∂t1

(δ(t)) ◦
dδ1

dt
(t) +

∂G̃
∂tt

(δ(t)) ◦
dδ2

dt
(t)

= g(t, t) +
∫ t

t0

∂g
∂t

(t, τ) dτ,

as claimed. ▼

Let us verify that the hypotheses of the lemma hold for (t, τ) 7→ Φc
A(t, τ)(b(τ)).

First of all, we certainly have the first two hypotheses of the lemma. Moreover,
writing Φc

A(t, τ)(b(τ)) = Φc
A(t, t0) ◦Φc

A(τ, t0)−1(b(τ)) and noting that (1) τ 7→ b(τ) is locally
integrable (and so integrable on the compact intervalT′), (2) t 7→ Φc

A(t, t0) is continuous
(and so also bounded on the compact interval T′), and (3) τ 7→ Φc

A(τ, t0)−1 is also
continuous (and so also locally bounded), we conclude that the third hypothesis of

the lemma holds. Finally, using Theorem 5.2.6(i), we have
∂Φc

A
∂t (t, τ) = A(t) ◦ Φc

A(t, τ).
Now local integrability of b and A and the continuity of Φc

A ensure the fourth of the
hypotheses of the lemma. Thus we can use the lemma to calculate

dξ
dt

(t) = A(t) ◦Φc
A(t, t0)(x0) + A(t) ◦

∫ t

t0

Φc
A(t, τ)(b(τ)) dτ + b(t)

= A(t)(ξ(t)) + b(t),

i.e., ξ is a solution of F. Moreover, we also clearly have ξ(t0) = x0.
To conclude uniqueness, suppose that we have two solutions ξ1 and ξ2 defined on

the same interval T′. Then

dξ1

dt
(t) = A(t)(ξ1(t)) + b(t),

dξ2

dt
(t) = A(t)(ξ2(t)) + b(t),

and ξ1(t0) = ξ2(t0) = x0. Therefore,

d(ξ1 − ξ2)
dt

(t) = A(t)(ξ1(t) − ξ2(t)), (ξ1 − ξ2)(t0) = 0.

By the uniqueness assertion of Proposition 5.2.1, we conclude that ξ1−ξ2 = 0, i.e., ξ1 =
ξ2. ■

We also have a global existence result in this case, just as for homogeneous
systems.
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5.3.2 Proposition (Global existence of solutions for systems of linear inhomoge-
neous ordinary differential equations) Consider the system of linear inhomogeneous
ordinary differential equations F with right-hand side (5.11) and suppose that b ∈ L1

loc(T; X)
and A ∈ L1

loc(T; L(X; X)). If ξ : T′ → X is a solution for F, then there exists a solution
ξ : T→ X for which ξ|T′ = ξ.

Proof In the proof of Proposition 5.3.1, we showed that a unique solution exists on
any compact interval containing t0. Just as in the proof of Proposition 5.2.2, this
implies that a solution exists at any t ∈ T. ■

Since, in the proof of Proposition 5.3.1, we gave an explicit formula for solutions
to initial value problems, it is worth extracting this explicit formula.

5.3.3 Corollary (An explicit solution for systems of linear inhomogeneous ordi-
nary differential equations) Consider the system of linear inhomogeneous ordinary
differential equations F with right-hand side (5.11) and suppose that b ∈ L1

loc(T; X) and
A ∈ L1

loc(T; L(X; X)). Given t0 ∈ T and x0 ∈ X, the unique solution ξ : T → X to the
initial value problem

ξ̇(t) = A(t)(ξ(t)) + b(t), ξ(t0) = x0,

is

ξ(t) = Φc
A(t, t0)(x0) +

∫ t

t0

Φc
A(t, τ)(b(τ)) dτ, t ∈ T. (5.12)

The formula (5.12) for solutions to systems of linear inhomogeneous ordinary
differential equations is often called the variation of constants formula.

We note that this solution bears a strong resemblance in form to the continuous-
time Green’s function solution for scalar systems given in Theorem 4.3.7; indeed,
one can think of the continuous-time state transition map as playing the rôle of a
continuous-time Green’s function in this case. In particular, given b ∈ X (a constant
vector, note) the physical interpretation of Remark 4.3.9–2 applies to the map
t 7→ Φc

A(t, τ)(b), and leads us to think of this as being the result of applying an
impulse at time τ with (vector) magnitude b. This leads to the important notion in
system theory of the impulse response.

Now we can discuss the set of all solutions of a system of linear inhomogeneous
ordinary differential equation F with right-hand side

F̂ : T × X→ X
(t, x) 7→ A(t)(x).

To this end, we denote by

Sol(F) =
{
ξ ∈ ACloc(T; X)

∣∣∣ ξ̇(t) = A(t)(ξ(t))
}

the set of solutions for F. While Sol(F) was a vector space in the homogeneous
case, in the inhomogeneous case this is no longer the case. However, the set
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of all solutions for the homogeneous case plays an important rôle, even in the
inhomogeneous case. To organise this discussion, we let Fh be the “homogeneous
part” of F. Thus the right-hand side of Fh is

F̂h(t, x) = A(t)(x).

As in Theorem 4.3.3, Sol(Fh) is aR-vector space of dimension dimR(X). The follow-
ing result is then the main structural result about the set of solutions to a system
of linear inhomogeneous ordinary differential equations, mirroring Theorem 4.3.3
for scalar systems.

5.3.4 Theorem (Affine space structure of sets of solutions) Consider the system of
linear inhomogeneous ordinary differential equations F in the n-dimensionalR-vector space
X with right-hand side (4.11) and suppose that b ∈ L1

loc(T; X) and A ∈ L1
loc(T; L(X; X)).

Let ξp ∈ Sol(F). Then
Sol(F) = {ξ + ξp | ξ ∈ Sol(Fh)}.

Proof First note that, by Theorem 5.2.3, Sol(F) , ∅ and so there exists some ξp ∈

Sol(F). We have, of course,

dξp

dt
(t) = A(t)(ξp(t)) + b(t). (5.13)

Next let ξ ∈ Sol(F) so that

dξ
dt

(t) = A(t)(ξ(t)) + b(t). (5.14)

Subtracting (5.13) from (5.14) we get

d(ξ − ξp)
dt

(t) = A(t)(ξ(t) − ξp(t)),

i.e., ξ − ξp ∈ Sol(Fh). In other words, ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh).
Conversely, suppose that ξ = ξ̃ + ξp for ξ̃ ∈ Sol(Fh). Then

dξ̃
dt

(t) = A(t)(ξ̃(t)). (5.15)

Adding (5.13) and (5.15) we get

dξ
dt

(t) = A(t)(ξ(t)) + b(t),

i.e., ξ ∈ Sol(F). ■

As with scalar linear inhomogeneous ordinary differential equations, there is
an insightful correspondence to be made between the situation described in The-
orem 5.3.4 and that of systems of linear algebraic equations described in Proposi-
tion I-5.4.48.



2022/03/075.3 Systems of linear inhomogeneous ordinary differential equations431

5.3.5 Remark (Comparison of Theorem 5.3.4 with systems of linear algebraic equa-
tions) Let us compare here the result of Theorem 5.3.4 with the situation in Propo-
sition I-5.4.48 concerning linear algebraic equations of the form L(u) = v0, for
vector spaces U and W, a linear map L ∈ L(U; W), and a fixed w0 ∈W. In the setting
of systems of linear inhomogeneous ordinary differential equations in a R-vector
space X, we have

U = ACloc(T; X),

W = L1
loc(T; X),

L( f )(t) = ˙f (t) − A(t)( f (t)),
w0 = b.

Then Propositions 5.3.1 and 5.3.2 tells us that L is surjective, and so w0 ∈ image(L).
Thus we are in case (I-ii) of Proposition I-5.4.48, which exactly the statement of
Theorem 5.3.4. Note that L is not injective, since Theorem 5.2.3 tells us that
dimR(ker(L)) = dimR(X). •

5.3.6 Remark (What happened to the Wronskian?) In Section 4.3.1.2 we described
how the Wronskian can be used for scalar linear inhomogeneous ordinary differen-
tial equations to generate a particular solution. A similar development is possible
for systems of equations, but we shall not pursue it here. It is worth recording the
reasons for not doing so.
1. In Corollary 5.3.3 we produce a specific and natural “particular solution” for

a system of linear inhomogeneous ordinary differential equations, namely the
function that assigns to the inhomogeneous term “b,” the solution

ξp(t) =
∫ t

t0

Φc
A(t, τ)(b(τ)) dτ.

Then the form of the solution of Corollary 5.3.3 is ξ = ξh+ξp, where ξh ∈ Sol(Fh)
satisfies the initial conditions. This is just so cool. . . why would you want to do
more?

2. In Section 4.2.1 we discussed the notion of a fundamental set of solutions
for scalar linear homogeneous ordinary differential equations. There is no
really distinguished fundamental set of solutions, and the Wronskian-related
constructions were developed for an arbitrary fundamental set of solutions. This
has its benefits in this setting, as the results are general in this respect.
However, in Section 5.2.1.2 we saw that there was one object that naturally
describes the solutions for a system of linear homogeneous ordinary differen-
tial equations, the continuous-time state transition map. Note that in Proce-
dure 5.2.8 we indicate how to build the continuous-time state transition map
from a fundamental set of solutions for a system of equations, through the
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fundamental matrix-function Ξ that we build after choosing a basis. It is the
fundamental matrix, and its determinant, that would be involved in Wronskian-
type constructions for systems of equations. However, these are only arrived
at after choosing a basis, and so seem quite unnatural in our setting of general
vector spaces. •

Given that we will not be pursuing any Wronskian-type constructions, it only
remains to illustrate how one might use the about constructions in practice.

5.3.7 Example (System of linear inhomogeneous ordinary differential equations)
We take X = R2 and the linear inhomogeneous ordinary differential equation F
with right-hand side

F̂ : (0,∞) ×R2
→ R2

(t, (x1, x2)) 7→
(1

t
x1 − x2 + t,

1
t2 x1 +

2
t

x2 − t2
)
.

A solution t 7→ (ξ1(t), ξ2(t)) satisfies[
ẋ1(t)
ẋ2(t)

]
=

[
1
t −1
1
t2

2
t

]
︸   ︷︷   ︸

A(t)

[
x1(t)
x2(t)

]
+

[
t
−t2

]
︸︷︷︸

b(t)

.

Note that the homogeneous system Fh was examined in Example 5.2.10, where we
computed the continuous-time state transition matrix to be

Φc
A(t, t0) =

−
t2(ln(t/t0)−1)

t2
0

−
t2 ln(t/t0)

t0
t ln(t/t0)

t2
0

t(ln(t/t0)+1)
t0

 .
We then compute5∫ t

t0

Φc
A(t, τ)b(τ) dτ =

∫ t

t0

[
−

t2(ln(t/τ)−1)
τ2 −

t2 ln(t/τ)
τ

t ln(t/τ)
τ2

t(ln(t/τ)+1)
τ

] [
τ
−τ2

]
dτ

=

[
1
4 t2(t2

− 2t2
0 ln(t/t0) − 2 ln(t/t0)2 + 4 ln(t/t0) − t2

0)
1
4 t(2 ln(t/t0)(ln(t/t0) + t2

0) − 3(t − t0)(t + t0))

]
.

If we now wish to find the solution for F with initial condition x0 = (x10, x20) at time
t0, we use the explicit form of Corollary 5.3.3:

ξ(t) = Φc
A(t, t0)x0 +

∫ t

t0

Φc
A(t, τ)b(τ) dτ

=

−
t2(ln(t/t0)−1)

t2
0

x10 −
t2 ln(t/t0)

t0
x20 +

1
4 t2(t2

− 2t2
0 ln(t/t0) − 2 ln(t/t0)2 + 4 ln(t/t0) − t2

0)
t ln(t/t0)

t2
0

x10 +
t(ln(t/t0)+1)

t0
x20 +

1
4 t(2 ln(t/t0)(ln(t/t0) + t2

0) − 3(t − t0)(t + t0))

 .
5Integration courtesy of Mathematica®.
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As with pretty much any method for solving systems of linear inhomogeneous
(or, indeed, homogeneous) ordinary differential equations, tedious computations
and generally impossible integrals render the explicit formula of Corollary 5.3.3 of
questionable value as a computational tool. •

5.3.2 Equations with constant coefficients

We now specialise the discussion in the preceding section to systems of linear
inhomogeneous ordinary differential equations with constant coefficients. Thus we
are looking at a system of linear inhomogeneous ordinary differential equations F
in a finite-dimensional R-vector space X and with right-hand side given by

F̂(t, x) = A(x) + b(t) (5.16)

for A ∈ L(X; X) and b : T→ X. Of course, all general results concerning the existence
and uniqueness of solutions (i.e., Propositions 5.3.1 and 5.3.2), and of the structure
of the set of solutions (i.e., Theorem 5.3.4) apply in the constant coefficient case.
Here, however, we can refine a little the explicit solution of Corollary 5.3.3 because,
as per Theorem 5.2.20(ix), Φc

A(t, t0) = eA(t−t0) in this case. We can thus summarise
the situation in the following theorem.

5.3.8 Theorem (An explicit solution for systems of linear inhomogeneous ordinary
differential equations with constant coefficients) Consider the system of linear
inhomogeneous ordinary differential equations F with constant coefficients and right-hand
side (5.16), and suppose that b ∈ L1

loc(T; X). Given t0 ∈ T and x0 ∈ X, the unique solution
ξ : T→ X to the initial value problem

ξ̇(t) = A(ξ(t)) + b(t), ξ(t0) = x0,

is

ξ(t) = eA(t−t0)(x0) +
∫ t

t0

eA(t−τ)(b(τ)) dτ, t ∈ T.

We comment that our observations Remark 4.3.11 about the particular solution

ξp,b =

∫ t

t0

eA(t−τ)(b(τ)) dτ

for constant coefficient systems and its relation to convolution integrals is also valid
here.

5.3.9 Remark (What happened to the “method of undetermined coefficients”?) In
Section 4.3.2.1 we spent some time describing a rather ad hoc method, the “method
of undetermined coefficients,” for finding particular solutions for scalar linear
inhomogeneous ordinary differential equations with constant coefficients. A sim-
ilar strategy is possible for systems of linear inhomogeneous ordinary differential
equations with constant coefficients, but we shall not pursue it here. Here is why.
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1. The rationale of Remark 5.3.6–1 is equally valid here: we have such a nice
characterisation in Corollary 5.3.3 of a particular solution that to mess this up
with an ad hoc procedure that only works for pretty uninteresting functions is
simply not a worthwhile undertaking.

2. While for scalar equations it might be argued that there is some reason for being
able to quickly bang out particular solutions for specific pretty uninteresting
functions—see, particular, the notion of “step response” in Example 4.3.19 and
the notion of “frequency response” in Example 4.3.20—for systems of equations
the benefit of this is not so clear, given the complexity of doing computation in
any example. •

All that remains, since we have discharged ourselves of the responsibility of
providing any analogies to the various methods we used for scalar equations
in Section 4.2, is to give an example of how to apply the explicit formula of
Theorem 5.3.8.

5.3.10 Example (A second-order scalar equation as a system of equations) We con-
sider here the second-order scalar linear inhomogeneous ordinary differential equa-
tion F with right-hand side

F̂(t, x, x(1)) = −ω2
0x − 2ζω0x(1) + A sin(ωt)

that was considered in detail in Example 4.3.20. First we convert this into a system
of linear inhomogeneous ordinary differential equations, following Exercise 3.1.23.
Thus we introduce the variables x1 = x and x2 = x(1) so that

x(1)
1 = x(1) = x2,

x(1)
2 =x(2) = −ω2

0x − 2ζω0x(1) + A sin(ωt) = −ω2
0x1 − 2ζω0x2 + A sin(ωt).

That is to say
F̂1(t, (x1, x2)) = (x2,−ω

2
0x1 − 2ζω0x2 + A sin(ωt)).

Solutions t 7→ (ξ1(t), ξ2(t)) then satisfy[
ξ̇1(t)
ξ̇2(t)

]
=

[
0 1
−ω2

0 −2ζω0

]
︸           ︷︷           ︸

A

[
ξ1(t)
ξ2(t)

]
+

[
0

A sin(ωt)

]
︸       ︷︷       ︸

b(t)

.

To illustrate, we suppose that ζ2
≤ 1 and ω0 > 0.

We will first compute eAt in this case, following Procedure 5.2.26, making use
of the notation in Procedure 5.2.23. The characteristic polynomial of A is

PA = X2 + 2ζω0X + ω2
0,
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and so the eigenvalues of A are λ1 = ω0(−ζ + i
√

1 − ζ2), along with its complex
conjugate λ̄1. This eigenvalue necessarily has algebraic and geometric multiplicity
1. We compute that

ker(AC − λ1I2) = spanR((−ζ, ω0) + i(
√

1 − ζ2, ω0)).

Thus we take
ζ1,1 = (−ζ, ω0) + i(

√
1 − ζ2, ω0)

and, therefore,
a1,1 = (−ζ, ω0), b1,1 = (−

√
1 − ζ2, 0).

Thus
α1,1(t) = e−ω0ζt cos(ω0

√
1 − ζ2t)a1,1 − e−ω0ζt sin(ω0

√
1 − ζ2t)b1,1

and
β1,1(t) = e−ω0ζt cos(ω0

√
1 − ζ2t)b1,1 + e−ω0ζt sin(ω0

√
1 − ζ2t)a1,1.

Thus a fundamental matrix is then determined to be

Ξ(t) = e−ω0ζt

[
−ζ cos(ω0

√
1 − ζ2t) +

√
1 − ζ2 sin(ω0

√
1 − ζ2t)

ω0 cos(ω0
√

1 − ζ2t)

−
√

1 − ζ2 cos(ω0
√

1 − ζ2t) − ζ sin(ω0
√

1 − ζ2t)
ω0 sin(ω0

√
1 − ζ2t)

]
.

Then we calculate

eAt = Ξ(t)Ξ(0)−1

= e−ω0ζt


cos(ω0

√
1 − ζ2t) + ζ sin(ω0

√
1−ζ2t)

√
1−ζ2

sin(ω0

√
1−ζ2t)

ω0

√
1−ζ2

−
ω0 sin(ω0

√
1−ζ2t)

√
1−ζ2

cos(ω0
√

1 − ζ2t) − ζ sin(ω0

√
1−ζ2t)

√
1−ζ2

 .
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Now we can calculate6∫ t

0
eA(t−τ)b(τ) dτ =

(
e−ω0ζt 2Aωω0ζ

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ω0

√
1 − ζ2t)

+ e−ω0ζt Aω(ω2 + ω2
0(2ζ2

− 1))
√

1 − ζ2ω0(ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0)
sin(ω0

√
1 − ζ2t)

−
2Aωω0ζ

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
A(ω2

0 − ω
2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt),

e−ω0ζt Aω(ω2
− ω2

0)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ω0

√
1 − ζ2t)

− e−ωζt Aωζ(ω2 + ω2
0)

√
1 − ζ2(ω4 + 2ω2ω2

0(2ζ2 − 1) + ω4
0)

sin(ω0

√
1 − ζ2t)

+
Aω(ω2

0 − ω
2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
2Aζω2ω0

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt)
)
, (5.17)

assuming that ζ , 0. If ζ = 0 and ω , ω0, the preceding expression is still valid.
When ζ = 0 and ω = ω0, a different computation must be done, and in this case we
compute ∫ t

0
eA(t−τ)b(τ) dτ =

(
A

2ω2
0
(sin(ω0t) − ω0t cos(ω0t)), A

2 t sin(ω0t)
)
. (5.18)

Note that, in all cases, the preceding expressions give the solution to the ordinary
differential equation when the initial conditions are (0, 0). Let us make some
comments on this solution.
1. ζ , 0: Note that (5.17) is not the steady-state response of the system, as was

the particular solution obtained for this problem in Example 4.3.20 using the
method of undetermined coefficients. The reason for the disparity is that the
expression above has the property that its initial conditions at t = 0 are (0, 0).

6Integration courtesy of Mathematica®.
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Note that, as t→∞, we have∫ t

0
eA(t−τ)b(τ) dτ ≈

(
−

2Aωω0ζ

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
A(ω2

0 − ω
2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt),

Aω(ω2
0 − ω

2)

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

cos(ωt)

+
2Aζω2ω0

ω4 + 2ω2ω2
0(2ζ2 − 1) + ω4

0

sin(ωt)
)
.

Notice that the first component of this is exactly the particular solution of
Example 4.3.20, while the second component is its time-derivative. This is as
it should be, given our conversion of the scalar second-order equation into a
vector first-order equation.

2. ζ = 0 and ω , ω0: In this case, there is no steady-state solution since the
homogeneous solution does not decay to zero as t→∞, and is indeed periodic
itself. Nonetheless, the solution (5.17) does have two components, one with
frequencyω and one with frequencyω0. While this does not quite disambiguate
the particular from the homogeneous solution7, we can nonetheless see from
the expression (5.17) that the particular solution of Example 4.3.20 is comprised
on the last two terms in the first component.

3. ζ = 0 and ω = ω0: In this case, there is again no steady-state solution; indeed
the solution “blows up” as t → ∞. This is as we saw in Example 4.3.20,
and is due to the physical phenomenon of “resonance.” Moreover, the first
component of (5.18) is not the particular solution from Example 4.3.20; the
particular particular solution (5.18) is prescribed to have initial condition (0, 0),
whereas, in the method of undetermined coefficients, it is the form of the solution
that is determined. •

5.3.3 Equations with distributions as right-hand side

In Section 4.4 we considered in some detail the situation of scalar linear ordinary
differential equations with distributional forcing. We saw there that one must fuss
a little bit with the manner in which things make sense, especially when dealing
with equations with time-varying coefficients. While it is possible to duplicate
this for systems of ordinary differential equations, to do so is mainly a matter of
notation. To keep things simple and focussed, in this section we consider two
aspects of systems of ordinary differential equations with distributional forcing:
(1) we give a distributional interpretation of the continuous-time state transition
map; (2) we consider in detail the situation for constant coefficient equations.

7A periodic function can have more than one frequency.
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5.3.3.1 A distributional interpretation of the continuous-time state transition
map An interesting connection can be made between the continuous-time state
transition map of Theorem 5.2.6 and the inhomogeneous equation with an appro-
priate delta-function as right-hand side. The following theorem gives the desired
result.

5.3.11 Theorem (The continuous-time state transition map as a solution to a distri-
butional differential equation) Let F be a system of linear homogeneous ordinary dif-
ferential equation withT = R, right-hand side (5.3), and suppose that A ∈ L1

loc(T; L(X; X)).
For s ∈ T, letΘs ∈ D ′(R; L(X; X)) be the regular distribution corresponding to the locally
integrable function t 7→ τ∗s1≥0Φ

c
A(t, s). ThenΘs is a solution to the distributional equation

Θ(1)
s = A ◦Θs + idX ⊗(τ∗sδ),

where, by A ◦Θs is as defined in Remark IV-3.2.53–3.
Proof Let Ξs : T→ L(X; X) be the solution to the initial value problem

Ξ̇s(t) = A(t)(Ξs), Ξs(s) = idX,

so that Θs is the distribution associated with the locally integrable function τ∗s1≥0Ξs.
We then have

(τ∗s1≥0Ξs)(1) = τ∗s1≥0Ξ
(1)
s + τ

∗

sδ ⊗ Ξs(s) = τ∗s1≥0A ◦ Ξs + idX ⊗(τ∗sδ).

Thus, replacing τ∗s1≥0Ξs with the regular distribution Θs,

Θ
(1)
s = A ◦Θs + idX ⊗(τ∗sδ),

as claimed. ■

5.3.3.2 Equations with constant coefficients Next we turn to the considera-
tion of systems of linear ordinary differential equations with distributional forcing.
Thus we let X be a finite-dimensional R-vector space, let A ∈ L(X; X), and let
β ∈ D ′(R; X). We seek solutions θ ∈ D ′(R; X) to the equation

θ(1) = A(θ) + β.

Since A is constant, the meaning of A(θ) is unambiguous, to wit

⟨A(θ);ϕ⟩ = A(⟨θ;ϕ⟩), ϕ ∈ D (R;R).

Let us denote, in this constant coefficient case,

Sol(F, β) = {θ ∈ D (R; X) | θ(1) = A(θ) + β}.

Given a system of linear homogeneous ordinary differential equations F with
right-hand side (5.3), let us define

LF : D ′(R; X)→ D ′(R; X)

θ 7→ θ(1)
− A(θ)
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and, accepting a mild abuse of notation that can be resolved by understanding
context,

LF : D ′(R; L(X; X))→ D ′(R; L(X; X))

Θ 7→ Θ(1)
− A ◦Θ,

where A(Θ) is as defined in Remark IV-3.2.53–1. With this notation, we first have
the following preparatory result.

5.3.12 Lemma (Convolution and systems of linear ordinary differential equations
with constant coefficients) Let F be a system of linear homogeneous ordinary differ-
ential equation with constant coefficients and with right-hand side (5.3). If θ ∈ D ′(R; X),
then

LF(θ) = LF(idX ⊗δ) ∗ θ.
Proof We compute need this identity about

convolution with idX ⊗δ

LF(θ) = LF((idX ⊗δ) ∗ θ) = ((idX ⊗δ) ∗ θ)(1)
− A((idX ⊗δ) ∗ θ)

= (idX ⊗δ)(1)
∗ θ − (A ◦ (idX ⊗δ)) ∗ θ) = LF(idX ⊗δ) ∗ θ,

using and . ■ convolution with delta

derivative of

convolutionWith the lemma at hand, we can easily prove the basic existence and uniqueness
theorem for (F, β), where F has constant coefficients.

5.3.13 Theorem (Existence and uniqueness of solutions for constant coefficient
systems of linear inhomogeneous ordinary differential equations with distri-
bution forcing) Let F be a systems of linear homogeneous ordinary differential equation
with constant coefficients. Then the following statements hold:

(i) if β ∈ D ′(R; X), then card(Sol(F, β)) ≥ 2;
(ii) if β ∈ D ′+(R; X), then card(Sol(F, β) ∩D ′+(R;R)) = 1;
(iii) if β ∈ D ′

−
(R; X)), then card(Sol(F, β) ∩D ′

−
(R;R)) = 1.

Proof Let us first establish the existence of two distribution solutions θ to the equation
LF(θ) = idX ⊗δ. We suppose that

F̂(t, x) = −A(x).

Let Ξ0 ∈ C∞(R; L(X; X)) be the solution to the initial value problem

Ξ̇0(t) = A ◦ Ξ0(t), Ξ0(0) = idX,

and denote Ξ+ = 1≥0Ξ0 and Ξ− = −σ∗1≥0Ξ0. Note that Ξ0(t) = eAt and that θΞ+ ∈
D ′+(R; L(X; X)) and θΞ− ∈ D

′
−

(R; L(X; X)).
From Theorem 5.3.11 we have LF(θΞ+) = idX ⊗δ. We claim that LF(θΞ−) = idX ⊗δ.

Since (σ∗1≥0)(1) = −δ, we have

(σ∗1≥0Ξ0)(1) = −Ξ0(0) ⊗ δ + σ∗1≥0Ξ
(1)
0 .
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Thus
LF(θΞ−) = idX ⊗δ − σ

∗1≥0Ξ
(1)
0 + A(σ∗1≥0Ξ0) = σ∗1≥0LF(Ξ0) + idX ⊗δ,

as claimed.
Note that this immediately gives

LF(idX ⊗δ) ∗ θΞ+ = LF((idX ⊗δ) ∗ θΞ+) = LF(θΞ+) = idX ⊗δ.

Similarly,
LF(idX ⊗δ) ∗ θΞ− = idX ⊗δ,

showing that both θΞ+ and θΞ− are multiplicative inverses of LF(idX ⊗δ) in the ring
D ′(R; L(X; X)) with the convolution product.need some background to

this Now we proceed with the proof of the theorem, using the notation just introduced.
(i) We have, using Lemma 5.3.12 and the computations above,

LF(θΞ+ ∗ β) = LF(idX ⊗δ) ∗ (θΞ+ ∗ β) = (LF(idX ⊗δ) ∗ θΞ+) ∗ β = δ ∗ β = β,

and so θΞ+ ∗ β ∈ Sol(F, β). We similarly have θΞ− ∗ β ∈ Sol(F, β).
(ii) Suppose that θ1, θ2 ∈ Sol(F, β) ∩D+(R;R). Then

LF(θ1) = β, LF(θ2) = β
=⇒ LF(idX ⊗δ) ∗ θ1 = β, LF(idX ⊗δ) ∗ θ2 = β

=⇒ θ1 = θξ+ ∗ β, θ2 = θξ+ ∗ β

=⇒ θ1 = θ2.

Here we use the fact that θΞ+ is the unique inverse of LF(idX ⊗δ) inD ′+(R; L(X; X)), by .what

(iii) This follows in the same manner as the previous part of the theorem. ■

In summary, distributional equations for constant coefficient equations always
have solutions, and if we look for solutions in D ′+(R; X) (resp. D ′

−
(R; X)) for equa-

tions where the forcing is in D ′+(R; X) (resp. D ′
−
(R; X)), then solutions are unique.

Moreover, the proof of the theorem furnishes formulae for the unique solutions in
D ′+(R; X) andD ′

−
(R; X). Let us present this, outside the stodgy confines of a proof,

in the case ofD ′+(R; X).

5.3.14 Corollary (Solutions to distributional differential equations in D ′
+

(R;R)) For
a system of linear homogeneous ordinary differential equation F with constant coefficients
and with right-hand side

F̂(t, x) = A(x),

let

Ξ+(t) =

Φc
A(t, 0), t ≥ 0,

0, t < 0.

Then the unique solution inD ′+(R; X) to (F, β) for β ∈ D ′+(R; X) is θΞ+ ∗ β.
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Note that the uniqueness of solutions in D ′+(R; X) and D ′
−
(R; X) are in contrast

to the situation in Proposition 5.3.2 where, to achieve uniqueness, one needs to
also prescribe initial conditions. One might then wonder whether the rôle of
initial conditions can be mimicked for distributional differential equations. This is
possible, and is presented in Proposition 5.3.17 below.

Next we further connect solutions to distributional equations to their non-
distributional counterparts by constructing the distributional solution to a non-
distributional equation, including initial conditions.

Let us get started by noting that, if F is a system of linear homogeneous ordi-
nary differential equation with constant coefficients and if b ∈ L1

loc(R; X) satisfies
inf supp(b) > −∞, then there is a unique solution θ ∈ D ′+(R; X) to (F, θb). This
is a consequence of Theorem 5.3.13(ii). One might then wonder whether there
are other distributional solutions, not in D ′+(R; X), to (F, θb). The following result
indicates the constraints on other such solutions.

5.3.15 Proposition (Uniqueness of distributional solutions to non-distributional
equations) Let F be a system of linear homogeneous ordinary differential equation with
right-hand side

F̂ : R × X→ X
(t, x) 7→ A(x),

and let b ∈ L1
loc(R; X) satisfy inf supp(b) > −∞. Then, if θ ∈ Sol(F, θb), we have

⟨θ;ϕ⟩ = ⟨θΞ;ϕ⟩, ϕ ∈ D ((inf supp(b),∞);R),

where ξ satisfies

ξ̇(t) = A(ξ(t)) + b(t), t ∈ (inf supp(b),∞).

In particular,
Sol(F, 0) = {θξ | ξ ∈ Sol(F)},

i.e., solutions to the homogeneous equation inD ′(R; X) are exactly the regular distributions
associated to the usual solutions of the homogeneous equation.

Proof The idea of the proof of Proposition 4.4.9 for scalar equations applies in this
case as well. ■

An important consequence of the preceding result is the following complete
characterisation of Sol(F, β) for β ∈ D ′+(R; X). Of course, a similar result holds for
D ′
−
(R; X).

5.3.16 Corollary (Characterisation of Sol(F, β) for β ∈ D ′
+

(R; X)) Let F be a system of linear
homogeneous ordinary differential equation with constant coefficients, let β ∈ D ′+(R; X),
and let θ0 be the unique solution to (F, β) inD ′+(R; X), as in Theorem 5.3.13(ii). Then

Sol(F, β) = {θ0 + θξ | ξ ∈ Sol(F)}.
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Proof If θ ∈ Sol(F, β) then LF(θ−θ0) = 0. By Proposition 5.3.17, this means that θ−θ0
is a regular distribution associated to a solution of the homogeneous equation F. ■

Now let us see how we can resolve the seeming paradox of the uniqueness
of solutions asserted in Proposition 4.4.9 with the non-uniqueness arising from
Proposition 5.3.2 (due to dependence on initial conditions). We do this by conjuring
a distribution as right-hand side that incorporates the initial conditions.

5.3.17 Proposition (Distributional solutions of non-distributional equations with ini-
tial conditions) For a system of linear homogeneous ordinary differential equation F with
constant coefficients and with right-hand side

F̂(t, x) = A(x),

for b ∈ L1
loc(R; X), and for t0 ∈ R, the following statements are equivalent for ξ : R→ X:

(i) ξ = τ∗t0
1≥0ξt0 , where ξt0 satisfies the initial value problem

ξ̇(t) = A(ξ(t)) + b(t), ξ(t0) = x0;

(ii) the distribution θξ is the unique solution inD ′+(R; X) to (F, β), where

β = θτ∗t0 1≥0b + (τ∗t0
δ)x0.

Moreover, θξ is the unique solution inD ′(R; X) to (F, β).
Proof The proof is a mild notational adaptation of that for Proposition 4.4.11 in the
case of k = 1. ■

Exercises

5.3.1 Consider the first-order scalar linear homogeneous ordinary differential
equation with right-hand side F̂(t, x) = a(t)x + b(t) for a, b ∈ L1

loc(T;R). Using
your result from Exercise 5.2.6, use Corollary 5.3.3 to determine the solution
to the initial value problem

ξ̇(t) = a(t)ξ(t) + b(t), ξ(t0) = x0,

thinking of this as a system of linear inhomogeneous ordinary differential
equations in the one-dimensional vector space R.

5.3.2 Consider the scalar linear inhomogeneous ordinary differential equation F
given by

F(t, x, x(1), x(2)) = x(2) + ω2x − sin(ωt)

for ω ∈ R>0. Answer the following questions.
(a) Use the method of undetermined coefficients to obtain a particular so-

lution for F.
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(b) Convert F into a system of linear inhomogeneous ordinary differential
equations F1 in R2 with right-hand side

F̂ : T ×R2
→ R2

(t, (x1, x2)) 7→ A
[
x1

x2

]
+ b(t),

giving explicit formulae for A ∈ L(R2;R2) and b : T→ R2.
(c) Show that

eAt =

[
cos(ωt) 1

ω sin(ωt)
−ω sin(ωt) cos(ωt)

]
.

(d) Compute

ξp,b(t) =
∫ t

0
eA(t−τ)b(τ) dτ.

Use your answer to give a particular solution for the scalar equation F.
(e) Explain how the particular solutions from parts (a) and (d) are the same,

and explain how to describe the difference between them.
5.3.3 For the linear transformations A ∈ L(Rn;Rn) of Exercise 5.2.11, use Theo-

rem 5.3.8 to determine the solution to the initial value problem

ξ̇(t) = Aξ(t) + b(t), ξ(0) = 0,

with b as follows:

(a) b(t) = (0, 1);
(b) b(t) = (cos(t), 0);
(c) b(t) = (e2t, 0);
(d) b(t) = (sin(t), 0, 1);
(e) b(t) = (0, e−t, 0);

(f) b(t) = (sin(2t), 0, 1);
(g) b(t) = (1, 0, 0, 1);
(h) b(t) = (sin(t), 0, 0, cos(t));
(i) b(t) = (0, 0, 0, 0, 0).

5.3.4 Let V be a finite-dimensional R-vector space, let A ∈ L(V; V), and let x0 ∈ V.
Show, by direct computation, that the unique solution in D ′+(R; V) to the
equation

θ(1) = A(θ) + x0 ⊗ δ

is given by θ = θ1≥0ξ, where ξ ∈ C∞(R; V) is the solution to the initial value
problem

dξ
dt

(t) = A ◦ ξ(t), ξ(0) = x0.

Demonstrate that you understand each part of the computation by pointing
to the place in the text where your assertion is defined or shown to make
sense.
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Section 5.4

Laplace transform methods for systems of ordinary differential
equations

In this section we consider an application of the causal CLT to systems of ordi-
nary differential equations. As with our consideration of scalar equations in Sec-
tion 4.5, we work with linear constant coefficient equations, both homogeneous
and inhomogeneous.

Do I need to read this section? Like Section 4.5, one might skip this chapter
at a first reading, until one is confronted with the transfer function methods of
Chapter 7, and the use of the tool of the causal CLT makes more sense. •

5.4.1 Systems of homogeneous equations

Now we turn to studying systems of equations using the causal CLT, start-
ing with the homogeneous case. As we did in Section 5.2, we shall work with
systems whose state space is a finite-dimensional R-vector space V. We refer to
Section IV-9.1.7 for a discussion of how the causal CLT work in this setting.

We consider a system of linear ordinary differential equations F with constant
coefficients in an n-dimensional R-vector space V, and with right-hand side

F̂ : R≥0 × V→ V
x 7→ A(x)

for A ∈ L(V; V). The associated initial value problem we study is then

ξ̇(t) = A(ξ(t)), ξ(0) = x0. (5.19)

Let us take the causal CLT of this initial value problem.

5.4.1 Proposition (Causal CLT of system of homogeneous equations) The causal
CLT of the solution of the initial value problem (5.19) is

L ∞

C (ξ)(z) = (z idV −A)−1x0,

andL ∞

C (ξ) is defined on

{z ∈ C | Re(z) > Re(λ) for all λ ∈ spec(A)}.

Proof This is a direct computation using Proposition IV-9.1.20:

zL ∞C (ξ)(z) − ξ(0) = AL ∞C (ξ)(z),

from which the result follows immediately after noting that z idV −A is invertible if the
real part of z exceeds the real part of any eigenvalue of A. ■
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As with scalar equations, the application of the causal CLT permits a solution
for systems of linear homogeneous equations with constant coefficients using just
algebraic computations in the transformed variables. In order to understand the
inverse (z idV −A)−1, let us think about how one may compute this inverse. We shall
suppose that we have a basis {e1, . . . , en} for V and let A ∈ L(Rn;Rn) be the matrix
representative for A. Then the matrix representative for (z idV −A)−1 is (zIn − A)−1.
For B ∈ L(Rn;Rn), let us denote by Cof(B) the n × n-matrix whose ( j, k)th entry is
(−1) j+k det B̂( j, k), where B̂( j, k) is the (n − 1) × (n − 1)-matrix obtained by deleting
the jth row and kth column from B. Then, by Theorem I-5.3.10,

Cof(B)TB = B Cof(B)T = (det B)In.

Therefore,

(zIn − A)−1 =
Cof(zIn − A)T

det(zIn − A)
.

Note that the entries of Cof(zI−A) are determinants of (n−1)×(n−1)-matrices whose
entries are polynomials of degree at most 1 in z. Thus the entries of Cof(zIn − A)
are polynomials of degree at most n − 1. Thus, since det(zIn − A) is a monic
polynomial of degree n in z, the entries of (zIn − A)−1 are rational functions in z
whose numerator polynomial has degree strictly less than that of the denominator
polynomial. Therefore, the inverse causal CLT of (zIn − A)−1 can be computed by
performing a partial fraction expansion on each of its entries, and then applying
the inverse causal CLT of Example IV-9.1.15.

However, the inverse causal CLT of (z idV −A)−1 is known to us already.

5.4.2 Proposition (Causal CLT of operator exponential) For an n-dimensionalR-vector
space V and for A ∈ L(V; V), denote

expA : R≥0 → L(V; V)

t 7→ eAt.

ThenL ∞

C (expA)(z) = (z idV −A)−1.
Proof By Theorem 5.2.6(i) and since expA(t) = Φc

A(t, 0), we note that expA satisfies the
initial value problem

d expA

dt
(t) = A ◦ expA(t), expA(0) = idV .

Taking the causal CLT of this initial value problem gives

z L ∞C (expA)(z) − idV = A ◦L ∞C (expA)(z) =⇒ L ∞C (expA)(z) = (z idV −A)−1,

as claimed. ■

Let’s illustrate this in a simple example.



4465 Systems of ordinary differential and ordinary difference equations2022/03/07

5.4.3 Example (Operator exponential via the causal CLT) We consider the linear map
A ∈ L(R2;R2) considered in Example 5.2.27:

A =
[
−7 4
−6 3

]
.

We compute

(zI2 − A)−1 =

[
z−3

z2+4z+3
4

z2+4z+3
−

6
z2+4z+3

z+7
z2+4z+3

]
.

We then use partial fraction expansions:

z − 3
z2 + 4z + 3

= −
2

z + 1
+

3
z + 3

,

4
z2 + 4z + 3

=
2

z + 1
−

2
z + 3

,

−
6

z2 + 4z + 3
= −

3
z + 1

+
3

z + 3
,

z + 7
z2 + 4z + 3

=
3

z + 1
−

2
z + 3

.

Using Example IV-9.1.15–2, we apply the inverse transform to get

eAt =

[
3e−3t

− 2e−t
−2e−3t + 2e−t

3e−3t
− 3e−t

−2e−3t + 3e−t

]
,

just as in Example 5.2.27. •

It is a matter of taste whether one thinks that using the causal CLT to compute
the operator exponential is preferable to Procedure 5.2.26. It is, however, not
such an important matter to resolve in favour of one method or the other; actually
computing the operator exponential is seldom of interest per se. What is certainly
true is that with the causal CLT one loses the insight offered by invariant subspaces
in Procedure 5.2.26. The benefits of the causal CLT in this context arises in system
theory, where complex function techniques offer some genuine insights.

5.4.2 Systems of inhomogeneous equations

Next we consider systems of homogeneous equations. Thus we have an ordi-
nary differential equation with state space V and with right-hand side

F̂ : R≥0 × V→ V
x 7→ A(x) + b(t),

(5.20)

for A ∈ L(V; V) and for b : R≥0 → V. The associated initial value problem we
consider is

ξ̇(t) = A(ξ(t)) + b(t), ξ(0) = x0. (5.21)

We can, of course, easily take the causal CLT of this initial value problem to get the
following.
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5.4.4 Proposition (Causal CLT of system of inhomogeneous equations) Consider the
system of scalar ordinary differential equations with right-hand side (5.20), and suppose
that b is continuous and satisfies b ∈ LT∞,+(R≥0; V). The causal CLT of the solution of the
initial value problem (5.21) satisfies

L ∞

C (ξ)(z) = (z idV −A)−1(x0 +L
∞

C (b)(z)).

Proof The proof is an easy adaptation of that of Proposition 5.4.1. ■

As was the case with our discussion of scalar inhomogeneous equations in
Section 4.5.2, the preceding result can be interpreted in two ways, one having
theoretical value and the other as a means of computing solutions. We shall
explore both.

The first result makes a connection with the formula given in Corollary 5.3.3
for solutions to systems of linear inhomogeneous equations, in the general setting
of time-varying systems.

5.4.5 Proposition (Causal CLT and convolution for solutions of linear inhomoge-
neous equations) Consider the system of scalar ordinary differential equations with
right-hand side (5.20), and suppose that b ∈ LT∞,+(R≥0; V). Then the solution to the initial
value problem (5.21) is

ξ(t) = eAt(x0) + expA ∗b(t).
Proof This follows immediately from Corollary 5.3.3, after understanding that

expA ∗b(t) =
∫ t

0
eA(t−τ)(b(τ)) dτ.

However, here we shall give a proof using the causal CLT, valid when b ∈ LT∞,+(R≥0; V).
From Proposition 5.4.4 we have

L ∞C (ξ)(z) = (z idV −A)−1(x0) + (z idV −A)−1L ∞C (b)(z).

By Proposition 5.4.2 we have

(z idV −A)−1 = L ∞C (expA)(z).

For x ∈ V, let us denote
evx : L(V; V)→ V

A 7→ A(x).

We then have, noting that evx0 is a linear map,

L ∞C (evx0
◦ expA)(z) = evx0

◦L ∞C (expA)(z) = (z idV −A)(x0).

Also, by Proposition IV-9.1.10,

L ∞C (expA ∗b)(z) = L ∞C (expA)(z)L ∞C (b)(z) = (z idV −A)L ∞C (b)(z).

Therefore,
L ∞C (ξ)(z) = evx0

◦L ∞C (expA) +L ∞C (expA ∗b)(z).
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Taking the inverse causal CLT gives

ξ(t) = evx0
◦ eAt + expA ∗b(t) = eAt(x0) + expA ∗b(t),

as claimed. ■

Finally, in the case when b is an also pretty interesting function (meaning that,
in a basis for V, the components of b are also pretty uninteresting functions), we
can use Proposition 5.4.4, and partial fraction expansions, to compute solutions.
We only validate this by a simple example since, in reality, this is not something
one ever does.

5.4.6 Example (Solving systems of inhomogeneous equations using the causal
CLT) We take V = R2 and

A =
[

0 1
−ω2 0

]
, b(t) =

[
0

sin(ωt)

]
.

We then calculate

(zI2 − A)−1 =

[ z
z2+ω2

1
z2+ω2

−
ω2

z2+ω2
z

z2+ω2

]
, L ∞

C (b)(z) =
[

0
ω

z2+ω2

]
.

Thus, by Proposition 5.4.4,

L ∞

C (ξ)(z) =
[ z

z2+ω2
1

z2+ω2

−
ω2

z2+ω2
z

z2+ω2

] [
x01

x02

]
+

[ z
z2+ω2

1
z2+ω2

−
ω2

z2+ω2
z

z2+ω2

] [
0
ω

z2+ω2

]
=

 ω
(z2+ω2)2 +

x01z+x02
z2+ω2

ωz
(z2+ω2)2 +

x02z−x01ω2

z2+ω2

 .
The last line was arrived at by performing the matrix multiplication, then perform-
ing a partial fraction expansion of the entries of the resulting vector. This, then,
is a bit of effort that we do not fully illustrate. In any case, one can apply the
conclusions of Example IV-9.1.15–4 and Example IV-9.1.15–5 to arrive at

ξ(t) =
[

1
2ω2 sin(ωt) − t

2ω cos(ωt) + x01 cos(ωt) + x02
ω sin(ωt)

t
2 sin(ωt) + −ωx01 sin(ωt) + x02 cos(ωt)

]
.

We encourage the reader to understand the relationship between this answer and
the one from Example 4.5.7. •

As with systems of homogeneous equations, the use of the Laplace transform
to solve inhomogeneous equations does not have a lot to recommend it from a
computational point of view. The advantages it has come more from exploiting
the algebraic structure of the differential equation as a function of the transformed
independent variable z.
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Exercises

5.4.1 Determine the causal CLT of the solution of the initial value problem

ξ̇(t) = Aξ(t), ξ(0) = x0,

for the following choices of A ∈ L(Rn;Rn) and x0 ∈ Rn:

(a) A =
[
2 −5
0 3

]
,

x0 = (0, 1);

(b) A =
[
−1 −2
1 −3

]
,

x0 = (2,−3);

(c) A =
[
4 −1
4 0

]
,

x0 = (1, 1);

(d) A =

5 0 −6
0 2 0
3 0 −4

,
x0 = (−3,−1, 0);

(e) A =

5 0 −6
1 2 −1
3 0 −4

,
x0 = (1, 0, 1);

(f) A =

4 2 −4
2 0 −4
2 2 −2

,
x0 = (4, 1, 2);

(g) A =


2 1 0 1
1 3 −1 3
0 1 2 1
1 −1 −1 −1

,
x0 = (1,−1, 0, 1);

(h) A =


−7 0 0 −4
−13 −2 −1 −8

6 1 0 4
15 1 0 9

,
x0 = (−1,−1, 3,−2);

(i) A =


1 4 −2 0 9
0 −2 1 2 −6
−2 4 −1 3 0
−9 4 1 0 2
4 0 3 −1 3

,
x0 = (0, 0, 0, 0, 0).

NB. These are the same initial value problems you worked out in Exer-
cise 5.2.12.

5.4.2 Using partial fraction expansion, compute eAt for the linear transformations
A ∈ L(Rn;Rn) from Exercise 5.4.1.

5.4.3 Determine the causal CLT of the solution of the initial value problem

ξ̇(t) = Aξ(t) + b(t), ξ(0) = 0,

for the choices of A ∈ L(Rn;Rn) from Exercise 5.4.1 and for the following b:

(a) b(t) = (0, 1);
(b) b(t) = (cos(t), 0);
(c) b(t) = (e2t, 0);
(d) b(t) = (sin(t), 0, 1);
(e) b(t) = (0, e−t, 0);

(f) b(t) = (sin(2t), 0, 1);
(g) b(t) = (1, 0, 0, 1);
(h) b(t) = (sin(t), 0, 0, cos(t));
(i) b(t) = (0, 0, 0, 0, 0).
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NB. These are the same initial value problems you worked out in Exer-
cise 5.3.3.

5.4.4 Using partial fraction expansion, determine the solution to the initial value
problems from Exercise 5.4.3.
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Section 5.5

Phase-plane analysis for differential equations

In this section we consider a way of representing the behaviour of ordinary
differential equations whose state space is a subset ofR2 via their “phase portraits.”
We have already used this method informally on a number of occasions, and in
this section we shall be a little more systematic. We begin in Section 5.5.1 by
exhaustively examining phase portraits for linear systems in two variables. In
Section 5.5.2 we consider phenomenon that can happen for nonlinear systems.
In this case, the presentation is essentially example driven, and we give little by
way of rigorous methodology. This analysis appears a little ad hoc, however, the
methods can give more insight into what is “really happening” with a differential
equation. Also, the ideas that we encounter in the simple two-dimensional setting
suggest techniques that may be profitably applied in higher-dimensions. These
ideas are discussed in Section 5.5.3.

5.5.1 Phase portraits for linear systems

We begin our discussion with a consideration of phase portraits for systems of
linear ordinary differential equations inR2 with constant coefficients. Thus we are
considering differential equations F with

F̂ : T ×R2
→ R2

(t, (x1, x2)) 7→
[
A11 A12

A21 A22

]
︸      ︷︷      ︸

A

[
x1

x2

]
.

In Section 5.2.2 we learned that the solution to the initial value problem[
ξ̇1(t)
ξ̇2(t)

]
=

[
A11 A12

A21 A22

] [
ξ1(t)
ξ2(t)

]
,

[
ξ1(0)
ξ2(0)

]
= x0 =

[
x0,1

x2,0

]
,

is ξ(t) = eAtx0. What we shall do in this section is represent these solutions in a
particular way, such as we initially discussed in Example 3.1.25. To be specific,
we shall plot the solutions as parameterised curves in the (x1, x2)-plane. In doing
this, we shall represent, not just one solution, but the entirety of solutions with
various initial conditions. By doing this, one gets a qualitative understanding of
the behaviour of solutions that is simply not achievable by looking at a closed-
form solution or by looking at plots of t 7→ ξ1(t) and t 7→ ξ2(t) of fixed solutions
with a single initial condition. The resulting collection of solutions, represented as
parameterised curves, is called the phase portrait.

We shall break down the analysis into various cases, based on the character of
eigenvalues and eigenvectors.
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5.5.1.1 Stable nodes We first consider the case where there are two negative
real eigenvalues. In this case, there are a few cases to consider, but all fall into the
general category of what we call a stable node, since, as we shall see, all solutions
tend to (0, 0) as t→∞.

Distinct eigenvalues

Here we suppose that we have eigenvalues λ1, λ2 ∈ R with λ1 < λ2 < 0. The
behaviour in the case is then determined by the eigenvectors. Let us first look at
the simple case where the eigenvectors are the standard basis vectors e1 = (1, 0)
and e2 = (0, 1). In this case, A is given by

A =
[
λ1 0
0 λ2

]
.

Then [
ξ1(t)
ξ2(t)

]
= eAt

[
ξ1(0)
ξ2(t)

]
=

[
ξ1(0)eλ1t

ξ2(0)eλ2t

]
.

In Figure 5.1a we show the phase portrait, i.e., the family of solutions plotted as
parameterised curves in the (x1, x2)-plane. Let us make a few comments about the
nature of the phase portrait so as to explain the nature of its essential features.
1. The eigenvectors, which are e1 and e2 in this case, show up as lines through the

origin with the property that solutions that start on these lines remain on these
lines. These are, then, invariant subspaces for the dynamics. In Figure 5.1a
these are indicated in red. In this case, because the eigenvalues are negative,
the solutions along these lines approach (0, 0) as t→∞, as can be seen from the
direction of the arrows.

2. Solutions corresponding to other initial conditions also approach (0, 0) as t→∞.
From Figure 5.1a we can see that all of these other solutions approach (0, 0)
tangent to the eigenvector e2. The reason for this is that the eigenvalue λ1 is the
“more negative” eigenvalue, and so solutions decay to zero more quickly in the
direction of the corresponding eigenvector e1.
In the phase portrait of Figure 5.1a the eigenvectors are the standard basis

vectors, and this was selected to make the process easier to visualise and explain.
However, typically the eigenvectors are not the standard basis vectors, of course.
However, the same ideas apply: (1) the eigenvectors represent invariant subspaces
for the dynamics and (2) solutions approach (0, 0) more quickly in the direction of
the “more negative” eigenvector. Let us illustrate this with an example, taking

A =
[
−

5
3

1
3

2
3 −

4
3

]
.

In this case we compute the eigenvalues of A to beλ = −1 andλ2 = −2, i.e., the same
eigenvalues as in the example illustrated in Figure 5.1a. Corresponding eigenvec-
tors are v1 = (1,−1) and v2 = (1, 2). In Figure 5.1b we show the phase portrait. In
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(a) Stable node with the distinct eigenval-
ues λ1 = −2 and λ2 = −1, and standard
basis vectors as eigenvectors
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(b) Stable node with distinct eigenvalues
λ1 = −2 and λ2 = −1 and eigenvectors
v1 = (1,−1), and v2 = (1, 2)
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(c) Stable node with repeated eigenvalue
λ = −1 and geometric multiplicity 2
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(d) Stable node with repeated eigenvalue
λ = −1 and geometric multiplicity 1

Figure 5.1 Stable nodes

red we denote the invariant subspaces corresponding to the eigenvectors. Note
that, essentially, once one understand the phase portrait in Figure 5.1a with the
standard basis vectors as eigenvectors, it is a matter of “distortion” to produce the
phase portrait of Figure 5.1b with its different eigenvectors.
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Repeated eigenvalue with geometric multiplicity 2

Next we consider the case where A has a single eigenvalue λ ∈ R<0 with ma(λ,A) =
mg(λ,A) = 2. In this case note that we simply have

A =
[
λ 0
0 λ

]
=⇒ eAt =

[
eλt 0
0 eλt

]
.

That is to say, all vectors are eigenvectors. Thus the phase portrait of Figure 5.1c is
perhaps not surprising.

Repeated eigenvalue with geometric multiplicity 1

Here we again consider the case where A has a single eigenvalue λ ∈ R<0 with
ma(λ,A) = 2. But in this case we assume that mg(λ,A) = 1. A representative
example is given by

A =
[
λ 1
0 λ

]
=⇒ eAt =

[
eλt t
0 eλt

]
.

The phase portrait is shown in Figure 5.1d, with the single invariant subspace
indicated in red.

5.5.1.2 Unstable nodes The cases we consider in this section are rather like
those in the previous section, except that here we will work with positive eigenval-
ues. In this case we have an unstable node since all solutions, except the one with
initial condition (0, 0), diverge to infinity as t → ∞. The analysis is quite like that
for stable nodes, so we will be briefer.

Distinct eigenvalues

We first consider the case where A has distinct negative real eigenvalues. In this
case, there will be two linearly independent eigenvectors that will each span a
one-dimensional invariant subspace for the differential equation. Consider first
the case where

A =
[
λ1 0
0 λ2

]
=⇒ eAt =

[
eλ1t 0
0 eλ2t

]
for 0 < λ1 < λ2. In this case the eigenvectors are the standard basis vectors e1

and e2. The phase portrait is shown in Figure 5.2a for this case. We see that,
the phase portrait is, in some sense, the “opposite” of that in Figure 5.1a for a
stable node. One still has the invariant subspaces, but now the parameterised
curves for solutions are diverging from the equilibrium at (0, 0). Note that, since
the divergence from (0, 0) is faster in the direction of e2, solution curves approach
(0, 0) faster going backwards in time. This is why solutions approach (0, 0) tangent
to the e1-direction.
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(a) Unstable node with the distinct eigen-
values λ1 = 1 and λ2 = 2, and standard
basis vectors as eigenvectors
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(b) Unstable node with distinct eigenval-
ues λ1 = 1 and λ2 = 2 and eigenvectors
v1 = (1,−1), and v2 = (1, 2)
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(c) Unstable node with repeated eigen-
value λ = 1 and geometric multiplicity 2
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(d) Unstable node with repeated eigen-
value λ = 1 and geometric multiplicity 1

Figure 5.2 Unstable nodes

Let us also consider a case where the eigenvectors are not the standard basis
vectors. Here we take

A =
[

4
3

1
3

2
3

5
3

]
,

which has eigenvalues λ1 = 1 and λ2 = 2. Associated eigenvectors are v1 = (1,−1)
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and v2 = (2, 1). As we see in Figure 5.2b, the phase portrait is the expected
“distortion” of the phase portrait from Figure 5.2a.

Repeated eigenvalue with geometric multiplicity 2

Next we consider the case of a positive real eigenvalueλwith ma(λ,A) = mg(λ,A) =
2. In this case, A is necessarily given by

A =
[
λ 0
0 λ

]
=⇒ eAt =

[
eλt 0
0 eλt

]
.

In this case, every one-dimensional subspace is an invariant subspace along which
solutions diverge to∞. The phase portrait is shown in Figure 5.2c, and shows the
expected features.

Repeated eigenvalue with geometric multiplicity 1

The final unstable node is associated to a positive eigenvalue λ with ma(λ,A) =
2 and mg(λ,A) = 1. In this case, we have only one one-dimensional invariant
subspace associated to an eigenvector. In Figure 5.2d we show the phase portrait
for this case associated with the typical example

A =
[
λ 1
0 λ

]
=⇒ eAt =

[
eλt t
0 eλt

]
.

Again, we note that all solution curves, except for the one at the equilibrium (0, 0),
diverge to∞ as t→∞.

5.5.1.3 Saddle points The next case we consider is where the real eigenvalues
λ1 and λ2 satisfy λ1 < 0 < λ2. In this case we have what is called a saddle
point, in reference to the setting of a function of two variables at a point where
the derivative of the function vanishes and its Hessian has one positive and one
negative eigenvalue.

In this case, eigenvectors for the distinct eigenvalues are necessarily linearly
independent, so we do not have to carefully consider cases of differing algebraic
and geometric multiplicities. Let us begin with the special case

A =
[
λ1 0
0 λ2

]
=⇒ eAt =

[
eλ1t 0
0 eλ2t

]
,

where the eigenvectors are the standard basis vectors e1 and e2. In Figure 5.3a we
show the phase portrait in this case. Let us make a few comments on what we see.
1. There are two invariant subspaces corresponding to the linearly independent

eigenvectors. On the invariant subspace associated with the negative eigen-
value, the solutions converge to (0, 0) as t → ∞. On the invariant subspace
associated with the positive eigenvalue, solutions diverge to∞ as t→∞.
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(a) Saddle point with eigenvalues λ1 =
−1 andλ2 = 2, and standard basis vectors
as eigenvectors
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(b) Saddle point with eigenvalues λ1 =
−1 and λ2 = 2, and eigenvectors v1 =
(1,−1) and v2 = (2, 1)

Figure 5.3 Saddle points

2. All other solutions, except for that at the equilibrium point (0, 0), diverge to ∞
as t→∞, but do so after possibly falling temporarily under the influence of the
negative eigenvalue.
We can, of course, adapt this to situations where the eigenvectors are not the

standard basis vectors. To illustrate, let us take

A =
[
1 2
1 0

]
.

Then the eigenvalues of A are λ1 = −1 and λ2 = 2, and the associated eigenvectors
v1 = (1,−1) and v2 = (2, 1). The phase portrait here we depict in Figure 5.3b. It is,
as expected, a “distortion” of the phase portrait in Figure 5.3a with the standard
basis vectors as eigenvectors.

5.5.1.4 Centres We next consider cases where A has complex eigenvalues, first
looking at the case where the eigenvalues of A are purely imaginary, say λ1 = iω
and λ2 = −iω, with ω ∈ R>0. In this case we say we have a centre. The prototypical
case here is

A =
[
0 −ω
ω 0

]
.
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In this case we have, using Procedure 5.2.23,

eAt =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
.

Note that, if [
ξ1(t)
ξ2(t)

]
= eAt

[
ξ1(0)
ξ2(0)

]
,

then ∥ξ(t)∥ = ∥ξ(0)∥. Thus the parameterised solution curves reside in circles
centred at (0, 0), and this is illustrated in Figure 5.4a.
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(a) “Canonical” centre
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(b) “Noncanonical” centre

Figure 5.4 Centres

For more generic cases, the solutions will still be periodic, and the solution
curves will then live on ellipses. To describe the ellipses, we suppose that we have
eigenvalues λ1 = iω and λ2 = −iω. We suppose that the associated eigenvectors
are w1 = u + iv and w2 = u − iv for u,v ∈ R2. To illustrate how u and v prescribe
the ellipses traced out by solutions, we shall consider an example:

A =
[

1
3 −

2
3

5
3 −

1
3

]
.

The eigenvalues in this case are λ1 = i and λ2 = −i. The eigenvectors are w1 = u+ iv
and w2 = u − iv, where

u = (1, 5), v = (3, 0).
In Figure 5.4b we illustrate the phase portrait in this case, and also show scaled
eigenvectors in red, and a box centred at (0, 0) whose sides are parallel to the
eigenvectors. As one can see, the ellipse along which solution curves evolve is the
unique ellipse tangent to an appropriately scaled box.
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5.5.1.5 Stable spirals We continue thinking about cases with complex eigen-
values, but now we consider eigenvalues with nonzero real part. First we consider
the situation where the real part is negative, this being called a stable spiral. First
let us consider the prototypical case where

A =
[
σ −ω
ω σ

]
,

with eigenvalues λ1 = σ + iω and λ2 = σ − iω, where we take σ ∈ R<0. We have,
using Procedure 5.2.23,

eAt = eσt

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
.

The phase portrait in this case we depict in Figure 5.5a, and one can see why the
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(a) “Canonical” stable spiral
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(b) “Noncanonical” stable spiral

Figure 5.5 Stable spirals

name “stable spiral” is applied in this case.
We can also consider a more generic case to illustrate, as in the case of centres,

the rôle of the eigenvectors. We take

A =
[

7
30 −

2
3

5
3 −

13
30

]
,

and determine the eigenvalues to be λ1 = −
1
10 + i and λ2 = −

1
10 − i. The eigenvectors

are w1 = u + iv and w2 = u − iv, where

u = (1, 5), v = (3, 0),
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i.e., the eigenvectors are the same as for the centre in the previous section. In
Figure 5.5b we depict the phase plane in this case, and also overlay the box used
to illustrate the rôle of the eigenvectors in the case of a centre.

5.5.1.6 Unstable spirals Next we consider the case where A has complex eigen-
values with positive real part, this being the case of an unstable spiral. The “canon-
ical” case is exactly like that for a stable spiral, except now σ ∈ R>0. The phase
portrait in this case is depicted in Figure 5.6a. The situation is the “opposite” of
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(a) “Canonical” unstable spiral
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(b) “Noncanonical” unstable spiral

Figure 5.6 Unstable spirals

that for the stable spiral in Figure 5.5a.
We can also give a more generic case by considering

A =
[

13
30 −

2
3

5
3 −

7
30

]
.

In this case, the eigenvalues are λ1 =
1

10 + i and λ2 =
1
10 − i and the eigenvectors are

w1 = u + iv and w2 = u − iv, where

u = (1, 5), v = (3, 0).

Note that these are the same eigenvalues as for the centre and the stable spiral
considered above. In Figure 5.6b we show the phase portrait in this case, along
with a box determined by the eigenvectors as in our discussion of the spiral above.
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5.5.1.7 Nonisolated equilibrium points The remaining situations we consider
are “degenerate” and do not arise as frequently as the preceding cases (although
they do arise). All of these correspond to cases of a zero eigenvalue. Note that,
if one has a zero eigenvalue and if v is any corresponding eigenvector, then any
multiple of v is an equilibrium point for the differential equation. Thus, when one
is considering cases with zero eigenvalues, the equilibrium point at (0, 0) is not
isolated.

Let us consider the various cases.

Zero eigenvalue with algebraic multiplicity 1

We begin by supposing that A has eigenvalues λ1 = 0 and λ2 = λ , 0. In this case,
we suppose that

A =
[
0 0
0 λ

]
.

The behaviour of the solution curves in the phase portrait depends on whether λ is
positive or negative. In Figure 5.7a we depict the case whenλ ∈ R<0. We see, in this
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(a) One zero eigenvalue and one negative
eigenvalue
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(b) One zero eigenvalue and one positive
eigenvalue

Figure 5.7 Zero eigenvalue with algebraic multiplicity 1

case, that the subspace (in red) generated by the eigenvector e1 for the eigenvalue
0 is populated with equilibria, and that, because λ is negative, all solution curves
approach one of these equilibria as t→∞.

The situation for λ ∈ R>0 is rather similar, and is depicted in Figure 5.7b.
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Zero eigenvalue with algebraic multiplicity 2

Finally we consider the case of a repeated zero eigenvalue. There are two situations
to consider here, one when mg(0,A) = 1 and another when mg(0,A) = 2. In the
former case, we consider

A =
[
0 1
0 0

]
and in the latter case we must have A = 0. In the former case we have

eAt =

[
0 t
0 0

]
and in the latter case we have e0t = In. In Figure 5.8a and Figure 5.8b we show
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(a) Zero eigenvalue with algebraic mul-
tiplicity 2 and geometric multiplicity 1

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

(b) Zero eigenvalue with algebraic and
geometric multiplicity 2

Figure 5.8 Zero eigenvalue with algebraic multiplicity 2

the phase portraits. Of course, the phase portrait in Figure 5.8b is spectacularly
uninteresting, since it consists entirely of equilibria!

5.5.2 An introduction to phase portraits for nonlinear systems

The analysis of the preceding section for planar linear ordinary differential
equations with constant coefficients was quite comprehensive, exactly because the
setting was so simple. Extensions to either higher-dimensions than planar and/or
to nonlinear ordinary differential equations are difficult, the former for reasons
of difficulty of representation, the latter for reasons of plain ol’ difficulty. In this
section we consider some ad hoc techniques for understanding phase portraits for
planar nonlinear ordinary differential equations.
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5.5.2.1 Phase portraits near equilibrium points

5.5.2.2 Periodic orbits

5.5.2.3 Attractors

5.5.3 Extension to higher dimensions

5.5.3.1 Behaviour near equilibrium points

5.5.3.2 Attractors

Exercises

5.5.1 For the scalar linear homogeneous ordinary differential equations in R2

defined by the following 2 × 2 matrices, do the following:
1. determine what type of planar linear system this is, i.e., “stable node,”

“unstable node,” “saddle point,” etc.;
2. sketch the phase portrait, clearly indicating the essential features (know-

ing what these are is part of the question).

(a) A =
[
2 −5
0 3

]
;

(b) A =
[
−2 0
0 −2

]
;

(c) A =
[
−1 −2
1 −3

]
;

(d) A =
[
4 −1
4 0

]
;

(e) A =
[
1 2
3 2

]
;

(f) A =
[
−4 6
−1 1

]
;

(g) A =
[
1 0
0 1

]
;

(h) A =
[

2 4
−2 6

]
;

(i) A =
[
−4 9
−1 2

]
.
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Section 5.6

Systems of linear homogeneous ordinary difference equations

In this section we undertake a development for difference equations of the treat-
ment in Section 5.2 for differential equations. Thus, following our development
of Section 3.3.3.3, we work with a system of linear homogeneous ordinary differ-
ence equations F in a finite-dimensional R-vector space X, whose right-hand side,
therefore, takes the form

F̂ : T × X→ X
(t, x) 7→ A(t)(x)

(5.22)

for a map A : T→ L(X; X). Thus, ifT ⊆ Z(h), we are looking at difference equations
whose solutions t 7→ ξ(t) satisfy

ξ(t + h) = A(t)(ξ(t)).

Our treatment will be structured in the same way as was the treatment in Section 4.6
for scalar equations, to emphasise the similarities between the two theories.

Do I need to read this section? This material is fundamental to the study of lin-
ear system theory. •

5.6.1 Equations with time-varying coefficients

We begin by a consideration of general systems with time-varying coeffi-
cients, i.e., for which A is not a constant function of time.

5.6.1.1 Solutions and their properties First let us verify that the basic exis-
tence and uniqueness result holds for the difference equations we are considering.

5.6.1 Proposition (Local existence and uniqueness of solutions for systems of lin-
ear homogeneous ordinary difference equations) Consider the system of linear ho-
mogeneous ordinary difference equations F with right-hand side (5.22). Let (t0, x0) ∈ T×X.
Then there exists a uniqueξ : T≥t0 → X that is a solution for F and which satisfiesξ(t0) = x0.
If F is invertible, then there exists a unique ξ : T → X that is a solution for F and which
satisfies the initial conditions.

Proof Since the state space is U = X, it follows that F is complete and so the first asser-
tion follows from Theorem 3.4.2. The second assertion follows from Theorem 3.4.6.■

The same sort of comments as given following Proposition 4.6.1 are valid here,
in terms of comparing the preceding result with Proposition 5.2.2. In particular,
there is this notion of invertibility for difference equations that does not arise for
differential equations. Let us clearly enunciate the character of invertibility in the
current setting.
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5.6.2 Proposition (Invertible systems of linear homogeneous ordinary difference
equations) A system of linear homogeneous ordinary difference equations F with right-
hand side

F̂(t, x) = A(t)(x),

for A : T→ L(X; X) is invertible if and only if det A(t) , 0 for every t ∈ TF.
Proof This follows immediately from the definition of invertibility in Definition 3.4.5.

■

Now we can discuss the set of all solutions of a system of linear homogeneous
ordinary difference equation F with right-hand side

F̂ : T × X→ X
(t, x) 7→ A(t)(x).

For t0 ∈ T, we denote by

Solt0(F) =
{
ξ ∈ XT≥t0

∣∣∣ ξ(t + h) = A(t)(ξ(t)), t ∈ TF,≥t0

}
the set of solutions for F from t0. If F is additionally invertible, then we denote by

Sol(F) =
{
ξ ∈ XT

∣∣∣ ξ(t + h) = A(t)(ξ(t)), t ∈ TF

}
the set of solutions for F. The following result is then the main structural result
about the set of solutions to a system of linear homogeneous ordinary difference
equations.

5.6.3 Theorem (Vector space structure of sets of solutions) Consider the system of
linear homogeneous ordinary difference equations F in the n-dimensional R-vector space
X with right-hand side (5.22). Then Solt0(F) is an n-dimensional subspace of XT≥t0 . If F is
additionally invertible, then Sol(F) is an n-dimensional subspace of XT.

Proof The proof goes like that of Theorem 5.6.3, mutatis mutandis. ■

The following corollary, immediate from the proof of the theorem, gives an easy
check on the linear independence of subsets of Sol(F).

5.6.4 Corollary (Linear independence in Sol(F)) Consider the system of linear homoge-
neous ordinary difference equations F in the n-dimensional R-vector space X with right-
hand side (5.22). Let t0 ∈ T. Then the following statements hold:

(i) a subset {ξ1, . . . , ξk} ⊆ Solt0(F) is linearly independent if and only if the subset
{ξ1(t0), . . . , ξk(t0)} ⊆ X is linearly independent;

(ii) a subset {ξ1, . . . , ξk} ⊆ Sol(F) is linearly independent if and only if, for some t ∈ T,
the subset {ξ1(t), . . . , ξk(t)} ⊆ X is linearly independent.

As with scalar linear homogeneous ordinary difference equations, the theorem
allows us to give a special name to bases for Solt0(F) and Sol(F).
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5.6.5 Definition (Fundamental set of solutions) Consider the system of linear homo-
geneous ordinary difference equations F in the n-dimensional R-vector space X
with right-hand side (5.22).

(i) A set {ξ1, . . . , ξn} of linearly independent elements of Solt0(F) is a fundamental
set of solutions for F.

(ii) If F is invertible, then a set {ξ1, . . . , ξn} of linearly independent elements of
Sol(F) is a fundamental set of solutions for F. •

5.6.1.2 The discrete-time state transition map We now present a particular
way of organising a fundamental set of solutions into one object that, for all intents
and purposes, completely characterises Sol(F). This we organise as the following
theorem.

5.6.6 Theorem (Existence of, and properties of, the discrete-time state transition
map) Consider the system of linear homogeneous ordinary difference equations F in the
n-dimensional R-vector space X with right-hand side (5.22). Let T ⊆ Z(h) be a discrete
time-domain and let t0 ∈ T. Then there exists a unique map Φd

A,t0
: T≥t0 → L(X; X) with

the following properties:
(i) the mapping Φd

A,t0
satisfies the initial value problem

Φd
A,t0

(t + h) = A(t) ◦Φd
A,t0

(t), Φd
A,t0

(t0) = idX;

(ii) the solution to the initial value problem

ξ(t + h) = A(t)(ξ(t)), ξ(t0) = x0,

is t 7→ Φd
A,t0

(t)(x0);

(iii) det(Φd
A,t0

(t)) =
∏(t−t0−h)/h

j=0 A(t0 + jh) (the Abel–Jacobi–Liouville formula).

Moreover, if F is invertible, then there exists a unique map Φd
A : T×T→ L(X; X) with the

following properties:
(iv) for t0 ∈ T, the mapping t 7→ Φd

A(t, t0) satisfies the initial value problem

Φd
A(t + h, t0) = A(t)Φd

A(t, t0), Φd
A(t0, t0) = idX;

(v) for t0 ∈ T, the solution to the initial value problem

ξ(t + h) = A(t)(ξ(t)), ξ(t0) = x0,

is t 7→ Φd
A(t, t0)(x0);

(vi) for t, t0 ∈ T, det(Φd
A(t, t0)) =

∏(t−t0−h)/h
j=0 A(t0 + jh) (the Abel–Jacobi–Liouville

formula again);
(vii) for t, t0, t1 ∈ T, Φd

A(t, t0) = Φd
A(t, t1) ◦Φd

A(t1, t0);
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(viii) for each t, t0 ∈ T, Φd
A(t, t0) is invertible and Φd

A(t, t0)−1 = Φd
A(t0, t).

Proof First of all, we defineΦd
A,t0

andΦd
A are defined by their satisfying the initial value

problems in parts (i) and (iv), respectively. Note that these are initial value problems
associated with the system of linear homogeneous ordinary difference equations in
L(X; X), as in the proof of Theorem 5.2.6 for differential equations. This proves the
existence and uniqueness and parts (i) and (iv).

(ii) and (v) We compute

Φd
A,t0

(t + h)(x0) = A(t) ◦Φd
A,t0

(t)(x0)

andΦd
A,t0

(t0)(x0) = x0, which shows that t 7→ Φd
A,t0

(t)(x0) solves the initial value problem
from part (ii). By uniqueness of such solutions, this gives part (ii) of the theorem. Part (v)
follows entirely similarly.

(iii) and (vi) Note that we explicitly have

Φd
L,t0
=

(t−t0−h)/h∏
j=0

A(t0 + jh),

and so (iii) follows from Proposition I-5.3.3(ii). Part (vi) follows in the same way.
(vii) We compute

Φd
A(t + h, t1) ◦Φd

A(t1, t0)) = A(t) ◦Φd
A(t, t0) ◦Φd

A(t1, t0)

and
Φd

A(t1, t1) ◦Φd
A(t1, t0) = Φd

A(t1, t0).

We also have
Φd

A(t + h, t0) = A(t) ◦Φd
A(t, t0).

That is to say, both t 7→ Φd
A(t, t0) and t 7→ Φd

A(t, t1) ◦Φd
A(t1, t0) satisfy the initial problem

Φ(t + h) = A(t) ◦Φ(t), Φ(t1) = Φd
A(t1, t0).

By uniqueness of solutions for systems of linear homogeneous ordinary differential
equations, we conclude that Φd

A(t, t0) = Φd
A(t, t1) ◦Φd

A(t1, t0), as desired.
(viii) The invertibility of Φd

A(t, t0) follows from part (vi) and Theorem I-5.3.10. The
specific formula for the inverse follows from the formula

idX = Φ
d
A(t0, t0) = Φd

A(t0, t) ◦Φd
A(t, t0),

which itself follows from part (vii). ■

Let us formally name the mappings defined in the theorem.
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5.6.7 Definition (Discrete-time state transition map) Consider the system of linear ho-
mogeneous ordinary differential equations F in the n-dimensional R-vector space
X with right-hand side (5.22).

(i) For t0 ∈ T, the map Φd
A : T≥t0 → L(X; X) from Theorem 5.6.6(i) is the discrete-

time state transition map from t0.
(ii) If F is invertible, then the map Φd

A : T × T → L(X; X) from Theorem 5.6.6(iv)
is the discrete-time state transition map. •

Of course, if F is invertible, then Φd
A(t, t0) = Φd

A,t0
(t).

One imagines that it is possible to compute the discrete-time state transition
map if one is given a fundamental set of solutions. The following procedure gives
an explicit means of doing this.

5.6.8 Procedure (Determining the discrete-time state transition map from a fun-
damental set of solutions) Given a system of linear homogeneous ordinary
difference equations F in the n-dimensional R-vector space X with right-hand side
equation

F̂(t, x) = A(t)(x),

given t0 ∈ T, and given a fundamental set of solutions {ξ1, . . . , ξn} from t0, do the
following.
1. Choose a basis {e1, . . . , en}.
2. Let ξ j : T→ Rn be the components of ξ j, j ∈ {1, . . . ,n}, i.e.,

ξ j(t) = ξ1, j(t)e1 + · · · + ξ j,n(t)en.

If X = Rn, one can just take the components of ξ j, j ∈ {1, . . . ,n}, in the standard
basis, as usual.

3. Assemble the matrix function Ξ : T→ L(Rn;Rn) by making the components of
ξ1(t), . . . , ξ j(t) the columns of Ξ(t):

Ξ(t) =


ξ1,1(t) ξ2,1(t) · · · ξn,1(t)
ξ1,2(t) ξ2,2(t) · · · ξn,2(t)
...

...
. . .

...
ξ1,n(t) ξ2,n(t) · · · ξn,n(t)

 .
(Be sure you understand that ξ j,k(t) is the kth component of ξ j(t).) We call the
matrix-valued function Ξ : T→ L(Rn;Rn) a fundamental matrix for F.

4. DefineΦt0(t) = Ξ(t)Ξ(t0)−1.
5. ThenΦt0(t) is the matrix representative of Φd

A,t0
(t) in the basis {e1, . . . , en}.

If, additionally, F is invertible, then, given a fundamental set of solutions {ξ1, . . . , ξn},
we apply the above procedure to give

Φ(t, t0) = Ξ(t)Ξ(t0)−1

as the matrix representative for Φd
A(t, t0), (t, t0) ∈ T × T. •
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Let us verify that the preceding procedure does indeed yield the discrete-time
state transition map.

5.6.9 Proposition (Determining the discrete-time state transition map from a fun-
damental set of solutions) Consider the system of linear homogeneous ordinary differ-
ence equations F in the n-dimensional R-vector space X with right-hand side (5.22). Then
Procedure 5.6.8 will produce the discrete-time state transition map from t0 and will, in the
case that F is invertible, produce the discrete-time state transition map.

Proof By choosing a basis {e1, . . . , en} as in Procedure 5.6.8, we can assume that X = Rn.
(This is legitimate by virtue of Exercises 5.6.1 and 5.6.2.) Let us denote by A(t) the
matrix representative of A(t). DefiningΦt0(t) as in the given procedure, we have

Φt0(t + h) = Ξ(t + h)Ξ(t0)−1.

Noting that each of ξ j, j ∈ {1, . . . ,n}, is a solution for F, we have

ξ j,k(t + h) =
n∑

l=1

Ak
l (t)ξ j,l(t), j ∈ {1, . . . ,n}, t ∈ T≥t0 .

Therefore, in matrix notation,[
ξ1(t + h) · · · ξ(t + h)

]
= A(t)

[
ξ1(t) · · · ξ(t)

]
=⇒ Ξ(t + h) = A(t)Ξ(t), t ∈ T≥t0 .

Therefore,
Φt0(t) = A(t)Ξ(t)Ξ(t0)−1 = A(t)Φ(t, t0).

Moreover, Φ(t0, t0) = In. Thus t 7→ Φ(t, t0) satisfies the matrix representative of the
initial value problem satisfied by t 7→ Φd

A(t, t0), i.e.,Φ(t, t0) is the matrix representative
of Φd

A(t, t0). ■

We observe that the computation of the discrete-time state transition map is at
once trivial and difficult to get satisfactory form for. To the first of these attributes,
we simply have

Φd
A,t0

(t) =
(t−t0−h)/h∏

j=0

A(t0 + jh). (5.23)

To the second of these attributes, one does not typically have a nice “closed form”
expression for Φd

A,t0
. We shall see shortly that such a nice formula can be obtained

in the constant coefficient case.

5.6.1.3 The adjoint equation In this section we consider a difference equation
“dual” to a system of linear homogeneous ordinary difference equations, just as
we did in Section 5.2.1.4 for differential equations.
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5.6.10 Definition (Adjoint of a system of linear homogeneous ordinary difference
equations) Consider the system of linear homogeneous ordinary difference equa-
tions F in the n-dimensionalR-vector space X with right-hand side (5.22). Suppose
that F is invertible. The adjoint equation for F is the system F∗ of linear homoge-
neous ordinary difference equations in X∗ with right-hand side

F̂∗ : T × X∗ → X∗

(t, p) 7→ (A−1)∗(t)(p).
•

Thus solutions t 7→ p(t) for the adjoint equation satisfy

p(t + h) = (A−1)∗(t)(p(t)).

Let us give the discrete-time state transition map for the adjoint equation.

5.6.11 Proposition (Discrete-time state transition map for the adjoint equation)
Consider the system of linear homogeneous ordinary difference equations F in the n-
dimensional R-vector space X with right-hand side (5.22). Suppose that F is invert-
ible. Then the discrete-time state transition map for the adjoint equation is defined by
Φd

(A−1)∗
(t, t0) = Φd

A(t0, t)∗ for t, t0 ∈ T.
Proof This is obvious, given the general formula (5.23) for the discrete-time state tran-
sition map, along with the property Proposition I-5.7.20(ii) of the dual of a composition
and the property Proposition I-4.1.6(iv) of the inverse of a composition. ■

We have not yet addressed the important question, “Why should one care
about the adjoint equation?” We convert this question into another question with
the following result.

5.6.12 Proposition (A property of the adjoint equation) Consider the system of linear
homogeneous ordinary difference equations F in the n-dimensional R-vector space X with
right-hand side (5.22). Suppose that F is invertible. Let t0 ∈ T, x0 ∈ X, and p0 ∈ X∗, and
denote x(t) = Φd

A(t, t0)(x0) and p(t) = (Φd
A)∗(t0, t)(p0). Then

⟨p(t); x(t)⟩ = ⟨p0; x0⟩.

Proof We have

Φd
A(t, t0) = A(t − h) · · ·A(t0 + h) ◦ A(t0),

(Φd
A(t0, t))∗ = (A(t − h)−1)∗ · · · (A(t0 + h)−1)∗ ◦ (A(t0)−1)∗.

The result now follows by the definition of the dual of a linear map. ■

When α ∈ X∗ and v ∈ X satisfy α(v) = 0, we say that α annihilates v. This
is a sort of “orthogonality condition,” although it most definitely is not an actual
orthogonality condition, there being no inner product in sight. One of the upshots
of the preceding result is the following corollary, saying that the adjoint equation
preserves the annihilation condition.
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5.6.13 Corollary (The geometric meaning of the adjoint equation) Consider the system of
linear homogeneous ordinary difference equations F in the n-dimensionalR-vector space X
with right-hand side (5.22). Let t0 ∈ T, x0 ∈ X, and p0 ∈ X∗, and denote x(t) = Φd

A(t, t0)(x0)
and p(t) = (Φd

A)∗(t0, t)(p0). If ⟨p0; x0⟩ = 0, then ⟨p(t); x(t)⟩ = 0 for all t ∈ T.

It is this property of the adjoint equation that makes it an important tool in
optimal control theory, but this is not a subject into which we shall dwell deeply
here.

5.6.2 Equations with constant coefficients

We now consider the special case of systems of linear homogeneous equations
with constant coefficients, i.e., those systems of linear ordinary difference equations
F in a vector space X with right-hand sides

F̂(t, x) = A(x), (5.24)

for A ∈ L(X; X). As with the scalar version of such equations that we studied in
Section 4.6.2, there is a great deal more that we can say about such equations,
beyond the general assertions in the preceding section. Indeed, one can say that,
in principle, one can “solve” such equations, and we shall present a procedure for
doing so.

Before we do so, however, we reiterate that the ordinary difference equations
we are considering in this section are special cases of the time-varying equations
of the preceding section, so all of the general statements made there apply here as
well. In particular, Proposition 5.6.1 and Theorem 5.6.3 hold for equations of the
form (5.24).

As with linear ordinary differential equations with constant coefficients as
treated in Section 5.2.2, linear algebra plays a rôle in the theory of systems of linear
homogeneous ordinary difference equations. The background material required
for this was developed comprehensively in Sections I-5.4.9, I-5.4.10, and I-5.8.10,
among other places. We refer to the beginning of Section 5.2.2 for a summary of
the facts from linear algebra to which we shall make reference, as these are the
same for difference equations as for differential equations.

5.6.2.1 Complexification of systems of linear ordinary difference equations
In Section 4.6.2.1 we complexified a scalar linear homogeneous ordinary difference
equation with constant coefficients. The reason we had to do so was that the
characteristic polynomial for such an equation will generally have complex roots,
and these complex roots lead naturally to complex solutions of the difference
equation. It is only after taking real and imaginary parts of a complex solution
that we recover the real solutions. The same sort of thing happens with systems
of linear homogeneous ordinary difference equations with constant coefficients. In
this case, the issue that arises is that one will generally have complex eigenvalues.
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The process of complexification is an easy one, and requires no words like
“everything we have done in the real case also works in the complex case,” since we
are working with systems defined on abstract R-vector spaces, and XC is certainly
a R-vector space.

5.6.14 Definition (Complexification of a system of linear ordinary difference equa-
tions) Consider the system of linear homogeneous ordinary difference equations
F with constant coefficients and with right-hand side (5.24). The complexification
of F is the system of linear homogeneous ordinary difference equations FC with
constant coefficients given by

FC : T × XC × XC → XC
(t, z,w) 7→ w − AC(z).

•

A solution for FC is a locally absolutely continuous map ζ : T→ XC that satisfies

ζ̇(t) = AC(ζ(t)).

Note that, as XC = X × X, we can write ζ(t) = (ξ(t), η(y)) for locally absolutely
continuous maps ξ, η : T → X that are the real part and imaginary part of ζ,
respectively.

As in the scalar case, the real and imaginary parts of a solution separately satisfy
the uncomplexified differential equation.

5.6.15 Lemma (Real and imaginary parts of complex solutions are solutions) Con-
sider the system of linear homogeneous ordinary difference equations F with constant
coefficients, with right-hand side (5.24) and with complexification FC. If ζ : T → XC is a
solution for FC, then Re(ζ) and Im(ζ) are solutions for F.

Proof Given ζ : T → XC we write ζ(t) = (ξ(t), η(t)) so that ξ = Re(ζ) and η = Im(ζ).
Since ζ is a solution for FC, we have

ζ(t + h) = (ξ(t + h), η(t + h)) = AC(ζ(t)) = (A(ξ(t)),A(η(t))

by definition of AC. Equating the second and fourth terms in this string of equalities
gives the lemma. ■

5.6.2.2 The operator power function In this section we consider the constant
coefficient version of the discrete-time state transition map.

5.6.16 Definition (Operator power function) Let F ∈ {R,C}, X be a finite-dimensional
F-vector space, and let L ∈ L(X; X). The operator power function of L is the map
PL : Z≥0 → L(X; X) defined by PL( j) = L j. If L is invertible, then we can define
PL : Z→ L(X; X) by PL( j) = L j. •

The operator power function we consider here is the analogue of the operator
exponential from Definition 5.2.19, but for difference equations. We defined the
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operator exponential as the solution of a differential equation, and one can similarly
define the operator power function to be the solution to a difference equation.
Indeed, if we consider the system of linear ordinary difference equations F with
right-hand side

F̂ : Z × X→ X
( j, x) 7→ L(x),

then PL( j) = Φd
L,0( j), j ∈ Z≥0. When L is invertible, then we can write this as

PL( j) = Φd
L( j, 0) for j ∈ Z.

Let us give some alternative characterisations and properties of the operator
exponential.

5.6.17 Theorem (Properties of the operator power function) Let F ∈ {R,C}, let X be a
finite-dimensional F-vector space, and let L,M ∈ L(X; X). Then the following statements
hold:

(i) if F = C, then PL is a C-linear map;
(ii) PL(j + 1) = L ◦ PL(j) = PL(j) ◦ L;
(iii) PL(0) = idX;
(iv) for α ∈ F, αj idX = Pα idX(j);
(v) PL(j) ◦ PM(k) = PM(j) ◦ PL(k) for all j,k ∈ Z≥0 if and only if L ◦M = M ◦ L;
(vi) if L is invertible then PL(j) is invertible for every j ∈ Z, and (PL)−1 = PL−1 ;
(vii) if U ⊆ X is L-invariant, then it is also PL(j)-invariant for every j ∈ Z;
(viii) the solution to the initial value problem with time-domain Z(h) given by

ξ(t + h) = L(ξ(t)), ξ(t0) = x0,

is ξ(t) = PL

(
t−t0

h

)
(x0), t ∈ T≥t0 (or t ∈ T if L is invertible).

Proof (i) This is obvious since the composition of C-linear maps is a C-linear map.
(ii) This is obvious.
(iii) This follows by the convention that we take L0 = idX.
(iv) This is obvious.
(v) If L ◦M = M ◦ L, then one can freely permute the order of the terms to give

PL( j) ◦ PM(k) = L ◦ · · · ◦ L︸    ︷︷    ︸
j times

◦M ◦ · · · ◦M︸      ︷︷      ︸
k times

= M ◦ · · · ◦M︸      ︷︷      ︸
k times

◦L ◦ · · · ◦ L︸    ︷︷    ︸
j times

= PM(k) ◦ PL( j)

for every j ∈ Z≥0. Conversely, if

PL( j) ◦ PM(k) = PM(k) ◦ PL( j), j, k ∈ Z≥0,

then we have L ◦M = M ◦ L, taking j = k = 1.
(vi) This follows from Proposition I-5.1.24(iii).
(vii) This was proved during the first part of the proof of Theorem 5.2.20(viii).
(viii) This follows immediately from (5.23) and Theorem 5.6.6(ii) (or from part (v)

of the same theorem, if L is invertible). ■

Let us consider the representation of the operator exponential in a basis.
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5.6.18 Proposition (The matrix representation of the operator power function is the
operator power function of the matrix representation) Let F ∈ {R,C}, let X be
an n-dimensional F-vector space, let L ∈ L(X; X), and letB = {e1, . . . , en} be a basis for
X. Then

[PL(j)]BB = P[L]B
B

(j).

Proof This follows from the definition of the operator power function and Exer-
cise 5.6.2. ■

5.6.2.3 Bases of solutions Now, for equations with constant coefficients, we
construct “explicitly” a basis for Solt0(F).

5.6.19 Procedure (Basis of solutions for a system of linear homogeneous ordinary
difference equations with constant coefficients) Given a system of linear ho-
mogeneous ordinary difference equations

F : T × X ⊕ X→ X

with time domainT ⊆ Z(h) in an n-dimensionalR-vector space X, with right-hand
side

F̂(t, x) = A(x),

and with t0 ∈ T, do the following.
1. Choose a basis {e1, . . . , en} for X. Let A be the matrix representative of A with

respect to this basis. If X = Rn, one can just take A to be the usual matrix
associated with A ∈ L(Rn;Rn).

2. Compute the characteristic polynomial PA = det(XIn − A).
3. Compute the roots of PA, i.e., the eigenvalues of AC, and organise them as

follows. We have a zero eigenvalue, we have distinct nonzero real eigenvalues

ℓ1, . . . , ℓr,

and distinct complex eigenvalues

λ1 = ρ1eiθ1 , . . . , λs = ρseiθs ,

ρ1, . . . , ρs ∈ R>0, θ1, . . . , θs ∈ (0, π), along with their complex conjugates.
4. Let m0 = ma(0,A), m j = ma(ℓ j,A), j ∈ {1, . . . , r}, and µ j = ma(λ j,A), j ∈ {1, . . . , s},

be the algebraic multiplicities.
5. Let y1, . . . , ym0

be a basis for

W(0,A) = ker(Am0).

6. For j ∈ {1, . . . , r}, let {x j,1, . . . , x j,m j} be a basis for

W(ℓ j,A) = ker((ℓ jIn − A)m j).
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7. For j ∈ {1, . . . , s}, let {z j,1, . . . , z j,µ j} be a basis for

W(λ j,AC) = ker((λ jIn − AC)µ j).

Write z j,k = a j,k + ib j,k for each k ∈ {1, . . . , µ j}. Then

{a j,1, b j,1, . . . ,a j,µ j , b j,µ j}

is a basis for W(λ j,A).
8. For k ∈ {1, . . . ,m0}, define

ηk(t) = A(t−t0)/hyk.

9. For j ∈ {1, . . . , r} and k ∈ {1, . . . ,m j}, define

ξ j,k(t) = ℓ
t/h
j

min{t/h,m j−1}∑
m=0

(
t/h
m

)
(ℓ−1

j A − In)mx j,k.

10. For j ∈ {1, . . . , s} and k ∈ {1, . . . , µ j}, define

α j,k(t)

= ρt/h
j




min{t/h,µ j−1}∑
m=0

(
t/h
m

)
ρ−m

j cos(mθ j)
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l

+

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
ρ−m

j sin(mθ j)
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1


× (cos(θ j

t
h )a j,k − sin(θ j

t
h )b j,k)

−


min{t/h,µ j−1}∑

m=0

(
t/h
m

)
ρ−m

j cos(mθ j)
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1

−

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
ρ−m

j sin(mθ j)
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l


× (cos(θ j

t
h )b j,k + sin(θ j

t
h )a j,k)

 (5.25)
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and

β j,k(t)

= ρt/h
j




min{t/h,µ j−1}∑
m=0

(
t/h
m

)
ρ−m

j cos(mθ j)
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l

+

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
ρ−m

j sin(mθ j)
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1


× (cos(θ j

t
h )b j,k + sin(θ j

t
h )a j,k)

+


min{t/h,µ j−1}∑

m=0

(
t/h
m

)
ρ−m

j cos(mθ j)
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1

−

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
ρ−m

j sin(mθ j)
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l


× (cos(θ j

t
h )a j,k − sin(θ j

t
h )b j,k)

 , (5.26)

where, for x ∈ R, ⌊x⌋ is greatest integer less than or equal to x and ⌈x⌉ is smallest
integer greater than or equal to x.

11. For k ∈ {1, . . . ,m0}, let ηk : T → X be the function whose components with
respect to the basis {e1, . . . , en} are the components of ηk.

12. For j ∈ {1, . . . , r} and k ∈ {1, . . . ,m j}, let ξ j,k : T → X be the function whose
components with respect to the basis {e1, . . . , en} are the components of ξ j,k.

13. For j ∈ {1, . . . , s} and k ∈ {1, . . . , µ j}, let α j,k, β j,k : T → X be the functions whose
components with respect to the basis {e1, . . . , en} are the components of α j,k and
β j,k, respectively.

14. Then the n functions

ηk, k ∈ {1, . . . ,m0},

ξ j,k, j ∈ {1, . . . , r}, k ∈ {1, . . . ,m j},

α j,k, β j,k, j ∈ {1, . . . , s}, k ∈ {1, . . . , µ j},

are a basis for Solt0(F) and, if A is invertible, then the n functions

ξ j,k, j ∈ {1, . . . , r}, k ∈ {1, . . . ,m j},

α j,k, β j,k, j ∈ {1, . . . , s}, k ∈ {1, . . . , µ j},

are a basis for Sol(F). •

Of course, we should verify that the procedure does, indeed, produce a basis
for Solt0(F) and Sol(F).
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5.6.20 Theorem (Basis of solutions for a system of linear homogeneous ordinary
difference equations with constant coefficients) Given a system of linear homoge-
neous ordinary difference equations

F: T × X ⊕ X→ X

in an n-dimensional R-vector space X, with right-hand side

F̂(t, x) = A(x),

and with t0 ∈ T, define n functions as in Procedure 5.6.19. Then these functions for a
basis for Solt0(F) and Sol(F), as asserted.

Proof By virtue of Exercise 5.6.1, we can choose a basis {e1, . . . , en} for X and so assume
that X = Rn.

Let us first work with the zero eigenvalue and show that the functions η1, . . . ,ηm0
are solutions. This assertion, however, is clear since, just by definition, ηk is the
solution corresponding to the initial condition ηk(t0) = yk. These m0 solutions are,
moreover, linearly independent since, when evaluated at t0, they are linearly indepen-
dent, cf. Corollary 5.6.4.

Let us next fix j ∈ {1, . . . , r} and show that ξ j,k, k ∈ {1, . . . ,m j}, are solutions for F.
Let t0 ∈ T. Let us also fix k ∈ {1, . . . ,m j}. By Theorem 5.6.17(viii), the unique solution
to the initial value problem

ξ(t + h) = Aξ(t), ξ(t0) = PA
(

t0
h

)
x j,k,

is
t 7→ PA

(
t−t0

h

)
PA

(
t0
h

)
x j,k = PA

(
t
h

)
x j,k,

using Theorem 5.6.17(v) and the obvious fact that the matrices t
h A and t0

h A commute.
Now we have

PA
(

t
h

)
x j,k = (ℓ jIn + (A − ℓ jIn))t/hx j,k

=

t/h∑
m=0

(
t/h
m

)
ℓt/h−m

j (A − ℓ jIn)mx j,k

= ℓt/h
j

t/h∑
m=0

(
t/h
m

)
(ℓ−1

j A − In)mx j,k

using parts (iv) and (v) of Theorem 5.6.17. Since x j,k ∈W(ℓ j,A), we in fact have

PA
(

t
h

)
x j,k = ℓ

t/h
j

min{t/h,m j−1}∑
m=0

(
t/h
m

)
(ℓ−1

j A − In)mx j,k.

However, this last expression is exactly ξ j,k(t), showing that this is indeed a solution
for F.
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Next we show that, still keeping j ∈ {1, . . . , r} fixed, the m j solutions ξ j,k, k ∈
{1, . . . ,m j}, are linearly independent. As we have seen,

ξ j,k(t0) = PA
(

t0
h

)
x j,k, k ∈ {1, . . . ,m j}.

Thus, for c1, . . . , cm j ∈ R, we have

c1ξ j,k(t0) + · · · + cm jξ j,m j
(t0) = 0

=⇒ c1PA
(

t0
h

)
x j,1 + · · · + cm jPA

(
t0
h

)
x j,m j = 0

=⇒ PA
(

t0
h

)
(c1x j,1 + · · · + cm jx j,m j) = 0

=⇒ c1x j,1 + · · · + cm jx j,m j = 0

=⇒ c1 = · · · = cm j = 0,

since x j,1, . . . , x j,m j are constructed as being linearly independent. Note that we have

also use the fact that A|W(ℓ j,A) is invertible (its determinant is ℓ
m j

j ). By Corollary 5.6.4
we conclude that ξ j,1, . . . , ξ j,m j

are indeed linearly independent.
Now we fix j ∈ {1, . . . , s} and work with the complex eigenvalue λ j = ρ jeiθ j . First

of all, let us define ζ j,k : T→ Cn, k ∈ {1, . . . , µ j}, by

ζ j,k = PAC

(
t
h

)
z j,k.

Then, exactly as above for the real eigenvalues, we have

ζ j,k(t) = λt/h
j

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
λ−m

j (AC − λ jIn)mz j,k.

Moreover, ζ j,k, k ∈ {1, . . . , µ j}, are solutions for FC. Therefore, by Lemma 5.6.15, the
real and imaginary parts of ζ j,k are solutions for F. Using Lemma 1 from the proof of
Theorem 5.2.24, we have

Re((AC − λ jIn)m) =
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l

and

Im((AC − λ jIn)m) =
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1

With λ j = ρ j(cos(θ j) + i sin(θ j)), we then compute

Re
((

t/h
m

)
λ−m

j (AC − λ jIn)m
)

=

(
t/h
m

)
ρ−m

j cos(mθ j)
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l

+

(
t/h
m

)
ρ−m

j sin(mθ j)
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1
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and

Im
((

t/h
m

)
λ−m

j (AC − λ jIn)m
)

=

(
t/h
m

)
ρ−m

j cos(mθ j)
⌊

m−1
2 ⌋∑

l=0

(
m

2l + 1

)
(−1)l+1ρ2l+1

j sin(θ j)2l+1(A − ρ j cos(θ j)In)m−2l−1

−

(
t/h
m

)
ρ−m

j sin(mθ j)
⌈

m−1
2 ⌉∑

l=0

(
m
2l

)
(−1)lρ2l

j sin(θ j)2l(A − ρ j cos(θ j)In)m−2l

With
Re(λt/h

j z j,k) = ρt/h
j cos

(
θ j

t
h

)
a j,k − ρ

t/h
j sin

(
θ j

t
h

)
b j,k

and
Im(λt/h

j z j,k) = ρt/h
j cos

(
θ j

t
h

)
b j,k + ρ

t/h
j sin

(
θ j

t
h

)
a j,k,

one can then verify that

α j,k(t) = Re

λt/h
j

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
λ−m

j (AC − λ jIn)mz j,k

 ,
β j,k(t) = Im

λt/h
j

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
λ−m

j (AC − λ jIn)mz j,k

 ,
for k ∈ {1, . . . , µ j}. This shows that α j,k and β j,k are solutions for F for k ∈ {1, . . . , µ j}.

Now we verify that
α j,1, . . . ,α j,µ j ,β j,1, . . . ,β j,µ j

are linearly independent. As above in the real case, the complex solutions ζ j,1, . . . ,ζ j,µ j

for FC are linearly independent. Now let t0 ∈ T and c1, . . . , cµ j , d1, . . . , dµ j ∈ R, and note
that

µ j∑
k=1

(ckα j,k(t0) + dkβ j,k(t0)) = 0

=⇒

µ j∑
k=1

(ck Re(ζ j,k)(t0) + dk Im(ζ j,k)(t0)) = 0

=⇒

µ j∑
k=1

(ck Re(PAC

(
t0
h

)
z j,k) + dk Im(PAC

(
t0
h

)
z j,k))

=⇒

µ j∑
k=1

(ckPAC

(
t0
h

)
a j,k + dkPAC

(
t0
h

)
b j,k) = 0

=⇒

µ j∑
k=1

(cka j,k + dkb j,k) = 0

=⇒ c1 = · · · = cµ j = d1 = · · · = dµ j = 0,
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using the fact that, since A is real, PAC

(
t0
h

)
is also real and, using Theorem I-5.4.68(i),

this gives the linear independence of

α j,1, . . . ,α j,µ j ,β j,1, . . . ,β j,µ j
,

as claimed.
Now we have m0 + m1 + · · · + mr + 2(µ1 + · · · + µs) = n solutions for F. It remains

to show that the collection of all of these solutions are linearly independent. Let us
suppose that

c1η1(t) + · · · + cm0ηm0
(t)︸                        ︷︷                        ︸

∈W(0,A)

+ d1,1ξ1,1(t) + · · · + d1,m1ξ1,m1
(t)︸                               ︷︷                               ︸

∈W(ℓ1,A)

+ · · · + dr,1ξr,1(t) + · · · + dr,mrξr,mr(t)︸                             ︷︷                             ︸
∈W(ℓr,A)

+ e1,1a1,1(t) + · · · + e1,µ1a1,µ1(t)︸                              ︷︷                              ︸
∈W(λ1,A)

+ · · · + es,1as,1(t) + · · · + es,µsas,µs(t)︸                            ︷︷                            ︸
∈W(λs,A)

+ f1,1b1,1(t) + · · · + f1,µ1b1,µ1(t)︸                              ︷︷                              ︸
∈W(λ1,A)

+ · · · + fs,1bs,1(t) + · · · + fs,µsbs,µs(t)︸                             ︷︷                             ︸
∈W(λs,A)

= 0,

for suitable scalar coefficients. Since the generalised eigenspaces intersect in {0} by
Proposition I-5.4.60, and since the generalised eigenspaces are invariant under PA

(
t
h

)
for all t ∈ T by Theorem 5.6.17(vii), for the preceding equation to hold, each of its
components in each of the generalised eigenspaces must be zero, i.e.,

c1η1(t) + · · · + cm0ηm0
(t),

and
c j,1ξ j,1(t) + · · · + c j,m jξ j,m j

(t) = 0, j ∈ {1, . . . , r},

and

d j,1a j,1(t) + · · · + d j,µ ja j,µ j(t) + e j,1b j,1(t) + · · · + e j,µ jb j,µ j(t) = 0, j ∈ {1, . . . , s}.

This implies that all coefficients must be zero, since we have already shown the linear
independence of the solutions with initial conditions in each of the subspaces W(o,A),
W(ℓl,A), j ∈ {1, . . . , r}, and W(λ j,A), j ∈ {1, . . . , s}. Thus we have the desired linear
independence, and thus the theorem follows, as concerns Solt0(F). It is clear that, when
A is invertible, the solutions associated with the nonzero eigenvalues form a basis for
Sol(F). ■

From the proof of the theorem, we provide the following comment on how one
might deal with complex eigenvalues in practice.
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5.6.21 Remark (Computing solutions associated with complex eigenvalues) The
formulae (5.25) and (5.26) of Procedure 5.6.19, while fun to look at, are typically
not the best ways to work out solutions associated with complex eigenvalues.
However, the proof of the preceding theorem tells us an alternative that is easier in
easy examples (although using a computer algebra package is even easier). Indeed,
in the proof we saw that

α j,k(t) = Re

λt/h
j

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
λ−m

j (AC − λ jIn)mz j,k

 ,
β j,k(t) = Im

λt/h
j

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
λ−m

j (AC − λ jIn)mz j,k


for k ∈ {1, . . . , µ j}. Thus, in practice, one might simply compute

ζ j,k(t) = λ
t/h
j

min{t/h,µ j−1}∑
m=0

(
t/h
m

)
λ−m

j (AC − λ jIn)mz j,k,

k ∈ {1, . . . , s}, and simply takes its real and imaginary parts as linearly independent
solutions. •

We can now give an algorithm for computing, in principle, the operator power
function. The following procedure, while given for computing PA, obviously may
be used as well to compute the discrete-time state transition matrix Φd

A,t0
(t) =

PA

(
t−t0

h

)
for a system of linear homogeneous ordinary difference equations with

constant coefficients.

5.6.22 Procedure (Operator power function) Given an n-dimensionalR-vector space X
and A ∈ L(X; X), do the following.
1. Choose a basis {e1, . . . , en} and let A be the matrix representative of A. If X = Rn,

one can just take A to be the usual matrix associated with A ∈ L(Rn;Rn).
2. Using Procedure 5.6.19, determine a fundamental set of solutions ξ1, . . . , ξn

from t0 = 0, defined on the time-domain Z≥0, for the system of linear homoge-
neous ordinary difference equations F in Rn with right-hand side

F̂(t, x) = Ax.

3. Define

Ξ(t) =


ξ1,1(t) ξ2,1(t) · · · ξn,1(t)
ξ1,2(t) ξ2,2(t) · · · ξn,2(t)
...

...
. . .

...
ξ1,n(t) ξ2,n(t) · · · ξn,n(t)

 ,
where ξ j,k is the kth component of ξ j.
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4. Using Procedure 5.6.8 calculate

PA(t) = Φd
A,0(t) = Ξ(t)Ξ(0)−1, t ∈ Z≥0. •

5.6.2.4 Some examples

Exercises

5.6.1 Let X be an n-dimensional R-vector space and let F be a system of linear
ordinary difference equations in X with right-hand side

F̂(t, x) = A(t)(x) + b(t)

for A : T→ L(X; X) and b : T→ X. Let {e1, . . . , en} be a basis for X and write

b(t) =
n∑

j=1

b j(t)e j, A(t)(e j) =
n∑

k=1

Ak
j(t)ek, j ∈ {1, . . . ,n},

for functions b j : T → R, j ∈ {1, . . . ,n}, and Ak
j : T → R, j, k ∈ {1, . . . ,n}. This

defines b : T→ Rn and A : T→ L(Rn;Rn). Denote by F the system of linear
ordinary difference equations in Rn given by

F(t, x, x(1)) = x(1)
− A(t)x − b(t).

Answer the following questions.
(a) Show that ξ : T′ → X is a solution for F if and only if the function

ξ : T′ → Rn, defined by

ξ(t) =
n∑

j=1

ξ j(t)e j,

is a solution for F.
Now let {ẽ1, . . . , ẽn} be another basis for X and let P be the change of basis
matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Define b̃ : T→ Rn, Ã : T→ L(Rn;Rn), and F̃ as above, for this new basis.
(b) Show that b̃(t) = Pb(t) and Ã(t) = P−1A(t)P for every t ∈ T.

Hint: Use the change of basis formulae from Proposition I-5.4.26 and from
Theorem I-5.4.32.

(c) Show that, if ξ : T′ → Rn is a solution for F, then ξ̃ : T′ → Rn is a solution
for F̃ if and only if ξ̃(t) = P−1ξ(t) for every t ∈ T.
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5.6.2 Let X be an n-dimensional R-vector space and let F be a system of linear
homogeneous ordinary difference equations with right-hand side

F̂(t, x) = A(t)(x)

for A : T→ L(X; X). Let {e1, . . . , en} be a basis for X and let A(t) be the matrix
representative for A(t), t ∈ T, and let F be the corresponding system of linear
homogeneous ordinary difference equations in Rn with right-hand side

F̂(t, x) = A(t)x.

cf. Exercise 5.6.1.
(a) Show that, for every t0 ∈ T and t ∈ T≥t0 , the matrix representative of
Φd

A,t0
(t) is Φd

A,t0
(t).

(b) Show that, for every t, t0 ∈ T, if F is invertible then the matrix represen-
tative of Φd

A(t, t0) is Φd
A(t, t0).

Now let {ẽ1, . . . , ẽn} be another basis for X and let P be the change of basis
matrix defined by

ẽ j =

n∑
k=1

Pkjek, j ∈ {1, . . . ,n}.

Define Ã : T→ L(Rn;Rn) and F̃ as above, for this new basis.
(c) Show that, for every t0 ∈ T and t ∈ T≥t0 ,

Φd
Ã,t0

(t) = P−1Φd
A,t0

(t)P.

(d) Show that, for every t, t0 ∈ T, if F is invertible then

Φd
Ã(t, t0) = P−1Φd

A(t, t0)P.
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Section 5.7

Systems of linear inhomogeneous ordinary difference
equations

In this section we extend our discussion of homogeneous equations in Sec-
tion 5.6 to inhomogeneous equations. Thus we are talking about systems of linear
ordinary difference equations F in a finite-dimensionalR-vector space X with right-
hand side

F̂ : T × X→ X
(t, x) 7→ A(t)(x) + b(t)

(5.27)

for maps b : T → X and A : T → L(X; X). In our treatment of scalar equations in
Section 4.7, we gave no fewer than three methods for working with inhomogeneous
equations, two general methods (using Casoratians in Section 4.7.1.2 and the
theory of discrete-time Green’s function in Section 4.7.1.3) and one method that
only works for inhomogeneous terms that are pretty uninteresting (the “method
of undetermined coefficients in Section 4.7.2.1). We shall not be so expansive for
systems of linear inhomogeneous equations, and shall really only consider “the”
method for working with such equations, since this method is as tractable as any
other method in practice (which is to say, not very tractable at all, barring the use
of a computer algebra package), and is exceptionally powerful in developing the
theory of systems of linear ordinary difference equations.

As we have done in all preceding developments of linear ordinary difference
equations, we work first in the general time-varying case, and then in the case of
constant coefficients.

Do I need to read this section? The material in this section is fundamental to the
theory of linear systems. •

5.7.1 Equations with time-varying coefficients

We state the, by now, more or less obvious results concerning existence and
uniqueness, now for systems of linear inhomogeneous ordinary difference equa-
tions.

5.7.1 Proposition (Local existence and uniqueness of solutions for systems of
linear inhomogeneous ordinary difference equations) Consider the system of
linear inhomogeneous ordinary difference equations F with right-hand side (5.27). Let
(t0, x0) ∈ T × X. Then there exists a unique ξ : T≥t0 → X that is a solution for F and
which satisfies ξ(t0) = x0. If F is invertible, then there exists a unique ξ : T→ X that is a
solution for F and which satisfies the initial conditions.
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Proof By Proposition 5.6.1, there exists a solution ξh : T≥t0 → X for Fh satisfying
ξh(t0) = x0. Moreover, ξh(t) = Φd

A,t0
(t)(x0). Now define

ξ : T≥t0 → X

t 7→ Φd
A,t0

(t)(x0) +
(t−t0−h)/h∑

j=0

Φd
A,t0+( j+1)h(t)(b(t0 + jh)).

Let us verify that this is a solution satisfying the initial conditions. We calculate

ξ(t + h) = Φd
A,t0

(t + h)(x0) +
(t−t0)/h∑

j=0

Φd
A,t0+( j+1)h(t + h)b(t0 + jh)

= A(t) ◦Φd
A,t0

(t)(x0) +
(t−t0−h)/h∑

j=0

A(t) ◦Φd
A,t0+( j+1)h(t)(b(t0 + jh)) + Φd

A,t+h(t + h)(b(t))

= A(t) ◦

Φd
A,t0

(t)(x0) +
(t−t0−h)/h∑

j=0

Φd
A,t0+( j+1)h(t)(b(t0 + jh))

 + b(t)

= A(t)(ξ(t)) + b(t),

i.e., ξ is a solution of F. Moreover, we also clearly have ξ(t0) = x0, by conventions with
summations.

To conclude uniqueness, suppose that we have two solutions ξ1 and ξ2 defined on
the same interval T′. Then

ξ1(t + h) = A(t)(ξ1(t)) + b(t), ξ2(t + h) = A(t)(ξ2(t)) + b(t),

and ξ1(t0) = ξ2(t0) = x0. Therefore,

(ξ1 − ξ2)(t + h) = A(t)(ξ1(t) − ξ2(t)), (ξ1 − ξ2)(t0) = 0.

By the uniqueness assertion of Proposition 5.6.1, we conclude that ξ1−ξ2 = 0, i.e., ξ1 =
ξ2. ■

Since, in the proof of Proposition 5.7.1, we gave an explicit formula for solutions
to initial value problems, it is worth extracting this explicit formula.

5.7.2 Corollary (An explicit solution for systems of linear inhomogeneous ordinary
difference equations) Consider the system of linear inhomogeneous ordinary difference
equations F with right-hand side (5.27). Given t0 ∈ T and x0 ∈ X, the unique solution
ξ : T→ X to the initial value problem

ξ(t + h) = A(t)(ξ(t)) + b(t), ξ(t0) = x0,

is

ξ(t) = Φd
A,t0

(t)(x0) +
(t−t0−h)/h∑

j=0

Φd
A,t0+(j+1)h(t)(b(t0 + jh)), t ∈ T≥t0 . (5.28)



4865 Systems of ordinary differential and ordinary difference equations2022/03/07

The formula (5.28) for solutions to systems of linear inhomogeneous ordinary
differential equations is often called the variation of constants formula.

We note that this solution bears a strong resemblance in form to the discrete-time
Green’s function solution for scalar systems given in Theorem 4.7.6; indeed, one
can think of the discrete-time state transition map as playing the rôle of a discrete-
time Green’s function in this case. In particular, given b ∈ X (a constant vector, note)
the physical interpretation of Remark 4.7.8–2 applies to the map t 7→ Φd

A,τ(t)(b),
and leads us to think of this as being the result of applying an impulse at time τ
with (vector) magnitude b. This leads to the important notion in system theory of
the impulse response.

The same sort of comments as given following Proposition 4.6.1 are valid here,
in terms of comparing the preceding result with Proposition 5.2.2. In particular,
there is this notion of invertibility for difference equations that does not arise for
differential equations. Let us clearly enunciate the character of invertibility in the
current setting.

5.7.3 Proposition (Invertible systems of linear inhomogeneous ordinary difference
equations) A system of linear inhomogeneous ordinary difference equations F with right-
hand side

F̂(t, x) = A(t)(x) + b(t),

for A : T → L(X; X) and b: T → X is invertible if and only if det A(t) , 0 for every
t ∈ TF.

Proof This follows immediately from the definition of invertibility in Definition 3.4.5,
here because the affine mapping

x 7→ A(t)(x) + b(t)

is invertible if and only if A(t) is invertible. ■

Now we can discuss the set of all solutions of a system of linear inhomogeneous
ordinary difference equation F with right-hand side

F̂ : T × X→ X
(t, x) 7→ A(t)(x).

To this end, we denote by

Solt0(F) =
{
ξ ∈ XT≥t0

∣∣∣ ξ(t + h) = A(t)(ξ(t)), t ∈ TF,≥t0

}
the set of solutions for F from t0. When F is invertible, we denote

Sol(F) =
{
ξ ∈ XT

∣∣∣ ξ(t + h) = A(t)(ξ(t)), t ∈ TF

}
While Solt0(F) and Sol(F) are vectors space in the homogeneous case, in the inho-
mogeneous case this is no longer the case. However, the set of all solutions for
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the homogeneous case plays an important rôle, even in the inhomogeneous case.
To organise this discussion, we let Fh be the “homogeneous part” of F. Thus the
right-hand side of Fh is

F̂h(t, x) = A(t)(x).

As in Theorem 4.7.2, Solt0(F) and Sol(Fh) areR-vector spaces of dimension dimR(X).
The following result is then the main structural result about the set of solutions
to a system of linear inhomogeneous ordinary differential equations, mirroring
Theorem 4.7.2 for scalar systems.

5.7.4 Theorem (Affine space structure of sets of solutions) Consider the system of
linear inhomogeneous ordinary difference equations F in the n-dimensionalR-vector space
X with right-hand side (4.41). Let ξp ∈ Solt0(F). Then

Solt0(F) = {ξ + ξp | ξ ∈ Solt0(Fh)}.

Similarly, if ξp ∈ Solt0(F), then

Sol(F) = {ξ + ξp | ξ ∈ Sol(Fh)}.

Proof This follows in the manner of the proof of Theorem 5.3.4, mutatis mutandis. ■

As with scalar linear inhomogeneous ordinary difference equations, there is an
insightful correspondence to be made between the situation described in Theo-
rem 5.7.4 and that of systems of linear algebraic equations described in Proposi-
tion I-5.4.48.

5.7.5 Remark (Comparison of Theorem 5.7.4 with systems of linear algebraic equa-
tions) Let us compare here the result of Theorem 5.7.4 with the situation in Propo-
sition I-5.4.48 concerning linear algebraic equations of the form L(u) = v0, for
vector spaces U and W, a linear map L ∈ L(U; W), and a fixed w0 ∈W. In the setting
of systems of linear inhomogeneous ordinary difference equations in a R-vector
space X, we have

U = XT≥t0 ,

W = XT≥t0 ,

L( f )(t) = f (t + h) − A(t)( f (t)),
w0 = b.

Then Proposition 5.7.1 tells us that L is surjective, and so w0 ∈ image(L). Thus
we are in case (I-ii) of Proposition I-5.4.48, which exactly the statement of The-
orem 5.7.4. Note that L is not injective, since Theorem 5.6.3 tells us that
dimR(ker(L)) = dimR(X). Similar constructions hold, of course, in the particu-
lar case that F is invertible and solutions are defined on the entire time-domain. •
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5.7.6 Remark (What happened to the Casoratian?) In Section 4.7.1.2 we described
how the Casoratian can be used for scalar linear inhomogeneous ordinary differ-
ence equations to generate a particular solution. A similar development is possible
for systems of equations, but we shall not pursue it here. It is worth recording the
reasons for not doing so.
1. In Corollary 5.7.2 we produce a specific and natural “particular solution” for

a system of linear inhomogeneous ordinary difference equations, namely the
function that assigns to the inhomogeneous term “b,” the solution

ξp(t) =
(t−t0−h)/h∑

j=0

Φd
A,t+0+( j+1)h(t)(b(t0 + jh)).

Then the form of the solution of Corollary 5.7.2 is ξ = ξh+ξp, where ξh ∈ Sol(Fh)
satisfies the initial conditions. This is just so cool. . . why would you want to do
more?

2. In Section 4.6.1 we discussed the notion of a fundamental set of solutions for
scalar linear homogeneous ordinary difference equations. There is no really
distinguished fundamental set of solutions, and the Casoratian-related con-
structions were developed for an arbitrary fundamental set of solutions. This
has its benefits in this setting, as the results are general in this respect.
However, in Section 5.6.1.2 we saw that there was one object that naturally
describes the solutions for a system of linear homogeneous ordinary difference
equations, the discrete-time state transition map. Note that in Procedure 5.6.8
we indicate how to build the discrete-time state transition map from a fun-
damental set of solutions for a system of equations, through the fundamental
matrix-function Ξ that we build after choosing a basis. It is the fundamental
matrix, and its determinant, that would be involved in Casoratian-type con-
structions for systems of equations. However, these are only arrived at after
choosing a basis, and so seem quite unnatural in our setting of general vector
spaces. •

5.7.2 Equations with constant coefficients

We now specialise the discussion in the preceding section to systems of linear
inhomogeneous ordinary difference equations with constant coefficients. Thus we
are looking at a system of linear inhomogeneous ordinary difference equations F
in a finite-dimensional R-vector space X and with right-hand side given by

F̂(t, x) = A(x) + b(t) (5.29)

for A ∈ L(X; X) and b : T→ X. Of course, all general results concerning the existence
and uniqueness of solutions (i.e., Proposition 5.7.1) and of the structure of the set
of solutions (i.e., Theorem 5.7.4) apply in the constant coefficient case. Here,
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however, we can refine a little the explicit solution of Corollary 5.7.2 because, as
per Theorem 5.6.17(viii),Φd

A,t0
(t) = PA

(
t−t0

h

)
in this case. We can thus summarise the

situation in the following theorem.

5.7.7 Theorem (An explicit solution for systems of linear inhomogeneous ordinary
difference equations with constant coefficients) Consider the system of linear
inhomogeneous ordinary difference equations F with constant coefficients and right-hand
side (5.16). Given t0 ∈ T and x0 ∈ X, the unique solution ξ : T≥t0 → X to the initial value
problem

ξ̇(t) = A(ξ(t)) + b(t), ξ(t0) = x0,

is

ξ(t) = PA

(
t−t0

h

)
(x0) +

(t−t0−h)/h∑
j=0

PA

(
t−t0−(j+1)h

h

)
(b(t0 + jh)), t ∈ T.

We comment that our observations Remark 4.7.10 about the particular solution

ξp,b =

(t−t0−h)/h∑
j=0

PA

(
t−t0−( j+1)h

h

)
(b(t0 + jh))

for constant coefficient systems and its relation to convolution integrals is also valid
here.

5.7.8 Remark (What happened to the “method of undetermined coefficients”?) In
Section 4.7.2.1 we spent some time describing a rather ad hoc method, the “method
of undetermined coefficients,” for finding particular solutions for scalar linear in-
homogeneous ordinary difference equations with constant coefficients. A similar
strategy is possible for systems of linear inhomogeneous ordinary difference equa-
tions with constant coefficients, but we shall not pursue it here. Here is why.
1. The rationale of Remark 5.7.6–1 is equally valid here: we have such a nice

characterisation in Corollary 5.7.2 of a particular solution that to mess this up
with an ad hoc procedure that only works for pretty uninteresting functions is
simply not a worthwhile undertaking.

2. While for scalar equations it might be argued that there is some reason for being
able to quickly bang out particular solutions for specific pretty uninteresting
functions—see, particular, the notion of “step response” in Example 4.7.17 and
the notion of “frequency response” in Example 4.7.18—for systems of equations
the benefit of this is not so clear, given the complexity of doing computation in
any example. •

Exercises

5.7.1
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Section 5.8

Laplace transform methods for systems of ordinary difference
equations

In this section we consider an application of the causal DLT to systems of or-
dinary difference equations. As with our consideration of scalar equations in Sec-
tion 4.8, we work with linear constant coefficient equations, both homogeneous
and inhomogeneous.

Do I need to read this section? Like Section 4.8, one might skip this chapter
at a first reading, until one is confronted with the transfer function methods of
Chapter 7, and the use of the tool of the causal DLT makes more sense. •

5.8.1 Systems of homogeneous equations

Now we turn to studying systems of equations using the causal DLT, start-
ing with the homogeneous case. As we did in Section 5.6, we shall work with
systems whose state space is a finite-dimensional R-vector space V. We refer to
Section IV-9.2.7 for a discussion of how the causal DLT work in this setting.

We consider a system of linear ordinary difference equations F with constant
coefficients in an n-dimensional R-vector space V, and with right-hand side

F̂ : Z≥0(h) × V→ V
x 7→ A(x)

for A ∈ L(V; V). The associated initial value problem we study is then

ξ(t + h) = A(ξ(t)), ξ(0) = x0. (5.30)

Let us take the causal DLT of this initial value problem.

5.8.1 Proposition (Causal DLT of system of homogeneous equations) The causal
DLT of the solution of the initial value problem (5.30) is

L 1
D (ξ)(z) = hz(z idV −A)−1x0,

andL 1
D (ξ) is defined on

{z ∈ C | |z| > |λ| for all λ ∈ spec(A)}.

Proof This is a direct computation using Proposition IV-9.2.16:

zL 1
D (ξ)(z) − hzξ(0) = AL 1

D (ξ)(z),

from which the result follows immediately after noting that z idV −A is invertible if |z|
exceeds the magnitude of any eigenvalue of A. ■
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As with scalar equations, the application of the causal DLT permits a solution
for systems of linear homogeneous equations with constant coefficients using just
algebraic computations in the transformed variables. In order to understand the
inverse (z idV −A)−1, first note that the comments preceding the statement of Propo-
sition 5.4.2 are valid here for computing this inverse. Moreover, the inverse causal
DLT of (z idV −A)−1 is known to us already.

5.8.2 Proposition (Causal DLT of operator power function) For an n-dimensional R-
vector space V and for A ∈ L(V; V), denote

PA : Z≥0(h)→ L(V; V)

kh 7→ Aktk.

ThenL 1
D (PA)(z) = hz(z idV −A)−1.

Proof By Theorem 5.6.6(i) and since PA(kh) = Φd
A(kh, 0), we note that PA satisfies the

initial value problem

PA(kh + h) = A ◦ PA(kh), PA(0) = idV .

Taking the causal DLT of this initial value problem gives

z L 1
D (PA)(z) − hz idV = A ◦L 1

D (PA)(z) =⇒ L 1
D (PA)(z) = hz(z idV −A)−1,

as claimed. ■

Let’s illustrate this in a simple example.

5.8.3 Example (Operator power function via the causal DLT)

It is a matter of taste whether one thinks that using the causal DLT to compute
the operator exponential is preferable to Procedure 5.6.22. It is, however, not such
an important matter to resolve in favour of one method or the other; actually com-
puting the operator power function is seldom of interest per se. What is certainly
true is that with the causal DLT one loses the insight offered by invariant subspaces
in Procedure 5.6.22. The benefits of the causal DLT in this context arises in system
theory, where complex function techniques offer some genuine insights.

5.8.2 Systems of inhomogeneous equations

Next we consider systems of homogeneous equations. Thus we have an ordi-
nary difference equation with state space V and with right-hand side

F̂ : Z≥0(h) × V→ V
x 7→ A(x) + b(t),

(5.31)

for A ∈ L(V; V) and for b : Z≥0(h) → V. The associated initial value problem we
consider is

ξ(t + h) = A(ξ(t)) + b(t), ξ(0) = x0. (5.32)
We can, of course, easily take the causal DLT of this initial value problem to get the
following.
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5.8.4 Proposition (Causal DLT of system of inhomogeneous equations) Consider
the system of scalar ordinary difference equations with right-hand side (5.31), and suppose
that b is continuous and satisfies b ∈ LT1,+(Z≥0(h); V). The causal DLT of the solution of
the initial value problem (5.32) satisfies

L 1
D (ξ)(z) = (z idV −A)−1(hzx0 +L

1
D (b)(z)).

Proof The proof is an easy adaptation of that of Proposition 5.8.1. ■

As was the case with our discussion of scalar inhomogeneous equations in
Section 4.8.2, the preceding result can be interpreted in two ways, one having
theoretical value and the other as a means of computing solutions. We shall
explore both.

The first result makes a connection with the formula given in Corollary 5.7.2
for solutions to systems of linear inhomogeneous equations, in the general setting
of time-varying systems.

5.8.5 Proposition (Causal DLT and convolution for solutions of linear inhomoge-
neous equations) Consider the system of scalar ordinary difference equations with
right-hand side (5.31), and suppose that b ∈ LT1,+(Z≥0(h); V). Then the solution to the
initial value problem (5.32) is

ξ(kh) = Ak(x0) + PA ∗ b((k − 1)h).

Proof From Corollary 5.7.2 we have

ξ(kh) = PA(kh)(x0) +
(k−1)h∑

j=0

PA((k − j − 1)h)(b(t0 + jh)), k ∈ Z≥0,

and the result follows from this formula since

PA ∗ b(kh) = h
k∑

j=0

A(k− j)h(b( jh)).

However, here we shall give a proof using the causal DLT, valid when b ∈
LT1,+(Z≥0(h); V).

From Proposition 5.8.4 we have

L 1
D (ξ)(z) = hz(z idV −A)−1(x0) + (z idV −A)−1L 1

D (b)(z).

By Proposition 5.8.2 we have

hz(z idV −A)−1 = L 1
D (PA)(z).

For x ∈ V, let us denote
evx : L(V; V)→ V

A 7→ A(x).
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We then have, noting that evx0 is a linear map,

L 1
D (evx0

◦ PA)(z) = evx0
◦L 1

D (PA)(z) = hz(z idV −A)(x0).

Also, by Exercise IV-9.2.4 and Propositions IV-9.2.9 and IV-9.2.10,

L 1
D (τ∗h(PA ∗ b))(z) = z−1L 1

D (PA ∗ b)(z)

= z−1L 1
D (PA)(z)L 1

D (b)(z)

= (z idV −A)−1L 1
D (b)(z).

Therefore,
L 1

D (ξ)(z) = evx0
◦L 1

D (PA) +L 1
D (τ∗h(PA ∗ b))(z).

Taking the inverse causal DLT gives

ξ(k∆) = evx0
◦ PA(k) + PA ∗ b((k − 1)h) = Ak(x0) + PA ∗ b((k − 1)h),

as claimed. ■

Finally, in the case when b is an also pretty interesting function (meaning that,
in a basis for V, the components of b are also pretty uninteresting functions), we
can use Proposition 5.8.4, and partial fraction expansions, to compute solutions.
We only validate this by a simple example since, in reality, this is not something
one ever does.

5.8.6 Example (Solving systems of inhomogeneous equations using the causal
DLT)

As with systems of homogeneous equations, the use of the causal DLT to solve
inhomogeneous equations does not have a lot to recommend it from a computa-
tional point of view. The advantages it has come more from exploiting the algebraic
structure of the difference equation as a function of the transformed independent
variable z.

Exercises

5.8.1
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Section 5.9

Phase-plane analysis for difference equations

5.9.1 Phase portraits for linear systems

5.9.1.1 Stable nodes

5.9.1.2 Unstable nodes

5.9.1.3 Saddle points

5.9.1.4 Centres

5.9.1.5 Stable spirals

5.9.1.6 Unstable spirals

5.9.1.7 Nonisolated equilibrium points

5.9.2 An introduction to phase portraits for nonlinear systems

5.9.2.1 Phase portraits near equilibrium points

5.9.2.2 Periodic orbits

5.9.2.3 Attractors

5.9.3 Extension to higher dimensions

5.9.3.1 Behaviour near equilibrium points

5.9.3.2 Attractors
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Section 5.10

The relationship between differential and difference equations

It will not take an overly astute reader to see connections between differential
and difference equations. It is possible to develop these connections in a fairly
general setting. However, to do so, one must either (1) be a little vague and
imprecise or (2) develop some complicated notation to state the connections clearly.
We shall adopt a compromise, developing the connections clearly, but only in
the limited setting of systems of homogeneous linear differential and difference
equations. We then mention how these precise ideas can be adapted to more
general settings.

Do I need to read this section? The material in this section is, we hope, interest-
ing, but is not really required to understand any results that follow. •

5.10.1 From systems to linear homogeneous ordinary differential equations
to systems of linear homogeneous ordinary difference equations

We start by establishing the connection from differential to difference equations
in the special setting of systems of linear homogeneous ordinary equations. Thus
let F be a system of homogeneous linear ordinary differential equations with right-
hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x).

Suppose that h ∈ R>0 and let

Tdisc = { jh | jh ∈ T}.

We define the discretisation of F to be the system of homogeneous linear ordinary
difference equations Fdisc with right-hand side

F̂disc : Tdisc × V→ V
(t, x) 7→ Adisc(t)(x),

where
Adisc(t) = Φc

A(t + h, t).

Then, for t = jh and t0 = j0h, we have

Φc
A(t, t0) = Φc

A(t, t − h) ◦ · · ·Φc
A(t0 + h, t0)

= Adisc(t − h) ◦ · · · ◦ Adisc(t0) = Φd
Adisc

(t, t0).
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This, then, establishes a precise link from differential to difference equations. We
see that the rôle of “A” is quite different in the case of differential and difference
equations. For difference equations, Adisc behaves like a continuous-time state tran-
sition map; indeed, the discrete-time state transition map is merely the composition
of the Adisc’s.

The discussion becomes particularly interesting and easy to understand when
F is a system of linear homogeneous ordinary differential equations with constant
coefficients with right-hand side

F̂(t, x) = A(x)

for A ∈ L(V; V). In this case,

Φc
A(t + h, t) = eA((t+h)−t) = eAh.

Thus Adisc = eAh.

5.10.2 From systems to linear homogeneous ordinary difference equations
to systems of linear homogeneous ordinary differential equations

We next consider reversing the direction of the construction in the preceding
section. Thus we start now with a system of linear homogeneous ordinary differ-
ence equations F with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x),

where T ⊆ Z(h) is a discrete time-domain. We then ask the question, “Does there
exist a system of linear homogeneous ordinary differential equations Fcont with
right-hand side

F̂cont : Tcont × V→ V
(t, x) 7→ Acont(t)(x),

where T is an interval, and for which

Φc
Acont

(t, t0) = Φd
A(t, t0), t, t0 ∈ T?”

Unlike the situation in the preceding section, where we could always associate a
difference equation to a differential equation, the answer to the question we ask
here is, “Generally, no.” Let us understand some of the difficulties of making this
transition.
1. First of all, one should think a little about what the continuous time-domain
Tcont should be. The natural choice is to take Tcont to be the smallest interval
containing the discrete time-domain T.
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2. By Theorem 5.2.6(v), the discretisation of a system of linear homogeneous
ordinary differential equations is an invertible system of linear homogeneous
ordinary difference equations. Thus a partial answer to the question asked is,
“No, if F is not invertible.”

3. Even if F is invertible, it is possible that the answer to the question is, “No.” We
have seen an instance of why this must be so when we considered first-order
scalar linear ordinary differential and difference equations in Examples 4.2.21
and 4.6.20. There we saw that the difference equation version of these two
sorts of equations exhibited oscillatory behaviour that is not possible for the
differential equation version, even when the difference equation was invertible.
The reason for this is that the continuous-time state transition map has more
properties than merely being invertible. Indeed, we have the following result.

1 Lemma For a system of linear homogeneous ordinary differential equations F with
right-hand side F̂(t, x) = A(t)(x), detΦc

A(t, t0) > 0 for all t, t0 ∈ T.
Proof This follows from Theorem 5.2.6(iii). ▼

Thus we can refine our answer to the question we are asking to be, “No, if F is
such that det A(t) ≤ 0 for some t ∈ T.”

4. Even when det A(t) > 0 for every t ∈ T, it may be the case that the answer to the
question is, “No.” Let us illustrate with an example.
Take V = R2 and let A be defined by the 2 × 2 matrix[

−1 0
0 −2

]
.

Note that det A = 2 > 0. However, A is not given by A = eL for any L ∈ L(R2;R2).
To see this, we consider the three possible Jordan normal forms for L:[

α 0
0 β

]
,

[
α 1
0 α

]
,

[
σ ω
−ω σ

]
.

In the case that eL = A, the corresponding operator exponentials are[
eα 0
0 eβ

]
,

[
eα t
0 eα

]
, eσ

[
cos(ω) sin(ω)
− sin(ω) cos(ω)

]
.

We claim that none of these can be similar to A. Indeed, in the first two cases,
the trace of the operator exponential is positive, while the trace of A is negative.
In the third case, the eigenvalues of the operator exponential are eσ±iω while the
eigenvalues for A are −1 and −2. Thus A is not in the image of the operator
exponential. Note, as a side treat, that the curve

[0, 1] ∋ t 7→
[

cos(πt) sin(πt)
− sin(πt) (1 + t) cos(πt)

]
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is a continuous curve connecting idV to A, so A is in the connected component
of the identity.
The preceding example shows that the operator exponential is not surjective
onto the space of invertible linear mappings with positive determinant. Inter-
estingly, this characterisation changes when we work withC-vector spaces, and
let us record this in the following lemma.

2 Lemma If V is a finite-dimensional C-vector space and if E ∈ L(V; V) is invertible,
then there exists A ∈ L(V; V) such that eA = E.
Proof Let us decompose V into a direct sum of the generalised eigenspaces
W(λ,E) of E. Each eigenspace corresponds to an eigenvalue λ ∈ C that is
necessarily nonzero. It suffices to show that, for each eigenvalue λ, there exists

Aλ ∈ L(W(λ,E); W(λ,E))

such that eAλ = E|W(λ,E). That is to say, we can suppose that E has one
generalised eigenspace for a nonzero eigenvalue λ, which means that N =
E − λ idV is nilpotent by Theorems I-5.8.69 and I-5.8.56. Thus we can write

E = λ idV +N = λ idV(idV −(−λ−1N)) = λ idV(idV −N̂),

where N̂ = −λ−1N. Note that, if eℓ = λ, then, taking A0 = ℓ idV, we have

eA0 = eℓ idV = λ idV,

by Theorem 5.2.20(v). Now note that the Taylor series for the logarithm is

log(1 − a) = −
∞∑
j=1

a j

j

for a ∈ C. Thus exp ◦ log(1 − a) = 1 − a. One can use this to see that, if N̂k = 0,

exp

− k−1∑
j=1

N̂ j

j

 = exp

− ∞∑
j=1

N̂ j

j

 =
= exp log(idV −N̂) = idV −N̂.

Therefore, if we take

A1 = −

k−1∑
j=1

N̂ j

j
,

then we have eA1 = idV −N̂. Finally, since A0 and A1 commute and by Theo-
rem 5.2.20(vi),

eA0+A1 = eA0 ◦ eA1 = λ idV(idV −N̂) = E,

as desired. ▼
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Even if the answer to the question is, “Yes,” for a given F, there are still some
caveats of which one must be aware.
5. There may be many differential equations with the same discretisation. For

example, if we take V = R2, A = idR2 , and h = 1, then the constant coefficient
differential equations with

Acont ∈

{[
0 2nπ
−2nπ 0

] ∣∣∣∣∣∣ n ∈ Z
}

all give A as their discretisation. Essentially, because the difference equation
samples at a certain interval, anything happening between the sampling times
is not captured by the difference equation. In the example given, there is high-
frequency behaviour in the continuous-time system that cannot be represented
by the discrete-time system.

5.10.3 Generalisation to not necessarily linear ordinary differential
equations

We close this section by saying a few words about extending the ideas in the
preceding two sections to general ordinary differential and difference equations.

First let us consider the situation where we are given an ordinary differential
equation F with right-hand side

F̂ : T ×U→ Rn.

This will have a flow ΦF : DF → U, and one might want to try to define its discreti-
sation, with sampling interval h ∈ R>0, by “sampling” the flow:

F̂disc(t, x) = ΦF(t + h, t, x),

adapting what we did in the linear case. One then gets, just as in the linear case,

ΦFdisc(t, t0, x) = ΦF(t, t0, x),

but now with a caveat: ΦF(t + h, t, x) may not exist for all (t, x) ∈ Tdisc × U, cf. Ex-
ample 3.2.5. In this sense, the discretisation may fail to exist, in general.

The matter of going from a difference equation to a differential equation has the
same perils as have already been encountered for linear equations, of course.



5005 Systems of ordinary differential and ordinary difference equations2022/03/07

Section 5.11

Using a computer to work with systems of ordinary differential
equations

We thank Jack Horn for putting together the Mathematica® and Matlab® results in
this section.

In this section we illustrate how to use computer packages to obtain analytical
and numerical solutions for systems of ordinary differential equations. We restrict
our attention to attention to linear equations with constant coefficients, since these
are really the only significant class of equations that one can work with analytically.
For numerical solutions, the techniques here are extended in the obvious way to
nonlinear or time-varying systems. As in Section 4.9, we restrict our attention to
illustrating the use of Mathematica® and Matlab®.

5.11.1 Using Mathematica® to obtain analytical and/or numerical solutions

Solving systems of differential equations in Mathematica® requires a similar
procedure as solving a single ordinary differential equation. You must use the
DSolve command, while keeping your system in the form dx

dt (t) = Ax(t)+ f (t), for a
given matrix A and vector function f .

5.11.1 Example (Using DSolve to solve systems of ordinary differential equations)
The first system we will consider is:

dy
dt

(t) =
[
−1 −2
1 −3

]
y(t) +

[
cos(t)

1

]
The following script will find and plot the solutions to this system.

A = {{−1,−2}, {1,−3}};A = {{−1,−2}, {1,−3}};A = {{−1,−2}, {1,−3}};

Y[t ] = {y1[t],y2[t]};Y[t ] = {y1[t],y2[t]};Y[t ] = {y1[t],y2[t]};

solution = DSolve[{Y′[t] == A.Y[t] + {Cos[t], 1},Y[0] == {0, 0}}, {y1,y2}, t];solution = DSolve[{Y′[t] == A.Y[t] + {Cos[t], 1},Y[0] == {0, 0}}, {y1,y2}, t];solution = DSolve[{Y′[t] == A.Y[t] + {Cos[t], 1},Y[0] == {0, 0}}, {y1,y2}, t];

Plot[{y1[t],y2[t]}/.solution, {t, 0, 5}]Plot[{y1[t],y2[t]}/.solution, {t, 0, 5}]Plot[{y1[t],y2[t]}/.solution, {t, 0, 5}]
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Note that the “.” in Mathematica® means matrix-vector multiplication in the
above code. •

5.11.2 Example (Matrix exponential in Mathematica®) Mathematica® is also an incredi-
bly handy software for various aspects of linear algebra. In this example we will
work with the matrix

A =

−1 1 0
−1 −1 0
0 0 2


and will compute matrix exponentials, first using the MatrixExp command, then
by following the process in Procedure 5.2.26.

A = {{−1, 1, 0}, {−1,−1, 0}, {0, 0, 2}};A = {{−1, 1, 0}, {−1,−1, 0}, {0, 0, 2}};A = {{−1, 1, 0}, {−1,−1, 0}, {0, 0, 2}};

MatrixExp[t ∗ A]//MatrixFormMatrixExp[t ∗ A]//MatrixFormMatrixExp[t ∗ A]//MatrixForm
e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t


Now we will follow the steps from class, and compare the results.

Eigenvals = Eigenvalues[A];Eigenvals = Eigenvalues[A];Eigenvals = Eigenvalues[A];

Eigenvect = Eigenvectors[A];Eigenvect = Eigenvectors[A];Eigenvect = Eigenvectors[A];

F1 = Exp[t ∗ Eigenvals[[1]]] ∗ Eigenvect[[1]];F1 = Exp[t ∗ Eigenvals[[1]]] ∗ Eigenvect[[1]];F1 = Exp[t ∗ Eigenvals[[1]]] ∗ Eigenvect[[1]];

F2 = Exp[t ∗ Eigenvals[[2]]] ∗ Eigenvect[[2]];F2 = Exp[t ∗ Eigenvals[[2]]] ∗ Eigenvect[[2]];F2 = Exp[t ∗ Eigenvals[[2]]] ∗ Eigenvect[[2]];

F3 = Exp[t ∗ Eigenvals[[3]]] ∗ Eigenvect[[3]];F3 = Exp[t ∗ Eigenvals[[3]]] ∗ Eigenvect[[3]];F3 = Exp[t ∗ Eigenvals[[3]]] ∗ Eigenvect[[3]];

Fund = Transpose[{F1,F2,F3}];Fund = Transpose[{F1,F2,F3}];Fund = Transpose[{F1,F2,F3}];
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FundInv = Inverse[Fund];FundInv = Inverse[Fund];FundInv = Inverse[Fund];

B = FundInv/.t→ 0;B = FundInv/.t→ 0;B = FundInv/.t→ 0;

Indirect = Fund.B//MatrixFormIndirect = Fund.B//MatrixFormIndirect = Fund.B//MatrixForm

This ”indirect” method gives us the ugly looking matrix shown below:
1
2e(−1−i)t + 1

2e(−1+i)t 1
2 ie(−1−i)t

−
1
2 ie(−1+i)t 0

−
1
2 ie(−1−i)t + 1

2 ie(−1+i)t 1
2e(−1−i)t + 1

2e(−1+i)t 0

0 0 e2t


However, this is equivalent to the matrix found by using the MatrixExp command,
which can be seen by applying the ComplexExpand command.

ComplexExpand[Indirect]//MatrixFormComplexExpand[Indirect]//MatrixFormComplexExpand[Indirect]//MatrixForm
e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t




e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t




e−tCos[t] e−tSin[t] 0

−e−tSin[t] e−tCos[t] 0

0 0 e2t


Sometimes it is not so easy to see that identical symbolic expressions in Mathemat-
ica® are, in fact, identical. For things that are not excessively disgusting to look at,
sometimes the Simplify command is useful. For complex things, ComplexExpand
is sometimes useful. •

Next we consider inhomogeneous equations, using Corollary 5.3.3.

5.11.3 Example (Inhomogeneous linear systems of equations using Mathematica®)
Now that we are comfortable with commands such as MatrixExp, we will see
how it is also possible to solve systems of ordinary differential equations using the
formula

x(t) = eAtx0 +

∫ t0

0
eA(t0−τ) f (τ) dτ.

We will show this by solving the same system given Exercise 5.11.1.

x[t] =MatrixExp[t ∗ A].{0, 0} + Integrate[MatrixExp[A ∗ (t − T)].{Cos[T], 1}, {T, 0, t}];x[t] =MatrixExp[t ∗ A].{0, 0} + Integrate[MatrixExp[A ∗ (t − T)].{Cos[T], 1}, {T, 0, t}];x[t] =MatrixExp[t ∗ A].{0, 0} + Integrate[MatrixExp[A ∗ (t − T)].{Cos[T], 1}, {T, 0, t}];

Plot[x[t], {t, 0, 5}]Plot[x[t], {t, 0, 5}]Plot[x[t], {t, 0, 5}]



2022/03/075.11 Using a computer to work with systems of ordinary differential equations503

1 2 3 4 5

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

As you can see, the plots are identical to the direct results in Exercise 5.11.1. •

One can also use Mathematica® to produce phase portraits. There are sophis-
ticated Mathematica® packages for doing this (we used DynPac for the plots from
Section 5.5), and here we shall indicate how to do this with standard Mathematica®

commands.

5.11.4 Example (Phase plane using Mathematica®) We consider the planar system of
linear equations [

ẋ(t)
ẏ(t)

]
=

[
−1 −2
1 −3

] [
x(t)
y(t)

]
+

[
cos(t)

1

]
.

We use the commands StreamPlot and ParametricPlot.

splot = StreamPlot[{−x − 2y, x − 3y}, {x,−10, 10}, {y,−10, 10}];splot = StreamPlot[{−x − 2y, x − 3y}, {x,−10, 10}, {y,−10, 10}];splot = StreamPlot[{−x − 2y, x − 3y}, {x,−10, 10}, {y,−10, 10}];

Show[splot,Show[splot,Show[splot,

ParametricPlot[ParametricPlot[ParametricPlot[

Evaluate[Evaluate[Evaluate[

First[First[First[

{x[t], y[t]}/.DSolve[{x′[t] == −x[t] − 2 ∗ y[t] + Cos[t], y′[t] == x[t] − 3 ∗ y[t] + 1,{x[t], y[t]}/.DSolve[{x′[t] == −x[t] − 2 ∗ y[t] + Cos[t], y′[t] == x[t] − 3 ∗ y[t] + 1,{x[t], y[t]}/.DSolve[{x′[t] == −x[t] − 2 ∗ y[t] + Cos[t], y′[t] == x[t] − 3 ∗ y[t] + 1,

{x[0], y[0]} == {5,−7}}, {x[t], y[t]}, t]]], {t, 0, 10},PlotStyle→ Red]]{x[0], y[0]} == {5,−7}}, {x[t], y[t]}, t]]], {t, 0, 10},PlotStyle→ Red]]{x[0], y[0]} == {5,−7}}, {x[t], y[t]}, t]]], {t, 0, 10},PlotStyle→ Red]]
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We have plotted, using StreamPlot, the phase plane for the homogeneous system,
and superimposed in red one solution for the inhomogeneous system. •

5.11.2 Using Matlab® to obtain numerical solutions

In Matlab®, solving systems of differential equations is not much different than
solving a single ordinary differential equation. You must create a function for your
system, which must then be passed into a script that will use the ode45 solver.

5.11.5 Example (Using ode45 to solve systems of ordinary differential equations)
We will once again be considering the same examples as we did in Mathematica®,
this time using Matlab®. First we will solve the following system:

dy
dt

(t) =
[
−1 −2
1 −3

]
y(t) +

[
cos(t)

1

]
.

1 function [ dydt ] = Example2( t,y )

2
3 A = [-1 -2;1 -3];

4
5 dydt = A*y + [cos(t); 1];

6
7 end

Below is the main script that will plot the solution to this system. See Figure 5.9
for the Matlab® generated plots.
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1 clc

2 clear all

3 close all

4 %% Solving Numerically
5
6 t = linspace(0,5);

7 y0 = [0 0];

8
9 y = ode45(@(t,y)Example2(t,y),t,y0);

10
11 plot(y.x,y.y)

12 xlabel('Time [s]');
13 ylabel('y(t)');
14 legend('y1(t)','y2(t)');

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-1

-0.8

-0.6

-0.4
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0
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y
(t

)

y1(t)

y2(t)

Figure 5.9 Plots generated by Matlab® for Exercise 5.11.5

One can see that the solutions are quite similar to those from Exercise 5.11.1 using
Mathematica®. The jagged character of the plots is indicative of the fact that the
time step for ode45 can be decreased. This can be done by specifying

t_int = tinit:tstep:tfinal
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where the meaning of tinit, tfinal, and tstep is just what you think they are. •

Matlab® is also very useful for linear algebra.

5.11.6 Example (Matrix exponential in Matlab®) We will consider the same matrix ex-
ponential example

A =

−1 1 0
−1 −1 0
0 0 2


as in Example 5.11.2. Again, it is possible to calculate the matrix exponential
both directly (using the expm command), or you can follow the steps from Proce-
dure 5.2.26.

1 clc

2 clear all

3 close all

4
5 %% Calculating Matrix Exponential Directly
6 A = [-1 1 0; -1 -1 0; 0 0 -2];

7 syms t

8 MatrixExpDirect = expm(t*A)

9 %% Calculating Matrix Exponential Using Procedure from Class
10
11 [EigenVectors ,EigenValues] = eig(t*A);

12
13 F1 = exp(EigenValues(1,1)).*EigenVectors(:,1);

14 F2 = exp(EigenValues(2,2)).*EigenVectors(:,2);

15 F3 = exp(EigenValues(3,3)).*EigenVectors(:,3);

16
17 Fund = [F1 F2 F3];

18 FundInv = inv(Fund);

19 B = subs(FundInv ,0); %Here we are evaluating the fundamental

matrix at t = 0

20
21 MatrixExponential = Fund*B

Here is the output from the Matlab® code

MatrixExponential =

[exp(t*(-1-1i))/2+exp(t*(-1+1i))/2,

(exp(t*(-1-1i))*1i)/2-(exp(t*(-1+1i))*1i)/2, 0]

[-(exp(t*(-1-1i))*1i)/2+(exp(t*(-1+1i))*1i)/2,

exp(t*(-1-1i))/2+exp(t*(-1+1i))/2, 0]

[0, 0, exp(-2*t)]

Of course, the result here is the same as we saw using Mathematica®. •
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Finally, let us see how Matlab® can be used to create phase portraits.

5.11.7 Example To create phase portraits in Matlab®, you must use the meshgrid com-
mand, and evaluate the first derivatives of y1 and y2 at each point for t = 0. Once
you have done this, use the quiver command to plot the vector field. To plot a
specific solution, simply use the ode45 command, and plot the first and second
columns of the outputted matrix. See Figure 5.10 for the result.

1 clc

2 clear all

3 close all

4
5 [x,y] = meshgrid(-10:1:10,-10:1:10);

6
7 u = zeros(size(x));

8 v = zeros(size(x));

9
10 t = 0;

11 for i = 1:numel(x)

12 dydt = Example2(t,[x(i);y(i)]);

13 u(i) = dydt(1);

14 v(i) = dydt(2);

15 end

16
17 quiver(x,y,u,v,'b');
18 xlabel('y1(t)');
19 ylabel('y2(t)');
20
21 t = linspace(0,5);

22 y0 = [5,-7];

23
24 hold on

25 y = ode45(@(t,y)Example2(t,y),t,y0);

26 plot(y.y(1,:),y.y(2,:))

27 hold off

28
29 print -deps PhasePortrait

It is possible to customise Matlab® output to look prettier, but this is something
we leave to the reader as they progress through their professional lives. •
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Figure 5.10 Phase portrait generated by Matlab®
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Chapter 6

Classes of continuous- and discrete-time
systems

Now that we have carefully understood ordinary differential and difference
equations, we turn to systems described by such equations. We shall begin with
a presentation of a class of general, not necessarily linear,1 systems. However, the
study of such systems in any substantial way is a specialised subject that itself
deserves a volume of material that duplicates in scope, and exceeds in depth,
the material presented in these volumes. Instead, we concentrate on—but do
not consider exclusively—a detailed presentation of linear system theory. For the
purposes of this chapter we mainly present definitions for the classes of systems we
shall subsequently consider, and characterise them in terms of the general system
descriptors introduced in Chapter 2.

In Sections 6.1–6.4 we consider definitions and general results for not necessar-
ily linear systems. While the class of systems we consider here is general enough to
include the linear systems that are treated as part of the classical subject of “signals
and systems,” it is far from a presentation of a completely general class of systems.
Let us list the ways in which the theory we present here is not general.
1. One can consider linear systems with infinite-dimensional state spaces. Ex-

amples of such systems include the heat, wave, and potential equations of
Sections 1.1.11, 1.1.12, and 1.1.13, all of which are described by partial differ-
ential equations. While some of the techniques for linear systems we consider
can be adapted to these infinite-dimensional systems, generally speaking the
treatment of these systems is substantially more technical and requires a self-
contained treatment.

2. One can consider systems with state spaces that are finite-dimensional, but are
not subsets of Euclidean space, such as we consider here. Examples of such
systems include mechanical systems involving the motion of rigid bodies, as
these systems typically include “angle variables,” and angles live in circles, not
intervals. A treatment of systems such as these involves a detailed study of the

1We have elected to banish the commonly used terminology “nonlinear.” The reason for doing
this is that “nonlinear systems” are simply systems, while “linear systems” warrant the adjective
“linear” since they are indeed special among the class of all systems.
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state spaces involved, and this is something that will take one on a journey of
independent interest.

3. One can consider systems that combine continuous- and discrete-time domains
in some way. For example, one might have various continuous-time systems be-
tween which one switches according to some discrete-time prescription. These
sorts of models are often referred to as “hybrid systems.” One must develop
techniques for dealing with hybrid systems, and this is largely something that
has not been done in a unified and comprehensive way.

4. There are many problems that can be characterised by automata models such
as were considered in various places in Chapter 2. For these systems, the
techniques and problems typically have a different flavour than what we work
with in this volume.

Note that it is not realistic to develop a meaningful system theory that captures
the points of interest to all of these sorts of systems, along with the ones we do
consider. Indeed, the theory of general systems we present in Chapter 2 is an
attempt to perform a unification of this sort, and it suffers from the lack of depth
one often sees with work that is “too general.”

The theory we begin to investigate in this chapter weaves together much of
the mathematics we have developed in previous volumes, namely convolution
(Chapter IV-4), transform theory (Chapters IV-6, IV-7, and IV-9), and distribution
theory (Chapter IV-3). Indeed, the theory of linear systems we present here is
the raison d’être for our presentation of this background material (although it is
certainly the case that the existence of all of this material has justification beyond
what we do here).

Do I need to read this chapter? The material in this chapter is the beginning of
the core of the material in this volume. •
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Section 6.1

Continuous-time state space systems

Much of the system theoretic methodology in this volume relates exclusively to
what we shall call “linear systems.” These techniques are not generally applicable
to systems that do not have the property of linearity. However, even if one is
only ultimately interested in linear systems, it is valuable for context to begin the
discussion with a more general classes of systems, of which linear systems are
a particular instance. In this section we introduce the first of these larger classes.
Consistent with our discussion of background material in differential and difference
equations, we shall give equal footing to both continuous-time and discrete-time
systems. Here we consider continuous-time systems.

Do I need to read this section? If you have any interest at all in the existence of
systems that are not linear, or in understanding the context for linear systems, then
this section is essential. •

6.1.1 Definitions and system theoretic properties

Let us introduce the basic object of study, recalling from Section 2.2.2 the
notation concerning partially defined functions on time-domains.

6.1.1 Definition (Continuous-time state space system) A continuous-time state space
system is a sextuple Σ = (X,U,T,U , f ,h), where

(i) X ⊆ Rn is an open set (the state space),
(ii) U ⊆ Rm (the control set),
(iii) T ⊆ R is an interval (the time-domain),
(iv) U ⊆ U(T) (the control functions or controls),
(v) f : T × X ×U→ Rn (the dynamics), and
(vi) h : T × X ×U→ Rk (the output map).

Associated with a continuous-time state space system Σ we have the following
notions:
(vii) a controlled trajectory for Σ is a pair (ξ,µ), where µ ∈ U and where ξ ∈

ACloc(dom(µ); X) are such that

ξ̇(t) = f (t, ξ(t),µ(t)), a.e. t ∈ dom(µ); (6.1)

(viii) a controlled output forΣ is a pair (η,µ), whereµ ∈ U and where η : dom(µ)→
Rk satisfies

η(t) = h(t, ξ(t),µ(t)), t ∈ dom(µ),

for some controlled trajectory (ξ,µ).
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We denote by Ctraj(Σ) the set of controlled trajectories and by Cout(Σ) the set of
controlled outputs. •

Of course, since controlled trajectories are defined by solutions to a differential
equation, there are conditions one must give to the dynamics f to ensure that
Ctraj(Σ) , ∅. Such conditions will be given in the next section. Here we shall
consider the system theoretic attributes of continuous-time state space systems;
that is, we make reference to the general system theory of Chapter 2, and see which
attributes apply to the systems of this section. In doing this, we will not consider
the logical interrelations between the various notions, since part of the point of the
discussion here is to see how one applies the definitions of Chapter 2.

Let us consider a few attributes of continuous-time state space systems that
often arise in practice.

6.1.2 Definition (Autonomous, proper continuous-time state space systems) A
continuous-time state space system Σ = (X,U,T,U , f ,h) is

(i) autonomous if there exists

f 0 : X ×U→ Rn, h0 : X ×U→ Rk

such that
f (t, x,u) = f 0(x,u), h(t, x,u) = h0(x,u)

for every (t, x,u) ∈ T × X ×U, and is
(ii) proper if there exists h0 : X ×U→ Rk such that

h(t, x,u) = h0(t, x)

for every (t, x,u) ∈ T × X ×U. •

If only f (resp. h) satisfies the conditions for the system to be autonomous, we
shall say that the system is dynamically autonomous (resp. output autonomous).

We shall see the system theoretic significance of these notions shortly.
Indeed, we next indicate whether/how a continuous-time state space system is

a system of the various types introduced in Chapter 2.

6.1.3 Remarks (Continuous-time state space systems as general systems) We let
Σ = (X,U,T,U , f ,h) be a continuous-time state space system.
1. A continuous-time state space system is a general input/output system as per

Definition 2.1.3. To see this, take

(a) “U = U ,” i.e., the inputs for the general input/output system are the same
as the controls for the continuous-time state space system,

(b) Y = (Rk)(T), i.e., the outputs for the general input/output system are the
partial Rk-valued functions on T, and
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(c) B = Cout(Σ), i.e., the behaviours for the general input/output system are
exactly the controlled outputs for the continuous-time state space system.

2. A continuous-time state space system is, more specifically, a general time system
as per Definition 2.2.9. To see this, take

(a) “U = U,” i.e., the input set for the general time system is the same as the
control set for the continuous-time state space system,

(b) Y = Rk, i.e., the output set for the general time system is Rk,
(c) “U = U ,” i.e., the admissible input signals for the general input/output

system are the same as the controls for the continuous-time state space
system,

(d) Y = (Rk)(T), i.e., the admissible output signals for the general input/output
system are the partial Rk-valued functions on T, and

(e) B = Cout(Σ), i.e., the behaviours for the general time system are exactly
the controlled outputs for the continuous-time state space system. •

Next we consider the issue of various forms of completeness for continuous-
time systems, as introduced in a general setting in Section 2.2.4.

6.1.4 Remarks (Completeness for continuous-time state space systems) We letΣ =
(X,U,T,U , f ,h) be a continuous-time state space system. In our constructions
here, we make use of the notation for flows of continuous-time state space systems
introduced in Definition 6.1.12.
1. Continuous-time state space systems are output complete: Letµ ∈ U and let (I,⪯) be a

totally ordered set, and let (ηi)i∈I be a family of outputs satisfying conditions (a)–
(f) of Definition 2.2.12. Note that

ηi(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)), t ∈ dom(ηi).

Now let S = ∪i∈I dom(ηi) and let η : S→ Rk be such that ηdom(ηi)
= ηi, i ∈ I. Then,

if t ∈ S, we must have t ∈ dom(ηi) for some i ∈ I. Therefore,

η(t) = ηi(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)).

As this holds for every t ∈ dom(η), we conclude output completeness.
2. Generally, a continuous-time state space system is not complete: This is exhibited in

Example 2.2.21. •

Next let us give the form for the general time system representations of Sec-
tion 2.2 for continuous-time state space systems.
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6.1.5 Remarks (General time system representations for continuous-time state
space systems) We let Σ = (X,U,T,U , f ,h) be a continuous-time state space
system. In our constructions here, we make use of the notation for flows of
continuous-time state space systems introduced in Definition 6.1.12. In the fol-
lowing, we suppose that Σ is complete.
1. Σ has an initial response function: Let t0 ∈ T and let (η,µ) ∈ Cout(Σ) with

η(t) = h(t, ξ(t),µ(t)), t ∈ dom(µ),

for (ξ,µ) ∈ Ctraj(Σ). Suppose that t0 ∈ dom(µ). Then

ξ(t) = ΦΣ(t, t0, x0,µ)

for some x0 ∈ dom(µ) × X. We can then denote

ρΣt0
(x0,µ)(t) = h(t,ΦΣ(t, t0, x,µ),µ(t)),

and this defines the initial response functionρΣt0
from t0 with initial state object X.

One has to verify the conditions of Definition 2.2.14, and this is straightforward.
Note that we require completeness in order to ensure the existence of ΦΣ for all
arguments.

2. Σ has a family of state transition maps: Let t0 ∈ T and, given t1, t2 ∈ T≥t0 , we take
Xt1 = Xt2 = X and define

Φt2,t1(µ, x1) = ΦΣ(t2, t1, x1,µ),

defining the family of state transition maps. The properties of flows enunci-
ated in Proposition 3.2.12 ensure that the conditions of Definition 2.2.15 are
satisfied, and we leave the elementary verification of this to the reader. (In-
deed, it is the conclusions of Proposition 3.2.12 that explain the conditions of
Definition 2.2.15.)
Again, we see that completeness is required.

3. Σ has a dynamical system representation: The response function and the family of
state transition maps above combine to give a dynamical systems representation
at t0 ∈ T, as per Definition 2.2.19. One can readily verify the conditions of
Definition 2.2.19.
One can show that this dynamical system representation is full. This is a
consequence of the invertibility of the flow, as in Proposition 3.2.12(iii).
As in the preceding two items, completeness is obviously required.

4. Σ has a state space representation: As output function at t0 ∈ T, as per Defini-
tion 2.2.24, is simply given by

γΣt,t0
(x,u) = h(t, x,u).

One readily verifies that the conditions of Definition 2.2.24 are satisfied. •
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Now let us see which of the general time system theoretic attributes of Sec-
tion 2.2 are held by a continuous-time state space system Σ = (X,U,T,U , f ,h). In
order to make the connections to the general time system notions of Section 2.2 to
the specific case here, we give the translation of these notions that into language
applicable to the class of system we consider here. In our definitions, we make
use of the notation for flows of continuous-time state space systems introduced in
Definition 6.1.12. The proofs of the following results are mere applications of the
definitions of the symbols involved.

We begin with causality.

6.1.6 Proposition (Causality for continuous-time state space systems) Let Σ =
(X,U,T,U , f,h) be a continuous-time state space system and let t0 ∈ T.

(i) The system Σ is causal from t0 if, for every µ1,µ2 ∈ U and every t ∈ T≥t0 ∩

dom(µ1) ∩ dom(µ2),

µ1|[t0, t] = µ2|[t0, t] =⇒ h(t,ΦΣ(t, t0, x0,µ1)) = h(t,ΦΣ(t, t0, x0,µ2))

for every x0 ∈ X.
(ii) The system Σ is strongly causal from t0 if, for every µ1,µ2 ∈ U and every t ∈
T≥t0 ∩ dom(µ1) ∩ dom(µ2),

µ1|[t0, t) = µ2|[t0, t) =⇒ h(t,ΦΣ(t, t0, x0,µ1)) = h(t,ΦΣ(t, t0, x0,µ2))

for every x0 ∈ X. •

Now we consider stationarity.

6.1.7 Proposition (Stationarity for continuous-time state space systems) Let Σ =
(X,U,T,U , f,h) be a continuous-time state space system and let t0 ∈ T.

(i) The system Σ is stationary from t0 if τ∗t0,t0+a(U ) ⊆ U for every a ∈ R>0 and if, for
every µ ∈ U and every t ∈ T≥t0 ∩ dom(µ),

h(t + a,ΦΣ(t + a, t0 + a, x0, τ
∗

t0,t0+aµ), τ∗t0,t0+aµ(t)) = h(t,ΦΣ(t, t0, x0,µ),µ(t))

for every a ∈ R>0 and every x0 ∈ X.
(ii) The system Σ is strongly stationary from t0 if it is stationary from t0 and if, for

every a ∈ R>0, every x0 ∈ X, and every µ ∈ U , there exists x′0 ∈ X such that

h(t,ΦΣ(t, t0, x0,µ),µ(t))h(t + a,ΦΣ(t + a, t0 + a, x′0, τ
∗

t0,t0+aµ(t)), τ∗t0,t0+aµ(t)). •

Note that a consequence of this definition of stationarity is that supT = ∞.
With these definitions, we have the following statements.
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6.1.8 Remarks (System theoretic attributes of continuous-time state space sys-
tems) We let Σ = (X,U,T,U , f ,h) be a continuous-time state space system. In our
constructions here, we make use of the notation for flows of continuous-time state
space systems introduced in Definition 6.1.12.
1. Σ is causal and sometimes strongly causal: Let t0 ∈ T. It follows from the for-

mula (6.1) (assuming the conditions of Theorem 6.1.10 below) for controlled
trajectories that a controlled trajectory (ξ,µ) satisfies

ξ(t) = ξ(t0) +
∫ t

t0

f (τ, ξ(τ),µ(τ)) dτ, t ∈ R≥t0 ∩ dom(µ).

Therefore, if controls µ1 and µ2 agree on [t0, t], then the controlled trajectories
for Σ on [t0, t] agree. Thus Σ is causal from t0. If, additionally, h is independent
of U, i.e., Σ is proper, then we claim that Σ is also strongly causal from t0.
Indeed, from the construction in Theorem 6.1.10 of a controlled trajectory as a
solution to an ordinary differential equation, we see that altering a control on a
set of measure zero does not change the trajectory. Note, however, that if h does
depend on control, then we generally have causality, but not strong causality.

2. Σ is sometimes past determined: First of all, the definition of being past-determined
requires completeness, so one needs to assume completeness to make any state-
ments about past-determinacy. Thus we do this. This ensures that the the first
part of the definitions of past-determined and strong past-determined holds.
Now let t0 ∈ T. For the second parts of these definitions, considerations such as
those for causality above allow us to conclude that Σ is past-determined from
any τ ∈ T>t0 , and is strongly past-determined if h is independent of control.

3. Σ is finitely observable: Let t0 ∈ T and let τ ∈ T>t0 . We suppose that Σ satisfies the
conditions of Theorem 6.1.10 below. Then we see that Σ is finitely observable
from τ. Indeed, a controlled trajectory on [t0, τ), for a fixed control µ ∈ U ,
is uniquely determined by the initial state. This uniqueness then applies to
uniqueness for times greater than τ.

4. Conditions for Σ to be stationary: Generally, a continuous-time state space system
is not stationary. However, it is most common to consider systems that are
stationary, so we consider such systems here. First of all, the definition of
stationarity from t0 ∈ T requires that τ∗t−t0

(U≥t0) = U≥t0 , i.e., the set of controls is
shift-invariant. Then one sees that Σ is strongly stationary if it is autonomous.
The argument for this follows along the lines of that for doing Exercise 3.1.19,
and we leave the working out of this to the reader. Note that a continuous-time
state space system is stationary if and only if it is strongly stationary, and this
is a result of the fact that flows are “reversible,” cf. Proposition 6.1.13(iii).

5. Σ is not generally linear: Presumably, since in Section 6.6 we shall specifically
consider linear continuous-time state space systems, it is not the case that all
continuous-time state space systems are linear. To see this, one need only
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produce a counterexample, and such an example can be seen in Example 2.2.21,
and the lack of linearity here is a reflection of the fact that, in the formula (2.4)
for controlled trajectories, the input µ does not appear linearly. •

6.1.2 Existence and uniqueness of controlled trajectories, and flows for
continuous-time state space systems

As one should expect given the discussion in Section 3.2.1.1, there will be con-
ditions on the dynamics f for a continuous-time state space system that ensure the
existence of controlled trajectories. Since we are working, not just with differential
equations but with systems, one must also take into account the manner in which
f depends on control. One must also think about the most general class of con-
trols that are allowable that ensure the existence of trajectories. In this section, we
present all such conditions.

First let us consider the classes of controls we consider, and topologies for
these. The theory for this was developed in Section III-6.5.4 and was overviewed
in Section IV-1.3.5. Here we make use of this theory for signals taking values in
Rm, as explained in Section IV-1.4.3. Thus the following definitions have already
appeared in these volumes, but we repeat them here in close proximity to their
use.

6.1.9 Definition (Controls for continuous-time state space systems) Let T ⊆ R be a
continuous time-domain and let U ⊆ Rm.

(i) We let L∞loc(T; U) be the set of U-valued locally essentially bounded func-
tions, i.e., f ∈ L∞loc(T; U) if, for every compact interval S ⊆ S and for every
a ∈ {1, . . . ,m},

ess sup{| fa(t)| | t ∈ S} < ∞.

We equip L∞loc(T; U) with the topology defined by the family of seminorms
∥·∥∞,S defined by

∥ f∥∞,S = max{ess sup{| fa(t)| | t ∈ S} | a ∈ {1, . . . ,m}}.

(ii) For p ∈ [1,∞), we let Lp
loc(T; U) be the set of U-valued locally integrable

functions, i.e., f ∈ Lp
loc(T; U) if, for every compact interval S ⊆ S and for every

a ∈ {1, . . . ,m}, ∫
S

| fa(t)|p dt < ∞.

We equip Lp
loc(T; U) with the topology defined by the family of seminorms

∥·∥p,S defined by

∥ f∥p,S = max


(∫
S

| fa(t)|p dt
)1/p ∣∣∣∣∣∣ a ∈ {1, . . . ,m}

 . •
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We refer to Section III-6.2.3 for a description of how topological concepts such
as convergence and continuity work in these spaces with their topology described
by seminorms.

With an understanding of the spaces of inputs that we shall consider, let us now
characterise the conditions on the dynamics f of a continuous-time state space
system that ensure existence and uniqueness of controlled trajectories.

6.1.10 Theorem (Existence and uniqueness of controlled trajectories for
continuous-time state space systems) Let Σ = (X,U,T,U , f,h) be a continuous-
time state space system and assume the following:

(i) the map t 7→ f(t, x,u) is measurable for each (x,u) ∈ X ×U;
(ii) the map x 7→ f(t, x,u) is locally Lipschitz for each (t,u) ∈ T ×U;
(iii) (x,u) 7→ f(t, x,u) is continuous for every t ∈ T;
(iv) for each (t, x,u) ∈ T × X ×U, there exist r1, r2, α ∈ R>0 and

g,L ∈ L1([t − α, t + α];R≥0)

such that

∥f(s, x′,u′)∥ ≤ g(s), (s, x′,u′) ∈ ([t−α, t+α]∩T)×Bn(r1, x)× (Bm(r2,u)∩U),
(6.2)

and

∥f(s, x′1,u
′) − f(s, x′2,u

′)∥ ≤ L(s)∥x′1 − x′2∥,
s ∈ [t − α, t + α] ∩ T, x′1, x

′

2 ∈ Bn(r1, x), u′ ∈ (Bm(r2,u) ∩U). (6.3)

(v) U ⊆ L∞loc((T); U).
Then, for µ ∈ U and (t0, x0) ∈ T × X, there exists a subinterval T′ ⊆ T, relatively open in
T and with t0 ∈ intT(T′), and a locally absolutely continuous curve ξ : T′ → X such that
ξ(t0) = x0 and such that (ξ,µ|T′) ∈ Ctraj(Σ). Moreover, if T′′ is another such interval
and η : T′′ → X is another such curve, then η(t) = ξ(t) for all t ∈ T′′ ∩ T′.

Proof We define an ordinary differential equation F with right-hand side

F̂ : T × X→ Rn

(t, x) 7→ (t, f (t, x,µ(t))).

We claim that F satisfies the conditions of part (ii) of Theorem 3.2.8.
First we note that, for fixed x ∈ X, t 7→ F̂(t, x) is locally integrable by Lemma 1 from

the proof of Theorem 3.2.8. Clearly x 7→ F̂(t, x) is locally Lipschitz for t ∈ T.
Let (t, x) ∈ T × X. Let α ∈ R>0. Then, since µ is locally essentially bounded, there

exists a compact Kµ ⊆ U such that µ(s) ∈ Kµ for almost every s ∈ [t − α, t + α] ∩ T. Let
u ∈ Kµ and, by the assumptions on f , let r1,u, r2,u, αu ∈ R>0 and let

gu ∈ L1([t − αu, t + αu];R≥0)
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be such that

∥ f (s, x′,u′)∥ ≤ gu(s), (s, x′,u′) ∈ ([t − α, t + α] ∩ T) × Bn(r1,u, x) × (Bm(r2,u,u) ∩U).

By compactness of Kµ, let u1, . . . ,up ∈ Kµ be such that the balls Bm(r2,u j ,u j) cover Kµ.
Define

r = min{r1,u1 , . . . , rp,up}, α
′ = min{α, αu1 , . . . , αup},

and
g(s) = max{gu1(s), . . . , gup(s)}, s ∈ [t − α′, t + α′].

Then

∥̂F(s, x′)∥ = ∥ f (s, x′,µ(s))∥ ≤ g(s), (s, x′) ∈ ([t − α′, t + α′] ∩ T) × Bn(r, x).

This gives the bound (3.7) for F̂.
Again let (t, x) ∈ T×X and let α ∈ R>0. Let Kµ ⊆ U be compact such that µ(s) ∈ Kµ

for almost every s ∈ [t − α, t + α] ∩ T. Let u ∈ Kµ and, by the assumptions on f , let
t1,u, r2,u, αu ∈ R>0 and let

Lu ∈ L1([t − αu, t + αu];R≥0)

be such that

∥ f (s, x′1,u
′) − f (s, x′2,u

′)∥ ≤ Lu(s)∥x′1 − x′2∥,
s ∈ [t − αu, t + αu] ∩ T, x′1, x

′

2 ∈ Bn(r, x), u′ ∈ (Bm(r2,u,u) ∩U).

By compactness of Kµ, let u1, . . . ,up ∈ Kµ be such that the balls Bm(r2,u j ,u j) cover Kµ.
Define

r = min{r1,u1 , . . . , rp,up}, α
′ = min{α, αu1 , . . . , αup},

and
L(s) = max{Lu1(s), . . . ,Lup(s)}, s ∈ [t − α′, t + α′].

Then

∥̂F(s, x′1) − F̂(s, x′2)∥ = ∥ f (s, x′1,µ(s)) − f (s, x′2,µ(s))∥ ≤ L(s)∥x′1 − x′2∥,
s ∈ [t − α′, t + α′] ∩ T, x′1, x

′

2 ∈ Bn(r, x).

This gives the bound (3.8) for F̂, and this shows that F satisfies the conditions of
Theorem 3.2.8.

The theorem, then, follows from Theorem 3.2.8. ■

The theorem now permits an adaptation of the notion of the flow of a differ-
ential equation in Section 3.2.1.3 to continuous-time state space systems. Let us
undertake this notation here.
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6.1.11 Definition (Interval of existence, domain of solutions) Let Σ = (X,U,T,U , f ,h)
be a continuous-time state space system that satisfies the conditions of Theo-
rem 6.1.10 for existence and uniqueness of controlled trajectories.

(i) For (t0, x0,µ) ∈ T × X ×U , denote

JΣ(t0, x0,µ) = ∪{J ⊆ dom(µ) | J is an interval and there exists
ξ : J→ X such that (ξ,µ|J) ∈ Ctraj(Σ), ξ(t0) = x0}.

The interval JΣ(t0, x0,µ) is the interval of existence for the initial value problem

ξ̇(t) = f (t, ξ(t),µ(t)), ξ(t0) = x0.

(ii) For µ ∈ U , the domain of solutions for Σ for the control µ is

DΣ(µ) = {(t, t0, x0) ∈ T × T × X | t ∈ JΣ(t0, x0,µ)}.

(iii) The domain of solutions for Σ is

DΣ = {(t, t0, x0,µ) ∈ T × T × X ×U | (t, t0, x0) ∈ DΣ(µ)}. •

As with ordinary differential equations, we can now introduce the notion of the
flow for a continuous-time state space system.

6.1.12 Definition (Flow of a continuous-time state space system) Let Σ =
(X,U,T,U , f ,h) be a continuous-time state space system that satisfies the con-
ditions of Theorem 6.1.10 for existence and uniqueness of controlled trajectories.
The flow of Σ is the map ΦΣ : DΣ → X defined by asking that ΦΣ(t, t0, x0,µ) is the
solution, evaluated at t, of the initial value problem

ξ̇(τ) = f (τ, ξ(τ),µ(τ)), ξ(t0) = x0. •

The definition, phrased differently, says that

d
dt
ΦΣ(t, t0, x0,µ) = f (t,ΦΣ(t, t0, x0,µ),µ(t)), ΦΣ(t0, t0, x0,µ) = x0.

For t, t0 ∈ T and µ ∈ U , it is sometimes convenient to denote

DΣ(t, t0,µ) = {x ∈ X | (t, t0, x) ∈ DΣ(µ)},

and then
Φ
Σ,µ
t,t0

: DΣ(t, t0,µ)→ X

x 7→ ΦΣ(t, t0, x,µ).

Along similar lines, for t0 ∈ T, we denote

DΣ(t0) = {(t, x,µ) ∈ T × X ×U | (t, t0, x,µ) ∈ DΣ},
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and then
ΦΣ(t0) : DΣ(t0)→ X

(t, x,µ) 7→ ΦΣ(t, t0, x,µ).

Finally, for t, t0 ∈ T, we denote

DΣ(t, t0) = {(x,µ) ∈ X ×U | (t, t0, x,µ) ∈ DΣ},

and then
ΦΣ(t, t0) : DΣ(t, t0)→ X

(x,µ) 7→ ΦΣ(t, t0, x,µ).

Let us enumerate some of the more elementary properties of the flow for a
continuous-time state space system, just as for an ordinary differential equation.

6.1.13 Proposition (Elementary properties of flows of continuous-time state space
systems) LetΣ = (X,U,T,U , f,h) be a continuous-time state space system that satisfies
the conditions of Theorem 6.1.10 for existence and uniqueness of controlled trajectories.
Then the following statements hold:

(i) for each (t0, x0,µ) ∈ T × X ×U , (t0, t0, x0,µ) ∈ DΣ and ΦΣ(t0, t0, x0,µ) = x0;
(ii) if (t2, t1, x,µ) ∈ DΣ, then (t3, t2,ΦΣ(t2, t1, x),µ) ∈ DΣ if and only if (t3, t1, x,µ) ∈ DΣ

and, if this holds, then

ΦΣ(t3, t1, x,µ) = ΦΣ(t3, t2,Φ
Σ(t2, t1, x,µ),µ).

(iii) if (t2, t1, x,µ) ∈ DΣ, then (t1, t2,ΦΣ(t2, t1, x,µ),µ) ∈ DΣ and

ΦΣ(t1, t2,Φ
Σ(t2, t1, x,µ),µ) = x.

Proof This follows immediately from Proposition 3.2.12. ■

Useful mnemonics associated with parts (i)–(iii) are:

Φ
Σ,µ
t0,t0
= idX, (ΦΣ,µt2,t1

)−1 = Φ
Σ,µ
t1,t2
, Φ

Σ,µ
t3,t2

◦Φ
Σ,µ
t2,t1
= Φ

Σ,µ
t3,t1
.

However, these really are just mnemonics, since they do not account carefully for
the domains of the mappings being used.

The following result encodes some less elementary properties of the flow of an
ordinary differential equation, including the regularity of the dependence on time,
state, and control.

6.1.14 Theorem (Properties of flows of continuous-time state space systems) Let
Σ = (X,U,T,U , f,h) be a continuous-time state space system that satisfies the conditions of
Theorem 6.1.10 for existence and uniqueness of controlled trajectories. Then the following
statements hold:

(i) for (t0, x0,µ) ∈ T × X ×U , JΣ(t0, x0,µ) is an interval that is a relatively open subset
of T;
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(ii) for (t0, x0,µ) ∈ T × X ×U , the curve

γ(t0,x0,µ) : JΣ(t0, x0,µ)→ X

t 7→ ΦΣ(t, t0, x0,µ)

is well-defined and absolutely continuous;
(iii) for t, t0 ∈ T and µ ∈ U , DΣ(t, t0,µ) is open in X;

(iv) for t, t0 ∈ T and µ ∈ U for which DΣ(t, t0,µ) , ∅, ΦΣ,µt,t0
is a locally bi-Lipschitz

homeomorphism onto its image;
(v) for t0 ∈ T, DΣ(t0) is relatively open in T × X ×U ;
(vi) for t0 ∈ T, the map

ΦΣ(t0) : DΣ(t0)→ X

(t, x,µ) 7→ ΦΣ(t, t0, x,µ)

is well-defined and continuous;
(vii) DΣ is relatively open in T × T × X ×U ;
(viii) the map

ΦΣ : DΣ → X

is continuous;
(ix) for (t0, x0,µ0) ∈ T × X ×U and for ϵ ∈ R>0, there exists r, ρ, α ∈ R>0 such that

sup JΣ(t, x,µ) > sup JΣ(t0, x0,µ0) − ϵ, inf JΣ(t, x,µ) < inf JΣ(t0, x0,µ0) + ϵ

for all (t, x,µ) ∈ (t0 − α, t0 + α) ∩ T × Bn(r, x0) × B(ρ,µ0).
Proof Parts (i)–(iv) follow immediately from Theorem 3.2.13. The remaining parts (v)–
(ix) are analogous to the corresponding parts of Theorem 3.2.13, but include the rôle
of control in the flow. We shall prove the local version of the theorem—the analogue
of Lemma 2 from the proof of Theorem 3.2.13—since the global version follows by an
argument very much like the lengthy argument from Theorem 3.2.13.

Let (t0, x0,µ0) ∈ T × X ×U . We shall suppose first that t0 , supT.
Let r′ ∈ R>0 be such that Bn(r′, x0) ⊆ X. Let r = r′

2 and λ ∈ (0, 1). There exists
α ∈ R>0 such that ∫ t

t0

∥ f (s, x,µ0(s))∥ds <
r
2

for t ∈ [t0, t0 + α] and x ∈ Bn(r′, x0), and∫ t

t0

∥ f (s, x1,µ0(s)) − f (s, x2,µ0(s))∥ds ≤ λ∥x2 − x1∥

for t ∈ [t0, t0 + α] and x1, x2 ∈ Bn(r′, x0). Now let ρ ∈ R>0 be such that, if µ ∈ U satisfies

∥µ − µ0∥[t0,t0+α],∞ = sup{∥µ(s) − µ0(s)∥ | s ∈ [t0, t0 + α]} < ρ,
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then ∫ t

t0

∥ f (s, x,µ(s)) − f (s, x,µ0(s))∥ds <
r
2

for t ∈ [t0, t0 + α] and x ∈ Bn(r′, x0), and∫ t

t0

∣∣∣∥ f (s, x1,µ(s)) − f (s, x2,µ(s))∥ − ∥ f (s, x1,µ0(s)) − f (s, x2,µ0(s))∥
∣∣∣ ds <

λ
2
∥x2 − x1∥

for t ∈ [t0, t0 + α] and x1, x2 ∈ Bn(r′, x0). This is possible by the assumptions (6.2)
and (6.3) on f . Let us denote

B[t0,t0+α](ρ,µ0) = {µ ∈ U | ∥µ − µ0∥[t0,t0+α],∞ < ρ}.

An application of the triangle inequality gives∫ t

t0

∥ f (s, x,µ(s))∥ds < r

for t ∈ [t0, t0 + α], x ∈ Bn(r′, x0), and µ ∈ B[t0,t0+α](ρ,µ0), and∫ t

t0

∥ f (s, x2,µ(s)) − f (s, x1,µ(s))∥ds < λ∥x2 − x1∥

for t ∈ [t0, t0 + α], x1, x2 ∈ Bn(r′, x0), and µ ∈ B[t0,t0+α](ρ,µ0).
With these constructions, one can duplicate the Contraction Mapping Theorem

arguments from the proof of Theorem 3.2.13 to show thatΦΣ is a continuous mapping

[t0, t0 + α] × {t0} × Bn(r, x0) × B[t0,t0+α](ρ,µ0)→ X.

One can similarly give the same conclusion for the time interval [t0 − α, t0], and thus
give the local version of the continuity properties of the flow for Σ. As indicated at the
beginning of the proof, one can then duplicate the lengthy argument from the proof of
Theorem 3.2.13 to give the last five parts of the theorem. ■

6.1.3 Control-affine continuous-time state space systems

We next consider a special class of continuous-time state space systems. The
class is worthy of consideration for a few reasons: (1) one can consider for these sys-
tems a somewhat broader class of controls, namely those that are locally integrable;
(2) this class of systems is a midpoint between general continuous-time state space
systems and the linear systems we shall consider in Section 6.6; (3) systems that
arise in practice are often of this form.

Here is the definition.
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6.1.15 Definition (Control-affine continuous-time state space system) A continuous-
time state space system Σ = (X,U,T,U , f ,h) with U ⊆ Rm is control-affine if

(i) there exists f 0, f 1, . . . , f m : T × X→ Rn such that

f (t, x,u) = f 0(t, x) +
m∑

a=1

ua f a(t, x),

and
(ii) there exists h0,h1, . . . ,hm : T × X→ Rk such that

h(t, x,u) = h0(t, x) +
m∑

a=1

uaha(t, x).

We call f 0 (resp. h0) the drift dynamics (resp. drift/output map) and f 1, . . . , f m
(resp. h1, . . . ,hm) the control dynamics (resp. control/output maps). •

For a control-affine continuous-time state space system, we shall frequently
denote F = ( f 0, f 1, . . . , f m) and H = (h0,h1, . . . ,hm) and then prescribe such a
system by the data Σ = (X,U,T,U ,F ,H ). Of course, all the notions attached
to continuous-time state space systems—e.g., controlled trajectories, controlled
outputs, autonomous, proper—can also be attached to those that are control-affine.

Let us state the conditions for existence and uniqueness of controlled trajectories
for control-affine systems. Here we see that there is a distinction between the
autonomous and nonautonomous cases.

6.1.16 Theorem (Existence and uniqueness of controlled trajectories for control-
affine continuous-time state space systems) Let Σ = (X,U,T,U ,F ,H ) be a
control-affine continuous-time state space system and assume the following:

(i) the maps t 7→ fa(t, x), a ∈ {0, 1, . . . ,m}, are measurable for each x ∈ X;
(ii) the maps x 7→ fa(t, x), a ∈ {0, 1, . . . ,m}, are locally Lipschitz for each t ∈ T;
(iii) for each (t, x) ∈ T × X, there exist r, α ∈ R>0 and

g,L ∈ L1([t − α, t + α];R≥0)

such that

∥fa(s, x′)∥ ≤ g(s), a ∈ {0, 1, . . . ,m}, (s, x′) ∈ ([t−α, t+α]∩T×Bn(r, x), (6.4)

and

∥fa(s, x′1) − fa(s, x′2)∥ ≤ L(s)∥x′1 − x′2∥,
a ∈ {0, 1, . . . ,m}, s ∈ [t − α, t + α] ∩ T, x′1, x

′

2 ∈ Bn(r, x). (6.5)

(iv) U ⊆ L∞loc((T); U).
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Then, for µ ∈ U and (t0, x0) ∈ T × X, there exists a subinterval T′ ⊆ T, relatively open in
T and with t0 ∈ intT(T′), and a locally absolutely continuous curve ξ : T′ → X such that
ξ(t0) = x0 and such that (ξ,µ|T′) ∈ Ctraj(Σ). Moreover, if T′′ is another such interval
and η : T′′ → X is another such curve, then η(t) = ξ(t) for all t ∈ T′′ ∩ T′.

Proof We can prove the theorem by showing that, for a given µ ∈ U , the hypotheses
imply those of Theorem 6.1.10. This verification, however, is elementary, and we leave
the working out of this to the reader as Exercise 6.1.5. ■

One of the useful features of control-affine continuous-time state space systems
is that one can use locally integrable controls for autonomous systems, i.e., those
where f 0, f 1, . . . , f m are independent of time. This is a case that often arises in
applications.

6.1.17 Theorem (Existence and uniqueness of controlled trajectories for au-
tonomous control-affine continuous-time state space systems) Let Σ =
(X,U,T,U ,F ,H ) be an autonomous control-affine continuous-time state space system
and assume that the maps x 7→ fa(x), a ∈ {0, 1, . . . ,m}, are locally Lipschitz. Suppose
that U ⊆ L1

loc((T); U). Then, for µ ∈ U and (t0, x0) ∈ T × X, there exists a subinterval
T′ ⊆ T, relatively open in T and with t0 ∈ intT(T′), and a locally absolutely continuous
curve ξ : T′ → X such that ξ(t0) = x0 and such that (ξ,µ|T′) ∈ Ctraj(Σ). Moreover, if
T′′ is another such interval and η : T′′ → X is another such curve, then η(t) = ξ(t) for all
t ∈ T′′ ∩ T′.

Proof As with the proof of Theorem 6.1.10, we can prove the theorem by showing
that, for a given µ ∈ U , the hypotheses imply those of Theorem 3.2.8 for the ordinary
differential equation F with right-hand side

F̂(t, x) = f 0(x) +
m∑

a=1

µa(t) f a(x).

This verification, however, is elementary, and we leave the working out of this to the
reader as Exercise 6.1.6. ■

Given the preceding theorems, the flow-related concepts and terminology of
Definitions 6.1.11 and 6.1.12 apply equally well to control-affine systems, pro-
vided that one keeps in mind the classes of controls one can use for autonomous
and nonautonomous systems. The elementary properties of flows from Proposi-
tion 6.1.13 also immediately apply to all control-affine systems. Additionally, the
regularity properties of the flow from Theorem 6.1.14 carries over verbatim for
control-affine systems, this by virtue of the fact that a control-affine continuous-
time state space system satisfying the hypotheses of Theorem 6.1.16 also satisfies
the hypotheses of Theorem 6.1.10. For autonomous control-affine systems, this
verbatim transcription does not apply, since the class of controls is different. Nev-
ertheless, the corresponding result does hold, as we now state.
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6.1.18 Theorem (Properties of flows of autonomous control-affine continuous-time
state space systems) Let Σ = (X,U,T,U ,F ,H ) be an autonomous control-affine
continuous-time state space system that satisfies the conditions of Theorem 6.1.17 for
existence and uniqueness of controlled trajectories. Then the following statements hold:

(i) for (t0, x0,µ) ∈ T × X ×U , JΣ(t0, x0,µ) is an interval that is a relatively open subset
of T;

(ii) for (t0, x0,µ) ∈ T × X ×U , the curve

γ(t0,x0,µ) : JΣ(t0, x0,µ)→ X

t 7→ ΦΣ(t, t0, x0,µ)

is well-defined and absolutely continuous;
(iii) for t, t0 ∈ T and µ ∈ U , DΣ(t, t0,µ) is open in X;

(iv) for t, t0 ∈ T and µ ∈ U for which DΣ(t, t0,µ) , ∅, ΦΣ,µt,t0
is a locally bi-Lipschitz

homeomorphism onto its image;
(v) for t0 ∈ T, DΣ(t0) is relatively open in T × X ×U ;
(vi) for t0 ∈ T, the map

ΦΣ(t0) : DΣ(t0)→ X

(t, x,µ) 7→ ΦΣ(t, t0, x,µ)

is well-defined and continuous;
(vii) DΣ is relatively open in T × T × X ×U ;
(viii) the map

ΦΣ : DΣ → X

is continuous;
(ix) for (t0, x0,µ0) ∈ T × X ×U and for ϵ ∈ R>0, there exists r, ρ, α ∈ R>0 such that

sup JΣ(t, x,µ) > sup JΣ(t0, x0,µ0) − ϵ, inf JΣ(t, x,µ) < inf JΣ(t0, x0,µ0) + ϵ

for all (t, x,µ) ∈ (t0 − α, t0 + α) ∩ T × Bn(r, x0) × B(ρ,µ0).
Proof The constructions from the proof of Theorem 6.1.14 can be equally well per-
formed under the hypotheses of the current theorem, and we leave the details of this
to the reader in Exercise 6.1.7. ■

Exercises

6.1.1 Show that a continuous-time state space system is not memoryless. (See
Example 2.2.31–2 for the definition of a memoryless system.)

6.1.2 For the continuous-time state space systems Σ = (X,U,T,U , f ,h) given and
for t0 ∈ T, indicate whether they are causal from t0, strongly causal from t0,
finitely observable from any τ ∈ T>t0 , stationary from t0, strongly stationary
from t0, and/or memoryless.
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(a) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) U = L1
loc((R);R),

(v) f (t, x,u) = tx + u,
(vi) h(t, x,u) = sin(x).

(b) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) U = L1
loc((R);R),

(v) f (t, x,u) = tx + u,
(vi) h(t, x,u) = sin(x)u.

(c) Take
(i) X = R2,
(ii) U = R,
(iii) T = R,

(iv) U = L1
loc((R);R),

(v) f (t, (x1, x2),u) = (x1 − x2, 2x1 + 3x2) + (0,u2),
(vi) h(t, (x1, x2),u) = (x1, x2).

(d) Take
(i) X = R3,
(ii) U = R2,
(iii) T = R,

(iv) U = L1
loc((R);R),

(v) f (t, (x1, x2, x3), (u1,u2)) = (cos(t)x1− sin(t)x2, sin(t)x1+
cos(t)x2, x3) + (u1, 0,u2),

(vi) h(t, (x1, x2, x3), (u1,u2)) = (x1 + x2, x2 + u).
6.1.3 For the continuous-time state space systems Σ = (X,U,T,U , f ,h) given,

indicate whether they satisfy the hypotheses of Theorem 6.1.10.
(a) Take

(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) U = L∞loc((R);R),
(v) f (t, x,u) = |txu|,
(vi) h(t, x,u) = |txu|.

(b) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) U = L∞loc((R);R),

(v) f (t, x,u) = x +
√
|u|,

(vi) h(t, x,u) = x.
(c) Take

(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) U = L∞loc((R);R),

(v) f (t, x,u) =

 xu2

x2+u4 , (x,u) , (0, 0),
0, (x,u) = (0, 0),

(vi) h(t, x,u) = x.
(d) Take

(i) X = R3,
(ii) U = R,
(iii) T = R,

(iv) U = L2
loc((R);R),

(v) f (t, x,u) = (x2, x3, 0) + (0, 0,u),
(vi) h(t, x,u) = x1 + x2 + x3.
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6.1.4 For each of the following continuous-time state space systems Σ =
(X,U,T;U , f ,h) with U left undetermined, determine the natural choice
for U .
(a) Take

(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = u,
(v) h(t, x,u) = x.

(b) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = sin(u),
(v) h(t, x,u) = x.

(c) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = u2,
(v) h(t, x,u) = x.

6.1.5 Let Σ = (X,U,T,U ,F ,H ) be a control-affine continuous-time state space
system satisfying the hypotheses of Theorem 6.1.16. Show that the asso-
ciated continuous-time state space system satisfies the hypotheses of Theo-
rem 6.1.10.

6.1.6 Let Σ = (X,U,T,U ,F ,H ) be a control-affine continuous-time state space
system satisfying the hypotheses of Theorem 6.1.17. Show that, for µ ∈ U ,
the ordinary differential equation F with right-hand side

F̂(t, x) = f 0(x) +
m∑

a=1

µa(t) f a(x).

satisfies the hypotheses of Theorem 3.2.8.
6.1.7 Show that the arguments from the proof of Theorem 6.1.14 can be used to

prove Theorem 6.1.18.
6.1.8 Consider the circuit in Figure 6.1 with an ideal diode (the triangle thingy)

through which the current is determined by the formula

I = Is

(
eV/νVT − 1

)
,

where V is the voltage drop across the diode and where the physical con-
stants are

IS saturation current
VT thermal voltage
ν emission coefficient

Answer the following questions.
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−
E

+

R1

CR2

Figure 6.1 Circuit with diode

(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?

6.1.9 In Figure 6.2 is depicted a pendulum swinging in the plane and with a motor

θ

τ

Figure 6.2 Forced pendulum

at the base supplying a torque τ. Suppose that a sensor measures the angle
of the pendulum. Let the length of the pendulum be ℓ, let its mass be m, and
suppose that it is an homogeneous rod. Answer the following questions.
(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?
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6.1.10 (Mini-project) Consider the simplified bicycle model shown in Figure 6.3.
There are two wheels which roll without sliding on the plane. The direction

(x, y)

θ

φ

Figure 6.3 A simplified bicycle model

of the “back” wheel is fixed while the direction of the “front” wheel can be
controlled via the angle ϕ. The position of the geometric centre (between
the point of contact of the two wheels) is denoted by (x, y). The orientation
of the bicycle in the plane is determined by the angle θ. The “back” wheel is
used to drive the bicycle, and so the forward velocity of the point of contact
of the back wheel is something that can be controlled. Also, the rotational
velocity of the “front” steering wheel can be controlled. The output is the
position of the geometric centre.

We wish to assemble all of this into a continuous-time state space system.
(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?
Any physical parameters you require, you should introduce yourself. An-
swer the following questions about the model.
(g) Is the system model causal?
(h) Is the system model stationary?
(i) Is the system model memoryless?
(j) Is the system model control-affine?
Finally, do some system theoretic explorations as follows.
(k) Do some research and describe three system theoretic problems that

arise in a natural way for the problem.
(l) Using a computer package for simulating ordinary differential equa-

tions, setup the system for simulation, and see if you can steer the
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output from an initial to a desired final value. You should represent the
output as a parametric curve in the output space R2.

6.1.11 (Mini-project) Consider the rolling ball on a beam shown in Figure 6.4 and

θ
r

Figure 6.4 A ball rolling on a beam

discussed in [Keshmiri, Jahromi, Mohebbi, Amoozgar, and Xie 2012]. A mo-
tor supplies a torque to rotate the beam. A sensor measures the displacement
of the ball along the beam.

We wish to assemble all of this into a continuous-time state space system.
(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?
Any physical parameters you require, you should introduce yourself. An-
swer the following questions about the model.
(g) Is the system model causal?
(h) Is the system model stationary?
(i) Is the system model memoryless?
(j) Is the system model control-affine?
Finally, do some system theoretic explorations as follows.
(k) Do some research and describe three system theoretic problems that

arise in a natural way for the problem.
(l) Using a computer package for simulating ordinary differential equa-

tions, setup the system for simulation, and see if you can devise a way
to steer the ball to a displacement of r = 0 from an initial displacement
of r = r0.

6.1.12 (Mini-project) Consider the continuous fermenter depicted in Figure 6.5 and
discussed in [Henson and Seborg 1992]. A substrate with concentration S f

is input to the constant volume fermenter and an effluent with cell-mass
concentration X, a substrate with concentration S, and the product with
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D

Sf

D

X,S, P

Figure 6.5 Continuous fermenter

concentration P are produced. The dilution rate D is regarded as an input.
One may model the process with the ordinary differential equation model

Ẋ(t) = −D(t)X(t) + µ(S(t),P(t))X(t),

Ṡ(t) = D(t)(S f (t) − S(t)) − YX/Sµ(S(t),P(t))X(t),
Ṗ(t) = −D(t)P(t) + (αµ(S(t),P(t)) + β)X(t),

where the specific growth rate µ is given by

µ(S,P) =
µm

(
1 − P

Pm

)
S

Km + S + S2

Ki

,

and where the following are constant parameters determined by experiment:

YX/S cell-mass yield,
α, β yield parameters,
µm maximum specific growth rate,
Pm product saturation constant,
Km substrate saturation constant,
Ki substrate inhibition constant.

We wish to assemble all of this into a continuous-time state space system.
(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?
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Any physical parameters you require, you should introduce yourself. An-
swer the following questions about the model.
(g) Is the system model causal?
(h) Is the system model stationary?
(i) Is the system model memoryless?
(j) Is the system model control-affine?
Finally, do some system theoretic explorations as follows.
(k) Do some research and describe three system theoretic problems that

arise in a natural way for the problem.
(l) Using a computer package for simulating ordinary differential equa-

tions, setup the system for simulation, and try out some inputs, while
interpreting the outputs.
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Section 6.2

Continuous-time input/output systems

The next class of systems we consider are input/output systems, still in the
setting of continuous-time systems. We shall see in this section the emergence of
a theme in our treatment of system theory, namely that of an input/output system
as a continuous mapping between a space of input signals to a space of output
signals. We shall also see another these, namely that state space systems can be
regarded as input/output systems. Note that this is connected with constructions in
general system theory as exemplified by Propositions 2.1.7 and 2.1.13 (for general
systems), and Theorem 2.2.20 and Proposition 2.2.49 (for general time systems).

Do I need to read this section? The ideas about input/output systems, and
about the connection of such systems to state space systems, that are provided
here are a theme in much of our presentation. This theme is enunciated in a some-
what general form for continuous-time systems in this section, and so this section
is an important one for what follows. •

6.2.1 Topological constructions for spaces of continuous-time partially
defined signals

As we briefly suggested above, input/output systems are maps between spaces
of input and output signals. Because of the necessity of allowing signals defined
on varying time-domains, cf. Example 2.2.21, this complicates things. Therefore,
let us develop some methodology for dealing with this complication. First let us
recall from Notation 2.2.7 some notation for distinguished sets of partially defined
signals.

6.2.1 Definition (Spaces of partially defined signals with topological structure) Let
T ⊆ R be a continuous time-domain.

(i) Consider the space

C0((T);Rn) = { f ∈ (Rn)(T)
| f ∈ C0(dom( f );Rn)},

where we equip dom−1(S) with the topology defined by the seminorms

∥ f∥K,∞ = sup{| fa(t)| | t ∈ K, a ∈ {1, . . . ,n}}, K ⊆ S a compact interval.

(ii) Consider the space

C0
bdd((T);Rn) = { f ∈ (Rn)(T)

| f ∈ C0
bdd(dom( f );Rn)},

where we equip dom−1(S) with the topology defined by the norm

∥ f∥∞ = sup{| fa(t)| | t ∈ S, a ∈ {1, . . . ,n}}.
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(iii) Consider the space

L∞loc((T);Rn) = { f ∈ (Rn)(T)
| f ∈ L∞loc(dom( f );Rn)},

where we equip dom−1(S) with the topology defined by the seminorms

∥ f∥K,∞ = max{ess sup{| fa(t)| | t ∈ K} | a ∈ {1, . . . ,n}}, K ⊆ S a compact interval.

(iv) Consider the space

L∞((T);Rn) = { f ∈ (Rn)(T)
| f ∈ L∞(dom( f );Rn)},

where we equip dom−1(S) with the topology defined by the norm

∥ f∥∞ = max{ess sup{| fa(t)| | t ∈ S} | a ∈ {1, . . . ,n}}.

(v) For p ∈ [1,∞), consider the space

Lp
loc((T);Rn) = { f ∈ (Rn)(T)

| f ∈ Lp
loc(dom( f );Rn)},

where we equip dom−1(S) with the topology defined by the seminorms

∥ f∥K,p = max


(∫
K)
| fa(t)|p dt

)1/p ∣∣∣∣∣∣ a ∈ {1, . . . ,n}

 , K ⊆ S a compact interval.

(vi) For p ∈ [1,∞), consider the space

Lp((T);Rn) = { f ∈ (Rn)(T)
| f ∈ Lp(dom( f );Rn)},

where we equip dom−1(S) with the topology defined by the norm

∥ f∥p = max


(∫
S

| fa(t)|p dt
)1/p ∣∣∣∣∣∣ a ∈ {1, . . . ,n}

 . •

Note that the preceding sets of partially defined signals are not, themselves,
topological spaces. They are merely collections of subsets of signals, each having
topologies.

The spaces we shall use are then the following subsets of the preceding spaces.

6.2.2 Definition (Space of partially defined continuous-time signals with topology)
Let T ⊆ R be a continuous time-domain and let S ⊆ Rn. A space of partially

defined signals with topology is a subset S of one of the following spaces of
partially defined signals:

(i) the space

C0((T); S) = { f ∈ C0((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology;
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(ii) the space

C0
bdd((T); S) = { f ∈ C0

bdd((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology;
(iii) the space

L∞loc((T); S) = { f ∈ L∞loc((T);Rn) | for each compact sub-time-domain
K ⊆ dom( f ), there exists a relatively compact K ⊆ S

such that f (t) ∈ K, a.e. t ∈ K}

equipped with the subspace topology;2

(iv) the space

L∞((T); S) = { f ∈ L∞((T);Rn) | there exists a relatively compact
K ⊆ S such that f (t) ∈ K, a.e. t ∈ dom( f )}

equipped with the subspace topology;3

(v) for p ∈ [1,∞), the space

Lp
loc((T); S) = { f ∈ Lp

loc((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology;
(vi) for p ∈ [1,∞), the space

Lp((T); S) = { f ∈ Lp((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology.
If dom( f ) = T for every f ∈ S , then S is a space of continuous-time signals with
topology. •

Given a space S of partially defined signals with topology with time-domain
T and given a sub-time-domain S ⊆ T, we shall use the notation

S (S) = { f ∈ S | dom( f ) = S}.

6.2.2 Definitions and system theoretic properties

With suitable notions of spaces of partially defined signals at hand, we can give
a suitable definition of an input/output system.

2There is a seeming lack of symmetry in this definition, as is does not altogether match our other
definitions. However, it does match if one keeps in mind that f ∈ L∞(T;Rn) if and only if there
exists a compact K ⊆ Rn for which f (t) ∈ K for almost every t ∈ T. It is the compactness of the set
in which the control takes its values that is crucial, not just its boundedness.

3Ibid.
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6.2.3 Definition (Continuous-time input/output system) A continuous-time in-
put/output system is a quintuple Σ = (U,T,U ,Y , g), where

(i) U ⊆ Rm (the input set),
(ii) T ⊆ R is an interval (the time-domain),
(iii) U ⊆ U(T) is a space of partially defined signals with topology (the input

signals),
(iv) Y ⊆ (Rk)(T) is a space of partially defined signals with topology (the output

signals), and
(v) g : U → Y has the following properties:

(a) for every sub-time-domain S ⊆ T, the restriction of g to U (S), denoted
by gS, takes values in Y (S);

(b) if S, S′ ⊆ T are sub-time-domains with S′ ⊆ S, then gS|U (S′) = gS′ ;
(c) gS is continuous for every sub-time-domain S ⊆ T.

Moreover,
(iv) a pair (µ,η) with µ ∈ U (S) and η = gS(µ) is a behaviour for Σ, and we denote

byB (Σ) the set of behaviours. •

6.2.4 Remark (Restriction in continuous-time input/output systems) Note that we
do not require that, if S, S′ ⊆ T are sub-time-domains with S′ ⊆ S and if µ ∈ U (S),
then µ|S′ ∈ U (S′). What we do require is that, if µ|S′ ∈ U (S′), then

gS′(µ|S
′) = gS(µ)|S′.

If a continuous-time input/output system does have then property that µ|S′ ∈ U (S′)
for every pair of sub-time-domains satisfying S′ ⊆ S and for every µ ∈ U (S), we
shall say that the system is closed under restriction.

Note that, by not requiring that continuous-time input/output systems be closed
under restriction, we allow the common situation where all inputs and outputs are
considered only as signals defined on the entire time-domain. That is to say, for a
system like that, we haveU (S) = ∅ andY (S) = ∅ for every strict sub-time-domain
S ⊆ T. •

Let us connect some of the general systems ideas from Chapter 2 to our con-
cept of a continuous-time inout/output system. Along the way, we shall give a
few elementary examples of such systems. In Section 6.2.3 we shall see that all
continuous-time state space systems are also continuous-time input.output sys-
tems.

We begin by making the connection to the basic types of general systems.



540 6 Classes of continuous- and discrete-time systems 2022/03/07

6.2.5 Remarks (Continuous-time input/output systems as general systems) We let
Σ = (U,T,U ,Y , g) be a continuous-time input/output system.
1. A continuous-time input/output system is a general input/output system as per

Definition 2.1.3. To see this, take
(a) “U = U ,” i.e., the inputs for the general input/output system are the same

as the inputs for the continuous-time state space system,
(b) “Y = Y ,” i.e., the outputs for the general input/output system are the

same as the outputs for the continuous-time state space system, and
(c) B = {(µ, g(µ)) | µ ∈ U }, i.e., a continuous-time input/output system is a

functional input/output system, as per Definition 2.1.4.
2. A continuous-time input/output system is, more specifically, a general time

system as per Definition 2.2.9. To see this, take
(a) “U = U,” i.e., the input set for the general time system is the same as the

input set for the continuous-time input/output system,
(b) Y = Rk, i.e., the output set for the general time system is Rk,
(c) “U = U ,” i.e., the admissible input signals for the general input/output sys-

tem are the same as the input signals for the continuous-time input/output
system,

(d) Y = (Rk)(T), i.e., the admissible output signals for the general input/output
system are the partial Rk-valued functions on T, and

(e) B = {(µ, g(µ)) | µ ∈ U } i.e., the behaviours for the general time system
input/output pairs for the continuous-time input/output system. •

Let us now consider the matter of output completeness and completeness for
continuous-time input/output systems.

6.2.6 Remarks (Completeness for continuous-time input/output systems) We let
Σ = (U,T,U ,Y , g) be a continuous-time input/output system.
1. Continuous-time input/output systems are output complete: Let µ ∈ U and let

(I,⪯) be a totally ordered set, and let (ηi)i∈I be a family of outputs satisfying
conditions (a)–(f) of Definition 2.2.12. Note that

ηi(t) = g(µ)(t), t ∈ dom(ηi).

Now let S = ∪i∈I dom(ηi) and let η : S→ Rk be such that ηdom(ηi)
= ηi, i ∈ I. Then,

if t ∈ S, we must have t ∈ dom(ηi) for some i ∈ I. Therefore,

η(t) = ηi(t) = g(µ)(t).

As this holds for every t ∈ dom(η), we conclude output completeness.
2. Generally, a continuous-time input/output system is not complete: In Theorem 6.2.10

we shall see that continuous-time state space systems are continuous-time in-
put/output systems. Thus Example 2.2.21 gives an example of a continuous-
time input/output system that is not complete. •
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We know from general results, i.e., Theorem 2.2.20, a complete continuous-
time input/output system has a dynamical systems representation specified by
some response family and some family of state transition maps. Moreover, the
proof of Theorem 2.2.20 gives an explicit construction of such a dynamical systems
representation. The difficulty is that, in any given example, the resulting dynamical
systems representation will not be meaningful (whatever might be the meaning of
“meaningful”). Indeed, the matter of constructing a meaningful dynamical systems
representation is something that, typically, one should think carefully about.

Now let us consider the various attributes for general time systems from Sec-
tion 2.2, as they pertain to continuous-time input/output systems. We shall see
that these notions do not hold, generally, and so are assumptions that must be
made if one needs them. In order to connect the general time system discussion of
Section 2.2 to the systems we consider here, let us make suitable definitions for the
appropriate notions.

First we consider causality, where the definition captures the idea that the
output at time t depends only on the input prior to time t.

6.2.7 Definition (Causality for continuous-time input/output systems) Let Σ =
(U,T,U ,Y , g) be a continuous-time input/output system.

(i) The system Σ is causal if, for every µ1,µ2 ∈ U with dom(µ1) = dom(µ2) and
for every t ∈ dom(µ1) = dom(µ2),

µ1|(T≤t ∩ dom(µ1)) = µ2|(T≤t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t).

(ii) The system Σ is strongly causal if, for every µ1,µ2 ∈ U with dom(µ1) =
dom(µ2) and for every t ∈ dom(µ1) = dom(µ2),

µ1|(T<t ∩ dom(µ1)) = µ2|(T<t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t). •

Next we consider stationarity. We let Σ = (U,T,U ,Y , g) be a continuous-time
input/output system. As we saw in Section 2.2.8, stationarity has to do, roughly,
with shift-invariance. To make this clear, let us first carefully think about what we
mean by shifting. Let X be a set and letX ⊆ X(T) be a collection of partially defined
signals. Let a ∈ R. If ξ ∈ X , denote by τ∗aξ the signal with domain

dom(τ∗aξ) = {t ∈ T | t − a ∈ dom(ξ)}

and given by τ∗aξ(t) = ξ(t− a). Note that we may well have dom(τ∗aξ) = ∅, in which
case τ∗aξ is not defined, by convention.

With this notation, we have the following definitions regarding stationarity.

6.2.8 Definition (Stationarity for continuous-time input/output systems) Let Σ =
(U,T,U ,Y , g) be a continuous-time input/output system with supT = ∞.

(i) The system Σ is stationary if τ∗a(U ) ⊆ U for every a ∈ R>0 and if, for every
µ ∈ U ,

g(τ∗aµ) = τ∗ag(µ).
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(ii) The system Σ is strongly stationary if it is stationary and if, for every a ∈ R>0

and every µ ∈ U , there exists µ′ ∈ U such that

g(µ) = g(τ∗aµ
′). •

With these definitions, we can make the following remarks.

6.2.9 Remarks (System theoretic attributes of continuous-time input/output sys-
tems) We let Σ = (U,T,U ,Y , g) be a continuous-time input/output system.
1. Σ is generally not causal: To see this, we give a simple counterexample.

We take U = R, T = R, and let U = C0(R;R), i.e., inputs are all continuous R-
valued functions onR. We also takeY = C0(R;R). The topologies forU andY
are as defined in Definition 6.2.2(i). Now define g : U → Y by g(µ)(t) = µ(−t).
Because we are only considering signals defined on all of R, conditions (v)(a)
and (v)(b) of a continuous-time input/output system are immediately satisfied.
We claim that condition (v)(c) is also satisfied. Indeed, let (µ j) j∈Z>0 be a sequence
in C0(R;R) converging to µ ∈ C0(R;R). Let K ⊆ R be a compact interval and
let ϵ ∈ R>0. Let

−K = {−t | t ∈ K}.

Then there exists N ∈ Z>0 such that

|µ(t) − µ j(t)| < ϵ, t ∈ −K, j ≥ N.

Then we immediately have

|g(µ)(t) − g(µ j)(t)| < ϵ, t ∈ K, j ≥ N,

giving convergence of (g(µ j)) j∈Z>0 to g(µ), and so giving continuity of g.
Now we show that the system is not causal. Let µ1, µ2 ∈ U be defined by

µ1(t) =

1, t ∈ R<0,

0, t ∈ R≥0,
µ2(t) = 1, t ∈ R.

Let t ∈ R<0 and note that
µ1|R≤t = µ2|R≤t.

However,
g(µ1)(t) = µ1(−t) = 0, g(µ2)(t) = µ2(−t) = 1,

and this demonstrates the lack of causality.
One can show that, if Σ is closed under restriction as defined in Remark 6.2.4,
then this implies that the system is causal. We invite the reader to prove this
assertion as Exercise 6.2.1.

2. Σ is generally not past determined: This follows since, as proved in Proposi-
tion 2.2.35, past determined systems are causal.
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3. Σ is finitely observable: This is a consequence of the fact that Σ, as a general
input/output system, is functional.

4. Σ is not generally stationary: To see this, we note that continuous-time state space
systems are continuous-time input-output systems by Theorem 6.2.10. There-
fore, since continuous-time state space systems are not generally stationary (as
we pointed out in Remark 6.1.8–4).

5. Σ is not generally linear: Presumably, since in Section 6.7 we shall specifically
consider linear continuous-time input/output systems, it is not the case that
all continuous-time input/output systems are linear. To see this, one need only
produce a counterexample, and such an example can be seen in Example 2.2.21,
and the lack of linearity here is a reflection of the fact that, in the formula (2.4)
for controlled trajectories, the input µ does not appear linearly. •

6.2.3 Continuous-time state space systems as continuous-time
input/output systems

As we saw in our discussion above of the system theoretic attributes for
continuous-time input/output systems, these systems were capable of exhibiting
characteristics that are not possible for continuous-time state space systems. In this
section we show how the various classes of continuous-time state space systems
are also continuous-time input/output systems.

First let us informally associate to a continuous-time state space system its
candidate input/output system. Let Σ = (X,U,T,U , f ,h) be a continuous-time
state space system. If one thinks about the controlled outputs for Σ, one sees
that these behaviours do not form the basis for a continuous-time input/output
system since there are multiple outputs for a single input. To rectify this, one
should choose an initial condition. Thus let (t0, x0) ∈ T × X. Then we can try to
associate a continuous-time input/output system Σ for this initial condition data
by the quintuple Σi/o(t0, x0) = (U,T,U ,Y , g), where
1. “U = U,”
2. “T = T,”
3. “U = U ,”
4. Y ⊆ (Rk)(T), and
5. g(µ)(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)) for t ∈ JΣ(t0, x0,µ).
This does not quite yet define a continuous-time input/output system since we
must prescribe the structure of a space of partially defined signals with topology
to both U and Y . As we shall see, the appropriate such structure depends on the
character of the system.

The following result characterises the various cases in which one can make the
preceding association precise. In a few of the cases considered in the result, we
assume that U ⊆ Rm is locally compact. We refer the reader to Definition II-1.2.65
for the definition, and we recall from Example II-1.2.66–1 and II-2 that open and
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closed sets are locally compact. As we shall see in Lemma 2 in the proof, local
compactness allows us to prove that controls eventually take values in a relatively
compact subset of U.

6.2.10 Theorem (Continuous-time input/output systems from continuous-time state
space systems) Let Σ = (X,U,T,U , f,h) be a continuous-time state space system, and
consider the following cases.
The most general case: Assume that Σ satisfies the hypotheses of Theorem 6.1.10 and
that

(i) U ⊆ Rm is locally compact,
(ii) the map t 7→ h(t, x,u) is measurable for each (x,u) ∈ X ×U,
(iii) the map (x,u) 7→ h(t, x,u) is continuous for each t ∈ T, and
(iv) for each (t, x,u) ∈ T × X ×U, there exist r1, r2, α ∈ R>0 and

g ∈ L1([t − α, t + α];R≥0)

such that

∥h(s, x′,u′)∥ ≤ g(s), (s, x′,u′) ∈ ([t − α, t + α] ∩ T) × Bn(r1, x) × Bn(r2,u).

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L∞loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(iii) and for Y = L1

loc((T);Rk) the space of partially defined signals
with topology as in Definition 6.2.2(v).
The output autonomous case: Assume thatΣ satisfies the hypotheses of Theorem 6.1.10
and that

(i) U ⊆ Rm is locally compact,
(ii) Σ is output autonomous, and
(iii) the map (x,u) 7→ h(x,u) is continuous.

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L∞loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(iii) and for Y = L∞loc((T);Rk) the space of partially defined signals
with topology as in Definition 6.2.2(iii).
The output autonomous, proper case: Assume that Σ satisfies the hypotheses of Theo-
rem 6.1.10 and that

(i) Σ is output autonomous and proper, and
(ii) the map x 7→ h(x) is continuous.

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L∞loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(iii) and Y = C0((T);Rk) the space of partially defined signals with
topology as in Definition 6.2.2(i).
The general control-affine case: Assume that Σ satisfies the hypotheses of Theo-
rem 6.1.16 and that
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(i) the maps t 7→ ha(t, x), a ∈ {0, 1, . . . ,m}, are measurable for each x ∈ X,
(ii) the maps x 7→ ha(t, x), a ∈ {0, 1, . . . ,m}, are continuous for each t ∈ T, and
(iii) for each (t, x) ∈ T × X, there exist r, α ∈ R>0 and

g ∈ L1
loc([t − α, t + α];R≥0)

such that

∥ha(s, x′)∥ ≤ g(s), a ∈ {0, 1, . . . ,m}, (s, x′) ∈ ([t − α, t + α] ∩ T × Bn(r, x).

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L∞loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(iii) and for Y = L1

loc((T);Rk) the space of partially defined signals
with topology as in Definition 6.2.2(v).
The control-affine output autonomous case: Assume that Σ satisfies the hypotheses of
Theorem 6.1.16 and that

(i) Σ is output autonomous, and
(ii) the maps x 7→ ha(x), a ∈ {0, 1, . . . ,m}, are continuous.

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L∞loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(iii) and for Y = L∞loc((T);Rk) the space of partially defined signals
with topology as in Definition 6.2.2(iii).
The control-affine output autonomous, proper case: Assume that Σ satisfies the
hypotheses of Theorem 6.1.16 and that

(i) Σ is output autonomous and proper, and
(ii) the map x 7→ h0(x) is continuous.

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L∞loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(iii) and Y = C0((T);Rk) the space of partially defined signals with
topology as in Definition 6.2.2(i).
The control-affine autonomous case: Assume that Σ satisfies the hypotheses of Theo-
rem 6.1.17 and that,

(i) Σ is autonomous and
(ii) the maps x 7→ ha(x), a ∈ {0, 1, . . . ,m}, are continuous.

Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L1

loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(v) and for Y = L1

loc((T);Rk) the space of partially defined signals
with topology as in Definition 6.2.2(v).
The control-affine, autonomous, proper case: Assume that Σ satisfies the hypotheses
of Theorem 6.1.17 and that

(i) Σ is autonomous and proper, and
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(ii) the map x 7→ h0(x) is continuous.
Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above, defines a continuous-time
input/output system forU ⊆ L1

loc((T); U) the space of partially defined signals with topology
as in Definition 6.2.2(v) and for Y = C0((T);Rk) the space of partially defined signals
with topology as in Definition 6.2.2(i).

Proof The following lemma records an essential part of the proof.

1 Lemma Let Σ = (X,U,T,U , f,h) be a continuous-time state space system satisfying the
hypotheses of either of Theorems 6.1.10, 6.1.16, or 6.1.17 for existence and uniqueness of
controlled trajectories. Let (t0, x0,µ0) ∈ T × X × U , t ∈ T≥t0 satisfy (t, t0, x0,µ0) ∈ DΣ, let
(µj)j∈Z>0 be a sequence in U converging to µ0 with respect to the seminorm ∥·∥[t0,t],∞ (in the
case of Theorem 6.1.10 or 6.1.16) or with respect to the seminorm ∥·∥[t0,t],1 (in the case of
Theorem 6.1.17). Then the following statements hold:

(i) there exists N ∈ Z>0 such that (t, t0, x0,µj) ∈ DΣ for j ≥ N;
(ii) the sequence

s 7→ ΦΣ(s, t0, x0,µj), j ∈ Z>0,

of mappings in C0([t0, t]; X) converges uniformly to

s 7→ ΦΣ(s, t0, x0,µ0).

Proof We will prove the result assuming that Σ satisfies the hypotheses of Theo-
rem 6.1.10. The proof carries over directly to the other two cases, given that (1) The-
orem 6.1.14 applies also to control-affine systems satisfying the hypotheses of Theo-
rem 6.1.16 and (2) the conclusion (ix) of Theorem 6.1.18 holds for systems satisfying
the hypotheses of Theorem 6.1.17.

The first assertion if a direct consequence of part (ix) of Theorem 6.1.14. We must,
therefore, prove the uniform convergence conclusion of the second assertion.

Let ϵ ∈ R>0. For s ∈ [t0, t], let us denote xs = Φ
Σ(s, t0, x0,µ0). As we argued in the

proof of Theorem 6.1.14, there exists αs, rs, ρs ∈ R>0 such that

∥ΦΣ(τ, s, x,µ) − xs∥ <
ϵ
2
, τ ∈ [s − αs, s + αs] ∩ [t0, t], x ∈ Bn(rs, xs), µ ∈ B[t0,t](ρs,µ0).

Let Ns ∈ Z>0 be sufficiently large that

µ j ∈ B[t0,t](ρs,µ0), ΦΣ(s, t0, x0,µ j) ∈ Bn(rs, xs),

for j ≥ Ns. Now, by compactness of [t0, t], let s1, . . . , sk ∈ [t0, t] be such that

[t0, t] ⊆ ∪k
l=1[sl − αsl , sl + αsl].

Let N = max{Ns1 , . . . ,Nsk}. Let s ∈ [t0, t] and let l ∈ {1, . . . , k} be such that s ∈ [sl−αsl , sl+
αsl]. Then, for j ≥ N,

∥ΦΣ(s, t0, x0,µ j) −Φ
Σ(s, t0, x0,µ0)∥

= ∥ΦΣ(s, sl,Φ
Σ(sl, t0, x0,µ j),µ j) −Φ

Σ(s, sl,Φ
Σ(sl, t0, x0,µ0),µ0)∥

≤ ∥ΦΣ(s, sl,Φ
Σ(sl, t0, x0,µ j),µ j) − xsl∥ + ∥Φ

Σ(s, sl,Φ
Σ(sl, t0, x0,µ0),µ0) − xsl∥

≤
ϵ
2
+
ϵ
2
,

giving the desired uniform convergence. ▼
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In all cases in the theorem, we do the following. Let µ0 ∈ U and let (µ j) j∈Z>0 be
a sequence in U converging to µ0 in the appropriate topology as in Definition 6.2.2.
This means that we can assume that µ j, j ∈ Z≥0, have a common domain, say S, and
that, for every compactK ⊆ S, we have

lim
j→∞
∥µ j − µ0∥K = 0,

where ∥·∥Kmeans the appropriate seminorm from Definition 6.2.2 for the input signals.
Given this, we shall show that, for every compact interval L ⊆ S, we have

lim
j→∞
∥η j − η0∥L = 0,

where
η j(t) = h(t,ΦΣ(t, t0, x0,µ j),µ j(t)), j ∈ Z≥0, t ∈ S,

and where ∥·∥L means the appropriate seminorm from Definition 6.2.2 for the output
signals.

The following lemma will aid us in this proof strategy.

2 Lemma Let K ⊆ R be a compact time-domain, let U ⊆ Rm be locally compact, and let
(µj)j∈Z>0 be a sequence in L∞(K; U) converging to µ0 ∈ L∞(K; U). Then there exists N ∈ Z>0,
a subset Z ⊆ K of measure zero, and a relatively compact subset L ⊆ U such that µj(t) ∈ L for
j ≥ N and t ∈ K \ Z.

Proof By definition of L∞(K; U), there exists a relatively compact L′ ⊆ U and Z0 ⊆ K
such that µ0(t) ∈ L′ for t ∈ K \Z0. For u ∈ L′, there is a relative neighbourhood Nu ⊆ U
of u. Thus there exists ϵu ∈ R>0 such that Bm(3ϵu,u) ⊆ Nu and so Bm(2ϵu,u) ⊆ Nu. By
compactness of L′, let u1, . . . ,uk ∈ L′ be such that L′ = ∪k

j=1Bm(ϵu j ,u j). By the Lebesgue
Number Lemma, let r ∈ R>0 be such that, for each u ∈ L′, there exists j ∈ {1, . . . , k} for ref

which Bm(r,u) ⊆ Bm(ϵu j ,u j).
Define L = ∪k

j=1Bm(ϵu j ,u j). Note that L is a compact subset of Rm and so is a
relatively compact subset of U by Proposition II-1.2.59. By Proposition III-3.8.50, let
Z1 ⊆ K be such that (µ j|(K \ Z1)) j∈Z>0 converges uniformly to µ0|(K \ Z1). Let N ∈ Z>0

be sufficiently large that

∥µ0(t) − µ j(t)∥ < r, j ≥ N, t ∈ (K \ Z1).

The lemma follows with N and L as defined, and with Z = Z0 ∪ Z1. ▼

The most general case: Let µ0 ∈ U and let (µ j) j∈Z>0 be a sequence in U converging
to µ0 in the topology as in Definition 6.2.2(iii). Let L ⊆ S be compact. Let t1 ∈ S be
such that L ⊆ [t0, t1]. By Lemma 2, suppose that there exists L ⊆ U relatively compact
and Z ⊆ [t0, t1] of measure zero such that µ j(t) ∈ L for every j ∈ Z≥0 and t ∈ [t0, t1] \ Z.
By the uniform convergence of Lemma 1, we can also assume that there is a compact
K ⊆ X such that

ΦΣ(t, t0, x0,µ j) ∈ K, j ∈ Z≥0, t ∈ [t0, t1].
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Let p = (s, x,u) ∈ [t0, t1] × K × L and let αp, r1,p, r2,p ∈ R>0 and

gp ∈ L1([s − αp, s + αp];R≥0)

be such that

∥h(s′, x′,u′)∥ ≤ gp(s′), (s′, x′,u′) ∈ [s − αp, s + αp] × Bn(r1,p, x) × Bm(r2,p,u).

By compactness of [t0, t1] × K × L, let p j = (s j, x j,u j) ∈ [t0, t1] × K × L such that

[t0, t1] × K × L ⊆ ∪k
j=1([s j − αp j

, s j + αp j
] × Bn(r1,p j

,p j) × Bm(r2,p j
,u j))

Let g ∈ L1([t0, t1];R≥0) be such that

g(s) = max{gp j
(s) | j ∈ {1, . . . , k} are such that s ∈ [s j − αp j

, s j + αp j
]}.

Then, for (t, x,u) ∈ [t0, t1] × K × L, we have

∥h(t, x,u)∥Rn ≤ g(t).

Therefore, we can use the Dominated Convergence Theorem, continuity of h with re-
spect to x and u, and continuity of the flow with respect to control (Theorem 6.1.14(viii))
to conclude that

lim
j→∞
∥η j(t)−η0(t)∥ = lim

j→∞

∫ t1

t0

∥h(t,ΦΣ(t, t0, x0,µ j),µ j(t))−h(t,ΦΣ(t, t0, x0,µ0),µ0(t))∥dt = 0,

as desired.
The output autonomous, proper case: Let µ0 ∈ U and let (µ j) j∈Z>0 be a sequence

in U converging to µ0 in the topology as in Definition 6.2.2(iii). Let L ⊆ S be compact.
Let t1 ∈ S be such that L ⊆ [t0, t1]. By the uniform convergence of Lemma 1, there is a
compact set K ⊆ X such that

{ΦΣ(t, t0, x0,µ j) | t ∈ [t0, t1]} ⊆ int(K)

for sufficiently large j ∈ Z>0. We can assume, therefore, that this inclusion holds for
some compact K and for every j ∈ Z>0, without loss of generality. Since h : X → Rk

is continuous, it is uniformly continuous when restricted to K, by the Heine–Cantor
Theorem (Theorem II-1.3.33). Therefore, for ϵ ∈ R>0, there exists δ ∈ R>0 such that, if
x1, x2 ∈ K satisfy ∥x1 − x2∥ < δ, then ∥h(x1) − h(x2)∥ < ϵ. By Lemma 1, choose N ∈ Z>0
such that

∥ΦΣ(t, t0, x0,µ j) −Φ
Σ(t, t0, x0,µ0)∥ < δ, t ∈ [t0, t1], j ≥ N.

Then, for j ≥ N and t ∈ [t0, t1], we have

∥h(ΦΣ(t, t0, x0,µ j)) − h(ΦΣ(t, t0, x0,µ0))∥ < ϵ.

This gives the desired result that

lim
j→∞
∥η j − η0∥L,∞ = 0.
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The output autonomous case: Again, let µ0 ∈ U and let (µ j) j∈Z>0 be a sequence in
U converging to µ0 in the topology as in Definition 6.2.2(iii). Let L ⊆ S be compact.
Let t1 ∈ S be such that L ⊆ [t0, t1]. By Lemma 2, let L ⊆ U be relatively compact and
let Z ⊆ [t0, t1] have measure zero such that µ j(t) ∈ L for every t ∈ [t0, t1] \ Z. As in the
preceding two parts of the proof, we can suppose that there is a compact set K ⊆ X
such that

{ΦΣ(t, t0, x0,µ j) | t ∈ [t0, t1]} ⊆ int(K), j ∈ Z≥0.

Since h is continuous, h|K × L is uniformly continuous as in the preceding part of the
proof. Therefore, for ϵ ∈ R>0, there exists δ ∈ R>0 such that

∥x1 − x2∥, ∥u1 − u2∥ < δ =⇒ ∥h(x1,u1) − h(x2,u2)∥ <
ϵ
2
.

Choose N ∈ Z>0 such that

∥ΦΣ(t, t0, x0,µ j) −Φ
Σ(t, t0, x0,µ0)∥, ∥µ j(t) − µ0(t)∥ < δ, j ≥ N, t ∈ [t0, t1] \ Z.

Then we have, for j ≥ N and t ∈ [t0, t1] \ Z,

∥h(ΦΣ(t, t0, x0,µ j),µ j) − h(ΦΣ(t, t0, x0,µ0),µ0)∥

≤ ∥h(ΦΣ(t, t0, x0,µ j),µ j) − h(ΦΣ(t, t0, x0,µ0),µ j)∥

+ ∥h(ΦΣ(t, t0, x0,µ0),µ j) − h(ΦΣ(t, t0, x0,µ0),µ0)∥ ≤
ϵ
2
+
ϵ
2
= ϵ.

This gives the desired conclusion that

lim
j→∞
∥η j − η0∥L,∞ = 0,

where
η j(t) = h(ΦΣ(t, t0, x0,µ j),µ j), j ∈ Z≥0, t ∈ S.

This is the desired conclusion.
The general control-affine case: Let µ0 ∈ U and let (µ j) j∈Z>0 be a sequence in U

converging to µ0 in the topology as in Definition 6.2.2(iii). Let L ⊆ S be compact. Let
t1 ∈ S be such that L ⊆ [t0, t1]. By Proposition III-3.8.50, let Z ⊆ [t0, t1] have measure
zero such that (µ j|([t0, t1] \Z)) j∈Z>0 converges uniformly to µ0|([t0, t1] \Z). Let K ⊆ X be
compact such that

{ΦΣ(t, t0, x0,µ j) | t ∈ [t0, t1]} ⊆ int(K), j ∈ Z≥0.

We can argue as in the proof of the most general case above (but the argument is simpler
since we do not have dependence on control) that there exists g ∈ L1([t0, t1];R≥0) such
that

∥ha(t, x)∥ ≤ g(t), (t, x) ∈ [t0, t1] × K.

Let A ∈ R>0 be such that

|µ j,a(t)| ≤ A, t ∈ [t0, t1] \ Z, j ∈ Z>0, a ∈ {0, 1, . . . ,m},
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(this is possible since the sequence (µ j) j∈Z>0 converges uniformly on [t0, t1] \ Z). Then

∥h(t, x,u)∥ ≤ A(1 +mg(t))

if t ∈ [t0, t1] \ Z, x ∈ K, and if u satisfies |ua| < A, a ∈ {1, . . . ,m}. One can now complete
the proof just as in the most general case.

The control-affine output autonomous case: Let µ0 ∈ U and let (µ j) j∈Z>0 be a
sequence in U converging to µ0 in the topology as in Definition 6.2.2(iii). Let L ⊆ S be
compact. Let t1 ∈ S be such that L ⊆ [t0, t1]. By Proposition III-3.8.50, let Z ⊆ [t0, t1]
have measure zero such that (µ j|([t0, t1]\Z)) j∈Z>0 converges uniformly to µ0|([t0, t1]\Z).
Let K ⊆ X be compact such that

{ΦΣ(t, t0, x0,µ j) | t ∈ [t0, t1]} ⊆ int(K), j ∈ Z≥0.

Since ha, a ∈ {0, 1, . . . ,m}, are continuous, they are uniformly continuous when re-
stricted to K. Let A,B ∈ R>0 be such that

|µ j,a(t)| ≤ A, t ∈ [t0, t1] \ Z, j ∈ Z>0, a ∈ {0, 1, . . . ,m},

(this is possible since the sequence (µ j) j∈Z>0 converges uniformly on [t0, t1] \ Z) and

∥ha(x)∥ ≤ B, a ∈ {0, 1, . . . ,m, x ∈ K.

(by compactness of K and continuity of ha, a ∈ {0, 1, . . . ,m}). By uniform continuity, let
δ ∈ R>0 be such that, if ∥x1 − x2∥ < δ, then

∥h0(x1) − h0(x2)∥ <
ϵ
4
.

Also suppose that δ has the property that, if ∥x1 − x2∥ < δ then

∥ha(x1) − ha(x2)∥ ≤
mAϵ

8
, a ∈ {1, . . . ,m}.

and, if ∥u1 − u2∥ < δ, then

|u1,a − u2,a| <
mBϵ

8
, a ∈ {1, . . . ,m}.

Then, if x1, x2 ∈ K and u1,u2 satisfy |u1,a|, |u2,a| ≤ A for a ∈ {1, . . . ,m}, and ∥x1 − x2∥, ∥u1 −

u2∥ < δ, we have

∥h(x1,u1) − h(x2,u2)∥ =

∥∥∥∥∥∥∥h0(x1) − h0(x2) +
m∑

a=1

(u1,aha(x1) − u2,aha(x2))

∥∥∥∥∥∥∥
≤ ∥h0(x1) − h0(x2)∥ +

m∑
a=1

|u1,a|∥ha(x1) − ha(x2)∥

+

m∑
a=1

|u1,a − u2,a|∥ha(x2)∥

≤
ϵ
4
+
ϵ
4
=
ϵ
2
.
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The remainder of the proof then goes exactly as in the general output autonomous
case.

The control-affine output autonomous, proper case: This follows from the general
output autonomous, proper case, since the hypotheses in the current case directly imply
those of the general output autonomous, proper case when specialised to control-affine
systems.

The control-affine autonomous, proper case: This follows from Lemma 1 in the
same manner as does the general output autonomous, proper case.

The control-affine autonomous case: let µ0 ∈ U and let (µ j) j∈Z>0 be a sequence in
U converging to µ0 in the topology as in Definition 6.2.2(v) with p = 1. Let L ⊆ S be
compact. Let t1 ∈ S be such that L ⊆ [t0, t1]. By Lemma 1, we can take N sufficiently
large that

|h0,l(ΦΣ(t, t0, x0,µ j)) − h0,l(ΦΣ(t, t0, x0,µ j))| <
ϵ

3(t1 − t0)
, t ∈ [t0, t1], l ∈ {1, . . . , k}.

Since the sequence (µ j) j∈Z>0 converges to µ0, the sequence is bounded by Proposi-
tion III-3.2.4. Thus there exists M1 ∈ R>0 such that∫ t1

t0

|µ j,a(t)|dt ≤M1, j ∈ Z≥0, a ∈ {1, . . . ,m}.

Similarly, by the uniform convergence of Lemma 1, there exists M2 ∈ R>0 such that

∥ΦΣ(t, t0, x0,µ j)∥ ≤M2, j ∈ Z≥0, t ∈ [t0, t1].

We can now choose N sufficiently large such that

|ha,l(ΦΣ(t, t0, x0,µ j)) − ha,l(ΦΣ(t, t0, x0,µ0))| <
ϵ

3mM1(t1 − t0)
,

j ≥ N, a ∈ {1, . . . ,m}, l ∈ {1, . . . , k}, t ∈ [t0, t1],

and that ∫ t1

t0

|µ j,a(t) − µ0,a(t)|dt <
ϵ

3mM2
, j ≥ N, a ∈ {1, . . . ,m}.
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Then we have, for j ≥ N and l ∈ {1, . . . , k},∫ t1

t0

|hl(ΦΣ(t, t0, x0,µ j),µ j) − hl(ΦΣ(t, t0, x0,µ0),µ0)|dt

≤

∫ t1

t0

|h0,l(ΦΣ(t, t0, x0,µ j)) − h0,l(ΦΣ(t, t0, x0,µ0))|dt

+

m∑
a=1

∫ t1

t0

|µ j,a(t)ha,l(ΦΣ(t, t0, x0,µ j)) − µ0,l(t)ha,l(ΦΣ(t, t0, x0,µ0))|dt

≤

∫ t1

t0

|h0,l(ΦΣ(t, t0, x0,µ j)) − h0,l(ΦΣ(t, t0, x0,µ0))|dt

+

m∑
a=1

∫ t1

t0

|µ j,a(t)ha,l(ΦΣ(t, t0, x0,µ j)) − µ j,a(t)ha,l(ΦΣ(t, t0, x0,µ0))|dt

+

m∑
a=1

∫ t1

t0

|µ j,a(t)ha,l(ΦΣ(t, t0, x0,µ0)) − µ0,a(t)ha,l(ΦΣ(t, t0, x0,µ0))|dt

≤

∫ t1

t0

|h0,l(ΦΣ(t, t0, x0,µ j)) − h0,l(ΦΣ(t, t0, x0,µ0))|dt

+

m∑
a=1

∫ t1

t0

|µ j,a(t)||ha,l(ΦΣ(t, t0, x0,µ j)) − ha,l(ΦΣ(t, t0, x0,µ0))|dt

+

m∑
a=1

∫ t1

t0

|µ j,a(t) − µ0,a(t)||ha,l(ΦΣ(t, t0, x0,µ0))|dt

≤
ϵ
3
+
ϵ
3
+
ϵ
3
.

This gives the desired conclusion that

lim
j→∞
∥η j − η0∥L,1 = 0,

where
η j(t) = h(ΦΣ(t, t0, x0,µ j),µ j), j ∈ Z≥0, t ∈ S.

This is the desired conclusion. ■

6.2.4 Continuous-time differential input/output systems

Exercises

6.2.1 Let Σ = (U,T,U ,Y , g) be a continuous-time input/output system. Show
that, if Σ is closed under restriction as defined in Remark 6.2.4, then Σ is
causal.

6.2.2 For the continuous-time input/output systems Σ = (U,T,U ,Y , g) given,
indicate whether they are causal, strongly causal, finitely observable from
any τ ∈ T>t0 , stationary, strongly stationary, and/or memoryless.
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(a) Take
(i) U = R,
(ii) T = R,

(iii) U = L1(R;R),
(iv) Y = {0, 1}R ∩ L∞(R;R),

(v) g(µ)(t) =

1,
∫ t

−∞
µ(τ) dτ ≥ 1,

0, otherwise.

(b) Take
(i) U = R,
(ii) T = R,

(iii) U = L∞loc(R;R),
(iv) Y = L∞loc(R;R),
(v) g(µ)(t) = µ(t2).

(c) Take
(i) U = R,
(ii) T = R,

(iii) U = C0(R;R),
(iv) Y = C0(R;R),
(v) g(µ)(t) = µ(0).

(d) Take
(i) U = R,
(ii) T = R,

(iii) U = L1(R;R),
(iv) Y = C0(R;R),

(v) g(µ)(t) =
∫ t

−∞
sin(τ)µ(τ) dτ.

6.2.3 Let U,Y ⊆ R be open sets, let T ⊆ R be a continuous time-domain, let
n ∈ Z>0, and let

F : T × Y × L≤n
sym(R;R) ×U × L≤n−1

sym (R;R)→ R.

(See the beginning of Section 3.1.3 for notation.) Suppose that, for each

(t, y, y(1), . . . , y(n−1),u,u(1), . . . ,u(n−1)) ∈ T × Y × L≤n−1
sym (R;R) ×U × L≤n−1

sym (R;R),

we can solve the equation

F(t, y, y(1), . . . , y(n−1), y(n),u,u(1), . . . ,u(n−1)) = 0

uniquely for y(n) and denote the unique solution by

y(n) = F̂(t, y, y(1), . . . , y(n−1),u,u(1), . . . ,u(n−1)).

Suppose that F̂ is continuously differentiable4 and consider the differential
equation

dnη

dtn (t) = F̂

t, η(t),
dη
dt

(t), . . . ,
dn−1η

dtn−1 (t), µ(t),
dµ
dt

(t), . . . ,
dn−1µ

dtn−1 (t)

 .
Answer the following questions.

4We assume continuous differentiability for simplicity; less stringent hypotheses are possible,
since we just need hypotheses that ensure the existence and uniqueness conditions of Theorem 3.2.8
are satisfied.
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(a) Show that this determines a general time system as per Definition 2.2.9.
Clearly identify the spaces of input and output signals.

(b) Argue that a natural choice of states for this system is

ξ j(t) =
d jη

dt j (t), j ∈ {0, 1, . . . ,n − 1}.

(c) Derive a continuous-time state space system for which the input/output
relation is the same as the general time system from part (a) and for
which the states are as in part (b).

6.2.4 For the given continuous-time state space systems

Σ = (X,U,T,U , f ,h),

with U left unprescribed, and for (t0, x0) ∈ T × X, indicate the appropriate
input and output spacesU andY that ensure thatΣi/o(t0, x0) is a continuous-
time input/output system, i.e., for which the input/output map g has the
continuity property of Definition 6.2.3(c).

Here are the systems with U left unspecified.
(a) Take

(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = tanh(t)x2 + sin(x)u,
(v) h(t, x,u) = 1≥0(t) cos(x) + u.

(b) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = tan−1(t)x2 + x sin(x)u,
(v) h(t, x,u) = x.

(c) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = sin(t)x + u2,
(v) h(t, x,u) = x.

(d) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = sin(t)xu,
(v) h(t, x,u) = tx + u.

(e) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = x2 + u,
(v) h(t, x,u) = x + sin(x)u.

(f) Take
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(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = tanh(t)x2 + sin(x)u,
(v) h(t, x,u) = x + u.

(g) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = x2 + cos(x)u,
(v) h(t, x,u) = x + 3.

(h) Take
(i) X = R,
(ii) U = R,
(iii) T = R,

(iv) f (t, x,u) = 2t + x2u,
(v) h(t, x,u) = x sin(u).

6.2.5 For an integrable function f : [0,T] → R defined on the compact interval
[0,T], the mean is

mean( f ) =
1
T

∫ T

0
f (t) dt

and the standard deviation is

stddev( f ) =
1
T

∫ T

0
( f (t) −mean( f ))2 dt.

Let us adopt the convention that mean(µ) = µ(0) and stddev(µ)(0) = 0 when
T = 0.

Suppose that, given µ ∈ C0(R≥0;R), we define functions

mean(µ), stddev(µ) ∈ C0(R≥0;R)

by
mean(µ)(t) = mean(µ|[0, t]), stddev(µ)(t) = stddev(µ|[0, t]).

Answer the following questions.
(a) Make this record of “running mean” and “running standard deviation”

into a continuous-time input/output system Σ = (U,T,U ,Y , g).
(b) Is the system causal? strongly causal? stationary? strongly stationary?

memoryless?
6.2.6 We consider the input/output system that models the input of “accelerator

pedal” and the output of “car velocity.” We assume that the thrust applied
to the car is proportional to the accelerator pedal input, so that the thrust
force is αu is u represents the throttle angle. We suppose that there is an
aerodynamic drag force proportional to the square of velocity, −βv2, if v is
the car velocity.

Answer the following questions.
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(a) Provide a differential equation that models the velocity t 7→ ν(t) given
the throttle angle t 7→ µ(t).

(b) Show that the mapping ν 7→ ν defines a continuous-time input/output
system.

(c) Determine its system theoretic properties, i.e., is it causal? strongly
causal? finitely observable? stationary? strongly stationary? memory-
less?

(d) What is the state space for the system?
(e) What is the control set for the system?
(f) What is the time-domain for the system?
(g) What is a reasonable choice for the space U of input signals?
(h) If the maximum throttle angle is umax, what is the maximum speed vmax

attainable by the car?
(i) Using the technique of separable ordinary differential equations from

Section 4.1.1, obtain an explicit formula for ν(t), assuming that at time 0
the car has velocity v0 and that the throttle angle is constant u0 through-
out.
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Section 6.3

Discrete-time state space systems

In this and the next section, we turn our attention from continuous-time systems
to discrete-time systems. We shall conduct a program for discrete-time systems
that mirrors that in Sections 6.1 and 6.2 for continuous-time systems. We shall
transition to notation differing from that for difference equations in Section 3.3,
and Chapters 4 and 5. In order to merge our discussion with the presentation of
signal theory in Chapters IV-1 and IV-7, and use “∆” for the sampling interval,
rather than “h” for the discretisation. For T ⊆ Z(∆), we shall denote

Tfree = {t ∈ T | t + ∆ ∈ T}

which will serve the rôle of the free domain TF for difference equations in Sec-
tion 3.3.

Do I need to read this section? As with the continuous-time state space systems
presented in Section 6.1, the material in this section provides important context for
linear systems, which will be our main focus in Chapters 7 and 8. •

6.3.1 Definitions and system theoretic properties

Let us introduce the basic object of study, recalling from Section 2.2.2 the
notation concerning partially defined functions on time-domains.

6.3.1 Definition (Discrete-time state space system) A discrete-time state space sys-
tem is a sextuple Σ = (X,U,T,U , f ,h), where

(i) X ⊆ Rn is an open set (the state space),
(ii) U ⊆ Rm (the control set),
(iii) T ⊆ Z(∆) is a sub-time-domain (the time-domain),
(iv) U ⊆ U(T) (the control functions or controls),
(v) f : T × X ×U→ Rn (the dynamics), and
(vi) h : T × X ×U→ Rk (the output map).

Associated with a discrete-time state space systemΣwe have the following notions:
(vii) a controlled trajectory forΣ is a pair (ξ,µ), whereµ ∈ U and where ξ ∈ Xdom(µ)

are such that

ξ(t + ∆) = f (t, ξ(t),µ(t)), t ∈ dom(µ)free; (6.6)

(viii) a controlled output forΣ is a pair (η,µ), where µ ∈ U and where η ∈ (Rk)dom(µ)

satisfies
η(t) = h(t, ξ(t),µ(t)), t ∈ dom(µ),

for some controlled trajectory (ξ,µ).
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We denote by Ctraj(Σ) the set of controlled trajectories and by Cout(Σ) the set of
controlled outputs. •

Of course, since controlled trajectories are defined by solutions to a difference
equation, one must make considerations for discrete-time state space systems that
account the matter of existence and uniqueness of trajectories. As with the dif-
ferences between ordinary differential and ordinary difference equations in this
regard, there will be differences here between continuous- and discrete-time sys-
tems. Such considerations will be developed in the next section. Here we shall
consider the system theoretic attributes of discrete-time state space systems; that
is, we make reference to the general system theory of Chapter 2, and see which
attributes apply to the systems of this section. In doing this, we will not consider
the logical interrelations between the various notions, since part of the point of the
discussion here is to see how one applies the definitions of Chapter 2.

Let us consider a few attributes of discrete-time state space systems that often
arise in practice.

6.3.2 Definition (Autonomous, proper, invertible discrete-time state space sys-
tems) A discrete-time state space system Σ = (X,U,T,U , f ,h) is

(i) autonomous if there exists

f 0 : X ×U→ Rn, h0 : X ×U→ Rk

such that
f (t, x,u) = f 0(x,u), h(t, x,u) = h0(x,u)

for every (t, x,u) ∈ T × X ×U, is
(ii) proper if there exists h0 : X ×U→ Rk such that

h(t, x,u) = h0(t, x)

for every (t, x,u) ∈ T × X ×U, and is
(iii) invertible if the ordinary difference equation Fµ with right-hand side

F̂µ : dom(µ) × X→ Rn

(t, x) 7→ f (t, x,µ(t))

is invertible for every µ ∈ U . •

If only f (resp. h) satisfies the conditions for the system to be autonomous, we
shall say that the system is dynamically autonomous (resp. output autonomous).

We shall see the system theoretic significance of these notions shortly.
Indeed, we next indicate whether/how a discrete-time state space system is a

system of the various types introduced in Chapter 2.
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6.3.3 Remarks (Discrete-time state space systems as general systems) We let Σ =
(X,U,T,U , f ,h) be a discrete-time state space system.
1. A discrete-time state space system is a general input/output system as per

Definition 2.1.3. To see this, take

(a) “U = U ,” i.e., the inputs for the general input/output system are the same
as the controls for the discrete-time state space system,

(b) Y = (Rk)(T), i.e., the outputs for the general input/output system are the
partial Rk-valued functions on T, and

(c) B = Cout(Σ), i.e., the behaviours for the general input/output system are
exactly the controlled outputs for the discrete-time state space system.

2. A discrete-time state space system is, more specifically, a general time system
as per Definition 2.2.9. To see this, take

(a) “U = U,” i.e., the input set for the general time system is the same as the
control set for the discrete-time state space system,

(b) Y = Rk, i.e., the output set for the general time system is Rk,
(c) “U = U ,” i.e., the admissible input signals for the general input/output

system are the same as the controls for the discrete-time state space system,
(d) Y = (Rk)(T), i.e., the admissible output signals for the general input/output

system are the partial Rk-valued functions on T, and
(e) B = Cout(Σ), i.e., the behaviours for the general time system are exactly

the controlled outputs for the discrete-time state space system. •

Next we consider the issue of various forms of completeness for discrete-time
systems, as introduced in a general setting in Section 2.2.4.

6.3.4 Remarks (Completeness for discrete-time state space systems) We let Σ =
(X,U,T,U , f ,h) be a discrete-time state space system. In our constructions here, we
make use of the notation for flows of discrete-time state space systems introduced
in Definition 6.3.11.
1. Discrete-time state space systems are output complete: Let µ ∈ U and let (I,⪯) be a

totally ordered set, and let (ηi)i∈I be a family of outputs satisfying conditions (a)–
(f) of Definition 2.2.12. Note that

ηi(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)), t ∈ dom(ηi).

Now let S = ∪i∈I dom(ηi) and let η : S→ Rk be such that ηdom(ηi)
= ηi, i ∈ I. Then,

if t ∈ S, we must have t ∈ dom(ηi) for some i ∈ I. Therefore,

η(t) = ηi(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)).

As this holds for every t ∈ dom(η), we conclude output completeness.
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2. Generally, a discrete-time state space system is not complete: As with difference
equations, the reasons for lack of completeness are not as exotic for discrete-
time state space systems as for continuous-time state space systems. Indeed,
completeness has to do merely with whether f is X-valued. •

Next let us give the form for the general time system representations of Sec-
tion 2.2 for discrete-time state space systems.

6.3.5 Remarks (General time system representations for discrete-time state space
systems) We let Σ = (X,U,T,U , f ,h) be a discrete-time state space system. In our
constructions here, we make use of the notation for flows of discrete-time state
space systems introduced in Definition 6.3.11. In the following, we suppose that
Σ is complete.
1. Σ has an initial response function: Let t0 ∈ T and let (η,µ) ∈ Cout(Σ) with

η(t) = h(t, ξ(t),µ(t)), t ∈ dom(µ),

for (ξ,µ) ∈ Ctraj(Σ). Suppose that t0 ∈ dom(µ). Then

ξ(t) = ΦΣ(t, t0, x0,µ)

for some x0 ∈ dom(µ) × X. We can then denote

ρΣt0
(x0,µ)(t) = h(t,ΦΣ(t, t0, x,µ),µ(t)),

and this defines the initial response functionρΣt0
from t0 with initial state object X.

One has to verify the conditions of Definition 2.2.14, and this is straightforward.
Note that we require completeness in order to ensure the existence of ΦΣ for all
arguments.

2. Σ has a family of state transition maps: Let t0 ∈ T and, given t1, t2 ∈ T≥t0 , we take
Xt1 = Xt2 = X and define

Φt2,t1(µ, x1) = ΦΣ(t2, t1, x1,µ),

defining the family of state transition maps. The properties of flows enunci-
ated in Proposition 3.2.12 ensure that the conditions of Definition 2.2.15 are
satisfied, and we leave the elementary verification of this to the reader. (In-
deed, it is the conclusions of Proposition 3.2.12 that explain the conditions of
Definition 2.2.15.)
Again, we see that completeness is required.

3. Σ has a dynamical system representation: The response function and the family of
state transition maps above combine to give a dynamical systems representation
at t0 ∈ T, as per Definition 2.2.19. One can readily verify the conditions of
Definition 2.2.19.
One can show that this dynamical system representation is full if and only ifΣ is
invertible. This is a consequence of definition of invertibility in Definition 3.4.5.
As in the preceding two items, completeness is obviously required.
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4. Σ has a state space representation: As output function at t0 ∈ T, as per Defini-
tion 2.2.24, is simply given by

γΣt,t0
(x,u) = h(t, x,u).

One readily verifies that the conditions of Definition 2.2.24 are satisfied. •

Now let us see which of the general time system theoretic attributes of Sec-
tion 2.2 are held by a discrete-time state space system Σ = (X,U,T,U , f ,h). In
order to make the connections to the general time system notions of Section 2.2 to
the specific case here, we translate these notions into language applicable to the
class of system we consider here. In our definitions, we make use of the notation
for flows of discrete-time state space systems introduced in Definition 6.3.11.

We begin with causality.

6.3.6 Proposition (Causality for discrete-time state space systems) Let Σ =
(X,U,T,U , f,h) be a discrete-time state space system and let t0 ∈ T.

(i) The system Σ is causal from t0 if, for every µ1,µ2 ∈ U and every t ∈ T≥t0 ∩

dom(µ1) ∩ dom(µ2),

µ1|[t0, t] = µ2|[t0, t] =⇒ h(t,ΦΣ(t, t0, x0,µ1)) = h(t,ΦΣ(t, t0, x0,µ2))

for every x0 ∈ X.
(ii) The system Σ is strongly causal from t0 if, for every µ1,µ2 ∈ U and every t ∈
T≥t0 ∩ dom(µ1) ∩ dom(µ2),

µ1|[t0, t) = µ2|[t0, t) =⇒ h(t,ΦΣ(t, t0, x0,µ1)) = h(t,ΦΣ(t, t0, x0,µ2))

for every x0 ∈ X. •

Now we consider stationarity.

6.3.7 Proposition (Stationarity for discrete-time state space systems) Let Σ =
(X,U,T,U , f,h) be a discrete-time state space system and let t0 ∈ T.

(i) The system Σ is stationary from t0 if τ∗t0,t0+a(U ) ⊆ U for every a ∈ Z>0(∆) and if,
for every µ ∈ U and every t ∈ T≥t0 ∩ dom(µ),

h(t + a,ΦΣ(t + a, t0 + a, x0, τ
∗

t0,t0+aµ), τ∗t0,t0+aµ(t)) = h(t,ΦΣ(t, t0, x0,µ),µ(t))

for every a ∈ Z>0(∆) and every x0 ∈ X.
(ii) The system Σ is strongly stationary from t0 if it is stationary from t0 and if, for

every a ∈ Z>0(∆), every x0 ∈ X, and every µ ∈ U , there exists x′0 ∈ X such that

h(t,ΦΣ(t, t0, x0,µ),µ(t))h(t + a,ΦΣ(t + a, t0 + a, x′0, τ
∗

t0,t0+aµ(t)), τ∗t0,t0+aµ(t)). •

Note that a consequence of this definition of stationarity is that supT = ∞.
With these definitions, we have the following statements.
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6.3.8 Remarks (System theoretic attributes of discrete-time state space systems)
We let Σ = (X,U,T,U , f ,h) be a discrete-time state space system. In our con-

structions here, we make use of the notation for flows of discrete-time state space
systems introduced in Definition 6.3.11.
1. Σ is causal and sometimes strongly causal: Let t0 ∈ T. It follows from the for-

mula (6.6) for controlled trajectories that, if controls µ1 and µ2 agree on [t0, t],
then the controlled trajectories for Σ on [t0, t] agree. Thus Σ is causal from t0.
If, additionally, h is independent of U, i.e., Σ is proper, then we claim that Σ
is also strongly causal from t0. Indeed, if µ1 and µ2 agree on [t0, t), then the
controlled trajectories with the same initial condition agree on [t0, t] as a con-
sequence of (6.6). Note, however, that if h does depend on control, then we
generally have causality, but not strong causality.

2. Σ is sometimes past determined: First of all, the definition of being past-determined
requires completeness, so one needs to assume completeness to make any state-
ments about past-determinacy. Thus we do this. This ensures that the the first
part of the definitions of past-determined and strong past-determined holds.
Now let t0 ∈ T. For the second parts of these definitions, considerations such as
those for causality above allow us to conclude that Σ is past-determined from
any τ ∈ T>t0 , and is strongly past-determined if h is independent of control.

3. Σ is finitely observable: Let t0 ∈ T and let τ ∈ T>t0 . Then we see that Σ is finitely
observable from τ. Indeed, a controlled trajectory on [t0, τ), for a fixed control
µ ∈ U , is uniquely determined by the initial state. This uniqueness then applies
to uniqueness for times greater than τ.

4. Conditions for Σ to be stationary: Generally, a discrete-time state space system
is not stationary. However, it is most common to consider systems that are
stationary, so we consider such systems here. First of all, the definition of
stationarity from t0 ∈ T requires that τ∗t−t0

(U≥t0) = U≥t0 , i.e., the set of controls
is shift-invariant. Then one sees that Σ is stationary if it is autonomous. The
argument for this follows along the lines of that for doing Exercise 3.3.5, and we
leave the working out of this to the reader. Note that, unlike their continuous-
time counterparts, discrete-time state space systems are not generally strongly
stationary. This is a result of their not having the same “reversibility” property
that continuous-time state space systems possess, cf. the fact that in Proposi-
tion 6.3.12(iii), one requires invertibility of the system. See Exercise 6.3.2 for a
specific example of this.

5. Σ is not generally linear: Presumably, since in Section 6.8 we shall specifically
consider linear discrete-time state space systems, it is not the case that all
discrete-time state space systems are linear. To see this, one need only produce
a counterexample, and such examples abound; see Exercise 6.3.3. •
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6.3.2 Existence and uniqueness of controlled trajectories, and flows for
discrete-time state space systems

We now turn our attention to the matter of existence and uniqueness of con-
trolled trajectories for discrete-time state space systems. As with ordinary differ-
ence equations when compared to ordinary differential equations, there are far
fewer technicalities to concern ourselves with for discrete-time state space systems
as compared to the conditions of Theorem 6.1.10. First of all, we do not have to
worry ourselves with the precise character of controls, although we will concern
ourselves with topologies for spaces of controls when we consider discrete-time
state space systems as discrete-time input/output systems in Section 6.4.3.

Let us jump right to the statement of the existence and uniqueness results.

6.3.9 Theorem (Existence and uniqueness of controlled trajectories for discrete-
time state space systems) Let Σ = (X,U,T,U , f,h) be a discrete-time state space
system. Then, for µ ∈ U and (t0, x0) ∈ T × X, there exists a sub-time-domain T′ ⊆ T and
ξ : T′ → X such that ξ(t0) = x0 and such that (ξ,µ|T′) ∈ Ctraj(Σ). Moreover, if T′′ is
another such sub-time-domain and η : T′′ → X is another such mapping, then η(t) = ξ(t)
for all t ∈ T′′ ∩ T′. Finally, if f takes values in X, then the preceding conclusions hold for
any sub-time-domain T′ ⊆ T≥t0 .

Proof The theorem follows in the same manner as does Theorem 3.4.2, since the
mapping

dom(µ) × X ∋ (x, x) 7→ f (t, x,µ(t)) ∈ Rn

is an ordinary difference equation. ■

As with ordinary difference equations, a controlled trajectory for a discrete-time
state space system will generally be defined only for times in T≥t0 if one prescribes
an initial condition at t0. This is a consequence of the fact that a general discrete-
time ordinary difference equation is not invertible. If the system is invertible and
complete, however, then every controlled trajectory associated with a control µ
will exist on the entirety of dom(µ), cf. Theorem 3.4.6.

The theorem now permits an adaptation of the notion of the flow of a difference
equation in Section 3.4.1.2 to discrete-time state space systems. Let us undertake
this notation here.

6.3.10 Definition (Interval of existence, domain of solutions) Let Σ = (X,U,T,U , f ,h)
be a discrete-time state space system.

(i) For (t0, x0,µ) ∈ T × X ×U , denote

JΣ(t0, x0,µ) = ∪{J ⊆ dom(µ) | J is a sub-time-domain and there exists
ξ : J→ X such that (ξ,µ|J) ∈ Ctraj(Σ), ξ(t0) = x0}.

The sub-time-domain JΣ(t0, x0,µ) is the interval of existence for the initial
value problem

ξ(t + ∆) = f (t, ξ(t),µ(t)), ξ(t0) = x0.
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(ii) For µ ∈ U , the domain of solutions for Σ for the control µ is

DΣ(µ) = {(t, t0, x0) ∈ T × T × X | t ∈ JΣ(t0, x0,µ)}.

(iii) The domain of solutions for Σ is

DΣ = {(t, t0, x0,µ) ∈ T × T × X ×U | (t, t0, x0) ∈ DΣ(µ)}. •

We can now introduce the notion of a flow for a discrete-time state space
system.

6.3.11 Definition (Flow of a discrete-time state space system) LetΣ = (X,U,T,U , f ,h)
be a discrete-time state space system. The flow of Σ is the map ΦΣ : DΣ → X
defined by asking that ΦΣ(t, t0, x0,µ) is the solution, evaluated at t, of the initial
value problem

ξ(τ + ∆) = f (τ, ξ(τ),µ(τ)), ξ(t0) = x0. •

The definition, phrased differently, says that

ΦΣ(t + ∆, t0, x0,µ) = f (t,ΦΣ(t, t0, x0,µ),µ(t)), ΦΣ(t0, t0, x0,µ) = x0.

For t, t0 ∈ T and µ ∈ U , it is sometimes convenient to denote

DΣ(t, t0,µ) = {x ∈ X | (t, t0, x) ∈ DΣ(µ)},

and then
Φ
Σ,µ
t,t0

: DΣ(t, t0,µ)→ X

x 7→ ΦΣ(t, t0, x,µ).

Along similar lines, for t0 ∈ T, we denote

DΣ(t0) = {(t, x,µ) ∈ T × X ×U | (t, t0, x,µ) ∈ DΣ},

and then
ΦΣ(t0) : DΣ(t0)→ X

(t, x,µ) 7→ ΦΣ(t, t0, x,µ).

Finally, for t, t0 ∈ T, we denote

DΣ(t, t0) = {(x,µ) ∈ X ×U | (t, t0, x,µ) ∈ DΣ},

and then
ΦΣ(t, t0) : DΣ(t, t0)→ X

(x,µ) 7→ ΦΣ(t, t0, x,µ).

Let us enumerate some of the more elementary properties of the flow for a
discrete-time state space system, just as for an ordinary difference equation.
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6.3.12 Proposition (Elementary properties of flows of discrete-time state space sys-
tems) Let Σ = (X,U,T,U , f,h) be a discrete-time state space system. Then the following
statements hold:

(i) for each (t0, x0,µ) ∈ T × X ×U , (t0, t0, x0,µ) ∈ DΣ and ΦΣ(t0, t0, x0,µ) = x0;
(ii) if, for t1, t2 ∈ T with t1 ≤ t2, (t2, t1, x,µ) ∈ DΣ, then, for t3 ∈ T with t2 ≤ t3,

(t3, t2,ΦΣ(t2, t1, x),µ) ∈ DΣ if and only if (t3, t1, x,µ) ∈ DΣ and, if this holds, then

ΦΣ(t3, t1, x,µ) = ΦΣ(t3, t2,Φ
Σ(t2, t1, x,µ),µ).

(iii) if Σ is invertible and if (t2, t1, x,µ) ∈ DΣ, then (t1, t2,ΦΣ(t2, t1, x,µ),µ) ∈ DΣ and

ΦΣ(t1, t2,Φ
Σ(t2, t1, x,µ),µ) = x.

Proof This follows immediately from Proposition 3.4.7. ■

Useful mnemonics associated with parts (i)–(iii) are:

Φ
Σ,µ
t0,t0
= idX, (ΦΣ,µt2,t1

)−1 = Φ
Σ,µ
t1,t2
, Φ

Σ,µ
t3,t2

◦Φ
Σ,µ
t2,t1
= Φ

Σ,µ
t3,t1
.

However, these really are just mnemonics, since they do not account carefully
for the domains of the mappings being used. Moreover, the second requires
invertibility of the system, and the third, generally, must respect the order t1 ≤ t2 ≤

t3.
The matter of regularity of flows for discrete-time state space systems is, like

the corresponding theory for ordinary difference equations when compared to
ordinary differential equations, substantially simpler than that for continuous-time
state space systems given in Theorem 6.1.14.

6.3.13 Theorem (Properties of flows of discrete-time state space systems) Let Σ =
(X,U,T,U , f,h) be a discrete-time state space system and assume that f is continuous.
Then the following statements hold:

(i) for (t0, x0,µ) ∈ T × X ×U , JΣ(t0, x0,µ) is a sub-time-domain of T;
(ii) for (t0, x0,µ) ∈ T × X ×U , the curve

γ(t0,x0,µ) : JΣ(t0, x0,µ)→ X

t 7→ ΦΣ(t, t0, x0,µ)

is well-defined and continuous;
(iii) for t, t0 ∈ T with t ≥ t0 and for µ ∈ U , DΣ(t, t0,µ) is open;
(iv) for t, t0 ∈ T with t ≥ t0 and for µ ∈ U for which DΣ(t, t0,µ) , ∅, ΦΣt,t0

is continuous;
(v) for t0 ∈ T, DΣ(t0) is relatively open in T × X ×U ;
(vi) for t0 ∈ T, the map

ΦΣ(t0) : DΣ(t0)→ X

(t, x,µ) 7→ ΦΣ(t, t0, x,µ)

is well-defined and continuous;
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(vii) DΣ is relatively open in T × T × X ×U ;
(viii) the map

ΦΣ : DΣ → X

is continuous;
(ix) for (t0, x0,µ0) ∈ T × X ×U and for ϵ ∈ R>0, there exists r, ρ ∈ R>0 such that

sup JΣ(t0, x,µ) > sup JΣ(t0, x0,µ0) − ϵ, inf JΣ(t0, x,µ) < inf JΣ(t0, x0,µ0) + ϵ,

for all (x,µ) ∈ Bn(r, x0) × B(ρ,µ0).
Proof Parts (i)–(iv) follow from Theorem 3.4.8.

(v) Let (t, x,µ) ∈ DΣ(t0). Thus

ΦΣ(t, t0, x,µ) ∈ X.

For τ ∈ T, define
Φτ : X ×U→ X

(y,u) 7→ f (τ, x,u)

so that
ΦΣ(τ + ∆, τ, x,µ) = Φτ(x,µ(τ)).

Thus

ΦΣ(t0 + ∆, t0, x,µ) = Φt0(x,µ(t0)),

ΦΣ(t0 + 2∆, t0, x,µ) = Φt0+∆(Φt0(x,µ(t0)),µ(t0 + ∆)),
...

ΦΣ(t, t0, x,µ) = Φt−∆(Φt−2∆(· · · (Φt0+∆(Φt0(x,µ(t0)),µ(t0 + ∆)), · · · ),
µ(t − 2∆)),µ(t − ∆))

This shows that the domain of

(x,µ) 7→ ΦΣ(t, t0, x,µ)

is X ×U(t−t0)/∆. Continuity of f and openness of X gives a neighbourhood N of

(x, (µ(t0),µ(t0 + ∆), . . . ,µ(t − ∆)))

that maps to X. This gives the neighbourhood {t}×N in DΣ(t0) that maps to X, keeping
in mind that the topology on T is the discrete topology.

(vi) This was proved in the preceding part of the proof.
(vii) The proof here can be carried out as was the proof of part (v).
(viii) This follows from part (vii) in the same manner as part (vi) follows from

part (v).
(ix) In this discrete-time case, the assertion will follow if we can show that, for

t, t0 ∈ T with t ≥ t0, for µ ∈ U , and for x ∈ DΣ(t, t0,µ), there is a neighbourhood N of
(x,µ) in X × U such that, if (x′,µ′) ∈ N, then x′ ∈ DΣ(t, t0,µ′). This, however, follows
from part (v). ■
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6.3.3 Control-affine discrete-time state space systems

We next consider a special class of discrete-time state space systems. The class
is worthy of consideration for a few reasons: (1) one can consider for these systems
a somewhat broader class of controls, namely those that are locally integrable;
(2) this class of systems is a midpoint between general discrete-time state space
systems and the linear systems we shall consider in Section 6.8; (3) systems that
arise in practice are often of this form.

Here is the definition.

6.3.14 Definition (Control-affine discrete-time state space system) A discrete-time
state space system Σ = (X,U,T,U , f ,h) with U ⊆ Rm is control-affine if

(i) there exists f 0, f 1, . . . , f m : T × X→ Rn such that

f (t, x,u) = f 0(t, x) +
m∑

a=1

ua f a(t, x),

and
(ii) there exists h0,h1, . . . ,hm : T × X→ Rk such that

h(t, x,u) = h0(t, x) +
m∑

a=1

uaha(t, x).

We call f 0 (resp. h0) the drift dynamics (resp. drift/output map) and f 1, . . . , f m
(resp. h1, . . . ,hm) the control dynamics (resp. control/output maps). •

For a control-affine discrete-time state space system, we shall frequently denote
F = ( f 0, f 1, . . . , f m) and H = (h0,h1, . . . ,hm) and then prescribe such a system by
the dataΣ = (X,U,T,U ,F ,H ). Of course, all the notions attached to discrete-time
state space systems—e.g., controlled trajectories, controlled outputs, autonomous,
proper—can also be attached to those that are control-affine.

Moreover, because there are no distinctions between locally essentially bounded
controls and locally integrable controls such as we have for continuous-time state
space systems, there are no special cases one needs to consider for control-affine
discrete-time state space systems. Thus the existence and uniqueness result The-
orem 6.3.9 applies to control-affine discrete-time state space systems, and cannot
be improved upon or generalised in any useful way. Similarly, the definition of
flow from Definition 6.3.11, and the properties of this flow enunciated in Propo-
sition 6.3.12 and Theorem 6.3.13 hold for control-affine discrete-time state space
systems, and cannot be usefully improved or generalised.

Exercises

6.3.1 Show that a discrete-time state space system is not memoryless. (See Exam-
ple 2.2.31–2 for the definition of a memoryless system.)
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6.3.2 Consider the discrete-time state space system Σ = (X,U,T,U , f ,h) with

(i) X = R2,
(ii) U = R,
(iii) T = Z≥0,

(iv) U = ℓloc(Z≥0;R),
(v) f (t, (x1, x2),u) = (u, 0),
(vi) h(t, (x1, x2),u) = x2.

Show that Σ is stationary but not strongly stationary.
6.3.3 For the discrete-time state space systems Σ = (X,U,T,U , f ,h) given and for

t0 ∈ T, indicate whether they are causal from t0, strongly causal from t0,
finitely observable from any τ ∈ T>t0 , stationary from t0, strongly stationary
from t0, and/or memoryless.
(a) Take

(i) X = R,
(ii) U = R,
(iii) T = Z,

(iv) U = ℓloc((Z);R),
(v) f (t, x,u) = x2u,
(vi) h(t, x,u) = 1.

(b) Take
(i) X = R,
(ii) U = R,
(iii) T = Z>0,

(iv) U = ℓloc((Z>0);R),
(v) f (t, x,u) = t−1x + u2,
(vi) h(t, x,u) = x + u.

(c) Take
(i) X = R3,
(ii) U = R2,
(iii) T = Z,

(iv) U = ℓloc((Z);R),
(v) f (t, (x1, x2, x3), (u1,u2)) = (x2, x3, 0) + (u1, 0,u2),
(vi) h(t, (x1, x2, x3), (u1,u2)) = (x1 + x2,u).

(d) Take
(i) X = R2,
(ii) U = R,
(iii) T = Z,

(iv) U = ℓloc((Z);R),
(v) f (t, (x1, x2),u) = (2x1 − x2, 4x1 − 3x2) + (0,u),
(vi) h(t, (x1, x2),u) = (2x1, 1

2x2).

The next exercise concerns the connection between discrete-time state space sys-
tems and deterministic finite state automata described in Example 2.2.11–2. In
making this connection, we will relax the requirement that the state space for a
discrete-time state space system be open; this is not much of an alteration since
the requirement that the state space be open is made mainly to be consistent with
continuous-time state space systems, where openness of the state space is essential.

6.3.4 Answer the following questions.
(a) Show how, given a deterministic finite state automaton (Q,Y,Λ, δ, γ), one

can associate a discrete-time state space system.
(b) What properties should a discrete-time state space system

Σ = (X,U,T,U , f ,h)

have in order to be a deterministic finite state automaton?
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6.3.5 (Mini-project) Consider a ball bouncing on a table that undergoes a prescribed
vertical motion, as depicted in Figure 6.6 and discussed in [Holmes 1982].

u(t)

y(t)

Figure 6.6 Ball bouncing on oscillating table

We let y be the vertical displacement of the ball and let u be the vertical
displacement of the table. Make the following assumptions.
1. An impact at time t0 is modelled by requiring that

ẏ(t0+) − u(t0) = α(u(t0) − ẏ(t0−)),

where
ẏ(t0−) = lim

t↑t0
ẏ(t), ẏ(t0+) = lim

t↓t0
ẏ(t),

and where α ∈ (0, 1] is the coefficient of restitution.
2. The mass of the table is so large that the impact of the ball does not affect

the motion of the table.
3. The height achieved by the ball after an impact is so large compared to the

oscillation of the table that we can assume that, if ẏ(t j+) is the departing
velocity after an impact at time t j, then the arrival velocity for the next
impact at time t j+1 is ẏ(t j+1−) = −ẏ(t j+).

The state are the time τ of impact and the departing velocity v after an impact.
The output is the maximum height h attained after an impact.

We wish to assemble all of this into a discrete-time state space system.
(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?
Any physical parameters you require, you should introduce yourself. An-
swer the following questions about the model.
(g) Is the system model causal?
(h) Is the system model stationary?
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(i) Is the system model memoryless?
(j) Is the system model control-affine?
Finally, do some system theoretic explorations as follows.
(k) Do some research and describe three system theoretic problems that

arise in a natural way for the problem.
(l) Using a computer package for simulating ordinary difference equations,

setup the system for simulation, and try some harmonic inputs to see
what behaviour you observe.

6.3.6 (Mini-project) Consider, as in [Nishimura and Stachurski 2004], a model for a
two-sector economy, where one sector produces a good x that is purely con-
sumed and a good y that is purely a capital good. Inputs to the economy are
(1) labour ℓcon and ℓcap to the consumption and capital sectors, respectively
and (2) capital ccon and ccap to the consumption and capital sectors, respec-
tively. Inputs of capital are made one period prior to production and inputs
of labour are made in the same period as production. The measured output is
a function u of x that measures the utility of a consumer when she consumes
x units of the consumption good. Make the following assumptions.
1. If C = ccon + ccap is the aggregate capital input, then the capital good y

at the end of period k is determined by the following gross accumulation
formula:

y(k) = C(k) − (1 − δ)C(k − 1),

for a depreciation δ ∈ (0, 1).
2. If L is the total labour force, i.e., L = ℓcon + ℓcap, we assume that this is

constant.
We wish to assemble all of this into a discrete-time state space system.

(a) What is the state space X for the system?
(b) What is the control set U for the system?
(c) What is the time-domain T for the system?
(d) What is a good choice for the space U of inputs?
(e) What are the dynamics f?
(f) What is the output map h?
Answer the following questions about the model.
(g) Is the system model causal?
(h) Is the system model stationary?
(i) Is the system model memoryless?
(j) Is the system model control-affine?
Finally, do some system theoretic explorations as follows.
(k) Do some research and describe three system theoretic problems that

arise in a natural way for the problem.
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(l) Using a computer package for simulating ordinary differential equa-
tions, setup the system for simulation, and try to maximise the output.
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Section 6.4

Discrete-time input/output systems

The next class of systems we consider are input/output systems, now in the
setting of discrete-time systems. We shall continue in this section to see a theme
in our treatment of system theory, namely that of an input/output system as a
continuous mapping between a space of input signals to a space of output signals.
We shall also see another these, namely that state space systems can be regarded
as input/output systems. Note that this is connected with constructions in gen-
eral system theory as exemplified by Propositions 2.1.7 and 2.1.13 (for general
systems), and Theorem 2.2.20 and Proposition 2.2.49 (for general time systems).

Do I need to read this section? The ideas about input/output systems, and
about the connection of such systems to state space systems, that are provided
here are a theme in much of our presentation. This theme is enunciated in a some-
what general form for discrete-time systems in this section, and so this section is
an important one for what follows. •

6.4.1 Topological constructions for spaces of discrete-time partially defined
signals

As we briefly suggested above, input/output systems are maps between spaces
of input and output signals. Because of the necessity of allowing signals defined
on varying time-domains, cf. Example 2.2.21, this complicates things. Therefore,
let us develop some methodology for dealing with this complication.

6.4.1 Definition (Spaces of partially defined signals with topology) Let T ⊆ R be a
discrete time-domain.

(i) Consider the space
ℓ∞loc((T);Rn) = (Rn)(T)

is a space of partially defined signals with topology when we equip dom−1(S)
with the topology defined by the seminorms

∥ f∥K,∞ = max{sup{| fa(t)| | t ∈ K} | a ∈ {1, . . . ,n}},
K ⊆ S a bounded sub-time-domain.

(ii) The space
ℓ∞((T);Rn) = { f ∈ (Rn)(T)

| f ∈ ℓ∞(dom( f );Rn)}

is a space of partially defined signals with topology when we equip dom−1(S)
with the topology defined by the norm

∥ f∥∞ = max{sup{| fa(t)| | t ∈ S} | a ∈ {1, . . . ,n}}.
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(iii) For p ∈ [1,∞), the space

ℓp
loc((T);Rn) = (Rn)(T)

is a space of partially defined signals with topology when we equip dom−1(S)
with the topology defined by the seminorms

∥ f∥K,p = max


∑

t∈K

| fa(t)|p
1/p

∣∣∣∣∣∣∣ a ∈ {1, . . . ,n}

 ,
K ⊆ S a bounded sub-time-domain.

(iv) For p ∈ [1,∞), the space

ℓp((T);Rn) = { f ∈ (Rn)(T)
| f ∈ ℓp(dom( f );Rn)}

is a space of partially defined signals with topology when we equip dom−1(S)
with the topology defined by the norm

∥ f∥p = max


∑

t∈S

| fa(t)|p


1/p
∣∣∣∣∣∣∣∣ a ∈ {1, . . . ,n}

 . •

Note that the preceding sets of partially defined signals are not, themselves,
topological spaces. They are merely collections of subsets of signals, each having
topologies. There is an important distinction with the discrete-time case, when
compared to the continuous-time case. This is that there is no meaningful distinc-
tion between the spaces ℓp

loc((T);Rn), p ∈ [1,∞]. This is because, for these spaces
of discrete-time signal spaces, the notions of convergence are identical, and so too,
therefore, are the notions of continuity we shall consider for mappings between
these spaces. For this reason, when working with spaces of “locally integrable”
discrete-time signals, we will always just take p = ∞, cf. the discussion in Sec-
tion IV-1.2.5.

The spaces we shall use are then the following subsets of the preceding spaces.

6.4.2 Definition (Space of partially defined discrete-time signals with topology) We
let T ⊆ Z(∆) be a sub-time-domain and let S ⊆ Rn. A space of partially defined
signals with topology is a subset of one of the following spaces of partially defined
signals:

(i) the space

ℓ∞loc((T); S) = { f ∈ ℓ∞loc((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

with the subspace topology;
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(ii) the space

ℓ∞((T); S) = { f ∈ ℓ∞((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology;
(iii) for p ∈ [1,∞), the space

ℓp
loc((T); S) = { f ∈ ℓp

loc((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology;
(iv) for p ∈ [1,∞), the space

ℓp((T); S) = { f ∈ ℓp((T);Rn) | f (t) ∈ S, t ∈ dom( f )}

equipped with the subspace topology.
If dom( f ) = T for every f ∈ S , then S is a space of discrete-time signals with
topology. •

Given a space S of partially defined signals with topology with time-domain
T and given a sub-time-domain S ⊆ T, we shall use the notation

S (S) = { f ∈ S | dom( f ) = S}.

6.4.2 Definitions and system theoretic properties

With suitable notions of spaces of partially defined signals at hand, we can give
a suitable definition of an input/output system.

6.4.3 Definition (Discrete-time input/output system) A discrete-time input/output
system is a quintuple Σ = (U,T,U ,Y , g), where

(i) U ⊆ Rm (the input set),
(ii) T ⊆ R is an interval (the time-domain),
(iii) U ⊆ U(T) is a space of partially defined signals with topology (the input

signals),
(iv) Y ⊆ (Rk)(T) is a space of partially defined signals with topology (the output

signals), and
(v) g : U → Y has the following properties:

(a) for every sub-time-domain S ⊆ T, the restriction of g to U (S), denoted
by gS, takes values in Y (S);

(b) if S, S′ ⊆ T are sub-time-domains with S′ ⊆ S, then gS|U (S′) = gS′ ;
(c) gS is continuous for every sub-time-domain S ⊆ T.

Moreover,
(xi) a pair (µ,η) with µ ∈ U (S) and η = gS(µ) is a behaviour for Σ, and we denote

byB (Σ) the set of behaviours. •
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6.4.4 Remark (Restriction in discrete-time input/output systems) Note that we do
not require that, if S, S′ ⊆ T are sub-time-domains with S′ ⊆ S and if µ ∈ U (S), then
µ|S′ ∈ U (S′). What we do require is that, if µ|S′ ∈ U (S′), then

gS′(µ|S
′) = gS(µ)|S′.

If a discrete-time input/output system does have then property that µ|S′ ∈ U (S′)
for every pair of sub-time-domains satisfying S′ ⊆ S and for every µ ∈ U (S), we
shall say that the system is closed under restriction.

Note that, by not requiring that discrete-time input/output systems be closed
under restriction, we allow the common situation where all inputs and outputs are
considered only as signals defined on the entire time-domain. That is to say, for a
system like that, we haveU (S) = ∅ andY (S) = ∅ for every strict sub-time-domain
S ⊆ T. •

Let us connect some of the general systems ideas from Chapter 2 to our concept
of a discrete-time inout/output system. Along the way, we shall give a few elemen-
tary examples of such systems. In Section 6.2.3 we shall see that all discrete-time
state space systems are also discrete-time input.output systems.

We begin by making the connection to the basic types of general systems.

6.4.5 Remarks (Discrete-time input/output systems as general systems) We let Σ =
(U,T,U ,Y , g) be a discrete-time input/output system.
1. A discrete-time input/output system is a general input/output system as per

Definition 2.1.3. To see this, take
(a) “U = U ,” i.e., the inputs for the general input/output system are the same

as the inputs for the discrete-time state space system,
(b) “Y = Y ,” i.e., the outputs for the general input/output system are the

same as the outputs for the discrete-time state space system, and
(c) B = {(µ, g(µ)) | µ ∈ U }, i.e., a discrete-time input/output system is a

functional input/output system, as per Definition 2.1.4.
2. A discrete-time input/output system is, more specifically, a general time system

as per Definition 2.2.9. To see this, take
(a) “U = U,” i.e., the input set for the general time system is the same as the

input set for the discrete-time input/output system,
(b) Y = Rk, i.e., the output set for the general time system is Rk,
(c) “U = U ,” i.e., the admissible input signals for the general input/output

system are the same as the input signals for the discrete-time input/output
system,

(d) Y = (Rk)(T), i.e., the admissible output signals for the general input/output
system are the partial Rk-valued functions on T, and

(e) B = {(µ, g(µ)) | µ ∈ U } i.e., the behaviours for the general time system
input/output pairs for the discrete-time input/output system. •
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Let us now consider the matter of output completeness and completeness for
discrete-time input/output systems.

6.4.6 Remarks (Completeness for discrete-time input/output systems) We let Σ =
(U,T,U ,Y , g) be a discrete-time input/output system.
1. Discrete-time input/output systems are output complete: Let µ ∈ U and let (I,⪯) be a

totally ordered set, and let (ηi)i∈I be a family of outputs satisfying conditions (a)–
(f) of Definition 2.2.12. Note that

ηi(t) = g(µ)(t), t ∈ dom(ηi).

Now let S = ∪i∈I dom(ηi) and let η : S→ Rk be such that ηdom(ηi)
= ηi, i ∈ I. Then,

if t ∈ S, we must have t ∈ dom(ηi) for some i ∈ I. Therefore,

η(t) = ηi(t) = g(µ)(t).

As this holds for every t ∈ dom(η), we conclude output completeness.
2. Generally, a discrete-time input/output system is not complete: In Theorem 6.4.10 we

shall see that discrete-time state space systems are discrete-time input/output
systems. Thus any discrete-time state space system that is not complete will
furnish us with a discrete-time input/output system that is not complete. •

We know from general results, i.e., Theorem 2.2.20, a complete discrete-time
input/output system has a dynamical systems representation specified by some
response family and some family of state transition maps. Moreover, the proof
of Theorem 2.2.20 gives an explicit construction of such a dynamical systems
representation. The difficulty is that, in any given example, the resulting dynamical
systems representation will not be meaningful (whatever might be the meaning of
“meaningful”). Indeed, the matter of constructing a meaningful dynamical systems
representation is something that, typically, one should think carefully about.

Now let us consider the various attributes for general time systems from Sec-
tion 2.2, as they pertain to discrete-time input/output systems. We shall see that
these notions do not hold, generally, and so are assumptions that must be made
if one needs them. In order to connect the general time system discussion of Sec-
tion 2.2 to the systems we consider here, let us make suitable definitions for the
appropriate notions.

First we consider causality, where the definition captures the idea that the
output at time t depends only on the input prior to time t.

6.4.7 Definition (Causality for discrete-time input/output systems) Let Σ =
(U,T,U ,Y , g) be a discrete-time input/output system.

(i) The system Σ is causal if, for every µ1,µ2 ∈ U with dom(µ1) = dom(µ2) and
for every t ∈ dom(µ1) = dom(µ2),

µ1|(T≤t ∩ dom(µ1)) = µ1|(T≤t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t).
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(ii) The system Σ is strongly causal if, for every µ1,µ2 ∈ U with dom(µ1) =
dom(µ2) and for every t ∈ dom(µ1) = dom(µ2),

µ1|(T<t ∩ dom(µ1)) = µ1|(T<t ∩ dom(µ2)) =⇒ g(µ1)(t) = g(µ2)(t). •

Next we consider stationarity. We let Σ = (U,T,U ,Y , g) be a discrete-time
input/output system. As we saw in Section 2.2.8, stationarity has to do, roughly,
with shift-invariance. To make this clear, let us first carefully think about what we
mean by shifting. Let X be a set and letX ⊆ X(T) be a collection of partially defined
signals. Let a ∈ Z(∆). If ξ ∈ X , denote by τ∗aξ the signal with domain

dom(τ∗aξ) = {t ∈ T | t − a ∈ dom(ξ)}

and given by τ∗aξ(t) = ξ(t− a). Note that we may well have dom(τ∗aξ) = ∅, in which
case τ∗aξ is not defined, by convention.

With this notation, we have the following definitions regarding stationarity.

6.4.8 Definition (Stationarity for discrete-time input/output systems) Let Σ =
(U,T,U ,Y , g) be a discrete-time input/output system with supT = ∞.

(i) The system Σ is stationary if τ∗a(U ) ⊆ U for every a ∈ Z>0(∆) and if, for every
µ ∈ U ,

g(τ∗aµ) = τ∗ag(µ).

(ii) The system Σ is strongly stationary if it is stationary and if, for every a ∈
Z>0(∆) and every µ ∈ U , there exists µ′ ∈ U such that

g(µ) = g(τ∗aµ
′). •

With these definitions, we can make the following remarks.

6.4.9 Remarks (System theoretic attributes of discrete-time input/output systems)
We let Σ = (U,T,U ,Y , g) be a discrete-time input/output system.
1. Σ is generally not causal: To see this, we give a simple counterexample.

We take U = R, T = Z, and let U = ℓ∞loc(Z;R), i.e., inputs are all R-valued
functions on Z. We also take Y = ℓ∞loc(Z;R). The topologies for U and Y are
as defined in Definition 6.4.2–(i). Now define g : U → Y by g(µ)(t) = µ(−t).
Because we are only considering signals defined on all of Z, conditions (v)(a)
and (v)(b) of a discrete-time input/output system are immediately satisfied. We
claim that condition (v)(c) is also satisfied. Indeed, let (µ j) j∈Z>0 be a sequence
in ℓ∞loc(Z;R) converging to µ ∈ ℓ∞loc(R;R). Let K ⊆ R be a bounded sub-time-
domain and let ϵ ∈ R>0. Let

−K = {−t | t ∈ K}.

Then there exists N ∈ Z>0 such that

|µ(t) − µ j(t)| < ϵ, t ∈ −K, j ≥ N.
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Then we immediately have

|g(µ)(t) − g(µ j)(t)| < ϵ, t ∈ K, j ≥ N,

giving convergence of (g(µ j)) j∈Z>0 to g(µ), and so giving continuity of g.
Now we show that the system is not causal. Let µ1, µ2 ∈ U be defined by

µ1(t) =

1, t ∈ Z<0,

0, t ∈ Z≥0,
µ2(t) = 1, t ∈ Z.

Let t ∈ Z<0 and note that
µ1|R≤t = µ2|R≤t.

However,
g(µ1)(t) = µ1(−t) = 0, g(µ2)(t) = µ2(−t) = 1,

and this demonstrates the lack of causality.
2. Σ is generally not past determined: This follows since, as proved in Proposi-

tion 2.2.35, past determined systems are causal.
3. Σ is finitely observable: This is a consequence of the fact that Σ, as a general

input/output system, is functional.
4. Σ is not generally stationary: To see this, we note that discrete-time state space

systems are discrete-time input-output systems by Theorem 6.4.10. There-
fore, since discrete-time state space systems are not generally stationary (as we
pointed out in Remark 6.1.8–4).

5. Σ is not generally linear: Presumably, since in Section 6.9 we shall specifically
consider linear discrete-time input/output systems, it is not the case that all
discrete-time input/output systems are linear. To see this, one need only produce
a counterexample, and we leave the elementary construction of such an example
to the reader, cf. Exercise 6.3.3. •

6.4.3 Discrete-time state space systems as discrete-time input/output
systems

As we saw in our discussion above of the system theoretic attributes for discrete-
time input/output systems, these systems were capable of exhibiting characteristics
that are not possible for discrete-time state space systems. In this section we show
how the various classes of discrete-time state space systems are also discrete-time
input/output systems.

First let us informally associate to a discrete-time state space system its candidate
input/output system. LetΣ = (X,U,T,U , f ,h) be a discrete-time state space system.
If one thinks about the controlled outputs for Σ, one sees that these behaviours do
not form the basis for a discrete-time input/output system since there are multiple
outputs for a single input. To rectify this, one should choose an initial condition.
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Thus let (t0, x0) ∈ T × X. Then we can try to associate a discrete-time input/output
systemΣ for this initial condition data by the quintupleΣi/o(t0, x0) = (U,T,U ,Y , g),
where
1. “U = U,”
2. “T = T,”
3. “U = U ,”
4. Y ⊆ (Rk)(T), and
5. g(µ)(t) = h(t,ΦΣ(t, t0, x0,µ),µ(t)) for t ∈ JΣ(t0, x0,µ).
This does not quite yet define a discrete-time input/output system since we must
prescribe the structure of a space of partially defined signals with topology to both
U andY . As we shall see, the appropriate such structure depends on the character
of the system.

The following result characterises how one can make the preceding association
precise. Note that, in contrast with Theorem 6.2.10, we do not need to have many
separate cases, since the topologies ℓp

loc(T; V) agree for p ∈ [1,∞].

6.4.10 Theorem (Discrete-time input/output systems from discrete-time state space
systems) Let Σ = (X,U,T,U , f,h) be a discrete-time state space system. Assume that
f is continuous and that h is output autonomous and a continuous mapping from X × U
to Rk. Let (t0, x0) ∈ T × X. Then Σi/o(t0, x0) = (U,T,U ,Y ,g), with g as defined above,
defines a discrete-time input/output system, where

(i) U ⊆ ℓ∞loc((T); U) is the space of partially defined signals with topology as in Defini-
tion 6.4.2–(i) and

(ii) Y = ℓ∞loc((T);Rk) is the space of partially defined signals with topology as in Defi-
nition 6.4.2–(i).

Proof The following lemma records an essential part of the proof.

1 Lemma Let Σ = (X,U,T,U , f,h) be a discrete-time state space system for which f is continu-
ous. Let (t0, x0,µ0) ∈ T×X×U , t ∈ T≥t0 satisfy (t, t0, x0,µ0) ∈ DΣ, let (µj)j∈Z>0 be a sequence
in U converging to µ0 with respect to the seminorm ∥·∥[t0,t],∞. Then the following statements
hold:

(i) there exists N ∈ Z>0 such that (t, t0, x0,µj) ∈ DΣ for j ≥ N;

(ii) the sequence
s 7→ ΦΣ(s, t0, x0,µj), j ∈ Z>0,

of mappings in ℓ∞([t0, t]; X) converges to

s 7→ ΦΣ(s, t0, x0,µ0).

Proof The first assertion is a direct consequence of part (ix) of Theorem 6.3.13. We
must, therefore, prove the convergence conclusion of the second assertion.

As we saw in the proof of Theorem 6.3.13(v), U[t0,t] ≃ U(t−t0)/∆. Moreover, conver-
gence in ℓ∞([t0, t]; U) is the same as normal convergence in U(t−t0)/∆, thinking of the
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latter as a subset of (Rm)(t−t0)/∆. Also as we saw in the proof of Theorem 6.3.13(v), the
mapping

(µ(t0),µ(t0 + ∆), . . . ,µ(t − ∆)) 7→ ΦΣ(t, t0, x0,µ)

is continuous. Therefore, by this continuity,

lim
j→∞
ΦΣ(t, t0, x0,µ j) = Φ

Σ(t, t0, x0,µ0).

The lemma follows since convergence in ℓ∞loc([t0, t]; X) is the same as normal conver-
gence in X(t−t0)/∆, thinking of this as a subset of (Rn)(t−t0)/∆. ▼

Let (µ j) j∈Z>0 be a sequence in U converging to µ0. Thus dom(µ j) = S, j ∈ Z≥0, and
that, for every finite sub-time-domainK ⊆ S, we have

lim
j→∞

µ j,a(t) = µ0,a(t), a ∈ {1, . . . ,m}, t ∈ K,

keeping in mind that convergence in ℓ∞(K; U) is normal convergence, as in the proof
of the lemma.

Let L ⊆ S be bounded and let t1 ∈ S be such thatK ⊆ [t0, t1]. Then we have, by the
lemma,

lim
j→∞
ΦΣ(t, t0, x0,µ j) = Φ

Σ(t, t0, x0,µ0), t ∈ [t0, t1].

By continuity of h, this gives

lim
j→∞

h(ΦΣ(t, t0, x0,µ j),µ j) = h(ΦΣ(t, t0, x0,µ0),µ0), t ∈ [t0, t1].

Since convergence in ℓ∞([t0, t1];Rk) is normal convergence in (Rk)(tt−t0)/∆, this gives the
desired conclusion. ■

We point out that we have focussed in the preceding result on the case when h
is independent of time. Just like in the continuous-time case, if h does depend on
time, then it is the nature of this time-dependence that will determine the manner
of the continuity properties of the input/output map. As such, these cases have to
be treated in a more case-by-case manner. The results we give are interesting and
useful general results.

6.4.4 Discrete-time difference input/output systems

Exercises

6.4.1 For the discrete-time input/output systems Σ = (U,T,U ,Y , g) given, indi-
cate whether they are causal, strongly causal, finitely observable from any
τ ∈ T>t0 , stationary, strongly stationary, and/or memoryless.
(a) Take

(i) U = R,
(ii) T = Z,

(iii) U = ℓ1(Z;R),
(iv) Y = {0, 1}Z ∩ ℓ∞(Z;R),

(v) g(µ)(t) =

1,
∑t
τ=−∞ µ(τ) ≥ 1,

0, otherwise.
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(b) Take
(i) U = R,
(ii) T = Z,

(iii) U = ℓloc(Z;R),
(iv) Y = ℓloc(Z;R),
(v) g(µ)(t) = µ(kt) for some k ∈ Z.

(c) Take
(i) U = R,
(ii) T = Z,

(iii) U = ℓloc(Z;R),
(iv) Y = {0, 1}Z ∩ ℓ∞(Z;R),

(v) g(µ)(t) =

1, µ(t) ∈ Q,
0, otherwise.

(d) Take
(i) U = R,
(ii) T = Z,

(iii) U = ℓ1(R;R),
(iv) Y = ℓ∞(R;R),
(v) g(µ)(t) =

∑t
τ=−∞ e−|τ|µ(τ).

6.4.2 Let U,Y ⊆ R be open sets, letT ⊆ Z(∆) be a discrete time-domain, let n ∈ Z>0,
and let

F : T × Y × L≤n
sym(R;R) ×U × L≤n−1

sym (R;R)→ R.

(See the beginning of Section 3.3.3 for notation.) Suppose that, for each

(t, y, y(+,1), . . . , y(+,n−1),u,u(+,1), . . . ,u(+,n−1))

∈ T × Y × L≤n−1
sym (R;R) ×U × L≤n−1

sym (R;R),

we can solve the equation

F(t, y, y(+,1), . . . , y(+,n−1), y(+,n),u,u(+,1), . . . ,u(+,n−1)) = 0

uniquely for y(+,n) and denote the unique solution by

y(+,n) = F̂(t, y, y(+,1), . . . , y(+,n−1),u,u(+,1), . . . ,u(+,n−1)).

Suppose that F̂ is continuous and consider the difference equation

η(t + n∆) = F̂(t, η(t), η(t + ∆), . . . , η(t + (n − 1)∆),
µ(t), µ(t + ∆), . . . , µ(t + (n − 1)∆)).

Answer the following questions.
(a) Show that this determines a general time system as per Definition 2.2.9.

Clearly identify the spaces of input and output signals.
(b) Argue that a natural choice of states for this system is

ξ j(t) = η(t + j∆), j ∈ {0, 1, . . . ,n − 1}.
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(c) Derive a discrete-time state space system for which the input/output
relation is the same as the general time system from part (a) and for
which the states are as in part (b).

6.4.3 For a finite collection of real data, X = {x1, . . . , xn}, the mean is

mean(X) =
1
n

n∑
j=1

x j

and the standard deviation is

stddev(X) =

1
n

n∑
j=1

(x j −mean(X))2


1/2

.

Suppose that, given µ ∈ ℓloc(Z≥0;R), we define functions

mean(µ), stddev(µ) ∈ ℓloc(Z≥0;R)

by

mean(µ)(n) = mean({µ(0), . . . , µ(n)}), stddev(µ)(n) = stddev({µ(0), . . . , µ(n)}).

Answer the following questions.
(a) Make this record of “running mean” and “running standard deviation”

into a discrete-time input/output system Σ = (U,T,U ,Y , g).
(b) Is the system causal? strongly causal? stationary? strongly stationary?

memoryless?

Exercises 6.9.8–6.9.11 consider a few linear models for time series analysis, and
we refer the reader to the brief discussion preceding Exercise 6.9.8 for some back-
ground.

6.4.4 We consider a nonlinear model for time series analysis based on the differ-
ence equation

η(k∆) = b1η((k − 1)∆) + · · · + bn−1η((k − (n − 1))∆) + bnη((k − n)∆)

+ a1ι((k − 1)∆)2 + · · · + amι((k −m)∆)2, k ∈ Z≥n,

for signals η, ι ∈ ℓloc(Z≥0(∆);R) and for a1, . . . , am ∈ R. This is the generalised
autoregressive conditional heteroscedasticity model of order (n,m), denoted
GARCH(n,m). Note, for example, that GARCH(0, 0) is simply a white noise
process. The coefficients b1, . . . , bn, a1, . . . , am are chosen to fit measured data
by matching statistical properties.

You will examine some features of GARCH(1, 1), which is determined by
the equation

η(k∆) = bη((k − 1)∆) + aι((k − 1)∆)2, k ∈ Z>0.

For this system, answer the following questions.
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(a) Show that the solution to the system of difference equations with inno-
vation ι specified and with initial condition η(0) = y0 is

η(k∆) = bky0 + a
k−1∑
j=0

b jι((k − j − 1)∆)2, k ∈ Z>0.

(b) Show that, when an initial condition η(0) = y0 is specified, the previous
equation describes a discrete-time input/output system with input ι and
output η.

(c) Show that GARCH(1, 1) can be written as an ARMA(1, 1) process with ι2

playing the rôle of output and ι2 − η playing the rôle of the innovations.
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Section 6.5

Linearisation of systems

Having presented a class of not necessarily linear systems, both in continuous-
and discrete-time, we shall now transition to linear systems. To justify the rele-
vance of this, we start by continuous- and discrete-time linearising systems, just as
we did for ordinary differential and ordinary difference equations in Section 5.1.
We shall proceed much as we did for linearisation in Section 5.1, considering
linearisation about trajectories (controlled trajectories, in this case) and then equi-
libria (controlled equilibria in this case). We also characterise the linearisation in
terms of variations of initial conditions and controls, thus giving some meaning to
linearisation as the derivative with respect to initial condition and control.

Do I need to read this section? This section is intended as a bridge from the
general constructions of Sections 6.1–6.4. As such, the results give context to the
importance of the linear systems to which we shall dedicate most of our attention. •

6.5.1 Linearisation of continuous-time state space systems

We consider first the linearisation of continuous-time state space systems. The
constructions here mirror closely the results of Section 5.1.1 for linearisation of
ordinary differential equations.

6.5.1.1 Linearisation along controlled trajectories Suppose that we have a
continuous-time state space system Σ = (X,U,T,U , f ,h) and that we have a con-
trolled trajectory (ξ0,µ0) for Σ defined on T′ ⊆ T. We wish to understand what
happens to controlled trajectories “nearby” this fixed controlled trajectory.

To do this, we suppose that U ⊆ Rm is open and that f and h are continuously
differentiable as functions of (x,u). That is, for t ∈ Twe denote

f t : X ×U→ Rn

(x,u) 7→ f (t, x,u),

ht : X ×U→ Rk

(x,u) 7→ h(t, x,u),

and we require that f t and ht be of class C1 for each t ∈ T. We denote

D1 f (t, x,u) = D1 f t(x,u),
D2 f (t, x,u) = D2 f t(x,u),
D1h(t, x,u) = D1ht(x,u),
D2h(t, x,u) = D2ht(x,u), t ∈ T.
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the partial derivatives with respect to x and u, respectively, with t fixed. Thus

D1 f : T × X ×U→ L(Rn;Rn),
D2 f : T × X ×U→ L(Rm;Rn),

D1h : T × X ×U→ L(Rn;Rk),

D2h : T × X ×U→ L(Rm;Rk).

We then suppose that we have a controlled trajectory (ξ0,µ0), defined on T′, for
Σ for which the deviations ν ≜ ξ − ξ0 and ω = µ − µ0 are small. Let us try to
understand the behaviour of ν. Naı̈vely, we can do this as follows:

ξ̇(t) =
d(ξ0 + ν)

dt
(t) = f (t, ξ0(t) + ν(t),µ0 +ω(t))

= f (t, ξ0(t),µ0(t)) +D1 f (t, ξ0(t),µ0(t)) · ν(t) +D2 f (t, ξ0(t),µ0(t)) ·ω(t) + · · · .

We will not here try to be precise about what “· · · ” might mean, but merely say
that the idea of the preceding equation is that we approximate using the constant
and first-order terms in the Taylor expansion, and then pray that this gives us
something meaningful. Note that, since (ξ0,µ0) is a controlled trajectory for Σ, the
approximation we arrive at is

ν̇(t) ≈ D1 f (t, ξ0(t),µ0(t)) · ν(t) +D2 f (t, ξ0(t),µ0(t)) ·ω(t).

We similarly denote

η0(t) = h(t, ξ0(t),µ0(t)), η(t) = h(t, ξ(t),µ(t)),

and deduce, with γ(t) = η(t) − η0(t), that we have an approximation

γ(t) ≈ D1h(t, ξ0(t),µ0(t)) · ν(t) +D2h(t, ξ0(t),µ0(t)) ·ω(t).

Meaningful or not, the preceding naı̈ve calculations give rise to the following
definition.

6.5.1 Definition (Linearisation of a continuous-time state space system along a
controlled trajectory) Let Σ = (X,U,T,U , f ,h) be a continuous-time state space
system, supposing that U ⊆ Rm is open and that f t and ht are of class C1 for every
t ∈ T. For (ξ0,µ0) ∈ Ctraj(Σ) with domain T′, the linearisation of Σ along (ξ0, µ0)
is the continuous-time state space system

ΣL,(ξ0,µ0) = (Rn,Rm,T′,UL, f L,(ξ0,µ0),hL,(ξ0,µ0)),

where
(i) f L,(ξ0,µ0)(t,v,w) = D1 f (t, ξ0(t),µ0(t)) · v +D2 f (t, ξ0(t),µ0(t)) ·w,

(ii) hL,(ξ0,µ0)(t,v,w) = D1h(t, ξ0(t),µ0(t)) · v +D2h(t, ξ0(t),µ0(t)) ·w, and
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(iii) UL ⊆ L∞loc(T
′;Rm). •

Note that a controlled trajectory for the linearisation of Σ along (ξ0,µ0) satisfies

ν̇(t) = A(t)(ν(t)) + B(t)(ω(t)),

where
A(t) = D1 f (t, ξ0(t),µ0(t)), B(t) = D2 f (t, ξ0(t),µ0(t)).

The corresponding controlled outputs satisfy

γ(t) = C(t)(ν(t)) +D(t)(ω(t)),

where
C(t) = D1h(t, ξ0(t),µ0(t)), D(t) = D2h(t, ξ0(t),µ0(t)).

This is what we shall subsequently refer to as a linear continuous-time state space
system.

Note that there is an alternative view of linearisation that can be easily devel-
oped, one where linearisation is of the system, not just along a controlled trajectory.
The construction we make is the following.

6.5.2 Definition (Linearisation of a continuous-time state space system) Let Σ =
(X,U,T,U , f ,h) be a continuous-time state space system, supposing that U ⊆ Rm

is open and that f t and ht are of class C1 for every t ∈ T. The linearisation of Σ is
the continuous-time state space system

ΣL = (X ×Rn,U ×Rm,T,UL, f L,hL),

where
(i) f L(t, (x,v), (u,w)) = ( f (t, x,u),D1 f (t, x,u) · v +D2 f (t, x,u) ·w),
(ii) hL(t, (x,v), (u,w)) = (h(t, x,u),D1h(t, x,u) · v +D2h(t, x,u) ·w), and
(iii) UL = {(µ,ω) | µ ∈ U , ω ∈ L∞loc(T;Rm)}. •

Controlled trajectories of the linearisation of Σ are then pairs ((ξ,ν), (µ,ω))
satisfying

ξ̇(t) = f (t, ξ(t),µ(t)),
ν̇(t) = D1 f (t, ξ(t),µ(t)) · ν(t) +D2 f (t, ξ(t),µ(t)) ·ω(t),

while controlled outputs satisfy

η(t) = h(t, ξ(t),µ(t)),
γ(t) = D1h(t, ξ(t),µ(t)) · ν(t) +D2h(t, ξ(t),µ(t)) ·ω(t).

Thus we see that the linearisation encodes in its definition the original full system.

6.5.1.2 Linearisation about controlled equilibria In this section we consider
what amounts to a special case of linearisation about a controlled trajectory. The
controlled trajectory we consider is a very particular sort of controlled trajectory,
as given by the following definition.
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6.5.3 Definition (Controlled equilibrium for a continuous-time state space system)
Let Σ = (X,U,T,U , f ,h) be a continuous-time state space system. A pair (x0,u0) ∈
X ×U is a controlled equilibrium for Σ if f (t, x0,u0) = 0 for every t ∈ T. •

The following result gives the relationship between controlled equilibria and
controlled trajectories.

6.5.4 Proposition (Controlled equilibria and constant controlled solutions) Let Σ =
(X,U,T,U , f,h) be a continuous-time state space system. Then a pair (x0,u0) ∈ X ×U is
a controlled equilibrium if and only if (ξ0,µ0) ∈ Ctraj(Σ), where

ξ0(t) = x0, µ0(t) = u0.

Proof First suppose that (x0,u0) is a controlled equilibrium. Then ξ̇0(t) = 0 for every
t ∈ T and f (t, ξ0(t),µ0(t)) = 0 and so

ξ̇0(t) = f (t, ξ0(t),µ0(t)), t ∈ T,

and thus (ξ0,µ0) ∈ Ctraj(Σ).
Next suppose that (ξ0,µ0) ∈ Ctraj(Σ). Then

0 = ξ̇0(t) = f (t, ξ0(t),µ(t)) = f (t, x0,u0), t ∈ T,

so giving that (x0,u0) is a controlled equilibrium. ■

Note that, as a consequence of the preceding simple result, we can linearise
about the constant controlled trajectory t 7→ (x0,u0) in the event that (x0,u0) is
a controlled equilibrium. Let us, however, use some particular language in this
case.

6.5.5 Definition (Linearisation of a continuous-time state space system about a
controlled equilibrium) Let Σ = (X,U,T,U , f ,h) be a continuous-time state space
system, supposing that U ⊆ Rm is open and that f t and ht are of class C1 for every
t ∈ T, and let (x0,u0) be a controlled equilibrium. The linearisation of Σ about
(x0, u0) is the continuous-time state space system

ΣL,(x0,u0) = (Rn,Rm,T,UL, f L,(x0,u0),hL,(x0,u0)),

with
f L,(x0,u0) : T ×Rn

×Rm
→ Rn

(t,v,w) 7→ D1 f (t, x0,u0) · v +D2 f (t, x0,u0) ·w,

and
hL,(x0,u0) : T ×Rn

×Rm
→ Rk

(t,v,w) 7→ D1h(t, x0,u0) · v +D2h(t, x0,u0) ·w,
•

A controlled trajectory (ν,ω) for f L,(x0,u0) satisfies

ν̇(t) = A(t)(ν(t)) + B(t)(ω(t)),
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where
A(t) = D1 f (t, x0,u0), B(t) = D2 f (t, x0,u0).

The corresponding controlled output (γ,ω) is given by

γ(t) = C(t)(ν(t)) +D(t)(ω(t)),

where
C(t) = D1h(t, x0,u0), D(t) = D2h(t, x0,u0).

Thus we see that the linearisation about a controlled equilibrium is a linear
continuous-time state space system, as we shall see subsequently. What is spe-
cial here, however, is that the linearisation is autonomous if Σ is autonomous.
Thus the linearisation when Σ is autonomous is a linear continuous-time state
space system with constant coefficients.

6.5.1.3 The flow of the linearisation In this section, in contrast with the pre-
ceding sections, we give a very precise characterisation of linearisation. It has the
benefit of being precise, but the drawback of being complicated. However, the
constructions we give in this section are of some importance in subjects like opti-
mal control theory. We shall do three things: (1) provide conditions under which
the flow of a continuous-time state space system is differentiable in state, initial
time, and control, as well as final time with respect to which it is always differen-
tiable; (2) give explicit formulae for the derivatives; (3) give an interpretation of
these derivatives in terms of “wiggling” of initial conditions in state and time, and
variations of the control.

We shall first investigate thoroughly the properties of the flow of a continuous-
time state space system that has more regularity properties than are required for
the basic existence and uniqueness theorem, Theorem 6.1.10. Let us suppose that
we have a continuous-time state space system Σ = (X,U,T,U , f ,h). We then have
the controlled trajectory (ξ0,µ0) with

t 7→ ξ0(t) ≜ ΦΣ(t, t0, x0,µ0)

defined for t ∈ JΣ(t0, x0,µ0). We then define

A(t0,x0,µ0) : JΣ(t0, x0,µ0)→ L(Rn;Rn)

t 7→ D1 f (t,ΦΣ(t, t0, x0,µ0))

and
B(t0,x0,µ0) : JΣ(t0, x0,µ0)→ L(Rm;Rn)

t 7→ D2 f (t,ΦΣ(t, t0, x0,µ0)).

Now consider the continuous-time state space system ΣL,(t0,x0,µ0) of Definition 6.5.1.
We consider first the following ordinary differential equation, defined for t ∈
JΣ(t0, x0,µ0):

dΨ
ds

(s) = A(t0,x0,µ0)(s) ◦Ψ(s), Ψ(t) = In.
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We denote the solution at time s byΦA(t0 ,x0 ,µ0)(s, t); the associated map

ΦA(t0 ,x0 ,µ0) : JΣ(t0, x0,µ0) × JΣ(t0, x0,µ0)→ L(Rn;Rn)

is the state transition map of Section 5.6.1.2. As such, the solution to the initial
value problem

dν
ds

(s) = A(t0,x0,µ0)(s) · ν(s), ν(t) = v0 (6.7)

is
ν(s) =ΦA(t0 ,x0 ,µ0)(s, t) · v0, s ∈ JΣ(t0, x0,µ0).

With the preceding background, we can now state the theorem.

6.5.6 Theorem (Differentiability of flows for continuous-time state space systems)
Let Σ = (X,U,T,U , f,h) be a continuous-time state space system and make the following
assumptions:

(i) U ⊆ Rm is open;
(ii) U = L∞loc((T); U);
(iii) the map t 7→ f(t, x,u) is measurable for each (x,u) ∈ X ×U;
(iv) the map (x,u) 7→ f(t, x,u) is continuously differentiable for each t ∈ T;
(v) for each (t, x,u) ∈ T × X ×U, there exist α, r, ρ ∈ R>0 and

g0,g1 ∈ L1([t0 − α, t0 + α];R≥0)

such that

∥f(s,y,v)∥ ≤ g0(s), (s,y,v) ∈ ([t0 − α, t0 + α] ∩ T) × Bn(r, x) × Bm(ρ,u),

and∣∣∣∣∣∣ ∂fj

∂xk
(s,y,v)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ ∂fj

∂ua
(s,y,v)

∣∣∣∣∣∣ ≤ g1(t),

(s,y,v) ∈ ([t0−ρ, t0+ρ]∩T)×Bn(r, x)×Bm(ρ,u), j,k ∈ {1, . . . ,n}, a ∈ {1, . . . ,m}.

Then the following statements hold:
(vi) for t, t0 ∈ T with t ≥ t0, DΣ(t, t0) is open in X × L∞([t0, t]; U);
(vii) ΦΣ(t, t0) is differentiable at (x0,µ0) ∈ DΣ(t, t0) and its derivative is given by

DΦΣt,t0
(x0,µ0) · (v,ω) =ΦA(t0 ,x0 ,µ0)(t, t0) · v

+

∫ t

t0

ΦA(t0 ,x0 ,µ0)(t, τ)B(t0,x0,µ0)(τ)ω(τ) dτ;
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(viii) the map
DΦΣ(t, t0) : DΣ(t, t0)→ L(Rn

⊕ L∞([t0, t];Rm);Rn)

(x,µ) 7→ DΦΣt,t0
(x,µ)

is continuous.5

Proof In the proof of Theorem 5.1.8 we showed that the hypotheses of that theorem
implies those of Theorem 3.2.13. We can similarly show that the hypotheses of the
present theorem imply those of Theorem 6.1.14.

(vi) This follows from Theorem 6.1.14.
(vii) By virtue of the proof of Theorem 6.1.14 there exists r, r′, ρ, α ∈ R>0 such that,

if x ∈ Bn(r, x0), µ ∈ B[t0,t](ρ,µ0), and t ∈ [t0 − α, t0 + α], then ΦΣ(t, t0, x,µ) is defined and
takes values in Bn(r′, x0). Moreover, we have

ΦΣ(t, t0, x,µ) = x +
∫ t

t0

f (s,ΦΣ(s, t0, x,µ),µ(s)) ds

in this case. We note that r′, r, and α depend on g0 and L0 according to the required
inequalities ∣∣∣∣∣∣

∫ t

t0

g0(s) ds

∣∣∣∣∣∣ < r′

2
,

∣∣∣∣∣∣
∫ t

t0

L0(s) ds

∣∣∣∣∣∣ < λ
for some λ ∈ (0, 1).

Note that, by Proposition 5.2.2, the linear ordinary differential equation associated
to the initial value problem (6.7) possesses unique solutions on (t0 − α, t0 + α), cf. the
corresponding conclusion in the proof of Theorem 5.1.8.

Now we show that, for each t ∈ (t0 − α, t0 + α), ΦΣt,t0
is differentiable at (x,µ)

sufficiently close to (x0,µ0). As we argued in the proof of Theorem 6.1.14, we can
assume without loss of generality that there is a compact set L ⊆ U such that µ(t) ∈ L
for almost every t ∈ (t0 − α, t0 + α) and for every µ ∈ B[t0−α,t0+α](ρ,U). Similarly, we can
assume that there is a compact set K ⊆ X such that

ΦΣ(t, t0, x,µ) ∈ K, (t, x,µ) ∈ (t0 − α, t0 + α) × Bn(r, x0) × B[t0−α,t0+α](ρ,U).

For this reason, we shall assume, without loss of generality and for simplicity, that f t
is uniformly continuous. By multiplying f by an infinitely differentiable function of
(x,u) equal to 1 on K×L, we can assume that X = Rn and U = Rm. By the Fundamental
Theorem of Calculus, for (x,u) ∈ X ×U, we have∫ 1

0
(D1 f (t, x+ sh,u+ sw) · h+D2 f (t, x+ sh,u+ sw) ·w) ds = f (t, x+ h,u+w)− f (t, x,u).

5Note that we have not discussed the differentiability of mappings with open subsets of Banach
spaces as their domain. However, if one thinks about things for a moment, one can see that the
definitions of derivative in Section II-1.4.1 are immediately adapted to the setting of Banach spaces.
Moreover, we shall quickly consider this general situation in the next situation.
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Therefore,

f (t, x + h,u +w) − f (t, x,u) −D1 f (t, x,u) · h −D2 f (t, x,u) ·w

=

∫ 1

0
((D1 f (t, x + sh,u + sw) −D1 f (t, x,u)︸                                       ︷︷                                       ︸

A1(t,s,x,u,h,w)

) · h

+ (D2 f (t, x + sh,u + sw) −D2 f (t, x,u)︸                                       ︷︷                                       ︸
A2(t,s,x,u,h,w)

) ·w) ds (6.8)

Define

Mt(h,w) = sup
{∫ 1

0
|||A1(t, s, x,u,h,w)||| + |||A2(t, s, x,u,h,w)|||ds

∣∣∣∣∣∣ (x,u) ∈ X ×U
}
,

and note that Mt is continuous (similarly to the argument in the corresponding part of
the proof of Theorem 5.1.8) and that Mt(0) = 0. For x ∈ Bn(r, x0) and h small, consider
the initial value problems

ξ̇0(t) = f (t, ξ0(t),µ0(t)), ξ0(t0) = x,

and
ξ̇1(t) = f (t, ξ1(t),µ(t)), ξ1(t0) = x + h.

Denote
δ(t) = ξ1(t) − ξ0(t), ω(t) = µ(t) − µ0(t).

We then have

δ̇(t) = f (t, ξ0(t) + δ(t),µ0(t) +ω(t)) − f (t, ξ0(t),µ0(t))
= D1 f (t, ξ0(t),µ0(t))︸                ︷︷                ︸

A(t0 ,x,µ0)(t)

·δ(t) +D2 f (t, ξ0(t),µ0(t))︸                ︷︷                ︸
B(t0 ,x,µ0)(t)

·ω(t)

+

∫ 1

0
(D1 f (t, ξ0(t) + sδ(t),µ0(t) + sω(t)) −D1 f (t, ξ0(t),µ0(t))) · δ(t) ds︸                                                                                   ︷︷                                                                                   ︸

e1(t)

+

∫ 1

0
(D1 f (t, ξ0(t) + sδ(t),µ0(t) + sω(t)) −D2 f (t, ξ0(t),µ0(t))) ·ω(t) ds︸                                                                                    ︷︷                                                                                    ︸

e2(t)

,

using (5.1). Note that

∥e1(t)∥ ≤
∫ 1

0
∥D1 f (t, ξ0(t) + sδ(t),µ0 + sω(t)) −D1 f (t, ξ0(t),µ0(t)) · δ(t)∥ds

≤

∫ 1

0
|||D1 f (t, ξ0(t) + sδ(t)) −D1 f (t, ξ0(t))||| ∥δ(t)∥ds

≤ ∥δ(t)∥Mt(δ(t),ω(t)).
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In a similar manner,

∥e2(t)∥ ≤ ∥ω∥[t0−α,t0+α],∞Mt(δ(t),ω(t)).

Let ν be the solution to the initial value problem

ν̇(t) = A(t0,x,µ0)(t) · ν(t) + B(t0,x0,µ0)(t) ·ω(t), ν(t0) = h.

Now, for fixed t ∈ (t0 − α, t0 + α), we have

δ(t) =ΦA(t0 ,x,µ0)(t, t0) · h +
∫ t

t0

ΦA(t0 ,x,µ0)(t, τ) · (B(t0,x,µ0)(τ)ω(τ) + e1(τ) + e2(τ)) dτ,

by Corollary 5.3.3, noting that δ(t0) = h. Thus

δ(t) = ν(t) +
∫ t

t0

ΦA(t0 ,x,µ0)(t, τ) · (e1(τ) + e2(τ)) dτ,

again by Corollary 5.3.3 and noting that ν(t0) = h. Thus

∥δ(t) − ν(t)∥ ≤
∫ t

t0

|||ΦA(t0 ,x,µ0)(t, τ)||| (∥e1(τ)∥ + ∥e2(τ)∥) dτ

≤ (t − t0)|||ΦA(t0 ,x,µ0)(t, ·)|||∞(∥e1∥∞ + ∥e2∥∞)

≤ (t − t0)|||ΦA(t0 ,x,µ0)(t, ·)|||∞(∥δ∥[t0−α,t0+α],∞ + ∥ω∥[t0−α,t0+α],∞)Mt(δ(t)),

where the ∞-norm is over the interval [t0, t]. From the continuity of solutions with
respect to control and initial condition as proved in Theorem 6.1.14, we have

∥δ∥[t0−α,t0+α],∞ ≤ C(∥h∥ + ∥ω∥[t0−α,t0+α],∞)

for some C ∈ R>0, cf. Lemma 1 from the proof of Theorem 3.2.13. Therefore,

∥δ(t) − ν(t)∥ ≤ C′(∥h∥ + ∥ω∥[t0−α,t0+α],∞)Mt(δ(t)),

where C′ = Cα|||ΦA(t0 ,x,µ0)(·, t0)|||∞. Restoring the pre-abbreviation notation, and taking
limits as h→ 0 andω→ 0, we obtain this part of the result, in the same manner as the
proof of Theorem 5.1.8(iv).

(viii) Next we show that ΦΣt,t0
is continuously differentiable. This can be carried out

by an adaptation of the corresponding part of the proof of Theorem 5.1.8, and we leave
the tedious details to the reader.

To complete this part of the proof, we need to prove the statement globally. This
can be carried out just as was the global part of the proof of Theorem 5.1.8. ■

The rôle of the output map in linearisation is more straightforward, e.g., Propo-
sition 6.5.9 below.
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6.5.2 Linearisation of continuous-time input/output systems

Let us next consider the linearisation of continuous-time input/output systems.
In this situation, there is not very much one can say about linearisation, other than
the fairly obvious thing. So here we point out this obvious thing, and indicate that
it is consistent with the linearisation of state space systems in the preceding section.

We will need to be able to differentiate mappings between normed vector spaces.
The definition is an obvious adaptation of the usual definition of a derivative
between Euclidean spaces.

6.5.7 Definition (Derivative and differentiable map) Let (X, ∥·∥X) and (Y, ∥·∥Y) be
normed R-vector spaces. Let U ⊆ X be an open subset and let f : U → Y be a
map.

(i) The map f is differentiable at x0 ∈ U if there exists a linear map L f ,x0 : X→ Y
such that

lim
x→x0

∥ f (x) − f (x0) − L f ,x0(x − x0)∥Y
∥x − x0∥X

= 0.

(ii) If f is differentiable at x0, then the linear map L f ,x0
6 is denoted by D f (x0) and

is called the derivative of f at x0.
(iii) If f is differentiable at each point x ∈ U, then f is differentiable.
(iv) If f is differentiable and if the map x 7→ D f (x) is continuous (using the induced

norm of Theorem III-3.5.14 for L(X; Y)) then f is continuously differentiable,
or of class C1. •

With this somewhat more abstract notion of differentiability and derivative at
hand, we can define the notion of linearisation for continuous-time input/output
systems.

6.5.8 Definition (Linearisation of input/output system about behaviour) Let Σ =
(U,T,U ,Y , g) be a continuous-time input/output system and let (µ0,η0) ∈ B (Σ)
with µ0 ∈ U (S).

(i) The system Σ is linearisable at (µ0,η0) if, for every compact sub-time-domain
K ⊆ S,

(a) U (K) is open and
(b) gK is differentiable at µ0|K.

(ii) If Σ is linearisable at (µ0,η0), then its linearisation is the continuous-time
input/output system

ΣL = (Rm, S,L∞(S;Rm),L∞(S;Rk), gL)

where gL is defined by requiring that

gL(ω|K) = DgK(µ0|K) · (ω|K)

6One can show, just as in Proposition II-1.4.1, that the linear map L f ,x0 is unique if it exists.
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for every compact sub-time-domainK ⊆ S. •

We can relate the linearisation of a continuous-time state space system to the
linearisation of its associated continuous-time input/output system. We adopt the
notation from the statement of Theorem 6.5.6.

6.5.9 Proposition (Linearisation of input/output systems determined from state
space systems) Let Σ = (X,U,T,U , f,h) be a continuous-time state space system
satisfying the hypotheses of Theorem 6.5.6. Assume that Σ is proper, output autonomous,
and that h is a continuously differentiable mapping from X to Rk. Let (t, t0, x0,µ0) ∈ DΣ
and define η0 : [t0, t]→ Rk by

η0(t) = h(ΦΣ(t, t0, x0,µ0)).

Consider the continuous-time input/output system

Σi/o(t0, x0) = (U, [t0, t],U ,Y ,g)

as in Theorem 6.2.10. Then Σi/o(t0, x0) is linearisable at (µ0,η0) and its linearisation is

Dg[t0,t](µ0) ·ω =
∫ t

t0

Dh(ΦΣ(t, t0, x0,µ0)) ◦ΦA(t0 ,x0 ,µ0)(t, τ)B(t0,x0,µ0)(τ)ω(τ) dτ.

Proof We have
g[t0,t](µ)(τ) = h(ΦΣ(τ, t0, x0,µ))

for (t, t0, x0,µ) ∈ DΣ. Therefore, by the Chain Rule (which holds, with the same proof,
for mappings between open subsets of normed vector spaces),

Dg[t0,t](µ0) ·ω = Dh(ΦΣ(t, t0, x0,µ0)) ◦D2Φ
Σ
t,t0

(x0,µ0) ·ω.

From Theorem 6.5.6(vii) we have

D2Φ
Σ
t,t0

(x0,µ0) ·ω =
∫ t

t0

ΦA(t0 ,x0 ,µ0)(t, τ)B(t0,x0,µ0)(τ)ω(τ) dτ.

From this the result follows. ■

6.5.3 Linearisation of discrete-time state space systems

We now repeat what we have done in the preceding two sections for discrete-
time systems. As expected, there is a strong resemblance with the results from
Section 5.1.2 on linearisation of ordinary difference equations.

6.5.3.1 Linearisation along controlled trajectories Suppose that we have a
discrete-time state space system Σ = (X,U,T,U , f ,h) and a controlled trajectory
(ξ0,µ0) defined on a sub-time-domain T′ ⊆ T. We wish to understand what
happens to solutions “nearby” this fixed controlled trajectory (ξ0,µ0).
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To do this, we suppose that U ⊆ Rm is open and that f and h are continuously
differentiable as functions of (x,u). That is, for t ∈ Twe denote

f t : X ×U→ Rn

(x,u) 7→ f (t, x,u),

ht : X ×U→ Rk

(x,u) 7→ h(t, x,u),

and we require that f t and ht be of class C1 for each t ∈ T. We denote

D1 f (t, x,u) = D1 f t(x,u),
D2 f (t, x,u) = D2 f t(x,u),
D1h(t, x,u) = D1ht(x,u),
D2h(t, x,u) = D2ht(x,u), t ∈ T.

the partial derivatives with respect to x and u, respectively, with t fixed. Thus

D1 f : T × X ×U→ L(Rn;Rn),
D2 f : T × X ×U→ L(Rm;Rn),

D1h : T × X ×U→ L(Rn;Rk),

D2h : T × X ×U→ L(Rm;Rk).

We then suppose that we have a controlled trajectory (ξ0,µ)), defined on T′, for
Σ for which the deviations ν ≜ ξ − ξ0 and ω = µ − µ0 are small. Let us try to
understand the behaviour of ν. Naı̈vely, we can do this as follows:

ξ(t + ∆) = (ξ0 + ν)(t + ∆) = f (t, ξ0(t) + ν(t),µ0 +ω(t))
= f (t, ξ0(t),µ0(t)) +D1 f (t, ξ0(t),µ0(t)) · ν(t) +D2 f (t, ξ0(t),µ0(t)) ·ω(t) + · · · .

We will not here try to be precise about what “· · · ” might mean, but merely say
that the idea of the preceding equation is that we approximate using the constant
and first-order terms in the Taylor expansion, and then pray that this gives us
something meaningful. Note that, since (ξ0,µ0) is a controlled trajectory for Σ, the
approximation we arrive at is

ν(t + ∆) ≈ D1 f (t, ξ0(t),µ0(t)) · ν(t) +D2 f (t, ξ0(t),µ0(t)) ·ω(t).

We similarly denote

η0(t) = h(t, ξ0(t),µ0(t)), η(t) = h(t, ξ(t),µ(t)),

and deduce, with γ(t) = η(t) − η0(t), that we have an approximation

γ(t) ≈ D1h(t, ξ0(t),µ0(t)) · ν(t) +D2h(t, ξ0(t),µ0(t)) ·ω(t).

Meaningful or not, the preceding naı̈ve calculations give rise to the following
definition.
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6.5.10 Definition (Linearisation of a discrete-time state space system along a con-
trolled trajectory) Let Σ = (X,U,T,U , f ,h) be a discrete-time state space system,
supposing that U ⊆ Rm is open and that f t and ht are of class C1 for every t ∈ T.
For (ξ0,µ0) ∈ Ctraj(Σ) with domain T′, the linearisation of Σ along (ξ0, µ0) is the
discrete-time state space system

ΣL,(ξ0,µ0) = (Rn,Rm,T′,UL, f L,(ξ0,µ0),hL,(ξ0,µ0)),

where
(i) f L,(ξ0,µ0)(t,v,w) = D1 f (t, ξ0(t),µ0(t)) · v +D2 f (t, ξ0(t),µ0(t)) ·w,

(ii) hL,(ξ0,µ0)(t,v,w) = D1h(t, ξ0(t),µ0(t)) · v +D2h(t, ξ0(t),µ0(t)) ·w, and
(iii) UL ⊆ ℓloc(T′;Rm). •

Note that a controlled trajectory for the linearisation of Σ along (ξ0,µ0) satisfies

ν(t + ∆) = A(t)(ν(t)) + B(t)(ω(t)),

where
A(t) = D1 f (t, ξ0(t),µ0(t)), B(t) = D2 f (t, ξ0(t),µ0(t)).

The corresponding controlled outputs satisfy

γ(t) = C(t)(ν(t)) +D(t)(ω(t)),

where
C(t) = D1h(t, ξ0(t),µ0(t)), D(t) = D2h(t, ξ0(t),µ0(t)).

This is what we shall subsequently refer to as a linear discrete-time state space
system.

Note that there is an alternative view of linearisation that can be easily devel-
oped, one where linearisation is of the system, not just along a controlled trajectory.
The construction we make is the following.

6.5.11 Definition (Linearisation of a discrete-time state space system) Let Σ =
(X,U,T,U , f ,h) be a discrete-time state space system, supposing that U ⊆ Rm

is open and that f t and ht are of class C1 for every t ∈ T. The linearisation of Σ is
the discrete-time state space system

ΣL = (X ×Rn,U ×Rm,T,UL, f L,hL),

where
(i) f L(t, (x,v), (u,w)) = ( f (t, x,u),D1 f (t, x,u) · v +D2 f (t, x,u) ·w),
(ii) hL(t, (x,v), (u,w)) = (h(t, x,u),D1h(t, x,u) · v +D2h(t, x,u) ·w), and
(iii) UL = {(µ,ω) | µ ∈ U , ω ∈ ℓloc(T;Rm)}. •



2022/03/07 6.5 Linearisation of systems 597

Controlled trajectories of the linearisation of Σ are then pairs ((ξ,ν), (µ,ω))
satisfying

ξ(t + ∆) = f (t, ξ(t),µ(t)),
ν(t + ∆) = D1 f (t, ξ(t),µ(t)) · ν(t) +D2 f (t, ξ(t),µ(t)) ·ω(t),

while controlled outputs satisfy

η(t) = h(t, ξ(t),µ(t)),
γ(t) = D1h(t, ξ(t),µ(t)) · ν(t) +D2h(t, ξ(t),µ(t)) ·ω(t).

Thus we see that the linearisation encodes in its definition the original full system.

6.5.3.2 Linearisation about controlled equilibria In this section we consider
what amounts to a special case of linearisation about a controlled trajectory. The
controlled trajectory we consider is a very particular sort of controlled trajectory,
as given by the following definition.

6.5.12 Definition (Controlled equilibrium for a discrete-time state space system) Let
Σ = (X,U,T,U , f ,h) be a discrete-time state space system. A pair (x0,u0) ∈ X × U
is a controlled equilibrium for Σ if f (t, x0,u0) = x0 for every t ∈ T. •

The following result gives the relationship between controlled equilibria and
controlled trajectories.

6.5.13 Proposition (Controlled equilibria and constant controlled solutions) Let Σ =
(X,U,T,U , f,h) be a discrete-time state space system. Then a pair (x0,u0) ∈ X × U is a
controlled equilibrium if and only if (ξ0,µ0) ∈ Ctraj(Σ), where

ξ0(t) = x0, µ0(t) = u0.

Proof First suppose that (x0,u0) is a controlled equilibrium. Then ξ0(t + ∆) = x0 for
every t ∈ T and f (t, ξ0(t),µ0(t)) = x0 and so

ξ0(t + ∆) = f (t, ξ0(t),µ0(t)), t ∈ T,

and thus (ξ0,µ0) ∈ Ctraj(Σ).
Next suppose that (ξ0,µ0) ∈ Ctraj(Σ). Then

x0 = ξ0(t + ∆) = f (t, ξ0(t),µ(t)) = f (t, x0,u0), t ∈ T,

so giving that (x0,u0) is a controlled equilibrium. ■

Note that, as a consequence of the preceding simple result, we can linearise
about the constant controlled trajectory t 7→ (x0,u0) in the event that (x0,u0) is
a controlled equilibrium. Let us, however, use some particular language in this
case.
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6.5.14 Definition (Linearisation of a discrete-time state space system about a con-
trolled equilibrium) LetΣ = (X,U,T,U , f ,h) be a discrete-time state space system,
supposing that U ⊆ Rm is open and that f t and ht are of class C1 for every t ∈ T,
and let (x0,u0) be a controlled equilibrium. The linearisation of Σ about (x0, u0) is
the discrete-time state space system

ΣL,(x0,u0) = (Rn,Rm,T,UL, f L,(x0,u0),hL,(x0,u0)),

with
f L,(x0,u0) : T ×Rn

×Rm
→ Rn

(t,v,w) 7→ D1 f (t, x0,u0) · v +D2 f (t, x0,u0) ·w,

and
hL,(x0,u0) : T ×Rn

×Rm
→ Rk

(t,v,w) 7→ D1h(t, x0,u0) · v +D2h(t, x0,u0) ·w,
•

A controlled trajectory (ν,ω) for f L,(x0,u0) satisfies

ν(t + ∆) = A(t)(ν(t)) + B(t)(ω(t)),

where
A(t) = D1 f (t, x0,u0), B(t) = D2 f (t, x0,u0).

The corresponding controlled output (γ,ω) is given by

γ(t) = C(t)(ν(t)) +D(t)(ω(t)),

where
C(t) = D1h(t, x0,u0), D(t) = D2h(t, x0,u0).

Thus we see that the linearisation about a controlled equilibrium is a linear discrete-
time state space system, as we shall see subsequently. What is special here, however,
is that the linearisation is autonomous if Σ is autonomous. Thus the linearisation
when Σ is autonomous is a linear discrete-time state space system with constant
coefficients.

6.5.3.3 The flow of the linearisation In this section, in contrast with the pre-
ceding sections, we give a very precise characterisation of linearisation. It has the
benefit of being precise, but the drawback of being complicated. However, the con-
structions we give in this section are of some importance in subjects like optimal
control theory. We shall do three things: (1) provide conditions under which the
flow of a discrete-time state space system is differentiable in state, initial time, and
control, as well as final time with respect to which it is always differentiable; (2) give
explicit formulae for the derivatives; (3) give an interpretation of these derivatives
in terms of “wiggling” of initial conditions in state and time, and variations of the
control.
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We shall first investigate thoroughly the properties of the flow of a discrete-
time state space system that has more regularity properties than are required for
the basic existence and uniqueness theorem, Theorem 6.3.9. Let us suppose that
we have a discrete-time state space system Σ = (X,U,T,U , f ,h). We then have the
controlled trajectory (ξ0,µ0) with

t 7→ ξ0(t) ≜ ΦΣ(t, t0, x0,µ0)

defined for t ∈ JΣ(t0, x0,µ0). We then define

A(t0,x0,µ0) : JΣ(t0, x0,µ0)→ L(Rn;Rn)

t 7→ D1 f (t,ΦΣ(t, t0, x0,µ0))

and
B(t0,x0,µ0) : JΣ(t0, x0,µ0)→ L(Rm;Rn)

t 7→ D2 f (t,ΦΣ(t, t0, x0,µ0)).

Now consider the discrete-time state space system ΣL,(t0,x0,µ0) of Definition 6.5.10.
We consider first the following ordinary difference equation, defined for t ∈
JΣ(t0, x0,µ0):

Ψ(s + ∆) = A(t0,x0,µ0)(s) ◦Ψ(s), Ψ(t) = In.

As a linear ordinary difference equation, this initial value problem has solutions
defined for all s ∈ JΣ(t0, x0,µ0)∩T≥t. Moreover, we denote the solution at time s by
ΦA(t0 ,x0 ,µ0)(s, t); the associated map

ΦA(t0 ,x0 ,µ0) : PΣ(t0, x0,µ0)→ L(Rn;Rn)

is the state transition map of Section 5.6.1.2. Here we denote

PΣ(t0, x0,µ0) = {(s, t) ∈ JΣ(t0, x0,µ0) ∩ T≥t0 × JΣ(t0, x0,µ0) ∩ T≥t0 | s ≥ t}.

In particular, we shall use the fact that the solution to the initial value problem

ν(s + h) = A(t0,x0,µ0)(s) · ν(s), ν(t) = v0

is
ν(s) =ΦA(t0 ,x0 ,µ0)(s, t) · v0, s ∈ JΣ(t0, x0,µ0) ∩ T≥t.

With the preceding background, we can now state the theorem.

6.5.15 Theorem (Differentiability of flows for discrete-time state space systems) Let
Σ = (X,U,T,U , f,h) be a discrete-time state space system and make the following assump-
tions:

(i) U ⊆ Rm is open;
(ii) U = ℓ∞loc((T); U);
(iii) ft is of class C1 for each t ∈ T.
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Then the following statements hold:
(iv) for t, t0 ∈ T with t ≥ t0, DΣ(t, t0) is open in X × ℓ∞([t0, t]; U);
(v) ΦΣ(t, t0) is differentiable at (x0,µ0) ∈ DΣ(t, t0) and its derivative is given by

DΦΣt,t0
(x0,µ0) · (v,ω)

=ΦA(t0 ,x0 ,µ0)(t, t0) ·v+
(t−t0−∆)/∆∑

j=0

ΦA(t0 ,x0 ,µ0)(t−∆, t0+ j∆)(B(t0,x0,µ0)(t0+ j∆)ω(t0+ j∆));

(vi) the map
DΦΣ(t, t0) : DΣ(t, t0)→ L(Rn

⊕ ℓ∞([t0, t];Rm);Rn)

(x,µ) 7→ DΦΣt,t0
(x,µ)

is continuous.
Proof The proof uses easy variants of the arguments used in the proof of Theo-
rem 6.5.6, making use of Corollary 5.7.2 in place of Corollary 5.3.3, noting that
ℓ∞loc([t0, t];Rm) is finite-dimensional, and using the Chain Rule as in the proof of Theo-
rem 5.1.22. ■

We refer to Proposition 6.5.17 below for the contribution to the linearisation of
the output map h.

6.5.4 Linearisation of discrete-time input/output systems

As with the linearisation of continuous-time input/output systems, linearisation
is quite straightforward for discrete-time input/output systems.

6.5.16 Definition (Linearisation of input/output system about behaviour) Let Σ =
(U,T,U ,Y , g) be a discrete-time input/output system and let (µ0,η0) ∈B (Σ) with
µ0 ∈ U (S).

(i) The system Σ is linearisable at (µ0,η0) if, for every finite sub-time-domain
K ⊆ S,
(a) U (K) is open and
(b) gK is differentiable at µ0|K.

(ii) If Σ is linearisable at (µ0,η0), then its linearisation is the discrete-time in-
put/output system

ΣL = (Rm, S, ℓ∞(S;Rm), ℓ∞(S;Rk), gL)

where gL is defined by requiring that

gL(ω|K) = DgK(µ0|K) · (ω|K)

for every finite sub-time-domainK ⊆ S. •

We can relate the linearisation of a discrete-time state space system to the
linearisation of its associated discrete-time input/output system. We adopt the
notation from the statement of Theorem 6.5.15.
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6.5.17 Proposition (Linearisation of input/output systems determined from state
space systems) Let Σ = (X,U,T,U , f,h) be a discrete-time state space system satisfy-
ing the hypotheses of Theorem 6.5.15. Assume that Σ is proper, output autonomous, and
that h is a continuously differentiable mapping from X to Rk. Let (t, t0, x0,µ0) ∈ DΣ and
define η0 : [t0, t]→ Rk by

η0(t) = h(ΦΣ(t, t0, x0,µ0)).

Consider the discrete-time input/output system

Σi/o(t0, x0) = (U, [t0, t],U ,Y ,g)

as in Theorem 6.4.10. Then Σi/o(t0, x0) is linearisable at (µ0,η0) and its linearisation is

Dg[t0,t](µ0) ·ω =
(t−t0−∆)/∆∑

j=0

Dh(ΦΣ(t, t0, x0,µ0))

◦ΦA(t0 ,x0 ,µ0)(t − ∆, t0 + j∆)(B(t0,x0,µ0)(t0 + j∆)ω(t0 + j∆)).

Proof The result follows in the same manner as does Proposition 6.5.9. ■

Exercises

6.5.1 Consider a linear continuous-time state space system

Σ = (X,U,Y,R,U ,A,B,C,D)

with constant coefficients as in Section 6.6.2. Answer the following ques-
tions.
(a) Use (6.10) to write an explicit formula for the outputs for Σ.
(b) Determine the linearisation ΣL of Σ as in Definition 6.5.2.
(c) Write an explicit formula for the outputs for ΣL.
(d) What can you say about the linearisation about the controlled equilib-

rium (0, 0), i.e., about the zero control and the resulting zero trajectory?
6.5.2 For a control-affine continuous-time state space system

Σ = (X,U,T,U ,F ,H ),

do the following.
(a) Determine the form of the linearisation of the system ΣL from Defini-

tion 6.5.2.
(b) Is there anything special about the controlled equilibria for a control-

affine continuous-time state space system as compared to a general
continuous-time state space system?
Hint: What if the zero control is in U ?

6.5.3 For the circuit with a diode from Exercise 6.1.8, do the following.
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(a) Determine the linearisation as in Definition 6.5.2.
(b) Characterise the controlled equilibria for the system.
(c) Determine the linearisation about controlled equilibria as in Defini-

tion 6.5.5.
6.5.4 For the forced pendulum from Exercise 6.1.9, do the following.

(a) Determine the linearisation as in Definition 6.5.2.
(b) Characterise the controlled equilibria for the system.
(c) Determine the linearisation about controlled equilibria as in Defini-

tion 6.5.5.
6.5.5 For the running mean and standard deviation from Exercise 6.2.5, do the

following.
(a) Determine the linearisation as in Definition 6.5.2.
(b) Characterise the controlled equilibria for the system.
(c) Determine the linearisation about controlled equilibria as in Defini-

tion 6.5.5.
6.5.6 Consider a linear discrete-time state space system

Σ = (X,U,Y,R,U ,A,B,C,D)

with constant coefficients as in Section 6.8.2. Answer the following ques-
tions.
(a) Use (6.13) to write an explicit formula for the outputs for Σ.
(b) Determine the linearisation ΣL of Σ as in Definition 6.5.11.
(c) Write an explicit formula for the outputs for ΣL.
(d) What can you say about the linearisation about the controlled equilib-

rium (0, 0), i.e., about the zero control and the resulting zero trajectory?
6.5.7 For a control-affine discrete-time state space system

Σ = (X,U,T,U ,F ,H ),

do the following.
(a) Determine the form of the linearisation of the system ΣL from Defini-

tion 6.5.11.
(b) Is there anything special about the controlled equilibria for a control-

affine discrete-time state space system as compared to a general discrete-
time state space system?
Hint: What if the zero control is in U ?

6.5.8 For the running mean and standard deviation from Exercise 6.4.3, do the
following.
(a) Determine the linearisation as in Definition 6.5.11.
(b) Characterise the controlled equilibria for the system.
(c) Determine the linearisation about controlled equilibria as in Defini-

tion 6.5.14.
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Section 6.6

Linear continuous-time state space systems

In this section we begin to study the main objects of interest to us in this and
the subsequent few chapters. We consider a particular class of continuous-time
state space systems that are linear in both state and control. We mirror what we
have done with ordinary differential equations by working with systems that are
time-dependent, and then time-independent. One of the special things we shall
focus on is the sorts of inputs and outputs one can consider. Linearity will allow
us to obtain more particular results than we were able to obtain for not necessarily
linear systems. In this section we work with continuous-time systems.

Do I need to read this section? This section is a core section in the volume. •

6.6.1 Systems with time-varying coefficients

Let us begin with the definition, recalling from Section 3.1.3.3 the adaptation
to using abstract vector spaces in place of Euclidean spaces for linear systems.

6.6.1 Definition (Linear continuous-time state space system) A linear continuous-
time state space system is a nonuple

Σ = (X,U,Y,T,U ,A,B,C,D)

where
(i) X (the state space), U (the input space), and Y (the output space) are finite-

dimensional R-vector spaces,
(ii) T ⊆ R is a continuous time-domain,
(iii) A : T→ L(X; X), B : T→ L(U; X), C : T→ L(X; Y), and D : T→ L(U; Y), and
(iv) U is a collection of mappings µ : T→ U. •

We note that a linear continuous-time state space system is, in particular, a
continuous-time state space system (with the mild adaptation from using Euclidean
spaces to using finite-dimensional vector spaces) with dynamics defined by

f : T × (X ⊕ U)→ X
(t, x,u) 7→ A(t)(x) + B(t)(u)

and with output map
h : T × (X ⊕ U)→ Y

(t, x,u) 7→ C(t)(x) + D(t)(u).

We note that linear continuous-time state space systems are, in fact, control-
affine continuous-time state space systems. Therefore, all the notions attached
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to continuous-time state space systems can be applied to those that are linear. The
system theoretic attributes of Section 6.1.1 apply in exactly the same way for linear
continuous-time state space systems; the reader can flesh this out in Exercise 6.6.1.
One has the set Ctraj(Σ) of controlled trajectories and the set Cout(Σ) of controlled
outputs. In particular, if (ξ, µ) is a controlled trajectory with (η, µ) the corresponding
controlled output, then these satisfy the equations

ξ̇(t) = A(t)(ξ(t)) + B(t)(µ(t)),
η(t) = C(t)(ξ(t)) + D(t)(µ(t)).

Moreover, the existence and uniqueness results from Section 6.1.3 for general
control-affine systems can be adapted to linear systems, and these results can be
extended to account for linearity as in Proposition 5.3.2. One gets the following
result upon doing this.

6.6.2 Theorem (Existence and uniqueness of controlled trajectories for linear
continuous-time state space systems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system, let T′ ⊆ T be a sub-time-domain, let
µ : T′ → U, and make the following assumptions:

(i) A ∈ L1
loc(T

′; L(X; X));
(ii) t 7→ B(t)(µ(t)) is in L1

loc(T
′; X).

Then, for any t0 ∈ T′ and x0 ∈ X, there exists a unique solution ξ ∈ ACloc(T′; X) to the
initial value problem

ξ̇(t) = A(t)(ξ(t)) + B(t)(µ(t)), ξ(t0) ∈ x0;

thus (ξ, µ) ∈ Ctraj(Σ).
Proof This follows immediately from Proposition 5.3.2. ■

Let us make a few more or less immediate comments about controlled trajecto-
ries and controlled outputs.

6.6.3 Remarks (Controlled trajectories and controlled outputs for linear
continuous-time state space systems)
1. From Corollary 5.3.3 we have an explicit formula for the controlled trajectory

(ξ, µ) ∈ Ctraj(Σ) with the initial condition x0 at t0:

ΦΣ(t, t0, x0, µ) = Φc
A(t, t0)(x0) +

∫ t

t0

Φc
A(t, τ) ◦ B(τ)(µ(τ)) dτ, t ∈ dom(µ). (6.9)

The corresponding controlled output (η, µ) is, of course, given by

η(t) = C(t) ◦ΦΣ(t, t0, x0, µ) + D(t)(µ(t)), t ∈ dom(µ).



2022/03/07 6.6 Linear continuous-time state space systems 605

2. We note that, in contrast to general continuous-time state space systems, con-
trolled trajectories always exist on the entire domain of definition of the control.
This is one feature that makes working with linear systems less complicated
than working with general systems.

3. The condition that t 7→ B(t)(µ(t)) be locally integrable on T′ can be generally
satisfied in two common ways:
(a) B ∈ L1

loc(T
′; L(U; X)) and µ ∈ L∞loc(T

′; U);
(b) B ∈ L∞loc(T

′; L(U; X)) and µ ∈ L1
loc(T

′; U).
In both cases, local integrability of the product follows from Exercises III-3.8.8
and IV-1.4.4.

4. We can infer immediately from Proposition 6.1.13 and Theorems 6.1.14
and 6.1.18 the properties of the flow ΦΣ for a linear continuous-time state
space system. In particular, we have continuity of the flow with respect to
initial condition, initial time, final time, and control. In fact, these conclusions
follow most easily and directly from the formula (6.9). •

We note that the dynamics and the output mapping are linear functions of (x,u).
That is to say, the mappings

X ⊕ U ∋ (x,u) 7→ A(t)(x) + B(t)(u) ∈ X,
X ⊕ U ∋ (x,u) 7→ C(t)(x) + D(t)(u) ∈ Y

are linear for each t ∈ T. Moreover, the flow is also linear in the sense of the
following result.

6.6.4 Proposition (Linearity of flow for linear continuous-time state space sys-
tems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system, let T′ ⊆ T be a sub-time-domain, and
consider the following two cases:

(i) B ∈ L1
loc(T; L(U; X)) and U = L∞loc((T); U);

(ii) B ∈ L∞loc(T; L(U; X)) and U = L1
loc((T); U).

Then, for each sub-time-domain T′ ⊆ T, the mapping

X ⊕U (T′) ∋ (x0, µ) 7→ ΦΣ(t, t0, x0, µ) ∈ X

is linear for each t, t0 ∈ T′.
Proof This follows immediately from the formula (6.9) for the flow of a linear
continuous-time state space system. ■

Note that we ask that U be either L∞loc((T); U) or L1
loc((T); U), and not a subset of

these spaces of partially defined spaces of signals. The reason for this is that we
need for U (T′) to be a vector space in order for linearity to make sense. We could
generalise this by requiring that U (T′) be a subspace of L∞loc(T

′; U) or L1
loc(T

′; U).
This is a point of view we shall adopt in Section 6.7.
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6.6.2 Systems with constant coefficients

Now we consider systems with the coefficient linear mappings for the dynamics
and the output map are independent of time. There are some simplifications that
arise in this case that are worth recording, so we devote this section to this class of
system.

6.6.5 Definition (Linear continuous-time state space system with constant coeffi-
cients) A linear continuous-time state space system with constant coefficients is
a nonuple

Σ = (X,U,Y,T,U ,A,B,C,D)

where
(i) X (the state space), U (the input space), and Y (the output space) are finite-

dimensional R-vector spaces,
(ii) T ⊆ R is a continuous time-domain,
(iii) A ∈ L(X; X), B ∈ L(U; X), C ∈ L(X; Y), and D ∈ L(U; Y), and
(iv) U ⊆ L1

loc((T); U). •

In this case, the system is an autonomous continuous-time state space system,
and the dynamics and output map are defined, independent of time, as

f : X ⊕ U→ X
(x,u) 7→ A(x) + B(u)

and
h : X ⊕ U→ X

(x,u) 7→ C(x) + D(u),

respectively.
We note that a linear continuous-time state space system with constant coeffi-

cients is autonomous, and so is stationary, and strongly stationary if and only if
D = 0 (see Exercise 6.6.1). This stationarity is often reflected with some particular
terminology.

6.6.6 Terminology What we call a linear continuous-time state space system with con-
stant coefficients is often called a linear time-invariant system, or an LTI system,
in short. We shall stick to the more cumbersome terminology in order to maintain
internal consistency with other terminology elsewhere in this volume. We do not
object, however, to a reader using the terminology “LTI system” in their private
life.7 •

7This is in contrast with our nonstandard notationFCD,FCC,FDC, andFDD, along with our non-
standard terminology, “continuous-discrete Fourier transform,” “continuous-continuous Fourier
transform,” “continuous-discrete Fourier transform,” and “discrete-discrete Fourier transform”
used in Chapters IV-5, IV-6, and IV-7. While this terminology is not widespread, it is clearly su-
perior to what is widespread, and we insist that the reader use and proliferate our nonstandard
notation and language.
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Note that a controlled trajectory (ξ, µ), with associated controlled output (η, µ),
satisfies

ξ̇(t) = A(ξ(t)) + B(µ(t)),
η(t) = C(ξ(t)) + D(µ(t)).

We have the following slight simplification of the existence and uniqueness theorem
for systems with constant coefficients.

6.6.7 Theorem (Existence and uniqueness of controlled trajectories for linear
continuous-time state space systems with constant coefficients) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients, let T′ ⊆ T be a
sub-time-domain, and let µ : T′ → U. Then, for any t0 ∈ T′ and x0 ∈ X, there exists a
unique solution ξ ∈ ACloc(T′; X) to the initial value problem

ξ̇(t) = A(ξ(t)) + B(µ(t)), ξ(t0) ∈ x0;

thus (ξ, µ) ∈ Ctraj(Σ).
Proof This follows immediately from Theorem 6.6.2 since, in this case, we have that
t 7→ B(µ(t)) is in L1

loc(T′; X) if µ ∈ L1
loc(T′; X), making use of Exercise IV-1.4.4. ■

We can simplify, for systems with constant coefficients, some of the discussion
concerning flows and controlled outputs.

6.6.8 Remarks (Controlled trajectories and controlled outputs for linear
continuous-time state space systems with constant coefficients)
1. From Theorem 5.3.8 we have an explicit formula for the controlled trajectory

(ξ, µ) ∈ Ctraj(Σ) with the initial condition x0 at t0:

ΦΣ(t, t0, x0, µ) = eA(t−t0)(x0) +
∫ t

t0

eA(t−τ)(B(µ(τ))) dτ, t ∈ dom(µ). (6.10)

The corresponding controlled output (η, µ) is, of course, given by

η(t) = C(t) ◦ΦΣ(t, t0, x0, µ) + D(t)(µ(t)), t ∈ dom(µ).

2. We can infer immediately from Proposition 6.1.13 and Theorem 6.1.18 the
properties of the flow ΦΣ for a linear continuous-time state space system with
constant coefficients. In particular, we have continuity of the flow with respect
to initial condition, initial time, final time, and control. In fact, these conclusions
follow most easily and directly from the formula (6.10). •
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The situation concerning linearity is similar for systems with constant coeffi-
cients to systems with time-varying coefficients. First we note that the dynamics
and the output mapping are linear functions of (x,u). That is to say, the mappings

X ⊕ U ∋ (x,u) 7→ A(x) + B(u) ∈ X,
X ⊕ U ∋ (x,u) 7→ C(x) + D(u) ∈ Y

are linear. Moreover, the flow is also linear in the sense of the following result.

6.6.9 Proposition (Linearity of flow for linear continuous-time state space systems
with constant coefficients) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients, and let T′ ⊆ T
be a sub-time-domain. Then, for each sub-time-domain T′ ⊆ T, the mapping

X ⊕ L1
loc(T

′; U) ∋ (x0, µ) 7→ ΦΣ(t, t0, x0, µ) ∈ X

is linear for each t, t0 ∈ T′.
Proof This follows immediately from the formula (6.10) for the flow of a linear
continuous-time state space system. ■

6.6.3 The impulse transmission map and the impulse response

In this section we introduce an important player in the theory of linear systems,
both in continuous- and discrete-time, and both in the time-varying and constant
coefficient cases. Here we work with the continuous-time case, and we refer
the reader to Section 5.3.3 for the required background on ordinary differential
equations with distributions as right-hand side.

6.6.3.1 The time-varying case We begin with the definition.

6.6.10 Definition (Impulse transmission map for linear continuous-time state space
systems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system.
(i) The proper impulse transmission map for Σ is the function

pitmΣ : T × T→ L(U; Y)

defined by
pitmΣ(t, τ) = 1≥0(t − τ)C(t) ◦Φc

A(t, τ) ◦ B(τ).

Now suppose that T = R and that D ∈ C0(R; L(U; Y)).
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(ii) The impulse transmission map for Σ at t0 ∈ R is the distribution itmΣ ∈
D ′(R ×R; L(U; Y)) given by

itmΣ,t0 = θpitmΣ,t0
+ D(t0) ⊗ (τ∗t0

δ),

where pitmΣ,t0
(t) = pitmΣ(t, t0). •

In Theorem 5.3.11 we showed how the continuous-time state transition map
arose as the solution to a distributional differential equation. Here we use this in-
terpretation to arrive at a distributional interpretation for the impulse transmission
map.

6.6.11 Theorem (A distributional interpretation of the proper impulse transmission
map) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system withT = R and let t0 ∈ R. Then, for u ∈ U,

pitmΣ(t, t0)(u) = C(t) ◦ ξt0(t),

where ξt0 ∈ L1
loc(T; X) is the locally integrable function associated to a solution of the

distributional differential equation

θ(1)
t0
= A ◦ θt0 + B(t0)(u ⊗ (τ∗t0

δ)),

where A ◦ θt0 is as given in Remark IV-3.2.53–3 and where B(t0)(u ⊗ (τ∗t0
δ)) is as given

in Remark IV-3.2.53–1.
Proof As in Theorem 5.3.11, let Θt0 ∈ D

′(R; L(X; X)) be the regular distribution asso-
ciated to the function

t 7→ Ξt0(t) ≜ 1≥0(t − t0)Φc
A(t, t0).

Let θt0 = Θt0(B(t0)(u)). We have

ξt0(t) = 1≥0(t − t0)Φc
A(t, t0) ◦ B(t0)(u) = Ξt0(t)(B(t0)(u)).

Therefore,
θt0 = Θt0(B(t0)(u)) = θΞt0

(B(t0)(u)) = θΞt0 (B(t0)(u)) = θξt0
,

and so θt0 is the distribution associated with the locally integrable function ξt0 .
By Theorem 5.3.11, Θt0 is a solution to the distributional differential equation

Θ
(1)
t0
= A ◦Θt0 + idX ⊗(τ∗t0

δ).

Therefore, by evaluating both sides of this distributional differential equation at
B(t0)(u), θt0 is a solution to the distributional differential equation

θt0 = A ◦Θt0(B(t0)(u)) + (idX ⊗(τ∗t0
δ))(B(t0)(u)) = A ◦ θt0 + B(t0)(u ⊗ (τ∗t0

δ)).

Thus ξt0 is the locally integrable function associated to the solution θt0 as above. It
then follows directly that pitmΣ is as claimed in the statement of the theorem. ■
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Let us see how we can interpret the (non-proper) impulse transmission map in
a manner analogous to the preceding theorem. As in the proof of the theorem, we
again let θt0 be the given solution to the distributional differential equation

θ(1)
t0
= A ◦ θt0 + B(t0)(u ⊗ (τ∗t0

δ)).

Thus the “input” to this system is, not a locally integrable control, but the dis-
tribution u ⊗ (τ∗t0

δ), i.e., a “pulse” of the control u applied at time t0. We then
have

⟨C ◦ θt0 + D(u ⊗ (τ∗t0
δ));ϕ⟩ =

∫
R

1≥0(t − t0)ϕ(t)C(t) ◦Φc
A(t, τ) ◦ B(τ)(u) dτ

+ D(u)(τ∗t0
δ)(ϕ)

= θpitmΣ,t0 (u)(ϕ) + D(t0)(u)ϕ(0)

= ⟨itmΣ,t0(u);ϕ⟩.

Note that the product of D with u ⊗ (τ∗t0
δ) in the first line and the product of D(u)

with τ∗t0
δ is to be thought of in terms of Corollary IV-3.7.28. In this (notation-

ally complicated, but conceptually not difficult) manner that one can regard the
distribution itmΣ,t0(u) as the “output” associated with the “input” u ⊗ (τ∗t0

δ).
The next result follows immediately from the definition of the impulse trans-

mission map and the formula (6.9).

6.6.12 Proposition (Using the impulse transmission map to determine outputs) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system and let µ ∈ U . Then the output correspond-
ing to an initial condition x0 at time t0 is

η(t) = C(t) ◦Φc
A(t, t0)(x0) +

∫ t

t0

pitmΣ(t, τ)µ(τ) dτ + D(t)(µ(t)), t ∈ dom(µ)≥t0 .

The punchline of the result is that the output is a linear combination of three
terms:

C(t) ◦Φc
A(t, t0)(x0)︸                ︷︷                ︸

term 1

+

∫ t

t0

pitmΣ(t, τ)µ(τ) dτ︸                     ︷︷                     ︸
term 2

+D(t)(µ(t))︸     ︷︷     ︸
term 3

. (6.11)

Let us describe these terms, intuitively.
1. The first term is the contribution from a nonzero initial provides the contribution

to the output from the nonzero initial condition x0 at time t0.
2. The second term has the most complex interpretation. First of all, by Theo-

rem 6.6.11, the integrand pitmΣ(t, τ)µ(τ) is the output obtained from the input
µ(τ) ⊗ (τ∗τδ), i.e., an impulse of µ(τ) at time τ. The second terms can then be
thought of as the “sum” of these contributions as τ goes from t0 to t.
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3. The third term simply arises from the direct transmission from input to output
determined by D. This can be thought of as the memoryless part of the system;
see Example 2.2.31–2.

6.6.3.2 The constant coefficient case The preceding constructions simplify
substantially in the case of constant coefficient systems. This is fortunate, since it
is this case that we will examine with respect to transform methods in Chapters 7
and 8. Let us record the simplifications.

The definition we make is the following. For systems with constant coefficients,
there is no reason to not take the time-domain to be R, and so we do so.

6.6.13 Definition (Impulse response) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and with
T = R.

(i) The proper impulse response for Σ is the function

pirΣ : R→ L(U; Y)

t 7→ 1≥0(t)C ◦ eAt
◦ B.

(ii) The impulse response for Σ is the distribution irΣ ∈ D ′(R; L(U; Y)) given by

irΣ = θpirΣ + D ⊗ δ. •

The connection between the impulse response and the impulse transmission
map is given by the following result.

6.6.14 Proposition (The impulse response and the impulse transmission map) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and with T = R.
Then the proper impulse transmission map is given by

pitmΣ(t, τ) = pirΣ(t − τ), t, τ ∈ R, t ≥ τ.

Proof This follows from the definitions, and the fact that, for A being independent of
time, we have Φc

A(t, τ) = eA(t−τ) by definition. ■

Thus everything we said about the impulse transmission map above can be
translated into a statement about the impulse response in the constant coefficient
case. However, since there is more that can be said, and what can be said can be
said more simply, let us record these translations explicitly.

We begin by giving a distributional interpretation of the impulse response. We
point out that we have an additional uniqueness assertion in the following result,
represented by replacing occurrences of “a” in Theorem 6.6.11 with “the unique”
in the next result.
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6.6.15 Theorem (A distributional interpretation of the proper impulse transmission
map) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and with T = R.
Then

pirΣ(t) = C ◦ ξ0(t),

where ξ0 ∈ L1
loc(R; X) is the locally integrable function associated to the unique solution of

the distributional differential equation

θ(1)
0 = A(θ0) + B(u ⊗ δ),

where A(θ0) and B(u ⊗ δ) are as given in Remark IV-3.2.53–1.
Proof The characterisation of pirΣ follows from Theorem 6.6.15 with t0 = 0, noting
that, when A is independent of time and if irξ is the regular distribution associated to
a locally integrable signal ξ,

⟨A ◦ θξ;ϕ⟩ =
∫
R
ϕ(t)A ◦ ξ(t) dt = A(⟨θξ;ϕ⟩) = ⟨A(θξ);ϕ⟩

for ϕ ∈ D (R;R).
As for the uniqueness assertion of the theorem, we note that B(u ⊗ δ) ∈ D ′+(R; X)

and θ0 ∈ D ′+(R; X). Thus uniqueness follows from Theorem 5.3.13. ■

We note that the proof of Theorem 5.3.13 relies on properties of the convolution
algebra D ′+(R;R). We shall have more to say about the rôle of convolution in the
theory of continuous-time linear systems in Section 6.7.4.

The theorem tells us that, when D = 0, the proper impulse response if the
“output” corresponding to an “input” u ⊗ δ, i.e., a pulse of u at time 0. Similarly
to the case of the impulse transmission map, it also holds that the (non-proper)
impulse response is the output for this same input, when D is not necessarily zero.

Of course, just as in Proposition 6.6.12, we can use the impulse response to
characterise outputs for linear continuous-time state space systems with constant
coefficients.

6.6.16 Proposition (Using the impulse response to determine outputs) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and with T = R
and let µ ∈ U . Then the output corresponding to the initial condition x0 at time t0 is

η(t) = C ◦ eA(t−t0)(x0) +
∫ t

t0

pirΣ(t − τ)µ(τ) dτ + D ◦ µ(t), t ∈ dom(µ)≥t0 .

Proof This is a direct translation of Proposition 6.6.12 to the constant coefficient case.
■
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The interpretation we give for the three terms in the output are the same as we
gave after the statement of Proposition 6.6.12. However, in the constant coefficient
case, the time t0 = 0 is distinguished, and this gives rise to distinguishing this
particular case.

6.6.17 Definition (Zero-state/zero-time response) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and with
T = R and let µ ∈ U with supp(µ) = R≥0. The zero-state/zero-time response to the
input µ is

ζµ : R→ Y

t 7→
∫ t

0
1≥0(t)pirΣ(t − τ)µ(τ) dτ.

•

These sorts of considerations will be explored in detail in Section 6.7.6.2.

Exercises

6.6.1 Consider a linear continuous-time state space system

Σ = (X,U,Y,T,U ,A,B,C,D).

Answer the following questions.
(a) Show that Σ defines a general input/output system as per Defini-

tion 2.1.3. Identify the components of the general input/output system.
(b) Show that Σ is a general time system as per Definition 2.2.9. Identify

the components of the general time system.
(c) Show that, as a general time system, Σ is output complete.
(d) Show that, as a general time system, Σ is complete.
(e) Show that Σ is causal and is strongly causal if and only if D = 0.
(f) Show that Σ has a dynamical systems representation as per Defini-

tion 2.2.19. Identify components of the dynamical systems represen-
tation.

(g) Show that Σ has a state space representation as per Definition 2.2.24.
Identify components of the state space representation.

6.6.2 For the following linear continuous-time state space systems

Σ = (X,U,Y,T,U ,A,B,C,D),

compute the proper impulse transmission map (or proper impulse response,
as appropriate) and the impulse transmission map (or impulse response, as
appropriate).
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(a) Take
(i) X = R,
(ii) U = R,
(iii) Y = R,
(iv) T = R,
(v) U = L1

loc(R;R),

(vi) A =
[
0
]
,

(vii) B =
[
1
]
,

(viii) C =
[
1
]
,

(ix) D =
[
1
]
,

(b) Take
(i) X = R2,
(ii) U = R,
(iii) Y = R2,
(iv) T = R,
(v) U = L1

loc(R;R),

(vi) A =
[
0 −1
1 0

]
,

(vii) B =
[
1
0

]
,

(viii) C =
[
1 0
0 1

]
,

(ix) D =
[
1
0

]
,

(c) Take
(i) X = R3,
(ii) U = R2,
(iii) Y = R2,
(iv) T = R,
(v) U = L1

loc(R;R),

(vi) A =

0 1 0
0 0 0
0 0 −1

,
(vii) B =

0 0
1 0
0 1

,
(viii) C =

[
1 1 1
2 −2 0

]
,

(ix) D =
[
0 0
0 0

]
,

(d) Take
(i) X = R2,
(ii) U = R,
(iii) Y = R,
(iv) T = R>0,
(v) U = L1

loc(R>0;R),

(vi) A =
[
t−1

−1
t−2 2t−1

]
,

(vii) B =
[
0
1

]
,

(viii) C =
[
1 0

]
,

(ix) D =
[
0
]
,

Hint: Refer to Example 5.2.10.
6.6.3 Consider the following differential equation for functions η, µ : R→ F:

dnη

dtn (t) + pn−1
dn−1η

dtn−1 (t) + · · · + p1
dη
dt

(t) + p0η(t)

= cn−1
dn−1µ

dtn−1 (t) + cn−2
dn−2µ

dtn−2 (t) + · · · + c1
dµ
dt

(t) + c0µ(t).

Answer the following questions.
(a) Show that this determines a general time system as per Definition 2.2.9.

Clearly identify the spaces of input and output signals.
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(b) Argue that a natural choice of states for this system is

ξ j(t) =
d jη

dt j (t), j ∈ {0, 1, . . . ,n}.

(c) Argue that a somewhat less natural, but still valid, choice of states is
ξn(t) = η(t) and

ξn− j(t) =
j∑

k=0

pn− j+k
dkη

dtk
(t) −

j−1∑
k=0

cn− j+k
dkµ

dtk
(t), j ∈ {1, . . . ,n − 1}.

(d) Derive a linear continuous-time state space system with constant coeffi-
cients for which the input/output relation is the same as the general time
system from part (a) and for which the states are as in part (c).

6.6.4 Consider the mass-spring system in Figure 6.7 with identical masses m and

F

Figure 6.7 Mass-spring system

linear springs with spring constant k. Suppose the leftmost mass is subject
to a force F. Answer the following questions.
(a) Write the equations of motion in the form of a linear continuous-time

state space system, clearly identifying the nine system components.
(b) Is the system one with constant coefficients?
(c) Find the eigenvalues and eigenvectors of the system linear map A. Give

a physical interpretation of both.
6.6.5 For the circuit shown in Figure 6.8, answer the following questions.

(a) Write the governing equations in the form of a linear continuous-time
state space system, clearly identifying the nine system components.

(b) Is the system one with constant coefficients?
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Figure 6.8 A linear circuit
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Section 6.7

Linear continuous-time input/output systems

We now undertake the systematic development of a class of input/output sys-
tems having the property of linearity. We begin with a general construction of what
attributes such systems should have (basically, they should be input/output sys-
tems that are linear). We then focus on particular classes of input/output systems,
those defined by integration in some way. These systems capture, as special cases,
the input/output behaviour of linear state space systems. We close our presentation
in this section by proving this relationship.

Do I need to read this section? As with the preceding section, the material in
this section is to be regarded as a core part of the material in this volume. •

6.7.1 General definitions

We being by considering a general setting for linear continuous-time input/out-
put systems. The essential definition, which follows, is basically the Defini-
tion 6.2.3 for continuous-time input/output systems, with the addition of linearity.
This requires linearity for both the spaces of input and output signals, and of the
system mappings.

6.7.1 Definition (Linear continuous-time input/output system) A linear continuous-
time input/output system is a sextuple Σ = (U,Y,T,U ,Y , g), where

(i) U (the input space) and Y (the output space) are finite-dimensional R-vector
spaces,

(ii) T ⊆ R is an interval (the time-domain),
(iii) U ⊆ U(T) is a space of partially defined signals with topology (the input

signals) such that, for every sub-time-domain S ⊆ T, U (S) is a subspace of
US,

(iv) Y ⊆ Y(T) is a space of partially defined signals with topology (the output
signals) such that, for every sub-time-domain S ⊆ T, Y (S) is a subspace of
YS, and

(v) g : U → Y has the following properties:

(a) for every sub-time-domain S ⊆ T, the restriction of g to U (S), denoted
by gS, takes values in Y (S);

(b) if S, S′ ⊆ T are sub-time-domains with S′ ⊆ S, then gS|U (S′) = gS′ ;
(c) gS is linear and continuous for every sub-time-domain S ⊆ T.

Moreover,
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(vi) a pair (µ, η) with µ ∈ U (S) and η = gS(µ) is a behaviour for Σ, and we denote
byB (Σ) the set of behaviours. •

Of course, linear continuous-time input/output systems are continuous-time
input/output systems, accepting the mild generalisation from using general finite-
dimensional vector spaces in place of Euclidean spaces. Thus all of the comments
made in Section 6.2.2 about the connections between continuous-time input/out-
put systems and the general classes of systems from Chapter 2 are applicable to
linear continuous-time input/output systems. In addition, linear continuous-time
input/output systems are linear time systems as per Definition 2.2.43. Note that,
due to the fact that we work with spaces of input and output signals that are
comprised of partially defined signals, it is not generally the case that a linear
continuous-time input/output system is a linear general input/output system as
per Definition 2.1.12. However, were we to restrict to the case of signals only
defined on the entire time-domain T, i.e., to not allow partially defined signals,
then such a linear continuous-time input/output system would indeed be a linear
general input/output system as per Definition 2.1.12.

6.7.2 Integral kernel systems

We now consider a special class of linear continuous-time input/output systems.
As we shall assert precisely in Section 6.7.6, the class of systems we consider
generalise aspects of the input/output behaviour of a linear continuous-time state
space system.

The initial ingredient to the constructions we make is contained in the following
definition.

6.7.2 Definition (Integral kernel, integral operator) Let T ⊆ R be a continuous time-
domain, and let U and Y be finite-dimensional R-vector spaces.

(i) An integral kernel from U to Y on T is a mapping

K : T × T→ L(U; Y).

For t, τ ∈ T, we shall denote

Kt : T→ L(U; Y)
τ 7→ K(t, τ)

Kτ : T→ L(U; Y)
t 7→ K(t, τ).

Let U ⊆ UT be a subspace.
(ii) An integral kernel K is compatible with U if, for every µ ∈ U and for almost

every t ∈ T, Kt(µ) ∈ L1(T; L(U; Y)).
(iii) If K is compatible with U , the integral operator defined by K is the mapping

gK : U → YT
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defined by

gK(µ)(t) =
∫
T

K(t, τ)(µ(τ)) dτ, a.e. t ∈ T. •

As yet, we do not have the structure of a continuous-time input/output system,
since the domain and codomain of gK do not have useful structure (other than their
vector space structure). We need to provide conditions on K that ensure that the
integral operator gK takes signals from a nice domain into a nice codomain. The
following definition captures the properties we want.

6.7.3 Definition (Integral kernel system) An integral kernel system is a sextuple Σ =
(U,Y,T,U ,Y ,K) where

(i) U (the input space) and Y (the output space) are finite-dimensional R-vector
spaces,

(ii) T ⊆ R is a continuous time-domain (the time-domain),
(iii) U ⊆ UT is a subspace of signals with topology (the input signals),
(iv) Y ⊆ YT is a subspace of signals with topology (the output signals),
(v) K is an integral kernel compatible with U , and
(vi) the integral operator gK is a continuous linear mapping from U to Y . •

Of course, the definition gives us no insight into which K’s, U ’s, and Y ’s
might possibly comprise a continuous-time kernel system. In order to obtain
characterisations which give such systems, we have to prove something, and the
following result gives some cases that work.

6.7.4 Theorem (Some integral kernel systems) Let T ⊆ R be a continuous time-domain,
let U and Y be finite-dimensional R-vector spaces, and let p ∈ [1,∞]. In the following
cases, the integral kernel K : T × T → L(U; Y), the input space U , and the output space
Y are such that

Σ = (U,Y,T,U ,Y ,K)

is an integral kernel system:
(i) (a) Kt ∈ L1(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥1 is in L∞(T; L(U; Y)),

(b) U ⊆ L∞(T; U), and
(c) Y = L∞(T; Y);

(ii) (a) Kt ∈ L∞(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥∞ is in L1(T; L(U; Y)),
(b) U ⊆ L1(T; U), and
(c) Y = L1(T; Y);

(iii) (a) Kt ∈ L1(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥1 is in L∞(T; L(U; Y)),
(b) Kt ∈ L∞(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥∞ is in L1(T; L(U; Y)),
(c) U ⊆ Lp(T; U), and
(d) Y = Lp(T; Y).
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Proof (i) First of all, for t ∈ T,∫
T
∥K(t, τ)µ(τ)∥dτ ≤ ∥µ∥∞

∫
T
∥Kt∥dτ < ∞,

giving the compatibility of K with U in this case. Also by Exercise III-3.8.8,

∥gK(µ)∥∞ = ess sup
{∥∥∥∥∥∫

T
K(t, τ)(µ(τ)) dτ

∥∥∥∥∥ ∣∣∣∣∣ t ∈ T
}

≤ ess sup
{∫
T

∥∥∥K(t, τ)(µ(τ))
∥∥∥ dτ

∣∣∣∣∣ t ∈ T
}

≤ ess sup
{
∥µ∥∞

∫
T
∥K(t, τ)∥dτ

∣∣∣∣∣ t ∈ T
}

≤ ess sup{∥Kt∥1 | t ∈ T}︸                     ︷︷                     ︸
C∞

∥µ∥∞.

Thus ∥gK(µ)∥∞ ≤ C∞∥µ∥∞, giving continuity of gK by Theorem III-3.5.8.
(ii) We first have, for t ∈ T,∫

T
∥K(t, τ)µ(τ)∥dτ ≤ ∥Kt∥∞

∫
T
∥µ(τ)∥dτ < ∞,

giving the compatibility of K with U . We also have

∥gK(µ)∥1 =
∫
T

∥∥∥∥∥∫
T

K(t, τ)(µ(τ)) dτ
∥∥∥∥∥ dt

≤

∫
T

(∫
T
∥K(t, τ)(µ(τ))∥dτ

)
dt

=

∫
T

(∫
T
∥K(t, τ)(µ(τ))∥dt

)
dτ

≤

∫
T

(∫
T
∥K(t, τ)∥dt

)
∥µ(τ)∥dτ

≤

( ∫
T
∥Kt∥∞ dt︸       ︷︷       ︸

C1

) (∫
T
∥µ(τ)∥dτ

)

using Fubini’s Theorem. Thus ∥gK(µ)∥1 ≤ C1∥µ∥1, and we get this part of the theorem
by Theorem III-3.5.8.

(iii) Clearly we can restrict ourselves to p ∈ (1,∞). Thus we take p′ ∈ (1,∞) to be
the conjugate index for which 1

p +
1
p′ = 1. Let C∞ and C1 be as defined in the first two

parts of the proof.
To determine the compatibility of K with µ, for µ ∈ Lp(T; U), write

µ0(t) =

µ(t), ∥µ(t)∥ ≤ 1,
0, otherwise,
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and µ1 = µ − µ0. Note that µ0 ∈ L∞(T; U) and µ1 ∈ Lp(T; U). Moreover,

∥µ1(t)∥ ≤ ∥µ1(t)∥p, t ∈ T,

and so µ1 ∈ L1(T; U). One can then combine the compatibility conclusions from the
first two parts of the proof to conclude that K is compatible with Lp(T; U).

We now compute, using Hölder’s inequality in the form of Lemma III-3.8.54,

∥gK(µ)(t)∥ ≤
∫
T
∥K(t, τ)(µ(τ))∥dτ

≤

∫
T

(∥K(t, τ)∥1/p∥µ(τ)∥)∥K(t, τ)∥1/p
′

dτ

≤

(∫
T
∥K(t, τ)∥∥µ(τ)∥p dτ

)1/p (∫
T
∥K(t, τ)∥dτ

)1/p′

≤ C1/p′
∞

(∫
T
∥K(t, τ)∥∥µ(τ)∥p dτ

)1/p

.

Therefore,

∥gK(µ)∥pp ≤ Cp/p′
∞

∫
T

(∫
T
∥K(t, τ)∥∥µ(τ)∥p dt

)
dτ

≤ Cp/p′
∞

∫
T

(∫
T
∥Kt∥∞∥µ(τ)∥p dt

)
dτ

≤ Cp/p′
∞

(∫
T
∥µ(τ)∥p dτ

) (∫
T
∥Kt∥∞ dt

)
≤ Cp/p′

∞ C1∥µ∥
p
p.

Thus we have
∥gK(µ)∥p ≤ C1/p

1 C1/p′
∞ ∥µ∥p,

giving the result, again using Theorem III-3.5.8. ■

The preceding result, while interesting, is limited in scope. Indeed, it has
nothing to say about systems that take Lp

loc(T; U) to Lq
loc(T; Y). The restriction in

Theorem 6.7.4 to input and output spaces that are Lp-spaces has more to do with
the stability of the systems than with their general system theoretic attributes.
However, to overcome these limitations in systematic way requires putting some
general restrictions on the kernel K and/or the input signals U . One nice class of
kernels are those that give rise to causal systems. Let us define the class of kernels
in this case.

6.7.5 Definition (Causal integral kernel) Let T be a continuous time-domain, and let
U and Y be finite-dimensional R-vector spaces. An integral kernel

K : T × T→ L(U; Y)

is causal if K(t, τ) = 0 for τ > t. •

Let us relate this notion of a causal integral kernel to a causal system.
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6.7.6 Lemma (Causal integral kernels give rise to strongly causal integral kernel
systems) Let T be a continuous time-domain, let U and Y be finite-dimensionalR-vector
spaces, and let U be a set of input signals. If K is a causal integral kernel compatible with
U , then the continuous-time input/output system gK : U → YT is strongly causal.

Proof Let µ1, µ2 ∈ U satisfy dom(µ1) = dom(µ2) and let t ∈ dom(µ1) = dom(µ2).
Suppose that (µ1)T<t∩dom(µ1) = (µ2)T<t∩dom(µ2). Then

gK(µ1)(t) =
∫
T

K(t, τ)(µ1(τ)) dτ =
∫
T<t

K(t, τ)(µ1(τ)) dτ

=

∫
T<t

K(t, τ)(µ2(τ)) dτ =
∫
T

K(t, τ)(µ2(τ)) dτ = gK(µ2)(t).

This is the desired strong causality. ■

One might like to have the causality of the kernel as being necessary for the
strong causality of the associated integral operator. However, to state a general
such theorem requires having some relationship between the kernel and the set of
inputs that will just be confusing. The basic idea, however, is clear. If the integral
kernel is not causal, then there will be some t ∈ T and an interval S ⊆ T>t such that∫

S

∥K(t, τ)∥dτ , 0.

Generally speaking, one can expect there to be an input µ for which∫
S

K(t, τ)(µ(τ)) dτ , 0.

If one can additionally ask that supp(µ) ⊆ S, then we would have gK(µ)(t) , 0, even
though µ is zero up to time t. This would preclude causality.

With the above considerations at hand, let us consider situations where a causal
integral kernel defines an integral kernel system. As we see, the condition of
causality of the integral kernel, as well as the causality of the set of input signals as
in Definition IV-1.1.16, ensures causality of the system.

6.7.7 Theorem (Integral kernel systems with causal kernels and causal inputs) Let
T ⊆ R be a continuous time-domain, let U and Y be finite-dimensional R-vector spaces,
and let p ∈ [1,∞]. In the following cases, the causal integral kernel K : T ×T→ L(U; Y),
the input space U , and the output space Y are such that

Σ = (U,Y,T,U ,Y ,K)

is an integral kernel system:
(i) (a) Kt ∈ L1

loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥K,1 is in L∞loc(T; L(U; Y)) for
every compact intervalK ⊆ T,
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(b) U ⊆ L∞loc(T; U) and there exists t0 ∈ T such that supp(µ) ⊆ T≥t0 for every
µ ∈ U , and

(c) Y = L∞loc(T; Y);
(ii) (a) Kt ∈ L∞loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥K,∞ is in L1

loc(T; L(U; Y)) for
every compact intervalK ⊆ T,

(b) U ⊆ L1
loc(T; U) and there exists t0 ∈ T such that supp(µ) ⊆ T≥t0 for every

µ ∈ U , and
(c) Y = L1

loc(T; Y);
(iii) (a) Kt ∈ L1

loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥K,1 is in L∞loc(T; L(U; Y)) for
every compact intervalK ⊆ T,

(b) Kt ∈ L∞loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥K,∞ is in L1
loc(T; L(U; Y)) for

every compact intervalK ⊆ T,
(c) U ⊆ Lp

loc(T; U) and there exists t0 ∈ T such that supp(µ) ⊆ T≥t0 for every
µ ∈ U , and

(d) Y = Lp
loc(T; Y).

Proof (i) Let us first show that K is compatible with U . Let µ ∈ U and let t ∈ T. Then

K(t, τ)µ(τ) = 0, τ < t0, τ > t.

Thus supp(Kt(µ)) ⊆ [t0, t]. Thus our hypotheses and Exercise III-3.8.8 ensure that
Kt(µ) ∈ L1(T; Y).

Let K ⊆ T be a compact interval and let L ⊆ T be a compact interval such that
K≥t0 ⊆ L. Then, for µ ∈ L∞loc(T; U), we have

∥gK(µ)∥K,∞ ≤ ess sup
{∫
T
∥K(t, τ)(µ(τ))∥dτ

∣∣∣∣∣ t ∈ K
}

= ess sup
{∫ t

t0

∥K(t, τ)(µ(τ))∥dτ

∣∣∣∣∣∣ t ∈ K≥t0

}
≤ ∥µ∥L,∞ ess sup

{∫ t

t0

∥K(t, τ)∥dτ

∣∣∣∣∣∣ t ∈ K≥t0

}
≤ ess sup{∥Kt∥K,1 | t ∈ K}︸                        ︷︷                        ︸

CK,∞

∥µ∥L,∞.

Thus ∥gK(µ)∥K,∞ ≤ CK,∞∥µ∥L,∞, and this gives the result.
(ii) One prove compatibility of K with U similarly to part (i).
Now letK ⊆ T be compact and letL ⊆ T be a compact interval for whichK≥t0 ⊆ L.
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Then, for µ ∈ L∞loc(T; U), we compute

∥gK(µ)∥K,1 =
∫
K

∥∥∥∥∥∫
T

K(t, τ)(µ(τ)) dτ
∥∥∥∥∥ dt

≤

∫
K

(∫ t

t0

∥K(t, τ)(µ(τ))∥dτ
)

dt

=

∫ t

t0

(∫
K
∥K(t, τ)(µ(τ))∥dt

)
dτ

≤

∫ t

t0

(∫
K
∥K(t, τ)∥dt

)
∥µ(τ)∥dτ

≤

( ∫
K
∥Kt∥K,∞ dt︸          ︷︷          ︸

CK,1

) (∫
L
∥µ(τ)∥dτ

)
.

That is, ∥gK(µ)∥K,1 ≤ CK,1∥µ∥L,1, giving this part of the result.
(iii) We can take p ∈ (1,∞). The compatibility of K with U is proved by combining

the argument from part (i) above and part (iii) from Theorem 6.7.4.
Now letK ⊆ T be a compact interval and take a compact interval L ⊆ T such that

K≥t0 ⊆ L. Let CK,∞ and CK,1 be as defined in the first two parts of the proof. Then, for
µ ∈ Lp

loc(T; U) and t ∈ K≥t0 , we compute

∥gK(µ)(t)∥ ≤
∫ t

t0

∥K(t, τ)(µ(τ))∥dτ

≤

∫ t

t0

(∥K(t, τ)∥1/p∥µ(τ)∥)∥K(t, τ)∥1/p
′

dτ

≤

(∫ t

t0

∥K(t, τ)∥∥µ(τ)∥p dτ
)1/p (∫ t

t0

∥K(t, τ)∥dτ
)1/p′

≤ C1/p′

K,∞

(∫ t

t0

∥K(t, τ)∥∥µ(τ)∥p dτ
)1/p

.

We also have gK(µ)(t) = 0 for t < t0. Therefore, using Fubini’s Theorem,

∥gK(µ)∥p
K,p ≤ Cp/p′

K,∞

∫ t

t0

(∫
K
∥K(t, τ)∥∥µ(τ)∥p dt

)
dτ

≤ Cp/p′

K,∞

∫ t

t0

(∫
K
∥Kt∥K,∞∥µ(τ)∥p dt

)
dτ

≤ Cp/p′

K,∞

(∫ t

t0

∥µ(τ)∥p dτ
) (∫

K
∥Kt∥K,∞ dt

)
≤ Cp/p′

K,∞CK,1∥µ∥
p
L,p.

Thus we have
∥gK(µ)∥K,p ≤ C1/p

K,1C1/p′

K,∞∥µ∥L,p,

which is the desired result. ■
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6.7.3 Integral kernel systems with distribution kernels

6.7.4 Continuous-time convolution systems

In this section we consider a special class of integral kernel systems. These
arise from requiring stationarity of the integral kernel system, and the following
result captures the manner in which stationarity arises. We focus on systems with
time-domain T = R, since this can be done without loss of generality in any case.

6.7.8 Proposition (Stationary integral kernel systems) Let U and Y be finite-dimensional
R-vector spaces and let K : R × R → L(U; Y) be an integral kernel compatible with a set
U of input signals. Suppose that U is translation invariant, i.e., that τ∗aµ ∈ U for every
a ∈ R and µ ∈ U . Denote by

ΣK = (U,Y,U ,YR,R,gK)

the continuous-time input/output system. Then the following statements hold:
(i) if

(a) K ∈ L1
loc(R

2; L(U; Y)),
(b) U has the property that, if f ∈ L1

loc(R;R) satisfies∫
R

f(t)µ(t) dt = 0, µ ∈ U ,

then f = 0, and
(c) ΣK is stationary,

then there exists k ∈ L1
loc(R; L(U; Y)) such that K(t, τ) = k(t − τ) for almost every

(t, τ) ∈ R2;
(ii) if there exists k ∈ L1

loc(R; L(U; Y)) such that K(t, τ) = k(t − τ) for almost every
(t, τ) ∈ R2, then ΣK is strongly stationary.

Proof (i) The hypotheses ensure that, for every a ∈ R and for every behaviour (µ, η)
for ΣK, (τ∗aµ, τ∗aη) is also a behaviour. Note that this gives, for every behaviour (µ, η),

η(t) =
∫
R

K(t, τ)(µ(τ)) dτ

and

η(t − a) =
∫
R

K(t, τ)(µ(τ − a)) dτ

for almost every t ∈ R. By a change of variable, the second of these equations becomes

η(t) =
∫
R

K(t + a, τ + a)(µ(τ)) dτ.

Thus we have ∫
R

(K(t, τ) − K(t + a, τ + a))(µ(τ)) dτ = 0
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for almost every t ∈ R. Thus

K(t, τ) = K(t + a, τ + a), a ∈ R, a.e. (t, τ) ∈ R2.

Thus let Z ⊆ R2 be such that

K(t, τ) = K(t + a, τ + a), a ∈ R, (t, τ) ∈ R2
\ Z.

Therefore, for (t, τ) ∈ R2
\ Z we have, by taking a = −τ, K(t, τ) = K(t − τ, 0). Therefore,

taking k(t) = K(t, 0), we get the result.
(ii) We leave this to the reader as Exercise 6.7.2. ■

With this result in mind, we make the following definitions.

6.7.9 Definition (Convolution kernel, convolution operator defined by convolution
kernel) Let U and Y be finite-dimensional R-vector spaces.

(i) A continuous-time convolution kernel from U to Y is a mapping

k : R→ L(U; Y).

Let U ⊆ UR be a subspace.
(ii) A continuous-time convolution kernel k is compatible with U if, for every

µ ∈ U and for almost every t ∈ R, τ 7→ k(t − τ) ◦ µ(τ) ∈ L1(R; L(U; Y)).
(iii) If k is compatible with U , the continuous-time convolution operator defined

by k is the mapping
gk : U → YR

defined by

gk(µ)(t) =
∫
R

k(t − τ)(µ(τ)) dτ, a.e. t ∈ R. •

6.7.10 Definition (Continuous-time convolution system) A continuous-time convolu-
tion system is a quintuple Σ = (U,Y,U ,Y , k) where

(i) U (the input space) and Y (the output space) are finite-dimensional R-vector
spaces,

(ii) U ⊆ UR is a subspace of signals with topology (the input signals),
(iii) Y ⊆ YR is a subspace of signals with topology (the output signals),
(iv) k ∈ is a continuous-time convolution kernel compatible with U , and
(v) the continuous-time convolution operator gk is a continuous linear mapping

from U to Y . •

Of course, a continuous-time convolution system

Σ = (U,Y,U ,Y , k)
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is an integral kernel system

Σ′ = (U,Y,R,U ,Y ,K)

with K(t, τ) = k(t − τ). Moreover, in Sections IV-4.2.1 and IV-4.2.2, we gave results
about convolvable pairs of signals defined on R that we can use here to give some
specific instances of continuous-time convolution systems. We refer the reader
to the above listed sections for precise results as reproducing these would be an
unnecessary distraction.

As with Theorem 6.7.4, the results from Sections IV-4.2.1 and IV-4.2.2 are quite
restrictive in that they apply only to signals that are integrable in some sense, and
this is a quite limited class of signals. This can be rectified, both mathematically and
practically, by restricting to causal kernels and inputs. Based on Definition 6.7.5,
we make the following definition.

6.7.11 Definition (Causal continuous-time convolution kernel) Let U and Y be finite-
dimensional R-vector spaces. A continuous-time convolution kernel

k : R→ L(U; Y)

is causal if k(t) = 0 for t ∈ R<0. •

We can then extend the applicability of the results from Sections IV-4.2.1
and IV-4.2.2 to causal convolution kernels, and with spaces of input and output
signals that are only appropriately locally integrable. In this respect, we refer the
reader to Sections IV-4.2.3, and IV-4.2.4 that provide some classes of convolution
systems with causal kernels. Rather than reproduce all of the results from these
sections in our specific setting here, let us simply indicate the steps one must take
to adapt the results.

Let U and Y be finite-dimensionalR-vector spaces and let k be a causal convolu-
tion kernel residing in an appropriate space of locally integrable signals. Suppose
that U is a subset of an appropriate space of locally integrable signals and that
t0 ∈ R is such that µ(t) = 0 for all µ ∈ U and t < t0. LetK ⊆ R be a compact interval
satisfying

supK ≥ inf supp(µ),

noting that, when this is not true, then k ∗ µ|K = 0. Then, letting L satisfy

infL ≤ min{0, t0},

supL ≥ max{supK, supK − t0},

we can use the appropriate variant of, for example, Theorem IV-4.2.19, to give
continuity of the input/output gk.
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6.7.12 Remark (The “punchline” for continuous-time convolution systems) The tech-
nicalities of the results in this section may obscure the simple reasons why
continuous-time convolution systems are important. Let us summarise these rea-
sons.
1. Among the integral kernel systems, convolution systems are distinguished by

being the stationary systems. This is the content of Proposition 6.7.8.
2. Causality for continuous-time convolution systems is easily characterised by

the requirement that the convolution kernel vanish for negative time. Thus
causal continuous-time convolution systems give a large and interesting class
of causal stationary continuous-time linear systems.

6.7.5 Continuous-time convolution systems with distribution kernels

Schwartz kernel theorem

6.7.6 Linear continuous-time state space systems as linear continuous-time
input/output systems

A merely mildly astute reader will have noticed that integral kernel system
arise in the input/output relations for linear continuous-time state space systems,
and that this integral kernel description simplifies to a convolution system in the
case where the state space system has constant coefficients. In this section we
make these connections precise, which is comparatively easy given the work that
we have done already.

6.7.6.1 The time-varying case Let us get straight to the point and state the
main results of this section.

6.7.13 Theorem (Integral kernel systems from linear continuous-time state space
systems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear continuous-time state space system and let p ∈ [1,∞]. Let t0 ∈ T and let

U ⊆ {µ ∈ Lp
loc(T; U) | µ(t) = 0, t < t0},

Y = {η ∈ Lp
loc(T; Y) | η(t) = 0, t < t0}.

Then
Σi/o(t0) = (U,Y,T,U ,Y ,pitmΣ)

is a causal integral kernel system in the following cases:
(i) (a) B ∈ L1

loc(T; L(U; X)) and C ∈ L∞loc(T; L(X; Y)) and
(b) p = ∞;

(ii) (a) B ∈ L∞loc(T; L(U; X)) and C ∈ L1
loc(T; L(X; Y)) and
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(b) p = 1;
(iii) (a) B ∈ L1

loc(T; L(U; X)) and C ∈ L∞loc(T; L(X; Y)),
(b) B ∈ L∞loc(T; L(U; X)) and C ∈ L1

loc(T; L(X; Y)), and
(c) p ∈ [1,∞].

Proof We shall show that the integral kernel pitmΣ satisfies the following conditions
from Theorem 6.7.7:
1. (part (i)) pitmΣ,t ∈ L1

loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥pitmΣ,t∥K,1 is in
L∞loc(T; L(U; Y)) for every compact intervalK ⊆ T;

2. (part (ii)) pitmΣ,t ∈ L∞loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥pitmΣ,t∥K,∞ is in
L1

loc(T; L(U; Y)) for every compact intervalK ⊆ T;
3. (part (iii))

(a) pitmΣ,t ∈ L1
loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥pitmΣ,t∥K,1 is in

L∞loc(T; L(U; Y)) for every compact intervalK ⊆ T and
(b) pitmΣ,t ∈ L∞loc(T; L(U; Y)) for each t ∈ T and t 7→ ∥pitmΣ,t∥K,∞ is in

L1
loc(T; L(U; Y)) for every compact intervalK ⊆ T.

We recall from Theorem 3.2.13(viii) that (t, τ) 7→ Φc
A(t, τ) is continuous. Thus τ 7→

Φc
A(t, τ) is in Lr

loc(T; L(X; X)) for every t ∈ T and every r ∈ [1,∞]. Let q1, q2 ∈ [1,∞].
Then

τ 7→ pitmΣ(t, τ) = 1≥0(t − τ)C(t) ◦Φc
A(t, τ) ◦ B(τ)

is in Lq1
loc(T; L(U; Y)) if and only if B ∈ Lq1

loc(T; L(U; X)). Now let K,L ⊆ T be compact
and denote

M = sup{∥Φc
A(t, τ)∥ | (t, τ) ∈ L ×K},

noting that M < ∞ since Φc
A is continuous. Suppose first that q1, q2 ∈ [1,∞) and

compute ∫
L
∥pitmΣ,t∥

q2
K,q1

dt ≤
∫
L

∥∥∥∥∥∥∥
(∫
K

∥∥∥C(t) ◦Φc
A(t, τ) ◦ B(τ)

∥∥∥q1 dτ
)1/q1

∥∥∥∥∥∥∥
q2

dt

≤Mq2∥B∥q2
K,q1

∫
L
∥C(t)∥q2 dt.

Thus we conclude in this case that

τ 7→ pitmΣ(t, τ) = 1≥0(t − τ)C(t) ◦Φc
A(t, τ) ◦ B(τ)

is in Lq1
loc(T; L(U; Y)) and

t 7→ ∥pitmΣ,t∥K,q1

is in Lq2

loc(T; L(U; Y)) if and only if B ∈ Lq1
loc(T; L(U; X)) and C ∈ Lq2

loc(T; L(X; Y)). Using
similarly styled arguments, one shows that this conclusion is valid for q1, q2 ∈ [1,∞].

The theorem now follows from Theorem 6.7.7 by considering the pairs (q1, q2) ∈
{(1,∞), (∞, 1), (p, p)}. Note that causality follow by the definitions. ■

We see from our decomposition (6.11) of an arbitrary output of a linear
continuous-time state space system that the map sending an input µ to the sec-
ond term in this decomposition is precisely the input/output system Σi/o(t0).

Distribution version of this theorem.



630 6 Classes of continuous- and discrete-time systems 2022/03/07

6.7.6.2 The constant coefficient case In this case, the main result is the fol-
lowing.

6.7.14 Theorem (Continuous-time convolution systems from linear continuous-time
state space systems with constant coefficients) Let

Σ = (X,U,Y,R,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and let p,q, r ∈
[1,∞] satisfy one of the following two criterion: (1) p = q = r = 1; (2) 1

p −
1
q = 1 − 1

r . Let

U ⊆ {µ ∈ Lp
loc(R; U) | µ(t) = 0, t < 0},

Y = {η ∈ Lq
loc(R; Y) | η(t) = 0, t < 0}.

Then
Σi/o = (U,Y,U ,Y ,pirΣ)

is a causal continuous-time convolution system.
Proof We have

pirΣ(t) = 1≥0(t)C ◦ eAt
◦ B,

and so pirΣ is continuous by Theorem 5.2.6(i) and Theorem 5.2.20(ix). Thus pirΣ ∈
Lr

loc(R; L(U; Y)) for every r ∈ [1,∞]. The result now follows from Corollary IV-4.2.14
and Theorem IV-4.2.19. ■

Here we see that the map sending an input to its zero-state/zero-input response,
as in Definition 6.6.17, defines the input/output system Σi/o.

Distribution version of this theorem.

6.7.7 Linear continuous-time differential input/output systems

Exercises

6.7.1 For each of the listed attributes, give an example of a linear continuous-time
input/output system with that attribute. You are not allowed to choose a
system of the sort considered in either of Sections 6.7.2 and 6.7.4.

Here are the attributes:
(a) causal;
(b) not causal;
(c) stationary;
(d) not stationary;
(e) memoryless;
(f) not memoryless.

6.7.2 Complete the proof of Proposition 6.7.8.
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6.7.3 For a ∈ R≥0, consider the function

da : L1
loc(R;F)→ L1

loc(R;F)
µ 7→ τ∗aµ.

Answer the following questions.
(a) Show that da is a linear continuous-time input/output system.
(b) Determine its system theoretic properties, i.e., is it causal? strongly

causal? finitely observable? stationary? strongly stationary?
(c) Let t0 ∈ R. Show that, to determine da(µ)(t) for all t ≥ t0, you must know

µ(t) for t ≥ t0 − a.
(d) Argue that the state space for the system starting from t0 is L1([t0 −

a, t0];F).
(e) Can this system be converted into a continuous-time state space system?
(f) Compare the situation in this discrete-time case with the continuous-

time case presented in Exercise 6.9.3.
6.7.4 We consider a simple RLC circuit as depicted in Figure 6.9. The voltage

−
E

+

R

L

C

Figure 6.9 An RLC circuit

supplied by the source is the input with values denoted by v and if the
current in the circuit is the output whose values are i.

Answer the following questions.
(a) Provide a differential equation that models the current t 7→ ι(t) given the

voltage t 7→ ν(t) supplied by the source.
(b) Show that the mapping ν 7→ ι defines a continuous-time input/output

system.
(c) Determine its system theoretic properties, i.e., is it causal? strongly

causal? finitely observable? stationary? strongly stationary? memory-
less?

(d) What is the state space for the system?
(e) What is the control set for the system?
(f) What is the time-domain for the system?
(g) What is a reasonable choice for the space U of input signals?
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(h) If the source provides a constant voltage V0, what is the current I0 in the
circuit as t→∞?

6.7.5 We consider the filter of Butterworth [1930]. Answer the following ques-
tions.
(a) For n ∈ Z>0, show that the polynomial

Pn = X2n + (−1)n

has 2n roots, exactly half of which have negative real part.
Let λ1, . . . , λn be the roots of Pn with negative real part.
(b) Show that the polynomial Qn =

∏n
j=1(X − λ j) has real coefficients.

The Butterworth filter of order n is determined by the ordinary differential
equation

Dn
(
η
)
= µ

for η, µ ∈ L1
loc(R≥0;R), where D is the differential operator with constant

coefficients whose symbol is Qn; see Section 4.2.2.2 for notation.
(c) Explicitly determine the differential equations defining the Butterworth

filters of orders n ∈ {1, 2, 3, 4, 5}.
6.7.6 A continuous-time sliding averager takes an input signal µ ∈ L1

loc(R;R) and
returns the signal

η(t) =
1

T+ + T−

∫ t+T+

t−T−
µ(τ) dτ, t ∈ R,

for T−,T+ ∈ R≥0 with T+ + T− ∈ R>0. Answer the following questions.
(a) Show that this is a continuous-time convolution system and determine

the convolution kernel.
(b) Is the system causal? strongly causal? stationary? strongly stationary?

memoryless?
(c) Compute the output associated with the input µ = 1≥0.
(d) Let T+ = T− = 1 and compute the output associated with the input

µ(t) = sin(πt).
6.7.7 Consider a continuous-time convolution system Σ = (R,R,R,U ,Y , k) with

k ∈ L1(R;R). Define the step response of the system to be the output asso-
ciated with the input µ = 1≥0: 1Σ = k ∗ 1≥0 (evidently we are assuming that
1≥0 ∈ U ). Show that

1Σ(t) =
∫ t

−∞

k(τ) dτ, k(t) =
d1Σ
dt

(t), t ∈ R.
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6.7.8 Using the step response from Exercise 6.7.7, suppose that you know that
a continuous-time convolution system Σ = (R,R,R,U ,Y , k) has the step
response

1Σ(t) =

1, t ∈ [a, b),
0, otherwise

for some a, b ∈ R satisfying a < b.
(a) Determine the convolution kernel.
(b) What is gk(µ)(t) for a continuous input µ?
(c) For which values of a and b is the system causal?

6.7.9 Suppose that you know that a continuous-time convolution system Σ =
(R,R,R,U ,Y , k) has the input/output pair shown in Figure 6.10. Determine
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0.0
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Figure 6.10 An input (left) and corresponding output (right) for
a continuous-time convolution system

the convolution kernel for the system.
Hint: Use linearity, stationarity, and Exercise 6.7.7.

6.7.10 Consider the RLC circuit in Figure 6.11. Answer the following questions.

−
E

+

R

L

C

Figure 6.11 An RLC circuit

(a) Derive a scalar second-order differential equation for the current through
the circuit given the voltage at the source as input. Express the equations
as those for an initially at rest input/output system.
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(b) Derive a scalar second-order differential equation for the voltage across
the inductor given the voltage at the source as input. Express the equa-
tions as those for an initially at rest input/output system.
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Section 6.8

Linear discrete-time state space systems

We now carry out for discrete-time systems the constructions of Section 6.6
for continuous-time systems, considering a particular class of discrete-time state
space systems that are linear in both state and control. We mirror what we have
done with ordinary difference equations by working with systems that are time-
dependent, and then time-independent. Linearity will allow us to obtain more
particular results than we were able to obtain for not necessarily linear systems.

Do I need to read this section? As with the preceding two sections, the material
in this section is to be regarded as a core part of the material in this volume. •

6.8.1 Systems with time-varying coefficients

Let us begin with the definition, recalling from Section 3.3.3.3 the adaptation
to using abstract vector spaces in place of Euclidean spaces for linear systems.

6.8.1 Definition (Linear discrete-time state space system) A linear discrete-time
state space system is a nonuple

Σ = (X,U,Y,T,U ,A,B,C,D)

where
(i) X (the state space), U (the input space), and Y (the output space) are finite-

dimensional R-vector spaces,
(ii) T ⊆ Z(∆) is a discrete time-domain,
(iii) A : T→ L(X; X), B : T→ L(U; X), C : T→ L(X; Y), and D : T→ L(U; Y), and
(iv) U is a collection of mappings µ : T→ U. •

We note that a linear discrete-time state space system is, in particular, a discrete-
time state space system (with the mild adaptation from using Euclidean spaces to
using finite-dimensional vector spaces) with dynamics defined by

f : T × (X ⊕ U)→ X
(t, x,u) 7→ A(t)(x) + B(t)(u)

and with output map
h : T × (X ⊕ U)→ Y

(t, x,u) 7→ C(t)(x) + D(t)(u).

We note that linear discrete-time state space systems are, in fact, control-affine
discrete-time state space systems. Therefore, all the notions attached to discrete-
time state space systems can be applied to those that are linear. The system theoretic
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attributes of Section 6.3.1 apply in exactly the same way for linear discrete-time
state space systems; the reader can flesh this out in Exercise 6.8.1. One has the
set Ctraj(Σ) of controlled trajectories and the set Cout(Σ) of controlled outputs. In
particular, if (ξ, µ) is a controlled trajectory with (η, µ) the corresponding controlled
output, then these satisfy the equations

ξ(t + ∆) = A(t)(ξ(t)) + B(t)(µ(t)),
η(t) = C(t)(ξ(t)) + D(t)(µ(t)).

Moreover, the existence and uniqueness result from Theorem 6.3.9 for general
discrete-time state space systems can be adapted to linear systems. One gets the
following result upon doing this.

6.8.2 Theorem (Existence and uniqueness of controlled trajectories for linear
discrete-time state space systems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system, let T′ ⊆ T be a sub-time-domain, let µ : T′ →
U. Then, for any t0 ∈ T′ and x0 ∈ X, there exists a unique solution ξ : T′ → X to the
initial value problem

ξ(t + ∆) = A(t)(ξ(t)) + B(t)(µ(t)), ξ(t0) ∈ x0;

thus (ξ, µ) ∈ Ctraj(Σ).
Proof This follows immediately from Theorem 6.3.9. ■

Let us make a few more or less immediate comments about controlled trajecto-
ries and controlled outputs.

6.8.3 Remarks (Controlled trajectories and controlled outputs for linear discrete-
time state space systems)
1. From Corollary 5.7.2 we have an explicit formula for the controlled trajectory

(ξ, µ) ∈ Ctraj(Σ) with the initial condition x0 at t0:

ΦΣ(t, t0, x0, µ) = Φd
A,t0

(t)(x0)

+

(t−t0−∆)/∆∑
j=0

Φd
A,t0+( j+1)∆(t) ◦ B(t0 + j∆)(µ(t0 + j∆)), t ∈ dom(µ). (6.12)

The corresponding controlled output (η, µ) is, of course, given by

η(t) = C(t) ◦ΦΣ(t, t0, x0, µ) + D(t)(µ(t)), t ∈ dom(µ).

2. We note that, in contrast to general discrete-time state space systems, controlled
trajectories always exist on the entire domain of definition of the control. This
is one feature that makes working with linear systems less complicated than
working with general systems.
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3. In contrast to linear continuous-time state space systems, we do not have to fuss
with the exact way in which the system components A and B depend on time,
and on how this time dependence interacts with the nature of time dependence
of the control.

4. We can infer immediately from Proposition 6.3.12 and Theorem 6.3.13 the
properties of the flow ΦΣ for a linear discrete-time state space system. In
particular, we have continuity of the flow with respect to initial condition,
initial time, final time, and control. In fact, these conclusions follow most easily
and directly from the formula (6.12). •

We note that the dynamics and the output mapping are linear functions of (x,u).
That is to say, the mappings

X ⊕ U ∋ (x,u) 7→ A(t)(x) + B(t)(u) ∈ X,
X ⊕ U ∋ (x,u) 7→ C(t)(x) + D(t)(u) ∈ Y

are linear for each t ∈ T. Moreover, the flow is also linear in the sense of the
following result.

6.8.4 Proposition (Linearity of flow for linear discrete-time state space systems)
Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system and let T′ ⊆ T be a sub-time-domain. Then,
for each sub-time-domain T′ ⊆ T, the mapping

X ⊕U (T′) ∋ (x0, µ) 7→ ΦΣ(t, t0, x0, µ) ∈ X

is linear for each t, t0 ∈ T′.
Proof This follows immediately from the formula (6.12) for the flow of a linear
discrete-time state space system. ■

6.8.2 Systems with constant coefficients

Now we consider systems with the coefficient linear mappings for the dynamics
and the output map are independent of time. There are some simplifications that
arise in this case that are worth recording, so we devote this section to this class of
system.

6.8.5 Definition (Linear discrete-time state space system with constant coeffi-
cients) A linear discrete-time state space system with constant coefficients is
a nonuple

Σ = (X,U,Y,T,U ,A,B,C,D)

where
(i) X (the state space), U (the input space), and Y (the output space) are finite-

dimensional R-vector spaces,
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(ii) T ⊆ Z(∆) is a discrete time-domain,
(iii) A ∈ L(X; X), B ∈ L(U; X), C ∈ L(X; Y), and D ∈ L(U; Y), and
(iv) U ⊆ ℓloc((T); U). •

In this case, the system is an autonomous discrete-time state space system, and
the dynamics and output map are defined, independent of time, as

f : X ⊕ U→ X
(x,u) 7→ A(x) + B(u)

and
h : X ⊕ U→ X

(x,u) 7→ C(x) + D(u),

respectively.
We note that a linear discrete-time state space system with constant coefficients

is autonomous, and so is stationary, and strongly stationary if and only if D =
0 (see Exercise 6.8.1). This stationarity is often reflected with some particular
terminology.

6.8.6 Terminology What we call a linear discrete-time state space system with constant
coefficients is often called a linear time-invariant system, or an LTI system, in
short. As with continuous-time systems, we shall stick to the more cumbersome
terminology in order to maintain internal consistency with other terminology else-
where in this volume, but do not object to a reader using the terminology “LTI
system” in their private life. •

Note that a controlled trajectory (ξ, µ), with associated controlled output (η, µ),
satisfies

ξ(t + ∆) = A(ξ(t)) + B(µ(t)),
η(t) = C(ξ(t)) + D(µ(t)).

We have the following slight simplification of the existence and uniqueness theorem
for systems with constant coefficients.

6.8.7 Theorem (Existence and uniqueness of controlled trajectories for linear
discrete-time state space systems with constant coefficients) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients, let T′ ⊆ T be a
sub-time-domain, and let µ : T′ → U. Then, for any t0 ∈ T′ and x0 ∈ X, there exists a
unique solution ξ : T′ → X to the initial value problem

ξ(t + ∆) = A(ξ(t)) + B(µ(t)), ξ(t0) ∈ x0;

thus (ξ, µ) ∈ Ctraj(Σ).



2022/03/07 6.8 Linear discrete-time state space systems 639

Proof This follows immediately from Theorem 6.8.2. ■

We can simplify, for systems with constant coefficients, some of the discussion
concerning flows and controlled outputs.

6.8.8 Remarks (Controlled trajectories and controlled outputs for linear discrete-
time state space systems with constant coefficients)
1. From Theorem 5.7.7 we have an explicit formula for the controlled trajectory

(ξ, µ) ∈ Ctraj(Σ) with the initial condition x0 at t0:

ΦΣ(t, t0, x0, µ) = PA

(
t−t0
∆

)
(x0)

+

(t−t0−∆)/∆∑
j=0

PA

(
t−t0−( j+1)∆

∆

)
(B(µ(t0 + j∆))), t ∈ dom(µ). (6.13)

The corresponding controlled output (η, µ) is, of course, given by

η(t) = C ◦ΦΣ(t, t0, x0, µ) + D ◦ µ(t), t ∈ dom(µ).

2. We can infer immediately from Proposition 6.3.12 and Theorem 6.3.13 the
properties of the flow ΦΣ for a linear discrete-time state space system with
constant coefficients. In particular, we have continuity of the flow with respect
to initial condition, initial time, final time, and control. In fact, these conclusions
follow most easily and directly from the formula (6.13). •

The situation concerning linearity is similar for systems with constant coeffi-
cients to systems with time-varying coefficients. First we note that the dynamics
and the output mapping are linear functions of (x,u). That is to say, the mappings

X ⊕ U ∋ (x,u) 7→ A(x) + B(u) ∈ X,
X ⊕ U ∋ (x,u) 7→ C(x) + D(u) ∈ Y

are linear. Moreover, the flow is also linear in the sense of the following result.

6.8.9 Proposition (Linearity of flow for linear discrete-time state space systems
with constant coefficients) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients, and let T′ ⊆ T be a
sub-time-domain. Then, for each sub-time-domain T′ ⊆ T, the mapping

X ⊕ ℓloc(T′; U) ∋ (x0, µ) 7→ ΦΣ(t, t0, x0, µ) ∈ X

is linear for each t, t0 ∈ T′.
Proof This follows immediately from the formula (6.13) for the flow of a linear
discrete-time state space system. ■
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6.8.3 The impulse transmission map and the impulse response

We now consider the discrete-time versions of the impulse transmission map
and the impulse response.

6.8.3.1 The time-varying case We begin with the definition, recalling from
Example IV-1.1.9–5 the definition of the pulse signal P. We shall, with a mild
abuse of notation, denote

τ∗t0
P(t) =

1, t = t0,

0, t , t0,

for t, t0 ∈ T. Let us also define

6.8.10 Definition (Impulse transmission map for linear discrete-time state space
systems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system.
(i) The proper impulse transmission map for Σ at t0 is the function

pitmΣ,t0
: T→ L(U; Y)

defined by

pitmΣ,t0
(t) = 1≥0(t − (t0 + ∆))C(t) ◦Φd

A,t0+∆
(t) ◦ B(t0).

(ii) The impulse transmission map for Σ at t0 ∈ R is the function

itmΣ,t0 : T→ L(U; Y)

defined by
itmΣ,t0(t) = pitmΣ,t0

(t) + τ∗t0
P(t)D(t). •

Let us give a simple, direct characterisation of the proper impulse response.
We note that, unlike in the continuous-time case, in the discrete-time case we do
not need to work with distributional interpretation. The reason for this is that the
pulse gives the effect of a delta-signal, but is a bona fide signal in the discrete-time
case.

6.8.11 Theorem (An interpretation of the proper impulse transmission map) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system and let t0 ∈ R. Then

pitmΣ,t0
(t)(u) = 1≥0(t − (t0 + ∆))C(t) ◦ ξt0(t),

where ξt0 : T→ X is the solution of the initial value problem

ξt0(t + ∆) = A(t) + B(t)(τ∗t0
P(t)u), ξt0(t0) = 0.
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Proof Let µ = (τ∗t0
P)u. By (6.12), the solution to the initial value problem in the

statement of the theorem is

ΦΣ(t, t0, 0, µ) =
(t−t0−∆)/∆∑

j=0

Φd
A,t0+( j+1)∆(t) ◦ B(t0 + j∆)(µ(t0 + j∆)) = Φd

A,t0+∆
(t) ◦ B(t0)(u).

The theorem then follows immediately from definitions and conventions for summa-
tion. ■

It is also easy, since we do not have to work with distributions, to see that
the (non-proper) impulse transmission map has in interpretation analogous to the
preceding theorem. Indeed, if ξt0 is the solution to the initial value problem

ξt0(t + ∆) = A(t) + B(t)(τ∗t0
P(t)u), ξt0(t0) = 0,

i.e., the state response to the input (τ∗t0
P)u, then the corresponding output is

η(t) = C(t)ξt0(t) + D(t)(τ∗t0
P(t)u) = pitmΣ,t0

(t)(u) + D(t0)(u) = itmΣ,t0(t)(u).

Thus the initial transmission map for Σ at t0 is the output for zero initial condition
at t0 corresponding to the pulse input of u at time t0.

The next result follows immediately from the definition of the impulse trans-
mission map and the formula (6.9).

6.8.12 Proposition (Using the impulse transmission map to determine outputs) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system and let µ ∈ U . Then the output corresponding
to an initial condition x0 at time t0 is

η(t) = Φd
A,t0

(t)(x0)+
(t−t0−∆)/∆∑

j=0

pitmΣ,t0+j∆(t)(µ(t0+ j∆))+D(t)(µ(t)), t ∈ dom(µ)≥t0 .

The punchline of the result is that the output is a linear combination of three
terms:

C(t) ◦Φd
A(t, t0)(x0)︸                ︷︷                ︸

term 1

+

(t−t0−∆)/∆∑
j=0

pitmΣ,t0+ j∆(t)µ(t0 + j∆)

︸                                  ︷︷                                  ︸
term 2

+D(t)(µ(t))︸     ︷︷     ︸
term 3

. (6.14)

Let us describe these terms, intuitively, just as we have already done for continuous-
time systems.
1. The first term is the contribution from a nonzero initial provides the contribution

to the output from the nonzero initial condition x0 at time t0.
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2. The second term has the most complex interpretation. First of all, by Theo-
rem 6.8.11, the summand pitmΣ,t0+ j∆(tq)µ(t0 + j∆) is the output obtained from
the input (τ∗t0+ j∆P)u, i.e., a pulse of µ(t0 + j∆) at time t0 + j∆. The second terms
can then be thought of as the sum of these contributions as t0 + j∆ goes from t0

to t − ∆.
3. The third term simply arises from the direct transmission from input to output

determined by D.

6.8.3.2 The constant coefficient case The preceding constructions simplify
substantially in the case of constant coefficient systems. This is fortunate, since it
is this case that we will examine with respect to transform methods in Chapters 7
and 8. Let us record the simplifications.

The definition we make is the following. For systems with constant coefficients,
there is no reason to not take the time-domain to be Z(∆), and so we do so.

6.8.13 Definition (Impulse response) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients and with
T = Z(∆).

(i) The proper impulse response for Σ is the function

pirΣ : Z(∆)→ L(U; Y)

t 7→ 1≥0(t − ∆)C ◦ PA

(
t−∆
∆

)
◦ B.

(ii) The impulse response for Σ is the function

irΣ : Z(∆)→ L(U; Y)
t 7→ pirΣ(t) + P(t)D.

•

The connection between the impulse response and the impulse transmission
map is given by the following result.

6.8.14 Proposition (The impulse response and the impulse transmission map) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients and with T = Z(∆).
Then the proper impulse transmission map is given by

pitmΣ,τ(t) = pirΣ(t − τ), t, τ ∈ Z(∆), t ≥ τ.

Proof This follows from the definitions, and the fact that, for A being independent of
time, we have Φd

A(t, τ) = PA

(
t−τ
∆

)
by definition. ■
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Thus everything we said about the impulse transmission map above can be
translated into a statement about the impulse response in the constant coefficient
case. However, since there is more that can be said, and what can be said can be
said more simply, let us record these translations explicitly.

We begin by giving the impulse response as a solution to an initial value prob-
lem.

6.8.15 Theorem (An interpretation of the proper impulse response) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients and with T = Z(∆).
Then

pirΣ(t)(u) = 1≥0(t − ∆)C ◦ ξ0(t),

where ξ0 : Z(∆)→ X is the unique solution of the initial value problem

ξ0(t + ∆) = A(ξ0(t)) + B(P(t)u), ξ(0) = 0.

Proof This follows immediately from Theorem 6.8.11. ■

The theorem tells us that, when D = 0, the proper impulse response if the
“output” corresponding to an “input” Pu, i.e., a pulse of u at time 0. Similarly
to the case of the impulse transmission map, it also holds that the (non-proper)
impulse response is the output for this same input, when D is not necessarily zero.

Of course, just as in Proposition 6.8.12, we can use the impulse response to
characterise outputs for linear discrete-time state space systems with constant co-
efficients.

6.8.16 Proposition (Using the impulse response to determine outputs) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients and with T = Z(∆)
and let µ ∈ U . Then the output corresponding to the initial condition x0 at time t0 is

η(t) = PA

(
t−t0
∆

)
(x0) +

(t−t0−∆)/∆∑
j=0

pirΣ(t − t0 − j∆)(µ(t0 + j∆)) + D ◦ µ(t), t ∈ dom(µ)≥t0 .

Proof This is a direct translation of Proposition 6.8.12 to the constant coefficient case.
■

The interpretation we give for the three terms in the output are the same as we
gave after the statement of Proposition 6.8.12. However, in the constant coefficient
case, the time t0 = 0 is distinguished, and this gives rise to distinguishing this
particular case.
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6.8.17 Definition (Zero-state/zero-time response) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients and with
T = Z(∆) and let µ ∈ U with supp(µ) = Z≥0(∆)≥0. The zero-state/zero-time
response to the input µ is

ζµ : Z(∆)→ Y

t 7→
(t−∆)/∆∑

j=0

pirΣ(t − j∆)µ( j∆).
•

These sorts of considerations will be considered in detail in Section 6.9.6.2.

Exercises

6.8.1 Consider a linear discrete-time state space system

Σ = (X,U,Y,T,U ,A,B,C,D).

Answer the following questions.
(a) Show that Σ defines a general input/output system as per Defini-

tion 2.1.3. Identify the components of the general input/output system.
(b) Show that Σ is a general time system as per Definition 2.2.9. Identify

the components of the general time system.
(c) Show that, as a general time system, Σ is output complete.
(d) Show that, as a general time system, Σ is complete.
(e) Show that Σ is causal and is strongly causal if and only if D = 0.
(f) Show that Σ has a dynamical systems representation as per Defini-

tion 2.2.19. Identify components of the dynamical systems represen-
tation.

(g) Show that Σ has a state space representation as per Definition 2.2.24.
Identify components of the state space representation.

6.8.2 For the following linear discrete-time state space systems

Σ = (X,U,Y,T,U ,A,B,C,D),

compute the proper impulse transmission map (or proper impulse response,
as appropriate) and the impulse transmission map (or impulse response, as
appropriate).
(a) Take
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(i) X = R,
(ii) U = R,
(iii) Y = R,
(iv) T = Z,
(v) U = ℓloc(Z;R),

(vi) A =
[
0
]
,

(vii) B =
[
1
]
,

(viii) C =
[
1
]
,

(ix) D =
[
1
]
,

(b) Take
(i) X = R2,
(ii) U = R,
(iii) Y = R2,
(iv) T = Z,
(v) U = ℓloc(Z;R),

(vi) A =
[
0 −1
1 0

]
,

(vii) B =
[
1
0

]
,

(viii) C =
[
1 0
0 1

]
,

(ix) D =
[
1
0

]
,

(c) Take
(i) X = R3,
(ii) U = R2,
(iii) Y = R2,
(iv) T = Z,
(v) U = ℓloc(Z;R),

(vi) A =

0 1 0
0 0 0
0 0 −1

,
(vii) B =

0 0
1 0
0 1

,
(viii) C =

[
1 1 1
2 −2 0

]
,

(ix) D =
[
0 0
0 0

]
,

(d) Take
(i) X = R,
(ii) U = R,
(iii) Y = R,
(iv) T = Z,
(v) U = ℓloc(Z;R),

(vi) A =
[
−a(t)

]
,

(vii) B =
[
1
]
,

(viii) C =
[
1
]
,

(ix) D =
[
0
]
,

Hint: Refer to Example 4.6.5.
6.8.3 Let

Σ = (X,U,Y,R,U ,A,B,C,D)

be a linear continuous-time state space system. Let ∆ ∈ R>0. Define

Adisc(k∆) = Φc
A((k + 1)∆, k∆),

Bdisc(k∆) = B(k∆),
Cdisc(k∆) = C(k∆),
Ddisc(k∆) = D(k∆),
Udisc = {µdisc : dom(µ) ∩Z(∆)→ U | µdisc(k∆) = µ(k∆), µ ∈ U },

for k ∈ Z. Define a linear discrete-time state space system by

Σdisc = (X,U,Y,Z(∆),Udisc,Adisc,Bdisc,Cdisc,Ddisc)
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and answer the following questions.
(a) Explain what it means for (ηdisc, µdisc) ∈ Cout(Σdisc) to be a sampled

controlled output for some controlled output of Σ.
(b) Give conditions on U that ensure that every controlled output of Udisc is

a sampled controlled output for some controlled output of Σ.
(c) Show that, if Σ is a linear continuous-time state space system with con-

stant coefficients, then Σdisc is a linear discrete-time state space system
with constant coefficients.

(d) Is it true that, if

Σ′disc = (X,U,Y,Z(∆),U ′disc,A
′

disc,B
′

disc,C
′

disc,D
′

disc)

is a linear discrete-time state space system, then there exists a linear
continuous state space system

Σ = (X,U,Y,R,U ,A,B,C,D)

such that Σ′disc = Σdisc?
6.8.4 Consider the following difference equation for functions η, µ : Z(∆)→ F:

η(t + n∆) + pn−1η(t + (n − 1)∆) + · · · + p1η(t + ∆) + p0η(t)
= cn−1µ(t + (n − 1)∆) + cn−2(t + (n − 2)∆) + · · · + c1µ(t + ∆) + c0µ(t).

Answer the following questions.
(a) Show that this determines a general time system as per Definition 2.2.9.

Clearly identify the spaces of input and output signals.
(b) Argue that a natural choice of states for this system is

ξ j(t) = η(t + j∆), j ∈ {0, 1, . . . ,n − 1}.

(c) Argue that a somewhat less natural, but still valid, choice of states is
ξn(t) = η(t) and

ξn− j(t) =
j∑

k=0

pn− j+kη(t + k∆) −
j−1∑
k=0

cn− j+kµ(t + k∆), j ∈ {1, . . . ,n − 1}.

(d) Derive a linear discrete-time state space system with constant coefficients
for which the input/output relation is the same as the general time system
from part (a) and for which the states are as in part (c).
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Section 6.9

Linear discrete-time input/output systems

The final class of systems we consider in this chapter are linear discrete-time
input/output systems. The structure of this section follows the continuous-time
case, with an initial consideration of general systems, and then specialisation to
systems defined by kernels, first summation kernels and then convolution kernels.

Do I need to read this section? As with the preceding three sections, the mate-
rial in this section is to be regarded as a core part of the material in this volume. •

6.9.1 General definitions

We being by considering a general setting for linear discrete-time input/output
systems. The essential definition, which follows, is basically the Definition 6.4.3
for discrete-time input/output systems, with the addition of linearity. This re-
quires linearity for both the spaces of input and output signals, and of the system
mappings.

6.9.1 Definition (Linear discrete-time input/output system) A linear discrete-time
input/output system is a quintuple Σ = (U,Y,T,U ,Y , g), where

(i) U (the input space) and Y (the output space) are finite-dimensional R-vector
spaces,

(ii) T ⊆ Z(∆) is a discrete time-domain (the time-domain),
(iii) U ⊆ U(T) is a space of partially defined signals with topology (the input

signals) such that, for every sub-time-domain S ⊆ T, U (S) is a subspace of
US,

(iv) Y ⊆ Y(T) is a space of partially defined signals with topology (the output
signals) such that, for every sub-time-domain S ⊆ T, Y (S) is a subspace of
YS, and

(v) g : U → Y has the following properties:

(a) for every sub-time-domain S ⊆ T, the restriction of g to U (S), denoted
by gS, takes values in Y (S);

(b) if S, S′ ⊆ T are sub-time-domains with S′ ⊆ S, then gS|U (S′) = gS′ ;
(c) gS is linear and continuous for every sub-time-domain S ⊆ T.

Moreover,
(vi) a pair (µ, η) with µ ∈ U (S) and η = gS(µ) is a behaviour for Σ, and we denote

byB (Σ) the set of behaviours. •
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Of course, linear discrete-time input/output systems are discrete-time in-
put/output systems, accepting the mild generalisation from using general finite-
dimensional vector spaces in place of Euclidean spaces. Thus all of the comments
made in Section 6.4.2 about the connections between discrete-time input/output
systems and the general classes of systems from Chapter 2 are applicable to linear
discrete-time input/output systems. In addition, linear discrete-time input/output
systems are linear time systems as per Definition 2.2.43. Note that, due to the fact
that we work with spaces of input and output signals that are comprised of partially
defined signals, it is not generally the case that a linear discrete-time input/output
system is a linear general input/output system as per Definition 2.1.12. However,
were we to restrict to the case of signals only defined on the entire time-domain
T, i.e., to not allow partially defined signals, then such a linear discrete-time in-
put/output system would indeed be a linear general input/output system as per
Definition 2.1.12.

6.9.2 Summation kernel systems

We now consider a special class of linear discrete-time input/output systems. As
we shall assert precisely in Section 6.9.6, the class of systems we consider generalise
aspects of the input/output behaviour of a linear discrete-time state space system.

The initial ingredient to the constructions we make is contained in the following
definition.

6.9.2 Definition (Summation kernel, summation operator) Let T ⊆ R be a discrete
time-domain, and let U and Y be finite-dimensional R-vector spaces.

(i) A summation kernel from U to Y on T is a mapping

K : T × T→ L(U; Y).

For t, τ ∈ T, we shall denote

Kt : T→ L(U; Y)
τ 7→ K(t, τ)

Kτ : T→ L(U; Y)
t 7→ K(t, τ).

Let U ⊆ UT be a subspace.
(ii) A summation kernel K is compatible withU if, for every µ ∈ U and for every

t ∈ T, Kt(µ) ∈ ℓ1(T; L(U; Y)).
(iii) If K is compatible with U , the summation operator defined by K is the map-

ping
gK : U → YT

defined by
gK(µ)(t) =

∑
τ∈T

K(t, τ)(µ(τ)), t ∈ T. •



2022/03/07 6.9 Linear discrete-time input/output systems 649

As yet, we do not have the structure of a discrete-time input/output system,
since the domain and codomain of gK do not have useful structure (other than their
vector space structure). We need to provide conditions on K that ensure that the
summation operator gK takes signals from a nice domain into a nice codomain.
The following definition captures the properties we want.

6.9.3 Definition (Summation kernel system) A summation kernel system is a sextuple
Σ = (U,Y,T,U ,Y ,K) where

(i) U (the input space) and Y (the output space) are finite-dimensional R-vector
spaces,

(ii) T ⊆ Z(∆) is a discrete time-domain (the time-domain),
(iii) U ⊆ UT is a subspace of signals with topology (the input signals),
(iv) Y ⊆ YT is a subspace of signals with topology (the output signals),
(v) K is a summation kernel compatible with U , and
(vi) the summation operator gK is a continuous linear mapping from U to Y . •

Of course, the definition gives us no insight into which K’s, U ’s, andY ’s might
possibly comprise a discrete-time kernel system. In order to obtain characterisa-
tions which give such systems, we have to prove something, and the following
result gives some cases that work.

6.9.4 Theorem (Some summation kernel systems) Let T ⊆ Z(∆) be a discrete time-
domain, let U and Y be finite-dimensional R-vector spaces, and let p ∈ [1,∞]. In the
following cases, the summation kernel K : T × T → L(U; Y), the input space U , and the
output space Y are such that

Σ = (U,Y,T,U ,Y ,K)

is a summation kernel system:
(i) (a) Kt ∈ ℓ1(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥1 is in ℓ∞(T; L(U; Y)),

(b) U ⊆ ℓ∞(T; U), and
(c) Y = ℓ∞(T; Y);

(ii) (a) Kt ∈ ℓ∞(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥∞ is in ℓ1(T; L(U; Y)),
(b) U ⊆ ℓ1(T; U), and
(c) Y = ℓ1(T; Y);

(iii) (a) Kt ∈ ℓ1(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥1 is in ℓ∞(T; L(U; Y)),
(b) Kt ∈ ℓ∞(T; L(U; Y)) for each t ∈ T and t 7→ ∥Kt∥∞ is in ℓ1(T; L(U; Y)),
(c) U ⊆ ℓp(T; U), and
(d) Y = ℓp(T; Y).
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Proof (i) First of all, for t ∈ T,∑
τ∈T

∥K(t, τ)µ(τ)∥ ≤ ∥µ∥∞
∑
τ∈T

∥Kt∥ < ∞,

giving the compatibility of K with U in this case. Also by Exercise III-3.8.2,

∥gK(µ)∥∞ = sup


∥∥∥∥∥∥∥∑τ∈TK(t, τ)(µ(τ))

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣ t ∈ T


≤ sup

∑
τ∈T

∥∥∥K(t, τ)(µ(τ))
∥∥∥ ∣∣∣∣∣∣∣ t ∈ T


≤ sup

∥µ∥∞∑
τ∈T

∥K(t, τ)∥

∣∣∣∣∣∣∣ t ∈ T


≤ sup{∥Kt∥1 | t ∈ T}︸                ︷︷                ︸

C∞

∥µ∥∞.

Thus ∥gK(µ)∥∞ ≤ C∞∥µ∥∞, giving continuity of gK by Theorem III-3.5.8.
(ii) We first have, for t ∈ T,∑

τ∈T

∥K(t, τ)µ(τ)∥ ≤ ∥Kt∥∞

∑
τ∈T

∥µ(τ)∥ < ∞,

giving the compatibility of K with U . We also have

∥gK(µ)∥1 =
∑
t∈T

∥∥∥∥∥∥∥∑τ∈TK(t, τ)(µ(τ))

∥∥∥∥∥∥∥
≤

∑
t∈T

∑
τ∈T

∥K(t, τ)(µ(τ))∥


=

∑
τ∈T

∑
t∈T

∥K(t, τ)(µ(τ))∥


≤

∑
τ∈T

∑
t∈T

∥K(t, τ)∥

 ∥µ(τ)∥

≤

 ∑
t∈T

∥Kt∥∞︸    ︷︷    ︸
C1


∑
τ∈T

∥µ(τ)∥


using Fubini’s Theorem. Thus ∥gK(µ)∥1 ≤ C1∥µ∥1, and we get this part of the theorem
by Theorem III-3.5.8.

(iii) Clearly we can restrict ourselves to p ∈ (1,∞). Thus we take p′ ∈ (1,∞) to be
the conjugate index for which 1

p +
1
p′ = 1. Let C∞ and C1 be as defined in the first two

parts of the proof.
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To determine the compatibility of K with µ, for µ ∈ ℓp(T; U), write

µ0(t) =

µ(t), ∥µ(t)∥ ≤ 1,
0, otherwise,

and µ1 = µ − µ0. Note that µ0 ∈ ℓ∞(T; U) and µ1 ∈ ℓp(T; U). Moreover,

∥µ1(t)∥ ≤ ∥µ1(t)∥p, t ∈ T,

and so µ1 ∈ ℓ1(T; U). One can then combine the compatibility conclusions from the
first two parts of the proof to conclude that K is compatible with ℓp(T; U).

We now compute, using Hölder’s inequality in the form of Lemma III-3.8.16,

∥gK(µ)(t)∥ ≤
∑
τ∈T

∥K(t, τ)(µ(τ))∥

≤

∑
τ∈T

(∥K(t, τ)∥1/p∥µ(τ)∥)∥K(t, τ)∥1/p
′

≤

∑
τ∈T

∥K(t, τ)∥∥µ(τ)∥p


1/p ∑
τ∈T

∥K(t, τ)∥


1/p′

≤ C1/p′
∞

∑
τ∈T

∥K(t, τ)∥∥µ(τ)∥p


1/p

.

Therefore,

∥gK(µ)∥pp ≤ Cp/p′
∞

∑
τ∈T

∑
t∈T

∥K(t, τ)∥∥µ(τ)∥p


≤ Cp/p′
∞

∑
τ∈T

∑
t∈T

∥Kt∥∞∥µ(τ)∥p


≤ Cp/p′
∞

∑
τ∈T

∥µ(τ)∥p

∑

t∈T

∥Kt∥∞


≤ Cp/p′

∞ C1∥µ∥
p
p.

Thus we have
∥gK(µ)∥p ≤ C1/p

1 C1/p′
∞ ∥µ∥p,

giving the result, again using Theorem III-3.5.8. ■

The preceding result, while interesting, is limited in scope. Indeed, it has
nothing to say about systems that take ℓp

loc(T; U) to ℓq
loc(T; Y). The restriction in

Theorem 6.9.4 to input and output spaces that are ℓp-spaces has more to do with
the stability of the systems than with their general system theoretic attributes.
However, to overcome these limitations in systematic way requires putting some
general restrictions on the kernel K and/or the input signals U . One nice class of
kernels are those that give rise to causal systems. Let us define the class of kernels
in this case.
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6.9.5 Definition (Causal summation kernel) Let T ⊆ Z(∆) be a discrete time-domain,
and let U and Y be finite-dimensional R-vector spaces. A summation kernel

K : T × T→ L(U; Y)

is causal if K(t, τ) = 0 for τ > t. •

Let us relate this notion of a causal summation kernel to a causal system.

6.9.6 Lemma (Causal summation kernels give rise to causal summation kernel
systems) Let T ⊆ Z(∆) be a discrete time-domain, let U and Y be finite-dimensional
R-vector spaces, and let U be a set of input signals. If K is a causal summation kernel
compatible with U , then the discrete-time input/output system gK : U → YT is causal.

Proof Let µ1, µ2 ∈ U satisfy dom(µ1) = dom(µ2) and let t ∈ dom(µ1) = dom(µ2).
Suppose that (µ1)T≤t∩dom(µ1) = (µ2)T≤t∩dom(µ2). Then

gK(µ1)(t) =
∑
τ∈T

K(t, τ)(µ1(τ)) =
∑
τ∈T≤t

K(t, τ)(µ1(τ))

=
∑
τ∈T≤t

K(t, τ)(µ2(τ)) =
∑
τ∈T

K(t, τ)(µ2(τ)) = gK(µ2)(t).

This is the desired causality. ■

One might like to have the causality of the kernel as being necessary for the
causality of the associated summation operator. However, to state a general such
theorem requires having some relationship between the kernel and the set of inputs
that will just be confusing. The basic idea, however, is clear. If the summation
kernel is not causal, then there will be some t ∈ T and an interval S ⊆ T>t such that∑

τ∈S

∥K(t, τ)∥ , 0.

Generally speaking, one can expect there to be an input µ for which∑
τ∈S

K(t, τ)(µ(τ)) , 0.

If one can additionally ask that supp(µ) ⊆ S, then we would have gK(µ)(t) , 0, even
though µ is zero up to time t. This would preclude causality.

With the above considerations at hand, let us consider situations where a causal
summation kernel defines a summation kernel system. As we see, the condition of
causality of the summation kernel, as well as the causality of the set of input signals
as in Definition IV-1.1.16, ensures causality of the system. Note that the result we
state here is simpler than the continuous-time version, Theorem 6.7.7, because
there is no distinction between the spaces ℓp

loc(T; V), p ∈ [1,∞], cf. Section IV-1.2.5.
Thus we restrict ourselves to consideration of ℓloc(T; V) = VT.
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6.9.7 Theorem (Summation kernel systems with causal kernels and causal inputs)
Let T ⊆ Z(∆) be a discrete time-domain, let U and Y be finite-dimensional R-vector

spaces, and let p ∈ [1,∞]. Under the following hypotheses, the causal summation kernel
K : T × T→ L(U; Y), the input space U , and the output space Y are such that

Σ = (U,Y,T,U ,Y ,K)

is a summation kernel system:
(i) U ⊆ ℓloc(T; U) and there exists t0 ∈ T such that supp(µ) ⊆ T≥t0 for every µ ∈ U ;
(ii) Y = ℓloc(T; Y).

Proof By Lemma 6.9.6 and Theorem IV-4.2.47, K is compatible with U . Theo-
rem IV-4.2.47 also gives continuity of the map gK. ■

6.9.3 How general are summation kernel systems?

In Section 6.7.3 we considered the matter of when a linear continuous-time
input/output system is an integral kernel system. We saw that we were able
to give some quite general conditions involving the Schwartz Kernel Theorem,
Theorem IV-4.8.1. Here we shall address the same sort of questions for summation
kernel systems, and we shall see that the answers are both more general and
simpler.

6.9.8 Proposition (Linear discrete-time input/output systems that are summation
kernel systems) Consider a linear discrete-time input/output system

Σ = (U,Y,T, ℓloc(T; U), ℓloc(T; Y),g).

Then there exists a summation kernel K such that g = gK.
Proof For τ ∈ T and u ∈ U, let K(t, τ)(u) = g(τ∗τPu)(t). If µ ∈ ℓloc(T; U), then we can
write

µ =
∑
τ∈T

τ∗τPµ(τ).

Moreover,

g(µ)(t) = g

∑
τ∈T

τ∗τPµ(τ)

 (t) =

∑
τ∈T

g(τ∗τPµ(τ))

 (t)

=
∑
τ∈T

K(t, τ)µ(τ) = gK(µ)(t).

where we move g inside the sum by continuity. ■

6.9.4 Discrete-time convolution systems

In this section we consider a special class of summation kernel systems. These
arise from requiring stationarity of the summation kernel system, and the following
result captures the manner in which stationarity arises. We focus on systems with
time-domain T = Z(∆), since this can be done without loss of generality in any
case.



654 6 Classes of continuous- and discrete-time systems 2022/03/07

6.9.9 Proposition (Stationary summation kernel systems) Let U and Y be finite-
dimensional R-vector spaces and let K : Z(∆) × Z(∆) → L(U; Y) be an integral kernel
compatible with a setU of input signals. Suppose thatU is translation invariant, i.e., that
τ∗aµ ∈ U for every a ∈ Z(∆) and µ ∈ U . Denote by

ΣK = (U,Y,U ,YZ(∆),Z(∆),gK)

the general time system. Then the following statements hold:
(i) if

(a) U has the property that, if f ∈ ℓloc(Z(∆);R) satisfies∑
t∈Z(∆)

f(t)µ(t), µ ∈ U ,

then f = 0, and
(b) ΣK is stationary,

then there exists k ∈ ℓloc(Z(∆); L(U; Y)) such that K(t, τ) = k(t− τ) for almost every
(t, τ) ∈ R2;

(ii) if there exists k ∈ ℓloc(Z(∆); L(U; Y)) such that K(t, τ) = k(t − τ) for every (t, τ) ∈
Z(∆)2, then ΣK is strongly stationary.

Proof (i) Suppose that ΣK is stationary. Then, for every a ∈ Z(∆) and for every
behaviour (µ, η) for ΣK, (τ∗aµ, τ∗aη) is also a behaviour. Note that this gives

η(t) =
∑
τ∈Z(∆)

K(t, τ)(µ(τ))

and
η(t − a) =

∑
τ∈Z(∆)

K(t, τ)(µ(τ − a))

for every t ∈ Z(∆). By a change of summation variable, the second of these equations
becomes

η(t) =
∑
τ∈Z(∆)

K(t + a, τ + a)(µ(τ)).

Thus we have ∑
τ∈Z(∆)

(K(t, τ) − K(t + a, τ + a))(µ(τ)) = 0

for every t ∈ Z(∆). Thus

K(t, τ) = K(t + a, τ + a), a ∈ Z(∆), (t, τ) ∈ Z(∆)2.

Therefore, for (t, τ) ∈ Z(∆)2 we have, by taking a = −τ, K(t, τ) = K(t − τ, 0). Therefore,
taking k(t) = K(t, 0), we get the result.

(ii) We leave this to the reader as Exercise 6.9.2. ■

With this result in mind, we make the following definitions.
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6.9.10 Definition (Convolution kernel, convolution operator defined by convolution
kernel) Let U and Y be finite-dimensional R-vector spaces.

(i) A discrete-time convolution kernel from U to Y is a mapping

k : Z(∆)→ L(U; Y).

Let U ⊆ UZ(∆) be a subspace.
(ii) A discrete-time convolution kernel k is compatible withU if, for every µ ∈ U

and for every t ∈ Z(∆), τ 7→ k(t − τ) ◦ µ(τ) ∈ ℓ1(Z(∆); L(U; Y)).
(iii) If k is compatible with U , the discrete-time convolution operator defined by

k is the mapping
gk : U → YZ(∆)

defined by
gk(µ)(t) =

∑
τ∈Z(∆)

k(t − τ)(µ(τ)), t ∈ Z(∆). •

6.9.11 Definition (Discrete-time convolution system) A discrete-time convolution sys-
tem is a quintuple Σ = (U,Y,U ,Y , k) where

(i) U (the input space) and Y (the output space) are finite-dimensional R-vector
spaces,

(ii) U ⊆ UZ(∆) is a subspace of signals with topology (the input signals),
(iii) Y ⊆ YZ(∆) is a subspace of signals with topology (the output signals),
(iv) k ∈ is a discrete-time convolution kernel compatible with U , and
(v) the discrete-time convolution operator gk is a continuous linear mapping

from U to Y . •

Of course, a discrete-time convolution system

Σ = (U,Y,U ,Y , k)

is a summation kernel system

Σ′ = (U,Y,Z(∆),U ,Y ,K)

with K(t, τ) = k(t − τ). Moreover, in Sections IV-4.2.7 and IV-4.2.8, we gave results
about convolvable pairs of signals defined on Z(∆) that we can use here to give
some specific instances of continuous-time convolution systems. We refer the
reader to the above listed sections for precise results as reproducing these would
be an unnecessary distraction.

As with Theorem 6.9.4, the results from Sections IV-4.2.7 and IV-4.2.8 are quite
restrictive in that they apply only to signals that are summable in some sense, and
this is a quite limited class of signals. This can be rectified, both mathematically and
practically, by restricting to causal kernels and inputs. Based on Definition 6.9.5,
we make the following definition.
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6.9.12 Definition (Causal discrete-time convolution kernel) Let U and Y be finite-
dimensional R-vector spaces. A discrete-time convolution kernel

k : Z(∆)→ L(U; Y)

is causal if k(t) = 0 for t < 0. •

We can then extend the applicability of the results from Sections IV-4.2.7
and IV-4.2.8 to causal convolution kernels, and with spaces of input and out-
put signals that are only appropriately locally summable. In this respect, we refer
the reader to Section IV-4.2.9 that provide some classes of convolution systems
with causal kernels. Rather than reproduce all of the results from these sections in
our specific setting here, let us simply indicate the steps one must take to adapt the
results.

Let U and Y be finite-dimensionalR-vector spaces and let k be a causal convolu-
tion kernel residing in an appropriate space of locally summable signals. Suppose
that U is a subset of an appropriate space of locally summable signals and that
t0 ∈ Z(∆) is such that µ(t) = 0 for all µ ∈ U and t < t0. Let K ⊆ R be a compact
interval satisfying

supK ≥ inf supp(µ),

noting that, when this is not true, then k ∗ µ|K = 0. Then, letting L satisfy

infL ≤ min{0, t0},

supL ≥ max{supK, supK − t0},

we can use the appropriate variant of, for example, Theorem IV-4.2.47, to give
continuity of the input/output gk.

6.9.13 Remark (The “punchline” for discrete-time convolution systems) The techni-
calities of the results in this section may obscure the simple reasons why discrete-
time convolution systems are important. Let us summarise these reasons.
1. Among the summation kernel systems, convolution systems are distinguished

by being the stationary systems. This is the content of Proposition 6.9.9.
2. Causality for discrete-time convolution systems is easily characterised by the

requirement that the convolution kernel vanish for negative time. Thus causal
discrete-time convolution systems give a large and interesting class of causal
stationary discrete-time linear systems.

6.9.5 How general are discrete-time convolution systems?

6.9.6 Linear discrete-time state space systems as linear discrete-time
input/output systems

A merely mildly astute reader will have noticed that summation kernel system
arise in the input/output relations for linear discrete-time state space systems, and
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that this summation kernel description simplifies to a convolution system in the
case where the state space system has constant coefficients. In this section we
make these connections precise, which is comparatively easy given the work that
we have done already.

6.9.6.1 The time-varying case Let us get straight to the point and state the
main results of this section. We again emphasise the simplifications that arise in
the discrete-time case where all of the ℓp

loc-topologies, p ∈ [1,∞], are the same.

6.9.14 Theorem (Summation kernel systems from linear discrete-time state space
systems) Let

Σ = (X,U,Y,T,U ,A,B,C,D)

be a linear discrete-time state space system. Let t0 ∈ T and let

U ⊆ {µ ∈ ℓloc(T; U) | µ(t) = 0, t < t0},

Y = {η ∈ ℓloc(T; Y) | η(t) = 0, t < t0}.

Then
Σi/o(t0) = (U,Y,T,U ,Y ,pitmΣ)

is a causal summation kernel system. Moreover,

ΦΣ(t, t0, x0, µ) = Φd
A,t0

(t)(x0) + gpitmΣ,t0
(µ)(t) + D(t) ◦ µ(t).

Proof The causality of the integral kernel pitmΣ ensures that, if µ(t) = 0 for t < t0,
then pitmΣ ∗ µ(t) = 0 for t0. Continuity of the input/output map for the integral kernel
pitmΣ follows from Theorem 6.9.7. The final formula in the statement of the theorem
follows from Proposition 6.8.12. ■

We see from our decomposition (6.14) of an arbitrary output of a linear discrete-
time state space system that the map sending an input µ to the second term in this
decomposition is precisely the input/output system Σi/o(t0).

6.9.6.2 The constant coefficient case In this case, the main result is the fol-
lowing.

6.9.15 Theorem (Discrete-time convolution systems from linear discrete-time state
space systems with constant coefficients) Let

Σ = (X,U,Y,Z(∆),U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients, Let

U ⊆ {µ ∈ ℓloc(Z(∆); U) | µ(t) = 0, t < 0},
Y = {η ∈ ℓloc(Z(∆); Y) | η(t) = 0, t < 0}.
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Then
Σi/o = (U,Y,U ,Y ,pirΣ)

is a causal discrete-time convolution system. Moreover,

ΦΣ(t, 0, x0, µ) = At/∆(x0) + gpirΣ ∗ µ(t) + D(t) ◦ µ(t).

Proof This follows from Theorem 6.9.14. ■

Here we see that the map sending an input to its zero-state/zero-input response,
as in Definition 6.8.17, defines the input/output system Σi/o.

6.9.7 Linear discrete-time difference input/output systems

Exercises

6.9.1 For each of the listed attributes, give an example of a linear discrete-time
input/output system with that attribute. You are not allowed to choose a
system of the sort considered in either of Sections 6.9.2 and 6.9.4.

Here are the attributes:
(a) causal;
(b) not causal;
(c) stationary;
(d) not stationary;
(e) memoryless;
(f) not memoryless.

6.9.2 Complete the proof of Proposition 6.9.9.
6.9.3 For N ∈ Z≥0, consider the function

dN : ℓloc(Z(∆);F)→ ℓloc(Z(∆);F)
µ 7→ τ∗N∆µ.

Answer the following questions.
(a) Show that dN is a linear discrete-time input/output system.
(b) Determine its system theoretic properties, i.e., is it causal? strongly

causal? finitely observable? stationary? strongly stationary? memory-
less?

(c) Let k0 ∈ Z. Show that, to determine dN(µ)(k∆) for all k ≥ k0, you must
know µ(k∆) for k ≥ k0 −N.

(d) Argue that the state space for the system starting from k0∆ is

(µ((k0 −N)∆), µ((k0 −N + 1)∆), . . . , µ((k0 − 1)∆)).

(e) Determine a linear discrete-time state space system whose input/output
mapping is the same as dN.
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(f) Compare the situation in this discrete-time case with the continuous-
time case presented in Exercise 6.7.3.

6.9.4 Consider the discrete time-domain T = Z(∆) and the backward difference
and forward difference maps as in Definition 3.3.2, but now with different
notation to avoid a proliferation of ∆’s. These are given by

δ− : ℓloc(Z(∆);F)→ ℓloc(Z(∆);F), δ+ : ℓloc(Z(∆);F)→ ℓloc(Z(∆);F)

with
δ−(µ)(t) = (µ(t) − µ(t − ∆)), δ+(µ)(t) = (µ(t + ∆) − µ(t)).

Answer the following questions.
(a) Show that δ− and δ+ define discrete-time convolution systems and de-

termine their convolution kernels.
(b) Are δ− and δ+ causal? strongly causal? memoryless?

6.9.5 A discrete-time sliding averager takes an input signal µ ∈ ℓloc(Z(∆);R) and
returns the signal

η(t) =
∆

T+ + T−

(t+T+−∆)/∆∑
j=(t−T−)/∆

µ( j∆), t ∈ R,

for T−,T+ ∈ Z≥0(∆) with T+ +T− ∈ Z>0(∆). Answer the following questions.
(a) Show that this is a discrete-time convolution system and determine the

convolution kernel.
(b) Is the system causal? strongly causal? stationary? strongly stationary?

memoryless?
(c) Compute the output associated with the input µ = 1≥0.
(d) Let ∆ = T+ = T− = 1 and compute the output associated with the input

µ(t) = sin(πt).
6.9.6 Consider a discrete-time convolution system Σ = (R,R,Z(∆),U ,Y , k) with

k ∈ ℓ1(Z(∆);R). Define the step response of the system to be the output
associated with the input µ = 1≥0: 1Σ = k ∗ 1≥0 (evidently we are assuming
that 1≥0 ∈ U ). Show that

1Σ(m∆) =
m∑

j=−∞

k( j∆), k(m∆) = (1Σ(m∆) − 1Σ((m − 1)∆)), m ∈ Z>0.

6.9.7 Using the step response from Exercise 6.9.6, suppose that you know that a
continuous-time convolution system Σ = (R,R,Z(∆),U ,Y , k) has the step
response

1Σ(t) =

1, t ∈ [ j∆, k∆),
0, otherwise

for some j, k ∈ Z satisfying j < k.
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(a) Determine the convolution kernel.
(b) For which values of j and k is the system causal?

The next few exercises have to do with a subject known as “time series analysis.”
For the exercises below, this concerns the analysis of streams of real, temporal,
discrete-time data. Some instances of time series data are those considered in
Example IV-1.1.1. In time series analysis, one wishes to develop a model for the
process that produces the observed data so that one can predict future values of the
data. In deterministic processes, one can effectively do this by some sort of curve-
fitting. However, for nondeterministic processes, one must devise a probabilistic
model that will predict the future in a statistical sense.

The general setup is this. One has a data stream η ∈ ℓloc(Z≥0(∆);R) that is to be
thought of as a trajectory of a random process. We assume that

η(k∆) = µ(k∆) + ι(k∆),

where µ ∈ ℓloc(Z≥0(∆);R) is a known deterministic function and where ι ∈
ℓloc(Z≥0(∆);R) is the innovation. We assume ι is a white noise signal, meaning
it has zero mean, constant covariance, and ι( j∆) and ι(k∆) are uncorrelated. We
shall work with models where µ is a constant function of time, and is (without loss
of generality) zero. The objective is to come up with a model that will predict the
data stream at time (k + 1)∆ given its values at times j∆, j ∈ {0, 1, . . . , k} and the
values of the innovations at times j∆, j ∈ {0, 1, . . . , k+1}. An important facet of such
models are typically determined by how they model the correlation of the data at
time (k + 1)∆ and the earlier times and how the effects of the innovations are used
to determine the future.

6.9.8 Consider the discrete time-domain Z≥0(∆) and the difference equation

η(k + ∆) = αη(k) + (1 − α)ι(k + ∆), k ∈ Z>0,

for signals η, ι ∈ ℓloc(Z≥0(∆),R) and for α ∈ (0, 1) that is determined by
matching observed and predicted statistics. This is known as the exponential
smoother for reasons you will explore in this problem.

Answer the following questions.
(a) Show that the solution to the system of difference equations with inno-

vation ι specified and with initial condition η(0) = y0 is

η(k∆) = αky0 + (1 − α)
k−1∑
j=0

α jι((k − j)∆).

(b) Show that, when an initial condition η(0) = 0 is specified, the previous
equation describes a linear discrete-time input/output system with input
ι and output η.
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(c) What form does this process take as k→∞?
(d) How far into the future does the innovation at time k∆ affect the predicted

output?
6.9.9 Consider the following difference equation

η(k∆) = b1η((k−1)∆)+· · ·+bn−1η((k−(n−1))∆)+bnη((k−n)∆)+ι(k∆), k ∈ Z≥n,

for signals η, ι ∈ ℓloc(Z≥0(∆);R) and for b1, . . . , bn ∈ R. This is an autore-
gressive model of order n, denoted AR(n). Note, for example, that AR(0)
is simply a white noise process. The coefficients b1, . . . , bn are chosen to fit
measured data by matching statistical properties.

You will examine some features of AR(1), which is determined by the
equation

η(k∆) = bη((k − 1)∆) + ι(k∆), k ∈ Z>0.

For this system, answer the following questions.
(a) Show that the solution to the system of difference equations with inno-

vation ι specified and with initial condition η(0) = y0 is

η(k∆) = bky0 +

k−1∑
j=0

b jι(k − j), k ∈ Z>0.

(b) Show that, when an initial condition η(0) = 0 is specified, the previous
equation describes a linear discrete-time input/output system with input
ι and output η.

(c) If |b| < 1, what form does this process take as k→∞?
(d) How far into the future does the innovation at time k∆ affect the predicted

output?
6.9.10 Consider the following difference equation

η(k∆) = ι(k∆) + a1ι((k − 1)∆) + · · · + amι((k −m)∆), k ∈ Z≥m,

for signals η, ι ∈ ℓloc(Z≥0(∆);R) and for a1, . . . , am ∈ R. This is known as a
moving average process of order m, denoted MA(m). Note, for example, that
MA(0) is simply a white noise process. The coefficients a1, . . . , am are chosen
to fit measured data by matching statistical properties.

You will examine some features of MA(1), which is determined by the
equation

η(k∆) = ι(k∆) + aι((k − 1)∆), k ∈ Z>0.

For this system, answer the following questions.
(a) Show that the solution to the system of difference equations with inno-

vation ι specified and with initial condition η(0) = y0 is

η(k∆) = ι(k∆) + akι(0) +
k−1∑
j=1

a jη((k − j)∆), k ∈ Z>0.
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(b) Show that, when an initial condition η(0) = 0 is specified, the previous
equation describes a linear discrete-time input/output system with input
ι and output η.

(c) If |a| < 1, what form does this process take as k→∞?
(d) How far into the future does the innovation at time k∆ affect the predicted

output?
6.9.11 Consider the following difference equation

η(k∆) = b1η((k − 1)∆) + · · · + bn−1η((k − (n − 1))∆) + bnη((k − n)∆)
+ ι(k∆) + a1ι((k − 1)∆) + · · · + amι((k −m)∆), k ∈ Z≥n,

for signals η, ι ∈ ℓloc(Z≥0(∆);R) and for b1, . . . , bn, a1, . . . , am ∈ R. This is
known as a autoregressive moving average process of order (n,m), denoted
ARMA(n,m). Note, for example, that ARMA(0, 0) is simply a white noise
process. The coefficients b1, . . . , bn, a1, . . . , am are chosen to fit measured data
by matching statistical properties.

You will examine some features of ARMA(1, 1), which is determined by
the equation

η(k∆) = bη((k − 1)∆) + ι(k∆) + aι((k − 1)∆), k ∈ Z>0.

For this system, answer the following questions.
(a) Show that, when an initial condition η(0) = 0 is specified, the previous

equation describes a linear discrete-time input/output system with input
ι and output η.

(b) Show that the solution to the system of difference equations with inno-
vation ι specified and with initial condition η(0) = 0 is

η(k∆) = bky0 +

k−1∑
j=0

b jι((k − j + 1)∆) + a
k−1∑
j=0

b jι((k − j)∆), k ∈ Z>0.

(c) If |b| < 1, what form does this process take as k→∞?
(d) How far into the future does the innovation at time k∆ affect the predicted

output?

[Franses and van Dijk 2003]
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Chapter 7

Linear systems: Transfer function
representations

One of the ways in which linear systems are special is that they admit so-called
transfer function representations. In this section we shall examine carefully the rôle
of transfer functions for linear systems, both continuous- and discrete-time, and
both as state space and input/output representations. We shall focus on stationary
systems as these interact most nicely with the notion of a transfer function.

The transfer function descriptions we give rely on the Laplace transforms de-
scribed in Chapter IV-9. Transfer function representations for stationary linear
systems have the property that, under appropriate technical hypotheses, the out-
put is the product of the transfer function with the input. This feature is essentially
inherited from the manner in which the Laplace transforms interact with convolu-
tion, cf. Sections IV-9.1.3 and IV-9.2.3. It is this simple manner in which the system
is manifested by the transfer function that accounts for some of the utility of trans-
fer function representations. Less obvious is that, by using the transfer function
representation, one avails oneself of tools of complex analysis since transfer swap
the time “t” for the complex variable “z.” In any event, the transfer function rep-
resentation of a system comes from a rather different place than the time-domain
representation, and, adopting the view that more knowledge is better, this is a
reason for understanding transfer function representations.

Do I need to read this chapter? The material in this chapter is a standard part of
the theory of linear time-invariant systems. •
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Section 7.1

Transfer functions for continuous-time linear systems

We start our discussion by a consideration of transfer functions for continuous-
time linear systems, such as are introduced in Sections 6.6 and 6.7. As mentioned
in the introduction to the chapter, the methods associated with Laplace transforms
work best with stationary systems. Thus we will not have anything to say about
an huge swath of the systems we presented in Chapter 6. More particularly, we
will concentrate on stationary systems that are described in Sections 6.6.2, 6.7.4,
and 6.7.7.

Do I need to read this section? If you are reading this chapter, then you will
need to read this section. •

7.1.1 Complexification of continuous-time linear systems

The causal CLT converts a R-vector space valued function of time into a C-
vector space valued function of a complex variable. To properly describe how
the Laplace transform interacts with a continuous-time linear system, we need
to indicate how this conversion from “real” to “complex” takes place. If the state
spaces, input spaces, and output spaces are not general finite-dimensionalR-vector
spaces, but actually Euclidean spaces, then this conversion is done in an unthinking
way. However, in the more abstract setting we employ, this should be carried out
explicitly.

We start with continuous-time convolution systems.

7.1.1 Definition (Complexification of continuous-time convolution systems) The
complexification of a continuous-time convolution system Σ = (U,Y,U ,Y , k) is

ΣC = (UC,YC,UC,YC, kC),

where
(i) UC and YC are the complexifications as per Definition I-4.5.60,
(ii) UC = {µ : R→ UC | Re(µ), Im(µ) ∈ U },
(iii) YC = {η : R→ YC | Re(η), Im(η) ∈ Y }, and
(iv) kC ∈ L(UC; YC) is the complexification of k as per Definition I-5.4.62. •

The resulting system associated with a complexification is then gkC : UC → YC
given by

gkC(µ)(t) =
∫
R

kC(t − τ)(µ(τ)) dτ

If one restricts to real inputs, then one ends up with the original system (Exer-
cise 7.1.1).
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Now we consider the complexification of differential input/output systems.

7.1.2 Definition (Complexification of linear continuous-time differential input/out-
put systems)

Finally, we indicate how to complexify state space systems.

7.1.3 Definition (Complexification of linear continuous-time state space systems)
The complexification of a linear continuous-time state space system

Σ = (X,U,Y,U ,Y ,A,B,C,D)

with constant coefficients is

ΣC = (XC,UC,YC,UC,YC,AC,BC,CC,DC),

where
(i) XC, UC, and YC are the complexifications as per Definition I-4.5.60,
(ii) UC = {µ : R→ UC | Re(µ), Im(µ) ∈ U },
(iii) YC = {η : R→ YC | Re(η), Im(η) ∈ Y }, and
(iv) AC ∈ L(XC; XC), BC ∈ L(UC; XC), CC ∈ L(XC; YC), and DC ∈ L(UC; YC), are the

complexifications as per Definition I-5.4.62. •

A controlled trajectory (ξ, µ) ∈ Ctraj(ΣC) and a corresponding controlled output
(η, µ) ∈ Cout(ΣC) satisfy the equations

ξ̇(t) = AC ◦ ξ(t) + BC ◦ µ(t),
η(t) = CC ◦ ξ(t) + DC ◦ µ(t).

We invite the reader to show in Exercise 7.1.3 that the restriction to real inputs gives
the same controlled trajectories and controlled outputs as the original system.

7.1.2 Transfer functions for continuous-time convolution systems

Our discussion of transfer function in the continuous-time case starts with
the consideration of convolution systems. These systems are necessarily strongly
stationary by Proposition 6.7.8. We shall not invoke the assumption of causality
at the outset, but we will require that our convolution kernels have support that is
bounded on the left so that we can apply to them the causal continuous Laplace
transform of Section IV-9.1. Be careful to note, however, that this does not mean
that the convolution kernels are causal as per Definition 6.7.11.

The following is the essential definition with which we work.
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7.1.4 Definition (Transfer function for continuous-time convolution system) LetΣ =
(U,Y,U ,Y , k) be a continuous-time convolution system and suppose that k ∈
LT+,p(R; L(U; Y)). The transfer function for Σ is the mapping

TΣ : CI1(k) → L(UC; YC)

z 7→ L p
C (k)(z).

•

Of course, for a convolution system, the input/output map is the map gk : U →
Y defined by

gk(µ)(t) =
∫
R

k(t − τ)(µ(τ)) dτ.

By using the interactions of convolution and the causal CLT as in Proposi-
tions IV-9.1.10 and IV-9.1.11, we anticipate that, by taking the causal CLT of the
equation, we get

L
p

C (gk(µ))(z) = TΣ(z)L p
C (µ)(z).

For such a conclusion to hold, there are various impediments: (1) k has to be Laplace
transformable; (2) the inputs have to be Laplace transformable; (3) the causal CLT
of the output is the “product” of the transfer function and the causal CLT of
the input. These impediments arise on top of the matter that, for a convolution
system, the convolution kernel has to be compatible with the inputs. Any of these
impediments can arise, and provide a limitation to the application of the Laplace
transform methods. To bookkeep these issues, we make a definition.

7.1.5 Definition (Laplace transformable continuous-time convolution system) Let
Σ = (U,Y,U ,Y , k) be a continuous-time convolution system and let p, q, r ∈ [1,∞].
Then Σ is an LT(p, q, r)-convolution system if the following conditions hold:

(i) k ∈ LTr,+(R; L(U; Y));
(ii) U ⊆ LTp,+(R; U);
(iii) Y ⊆ LTq,+(R; U);
(iv) L q

C (k ∗ µ)(z) = L r
C(k)(z)L p

C (µ)(z) for z ∈ CI for some nonempty interval I ⊆ R
for which sup I = ∞. •

In general, given a continuous-time convolution system Σ = (U,Y,U ,Y , k), if
the formula of Definition 7.1.5(iv) holds, then we say that the input µ satisfies the
exchange formula.

The definition brings into focus the circumstances under which a continuous-
time convolution system can be profitably handled with the causal CLT. It still
remains, however, to determine when a system is an LT(p, q, r)-convolution system.
We give two results that characterise some such systems.

A first useful result is the following, which makes use of Young’s Inequality for
convolution and does not require strict causality of the signals. The result follows
from Proposition IV-9.1.11.
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7.1.6 Proposition (LT(p, q, r)-convolution systems) Let p,q, r ∈ [1,∞] satisfy 1
q =

1
r +

1
p − 1. Let Σ = (U,Y,U ,Y , k) be a continuous-time convolution system for which

(i) k ∈ LTr,+(R; L(U; Y)),
(ii) U ⊆ LTp,+(R; U), and
(iii) Y ⊆ LTq,+(R; Y).

Then Σ is an LT(p,q, r)-convolution system and, for µ ∈ U ,

int(Iq(k ∗ µ)) ⊇ int(Ir(k)) ∩ int(Ip(µ)).

For causal convolution systems, there are additional results one can apply that
are useful. The first follows directly from Proposition IV-9.1.10 where we proved
the exchange formula for strictly causal signals in LT∞,+(R;C).

7.1.7 Proposition (Strictly causal LT(∞,∞,∞)-convolution systems) If a continuous-
time convolution system Σ = (U,Y,U ,Y , k) satisfies

(i) k ∈ LT∞,+(R≥0; L(U; Y)),
(ii) U ⊆ LT∞,+(R≥0; U), and
(iii) Y ⊆ LT∞,+(R≥0; Y),

then Σ is an LT(∞,∞,∞)-convolution system and, if µ ∈ U , then

I∞(k ∗ µ) ⊇ I∞(k) ∩ I∞(µ).

The following result is a useful one for system theory, and in it we make use
of the vector space-valued Hardy spaces norms from Section IV-1.4.4, which are
derived from the scalar versions described in detail in Chapter III-7. We also assume
that the space of linear maps between two vector spaces is equipped with a norm
satisfying the submultiplicative property (IV-1.4).

7.1.8 Proposition (Causal LT(2, 2, 1)-convolution systems) Consider a continuous-time
convolution system Σ = (U,Y,U ,Y , k) satisfies

(i) k ∈ L1(R≥0; L(U; Y)),
(ii) U ⊆ L2(R≥0; U), and
(iii) Y ⊆ L2(R≥0; U).

Then Σ is an LT(2, 2, 1)-convolution system and, for µ ∈ U ,

∥L 2
C (k ∗ µ)∥H2,R≥0 ≤ ∥L

1
C (k)∥H∞,R≥0∥L

2
C (µ)∥H2,R≥0 .

Proof That the system is an LT(2, 2, 1)-convolution system follows from Proposi-
tion 7.1.7. That L 2

C (µ) ∈ H2(CR≥0 ; UC) and L 2
C (k ∗ µ) ∈ H2(CR≥0 ; YC) follows from

Theorem IV-9.1.17. By Proposition IV-9.1.16, L 1
C (k) ∈ H∞(CR≥0 ; L(UC; YC)). The fi-

nal assertion follows from the assumed submultiplicative property of the norm on
L(UC; YC). ■

The following result gives a sometimes useful interpretation of the transfer
function.
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7.1.9 Proposition (The transfer function and exponential inputs) Let Σ =
(U; Y;U ,Y , k) be a continuous-time convolution system with k ∈ LT1,+(R; L(U; Y)). Let
a ∈ CI1(k) and u ∈ UC, and suppose that Eau ∈ UC. Then, gkC(Eau)(t) = eatL 1

C (k)(a)(u).
Proof We have

gkC(Eau)(t) =
∫
R

kC(t − τ)(eaτu) dτ = eat
∫
R

kC(s)(u)e−as ds = eatL 1
C (k)(a)(u),

as claimed. ■

7.1.3 Transfer functions for linear continuous-time differential input/output
systems

7.1.4 Transfer functions for linear continuous-time state space systems

Let us now consider the transfer function of a linear continuous-time state space
system. As we shall see, these transfer functions have a specific structure that is
related directly to the state space structure of these systems.

Let us begin with the definition.

7.1.10 Definition (Transfer function for linear continuous-time state space systems
with constant coefficients) For a linear continuous-time state space system

Σ = (X,U,Y,R,U ,A,B,C,D)

with constant coefficients, the transfer function is the L(UC; YC)-valued function

TΣ : C(σmax(A),∞) → L(UC; YC)

z 7→ CC ◦ (z idXC −AC)−1
◦ BC + DC,

where
σmax(A) = max{Re(λ) | λ ∈ spec(A)}. •

Let us first establish the connection of the transfer function with the impulse
response considered in Section 6.6.3.2.

7.1.11 Theorem (The transfer function and the impulse response) For a linear
continuous-time state space system

Σ = (X,U,Y,R,U ,A,B,C,D)

with constant coefficients, TΣ = L 1
C (irΣ).

Proof This follows from Proposition 5.4.2 and . ■ CLT of delta-function

Let us enumerate a few properties of the transfer function. To do so, we
first do some preparatory work with polynomials and rational functions. We
recall from Definition I-4.4.46 the notion of a rational function as a quotient of
polynomial functions. The set of rational functions with coefficients in F and
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with indeterminate ξ we denote by F(ξ). We also recall that, given a polynomial
P ∈ F[ξ], we can think of “evaluating” P as a function of x ∈ F in the obvious way
(Proposition I-4.4.9). Thus, if the denominator polynomial in a rational function
evaluates to something nonzero at x ∈ F, then we can similarly evaluate a rational
function at x. Given R ∈ F(ξ) with coprime fractional representative R = N

D (see
Proposition I-4.4.47) we can thus write

EvF(R)(x) =
EvF(N)(x)
EvF(D)(x)

.

We shall also make use of the tensor product of vector spaces from Defini-
tion I-5.6.11 and of linear maps from Proposition I-5.6.17.

7.1.12 Proposition (Properties of the transfer function for linear continuous-time
state space systems with constant coefficients) Let

Σ = (X,U,Y,R,U ,A,B,C,D)

be a linear continuous-time state space system with constant coefficients and let TΣ be its
transfer function. Then the following statements hold:

(i) there exists T̂Σ ∈ C(ξ) ⊗ L(UC; YC) such that

TΣ(z) = EvC ⊗ idL(UC;YC)(T̂Σ)(z), z ∈ C(σmax(A),∞);

(ii) if D = 0, then, for any a > σmax(A), TΣ|C[a,∞) ∈ H2(C[a,∞); L(UC; YC));
(iii) for any a > σmax(A), TΣ|C[a,∞) ∈ H∞(C[a,∞); L(UC; YC)).

Proof Throughout the proof, we choose bases for X, U, and Y, and work with matrix
representatives A, B, C, and D. We suppose that

n = dimR(X), m = dimR(U), dimR(Y).

(i) Note that TΣ(z) can be computed by matrix multiplication and matrix inversion,
with the dependence on z coming from the term involving the matrix inverse (zIn−A)−1.
If we make reference to Theorem I-5.3.10, we see that each component of this inverse
will be a quotient of polynomials in z, the numerator arising from a determinant of an
(n − 1) × (n − 1)-matrix with terms that are either linear in z or constant with respect
to z. Thus each such determinant will be a polynomial of degree at most n − 1. The
denominator polynomial will be the characteristic polynomial of A, which, therefore,
has degree n by Proposition I-5.8.17.

(ii) Note that I∞(pirΣ) ⊇ (σmax(A),∞). Therefore, if a > σmax(A) then

∥e−atpirΣ(t)∥ ≤Me−(a−σmax)t, t ∈ R≥0.

Thus t 7→ e−atpirΣ(t) is in L2(R≥0; L(U; Y)). By Theorem IV-9.1.17 we conclude that
L 2

C (pirΣ) ∈ H2(C[a,∞); L(UC; YC)), and so the result follows from the Theorem 7.1.11.
(iii) This follows by definition and the preceding part of the proof. ■

induced norm on H2
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Exercises

7.1.1 Show that the restriction of the complexification of a continuous-time con-
volution system to real inputs agrees with the original system.

7.1.2 Show that the restriction of the complexification of a linear continuous-
time differential input/output system to real inputs agrees with the original
system.

7.1.3 Show that the restriction of the complexification of a linear continuous-time
state space system to real inputs agrees with the original system.

7.1.4 For the Butterworth filter of Exercise 6.7.5, determine its transfer function.
7.1.5 For the continuous-time sliding averager of Exercise 6.7.6, answer the fol-

lowing questions:
(a) determine its transfer function;
(b) comment on the causality of the system, given its transfer function.

7.1.6 For the first three linear continuous-time state space systems of Exer-
cise 6.6.2, compute their transfer functions.

7.1.7 For the linear continuous-time state space system you derived in Exer-
cise 6.6.3, compute its transfer function.

7.1.8 For the linear continuous-time state space system of Exercise 6.6.4, compute
its transfer function.

7.1.9 For the linear continuous-time state space system of Exercise 6.6.5, compute
its transfer function.
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Section 7.2

Transfer functions for discrete-time linear systems

We continue our discussion by a consideration of transfer functions for discrete-
time linear systems, such as are introduced in Sections 6.8 and 6.9. As in Section 7.1,
we will concentrate on stationary systems that are described in Sections 6.8.2, 6.9.4,
and 6.9.7.

Do I need to read this section? If you are reading this chapter, then you will
need to read this section. •

7.2.1 Complexification of discrete-time linear systems

The causal DLT converts a R-vector space valued function of time into a C-
vector space valued function of a complex variable. To properly describe how
the Laplace transform interacts with a continuous-time linear system, we need
to indicate how this conversion from “real” to “complex” takes place. If the state
spaces, input spaces, and output spaces are not general finite-dimensionalR-vector
spaces, but actually Euclidean spaces, then this conversion is done in an unthinking
way. However, in the more abstract setting we employ, this should be carried out
explicitly.

We start with discrete-time convolution systems.

7.2.1 Definition (Complexification of discrete-time convolution systems) The com-
plexification of a discrete-time convolution system Σ = (U,Y,U ,Y , k) is

ΣC = (UC,YC,UC,YC, kC),

where
(i) UC and YC are the complexifications as per Definition I-4.5.60,
(ii) UC = {µ : Z(∆)→ UC | Re(µ), Im(µ) ∈ U },
(iii) YC = {η : Z(∆)→ YC | Re(η), Im(η) ∈ Y }, and
(iv) kC ∈ L(UC; YC) is the complexification of k as per Definition I-5.4.62. •

The resulting system associated with a complexification is then gkC : UC → YC
given by

gkC(k∆)(t) =
∑
j∈Z

kC((k − j)∆)(µ( j∆))

If one restricts to real inputs, then one ends up with the original system (Exer-
cise 7.2.1).

Now we consider the complexification of differential input/output systems.
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7.2.2 Definition (Complexification of linear discrete-time differential input/output
systems)

Finally, we indicate how to complexify state space systems.

7.2.3 Definition (Complexification of linear discrete-time state space systems) The
complexification of a linear discrete-time state space system

Σ = (X,U,Y,U ,Y ,A,B,C,D)

with constant coefficients is

ΣC = (XC,UC,YC,UC,YC,AC,BC,CC,DC),

where
(i) XC, UC, and YC are the complexifications as per Definition I-4.5.60,
(ii) UC = {µ : Z(∆)→ UC | Re(µ), Im(µ) ∈ U },
(iii) YC = {η : Z(∆)→ YC | Re(η), Im(η) ∈ Y }, and
(iv) AC ∈ L(XC; XC), BC ∈ L(UC; XC), CC ∈ L(XC; YC), and DC ∈ L(UC; YC), are the

complexifications as per Definition I-5.4.62. •

A controlled trajectory (ξ, µ) ∈ Ctraj(ΣC) and a corresponding controlled output
(η, µ) ∈ Cout(ΣC) satisfy the equations

ξ(t + h) = AC ◦ ξ(t) + BC ◦ µ(t),
η(t) = CC ◦ ξ(t) + DC ◦ µ(t).

We invite the reader to show in Exercise 7.2.3 that the restriction to real inputs gives
the same controlled trajectories and controlled outputs as the original system.

7.2.2 Transfer functions for discrete-time convolution systems

Our discussion of transfer function in the discrete-time case starts with the
consideration of convolution systems. These systems are necessarily strongly sta-
tionary by Proposition 6.9.9. We shall not invoke the assumption of causality at
the outset, but we will require that our convolution kernels have support that is
bounded on the left so that we can apply to them the causal discrete Laplace trans-
form of Section IV-9.2. Be careful to note, however, that this does not mean that the
convolution kernels are causal as per Definition 6.9.12.

The following is the essential definition with which we work.

7.2.4 Definition (Transfer function for discrete-time convolution system) Let Σ =
(U,Y,U ,Y , k) be a discrete-time convolution system and suppose that k ∈
LT+,p(Z(∆); L(U; Y)). The transfer function for Σ is the mapping

TΣ : AI1(k) → L(UC; YC)

z 7→ L p
D (k)(z).

•
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Of course, for a convolution system, the input/output map is the map gk : U →
Y defined by

gk(µ)(k∆) =
∑
j∈Z

k((k − j)∆)(µ( j∆τ)).

By using the interactions of convolution and the causal DLT as in Proposi-
tions IV-9.2.9 and IV-9.2.10, we anticipate that, by taking the causal DLT of the
equation, we get

L
p

D (gk(µ))(z) = TΣ(z)L p
D (µ)(z).

For such a conclusion to hold, there are various impediments: (1) k has to be Laplace
transformable; (2) the inputs have to be Laplace transformable; (3) the causal DLT
of the output is the “product” of the transfer function and the causal DLT of
the input. These impediments arise on top of the matter that, for a convolution
system, the convolution kernel has to be compatible with the inputs. Any of these
impediments can arise, and provide a limitation to the application of the Laplace
transform methods. To bookkeep these issues, we make a definition.

7.2.5 Definition (Laplace transformable discrete-time convolution system) Let Σ =
(U,Y,U ,Y , k) be a discrete-time convolution system and let p, q, r ∈ [1,∞]. Then Σ
is an LT(p, q, r)-convolution system if the following conditions hold:

(i) k ∈ LTr,+(Z(∆); L(U; Y));
(ii) U ⊆ LTp,+(Z(∆); U);
(iii) Y ⊆ LTq,+(Z(∆); U);
(iv) L q

D(k ∗ µ)(z) = L r
D(k)(z)L p

D (µ)(z) for z ∈ AI for some nonempty interval I ⊆ R
for which sup I = ∞. •

As with continuous-time systems, if the formula of Definition 7.2.5(iv) holds,
then we say that the input µ satisfies the exchange formula.

The definition brings into focus the circumstances under which a discrete-time
convolution system can be profitably handled with the causal DLT. It still remains,
however, to determine when a system is an LT(p, q, r)-convolution system. We give
two results that characterise some such systems.

A first useful result is the following, which makes use of Young’s Inequality for
convolution and does not require strict causality of the signals. The result follows
from Proposition IV-9.2.10.

7.2.6 Proposition (LT(p, q, r)-convolution systems) Let p,q, r ∈ [1,∞] satisfy 1
q =

1
r +

1
p − 1. Let Σ = (U,Y,U ,Y , k) be a discrete-time convolution system for which

(i) k ∈ LTr,+(Z(∆); L(U; Y)),
(ii) U ⊆ LTp,+(Z(∆); U), and
(iii) Y ⊆ LTq,+(Z(∆); Y).
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Then Σ is an LT(p,q, r)-convolution system and, for µ ∈ U ,

int(Iq(k ∗ µ)) ⊇ int(Ir(k)) ∩ int(Ip(µ)).

For causal convolution systems, there are additional results one can apply that
are useful. The first follows directly from Proposition IV-9.2.9 where we proved
the exchange formula for strictly causal signals in LT∞,+(Z(∆);C).

7.2.7 Proposition (Strictly causal LT(∞,∞,∞)-convolution systems) If a continuous-
time convolution system Σ = (U,Y,U ,Y , k) satisfies

(i) k ∈ LT∞,+(Z≥0(∆); L(U; Y)),
(ii) U ⊆ LT∞,+(Z≥0(∆); U), and
(iii) Y ⊆ LT∞,+(Z≥0(∆); Y),

then Σ is an LT(∞,∞,∞)-convolution system and, if µ ∈ U , then

I∞(k ∗ µ) ⊇ I∞(k) ∩ I∞(µ).

The following result is a useful one for system theory, and in it we make use
of the vector space-valued Hardy spaces norms from Section IV-1.4.4, which are
derived from the scalar versions described in detail in Chapter III-7. We also assume
that the space of linear maps between two vector spaces is equipped with a norm
satisfying the submultiplicative property (IV-1.4).

7.2.8 Proposition (Causal LT(2, 2, 1)-convolution systems) Consider a discrete-time con-
volution system Σ = (U,Y,U ,Y , k) satisfies

(i) k ∈ ℓ1(Z≥0(∆); L(U; Y)),
(ii) U ⊆ ℓ2(Z≥0(∆); U), and
(iii) Y ⊆ ℓ2(Z≥0(∆); U).

Then Σ is an LT(2, 2, 1)-convolution system and, for µ ∈ U ,

∥L 2
D (k ∗ µ)∥H2,[1,∞) ≤ ∥L

1
D (k)∥H∞,[1,∞)∥L

2
D (µ)∥H2,[1,∞).

Proof That the system is an LT(2, 2, 1)-convolution system follows from Proposi-
tion 7.2.7. That L 2

D (µ) ∈ H2(A[1,∞); UC) and L 2
D (k ∗ µ) ∈ H2(A[1,∞); YC) follows from

Theorem IV-9.2.15. By Proposition IV-9.2.14, L 1
D (k) ∈ H∞(A[1,∞); L(UC; YC)). The fi-

nal assertion follows from the assumed submultiplicative property of the norm on
L(UC; YC). ■

The following result gives a sometimes useful interpretation of the transfer
function.
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7.2.9 Proposition (The transfer function and exponential inputs) Let Σ =
(U; Y;U ,Y , k) be a discrete-time convolution system with k ∈ LT1,+(Z(∆); L(U; Y)). Let
a ∈ AI1(k) and u ∈ UC, and suppose that Pau ∈ UC. Then, gkC(Pau)(k∆) = akL 1

D (k)(a)(u).
Proof We have

gkC(Pau)(k∆) = ∆
∑
j∈Z

kC((k − j)∆)(a ju) = ak∆
∑
l∈Z

kC(l∆)(u)a−l = akL 1
D (k)(a)(u),

as claimed. ■

7.2.3 Transfer functions for linear discrete-time differential input/output
systems

7.2.4 Transfer functions for linear discrete-time state space systems

Let us now consider the transfer function of a linear continuous-time state space
system. As we shall see, these transfer functions have a specific structure that is
related directly to the state space structure of these systems.

Let us begin with the definition.

7.2.10 Definition (Transfer function for linear discrete-time state space systems with
constant coefficients) For a linear discrete-time state space system

Σ = (X,U,Y,Z(∆),U ,A,B,C,D)

with constant coefficients, the transfer function is the L(UC; YC)-valued function

TΣ : A(ρmax(A),∞) → L(UC; YC)

z 7→ CC ◦ (z idXC −AC)−1
◦ BC + DC,

where
ρmax(A) = max{|λ| | λ ∈ spec(A)}. •

Let us first establish the connection of the transfer function with the impulse
response considered in Section 6.9.6.2.

7.2.11 Theorem (The transfer function and the impulse response) For a linear discrete-
time state space system

Σ = (X,U,Y,Z(∆),U ,A,B,C,D)

with constant coefficients, TΣ = L 1
D (irΣ).

Proof We have
pirΣ(k∆) = 1≥0((k − 1)∆)C ◦ PA(k − 1) ◦ B.

By Proposition 5.8.2, Exercise IV-9.2.4, and , the result follows. ■DLT of pulse

Let us next enumerate a few properties of the transfer function, analogous to
those we have seen for continuous-time systems.
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7.2.12 Proposition (Properties of the transfer function for linear discrete-time state
space systems with constant coefficients) Let

Σ = (X,U,Y,Z(∆),U ,A,B,C,D)

be a linear discrete-time state space system with constant coefficients and let TΣ be its
transfer function. Then the following statements hold:

(i) there exists T̂Σ ∈ C(ξ) ⊗ L(UC; YC) such that

TΣ(z) = EvC ⊗ idL(UC;YC)(T̂Σ)(z), z ∈ A(ρmax(A),∞);

(ii) if D = 0, then, for any a > ρmax(A), TΣ|A[a,∞) ∈ H2(A[a,∞); L(UC; YC));
(iii) for any a > ρmax(A), TΣ|A[a,∞) ∈ H∞(A[a,∞); L(UC; YC)).

Proof (i) The proof of Proposition 7.1.12(i) applies here as well.
(ii) Note that I∞(pirΣ) ⊇ (ρmax(A),∞). Therefore, if a > ρmax(A) then

∥a−kpirΣ(k∆)∥ ≤Ma−kρk
max, k ∈ Z≥0.

Since ρmax
a < 1, k∆ 7→ a−kpirΣ(k∆) is in ℓ2(Z≥0(∆); L(U; Y)). By Theorem IV-9.2.15 we

conclude that L 2
C (pirΣ) ∈ H2(A[a,∞); L(UC; YC)), and so the result follows from the

Theorem 7.2.11.
(iii) This follows by definition and the preceding part of the proof. ■

induced norm on H2

Exercises

7.2.1 Show that the restriction of the complexification of a discrete-time convolu-
tion system to real inputs agrees with the original system.

7.2.2 Show that the restriction of the complexification of a linear discrete-time
difference input/output system to real inputs agrees with the original system.

7.2.3 Show that the restriction of the complexification of a linear discrete-time
state space system to real inputs agrees with the original system.

7.2.4 For the discrete-time delay of Exercise 6.9.3, answer the following questions:
(a) compute its transfer function;
(b) comment on the causality of the system, given its transfer function.

7.2.5 For the discrete-time sliding averager of Exercise 6.9.5, determine its transfer
function.

7.2.6 For the exponential smoother of Exercise 6.9.8, compute its transfer function.
7.2.7 For the autoregressive model of Exercise 6.9.9, compute its transfer function.
7.2.8 For the moving average process of Exercise 6.9.10, compute its transfer

function.
7.2.9 For the autoregressive moving average process of Exercise 6.9.11, compute

its transfer function.
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7.2.10 For the backward and forward difference systems of Exercise 6.9.4, compute
their transfer functions.

7.2.11 For the first three linear discrete-time state space systems of Exercise 6.8.2,
compute their transfer functions.

7.2.12 For the linear discrete-time state space system you derived in Exercise 6.8.4,
compute its transfer function.
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Section 7.3

Polynomial matrix systems
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This version: 2022/03/07

Chapter 8

Linear systems: Frequency-domain
representations

Closely related to transfer function representations for linear systems are fre-
quency response representations.
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Section 8.1

The continuous-continuous Fourier transform and
continuous-time linear systems
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Section 8.2

The continuous-discrete Fourier transform and discrete-time
linear systems
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This version: 2022/03/07

Chapter 9

Controllability and observability

The topics in this chapter, controllability and observability are important and
venerable parts of control theory. Here we consider these first in the context of
general system theory. Then we consider special cases, and finally focus in detail
on linear systems.
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Section 9.1

Controllability and observability for general systems
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Section 9.2

Controllability and observability for systems described by
ordinary differential and ordinary difference equations
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Section 9.3

Controllability for finite-dimensional linear systems
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Section 9.4

Observability for continuous-time state space systems
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This version: 2022/03/07

Chapter 10

State space stability

In the preceding two chapters we considered some methods for solving ordi-
nary differential equations, dealing almost exclusively with linear equations. In
Section 5.1 we motivated our rationale for this by illustrating that systems of or-
dinary differential equations can be linearised, although we did not at that time
indicate how this process of linearisation might be useful. In this chapter we shall
see, among other things, a concrete illustration of why one is interested in linear
ordinary differential equations, namely that understanding them can help one un-
derstand the stability of systems that are not necessarily linear. Indeed, in this
chapter we shall engage in a general discussion of stability, and this connection to
linear ordinary differential equations will be just one of the topics considered.

We shall begin our general presentation in Section 10.2 with definitions of vari-
ous types of stability and examples that illustrate these. We shall give many defini-
tions here, and shall only consider a few of them in any detail subsequently. How-
ever, the full slate of definitions is useful for establishing context. In Section 10.3 we
consider the stability of systems of linear ordinary differential equations, where the
extra structure, especially in the case of systems with constant coefficients, allows
a complete description of stability. Two methods, called “Lyapunov’s First and
Second Method,” for stability analysis for systems of (not necessarily linear) ordi-
nary differential equations are considered in Sections 10.7 and 10.5. Lyapunov’s
First Method allows the determination of the stability of a system of differential
equations from its linearisation in some cases.
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Section 10.2

Stability definitions

In this section we state the standard stability definitions for a system of ordinary
differential equations. Thus we are working with an ordinary differential equation
F with right-hand side

F̂ : T ×U→ Rn,

where U ⊆ Rn is an open subset of Rn. In order to ensure local existence and
uniqueness of solutions, we shall make the following assumptions on F.

10.2.1 Assumption (Right-hand side assumptions for stability definitions) We sup-
pose that

(i) the map t 7→ F̂(t, x) is continuous for each x ∈ U,

(ii) the map x 7→ F̂(t, x) is Lipschitz for each t ∈ T, and
(iii) for each x ∈ U and for each r ∈ R>0, there exist continuous functions g,L : T→
R≥0 such that

∥̂F(t, y)∥ ≤ g(t), (t, y) ∈ T × B(r, x),

and
∥̂F(t, y1) − F̂(t, y2)∥ ≤ L(t)∥y1 − y2∥, t ∈ T, y1, y2 ∈ B(r, x). •

10.2.1 Definitions for general systems

The first thing one should address when talking about stability is “stability of
what?” Almost always—and always for us—we will be thinking about stability of
a solution t 7→ ξ0(t) of a system of ordinary differential equations F. In all cases,
stability of a solution intuitively means that other solutions starting nearby remain
nearby at t → ∞. However, this intuitive idea needs to be made precise. As part
of this, we make the following definitions.

10.2.2 Definition (ϵ-neighbourhood of a curve) Let U ⊆ Rn be open, let T ⊆ R be an
interval, and let γ : T→ U be a curve. The set

N(γ, ϵ) = {x ∈ U | ∥x − γ(t)∥ < ϵ for some t ∈ T}

is the ϵ-neighbourhood of γ. •

10.2.3 Definition (Distance to a set) Let U ⊆ Rn be open and let S ⊆ U. The function

dS : U→ R≥0

x 7→ inf{∥x − y∥ | y ∈ S}

is the distance function to S. •

We can now state our stability definitions.
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10.2.4 Definition (Stability of solutions) Let F be a system of ordinary differential
equations satisfying Assumption 10.2.1 and suppose that supT = ∞.1 Letξ0 : T′ →
U be a solution for F, supposing that supT′ = ∞. The solution ξ0 is:

(i) Lyapunov stable, or merely stable, if, for any ϵ ∈ R>0 and t0 ∈ T′, there exists
δ ∈ R>0 such that, if x ∈ U satisfies ∥ξ0(t0) − x∥ < δ, then the solution ξ to the
initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ∥ξ(t) − ξ0(t)∥ < ϵ for t ≥ t0;
(ii) asymptotically stable if it is stable and if, for every t0 ∈ T′, there exists

δ ∈ R>0 such that, for ϵ ∈ R>0, there exists T ∈ R>0 such that, if x ∈ U satisfies
∥ξ0(t0) − x∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ∥ξ(t) − ξ0(t)∥ < ϵ for t ≥ t0 + T;
(iii) exponentially stable if it is stable and if, for every t0 ∈ T′, there exists M, δ, σ ∈
R>0 such that, if x ∈ U satisfies ∥ξ0(t0)−x∥ < δ, then the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ∥ξ(t) − ξ0(t)∥ ≤Me−σ(t−t0);
(iv) orbitally stable if, for any ϵ ∈ R>0 and t0 ∈ T′, there exists δ ∈ R>0 such that, if

x ∈ U satisfies ∥ξ0(t0)− x∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ξ(t) ∈ N(ξ0, ϵ) for t ≥ t0;
(v) asymptotically orbitally stable if it is orbitally stable and if, for every t0 ∈ T′,

there exists δ ∈ R>0 such that, for ϵ ∈ R>0, there exists T ∈ R>0 such that, if
x ∈ U satisfies ∥ξ0(t0)− x∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) < ϵ for t ≥ t0 + T;
(vi) exponentially orbitally stable if it is orbitally stable and if, for every t0 ∈ T′,

there exists M, σ, δ ∈ R>0 such that, if x ∈ U satisfies ∥ξ0(t0) − x∥ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) ≤Me−σ(t−t0);

1Thus T is a time-interval that is unbounded on the right, i.e., either T = [a,∞) or T = (a,∞) for
some a ∈ R.
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(vii) uniformly Lyapunov stable, or merely uniformly stable, if, for any ϵ ∈ R>0,
there exists δ ∈ R>0 such that, if (t0, x) ∈ T′ ×U satisfies ∥ξ0(t0) − x∥ < δ, then
the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ∥ξ(t) − ξ0(t)∥ < ϵ for t ≥ t0;
(viii) uniformly asymptotically stable if it is uniformly stable and if there exists

δ ∈ R>0 such that, for ϵ ∈ R>0, there exists T ∈ R>0 such that, if (t0, x) ∈ T′ ×U
satisfies ∥ξ0(t0) − x∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ∥ξ(t) − ξ0(t)∥ < ϵ for t ≥ t0 + T;
(ix) uniformly exponentially stable if it is uniformly stable and if there exists

M, σ, δ ∈ R>0 such that, if (t0, x) ∈ T′ × U satisfies ∥ξ0(t0) − x∥ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ∥ξ(t) − ξ0(t)∥ ≤Me−σ(t−t0);
(x) uniformly orbitally stable if, for any ϵ ∈ R>0, there exists δ ∈ R>0 such that, if

(t0, x) ∈ T′ ×U satisfies ∥ξ0(t0) − x∥ < δ, then the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies ξ(t) ∈ N(ξ0, ϵ) for t ≥ t0;
(xi) uniformly asymptotically orbitally stable if it is uniformly orbitally stable

and if there exists δ ∈ R>0 such that, for ϵ ∈ R>0, there exists T ∈ R>0 such
that, if (t0, x) ∈ T′×U satisfies ∥ξ0(t0)− x∥ < δ, then the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) < ϵ for t ≥ t0 + T;
(xii) uniformly exponentially orbitally stable if it is uniformly orbitally stable and

if there exists M, σ, δ ∈ R>0 such that, if (t0, x) ∈ T′×U satisfies ∥ξ0(t0)−x∥ < δ,
then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

is defined on [t0,∞) and satisfies dimage(ξ0)(ξ(t)) ≤Me−σ(t−t0);
(xiii) unstable if it is not stable. •

While this seems like an absurdly large number of definitions, it is made to ap-
pear larger by there being a few concepts, represented in all possible combinations.
Let us describe the essential dichotomies and trichotomies.
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1. Stable/(asymptotically stable)/(exponentially stable). The idea of the dichotomy of
stable/(asymptotically stable) is that stability has to do with solutions remaining
close if their initial conditions are close, while asymptotic stability has to do with
solutions with close initial conditions getting closer and closer as time goes by.
The notion of exponential stability is similar to that of asymptotic stability,
but places some constraints on the rate at which solutions with nearby initial
conditions approach one another.

2. Stable/(orbitally stable). The stable/(orbitally stable) dichotomy has to do with
how one measures the “closeness” of solutions with nearby initial conditions.
When dealing with stability, as opposed to orbital stability, one asks that, at all
times, solutions remain close. Orbital stability is weaker in that we do not ask
that solutions at the same time are close, but rather that one solution at one time
is close to another solution, but possibly at a different time.

3. Stable/(uniformly stable). The dichotomy here here has to do with the rôle of the
initial time t0 in the definition. In uniform stability, the parameters δ, M, and
σ are independent of the initial time t0, whereas with (nonuniform) stability,
these parameters depend on t0. This is a more or less standard occurrence of
the notion of “uniform,” and if a reader is encountering this notion for the first
time, it is best to acquire a feeling for what it represents.
Now that we have presented our definitions and tried to understand what they

mean, let us explore them a little. First let us consider the relationships between the
various notions of stability. To do this it is most convenient to arrange the various
definitions in a diagram. To control the clutter in the diagram and other places, we
use some obvious abbreviations:

(U)S (uniformly) stable
(U)AS (uniformly) asymptotically stable
(U)ES (uniformly) exponentially stable
(U)OS (uniformly) orbitally stable
(U)AOS (uniformly) asymptotically orbitally stable
(U)EOS (uniformly) exponentially orbitally stable

With these abbreviations, we have the diagram in Figure 10.1 illustrating the
relationships between the various forms of stability. All of the implications in the
diagram follow more or less immediately from the definitions.

Next let us see that, in the case of most interest to us where the solution ξ0 is an
equilibrium solution, the preceding definitions simplify by a factor of 1

2 . Thus, in
this discussion, we have an equilibrium state x0 for F, i.e., F̂(t, x0) = 0 for all t ∈ T.
In this case, as per Proposition 5.1.5, we have the equilibrium solution ξ0 defined
by ξ0(t) = 0, t ∈ T. The usual linguistic simplification is to speak, not of the stability
of this equilibrium solution, but of the stability of the equilibrium state x0 since the
latter prescribes the former.

The next result records the simplifications that occur in the stability definitions
in this case.
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Figure 10.1 Relationships between the various forms of stability

10.2.5 Proposition (Collapsing of stability definitions for equilibria) Let F be a
system of ordinary differential equations satisfying Assumption 10.2.1 and suppose
that supT = ∞. For an equilibrium state x0 for F, we have the following implications:

(i) OS =⇒ S;
(ii) AOS =⇒ AS;
(iii) EOS =⇒ ES;

(iv) UOS =⇒ US;
(v) UAOS =⇒ AOS;
(vi) UEOS =⇒ UES.

In short, all forms of orbital stability are implied by their nonorbital counterparts
in the case of equilibrium solutions.

Moreover, if F is autonomous, then we additionally have the following implications:
(vii) S =⇒ US;
(viii) AS =⇒ UAS;
(ix) ES =⇒ UES.

Proof In all cases, this amounts to the observation that, if ξ0 is the equilibrium solution
ξ0(t) = x0, then N(ξ0, ϵ) = B(ϵ, x0), and so
1. x ∈ N(ξ0, ϵ) if and only if ∥x − x0∥ < ϵ and
2. dimage(ξ0)(x) = ∥x − x0∥. ■

For the final assertion of the proposition, we shall explicitly give the proof that
S =⇒ US, the other implications following using the same idea. Let ϵ ∈ R>0. Since x0
is stable, for t0 ∈ T, there exists δ ∈ R>0 such that, if x ∈ U satisfies ∥x − x0∥ < δ, the
solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

exists for t ≥ t0 and satisfies ∥ξ(t) − x0∥ < ϵ for t ≥ t0. Now let t̂0 ∈ T. Then, let x ∈ U
be such that ∥x − x0∥ < δ and let ξ : T→ U and ξ̂ : T→ U be the solutions to the initial
value problems

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,
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and
˙̂ξ(t) = F̂(t, ξ̂(t)), ξ̂(t′0) = x,

respectively. By Exercise 3.1.19 we have ξ̂(t) = ξ(t − (t̂0 − t0)). Therefore, ξ̂ is defined
for t ≥ t̂0 and

∥x̂(t) − x0∥ = ∥x(t − (t̂0 − t0)) − x0∥ < ϵ

for t ≥ t̂0. This shows that the choice of δ can be made independently of the initial time
t0, and so x0 is uniformly stable.

We conclude our discussion of stability definitions with a warning of some
lurking dangers in these definitions.

10.2.6 Remarks (Caveats concerning stability definitions)
1. First let us provide some good news. For stability of equilibria—by far the

most widely used and interesting case—the definitions we give are completely
standard and coherent and offer no difficulties in their use.

2. It is often possible to reduce the study of stability of nonequilibrium solutions
to the study of equilibria. Let us illustrate how this is done. We suppose that
we have an ordinary differential equation F with right-hand side

F̂ : T ×U→ Rn

with supT = ∞. Let us suppose that we have a solution ξ0 : T → U for F,
whose stability we wish to examine. In order to do this, we suppose that there
exists r ∈ R>0 such that the “tube”

T(r, ξ0) = {ξ0(t) + x′ | t ∈ T, x′ ∈ B(r, 0)}

of radius r about ξ0 is a subset of U. We then define a “time-varying change of
coordinates”

Φ : T × T(r, ξ0)→ T × B(r, 0)
(t, x) 7→ (t, x − ξ0(t)).

We then define a differential equation G with right-hand side

Ĝ : T × B(r, 0)→ Rn

(t, y) 7→ F̂ ◦Φ−1(t, y),

whose state space is B(r, 0). Note that, if ξ : T′ → U is a solution for F for which
ξ(t) − ξ0(t) ∈ B(r, 0), then the function η(t) = ξ(t) − ξ0(t) is a solution for G.
Indeed,

η̇(t) = ξ̇(t) − ξ̇0(t) = F̂(t, ξ(t)) = F̂(t,η(t) + ξ0(t)) = Ĝ(t,η(t)).

Moreover, sinceΦ ◦ξ0(t) = (t, 0) for every t ∈ T, the solution ξ0 is mapped to the
equilibrium solution η0 : t 7→ 0. Therefore, the study of the stability of solution
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ξ0 is reduced to the study of the equilibrium solution at 0. In this way, the
study of nonequilibrium solutions can sometimes be reduced to the study of
equilibrium solutions. Note, also, that, even if F is autonomous, the resulting
differential equation G will be nonautonomous.

3. Now for the bad news. For stability of nonequilibrium solutions, there are
some possible problems with the definitions that need to be understood. The
problems manifest themselves in at least two different ways, and these two
ways are not unrelated.

(a) The ϵ-neighbourhood of a solution is measured using a specific notion of
distance coming from the Euclidean norm. It is possible that this is not
the most meaningful way of measuring distance, and that, upon choosing
another way of measuring distance, one can get inconsistent conclusions
when applying stability tests. For example, one might use one method
of measuring distance and conclude stability, while another method of
measuring distance yields instability. To see examples of where this can
happen requires understanding “other ways of measuring distance,” and
this is not something we shall do here.

(b) The definitions we give can vary with coordinate systems. That is, one can
render a stable (or unstable) system unstable (or stable) by using different
coordinates. The reader is asked to explore this in Exercise 10.2.1.

These caveats need to be kept in mind when working with the stability of
nonequilibrium solutions. •

10.2.2 Special definitions for linear systems

We begin with some definitions for stability that are suitable for linear equa-
tions.

10.2.7 Definition (Stability for linear systems) Let F be a system of linear homogeneous
ordinary differential equations in an n-dimensional R-vector space V and with
right-hand side F̂(t, x) = A(t)(x) for A : T → L(V; V). Suppose that supT = ∞. Let
ζ : T→ V be the zero solution ζ(t) = 0, t ∈ T.

(i) The equation F is S (resp. AS, ES, US, UAS, UES) if the zero solution ζ is S
(resp. AS, ES, US, UAS, UES).

The equation F is:
(ii) globally stable if, for each t0 ∈ T, there exists C ∈ R>0 such that, for x ∈ V, the

solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ C∥x∥ for t ≥ t0;
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(iii) globally asymptotically stable if, for each t0 ∈ T and each ϵ ∈ R>0, there
exists T ∈ R>0 such that, for x ∈ V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ ϵ∥x∥ for t ≥ t0 + T;
(iv) globally exponentially stable if, for each t0 ∈ T, there exists M, c ∈ R>0 such

that, for x ∈ V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤M∥x∥e−c(t−t0) for t ≥ t0;
(v) globally uniformly stable if there exists C ∈ R>0 such that, for (t0, x) ∈ T × V,

the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ C∥x∥ for t ≥ t0;
(vi) globally uniformly asymptotically stable if it is globally uniformly stable

and if, for each ϵ ∈ R>0, there exists T ∈ R>0 such that, for (t0, x) ∈ T × V, the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ ϵ∥x∥ for t ≥ t0 + T;
(vii) globally uniformly exponentially stable if there exists M, c ∈ R>0 such that,

for (t0, x) ∈ T × V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤M∥x∥e−c(t−t0) for t ≥ t0. •

Part (i) of the definition is merely the statement of the convention that, when
talking about stability for linear ordinary differential equations, one is interested in
the stability of the equilibrium state at 0. For this reason, given Proposition 10.2.5,
we do not discuss orbital stability for linear equations. The remaining six defini-
tions above are quite particular to linear equations.

We can add obviously to our list of abbreviations.
(U)GS (uniformly) globally stable
(U)GAS (uniformly) globally asymptotically stable
(U)GES (uniformly) globally exponentially stable

There is a little subtlety to the preceding definitions that merits exploration, and
this is that (1) the definition of GAS does not include GS as part of the definition,
(2) the definition of UGES does not include UGS, whereas (3) for UGAS and UGES,
we do include the requirement that the equation also be UGS. As we shall see in
the proof of Theorem 10.2.9 below, it is the case that GAS =⇒ GS. It is obvious
from the definition that UGES =⇒ UGS. However, it is not true that UGS can be
omitted in the definitions of UGAS and UGES, as the following example shows.
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10.2.8 Example (UGS must be a part of the definition of UGAS and UGES) We shall
construct a system of linear homogeneous ordinary differential equations F in
V = R with right hand-side F̂(t, x) = a(t)x and with the following properties:
1. F is not UGS;
2. for ϵ ∈ R>0 there exists T ∈ R>0 with the property that, for (t0, x) ∈ T × V, the

solution to the initial value problem

ξ̇(t) = a(t)(ξ(t)), ξ(t0) = x,

satisfies |ξ(t)| < ϵ|x| for t ≥ t0 + T.
The example is a little convoluted.

We take T = R≥0 and define a : T→ R in the following way.
1. Define sequences (ak)k∈Z≥0 , (bk)k∈Z≥0 , and (∆k)k∈Z≥0 as follows:

(a) ∆k = 2−k−1, k ∈ Z≥0;
(b) bk = k2k+1, k ∈ Z≥0;
(c) define a1 = 1 and then define ak, k ≥ 2, by

bk−1∆k−1 − ak(1 − ∆k) + bk∆k + bk+1∆k+1 = −1.

2. If t ∈ T, let k ∈ Z≥0 be such that t ∈ [k, k + 1), and then define

a(t) =

−ak, t ∈ [k, k + ∆k+1),
bk, t ∈ [k + ∆k+1, k + 1).

Note that a is not continuous, however, it can be modified to be continuous and
still have the desired properties.

To show that F, defined by a, has the desired properties, we first show that F has
the property 1 above. For k ∈ Z≥0 define tk = k + 1 and t0,k = k + ∆k. Let x = 1 ∈ V
and let ξk : T→ V be the solution to the initial value problem

ξ̇k(t) = a(t)ξk(t), ξk(t0,k) = x,

for k ∈ Z≥0. Note that

|ξk(tk)| =
∣∣∣∣∣xe
−

∫ tk
t0,k

a(τ) dτ
∣∣∣∣∣ = |x|ek.

This prohibits uniform global stability for F.
Next we show that F has the property 2 above. Thus let ϵ ∈ R>0 and define

T ∈ Z>0 such that e−(T−3) < ϵ. Let t0 ∈ T and let t ≥ t0 + T. Let k1 ∈ Z≥0 be such that
t0 ∈ [k1, k1 + 1), let k2 ∈ Z>0 be such that t ∈ [k2, k2 + 1). Note that

t − t0 ≥ T =⇒ k2 − k1 + 1 > T =⇒ k2 − k1 − 2 > T − 3.
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Now we estimate∫ t0+t

t0

a(τ) dτ =
∫ k1+1

t0

a(τ) dτ +
k2−1∑

k=k1+1

∫ k+1

k
a(τ) dτ +

∫ t

k2

a(τ) dτ

≤ bk1∆k1 +

k2−1∑
k=k1+1

(−ak(1 − ∆k) + bk∆k) + bk2∆k2

≤

k2−1∑
k1+1

(bk−1∆k−1 − ak(1 − ∆k) + bk∆k + bk+1∆k+1)

= −

k2−1∑
k=k1+1

1 = −(k2 − k1 − 2) < −(T − 3).

Now let x ∈ V and let ξ : T→ V satisfy the initial value problem

ξ̇(t) = a(t)ξ(t), ξ(t0) = x.

Then
|ξ(t)| =

∣∣∣∣∣xe−
∫ t

t0
a(τ) dτ

∣∣∣∣∣ ≤ |x|e(T−3) < ϵ|x|,

for t ≥ t0 + T, giving the desired conclusion. •

Let us further explore these definitions by (1) exploring their relationships with
the notions of stability from Definition 10.2.4 and (2) exploring the relationships
between these new notions.

First the first. . .

10.2.9 Theorem (Equivalence of stability and global stability for linear ordinary dif-
ferential equations) Consider the system of linear homogeneous ordinary differential
equations F with right-hand side (10.5) and suppose that A: T→ L(V; V) is continuous.
Suppose that supT = ∞. Then F is S (resp. AS, ES, US, UAS, UES) if and only if it is
GS (resp. GAS, GES, GUS, GUAS, GUES).

Proof (GS =⇒ S) Let t0 ∈ T and let C ∈ R>0 be such that the solution to the initial
value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ C∥x∥ for t ≥ t0. Let ϵ ∈ R>0 and take δ = ϵ
C . Now let x ∈ V satisfy

∥x∥ < δ and let ξ : T→ V be the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

We then have
∥ξ(t)∥ ≤ C∥x∥ =

ϵ
δ
∥x∥ ≤ ϵ,

for t ≥ t0, giving stability of F.
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(S =⇒ GS) Let t0 ∈ T and let δ ∈ R>0 have the property that, if ∥x∥ ≤ δ, then the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ 1 for t ≥ t0. Define C = δ−1. Now let x ∈ V and let ξ : T → V be the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x. (10.1)

First suppose that x , 0 and define x̂ = δ x
∥x∥ so that ∥x̂∥ = δ. Thus the solution ξ̂ : T→ V

to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂,

satisfies ∥ξ̂(t)∥ ≤ 1 for t ≥ t0. However,

ξ(t) = ΦA(t, t0)(x) = ΦA(t, t0)
(
∥x∥
δ

x̂
)
=
∥x∥
δ
ΦA(t, t0)(x̂) = C∥x∥ξ̂(t).

Therefore,
∥ξ(t)∥ = C∥x∥ ∥ξ̂(t)∥ ≤ C∥x∥.

If x = 0 this relation clearly holds since the solution to the initial value problem (10.1)
is simply ξ(t) = 0, t ∈ T. Thus F is globally stable.

(GAS =⇒ AS) First we show that GAS =⇒ GS (which implies S as we have
already proved). Let t0 ∈ T, let x ∈ V, and let ξ : T → V be the solution to the initial
value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

First suppose that x , 0. Since

lim
t→∞

∥ξ(t)∥
∥x∥

= 0

and since ξ is continuous (indeed, of class C1), it follows that t 7→ ∥ξ(t)∥
∥x∥ is

bounded, i.e., there exists C ∈ R>0 such that

∥ξ(t)∥
∥x∥

≤ C =⇒ ∥ξ(t)∥ ≤ C∥x∥.

This relationship also holds when x = 0, we conclude global stability of F.
Now let t0 ∈ T and take δ = 1

2 . Let ϵ ∈ R>0, and take T ∈ R>0 such that the solution
ξ : T→ V to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ ϵ∥x∥ for t ≥ t0 + T. Now suppose that ∥x∥ < δ = 1
2 , and let ξ : T → V

be the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.
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Then, for t ≥ t0 + T,
∥ξ(t)∥ ≤ ϵ∥x∥ < ϵ.

This shows that F is asymptotically stable.
(AS =⇒ GAS) Let t0 ∈ T and let δ ∈ R>0 have the property that, given ϵ ∈ R>0,

there exists T ∈ R>0 such that, if ∥x∥ < δ, then the solution ξ : T→ V to the initial value
problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ < ϵ for t ≥ t0 + T.
Let ϵ ∈ R>0 and let T ∈ R>0 be such that, if ∥x∥ < δ, then the solution to the initial

value problem
ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ < ϵδ
2 for t ≥ t0 + T. Let x ∈ V and let ξ : T → V be the solution to the

initial value problem
ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

Let x̂ = δ x
2∥x∥ and let ξ̂ : T→ V be the solution to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂.

Since ∥x̂∥ = δ
2 < δ, ∥ξ̂(t)∥ < ϵδ

2 for t ≥ t0 + T. We also have

ξ(t) = ΦA(t, t0)(x) = ΦA(t, t0)
(2∥x∥
δ

x̂
)
=

2∥x∥
δ
ΦA(t, t0)(x̂) =

2∥x∥
δ
∥x∥ξ̂(t).

Thus
∥ξ(t)∥ ≤

2
δ
∥x∥ ∥ξ̂(t)∥ < ϵ∥x∥,

for t ≥ t0 + T, and so F is globally asymptotically stable.
(GES =⇒ ES) First we note that GES =⇒ GS (which implies S, as we have already

seen). Indeed, the proof that GAS =⇒ GS we gave above also applies if we replace
“GAS” with “GES.”

Now let t0 ∈ T and let M̃, σ̃ ∈ R>0 be such that, for v ∈ V, the solution to the initial
value problem

˙ξ(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ M̃∥x∥e−σ̃(t−t0) for t ≥ t0. Now let δ = 1
2 and take M = M̃ and σ = σ̃.

Then, for ∥x∥ < δ = 1
2 , let ξ : T→ V be the solution to the initial value problem

˙ξ(t) = A(t)(ξ(t)), ξ(t0) = x.

We then have
∥ξ(t)∥ ≤ M̃∥x∥eσ̃(t−t0)

≤Me−σ(t−t0),

showing that F is exponentially stable.
(ES =⇒ GES) Let t0 ∈ T and let M̃, δ, σ̃ ∈ R>0 be such that, if ∥x∥ < δ, then the

solution ξ : T→ V to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,
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satisfies ∥ξ(t)∥ ≤ M̃e−σ̃(t−t0) for t ≥ t0.
Take M = 2M̃

δ and σ = σ̃. Now let x ∈ V and let ξ : T → V be the solution to the
initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

Let x̂ = δ x
2∥x∥ and let ξ̂ : T→ V be the solution to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂.

Since ∥x̂∥ = δ
2 < δ, ∥ξ̂(t)∥ ≤ M̃e−σ̃(t−t0) for t ≥ t0. Then, as in the proof that AS =⇒ GAS,

ξ(t) =
2∥x∥
δ
ξ̂(t),

and so

∥ξ(t)∥ =
2
δ
∥x∥ ∥ξ̂(t)∥ ≤

2M̃
δ
∥x∥e−σ̃(t−t0) =M∥x∥e−σ(t−t0),

for t ≥ t0, showing that F is globally exponentially stable.
The remainder of the proof concerns the results we have already proved, but with

the property “uniform” being applied to all hypotheses and conclusions. The proofs
are entirely similar to those above. We shall, therefore, only work this out in one of the
three cases, the other two following in an entirely similar manner.

(GUS =⇒ US) Let C ∈ R>0 be such that the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ C∥x∥ for t ≥ t0. Let ϵ ∈ R>0 and take δ = ϵ
C . Now let x ∈ V satisfy

∥x∥ < δ and let ξ : T→ V be the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x.

We then have
∥ξ(t)∥ ≤ C∥x∥ =

ϵ
δ
∥x∥ ≤ ϵ,

for t ≥ t0, giving stability of F.
(US =⇒ GUS) Let δ ∈ R>0 have the property that, if ∥x∥ ≤ δ, then the solution to

the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ 1 for t ≥ t0. Define C = δ−1. Now let x ∈ V and let ξ : T → V be the
solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x. (10.2)

First suppose that x , 0 and define x̂ = δ x
∥x∥ so that ∥x̂∥ = δ. Thus the solution ξ̂ : T→ V

to the initial value problem

˙̂ξ(t) = A(t)(ξ̂(t)), ξ̂(t0) = x̂,
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satisfies ∥ξ̂(t)∥ ≤ 1 for t ≥ t0. However,

ξ(t) = ΦA(t, t0)(x) = ΦA(t, t0)
(
∥x∥
δ

x̂
)
=
∥x∥
δ
ΦA(t, t0)(x̂) = C∥x∥ξ̂(t).

Therefore,
∥ξ(t)∥ = C∥x∥ ∥ξ̂(t)∥ ≤ C∥x∥.

If x = 0 this relation clearly holds since the solution to the initial value problem (10.2)
is simply ξ(t) = 0, t ∈ T. Thus F is globally stable. ■

Now let us examine some relationships between these special notions of stability
for linear equations.

10.2.10 Theorem (Equivalence of uniform asymptotic and uniform exponential sta-
bility for linear ordinary differential equations) Consider the system of linear ho-
mogeneous ordinary differential equations F with right-hand side (10.5) and suppose that
A: T→ L(V; V) is continuous. Suppose that supT = ∞. Then F is UGAS if and only if
it is UGES.

Proof It is clear that UGES implies UGAS, so we will only prove the converses.
(UGAS =⇒ UGES) By definition of uniform asymptotic stability, there exists

C,T ∈ R>0 such that
∥ΦA(t, t0)(x)∥ ≤ C∥x∥

and
∥ΦA(t, t0)(x)∥ ≤

1
2
∥x∥, t ≥ t0 + T,

for all (t0, x) ∈ T × V. Then, for k ∈ Z>0, (t0, x) ∈ T × V, and t ≥ t0 + kT,

∥ΦA(t, t0)(x)∥

= ∥ΦA(t, t0 + kT) ◦ΦA(t0 + kT, t0 + (k − 1)T) ◦ · · · ◦ΦA(t0 + T, t0)(x)∥ ≤
C
2k
∥x∥.

Now define M = C and σ = ln 2
T and let (t0, x) ∈ T × V and t ≥ t0. Then t ∈ [t0, t0 + kT)

for some uniquely defined k ∈ Z>0, and then

∥ΦA(t, t0)(x)∥ ≤
C
2k
∥x∥ =Me−σkT

≤Meσ(t−t0),

as desired. ■

Note that the conclusions of the theorem are not true if we eliminate “uniform”
in the hypotheses.
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10.2.11 Example (Global asymptotic stability does not imply global exponential sta-
bility) We consider the system of linear homogeneous ordinary differential equa-
tions F in V = R and with

F̂(t, x) = −
x
t
,

and we take T = [1,∞). This equation can be solved using the methods of Sec-
tion 4.1.1 to give

ξ(t) =
t0ξ(t0)

t
,

and from this we conclude that, for any initial condition ξ(t0), limt→∞ ξ(t) = 0
(i.e., we have GAS) but that we do not have exponential stability. •

Let us summarise the relationships between the various notions of stability for
systems of linear homogeneous ordinary differential equations in a diagram:

UGES ks +3

��

UGAS +3

��

UGS

��
GES +3 GAS +3 GS

The arrows not present in the diagram represent implications that do not, in fact,
hold.

10.2.3 Examples

In this section, we give some examples to illustrate some of the ways in which
the different notions of stability are separated in practice.

10.2.12 Example (Stable versus unstable versus asymptotically stable I) We consider
the ordinary differential equation F with state space U = R and with right-hand
side F̂(t, x) = ax with a ∈ R. This is a simple linear ordinary differential equation
and has solution ξ(t) = ξ(t0)ea(t−t0). We shall consider the stability of the equilibrium
point x0 = 0. We have three cases.
1. a < 0: In this case we note two things. First of all, |ξ(t)| ≤ |ξ(t0)| for t ≥ t0,

from which we conclude that the equilibrium at x0 = 0 is stable. (Formally, let
ϵ ∈ R>0. Then, if we take δ = ϵ, we have

|ξ(t0) − 0| ≤ δ =⇒ |ξ(t) − 0| < ϵ, t ≥ t0.

which is what is required to prove stability of the equilibrium x0 = 0.) Also,
limt→∞|ξ(t) − 0| = 0, which gives asymptotic stability of x0 = 0. Moreover, in
this case we also have |ξ(t)| = |ξ(t0)|ea(t−t0), and so we further have exponential
stability.
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2. a = 0: Here we have ξ(t) = ξ(t0) for all t. Therefore, we have stability, but not
asymptotic stability of the equilibrium x0 = 0. (Formally, let ϵ ∈ R>0. Then,
taking δ = ϵ, we have

|ξ(t0) − 0| < δ =⇒ |ξ(t) − 0| < ϵ, t ≥ t0.)

3. a > 0: Here, as long as ξ(t0) , 0, we have limt→∞|ξ(t)| = ∞, and this suffices
to show that the equilibrium x0 = 0 is unstable. (Formally, we must show that
there exists ϵ ∈ R>0 such that, for any δ ∈ R>0 there exists ξ(t0) ∈ R and T ∈ R>0

such that, |ξ(t0)| < δ and |ξ(t0 + T)| ≥ ϵ. We can take ϵ = 1 and, given δ ∈ R>0,
we can take ξ(t0) = δ

2 and T ∈ R>0 such that eaT
≥

2
δ .) •

10.2.13 Example (Stable versus unstable versus asymptotically stable II) We consider
another example illustrating the same trichotomy as the preceding example, but
one that generates some pictures that one can keep in mind when thinking about
concepts of stability. We consider the ordinary differential equation F with state
space U = R2 and with right-hand side F̂(t, (x1, x2)) = (x2,−x1 − 2δx2) for |δ| < 1. We
shall be concerned with the stability of the equilibrium point x0 = (0, 0). Solutions
ξ : T→ R2 satisfy

ξ̇1(t) = ξ2(t),

ξ̇2(t) = − ξ1(t) − 2δξ2(t).

This is a linear homogeneous ordinary differential equation with constant coeffi-
cients determined by the matrix

A =
[

0 1
−1 −δ

]
.

We compute the eigenvalues of A to be

λ1 = −δ + i
√

1 − δ2, λ2 = −δ − i
√

1 − δ2.

Thus we have two distinct complex eigenvalues. We can then apply Proce-
dures 5.2.23 and 5.2.26 to compute

eAt = e−δt

cos(
√

1 − δ2t) + δ
√

1−δ2
sin(
√

1 − δ2t) 1
√

1−δ2
sin(
√

1 − δ2t)

−
1

√

1−δ2
sin(
√

1 − δ2t) cos(
√

1 − δ2t) + δ
√

1−δ2
sin(
√

1 − δ2t)

 .
In Figure 10.2 we plot the parameterised curves in (x1, x2)-space in what we shall in
Section 5.5 call “phase portraits. Without going through the details of the analysis,
we shall simply make the following observations.
1. δ > 0: Here we see that x0 = (0, 0) is asymptotically stable.
2. δ = 0: Here we see that x0 = (0, 0) is stable, but not asymptotically stable.
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Figure 10.2 Phase portraits for F̂(t, (x1, x2)) = (x2,−x1 − δx2) for
δ < 0 (top left), δ = 0 (top right), and δ > 0 (bottom)

3. δ < 0: Here we see that x0 = (0, 0) is unstable.
One can look at the behaviour of solutions in Figure 10.2 to convince oneself of the
validity of these conclusions. •

The definitions we give in Definition 10.2.4 are “local.2” This means that
they only give conclusions about the behaviour of solutions nearby the reference
solution. Our preceding two examples might give one the impression that they
hold globally, but this is not the case, as we illustrate in the next two examples.

2Indeed, the definitions we give are often prefixed by “local.”
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10.2.14 Example (Stable does not mean “globally stable” I) Here we consider the
ordinary differential equation F with state space U = R and right-hand side F̂(t, x) =
x − x3. We will look at the stability of the equilibria for this differential equation.
According to Proposition 5.1.5, a state x0 ∈ R is an equilibrium state if and only if
x0 − x3

0 = 0, which gives the three equilibria x− = −1, x0 = 0, and x+ = 0. We shall
subsequently see how to rigorously prove the stability of these three equilibria, but
here we shall argue heuristically. In Figure 10.3 we graph the right-hand side as a

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

Figure 10.3 The right-hand side x − x3

function of x. From this graph, we make the following conclusions.
1. x0 is unstable: We see that, when x > x0 = 0 and x is nearby x0 = 0, that

F̂(t, x) > 0, Therefore, if ξ(t0) > 0 and is nearby 0, then ξ(t) will become “more
positive.” In similar manner, if ξ(t0) < 0 and is nearby 0, then ξ(t) will become
“more negative.” Thus all solutions nearby 0 “move away” from 0.

2. x± are asymptotically stable: Here the opposite phenomenon occurs as com-
pared to x0. When x > x± and x is nearby x±, then F̂(t, x) < 0. Therefore,
if ξ(t0) > x± and is nearby x±, then ξ(t) will “move towards” x±. In similar
manner, if ξ(t0) < x± and is nearby x±, then ξ(t) will again “move towards” x±.

The point is that our conclusions about stability for all three equilibria hold only
for initial conditions nearby the equilibria. Moreover, the stability is different for
different equilibria. •

10.2.15 Example (Stable does not mean “globally stable” II) The example here illus-
trates a similar phenomenon as the preceding example, but does so while produc-
ing some useful pictures. The ordinary differential equation we consider has state
space U = R2 with right-hand side F̂(t, (x1, x2)) = (x2, x1 − x3

1 −
1
2x2). Thus solutions
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ξ : T→ R2 satisfy

ξ̇1(t) = ξ2(t)

ξ̇2(t) = ξ1(t) − ξ1(t)3
−

1
2ξ2(t).

We will consider the stability of the equilibria for F. By Proposition 5.1.5, an
equilibrium x0 = (x01, x02) will satisfy

0 = x02,

0 = x01 − x3
01 −

1
2

x01,

which gives the three equilibrium points x0 = (0, 0), x− = (−1, 0), and x+ = (0, 1).
In Figure 10.4 we show a few parameterised solutions for F in the (x1, x2)-plane.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 10.4 Phase portrait for F̂(t, (x1, x2)) = (x2, x1 − x3
1 −

1
2 x2)

From this figure we deduce that x0 is unstable and x± is asymptotically stable. •

The reader will have noticed that “stable” is included in the definition of
“asymptotically stable.” It seems like this might be redundant, but it is not as
the next example indicates.
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10.2.16 Example (Why “stable” is part of the definition of “asymptotically stable”)
We work with the ordinary differential equation F with state space R2 and with

F̂(t, (x1, x2)) =
(

x2
1(x2 − x1) + x5

2

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)
,

x2
2(x2 − 2x1)

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)

)
This solutions ξ : T→ R2 for F satisfy

ξ̇1(t) =
ξ1(t)2(ξ2(t) − ξ1(t)) + ξ2(t)5

(ξ1(t)2 + ξ2(t)2)(1 + (ξ1(t)2 + ξ2(t)2)2)

ξ̇2(t) =
ξ2(t)2(ξ2(t) − 2ξ1(t))

(ξ1(t)2 + ξ2(t)2)(1 + (ξ1(t)2 + ξ2(t)2)2)
.

We are interested in the stability of the equilibrium point x0 = (0, 0). In Figure 10.5
we depict the phase portrait for the equation. From the phase portrait, we can
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Figure 10.5 Phase portrait for

F̂(t, x) =
(

x2
1(x2−x1)+x5

2
(x2

1+x2
2)(1+(x2

1+x2
2)2)
,

x2
2(x2−2x1)

(x2
1+x2

2)(1+(x2
1+x2

2)2)

)

reasonable say that (1) for any initial condition ξ(t0) ∈ R2, we have limt→∞ ξ(t) =
(0, 0) and (2) x0 = (0, 0) is not stable. The former can be seen straightaway from
Figure 10.5. For the latter, we note that, for any ϵ ∈ R>0, no matter how small
we choose δ, there is an initial condition satisfying ∥ξ(t0) − x0∥ < δ for which the
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corresponding solution leaves the ball of radius ϵ centred at x0. Thus stability is
required as part of the definition of asymptotic stability in order to rule out this
“large deviation” behaviour.3 •

10.2.17 Example (Asymptotically stable versus exponentially stable) In some of our
examples above where an equilibrium is asymptotically stable, it is also exponen-
tially stable. However, this need not be the case always. To illustrate this, we
consider the ordinary differential equation with state space U = R and right-hand
side F̂(t, x) = −x3. In this case, we can argue as in Example 10.2.14 that the equilib-
rium state at x0 = 0 is asymptotically stable. Let us show that it is not exponentially
stable. For ξ(t0) ∈ R, we can use the technique of Section 4.1.1 to obtain the solution
with this initial condition as

ξ(t) = sign(ξ(t0))
(

1 + 2(t − t0)ξ(t0)2

ξ(t0)2

)−1/2

,

where sign: R → {−1, 0, 1} returns the sign of a real number. The observation
we make is that, as t → ∞, ξ(t) decays to zero like (t − t0)−1/2, which prohibits
exponential stability. •

10.2.18 Example (Stable versus orbitally stable) As we saw in Proposition 10.2.5, one
cannot distinguish between “stable” and “orbitally stable” for equilibria. There-
fore, necessarily, if we wish to consider a distinction between these sorts of stability,
we need to work with a nonequilibrium solution. The example we give is one that
is easily imagined, and we do not rigorously prove our assertions.

We consider the motion of a simple pendulum. This can be thought of as a
first-order system of ordinary differential equations with state space U = R2 and
with right-hand side

F̂(t, (x1, x2)) =
(
x2,−

ag

ℓ
sin(x1)

)
.

Here ag is acceleration due to gravity and ℓ is the length of the pendulum. Solutions
ξ : T→ R2 satisfy

ξ̇1(t) = ξ2(t)

ξ̇2(t) = −
ag

ℓ
sin(x1).

Let us make some (mathematically unproved, but physically “obvious”) observa-
tions about this equation.

3One very often sees the following definition.

Definition A solution ξ0 of an ordinary differential equation is attractive if there exists δ ∈ R>0
such that, for any ϵ, there exists T ∈ R>0 for which, if ∥ξ(t0) − ξ0(t0)∥ < δ, then ∥ξ(t) − ξ0(t)∥ < ϵ for
t ≥ t0 + T. •

One can then say that “asymptotic stability” means “stable” and “attractive.”
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1. For small oscillations of the pendulum, the period of the oscillation is 2π
√

ℓ
ag

.

2. As the amplitude of the oscillation becomes large (approaching π), the period
becomes large. Indeed, for oscillations with amplitude exactly π, the period
is “∞.” Let us be clear what this means. There is a motion of the pendulum
where, at “t = −∞,” the pendulum is upright at rest, and then begins to fall. It
will fall and then swing up to the upright configuration at rest, getting there at
“t = ∞.”

3. For amplitudes between 0 and π, the period will grow monotonically from

2π
√

ℓ
ag

to∞. There is, in fact, a precise formula for this, and it is

T(θ0) = 4

√
ℓ
ag

∫ π/2

0

1

(1 − sin2(θ0
2 ) sin2(ϕ))1/2

dϕ,

where θ0 is the amplitude of the oscillation. This integral, while not expressible
in terms of anything you know about, is expressible in terms of what is known
as an “elliptic function.” The formula itself can be derived using conservation
of energy. In Figure 10.6 we plot the period of oscillation versus the amplitude.
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Figure 10.6 Normalised (by ℓ
ag

) period of a pendulum oscillation
as a function of the amplitude

Now let us make use of the preceding observations. We will consider the stabil-
ity of some nontrivial periodic motion of the pendulum with amplitude between
0 and π. We claim that such a solution is orbitally stable, but not stable. In Fig-
ure 10.7 we show a periodic motion of the pendulum as a parameterised curve in
the (x1, x2)-plane. In the figure we plot three solutions. The middle of the three
solutions is the solution ξ0 whose stability we are referencing. It has initial condi-
tion θ0 and is defined on the time interval [0,T(θ0)]. The other two solutions have
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Figure 10.7 Orbital stability, but not stability, of the nontrivial
periodic motions of a pendulum; the middle curve is the nom-
inal solution whose stability is being determined

nearby initial conditions, and are defined on the same time interval, and a dot is
placed at the final point of the solution. We make the following observations.
1. ξ0 is not stable: The reasoning here is this. In Figure 10.7 we see that the periodic

solutions nearby ξ0 do not undergo exactly one period in the time it takes ξ0
to undergo exactly one period; the inner solution travels more than one period
and the outer solution travels less than one period. Now imagine letting the
trajectory ξ0 undergo an increasing number of periods. The inner and outer
solutions will drift further and further from ξ0 when compared at the same
times. This prohibits stability of ξ0 since nearby initial conditions will produce
solutions that are eventually not close.

2. ξ0 is orbitally stable: The reasoning here is this. While solutions with nearby
initial conditions will drift apart in time, the solutions themselves remain close
in the sense that any point on one solution is nearby some point (not at the same
time) on the other solution. More viscerally, the images of solutions for nearby
initial solutions are close. •

10.2.19 Example (Stable versus uniformly stable I) Here we take the linear homoge-
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neous ordinary differential equation F in V = R defined by the right-hand side

F̂(t, x) = −
x

1 + t

for t ∈ T = [0,∞). We will consider the stability of the equilibrium point x0 = 0.
We can explicitly solve this ordinary differential equation (for example, using the
method of Section 4.1.1) to give

ξ(t) =
ξ(t0)(1 + t0)

1 + t
.

From this we can make the following observations.
1. x0 = 0 is asymptotically stable: This follows since, for any initial condition ξ(t0),

we have limt→∞ ξ(t) = 0.
2. x0 = 0 is uniformly stable: Let ϵ ∈ R>0 and take δ = ϵ. If |ξ(t0) − 0| < δ, then

|ξ(t)| ≤ |ξ(t0)| < ϵ

for t ≥ t0. This gives the desired uniform stability.
3. x0 = 0 is not uniformly asymptotically stable: We must show that, for every δ ∈ R>0

and T ∈ R>0, there exists ϵ ∈ R>0, t0 ∈ T, and x ∈ R satisfying |x − 0| < δ, such
that the solution ξ : T→ R to the initial value problem

ξ̇(t) = −
ξ(t)
1 + t

, ξ(t0) = x,

satisfies |ξ(t0 + T)| ≥ ϵ. We take x = δ
2 , ϵ = 1, T ∈ R>0, and t0 ∈ T such that

1 + t0

1 + t0 + T
≥

2
δ

;

this is possible since limt0→∞
1+t0

1+t0+T = 1 for any T ∈ R>0. Now let x ∈ R satisfy
|x − 0| < δ, and let ξ : T→ R be the solution to the initial value problem

ξ̇(t) = −
ξ(t)
1 + t

, ξ(t0) = x.

Then
|ξ(t0 + T)| =

∣∣∣∣∣ x(1 + t0)
1 + t0 + T

∣∣∣∣∣ = δ2
∣∣∣∣∣ 1 + t0

1 + t0 + T

∣∣∣∣∣ ≥ 1,

which gives the desired lack uniform asymptotic convergence. •
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10.2.20 Example (Stable versus uniformly stable II) We again consider a linear homoge-
neous ordinary differential equation in R, this one with right-hand side

F̂(t, x) = sin(ln(t)) + cos(ln(t)) − α

for some α ∈ (1,
√

2). Here we consider T = (0,∞). Again we consider stability
of the equilibrium point at x0 = 0. In this case, an application of the method of
Section 4.1.1 gives the solution

ξ(t) = e−α(t−t0)+t sin(ln(t))−t0 sin(ln(t0))ξ(t0).

We make the following observations.
1. x0 = 0 is asymptotically stable: Here we note that, since

lim
t→∞

(−α(t − t0) + t sin(ln(t)) − t0 sin(ln(t0))) = −∞

since α > 1, we must have limt→∞ ξ(t) = 0 for any initial condition ξ(t0). This
gives asymptotic stability. In fact, we can refine this conclusion a little.

2. x0 = 0 is not uniformly stable: This is more difficult to prove. We choose β ∈
(α,
√

2) and θ1 ∈ (0, π4 ) and θ2 ∈ (π4 ,
π
2 ) such that

sinθ + cosθ ≥ β, θ ∈ [θ1, θ2].4

Then, for j ∈ Z>0, define

t j = e2 jπ+θ2 , t0, j = e2 jπ+θ1 ,

and compute, for j ∈ Z>0,∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt =
∫ 2 jπ+θ2

2 jπ+θ1

(sinθ + cosθ − α)e2 jπ+θ dθ

=

∫ θ2

θ1

(sinθ + cosθ − α)e2 jπ+θ dθ

≥ (β − α)e2 jπ
∫ θ2

θ1

eθ dθ

= (β − α)e2 jπ(eθ2 − eθ1),

4To see why this is possible, first note that
√

2 cos(θ − π
4 ) = sinθ sin π

4 + cosθ cos π
4 = sinθ + cosθ,

using standard trigonometric identities. Then note that the function

θ 7→
√

2 cos(θ − π
4 )

has a local maximum at θ = π
4 with value

√
2. Thus, since α < β <

√
2, we can choose θ1 < π

4 and
θ2 > π

4 sufficiently close to π
4 to ensure that sinθ + cosθ ≥ β for θ ∈ [θ1, θ2].
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where we have used the change of variable t = e2 jπ+θ in the second line. Note,
then, that

lim
j→∞

∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt = ∞.

Now, using this fact, we claim that x0 = 0 is not uniformly stable. We must
show that there exists ϵ ∈ R>0 such that, for every δ ∈ R>0, there exists T ∈ R>0,
t0 ∈ T, and x ∈ R satisfying |x − 0| < δ and for which the solution to the initial
value problem

ξ̇(t) = (sin(ln(t)) + cos(ln(t)) − α)ξ(t), ξ(t0) = x,

satisfies |ξ(t0 + T) − 0| ≥ ϵ. We take ϵ = 1. Let δ ∈ R>0 and x = δ
2 . Let j ∈ Z>0 be

sufficiently large that∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt ≥
2
δ
.

Then take t0 = t0, j and T = t j. We then have

|ξ(t0 + T)| =

∣∣∣∣∣∣
∫ t j

t0, j

(sin(ln(t)) + cos(ln(t)) − α) dt

∣∣∣∣∣∣ |x| ≥ 1,

giving the desired absence of uniform stability. •

While the preceding examples do not cover all of the possible gaps in the
stability definitions of Definition 10.2.4, they do hopefully sufficiently illustrate
the essence of the difference in the various definitions that a reader can have a
picture in their mind of these differences as we proceed to study stability in more
detail in the sequel.

Exercises

10.2.1 Let us consider the system of ordinary differential equations F with state-
space R2 defined by the right-hand side

F̂ : R ×R2
→ R2

(t, (x1, x2)) 7→ (1, 0).

Answer the following questions.
(a) Show that

ξ0 : R→ R2

t 7→ (t, 0)

is the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(0) = 0.



720 10 State space stability 2022/03/07

(b) Show that the solution ξ0 is stable but not asymptotically stable.
Now consider a change of coordinates from (x1, x2) ∈ R2 to (y1, y2) ∈ R2

defined by
y1 = x1, y2 = ex1x2,

and let G be the ordinary differential equation F, represented in these
coordinates.
(c) Use the Chain Rule to compute ẏ1 and ẏ2,

ẏ1(t) =
∂y1

∂x1
ẋ1(t) +

∂y1

∂x2
ẋ2(t),

ẏ2(t) =
∂y2

∂x1
ẋ1(t) +

∂y2

∂x2
ẋ2(t),

and so give the right-hand side Ĝ for G.
Hint: Write everything in terms of the coordinates (y1,y2).

(d) Show that the solution ξ0 is mapped, under the change of coordinates,
to the solution η0 : R→ R2 given by η0(t) = (t, 0).

(e) Show that η0 is not stable.
Now consider a change of coordinates from (x1, x2) ∈ R2 to (z1, z2) ∈ R2

defined by
z1 = x1, z2 = e−x1x2,

and let H be the ordinary differential equation F, represented in these
coordinates.
(f) Use the Chain Rule to compute ż1 and ż2,

ż1(t) =
∂z1

∂x1
ẋ1(t) +

∂z1

∂x2
ẋ2(t),

ż2(t) =
∂z2

∂x1
ẋ1(t) +

∂z2

∂x2
ẋ2(t),

and so give the right-hand side Ĥ for H.
Hint: Write everything in terms of the coordinates (z1, z2).

(g) Show that the solution ξ0 is mapped, under the change of coordinates,
to the solution ζ0 : R→ R2 given by ζ0(t) = (t, 0).

(h) Show that ζ0 is asymptotically stable.
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Section 10.3

Stability of linear ordinary differential and difference equations

In this section we devote ourselves specially to the theory of stability for linear
systems. We shall see that, for linear systems, there are a few natural places where
one can refine the general definitions of stability from Definition 10.2.4, taking
advantage of the linearity of the dynamics. Moreover, there are also equivalent
characterisations of stability that hold for linear equations that do not hold in
general.

As we did in Chapter 5 when dealing with linear systems, we shall work
with linear systems whose state space is a finite-dimensional vector space V. Our
stability definitions from Definition 10.2.4 all involve the measure of distance
provided by the Euclidean norm on Rn. An abstract vector space does not have a
natural norm, but one can always be provided by, for example, choosing a basis
B = {e1, . . . , en} and then defining ∥v∥B = ∥(v1, . . . , vn)∥, where v = v1e1 + · · · + vnen.
The fact of the matter is that nothing we do depends in any way on the choice
of this norm,5 and so we shall simply use the symbol “∥·∥” to represent some
choice of norm, possibly arising from the Euclidean norm by a choice of basis as
described above. For readers following the “all vector spaces are Rn” path, this is
not anything of concern so you can resume sleeping.

We proceed in a manner contrary to our approach in Sections 4.2, 4.3, 5.2,
and 5.3, and first consider in Section 10.3.1 equations with constant coefficients.
The rationale is that, for equations with constant coefficients, there are easily un-
derstandable characterisations for all of the various sorts of stability. When we
turn in Section 10.3.2 to general equations, the constant coefficient characterisa-
tions give us something with which to compare. Much of what can be said for the
stability of linear equations with constant coefficients has to do with the roots of the
characteristic polynomial of the linear transformation associated to the equation.

10.3.1 Equations with constant coefficients

We shall study the stability of systems of linear homogeneous ordinary differ-
ential equations F with constant coefficients in a finite-dimensionalR-vector space

5The “big fact” here is that if we have two norms ∥·∥1 and ∥·∥2 for a vector space V, then there
exists C ∈ R>0 such that

C∥v∥2 ≤ ∥v∥1 ≤ C−1
∥v∥2, v ∈ V.

Thus, if a reader goes through our definitions where a norm is used, she will see that using a
different norm will only have the effect of change constants in the definition, while not materially
altering the meaning of the definition.
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V. Such an equation will have right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V).
First we observe that the general stability definitions of Definition 10.2.7 for

linear homogeneous ordinary differential equations collapse.

10.3.1 Proposition (Collapsing of stability definitions for linear homogeneous equa-
tions with constant coefficients) Let F be a system of linear homogeneous ordinary
differential equations in an n-dimensional R-vector space V and with right-hand side
F̂(t, x) = A(x) for A ∈ L(V; V). Suppose that supT = ∞. Then F is GS (resp. GAS,
GES) if and only if it is UGS (resp. UGAS, UGES). Moreover, F is GAS if and only if it
is GES.

Proof The first assertion follows from Proposition 10.2.5 and the second follows from
Theorem 10.2.10. ■

Now we turn to providing a useful characterisation of stability for linear homo-
geneous ordinary differential equations with constant coefficients. To do this we
first make a definition.

10.3.2 Definition (Spectrum of a linear transformation) Let V be a finite-dimensional
R-vector space and let A ∈ L(V; V). The spectrum of A is the set

spec(A) = {λ ∈ C | λ is an eigenvalue for AC}

of eigenvalues of the complexification of A. •

Our characterisations of stability will be given in terms of the location of spec(A).
It will be convenient to introduce the following notation:

C− = {z ∈ C | Re(z) < 0}, C+ = {z ∈ C | Re(z) > 0},

C− = {z ∈ C | Re(z) ≤ 0}, C+ = {z ∈ C | Re(z) ≥ 0},
iR = {z ∈ C | Re(z) = 0}.

With this notation, we state the following theorem, which is the main result of
this section.

10.3.3 Theorem (Stability of systems of linear homogeneous ordinary differential
equations with constant coefficients) Let F be a system of linear homogeneous
ordinary differential equations in an n-dimensional vector space V with constant coefficients
and with F̂(t, x) = A(x) for A ∈ L(V; V). The following statements hold.

(i) F unstable if spec(A) ∩ C+ , ∅.
(ii) F is GAS if spec(A) ⊆ C−.
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(iii) F is GS if spec(A) ∩ C+ = ∅ and if mg(λ,A) = ma(λ,A) for λ ∈ spec(A) ∩ (iR).
(iv) F is unstable if mg(λ,A) < ma(λ,A) for λ ∈ spec(A) ∩ (iR).

Proof (i) In this case there is an eigenvalueσ+iω ∈ C+ and a corresponding eigenvector
u + iv ∈ VC which gives rise to real solutions

ξ1(t) = eσt(cos(ωt)u − sin(ωt)v), ξ2(t) = eσt(sin(ωt)u + cos(ωt)v).

Clearly these solutions are unbounded as t→∞ since σ > 0.
(ii) If all eigenvalues lie in C−, then any solution of F will be a linear combination

of n linearly independent vector functions of the form

tke−αtu or tke−σt(cos(ωt)u − sin(ωt)v) or tke−σt(sin(ωt)u + cos(ωt)v) (10.3)

for α, σ > 0. Note that all such functions tend in length to zero as t→∞. Suppose that
we have a collection ξ1, . . . , ξn of such vector functions. Then, for any solution ξ we
have, for some constants c1, . . . , cn,

lim
t→∞
∥ξ(t)∥ = lim

t→∞
∥c1ξ1(t) + · · · + cnξn(t)∥

≤ |c1| lim
t→∞
∥ξ1(t)∥ + · · · + |cn| lim

t→∞
∥ξn(t)∥

= 0,

where we have used the triangle inequality, and the fact that the solutions ξ1, . . . , ξn
all tend to zero as t→∞.

(iii) If spec(A)∩C+ = ∅ and if, further, spec(A) ⊆ C−, then we are in case (ii), so F is
GAS, and so GS. Thus we need only concern ourselves with the case when we have
eigenvalues on the imaginary axis. In this case, provided that all such eigenvalues have
equal geometric and algebraic multiplicities, all solutions will be linear combinations
of functions like those in (10.3) or functions like

sin(ωt)u or cos(ωt)u. (10.4)

Let ξ1, . . . , ξℓ be ℓ linearly independent functions of the form (10.3), and let ξℓ+1, . . . , ξn
be linearly independent functions of the form (10.4), so that ξ1, . . . , ξn forms a set of
linearly independent solutions for F. Thus we will have, for some constants c1, . . . , cn,

lim sup
t→∞

∥ξ(t)∥ = lim sup
t→∞

∥c1ξ1(t) + · · · + cnξn(t)∥

≤ |c1| lim sup
t→∞

∥ξ1(t)∥ + · · · + |cℓ| lim sup
t→∞

∥ξℓ(t)∥+

|cℓ+1| lim sup
t→∞

∥ξℓ+1(t)∥ + · · · + |cn| lim sup
t→∞

∥ξn(t)∥

= |cℓ+1| lim sup
t→∞

∥ξℓ+1(t)∥ + · · · + |cn| lim sup
t→∞

∥ξn(t)∥.

Since each of the terms ∥ξℓ+1(t)∥, . . . , ∥ξn(t)∥ are bounded as functions of t, their lim sup’s
will exist, which is what we wish to show.

(iv) If A has an eigenvalue λ = iω on the imaginary axis for which mg(λ,A) <
algmult(λ,A), then there will be solutions for F that are linear combinations of vector
functions of the form tk sin(ωt)u or tk cos(ωt)v. Such functions are unbounded as t→∞,
and so F is unstable. ■
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10.3.4 Remarks (Stability and eigenvalues)
1. A linear mapping A is Hurwitz if spec(A) ⊆ C−. Thus A is Hurwitz if and only

if F is GAS.
2. We see that stability is almost completely determined by the eigenvalues of A.

Indeed, one says that F is spectrally stable if A has no eigenvalues in C+. It
is only in the case where there are repeated eigenvalues on the imaginary axis
that one gets to distinguish spectral stability from stability. •

The notion of stability for systems of linear homogeneous ordinary differential
equations with constant coefficients is, in principle, an easy one to check, as we see
from an example.

10.3.5 Example (Stability of system of linear homogeneous ordinary differential
equations with constant coefficients) We look at a system of linear homo-
geneous ordinary differential equations F in R2 with constant coefficients, and
determined by the 2 × 2-matrix

A =
[

0 1
−b −a

]
.

The eigenvalues of A are the roots of the characteristic polynomial PA = X2+aX+b,
and these are

−
a
2 ±

1
2

√

a2 − 4b.

The situation with the eigenvalue placement can be broken into cases.
1. a = 0 and b = 0: In this case there is a repeated zero eigenvalue. Thus we have

spectral stability, but we need to look at eigenvectors to determine stability.
One readily verifies that there is only one linearly independent eigenvector for
the zero eigenvalue, so the system is unstable.

2. a = 0 and b > 0: In this case the eigenvalues are purely imaginary. Since the
roots are also distinct, they will have equal algebraic and geometric multiplicity.
Thus the system is GS, but not GAS.

3. a = 0 and b < 0: In this case both roots are real, and one will be positive. Thus
the system is unstable.

4. a > 0 and b = 0: There will be one zero eigenvalue if b = 0. If a > 0 the other root
will be real and negative. In this case then, we have a root on the imaginary
axis. Since it is distinct, the system will be GS, but not GAS.

5. a > 0 and b > 0: One may readily ascertain (in Section 10.4 we’ll see an easy
way to do this) that all eigenvalues are in C− if a > 0 and b > 0. Thus when a
and b are strictly positive, the system is GAS.

6. a > 0 and b < 0: In this case both eigenvalues are real, one being positive and
the other negative. Thus the system is unstable.

7. a < 0 and b = 0: We have one zero eigenvalue. The other, however, will be real
and positive, and so the system is unstable.
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8. a < 0 and b > 0: We play a little trick here. If s0 is a root of s2+as+b with a, b < 0,
then −s0 is clearly also a root of s2

− as + b. From the previous case, we know
that −s0 ∈ C−, which means that s0 ∈ C+. So in this case all eigenvalues are in
C+, and so we have instability.

9. a < 0 and b < 0: In this case we are guaranteed that all eigenvalues are real, and
furthermore it is easy to see that one eigenvalue will be positive, and the other
negative. Thus the system will be unstable. •

10.3.2 Equations with time-varying coefficients

We work in this section with a system F of linear homogeneous ordinary differ-
ential equations with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

(10.5)

for some function A : T→ L(V; V).
unstable-nopoles.pdf for an unstable system with no poles

Exercises

10.3.1

In the next exercise we shall make use of a norm ||| · ||| on the set L(V; V) of linear
transformations induced by a norm ∥·∥ on V. The norm is defined by

|||L||| = sup
{
∥L(v)∥
∥v∥

∣∣∣∣∣ v ∈ V \ {0}
}
,

for L ∈ L(V; V). It is easy to show that this is, in fact, a norm and we refer the reader
to the references for this.

10.3.2 Let F be a system of linear homogeneous ordinary differential equations in
an n-dimensionalR-vector space V and with right-hand side F̂(t, x) = A(t)(x)
for a continuous map A : T→ L(V; V). Suppose that supT = ∞.
(a) Show that F is stable if and only if, for every t0 ∈ T, there exists C ∈ R>0

such that |||Φc
A(t, t0)||| ≤ C for t ≥ t0.

(b) Show that F is asymptotically stable if and only if, for every t0 ∈ T and
ϵ ∈ R>0, there exists T ∈ R>0 such that |||Φc

A(t, t0)||| < ϵ for t ≥ t0 + T.
(c) Show that F is exponentially stable if and only if, for every t0 ∈ T, there

exist M, σ ∈ R>0 such that |||Φc
A(t, t0)||| ≤Me−σ(t−t0) for t ≥ t0.

(d) Show that F is uniformly stable if and only if there exists C ∈ R>0 such
that, for every t0 ∈ T, |||Φc

A(t, t0)||| ≤ C for t ≥ t0.
(e) Show that F is uniformly asymptotically stable if and only if,
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1. there exists C ∈ R>0 such that, for every t0 ∈ T, |||Φc
A(t, t0)||| ≤ C for

t ≥ t0 and
2. for every ϵ ∈ R>0, there exists T ∈ R>0 such that, for every t0 ∈ T,
|||Φc

A(t, t0)||| < ϵ for t ≥ t0 + T.
(f) Show that F is exponentially stable if and only if there exist M, σ ∈ R>0

such that, for every t0 ∈ T, |||Φc
A(t, t0)||| ≤Me−σ(t−t0) for t ≥ t0.
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Section 10.4

Hurwitz polynomials

From Theorem 10.3.3 we see that it is important to be able to determine when the
roots of a polynomial lie in the negative half-plane. However, checking that such a
condition holds may not be so easy; one should regard the problem of computing
the roots of a polynomial as being impossible for polynomials of degree 5 or more,
and annoyingly complicated for polynomials of degree 3 or 4. However, one may
establish conditions on the coefficients of a polynomial. In this section, we present
three methods for doing exactly this. We also look at a test for the roots to lie in
C− when we only approximately know the coefficients of the polynomial. We shall
generally say that a polynomial all of whose roots lie in C− is Hurwitz.

10.4.1 The Routh criterion

For the method of Routh, we construct an array involving the coefficients of
the polynomial in question. The array is constructed inductively, starting with the
first two rows. Thus suppose one has two collections a11, a12, . . . and a21, a22, . . . of
numbers. In practice, this is a finite collection, but let us suppose the length of
each collection to be indeterminate for convenience. Now construct a third row
of numbers a31, a32, . . . by defining a3k = a21a1,k+1 − a11a2,k+1. Thus a3k is minus the
determinant of the matrix

[
a11 a1,k+1
a21 a2,k+1

]
. In practice, one writes this down as follows:

a11 a12 · · · a1k · · ·

a21 a22 · · · a2k · · ·

a21a12 − a11a22 a21a13 − a11a23 · · · a21a1,k+1 − a11a2,k+1 · · ·

One may now proceed in this way, using the second and third row to construct
a fourth row, the third and fourth row to construct a fifth row, and so on. To
see how to apply this to a given polynomial P ∈ R[X]. Define two polynomials
P+,P− ∈ R[X] as the even and odd part of P. To be clear about this, if

P = p0 + p1X + p2X2 + p3X3 + · · · + pn−1Xn−1 + pnXn,

then
P+ = p0 + p2X + p4X2 + . . . , P− = p1 + p3X + p5X2 + . . . .

Note then that P(X) = P+(X2) + XP−(X2). Let R(P) be the array constructed as
above, with the first two rows being comprised of the coefficients of P+ and P−,
respectively, starting with the coefficients of lowest powers of X, and increasing to
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higher powers of X. Thus the first three rows of R(P) are

p0 p2 · · · p2k · · ·

p1 p3 · · · p2k+1 · · ·

p1p2 − p0p3 p1p4 − p0p5 · · · p1p2k+2 − p0p2k+3 · · ·
...

...
...

...
...

In making this construction, a zero is inserted whenever an operation is undefined.
It is readily determined that the first column of R(P) has at most n + 1 nonzero
components. The Routh array is then the first column of the first n + 1 rows.

With this as setup, we may now state a criterion for determining whether a
polynomial is Hurwitz.

10.4.1 Theorem (Routh’s criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if all elements of the Routh array corresponding to R(P) are positive.
Proof Let us construct a sequence of polynomials as follows. We let P0 = P+ and
P1 = P− and let

P2(X) = X−1
(
P1(0)P0(X) − P0(0)P1(X)

)
.

Note that the constant coefficient of P1(0)P0(X)−P0(0)P1(X) is zero, so this does indeed
define P2 as a polynomial. Now inductively define

Pk(X) = X−1
(
Pk−1(0)Pk−2(X) − Pk−2(0)Pk−1(X)

)
for k ≥ 3. With this notation, we have the following lemma that describes the statement
of the theorem.

1 Lemma The (k + 1)st row of R(P) consists of the coefficients of Pk with the constant
coefficient in the first column. Thus the hypothesis of the theorem is equivalent to the condition
that P0(0),P1(0), . . . ,Pn(0) all be positive.

Proof We have P0(0) = p0, P1(0) = p1, and P2(0) = p1p2 − p0p3, directly from the
definitions. Thus the lemma holds for k ∈ {0, 1, 2}. Now suppose that the lemma
holds for k ≥ 3. Thus the kth and the (k + 1)st rows of R(P) are the coefficients of the
polynomials

Pk−1(X) = pk−1,0 + pk−1,1X + · · ·

and
Pk(X) = pk,0 + pk,1X + · · · ,

respectively. Using the definition of Pk+1 we see that Pk+1(0) = pk,0pk−1,1 − pk−1,0pk,1.
However, this is exactly the term as it would appear in first column of the (k + 2)nd
row of R(P). ▼

Now note that P(X) = P0(X2) + XP1(X2) and define Q ∈ R[X] by Q(X) =
P1(X2) + XP2(X2). One may readily verify that deg(Q) ≤ n − 1. Indeed, in the proof
of Theorem 10.4.3, a formula for Q will be given. The following lemma is key to the
proof. Let us suppose for the moment that pn is not equal to 1.
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2 Lemma The following statements are equivalent:
(i) P is Hurwitz and pn > 0;
(ii) Q is Hurwitz, qn−1 > 0, and P(0) > 0.

Proof We have already noted that P(X) = P0(X2) + XP1(X2). We may also compute

Q(X) = P1(X2) + X−1
(
P1(0)P0(X2) − P0(0)P1(X2)

)
. (10.6)

For λ ∈ [0, 1] define Qλ(X) = (1 − λ)P(X) + λQ(X), and compute

Qλ(X) =
(
(1 − λ) + X−1λP1(0)

)
P0(X2) +

(
(1 − λ)X + λ − X−1λP0(0)

)
P1(X2).

The polynomials P0(X2) and P1(X2) are even, so that when evaluated on the imaginary
axis they are real. Now we claim that the roots of Qλ that lie on the imaginary axis are
independent of λ, provided that P(0) > 0 and Q(0) > 0. First note that, if P(0) > 0 and
Q(0) > 0, then 0 is not a root of Qλ. Now, if iω0 is a nonzero imaginary root, then we
must have(

(1 − λ) − iω−1
0 λP1(0)

)
P0(−ω2

0) +
(
(1 − λ)iω0 + λ + iω−1

0 λP0(0)
)
P1(−ω2

0) = 0.

Balancing real and imaginary parts of this equation gives

(1 − λ)P0(−ω2
0) + λP1(−ω2

0) = 0

λω−1
0

(
P0(0)P1(−ω2

0) − P1(0)P0(−ω2
0)
)
+ ω0(1 − λ)P1(−ω2

0).
(10.7)

If we think of this as a homogeneous linear equation in P0(−ω2
0) and P1(ω2

0), one
determines that the determinant of the coefficient matrix is

ω−1
0

(
(1 − λ)2ω2

0 + λ((1 − λ)P0(0) + λP1(0))
)
.

This expression is positive for λ ∈ [0, 1] since P(0),Q(0) > 0 implies that P0(0),P1(0) > 0.
To summarise, we have shown that, provided that P(0) > 0 and Q(0) > 0, all imaginary
axis roots iω0 of Qλ satisfy P0(−ω2

0) = 0 and P1(−ω2
0) = 0. In particular, the imaginary

axis roots of Qλ are independent of λ ∈ [0, 1] in this case.
(i) =⇒ (ii) For λ ∈ [0, 1] let

N(λ) =

n, λ ∈ [0, 1)
n − 1, λ = 1.

Thus N(λ) is the number of roots of Qλ. Now let

Zλ = {zλ,i | i ∈ {1, . . . ,N(λ)}}

be the set of roots of Qλ. Since P is Hurwitz, Z0 ⊆ C−. Our previous computations
then show that Zλ ∩ iR = ∅ for λ ∈ [0, 1]. Now, if Q = Q1 were to have a root in C+,
this would mean that, for some value of λ, one of the roots of Qλ would have to lie
on the imaginary axis, using the (nontrivial) fact that the roots of a polynomial are
continuous functions of its coefficients. This then shows that all roots of Q must lie in
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C−. That P(0) > 0 is a consequence of Exercise 10.4.1 and P being Hurwitz. One may
check that qn−1 = p1 · · · pn, so that qn−1 > 0 follows from Exercise 10.4.1 and pn > 0.

(ii) =⇒ (i) Let us adopt the notation N(λ) and Zλ from the previous part of the
proof. Since Q is Hurwitz, Z1 ⊆ C−. Furthermore, since Zλ∩ iR = ∅, it follows that, for
λ ∈ [0, 1], the number of roots of Qλ within C− must equal n − 1 as deg(Q) = n − 1. In
particular, P can have at most one root in C+. This root, then, must be real, and let us
denote it by z0 > 0. Thus P(X) = P̃(X)(X − z0) where P̃ is Hurwitz. By Exercise 10.4.1
it follows that all coefficients of P̃ are positive. If we write

P̃ = p̃n−1Xn−1 + p̃n−2Xn−2 + · · · + p̃1X + p̃0,

then
P(X) = p̃n−1Xn + (p̃n−2 − z0p̃n−1)Xn−1 + · · · + (p̃0 − z0p̃1)X − p̃0z0.

Thus the existence of a root z0 ∈ C+ contradicts the fact that P(0) > 0. Note that we
have also shown that pn > 0. ▼

Now we proceed with the proof proper. First suppose that P is Hurwitz. By
successive applications of Lemma 2, it follows that the polynomials

Qk(X) = Pk(X2) + XPk+1(X2), k ∈ {1, . . . ,n},

are Hurwitz and that deg(Qk) = n − k, k ∈ {1, . . . ,n}. What’s more, the coefficient of
Xn−k is positive in Qk. Now, by Exercise 10.4.1, we have P0(0) > 0 and P1(0) > 0.
Now suppose that P0(0),P1(0), . . . ,Pk(0) are all positive. Since Qk is Hurwitz with the
coefficient of the highest power of X being positive, from Exercise 10.4.1 it follows
that the coefficient of X in Qk should be positive. However, this coefficient is exactly
Pk+1(0). Thus we have shown that Pk(0) > 0 for k = 0, 1, . . . ,n. From Lemma 1 it follows
that the elements of the Routh array are positive.

Now suppose that one element of the Routh array is nonpositive and that P is
Hurwitz. By Lemma 2, we may suppose that Pk0(0) ≤ 0 for some k0 ∈ {2, 3, . . . ,n}.
Furthermore, since P is Hurwitz, as above the polynomials Qk, k ∈ {1, . . . ,n}, must
also be Hurwitz, with deg(Qk) = n − k where the coefficient of Xn−k in Qk is positive.
In particular, by Exercise 10.4.1, all coefficients of Qk0−1 are positive. However, since
Qk0−1(X) = Pk0−1(X2) + XPk0(X2) it follows that the coefficient of X in Qk0−1 is negative,
and hence we arrive at a contradiction, and the theorem follows. ■

The Routh criterion is simple to apply, and we illustrate it in the simple case of
a degree two polynomial.

10.4.2 Example (The Routh criterion) Let us apply the criteria to the simplest nontrivial
example possible: P = X2 + aX + b. We compute the Routh table to be

R(P) =
b 1
a 0
a 0

.

Thus the Routh array is
[
b a a

]
, and its entries are all positive if and only if a, b > 0.

Let us see how this compares to what we know doing the calculations “by hand.”
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The roots of P are r1 = −
a
2 +

1
2

√

a2 − 4b and r2 = −
a
2 −

1
2

√

a2 − 4b. Let us consider the
various cases.
1. If a2

−4b < 0, then the roots are complex with nonzero imaginary part, and with
real part −a. Thus the roots in this case lie in the negative half-plane if and only
if a > 0. We also have b > a2

4 and so b > 0, and hence ab > 0 as in the Routh
criterion.

2. If a2
− 4b = 0, then the roots are both −a, and so lie in the negative half-plane if

and only if a > 0. In this case b = a2

4 and so b > 0. Thus ab > 0 as predicted.
3. Finally we have the case when a2

− 4b > 0. We have two subcases.
(a) When a > 0, then we have negative half-plane roots if and only if a2

−4b < a2

which means that b > 0. Therefore, we have negative half-plane roots if
and only a > 0 and ab > 0.

(b) When a < 0, then we will never have all negative half-plane roots since
−a +

√

a2 − 4b is always positive.
So we see that the Routh criterion provides a very simple encapsulation of the
necessary and sufficient conditions for all roots to lie in the negative half-plane,
even for this simple example. •

10.4.2 The Hurwitz criterion

We consider in this section another test for a polynomial to be Hurwitz. The
key ingredient in the Hurwitz construction we consider is a matrix formed from
the coefficients of a polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X].

We denote the Hurwitz matrix by H(P) ∈ L(Rn;Rn) and define it by

H(P) =


pn−1 1 0 0 · · · 0
pn−3 pn−2 pn−1 1 · · · 0
pn−5 pn−4 pn−3 pn−2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · p0

 .
Any terms in this matrix that are not defined are taken to be zero. Of course, we
also take pn = 1. Now define H(P)k ∈ L(Rk;Rk), k ∈ {1, . . . ,n}, to be the matrix
of elements H(P)i j, i, j ∈ {1, . . . , k}. Thus H(P)k is the matrix formed by taking the
“upper left k × k block from H(P).” Also define ∆k = det H(P)k.

With this notation, the Hurwitz criterion is as follows.

10.4.3 Theorem (Hurwitz’s criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if the n Hurwitz determinants ∆1, . . . ,∆n are positive.
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Proof Let us begin by resuming with the notation from the proof of Theorem 10.4.1.
In particular, we recall the definition of Q(X) = P1(X2)+XP2(X2). We wish to compute
H(Q), so we need to compute Q in terms of the coefficients of P. A computation using
the definition of Q and P2 gives

Q(X) = p1 + (p1p2 − p0p3)X + p3X2 + (p1p4 − p0p5)X3 + · · · .

One can then see that, when n is even, we have

H(Q) =


pn−1 p1pn 0 0 · · · 0 0
pn−3 p1pn−2 − p0pn−1 pn−1 p1pn · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p1p2 − p0p3 p3
0 0 0 0 · · · 0 p1


and, when n is odd, we have

H(Q) =


p1pn−1 − p0pn pn 0 0 · · · 0 0

p1pn−3 − p0pn−2 pn−2 p1pn−1 − p0pn pn · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p1p2 − p0p3 p3
0 0 0 0 · · · 0 p1


.

Now define T ∈ L(Rn;Rn) by

T =



1 0 0 · · · 0 0 0
0 p1 0 · · · 0 0 0
0 −p0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · p1 0 0
0 0 0 · · · −p0 1 0
0 0 0 · · · 0 0 1


when n is even and by

T =



p1 0 · · · 0 0 0
−p0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · p1 0 0
0 0 · · · −p0 1 0
0 0 · · · 0 0 1


when n is odd. One then verifies by direct calculation that

H(P)T =


...

H(Q) p4
p2

0 · · · 0 p0

 . (10.8)
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We now let∆1, . . . ,∆n be the determinants defined above and let ∆̃1, . . . , ∆̃n−1 be the sim-
ilar determinants corresponding to H(Q). A straightforward computation using (10.8)
gives the following relationships between the ∆’s and the ∆̃’s:

∆1 = p1

∆k+1 =

p−⌊
k
2 ⌋

1 ∆̃k, k even

p−⌈
k
2 ⌉

1 ∆̃k, k odd
, k = 1, . . . ,n − 1,

(10.9)

where ⌊x⌋ gives the greatest integer less than or equal to x and ⌈x⌉ gives the smallest
integer greater than or equal to x.

With this background notation, let us proceed with the proof, first supposing that
P is Hurwitz. In this case, by Exercise 10.4.1, it follows that p1 > 0 so that ∆1 > 0. By
Lemma 2 of Theorem 10.4.1, it also follows that Q is Hurwitz. Thus ∆̃1 > 0. A trivial
induction argument on n = deg(P) then shows that ∆2, . . . ,∆n > 0.

Now suppose that one of ∆1, . . . ,∆n is nonpositive and that P is Hurwitz. Since Q
is then Hurwitz by Lemma 2 of Theorem 10.4.1, we readily arrive at a contradiction,
and this completes the proof. ■

The Hurwitz criterion is simple to apply, and we illustrate it in the simple case
of a degree two polynomial.

10.4.4 Example (The Hurwitz criterion) Let us apply the criteria to our simple example
of P = X2 + aX + b. We then have

H(P) =
[
a 1
0 b

]
We then compute ∆1 = a and ∆2 = ab. Thus ∆1,∆2 > 0 if and only if a, b > 0.
This agrees with our application of the Routh method to the same polynomial in
Example 10.4.2. •

10.4.3 The Hermite criterion

We next look at a manner of determining whether a polynomial is Hurwitz
which makes contact with the Lyapunov methods of Section 10.7.4. Let us consider,
as usual, a monic polynomial of degree n:

P(s) = sn + pn−1sn−1 + · · · + p1s + p0.

Corresponding to such a polynomial, we construct its Hermite matrix as the n × n
matrix P(P) given by

P(P)i j =


∑i

k=1(−1)k+ipn−k+1pn−i− j+k, j ≥ i, i + j even
P(P) ji, j < i, i + j even
0, i + j odd.
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As usual, in this formula we take pi = 0 for i < 0. One can get an idea of how this
matrix is formed by looking at its appearance for small values of n. For n = 2 we
have

P(P) =
[
p1p2 0

0 p0p1

]
,

for n = 3 we have

P(P) =

p2p3 0 p0p3

0 p1p2 − p0p3 0
p0p3 0 p0p1

 ,
and for n = 4 we have

P(P) =


p3p4 0 p1p4 0

0 p2p3 − p1p4 0 p0p3

p1p4 0 p1p2 − p0p3 0
0 p0p3 0 p0p1

 .
The following theorem gives necessary and sufficient conditions for P to be Hurwitz
based on its Hermite matrix.

10.4.5 Theorem (Hermite’s criterion) A polynomial

P(s) = sn + pn−1sn−1 + · · · + p1s + p0 ∈ R[s]

is Hurwitz if and only if P(P) is positive-definite.
Proof Let

A(P) =


−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, b(P) =


pn−1

0
pn−3

0
...


.

An unenjoyable computation gives

P(P)A(P) + A(P)TP(P) = −b(P)b(P)T.

First suppose that P(P) is positive-definite. By Theorem 10.7.9(i), since b(P)b(P)T is
positive-semidefinite, A(P) is Hurwitz. Conversely, if A(P) is Hurwitz, then there is
only one symmetric P so that

PA(P) + A(P)TP = −b(P)b(P)T,

this by Theorem 10.10.6(i). Since P(P) satisfies this relation even when A(P) is not
Hurwitz, it follows that P(P) is positive-definite. The theorem now follows since the
characteristic polynomial of A(P) is P. ■

Let us apply this theorem to our favourite example.



2022/03/07 10.4 Hurwitz polynomials 735

10.4.6 Example (Hermite’s criterion) We consider the polynomial P(s) = s2+as+b which
has the Hermite matrix

P(P) =
[
a 0
0 ab

]
.

Since this matrix is diagonal, it is positive-definite if and only if the diagonal entries
are zero. Thus we recover the by now well established condition that a, b > 0. •

The Hermite criterion, Theorem 10.4.5, does indeed record necessary and suffi-
cient conditions for a polynomial to be Hurwitz. However, it is more computation-
ally demanding than it needs to be, especially for large polynomials. Part of the
problem is that the Hermite matrix contains so many zero entries. To get conditions
involving smaller matrices leads to the so-called reduced Hermite criterion which
we now discuss. Given a degree n polynomial P with its Hermite matrix P(P), we
define reduced Hermite matrices C(P) and D(P) as follows:
1. C(P) is obtained by removing the even numbered rows and columns of P(P)

and
2. D(P) is obtained by removing the odd numbered rows and columns of P(P).
Thus, if n is even, C(P) and D(P) are n

2 ×
n
2 , and if n is odd, C(P) is n+1

2 ×
n+1

2 and D(P)
is n−1

2 ×
n−1

2 . Let us record a few of these matrices for small values of n. For n = 2
we have

C(P) =
[
p1p2

]
, D(P) =

[
p0p1

]
,

for n = 3 we have

C(P) =
[
p2p3 p0p3

p0p3 p0p1

]
, D(P) =

[
p1p2 − p0p3

]
,

and for n = 4 we have

C(P) =
[
p3p4 p1p4

p1p4 p1p2 − p0p3

]
, D(P) =

[
p2p3 − p1p4 p0p3

p0p3 p0p1

]
.

Let us record a useful property of the matrices C(P) and D(P), noting that they
are symmetric.

10.4.7 Lemma (A property of reduced Hermite matrices) P(P) is positive-definite if and
only if both C(P) and D(P) are positive-definite.

Proof For x = (x1, . . . , xn) ∈ Rn, denote xodd = (x1, x3, . . .) and xeven = (x2, x4, . . .). A
simple computation then gives

xTP(P)x = xT
oddC(P)xodd + xT

evenD(P)xeven. (10.10)

Clearly, if C(P) and D(P) are both positive-definite, then so too is P(P). Conversely,
suppose that one of C(P) or D(P), say C(P), is not positive-definite. Thus there exists
x ∈ Rn so that xodd , 0 and xeven = 0, and for which

xT
oddC(P)xodd ≤ 0.

From (10.10), it now follows that P(P) is not positive-definite. ■
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The Hermite criterion then tells us that P is Hurwitz if and only if both C(P)
and D(P) are positive-definite. The remarkable fact is that we need only check one
of these matrices for definiteness, and this is recorded in the following theorem.

10.4.8 Theorem (Reduced Hermite criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if any one of the following conditions holds:
(i) p2k > 0, k ∈ {0, 1, . . . , ⌊n−1

2 ⌋} and C(P) is positive-definite;
(ii) p2k > 0, k ∈ {0, 1, . . . , ⌊n−1

2 ⌋} and D(P) is positive-definite;
(iii) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , ⌊n−2

2 ⌋} and C(P) is positive-definite;
(iv) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , ⌊n−2

2 ⌋} and D(P) is positive-definite.
Proof First suppose that P is Hurwitz. Then all coefficients are positive (see Exer-
cise 10.4.1) and P(P) is positive-definite by Theorem 10.4.5. This implies that C(P)
and D(P) are positive-definite by Lemma 10.4.7, and thus conditions (i)–(iv) hold. For
the converse assertion, the cases when n is even or odd are best treated separately. This
gives eight cases to look at. As certain of them are quite similar in flavour, we only
give details the first time an argument is encountered.

Case 1: We assume (i) and that n is even. Denote

A1(P) =



−
pn−2
pn

−
pn−4
pn

· · · −
p2
pn
−

p0
pn

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


.

A calculation then gives C(P)A1(P) = −D(P). Since C(P) is positive-definite, there exists
an orthogonal matrix R so that RC(P)RT = ∆, where∆ is diagonal with strictly positive
diagonal entries. Let ∆1/2 denote the diagonal matrix whose diagonal entries are the
square roots of those of∆. Now denote C(P)1/2 = RT∆1/2R, noting that C(P)1/2C(P)1/2 =
C(P). Also note that C(P)1/2 is invertible, and we shall denote its inverse by C(P)−1/2.
Note that this inverse is also positive-definite. This then gives

C(P)1/2A1(P)C(P)−1/2 = −C(P)−1/2D(P)C(P)−1/2. (10.11)

The matrix on the right is symmetric, so this shows that A1(P) is similar to a symmetric
matrix, allowing us to deduce that A1(P) has real eigenvalues. These eigenvalues are
also roots of the characteristic polynomial

sn/2 +
pn−2

pn
sn/2−1 + · · · +

p2

pn
s +

p0

pn
.

Our assumption (i) ensures that is s is real and nonnegative, the value of the charac-
teristic polynomial is positive. From this we deduce that all eigenvalues of A1(P) are
negative. From (10.11) it now follows that D(P) is positive-definite, and so P is Hurwitz
by Lemma 10.4.7 and Theorem 10.4.5.
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Case 2: We assume (ii) and that n is even. Consider the polynomial P−1(s) = snP( 1
s ).

Clearly the roots of P−1 are the reciprocals of those for P. Thus P−1 is Hurwitz if and
only if P is Hurwitz (see Exercise 10.4.2). Also, the coefficients for P−1 are obtained by
inverting those for P. Using this facts, one can see that C(P−1) is obtained from D(P) by
reversing the rows and columns, and that D(P−1) is obtained from C(P) by reversing
the rows and columns. One can then show that P−1 is Hurwitz just as in Case 1, and
from this it follows that P is Hurwitz.

Case 3: We assume (iii) and that n is odd. In this case we let

A2(P) =



−
pn−2
pn

−
pn−4
pn

· · · −
p1
pn

0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


and note that one can check to see that

C(P)A2(P) = −
[
D(P) 0

0T 0

]
. (10.12)

As in Case 1, we may define the square root, C(P)1/2, of C(P), and ascertain that

C(P)1/2A2(P)C(P)−1/2 = −C(P)−1/2
[
D(P) 0

0T 0

]
C(P)−1/2.

Again, the conclusion is that A2(P) is similar to a symmetric matrix, and so must have
real eigenvalues. These eigenvalues are the roots of the characteristic polynomial

X(n+1)/2 +
pn−2

pn
X(n+1)/2−1 + · · · +

p1

pn
X.

This polynomial clearly has a zero root. However, since (iii) holds, for positive real
values of X, the characteristic polynomial takes on positive values, so the nonzero
eigenvalues of A2(P) must be negative, and there are n+1

2 − 1 of these. From this
and (10.12) it follows that the matrix [

D(P) 0
0T 0

]
has one zero eigenvalue and n+1

2 − 1 positive real eigenvalues. Thus D(P) must be
positive-definite, and P is then Hurwitz by Lemma 10.4.7 and Theorem 10.4.5.

Case 4: We assume (i) and that n is odd. As in Case 2, define P−1(X) = XnP( 1
X ).

In this case one can ascertain that C(P−1) is obtained from C(P) by reversing rows and
columns, and that D(P−1) is obtained from D(P) by reversing rows and columns. The
difference from the situation in Case 2 arises because here we are taking n odd, while
in Case 2 it was even. In any event, one may now apply Case 3 to P−1 to show that P−1

is Hurwitz. Then P is itself Hurwitz by Exercise 10.4.2.
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Case 5: We assume (ii) and that n is odd. For ϵ > 0 define Pϵ ∈ R[X] by Pϵ(X) =
(X + ϵ)P(X). Thus the degree of Pϵ is now even. Indeed,

Pϵ(X) = pnXn+1 + (pn−1 + ϵpn)Xn + · · · + (p0 + ϵp1)X + ϵp0.

One may readily determine that

C(Pϵ) = C(P) + ϵC

for some matrix C which is independent of ϵ. In like manner, one may show that

D(Pϵ) =
[
D(P) + ϵD11 ϵD12

ϵD12 ϵp2
0

]
,

where D11 and D12 are independent of ϵ. Since D(P) is positive-definite and a0 > 0, for
ϵ sufficiently small we must have that D(Pϵ) is positive-definite. From the argument
of Case 2, we may infer that Pϵ is Hurwitz, from which it is obvious that P is also
Hurwitz.

Case 6: We assume (iv) and that n is odd. We define P−1(X) = XnP( 1
X ) so that C(P−1)

is obtained from C(P) by reversing rows and columns, and that D(P−1) is obtained
from D(P) by reversing rows and columns. One can now use Case 5 to show that P−1

is Hurwitz, and so P is also Hurwitz by Exercise 10.4.2.
Case 7: We assume (iii) and that n is even. As with Case 5, we define Pϵ(X) =

(X + ϵ)P(X) and in this case we compute

C(Pϵ) =
[
C(P) + ϵC11 ϵC12

ϵC12 ϵp2
0

]
and

D(Pϵ) = D(P) + ϵD,

where C11, C12, and D are independent of ϵ. By our assumption (iii), for ϵ > 0 sufficiently
small we have C(Pϵ) positive-definite. Thus, invoking the argument of Case 1, we may
deduce that D(Pϵ) is also positive-definite. Therefore Pϵ is Hurwitz by Lemma 10.4.7
and Theorem 10.4.3. Thus P is itself also Hurwitz.

Case 8: We assume (iv) and that n is even. Taking P−1(X) = XnP( 1
X ) we see that

C(P−1) is obtained from D(P) by reversing the rows and columns, and that D(P−1) is
obtained from C(P) by reversing the rows and columns. Now one may apply Case 7
to deduce that P−1, and therefore P, is Hurwitz. ■

10.4.4 The Liénard–Chipart criterion

Although less well-known than the criterion of Routh and Hurwitz, the test we
give next has the advantage of delivering fewer determinantal inequalities to test.
This results from their being a dependence on some of the Hurwitz determinants.
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10.4.9 Theorem (Liénard–Chipart criterion) A polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz if and only if any one of the following conditions holds:
(i) p2k > 0, k ∈ {0, 1, . . . , ⌊n−1

2 ⌋} and ∆2k+1 > 0, k ∈ {0, 1, . . . , ⌊n−1
2 ⌋};

(ii) p2k > 0, k ∈ {0, 1, . . . , ⌊n−1
2 ⌋} and ∆2k > 0, k ∈ {1, . . . , ⌊n

2 ⌋};
(iii) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , ⌊n−2

2 ⌋} and ∆2k+1 > 0, k ∈ {0, 1, . . . , ⌊n−1
2 ⌋};

(iv) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , ⌊n−2
2 ⌋} and ∆2k > 0, k ∈ {1, . . . , ⌊n

2 ⌋}.
Here ∆1, . . . ,∆n are the Hurwitz determinants.

Proof The theorem follows immediately from and Theorem 10.4.8, after one checks lem:minors

that the principal minors of C(P) are exactly the odd Hurwitz determinants ∆1,∆3, . . .,
and that the principal minors of D(P) are exactly the even Hurwitz determinants
∆2,∆4, . . .. ■

The advantage of the Liénard–Chipart test over the Hurwitz test is that one will
generally have fewer determinants to compute. Let us illustrate the criterion in the
simplest case, when n = 2.

10.4.10 Example (Liénard–Chipart criterion) We consider the polynomial P = X2+aX+b.
Recall that the Hurwitz determinants were computed in Example 10.4.4:

∆1 = a, ∆2 = ab.

Let us write down the four conditions of Theorem 10.4.9:
1. p0 = b > 0, ∆1 = a > 0;
2. p0 = b > 0, ∆2 = ab > 0;
3. p0 = b > 0, p1 = a > 0, ∆1 = a > 0;
4. p0 = b > 0, p1 = a > 0, ∆2 = ab > 0.
We see that all of these conditions are equivalent in this case, and imply that P is
Hurwitz if and only if a, b > 0, as expected. This example is really too simple to
illustrate the potential advantages of the Liénard-Chipart criterion, but we refer
the reader to Exercise 10.4.3 to see how the test can be put to good use. •

10.4.5 Kharitonov’s test

It is sometimes the case that one does not know exactly the coefficients for a
given polynomial. In such instances, one may know bounds on the coefficients.
That is, for a polynomial

P(s) = pnsn + pn−1sn−1 + · · · + p1s + p0, (10.13)

one may know that the coefficients satisfy inequalities of the form

pmin
i ≤ pi ≤ pmax

i , i = 0, 1, . . . ,n. (10.14)

In this case, the following remarkable theorem gives a simple test for the stability
of the polynomial for all possible values for the coefficients.
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10.4.11 Theorem (Kharitonov’s criterion) Given a polynomial of the form (10.13) with the
coefficients satisfying the inequalities (10.14), define four polynomials

Q1(s) = pmin
0 + pmin

1 s + pmax
2 s2 + pmax

3 s3 + · · ·

Q2(s) = pmin
0 + pmax

1 s + pmax
2 s2 + pmin

3 s3 + · · ·

Q3(s) = pmax
0 + pmax

1 s + pmin
2 s2 + pmin

3 s3 + · · ·

Q4(s) = pmax
0 + pmin

1 s + pmin
2 s2 + pmax

3 s3 + · · ·

Then P is Hurwitz for all

(p0,p1, . . . ,pn) ∈ [pmin
0 ,pmax

0 ] × [pmin
1 ,pmax

1 ] × · · · × [pmin
n ,pmax

n ]

if and only if the polynomials Q1, Q2, Q3, and Q4 are Hurwitz.
Proof Let us first assume without loss of generality that pmin

j > 0, j = 0, . . . ,n. Indeed,
by Exercise 10.4.1, for a polynomial to be Hurwitz, its coefficients must have the same
sign, and we may as well suppose this sign to be positive. If

p = (p0, p1, . . . , pn) ∈ [pmin
0 , pmin

0 ] × [pmin
1 , pmin

1 ] × · · · × [pmin
n , pmin

n ],

then let us say, for convenience, that p is allowable. For p allowable denote

Pp(s) = pnsn + pn−1sn−1 + · · · + p1s + p0.

It is clear that if all polynomials Pp are allowable then the polynomials Q1, Q2, Q3, and
Q4 are Hurwitz. Thus suppose for the remainder of the proof that Q1, Q2, Q3, and Q4
are Hurwitz, and we shall deduce that Pp is also Hurwitz for every allowable p.

For ω ∈ R define
R(ω) = {Pp(iω) | p allowable}.

The following property of R(ω) lies at the heart of our proof. It is first noticed by
Dasgupta [1988].

1 Lemma For each ω ∈ R, R(ω) is a rectangle in C whose sides are parallel to the real and
imaginary axes, and whose corners are Q1(iω), Q2(iω), Q3(iω), and Q4(iω).
Proof We note that for ω ∈ R we have

Re(Q1(iω)) = Re(Q2(iω)) = pmin
0 − pmaxω2 + pmin

4 ω4 + · · ·

Re(Q3(iω)) = Re(Q4(iω)) = pmax
0 − pminω2 + pmax

4 ω4 + · · ·

Im(Q1(iω)) = Im(Q4(iω)) = ω
(
pmin

− pmaxω2 + pmin
4 ω4 + · · ·

)
Im(Q2(iω)) = Im(Q3(iω)) = ω

(
pmax

− pminω2 + pmax
4 ω4 + · · ·

)
.

From this we deduce that for any allowable p we have

Re(Q1(iω)) = Re(Q2(iω)) ≤ Re(Pp(iω)) ≤ Re(Q3(iω)) = Re(Q4(iω))
Im(Q1(iω)) = Im(Q4(iω)) ≤ Im(Pp(iω)) ≤ Im(Q2(iω)) = Im(Q3(iω)).

This leads to the picture shown in Figure 10.8 for R(ω). The lemma follows immediately
from this. ▼

Using the lemma, we now claim that if p is allowable, then Pp has no imaginary axis
roots. To do this, we record the following useful property of Hurwitz polynomials.
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Q1(iω) Q4(iω)

Q3(iω)Q2(iω)

Figure 10.8 R(ω)

2 Lemma If P ∈ R[s] is monic and Hurwitz with deg(P) ≥ 1, then arg(P(iω)) is a continuous
and strictly increasing function of ω.

Proof Write

P(s) =
n∏

j=1

(s − z j)

where z j = σ j + iω j with σ j < 0. Thus

arg(P(iω)) =
n∑

j=1

arg((iω + |σ j| − iω j)) =
n∑

j=1

arctan
(ω − ω j

|σ j|

)
.

Since |σ j| > 0, each term in the sum is continuous and strictly increasing, and thus so
too is arg(P(iω)). ▼

To show that 0 < R(ω) for ω ∈ R, first note that 0 < R(0). Now, since the corners
of R(ω) are continuous functions of ω, if 0 ∈ R(ω) for some ω > 0, then it must be
the case that for some ω0 ∈ [0, ω] the point 0 ∈ C lies on the boundary of R(ω0).
Suppose that 0 lies on the lower boundary of the rectangle R(ω0). This means that
Q1(iω0) < 0 and Q4(iω0) > 0 since the corners of R(ω) cannot pass through 0. Since Q1
is Hurwitz, by Lemma 2 we must have Q1(i(ω0 + δ)) in the (−,−) quadrant in C and
Q4(i(ω0 + δ)) in the (+,+) quadrant in C for δ > 0 sufficiently small. However, since
Im(Q1(iω)) = Im(Q4(iω)) for all ω ∈ R, this cannot be. Therefore 0 cannot lie on the
lower boundary of R(ω0) for any ω0 > 0. Similar arguments establish that 0 cannot lie
on either of the other three boundaries either. This then prohibits 0 from lying in R(ω)
for any ω > 0.

Now suppose that Pp0
is not Hurwitz for some allowable p0. For λ ∈ [0, 1] each of

the polynomials
λQ1 + (1 − λ)Pp0

(10.15)

is of the form Ppλ for some allowable pλ. Indeed, the equation (10.15) defines a straight
line from Q1 to Pp0

, and since the set of allowable p’s is convex (it is a cube), this line
remains in the set of allowable polynomial coefficients. Now, since Q1 is Hurwitz and
Pp0

is not, by continuity of the roots of a polynomial with respect to the coefficients,
we deduce that for some λ ∈ [0, 1), the polynomial Ppλ must have an imaginary axis
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root. However, we showed above that 0 < R(ω) for all ω ∈ R, denying the possibility
of such imaginary axis roots. Thus all polynomials Pp are Hurwitz for allowable p. ■

10.4.12 Remarks
1. Note the pattern of the coefficients in the polynomials Q1, Q2, Q3, and Q4

has the form (. . . ,max,max,min,min, . . . ) This is charmingly referred to as the
Kharitonov melody.

2. One would anticipate that to check the stability for P one should look at all
possible extremes for the coefficients, giving 2n polynomials to check. That this
can be reduced to four polynomial checks is an unobvious simplification. •

Let us apply the Kharitonov test in the simplest case when n = 2.

10.4.13 Example We consider
P(s) = s2 + as + b

with the coefficients satisfying

(a, b) ∈ [amin, amax] × [bmin, bmax].

The polynomials required by Theorem 10.4.11 are

Q1(s) = s2 + amins + bmin

Q2(s) = s2 + amaxs + bmin

Q3(s) = s2 + amaxs + bmax

Q4(s) = s2 + amins + bmax.

We now apply the Routh/Hurwitz criterion to each of these polynomials. This
indicates that all coefficients of the four polynomials Q1, Q2, Q3, and Q4 should be
positive. This reduces to requiring that

amin, amax, bmin, bmax > 0.

That is, amin, bmin > 0. In this simple case, we could have guessed the result our-
selves since the Routh/Hurwitz criterion are so simple to apply for degree two
polynomials. Nonetheless, the simple example illustrates how to apply Theo-
rem 10.4.11. •

10.4.6 Notes

It is interesting to note that the method of Edward John Routh (1831–1907) was
developed in response to a famous paper of James Clerk Maxwell6 (1831–1879) on
the use of governors to control a steam engine. This paper of Maxwell [1868] can
be regarded as the first paper in mathematical control theory.

6Maxwell, of course, is better known for his famous equations of electromagnetism.
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Theorem 10.4.1 is due to Routh [1877].
Theorem 10.4.3 is due to Hurwitz [1895].
Theorem 10.4.5 is due to Charles Hermite (1822–1901) [see Hermite 1854]. The

slick proof using Lyapunov methods comes from the paper of Parks [1962].
Our proof of Theorem 10.4.8 follows that of Anderson [1972].
Theorem 10.4.9 is from Liénard and Chipart [1914]7 This is given thorough

discussion by Gantmacher [1959]. Here we state the result, and give a proof
due to Anderson [1972] that is more elementary than that of Gantmacher. The
observation in the proof of Theorem 10.4.9 is made by a computation which we
omit, and appears to be first been noticed by Fujiwara [1915].

Theorem 10.4.11 is due to Kharitonov [1978]. Since the publication of
Kharitonov’s result, or more properly its discovery by the non-Russian speak-
ing world, there have been many simplifications of the proof [e.g., Chapellat and
Bhattacharyya 1989, Dasgupta 1988, Mansour and Anderson 1993]. The proof we
give essentially follows Minnichelli, Anagnost, and Desoer [1989]. Anderson, Jury,
and Mansour [1987] observe that for polynomials of degree 3, 4, or 5, it suffices to
check not four, but one, two, or three polynomials, respectively, as being Hurwitz.
A proof of Kharitonov’s theorem, using Lyapunov methods (see Section 10.7.4), is
given by Mansour and Anderson [1993].

Exercises

10.4.1 A useful necessary condition for a polynomial to have all roots in C− is
given by the following theorem.

Theorem If the polynomial

P = Xn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

is Hurwitz, then the coefficients p0,p1, . . . ,pn−1 are all positive.

(a) Prove this theorem.
(b) Is the converse of the theorem true? If so, prove it, if not, give a

counterexample.

10.4.2 Consider a polynomial

P = pnXn + pn−1Xn−1 + · · · + p1X + p0 ∈ R[X]

with p0, pn , 0, and define P−1
∈ R[X] by P−1(X) = XnP( 1

X ).
(a) Show that the roots for P−1 are the reciprocals of the roots for P.
(b) Show that P is Hurwitz if and only if P−1 is Hurwitz.

7Perhaps the relative obscurity of the test reflects that of its authors; I was unable to find a
biographical reference for either Liénard or Chipart. I do know that Liénard did work in differential
equations, with the Liénard equation being a well-studied second-order linear differential equation.
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10.4.3 For the following two polynomials,
(a) P = X3 + aX2 + bX + c,
(b) P = X4 + aX3 + bX2 + cX + d,
write down the four conditions of the Liénard–Chipart criterion, Theo-
rem 10.4.9, and determine which is the least restrictive.
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Section 10.5

Lyapunov’s First (or Indirect) Method

The First Method of Lyapunov relates the stability of an equilibrium point to
the stability of the linearisation about this equilibrium point. Therefore, in this
section we provide a concrete impetus for the process of linearisation developed
in Section 5.1. We shall discuss separately the First Method of Lyapunov in the
nonautonomous and autonomous situation, since the autonomous case is much
easier.

Let us briefly recall here the process of the linearisation of an ordinary differen-
tial equation F about an equilibrium state x0. We suppose that the right-hand side
F̂ is differentiable with respect to x. Then the linearisation is the linear ordinary
differential equation FL,x0 on Rn whose right-hand side is

F̂L,x0 : T ×Rn
→ Rn

(t,v) 7→ DF̂t(x0) · v.

10.5.1 The First Method for nonautonomous equations

We shall work with a system of first-order ordinary differential equations F
with right-hand side

F̂ : T ×U→ Rn,

where U ⊆ Rn is the state space, i.e., an open subset of Rn. We shall consider an
equilibrium point x0 ∈ U; thus, by Proposition 5.1.5, F̂(t, x0) = 0 for all t ∈ T.

The main theorem for this setting is then the following.

10.5.1 Theorem (Uniform asymptotic stability for linearisation implies uniform ex-
ponential stability for equilibria I) Let F be an ordinary differential equation with
right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, that F̂ is
continuously differentiable, and that there exist r,L,M ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, (t, x) ∈ T × B(r, x0), j,k ∈ {1, . . . ,n}, (10.16)

and∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x1) −

∂̂Fj

∂xk
(t, x2)

∣∣∣∣∣∣∣ ≤ L∥x1 − x2∥, t ∈ T, x1, x2 ∈ B(r, x0), j,k ∈ {1, . . . ,n}.

(10.17)



746 10 State space stability 2022/03/07

Then x0 is uniformly exponentially stable if its linearisation is uniformly asymptotically
stable.

Proof First let us deduce some consequences of F satisfying the hypotheses of the
theorem statement.

1 Lemma If F is an ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

satisfies:

(i) F̂ is continuously differentiable;
(ii) there exist r,L,M ∈ R>0 such that (10.16) and (10.17) hold.

Then there exists Ĝ : T × B(r, x0)→ Rn and C ∈ R>0 such that

F̂j(t, x) =
n∑

k=1

∂̂Fj

∂xk
(t, x0)(xk − x0,k) + Ĝj(t, x), (t, x) ∈ T × B(r, x0),

where
∥Ĝ(t, x)∥ ≤ C∥x − x0∥

2, (t, x) ∈ T × B(r, x0) (10.18)

Proof By the Mean Value Theorem, , we can writeref

F̂ j(t, x) = F̂ j(t, x0) +
n∑

k=1

∂F̂ j

∂xk
(t, y)(xk − x0,k)

for some y = sx0+ (1− s)x, s ∈ [0, 1]. Since x0 is an equilibrium point, we rewrite this as

F̂ j(t, x) =
n∑

k=1

∂F̂ j

∂xk
(t, x0)(xk − x0,k) +

n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)

 (xk − x0,k).

If we define

Ĝ j =

n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)

 (xk − x0,k),

it only remains to verify the estimate (10.18) for a suitable C ∈ R>0. By the
Cauchy–Bunyakovsky–Schwarz inequality, we have

∥Ĝ(t, x)∥ =

 n∑
j=1

 n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)

 (xk − x0,k)


2

1/2

≤

 n∑
j=1

 n∑
k=1

∂F̂ j

∂xk
(t, y) −

∂F̂ j

∂xk
(t, x0)


2

∥x − x0∥
2




1/2

≤

 n∑
j=1

L2
∥y − x0∥

2
∥x − x0∥

2


1/2

=
√

nL(1 − s)∥x − x0∥
2
≤
√

nL∥x − x0∥
2,

and the lemma follows taking C =
√

nL. ▼
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For brevity, let us denote A(t) = DF̂(t, x0). The assumptions of the theorem ensure
that A satisfies the hypotheses of Theorem 10.10.2. Thus, since the linearisation is
uniformly asymptotically stable, there exists P : T → L(Rn;Rn) such that (P, In) is a
Lyapunov pair for FL,x0 . We define

V : T ×U→ R
(t, x) 7→ fP(t, x − x0).

Let (t0, x) ∈ T × B(r, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then calculate, using the lemma above,

d
dt

V(t, ξ(t)) =
d
dt
⟨P(t)(ξ(t) − x0), ξ(t) − x0⟩Rn

= ⟨Ṗ(t)(ξ(t)), ξ(t) − x0⟩Rn + ⟨P(t)(̂F(t, ξ(t))), ξ(t) − x0⟩Rn

+ ⟨P(t)(ξ(t) − x0), F̂(t, ξ(t))⟩Rn

= ⟨(Ṗ(t) + P(t)A(t) + AT(t)P(t))(ξ(t) − x0), ξ(t) − x0⟩Rn

+ 2⟨P(t)(ξ(t) − x0), Ĝ(t, ξ(t))⟩Rn

= − ∥ξ(t) − x0∥
2 + 2⟨P(t)(ξ(t) − x0), Ĝ(t, ξ(t))⟩Rn .

Evaluating at t = t0 and using Lemma 10.7.3, this shows that

LFV(t0, x) = −∥x − x0∥
2 + 2⟨P(t0)(x − x0), Ĝ(t0, x)⟩Rn

for (t0, x) ∈ T × B(r, x0). By Lemma 10.6.17, let B ∈ R>0 be such that

B∥v∥2 ≤ ∥P(t)(v)∥2 ≤ B−1
∥v∥2, (t,v) ∈ T ×Rn.

We have

|⟨P(t)(x − x0), Ĝ(t, x)⟩Rn | ≤ ∥P(t)(x − x0)∥∥Ĝ(t, x)∥

≤ C
√

B−1∥x − x0∥
3
≤ C
√

B−1r∥x − x0∥
2,

where C is as in the lemma. Therefore, if we shrink r sufficiently that 1− 2C
√

B−1r > 1
2 ,

then
LFV(t, x) ≤ −

1
2
∥x − x0∥

2, (t, x) ∈ T × B(r, x0).

Since we also have

B∥x − x0∥
2
≤ V(t, x) ≤ B−1

∥x − x0∥
2, (t, x) ∈ T × B(r, x0),

by Theorem 10.10.2, the theorem follows from Theorem 10.7.6. ■

10.5.2 The First Method for autonomous equations

Next we turn to Lyapunov’s First Method for determining the stability of equi-
libria for nonautonomous ordinary differential equations.
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10.5.2 Theorem (Asymptotic stability for linearisation implies exponential stability
for equilibria II) Let F be an autonomous ordinary differential equation with right-hand
side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

and let x0 ∈ U be an equilibrium point for F0. Assume that supT = ∞, that F̂ is
continuously differentiable, and that there exist r,L ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂F0,j

∂xk
(x1) −

∂̂F0,j

∂xk
(x2)

∣∣∣∣∣∣∣ ≤ L∥x1 − x2∥, x1, x2 ∈ B(r, x0), j,k ∈ {1, . . . ,n}. (10.19)

Then x0 is exponentially stable if its linearisation is asymptotically stable.

We offer two proofs of this theorem, one assuming Theorem 10.5.1 and the
other an independent proof.

Proof of Theorem 10.5.2, assuming Theorem 10.5.1 The hypotheses of Theorem 10.5.2
clearly imply those of Theorem 10.5.1 since, in Theorem 10.5.2, F̂ is independent
of t. Therefore, the hypotheses of Theorem 10.5.2 imply the conclusions of Theo-
rem 10.5.1, i.e., that uniform asymptotic stability of the linearisation implies uniform
exponential stability of the equilibrium. The proof in this case is concluded by recalling
from Proposition 10.2.5 that the various flavours of uniform stability are equivalent
to the corresponding flavours of stability for autonomous equations. ■

Independent proof of Theorem 10.5.2 First let us deduce some consequences of F satisfy-
ing the hypotheses of the theorem statement.

1 Lemma If F is an autonomous ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

satisfies:

(i) F̂0 is continuously differentiable;
(ii) there exist r,L ∈ R>0 such that (10.19) holds.

Then there exists Ĝ0 : B(r, x0)→ Rn and C ∈ R>0 such that

F̂0,j(t, x) =
n∑

k=1

∂̂F0,j

∂xk
(x0)(xk − x0,k) + Ĝ0,j(x), x ∈ B(r, x0),

where
∥Ĝ0(x)∥ ≤ C∥x − x0∥

2, x ∈ B(r, x0) (10.20)

Proof By the Mean Value Theorem, , we can writeref

F̂0, j(x) = F̂0, j(x0) +
n∑

k=1

∂F̂0, j

∂xk
(y)(xk − x0,k)
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for some y = sx0+ (1− s)x, s ∈ [0, 1]. Since x0 is an equilibrium point, we rewrite this as

F̂0, j(x) =
n∑

k=1

∂F̂0, j

∂xk
(x0)(xk − x0,k) +

n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)

 (xk − x0,k).

If we define

Ĝ0, j =

n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)

 (xk − x0,k),

it only remains to verify the estimate (10.20) for a suitable C ∈ R>0. By the
Cauchy–Bunyakovsky–Schwarz inequality, we have

∥Ĝ0(x)∥ =

 n∑
j=1

 n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)

 (xk − x0,k)


2

1/2

≤

 n∑
j=1

 n∑
k=1

∂F̂0, j

∂xk
(y) −

∂F̂0, j

∂xk
(x0)


2

∥x − x0∥
2




1/2

≤

 n∑
j=1

L2
∥y − x0∥

2
∥x − x0∥

2


1/2

=
√

nL(1 − s)∥x − x0∥
2
≤
√

nL∥x − x0∥
2,

and the lemma follows taking C =
√

nL. ▼

For brevity, let us denote A = DF̂(x0). Since the linearisation is asymptotically
stable, by Theorem 10.10.3 there exists P ∈ L(Rn;Rn) such that (P, In) is a Lyapunov
pair for FL,x0 . We define

V : U→ R
x 7→ fP(x − x0).

Let x ∈ B(r, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x.

Then calculate, using the lemma above,

d
dt

V(ξ(t)) =
d
dt
⟨P(ξ(t) − x0), ξ(t) − x0⟩Rn

= ⟨P(̂F0(ξ(t))), ξ(t) − x0⟩Rn + ⟨P(ξ(t) − x0), F̂0(ξ(t))⟩Rn

= ⟨(PA + ATP)(ξ(t) − x0), ξ(t) − x0⟩Rn

+ 2⟨P(ξ(t) − x0), Ĝ0(ξ(t))⟩Rn

= − ∥ξ(t) − x0∥
2 + 2⟨P(ξ(t) − x0), Ĝ0(ξ(t))⟩Rn .

Evaluating at t = 0 and using Lemma 10.7.3, this shows that

LFV(x) = −∥x − x0∥
2 + 2⟨P(x − x0), Ĝ0(x)⟩Rn
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for x ∈ B(r, x0). By Lemma 10.6.13, let B ∈ R>0 be such that

B∥v∥2 ≤ ∥P(v)∥2 ≤ B−1
∥v∥2, v ∈ Rn.

We have

|⟨P(x − x0), Ĝ0(x)⟩Rn | ≤ ∥P(x − x0)∥∥Ĝ0(x)∥

≤ C
√

B−1∥x − x0∥
3
≤ C
√

B−1r∥x − x0∥
2,

where C is as in the lemma. Therefore, if we shrink r sufficiently that 1− 2C
√

B−1r > 1
2 ,

then
LFV(x) ≤ −

1
2
∥x − x0∥

2, x ∈ B(r, x0).

Since we also have

B∥x − x0∥
2
≤ V(x) ≤ B−1

∥x − x0∥
2, x ∈ B(r, x0),

by Theorem 10.10.3, the theorem follows from Theorem 10.7.12. ■

10.5.3 An instability theorem

In this section we give a result that allows one to determine instability of an
equilibrium from the linearisation. We shall work here only with autonomous
ordinary differential equations.

10.5.3 Theorem (Spectral instability of linearisation implies instability for equilibria)
Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, that F̂0 is
continuously differentiable. Then x0 is unstable if spec(̂FL,x0) ∩ C+ , ∅.

Proof For brevity, let us denote A = F̂L,x0 . First let us suppose that spec(A) ∩ iR = ∅.
Then, according to ■some decomposition

result or other

10.5.4 A converse theorem

In this section we consider the extent to which stability of the linearisation
exactly characterises stability of an equilibrium point. As we know from the results
and examples above, it is definitely not the case that stability of an equilibrium
point necessitates stability of the linearisation. The following result shows that
this necessity holds when the type of stability we are discussing is exponential
stability.
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10.5.4 Theorem (Exponential stability of an equilibrium implies exponential stability
of linearisation) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, that F̂ is
continuously differentiable, and that there exist r,L,M ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, (t, x) ∈ T × B(r, x0), j,k ∈ {1, . . . ,n}, (10.21)

and∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x1) −

∂̂Fj

∂xk
(t, x2)

∣∣∣∣∣∣∣ ≤ L∥x1 − x2∥, t ∈ T, x1, x2 ∈ B(r, x0), j,k ∈ {1, . . . ,n}.

(10.22)
Then F̂L,x0 is globally exponentially stable if x0 is exponentially stable.

Proof Let us abbreviate A(t) = F̂L,x0(t). Let us write

A(t)x = F̂(t, x) − (̂F(t, x) − A(t)x)︸             ︷︷             ︸
Ĝ(t,x)

.

According to Lemma 1 from the proof of Theorem 10.5.1, there exists C, r ∈ R>0 such
that

∥Ĝ(t, x)∥ ≤ C∥x − x0∥
2, (t, x) ∈ T × B(r, x0).

Since ■
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Section 10.6

Lyapunov functions

We will be considering functions that, intuitively, have the equilibrium point x0

as a maximum and whose derivative along solutions is nonincreasing. It is these
notions of “maximum” and “nonincreasing” that we are concerned with here. It
turns out that there is a great deal to say about these seemingly simple subjects.

10.6.1 Class K-, class L-, and class KL-functions

It is convenient for many of our characterisations and for many of our proofs
concerning Lyapunov’s Second Method to have at hand two classes of scalar func-
tions of a real variable, which leads to another class of scalar functions of two real
variables.

10.6.1 Definition (Class K, class L, and class KL) Let a ∈ R and b, b′ ∈ R>0 ∪ {∞}.
(i) A function ϕ : [0, b)→ R≥0 is of class K if

(a) ϕ is continuous,
(b) ϕ is strictly increasing, i.e., ϕ(x) < ϕ(y) if x < y, and
(c) ϕ(0) = 0.

By K([0, b); [0, b′)) we denote the set of functions of class K with domain [0, b)
and codomain [0, b′).

(ii) A function ψ : [a,∞)→ R≥0 is of class L if

(a) ψ is continuous,
(b) ψ is strictly decreasing, i.e., ψ(x) > ψ(y) is x < y, and
(c) limx→∞ψ(x) = ∞.

ByL([a,∞); [0, b′)) we denote the set of functions of classLwith domain [a,∞)
and codomain [0, b′).

(iii) A function ψ : [0, b) × [a,∞)→ R≥0 is of class KL if

(a) x 7→ ψ(x, y) is of class K for each y ∈ [a,∞) and
(b) y 7→ ψ(x, y) is of class L for each x ∈ [0, b).

By KL([0, b) × [a,∞); [0, b′)) we denote the set of functions of class KL with
domain [0, b) × [a,∞) and codomain [0, b′). •

These sorts of functions are often collectively referred to as “comparison func-
tions.”

Let ϕ ∈ K([0, b);R≥0). Since ϕ is strictly increasing, the limit limx→b ϕ(b) exists,
allowing that the limit mat be ∞. For this reason, we can unambiguously write
ϕ(b), although b is not in the domain of ϕ.



2022/03/07 10.6 Lyapunov functions 753

In Exercises 10.7.1, 10.7.3, and 10.7.4 the reader can sort through some exam-
ples of functions that are or are not in these classes. Here we shall enumerate a few
useful properties of such functions.

10.6.2 Lemma (Properties of class K-, class L-, and class KL-functions) Let b, b′ ∈
R>0 ∪ {∞} and a ∈ R. Then the following statements hold:

(i) if ϕ ∈ K([0, b);R≥0, then ϕ−1
∈ K([0, ϕ(b));R≥0) is well-defined and is of class K;

(ii) if ϕ1 ∈ K([0, b); [0, b′)) and ϕ2 ∈ K([0, b′);R≥0), then ϕ2 ◦ ϕ1 is of class K;
(iii) if ϕ1 : [0, b) → [0, b′) and ϕ2 : [0, b′) → R≥0 are of class K, and if ψ : [0, b) ×

[a,∞)→ [0, b′) is of class KL, then the function

[0, b) × [a,∞) ∋ (x,y) 7→ ϕ2(ψ(ϕ1(x),y)) ∈ R≥0

is of class KL.
Proof These are all just a matter of working through definitions, and we leave this to
the reader as Exercise 10.7.2. ■

One often encounters functions that are “almost” of class K, and in this case it
is sometimes possible to bound them from below by a class K-function.

10.6.3 Lemma (Bounding nondecreasing functions by strictly increasing functions)
Let b ∈ R>0 ∪ {∞} and let f : [0, b)→ R≥0 have the following properties:

(i) f is continuous;
(ii) f is nondecreasing, i.e., f(x1) ≤ f(x2) for x1 < x2;
(iii) f(x) ∈ R>0 for x ∈ (0, b);
(iv) f(0) = 0.

Then there exist ϕ1, ϕ2 ∈ K([0, b);R≥0) such that ϕ1(x) ≤ f(x) ≤ ϕ2(x) for x ∈ [0, b).
Moreover, ϕ1 can be chosen to be locally Lipschitz.

Proof Let (x j) j∈Z be the strictly increasing doubly infinite sequence in (0, b) given by

x j =

 b
2 2 j, j ≤ 0,
b(1 − 2− j−1), j > 0,

noting that lim j→−∞ x j = 0 and lim j→∞ x j = b. Define a doubly infinite sequence (α j) j∈Z
by

α j =

2 j−1, j ≤ 0,
1 − 2− j−1, j > 0.

Note that both sequences are strictly increasing and that

lim
j→−∞

α j = 0, lim
j→∞

α j = 1.

Let N1 ∈ Z>0 be sufficiently large that x j+1 − x j < 1 for j ≤ −N1. This is possible since
(x− j) j∈Z>0 converges to 0, and so is Cauchy. Let N2 ∈ Z≥0 be the smallest positive
integer such that

f (x j) − f (x j−1) < 1, j ≤ −N2.
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This is possible since ( f (x− j)) j∈Z>0 converges to 0 (by continuity of f ) and so is Cauchy.
Let N = max{N1,N2}. Now define

ϕ1, j =

(x j+1 − x j)α j f (x j), | j| ≥ N,
α j f (x j), | j| < N,

and
ϕ2, j = (1 + α j) f (x j), j ∈ Z.

Here are the key observations about the doubly infinite sequences (ϕ1, j) j∈Z and (ϕ2, j) j∈Z.
1. We have ϕ1, j−1 < ϕ1, j for j ∈ Z. This follows because

(a) x j − x j−1 < x j+1 − x j < 1 for j ≤ −N,
(b) α j < α j−1 for j ∈ Z, and
(c) f (x j−1) ≤ f (x j) for j ≤ −N.

2. f (x) ≥ ϕ j,1 for x ∈ [x j, x j+1) and j ∈ Z. This follows because

(a) x j+1 − x j < 1 for j ≤ −N,
(b) α j < 1 for j ∈ Z, and
(c) f (x) ≥ f (x j) for x ∈ [x j, x j+1).

3. ϕ2, j < ϕ2, j for j ∈ Z. This follows because

(a) 1 + α j < 1 + α j+1 for j ∈ Z and
(b) f (x j) ≤ f (x j+1) for j ∈ Z.

4. f (x) ≤ ϕ2, j for x ∈ [x j−1, x j) and j ∈ Z. This follows because

(a) 1 + α j > 1 for j ∈ Z and
(b) f (x) ≤ f j(x) for x ∈ [x j−1, x j) and j ∈ Z.

Now define

ϕ1(x) =

0, x = 0,
ϕ1, j−1 +

x−x j

x j+1−x j
(ϕ1, j − ϕ1, j−1), x ∈ [x j, x j+1),

and

ϕ2(x) =

0, x = 0,

ϕ2, j +
ϕ2, j+1−ϕ2, j

x j−x j−1
(x − x j−1), x ∈ [x j−1, x j).

One can then directly verify that ϕ1, ϕ2 ∈ K([0, b);R≥0) and that

ϕ2(x) ≤ f (x) ≤ ϕ2(x)

for all x ∈ [0, b).
Let us now show thatϕ1 is locally Lipschitz. Note that bothϕ1 andϕ2 are piecewise

linear on (0, b), which means they are locally Lipschitz on (0, b). In order to show that
ϕ1 can be chosen to be locally Lipschitz on [0, b), we show that the slopes of the linear
segments comprising ϕ1 are bounded as we approach 0. The set of such slopes is{

ϕ1, j − ϕ1, j−1

x j+1 − x j

∣∣∣∣∣∣ j ∈ Z
}
,
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and we will verify that

lim sup
j→−∞

ϕ1, j − ϕ1, j−1

x j+1 − x j
< ∞.

We first note that all of these slopes are positive, as can be seen from the properties of
ϕ1, j, j ∈ Z. By definition of N, if j ≤ −N,

ϕ1, j − ϕ1, j−1

x j+1 − x j
= (1 − α j) f (x j), 1 − (1 − α j−1) f (x j−1)

≤ (1 − α j) f (x j) ≤ (1 − αN) f (xN).

Therefore,

lim sup
j→−∞

ϕ1, j − ϕ1, j−1

x j+1 − x j
< ∞,

as claimed. Now let x′, x′′ ∈ [0, b) satisfy x′ < x′′ and let N ∈ Z be such that [x′, x′′] ⊆
[0, xN). Letting

M = sup
{
ϕ1, j − ϕ1, j−1

x j+1 − x j

∣∣∣∣∣∣ j ≤ N
}
,

we have
|ϕ1(x1) − ϕ1(x2)| ≤M|x1 − x2|,

which gives the desired conclusion. ■

A useful relationship between functions of class K and class KL is given by the
following lemma.

10.6.4 Lemma (Solutions of differential equations with class K right-hand side) Let
ϕ ∈ K([0, b);R≥0) be locally Lipschitz. Then there exists ψ ∈ KL([0, b) ×R≥0;R≥0) such
that, if x ∈ [0, b) and t0 ∈ R, then the solution to the initial value problem

ξ̇(t) = −ϕ(ξ(t)), ξ(t0) = x,

is ψ(x, t − t0) for t ≥ t0.
Proof Using the method of Section 4.1.1, for x ∈ (0, b) and for t0 ∈ R, the solution to
the initial value problem

ξ̇(t) = ϕ(ξ(t)), ξ(t0) = x,

satisfies ∫ t

t0

dτ = −
∫ ξ(t)

x

dy
ϕ(y)

.

To encode the dependence of this solution on the initial data, we shall denote it by ξt0,x.
Let us fix x0 ∈ (0, b) and define

α : [0, b)→ R

x 7→ −
∫ x

x0

dy
ϕ(y),

and note that α has the following properties.
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1. α is continuously differentiable: This is due to the Fundamental Theorem of Calculus.
2. α is strictly decreasing: This is because ϕ is positive on (0, b).
3. limx→0 α(x) = ∞: Here we note that α(ξ0,x0(t)) = t. Because ϕ is positive on (0, b),

it follows that limt→∞ ξ0,x0(t) = 0. Moreover, again since ϕ is positive on (0, b), we
cannot have ξ0,x0(t) = 0 for any finite t. Thus we have

lim
x→0

α(x) = lim
t→∞

α(ξ0,x0(t)) = lim
t→∞

t = ∞,

as asserted.
Now let c = − limx→b α(x), allowing that c = ∞. Thus image(α) = (−c,∞) and, since α
is strictly decreasing, we have a well-defined map α−1 : (−c,∞)→ (0, b). Since

α(ξt0,x(t)) − α(x) = t − t0,

we have
ξt0,x(t) = α−1(α(x) + t − t0).

Then define

ψ(x, s) =

α−1(α(x) + s), x ∈ (0, b),
0, x = 0.

It is clear that ψ is continuous on (0, b) ×R>0. Moreover, since

lim
(x,s)→(0,0)

ψ(x, s) = lim
(x,s)→(0,0)

α−1(α(x) + s) = lim
(x,s)→(0,0)

ξ0,x(s) = 0,

we conclude continuity ofψ on its domain, and so we have continuity is each argument.
Because ξ0,x(s) = ψ(x, s), we have

∂ψ

∂s
(x, s) = ξ̇0,x(s) = −ϕ(ξ0,x(s)) = −ϕ(ψ(x, s)) < 0

for s ∈ R>0, and so ψ is strictly decreasing in its second argument. It is also strictly
increasing in its first argument since

∂ψ

∂x
(x, s) =

∂α−1

∂y
(α(x) + s)

∂α
∂y

(x)

=

(
∂α
∂y

(α−1(α(x) + s))
)−1

∂α
∂y

(x)

=
ϕ(ψ(x, s))
ϕ(x)

> 0,

using the Inverse Function Theorem (). Finally,ref

lim
s→∞

ψ(x, s) = lim
t→∞

ξ(t) = 0,

and we have verified that ψ ∈ KL([0, b) ×R≥0;R≥0) ■

10.6.2 General time-invariant functions

Now we give some definitions that, while simple, are not as simple as they
seem.
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10.6.5 Definition (Locally definite, locally semidefinite, decrescent I) Let U ⊆ Rn be
an open set and let x0 ∈ U. A function f : U→ R is:

(i) locally positive-definite about x0 if

(a) it is continuous,
(b) f (x0) = 0,
(c) there exists r ∈ R>0 such that f (x) ∈ R>0 for x ∈ B(r, x0) \ {x0};

(ii) locally positive-semi definite about x0 if

(a) it is continuous,
(b) f (x0) = 0,
(c) there exists r ∈ R>0 such that f (x) ∈ R≥0 for x ∈ B(r, x0) \ {x0};

(iii) locally negative-definite about x0 if − f is positive-definite about x0;
(iv) locally negative-semidefinite about x0 if − f is positive-semidefinite about x0;
(v) locally decrescent about x0 if there exists a locally positive-definite function

g : U→ R around x0 and r ∈ R>0 such that f (x) ≤ g(x) for every x ∈ B(r, x0). •

If f : U → R is locally positive-definite (resp. locally positive-semidefinite)
about x0 and if r ∈ R>0 is such that f (x) ∈ R>0 for x ∈ B(r, x0), we shall say that f is lo-
cally positive-semidefinite about x0 in B(r, x0) (resp. locally positive-semidefinite
about x0 in B(r, x0)). Similar terminology applies, of course, for functions that are
locally negative-definite or locally negative-semidefinite. In like manner, if f is
locally decrescent about x0, and if r ∈ R>0 and g, locally positive-definite about x0

in B(r, x0), are such that f (x) ≤ g(x) for x ∈ B(r, x0), then we say that f is locally
decrescent about x0 in B(r, x0).

We introduce the following notation:

LPDr(x0) set of locally positive-definite functions about x0 in B(r, x);
LPSDr(x0) set of locally positive-semidefinite functions about x0 in B(r, x0);
LDr(x0) set of locally decrescent functions about x0 in B(r, x0)

and we also denote

LPD(x0) = ∪r∈R>0LPDr(x0), LPSD(x0) = ∪r∈R>0LPSDr(x0), LD(x0) = ∪r∈R>0LDr(x0).

The following lemma characterises some of the preceding types of functions by
class K-functions.

10.6.6 Lemma (Positive-definite and decrescent in terms of class K II) For U ⊆ Rn

open, a continuous function f : U→ R, and r ∈ R>0, the following statements hold:
(i) f ∈ LPDr(x0) if and only if there exist ϕ1, ϕ2 ∈ K([0, r);R≥0) such that

ϕ1(∥x − x0∥) ≤ f(x) ≤ ϕ2(∥x − x0∥)

for all x ∈ B(r, x0);



758 10 State space stability 2022/03/07

(ii) f ∈ LDr(x0) if and only if there exists ϕ ∈ K([0, r);R≥0) such that

f(x) ≤ ϕ(∥x − x0∥)

for all x ∈ B(r, x0).
Proof (i) Suppose that f ∈ LPDr(x0). We first define ψ1 : [0, r)→ R≥0 by

ψ1(s) = inf{ f (x) | ∥x − x0∥ ∈ [s, r)}.

We claim that (1) ψ1 is continuous, (2) ψ1(0) = 0, (3) ψ1(s) ∈ R>0 for s ∈ (0, r), (4) ψ1
is nonincreasing, and (5) f (x) ≥ ψ1(∥x − x0∥). The only one of these that is not rather
obvious is the continuity of ψ1.

This we prove as follows. Let s0 ∈ [0, r) and let ϵ ∈ R>0. For x ∈ B(r, x0), let
δx ∈ R>0 be such that, if x′ ∈ B(r, x0) satisfies ∥x′ − x∥ < δx, then | f (x′) − f (x)| < ϵ. Now,
by compactness of

S(s0, x0) = {x ∈ B(r, x0) | ∥x − x0∥ = s0},

let x1, . . . , xk ∈ S(x0, x0) be such that S(s0, x0) ⊆ ∪k
j=1B(δx j , x j). Define

ds0 : S(s0, x0)→ R>0

x 7→ min{∥x − x1∥, . . . , ∥x − xk∥}.

Being a min of continuous functions, ds0 is continuous (by ). Being a continuousref

function on a compact set, there exists δ ∈ R>0 such that ds0(x) ≥ δ for every x ∈ S(s0, x0).
Now, let s ∈ [0, r) be such that |s − s0| < δ. First suppose that s > s0. Since ψ1 is
nondecreasing, ψ1(s) − ψ1(s0) ≥ 0. Now, if x ∈ S(s0, x0), there exists x′ ∈ S(s, x0) such
that | f (x′) − f (x)| < ϵ. Thus

−ϵ < f (x′) − f (x) < ϵ.

Since
ψ1(s) ≤ f (x′), −ψ(s0) ≥ − f (x),

we have
ψ1(s) − ψ(s0) ≤ f (x′) − f (x) < ϵ.

In like manner, if s < s0, we have

ψ(s0) − ψ(s) < ϵ,

which gives |ψ(s) − ψ(s0)| < ϵ. This gives the asserted continuity of ψ1.
Now, by Lemma 10.6.3, there exists ϕ1 ∈ K([0, r);R≥0) such that

ϕ1(∥x − x0∥) ≤ ψ1(∥x − x0∥) ≤ f (x)

for x ∈ B(r, x0).
Next define ψ2 : [0, r)→ R≥0 by

ψ2(s) = sup{ f (x) | ∥x − x0∥ ≤ s}.

We can see that (1) ψ2 is continuous, (2) ψ2(0) = 0, (3) ψ2(s) ∈ R>0 for s ∈ (0, r), (4) ψ2 is
nondecreasing, and (5) f (x) ≤ ψ2(∥x−x0∥). Again, continuity is the only not completely
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trivial assertion, and an argument like that above for ψ1 can be easily made to prove
this continuity assertion. Now, by Lemma 10.6.3, there exists ϕ2 ∈ K([0, r);R≥0) such
that

ϕ2(∥x − x0∥) ≥ ψ1(∥x − x0∥) ≥ f (x)

for x ∈ B(r, x0).
Next suppose that there exist ψ1, ϕ2 ∈ K([0, r);R≥0) such that

ϕ1(∥x − x0∥) ≤ f (x) ≤ ϕ2(∥x − x0∥)

for all x ∈ B(r, x0). The left inequality immediately gives f ∈ LPDr(x0).
(ii) Suppose that f ∈ LDr(x0). Let g ∈ LPDr(x0) be such that f (x) ≤ g(x) for

x ∈ B(r, x0). By part (i) let ϕ ∈ K([0, r);R≥0) be such that

ϕ(∥x − x∥) ≥ g(x) ≥ f (x),

as desired.
Finally, suppose that there exists ϕ ∈ K([0, r);R≥0) such that f (x) ≤ ϕ(∥x − x0∥) for

x ∈ B(r, x0). Since the function g defined on B(r, x0) by g(x) = ϕ(∥x − x0∥) is locally
positive-definite about x0 in B(r, x0), the proof of the lemma is concluded. ■

10.6.3 General time-varying functions

Next we generalise the constructions of the preceding section to allow functions
that depend on time.

10.6.7 Definition (Locally definite, locally semidefinite, decrescent II) Let U ⊆ Rn be
an open set, let T ⊆ R be an interval, and let x0 ∈ U. A function f : T ×U→ R is:

(i) locally positive-definite about x0 if

(a) it is continuous,
(b) f (t, x0) = 0 for all t ∈ T, and
(c) there exist r ∈ R>0 and f0 ∈ LPDr(x0) such that f (t, x) ≥ f0(x) for every

(t, x) ∈ T × B(r, x).

(ii) locally positive-semi definite about x0 if

(a) it is continuous,
(b) f (t, x0) = 0 for all t ∈ T, and
(c) there exist r ∈ R>0 and f0 ∈ LPSDr(x0) such that f (t, x) ≥ f0(x) for every

(t, x) ∈ T × B(r, x).

(iii) locally negative-definite about x0 if − f is positive-definite about x0;
(iv) locally negative-semidefinite about x0 if − f is positive-semidefinite about x0;
(v) locally decrescent about x0 if there exist r ∈ R>0 and g ∈ LPDr(x0) such that

f (t, x) ≤ g(x) for every (t, x) ∈ T × B(r, x0). •
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Let us introduce some notation for these classes of functions. As for time–
invariant functions, we have all of the preceding notions of definiteness about x0

“in B(r, x0),” with the obvious meaning. Let us not use all of the words required
to make this obvious terminology precise. We also have the following symbols,
keeping in mind that functions now are defined on T ×U:

TVLPDr(x0) set of locally positive-definite functions about x0 in B(r, x);
TVLPSDr(x0) set of locally positive-semidefinite functions about x0 in B(r, x0);
TVLDr(x0) set of locally decrescent functions about x0 in B(r, x0)

and we also denote

TVLPD(x0) = ∪r∈R>0TVLPDr(x0), TVLPSD(x0) = ∪r∈R>0TVLPSDr(x0),
TVLD(x0) = ∪r∈R>0TVLDr(x0).

An application of the definitions and of Lemma 10.6.6 gives the following
lemma.

10.6.8 Lemma (Positive-definite and decrescent in terms of class K I) For U ⊆ Rn

open, an intervalT ⊆ R, a continuous function f : T×U→ R, and r ∈ R>0, the following
statements hold:

(i) f ∈ TVLPDr(x0) if and only if there exist ϕ1, ϕ2 ∈ K([0, r);R≥0) such that

ϕ1(∥x − x0∥) ≤ f(t, x) ≤ ϕ2(∥x − x0∥)

for all t ∈ T and x ∈ B(r, x0);
(ii) f ∈ TVLDr(x0) if and only if there exists ϕ ∈ K([0, r);R≥0) such that

f(t, x) ≤ ϕ(∥x − x0∥)

for all t ∈ T and x ∈ B(r, x0).

10.6.9 Remark (The uniformity in time of time-varying definitions) The reader will
note that, in the definition of TVLPD(x0), etc., the characterisations are in terms of
time-invariant functions from LPD(x0), etc., and are required to hold for every t ∈ T.
One says, in this case, that the bounds required for elements of TVLPD(x0), etc.,
hold uniformly in t. One might imagine conditions that are not uniform in t,
but just what is required of such a definition is rather complicated. Our lack
of consideration of these cases reflected in Sections 10.7.1 and 10.7.3, where we
only consider Lyapunov’s Second Method for characterising uniform stability, since
nonuniform counterparts are more complicated. •

10.6.4 Time-invariant quadratic functions

When we apply Lyapunov’s Second Method to linear differential equations, we
will use locally positive-definite functions as in the general case. However, because
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of the extra structure of linear equations, it is natural to consider locally positive-
definite functions of a very particular form. In this section we shall consider the
time-invariant case.

As we do when talking about linear ordinary differential equations, we shall
work with equations whose state space is a finite-dimensionalR-vector space V. In
such a case, the definitions of locally positive-definite, etc., are modified to account
for the fact that we are principally interested in what is happening with the zero
vector when talking about linear systems. The appropriate definitions require
having at hand an inner product that generalises the Euclidean inner product.8

That is, we suppose that we assign to each pair of vectors v1, v2 ∈ V a number
⟨v1, v2⟩ ∈ R, and this assignment has the following properties:
1. for fixed v2 ∈ V, the function v1 7→ ⟨v1, v2⟩ is linear;
2. for fixed v1 ∈ V, the function v2 7→ ⟨v1, v2⟩ is linear;
3. ⟨v1, v2⟩ = ⟨v2, v1⟩ for all v1, v2 ∈ V;
4. ⟨v, v⟩ ∈ R≥0 for all v ∈ V;
5. ⟨v, v⟩ = 0 only if v = 0.
We think of ⟨v1, v2⟩ as being the “angle” between v1 and v2. The following are
terminology and facts we shall require about inner products.

1. The assignment v 7→
√
⟨v, v⟩ defines a norm on V that we shall simply denote

by ∥·∥.
2. Given L ∈ L(V; V), the transpose of L is the linear map LT

∈ L(V; V) defined by

⟨LT(v1), v2⟩ = ⟨v1,L(v2)⟩, v1, v2 ∈ V.

A linear map L is symmetric if LT = L.
3. If V is n-dimensional and if L ∈ L(V; V) is symmetric, then

(a) its eigenvalues are real and
(b) there is an orthonormal basis {e1, . . . , en} of eigenvectors, i.e., (i) each of the

vectors e j, j ∈ {1, . . . ,n}, is an eigenvector for some eigenvalue, (ii) ⟨e j, ek⟩ = 0
for j , k, and (iii) ∥e j∥ = 1, j ∈ {1, . . . ,n}.

The functions of interest to us are then those prescribed by the following defi-
nition.

8Children call the Euclidean inner product the “dot” product, and it is defined by

(x1, x2) 7→
n∑

j=1

x1, jx2, j.

The expression on the right is often denoted x1 · x2. However, we eschew the “·”-notation, which is
for babies, and instead write it as ⟨x1, x2⟩Rn .
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10.6.10 Definition (Quadratic function) Let V be an n-dimensional R-vector space, let
⟨·, ·⟩ be an inner product on V, and let Q ∈ L(V; V) be a symmetric linear map. The
quadratic function associated to Q is

fQ : V→ R
v 7→ ⟨Q(v), v⟩.

•

Now we classify various sorts of quadratic functions.

10.6.11 Definition (Locally definite, locally semidefinite, decrescent III) Let V be an
n-dimensionalR-vector space, let ⟨·, ·⟩ be an inner product on V, and let Q ∈ L(V; V)
be a symmetric linear map. The linear map Q is:

(i) positive-definite if fQ(v) ∈ R>0 for v ∈ V \ {0};
(ii) positive-semi definite if fQ(v) ∈ R≥0 for v ∈ V;
(iii) negative-definite if −Q is positive-definite;
(iv) negative-semidefinite if −Q is positive-semidefinite;
(v) decrescent if there exists a positive-definite symmetric linear map Q0 ∈ L(V; V)

such that fQ(v) ≤ fQ0(v) for v ∈ V. •

Let us relate these notions to local definiteness notions for general functions,
and also to the eigenvalues of Q.

10.6.12 Lemma (Characterisations of definite, semidefinite, and decrescent symmet-
ric linear maps) Let V be an n-dimensional R-vector space, let ⟨·, ·⟩ be an inner product
on V, and let Q ∈ L(V; V) be a symmetric linear map. Then the following statements hold.

(i) The following statements are equivalent:

(a) Q is positive-definite;
(b) fQ ∈ LPD(0);
(c) spec(Q) ⊆ R>0.

(ii) The following statements are equivalent:

(a) Q is positive-semidefinite;
(b) fQ ∈ LPSD(0);
(c) spec(Q) ⊆ R≥0.

(iii) Q is decrescent.
Proof First of all, because Q is symmetric, all eigenvalues of Q are real and there is an
orthonormal basis {e1, . . . , en} of eigenvectors. Thus there exist λ1, . . . , λn ∈ R such that

Q(e j) = λ je j, j ∈ {1, . . . ,n}.
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Therefore, if v =
∑n

j=1 v jev, then

fQ(v) =
〈
Q

 n∑
j=1

v je j

 , n∑
k=1

vkek

〉
=

n∑
j,k=1

v jvk⟨Q(e j), ek⟩

=

k∑
j,k=1

λ jv jvk⟨e j, ek⟩ =

n∑
j=1

λ jv2
j .

With this formula in hand, we prove the lemma.
(i) If Q is positive-definite, then it is clear that fQ is locally positive-definite, from

the definition.
Now, we claim that, if spec(Q) 1 R>0, then fQ is not locally positive definite about

0. Indeed, suppose that λ j ≤ 0 for some j ∈ {1, . . . ,n}. Then, for any ϵ ∈ R>0,

fQ(ϵe j) = λ jϵ
2
≤ 0.

Since, for any r ∈ R>0, we can choose ϵ = r
2 ∈ R>0 so that ϵe j ∈ B(r, 0) \ {0}, it cannot be

the case that fQ is locally positive-definite.
Finally, if spec(Q) ⊆ R>0, then the formula

fQ(v) =
n∑

j=1

λ jv2
j

ensures that Q is positive-definite.
(ii) The proof follows along the lines of the first part of the proof, mutatis mutandis.
(iii) As in the opening paragraph of the proof, we write

fQ(v) = λ jv2
j ,

where λ1, . . . , λ j are the eigenvalues of Q. We then let

C = max{1, λ1, . . . , λn}

and define Q0 ∈ L(V; V) so that

fQ0(v) = C
n∑

j=1

v2
j ,

and observe that Q0 is positive-definite (by part (i)) and that fQ(v) ≤ fQ0(v) for all
v ∈ V. ■

The vacuous nature of the nature of decrescent symmetric linear maps (every
symmetric linear map is decrescent) arises simply because this notion is not really a
valuable one for time-invariant quadratic functions. We state the definition simply
for the sake of preserving symmetry of the definitions.

Along these lines, the following result will be helpful to us in the next section.



764 10 State space stability 2022/03/07

10.6.13 Lemma (Upper and lower bounds for positive-definite quadratic functions)
Let V be an n-dimensional R-vector space, let ⟨·, ·⟩ be an inner product on V, and let

Q ∈ L(V; V) be a positive-definite symmetric linear map. Then there exists C ∈ R>0 such
that, for every v ∈ V, we have

C⟨v,v⟩ ≤ fQ(v) ≤ C−1
⟨v,v⟩.

Proof As in the proof of Lemma 10.6.12, for an orthonormal basis of eigenvectors
{e1, . . . , en}, we have

fQ(v) =
n∑

j=1

λ jv2
j

where λ1, . . . , λn are the eigenvalues. The result follows by taking requiring that

C ≤ min{λ1, . . . , λn}

and
C−1
≥ max{λ1, . . . , λn}. ■

10.6.5 Time-varying quadratic functions

The final collection of functions we consider are those that are quadratic, as
in the preceding section, and vary with time. A reader who has been paying
attention while reading the preceding sections will likely be able to write down the
definitions and characterisations we give next, as these follow quite naturally from
what we have done already.

10.6.14 Definition (Time-varying quadratic function) Let V be an n-dimensional R-
vector space, let ⟨·, ·⟩ be an inner product on V, let T ⊆ R be an interval, and let
Q : T → L(V; V) be such that Q(t) is a symmetric linear map for every t ∈ T. The
time-varying quadratic function associated to Q is

fQ : T × V→ R
(t, v) 7→ ⟨Q(t)(v), v⟩.

•

10.6.15 Definition (Locally definite, locally semidefinite, decrescent IV) Let V be an
n-dimensional R-vector space, let ⟨·, ·⟩ be an inner product on V, let T ⊆ R be an
interval, and let Q : T → L(V; V) be such that Q(t) is a symmetric linear map for
every t ∈ T. The function Q is:

(i) positive-definite if there exists a positive-definite symmetric linear map Q0 ∈

L(V; V) such that fQ(t, v) ≥ fQ0(v) for (t, v) ∈ T × V;
(ii) positive-semi definite if there exists a positive-definite symmetric linear map

Q0 ∈ L(V; V) such that fQ(t, v) ≥ fQ0(v) for (t, v) ∈ T × V;
(iii) negative-definite if −Q is positive-definite;
(iv) negative-semidefinite if −Q is positive-semidefinite.
(v) decrescent if there exists a positive-definite symmetric linear map Q0 ∈ L(V; V)

such that fQ(t, v) ≤ fQ0(v) for (t, v) ∈ T × V. •
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10.6.16 Lemma (Characterisations of definite, semidefinite, and decrescent time-
varying symmetric linear maps) Let V be an n-dimensional R-vector space, let
⟨·, ·⟩ be an inner product on V, let T ⊆ R be an interval, and let Q: T→ L(V; V) be such
that Q(t) is a symmetric linear map for every t ∈ T. Then the following statements hold.

(i) The following statements are equivalent:

(a) Q is positive-definite;
(b) fQ ∈ TVLPD(0);
(c) there exists ℓ ∈ R>0 such that

ℓ ≤ inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T}.

(ii) The following statements are equivalent:

(a) Q is positive-semidefinite;
(b) fQ ∈ TVLPSD(0);
(c) there exists ℓ ∈ R≥0 such that

ℓ ≤ inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T}.

(iii) The following statements are equivalent:

(a) Q is decrescent;
(b) fQ ∈ TVLD(0);
(c) there exists µ ∈ R>0 such that

µ ≥ sup{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T}.

Proof (i) First suppose that Q is positive-definite. By definition, by Lemma 10.6.12(i),
and by Definition 10.6.7(i), fQ ∈ TVLPD(0).

Next, suppose that

inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T} ≤ 0.

For t ∈ T, let λ1(t), . . . , λn(t) ⊆ R be the eigenvalues of Q(t). Without loss of generality,
suppose that

λ1(t) = min{λ1(t), . . . , λn(t)}, t ∈ T.

For t ∈ T, let v1(t) ∈ V be an eigenvector for the eigenvalue λ1(t), and suppose that
∥v1(t)∥ = 1, and note that

fQ(t, v1(t)) = ⟨Q(t)(v1(t)), v1(t)⟩ = λ1(t)⟨v1(t), v1(t)⟩ = λ1(t).

By assumption inf{ fQ(t, v1(t)) | t ∈ T} ≤ 0. This means that there exists a sequence
(t j) j∈Z>0 such that

lim
j→∞

fQ(t j, v1(t j)) ≤ 0.
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Now let r ∈ R>0 and g ∈ TVLPDr(0). By Lemma 10.6.8(i), let ϕ ∈ K([0, r);R≥0) be such
that ϕ(|x|) ≤ g(x) for all x ∈ B(r, 0). For ϵ ∈ R>0 such that ϵ2 < r, we have

lim
j→∞

f (t j, ϵ
2v1(t j)) = ϵ lim

j→∞
f (t j, v1(t j)) ≤ 0 < ϕ(ϵ2) ≤ g(ϵ2v)

for every v ∈ V for which ∥v∥ = 1. This means that there exists N ∈ Z>0 such that

f (t j, ϵ
2v1(t j)) < g(ϵ2v1(t j)), j ≥ N.

Since g and r were arbitrary, this prohibits f from being in TVLPD(0).
Finally, suppose that

inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T} > 0.

Let ℓ ∈ R>0 be such that

inf{λ ∈ R | λ ∈ spec(Q(t)) for some t ∈ T} ≥ ℓ

and define the symmetric positive-definite linear map Q0 so that fQ0(v) = ℓ⟨v, v⟩ for
all v ∈ V. Then, for t ∈ T, let λ1(t), . . . , λn(t) be the eigenvalues for Q(t) and let
{e1(t), . . . , en(t)} be an orthonormal basis of eigenvectors. If v ∈ V, write

v =
n∑

j=1

v j(t)e j(t)

for uniquely defined v1(t), . . . , vn(t) ∈ R. Then, recalling the calculations from the proof
of Lemma 10.6.12,

fQ(t, v) =
n∑

j=1

λ j(t)v j(t)2
≥ ℓ

n∑
j=1

v j(t)2 = ℓ⟨v, v⟩ = fQ0(v),

and so Q is positive-definite.
(ii) This follows, mutatis mutandis, as does the preceding part of the lemma.
(iii) This also follows, mutatis mutandis, from the proof of part (i). ■

10.6.17 Lemma (Upper and lower bounds for time-varying positive-definite and de-
crescent quadratic functions) Let V be an n-dimensional R-vector space, let ⟨·, ·⟩ be
an inner product on V, letT ⊆ R be an interval, and let Q: T→ L(V; V) be such that Q(t)
is symmetric for every t ∈ T. Then the following statements hold:

(i) Q is positive-definite if and only if there exists C ∈ R>0 such that C⟨v,v⟩ ≤ fQ(t,v)
for every (t,v) ∈ T × V;

(ii) Q is decrescent if and only if there exists C ∈ R>0 such that fQ(t,v) ≤ C⟨v,v⟩ for
every (t,v) ∈ T × V.
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Proof As in the proof of Lemma 10.6.16, for t ∈ T we let λ1(t), . . . , λ j(t) be the
eigenvalues for Q(t) and let {e1(t), . . . , en(t)} be an orthonormal basis of eigenvectors for
Q(t). If we write

v =
n∑

j=1

v j(t)e j(t),

we then have

fQ(t, v) =
n∑

j=1

λ j(t)v j(t)2.

Then Q is positive-definite if and only if there exists C ∈ R>0 such that

C ≤ λ j(t), j ∈ {1, . . . ,n}, t ∈ T,

and Q is decrescent if and only if there exists C ∈ R>0 such that

λ j(t) ≤ C, j ∈ {1, . . . ,n}, t ∈ T.

The result then follows by a simple computation, mirroring many we have already
done. ■

10.6.6 Stability in terms of class K- and class KL-functions

In this section, whose content consists of a single lemma with its lengthy proof,
we characterise various notions of stability in terms of class K- and class KL-
functions. While it is possible to prove some of our results relating to Lyapunov’s
Second Method, the characterisations we give in the lemma are useful in capturing
the essence of some of the proofs, and of uniting their style.

Here is the lemma of which we speak.

10.6.18 Lemma (Stability of equilibria for nonautonomous equations in terms of
class K- and class KL-functions) Let F be a system of ordinary differential equations
with right-hand side

F̂ : T ×U→ Rn

with supT = ∞ and satisfying Assumption 10.2.1. For an equilibrium point x0 ∈ U for
F, the following statements hold:

(i) x0 is stable if and only if, for each t0 ∈ T, there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0)
such that, for every x ∈ U satisfying ∥x − x0∥ < δ, the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ α(∥x − x0∥) for t ≥ t0;
(ii) x0 is uniformly stable if and only if there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0) such

that, for every (t0, x) ∈ T × U satisfying ∥x − x0∥ < δ, the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t) − x0∥ ≤ α(∥x − x0∥) for t ≥ t0;
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(iii) x0 is asymptotically stable if and only if, for every t0 ∈ T′, there exist δ ∈ R>0 and
β ∈ KL([0, δ) × [t0,∞);R≥0) such that, if x ∈ U satisfies ∥x − x0∥ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t) − ξ0(t)∥ ≤ β(∥x − x0∥, t) for t ≥ t0;
(iv) x0 is uniformly asymptotically stable if and only if there exist δ ∈ R>0 and β ∈

KL([0, δ) × [0,∞);R≥0) such that, if (t0, x) ∈ T ×U satisfies ∥x − x0∥ < δ, then the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t) − ξ0(t)∥ ≤ β(∥x − x0∥, t − t0) for t ≥ t0.
Proof (i) First suppose that, for each t0 ∈ T, there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0)
such that, for every x ∈ U satisfying ∥x − x0∥ < δ, the solution ξ to the initial value
problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ ≤ α(∥x−x0∥) for t ≥ t0. Let t0 ∈ T and let δ and α be as above. Let ϵ ∈ R>0
and let ϵ′ = min{ϵ, α(δ)}. Let δ′ = min{δ, α−1( ϵ

′

2 )}. Let x ∈ U satisfy ∥x− x0∥ < δ′ ≤ δ and
let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since
∥ξ(t) − x0∥ ≤ α(∥x − x0∥) ≤ α(δ′) ≤ α(α−1( ϵ

′

2 )) = ϵ′

2 < ϵ,

we conclude stability of x0.
Next suppose that x0 is stable and let t0 ∈ T. For ϵ ∈ R>0, let A(ϵ) ⊆ R>0 be the set

of positive numbers δ such that, for every x ∈ U satisfying ∥x − x0∥ < δ, the solution ξ
to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ < ϵ for t ≥ t0. Then denote δ(ϵ) = sup A(ϵ). This then defines, for
some ϵ0 ∈ R>0, a function δ : [0, ϵ0) → R≥0 that is nondecreasing. By there existswhat

α ∈ K([0, ϵ0);R≥0) such that α(ϵ) ≤ δ(ϵ) for every ϵ ∈ [0, ϵ0). We can suppose that ϵ0 is
sufficiently small that image(α) = [0, δ0) for δ0 ∈ R>0. Define α = α−1, which is of class
K by Lemma 10.6.2(i). Now, let x ∈ U satisfies ∥x − x0∥ < δ0 and let ξ be the solution
to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then let ϵ = α(∥x − x0∥) note that

∥x − x0∥ = α(ϵ) ≤ δ(ϵ).
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Therefore,
∥ξ(t) − x0∥ < ϵ = α(∥x − x0∥),

completing this part of the proof.
(ii) First suppose that there exist δ ∈ R>0 and α ∈ K([0, δ);R≥0) such that, for every

(t0, x) ∈ T ×U satisfying ∥x − x0∥ < δ, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t) − x0∥ ≤ α(∥x − x0∥) for t ≥ t0. Let δ and α be as above. Let ϵ ∈ R>0 and let
ϵ′ = min{ϵ, α(δ)}. Let δ′ = min{δ, α−1( ϵ

′

2 )}. Let (t0, x) ∈ T × U satisfy ∥x − x0∥ < δ′ ≤ δ
and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since
∥ξ(t) − x0∥ ≤ α(∥x − x0∥) ≤ α(δ′) ≤ α(α−1( ϵ

′

2 )) = ϵ′

2 < ϵ,

we conclude uniform stability of x0.
Next suppose that x0 is uniformly stable. For ϵ ∈ R>0, let A(ϵ) ⊆ R>0 be the set

of positive numbers δ such that, for every (t0, x) ∈ T × U satisfying ∥x − x0∥ < δ, the
solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)∥ < ϵ for t ≥ t0. Then denote δ(ϵ) = sup A(ϵ). This then defines, for
some ϵ0 ∈ R>0, a function δ : [0, ϵ0) → R≥0 that is nondecreasing. By there exists what

α ∈ K([0, ϵ0);R≥0) such that α(ϵ) ≤ δ(ϵ) for every ϵ ∈ [0, ϵ0). We can suppose that ϵ0 is
sufficiently small that image(α) = [0, δ0) for δ0 ∈ R>0. Define α = α−1, which is of class
K by Lemma 10.6.2(i). Now, let x ∈ U satisfy ∥x − x0∥ < δ0 and let ξ be the solution to
the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then let ϵ = α(∥x − x0∥) note that

∥x − x0∥ = α(ϵ) ≤ δ(ϵ).

Therefore,
∥ξ(t) − x0∥ < ϵ = α(x − x0),

completing this part of the proof.
(iii) First suppose that, for every t0 ∈ T′, there exist δ ∈ R>0 and βKL([0, δ) ×

[t0,∞);R≥0) such that, if x ∈ U satisfies ∥x − x0∥ < δ, then the solution ξ to the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)− ξ0(t)∥ ≤ β(∥x− x0∥, t) for t ≥ t0. Let t0 ∈ T and let δ and β be as above. If
x ∈ U satisfies ∥x − x0∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,
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satisfies
∥ξ(t) − ξ0(t)∥ ≤ β(∥x − x0∥, t) ≤ β(∥x − x0∥, t0)

for t ≥ t0. By (ii) we conclude that x0 is stable. Also, let ϵ ∈ R>0 and let T ∈ R>0 be
sufficiently large that β( δ2 , t0 + T) < ϵ. Then, if (t0, x) ∈ T ×U satisfy ∥x − x0∥ < δ

2 , then
the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
∥ξ(t) − x0∥ ≤ β( δ2 , t) ≤ β( δ2 , t0 + T) < ϵ

for t ≥ t0 + T. This gives asymptotic stability of x0.
Next suppose that x0 is asymptotically stable. Let t0 ∈ T. Since x0 is stable (by

definition), by part (i) there exists δ0 ∈ R>0 and α ∈ K([0, δ0);R≥0) such that, for
δ ∈ [0, δ0], if x ∈ U satisfies ∥x− x0∥ < δ, then the solution ξ of the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
∥ξ(t) − x0∥ ≤ α(∥x − x0∥) < α(r).

Now, if (δ, ϵ) ∈ [0, δ0] × R>0, then let A(δ, ϵ) ⊆ R>0 be the set of T ∈ R>0 such that, if
x ∈ U satisfies ∥x − x0∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t) = x0∥ < ϵ for t ≥ t0 + T, this being possible by asymptotic stability. Then
define T(δ, ϵ) = inf A(δ, ϵ).

Let us record some useful properties of T.

1 Lemma
(i) T(δ, ϵ) ∈ R≥0 for all (δ, ϵ) ∈ [0, δ0] ×R>0;

(ii) δ 7→ T(δ, ϵ) is nondecreasing for every ϵ ∈ R>0, i.e., T(δ1, ϵ) ≤ T(δ2, ϵ) for δ1 < δ2;

(iii) ϵ 7→ T(δ, ϵ) is nonincreasing for every δ ∈ [0, δ0], i.e., T(δ, ϵ1) ≥ T(δ, ϵ2) for ϵ1 < ϵ2;

(iv) T(δ, ϵ) = 0 if ϵ > α(δ).

Proof (i) This follows since, if T ∈ A(δ, ϵ), then T ∈ R≥0.
(ii) Let δ1 < δ2. By definition, if T ∈ A(δ2, ϵ) then it is also the case that T ∈ A(δ1, ϵ).

That is, A(δ2, ϵ) ⊆ A(δ1, ϵ) and so inf A(δ1, ϵ) ≤ inf A(δ2, ϵ).
(iii) Let ϵ1 < ϵ2. Here, if T ∈ A(δ, ϵ1) then T ∈ A(δ, ϵ2), and this gives the result.
(iv) If ϵ > α(δ), then, if (t0, x) ∈ T × U satisfies ∥x − x0∥ < δ, the solution ξ of the

initial value problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
∥ξ(t) − x0∥ ≤ α(∥x − x0∥) < α(δ) < ϵ

for all t ≥ t0. Thus 0 ∈ A(δ, ϵ). ▼
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For (δ, ϵ) ∈ [0, δ0] ×R>0, define

τ(δ, ϵ) =
2
ϵ

∫ ϵ

ϵ/2
T(δ, x),dx +

δ
ϵ
.9

Let us record some properties of τ.

2 Lemma
(i) τ(δ, ϵ) ∈ R>0 for every (δ, ϵ) ∈ [0, δ0] ×R>0;
(ii) ϵ 7→ τ(δ, ϵ) is continuous for every δ ∈ [0, δ0];
(iii) limϵ→∞ τ(δ, ϵ) = 0 for every δ ∈ [0, δ0];
(iv) δ 7→ τ(δ, ϵ) is strictly increasing for every ϵ ∈ R>0;
(v) ϵ 7→ τ(δ, ϵ) is strictly decreasing for every δ ∈ [0, δ0];

(vi) τ(δ, ϵ) ≥ T(δ, ϵ) + δ
ϵ .

Proof (i) This follows since T is R≥0-valued by Lemma 1(i).
(ii) By the Fundamental Theorem of Calculus, the function

ϵ 7→

∫ ϵ

ϵ/2
T(δ, x),dx

is continuous, and from this the continuity of τ follows.
(iii) For fixed δ, we have T(δ, ϵ) = 0 for ϵ > α(δ) by Lemma 1(iv), and so

lim
ϵ→∞

τ(δ, ϵ) = lim
ϵ→∞

δ
ϵ
= 0.

(iv) This follows since

δ 7→
2
ϵ

∫ ϵ

ϵ/2
T(δ, x) dx

is nondecreasing by Lemma 1(ii) and since δ 7→ δ
ϵ is strictly increasing.

(v) This follows since ϵ 7→ 2
ϵ is strictly decreasing, since∫ ϵ

ϵ/2
T(δ, x) dx

is nonincreasing by Lemma 1(iii) and since ϵ 7→ ϵ
δ is strictly decreasing.

(vi) We have

τ(δ, ϵ) ≥
2
ϵ

∫ ϵ

ϵ/2
T(δ, ϵ) dx +

δ
ϵ
≥ T(δ, ϵ) +

δ
ϵ
,

as claimed. ▼

Now, for (δ, s) ∈ [0, δ0] × R>0, define σ(δ, s) ∈ R≥0 by asking that σ(δ, τ(δ, ϵ)) = ϵ,
i.e., s 7→ σ(δ, s) is the inverse of ϵ 7→ τ(δ, ϵ). We have the following properties of σ.

9There is a fussy little point here about whether T is locally integrable in ϵ. This follows since T
is nonincreasing, and so of “bounded variation.”
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3 Lemma
(i) δ 7→ σ(δ, s) is strictly increasing for every s ∈ R>0;
(ii) s 7→ σ(δ, s) is strictly decreasing for every δ ∈ [0, δ0];
(iii) s 7→ σ(δ, s) is continuous for every δ ∈ [0, δ0];
(iv) lims→∞ σ(δ, s) = 0 for δ ∈ [0, δ0];

(v) s = τ(δ, σ(δ, s)) > T(δ, σ(δ, s)) for every δ ∈ [0, δ0].

Proof (i) and (ii) follows from parts (iv) and (v) of Lemma 2.
(iii) This follows from Lemma 2(ii).
(iv) This follows from Lemma 2(iii).
(v) This follows from Lemma 2(vi). ▼

To complete the proof, we let δ0 ∈ R>0 be as above and define

β : [0, δ) × [t0,∞)→ R≥0

(δ, t) 7→
√
α(δ)σ( δ0

2 , t − t0).

The following lemma gives the essential feature of β.

4 Lemma β ∈ KL([0, δ0
2 ) × [t0,∞);R≥0).

Proof For fixed t ∈ [t0,∞), the function

δ 7→
√
α(δ)σ( δ0

2 , t − t0)

is in K([0, δ0
2 );R≥0) because:

1. δ 7→ α(δ) is continuous and strictly increasing since α ∈ K([0, δ0);R≥0);
2. the product of strictly increasing functions is and strictly increasing;
3. x 7→

√
x is continuous and strictly increasing on R≥0;

4. the composition of continuous strictly increasing functions is continuous and
strictly increasing;

5. α(0) = 0 since α ∈ K([0, δ0);R≥0).
For fixed δ ∈ [0, δ0

2 ), the function

t 7→
√
α(δ)σ( δ0

2 , t − t0)

is in L([t0,∞);R≥0) because:
1. t 7→ σ(δ, t−t0) is continuous and strictly decreasing by parts (ii) and (iii) of Lemma 3;
2. limt→∞ σ(δ, t − t0) = 0 by Lemma 3(iv). ▼

Now let x ∈ U satisfy ∥x − x0∥ <
δ0
2 and let ξ be the solution to the initial value

problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then
∥ξ(t) − x0∥ ≤ α(∥x − x0∥), t ≥ t0.



2022/03/07 10.6 Lyapunov functions 773

Also, for t > t0 and δ ∈ [0, δ0
2 ], if x ∈ U satisfies ∥x − x0∥ < δ, and if ξ is the solution to

the initial value problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

then we have

t − t0 = τ(δ, σ(δ, t − t0)) ≥ T(δ, σ(δ, t − t0)) +
δ

t − t0
> T(δ, σ(δ, t − t0)).

By definition of T, this means that

∥ξ(t) − x0∥ ≤ σ(δ, t − t0).

Continuity of σ in the second argument means that this relation holds, not just for
t > t0, but for t ≥ t0. Combining the inequalities

∥ξ(t) − x0∥ ≤ α(∥x − x0∥), ∥ξ(t) − x0∥ ≤ σ(δ, t − t0) < σ( δ0
2 , t − t0)

which we have shown to hold for (t0, x) ∈ T ×U satisfying ∥x − x0∥ <
δ0
2 and for t ≥ t0,

we have

∥ξ(t) − x0∥ ≤

√
α(∥x − x0∥)σ( δ0

2 , t − t0) = β(∥x − x0∥, t − t0),

which gives this part of the lemma.
(iv) First suppose that there exist δ ∈ R>0 and β ∈ KL([0, δ)× [0,∞);R≥0) such that,

if (t0, x) ∈ T ×U satisfy ∥x − x0∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t)−ξ0(t)∥ ≤ β(∥x−x0∥, t−t0) for t ≥ t0. Let δ and β be as above. If (t0, x) ∈ T×U
satisfies ∥x − x0∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
∥ξ(t) − ξ0(t)∥ ≤ β(∥x − x0∥, t − t0) ≤ β(∥x − x0∥, 0)

for t ≥ t0. By (ii) we conclude that x0 is uniformly stable. Also, let ϵ ∈ R>0 and let
T ∈ R>0 be sufficiently large that β( δ2 ,T) < ϵ. Then, if (t0, x) ∈ T×U satisfy ∥x− x0∥ < δ

2 ,
then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
∥ξ(t) − x0∥ ≤ β( δ2 , t − t0) ≤ β( δ2 ,T) < ϵ

for t ≥ t0 + T. This gives uniform asymptotic stability of x0.
Next suppose that x0 is uniformly asymptotically stable. Since x0 is uniformly

stable (by definition), by part (ii) there exists δ0 ∈ R>0 and α ∈ K([0, δ0);R≥0) such that,
for δ ∈ [0, δ0], if (t0, x) ∈ T × U satisfies ∥x − x0∥ < δ, then the solution ξ of the initial
value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,
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satisfies
∥ξ(t) − x0∥ ≤ α(∥x − x0∥) < α(r).

Now, if (δ, ϵ) ∈ [0, δ0] × R>0, then let A(δ, ϵ) ⊆ R>0 be the set of T ∈ R>0 such that, if
(t0, x) ∈ T ×U satisfies ∥x − x0∥ < δ, then the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ∥ξ(t) = x0∥ < ϵ for t ≥ t0 + T, this being possible by uniform asymptotic
stability. Then define T(δ, ϵ) = inf A(δ, ϵ).

The properties of Lemma 1 also hold for T in this case. For (δ, ϵ) ∈ [0, δ0] × R>0,
define

τ(δ, ϵ) =
2
ϵ

∫ ϵ

ϵ/2
T(δ, x),dx +

δ
ϵ
.

The properties of Lemma 2 also hold for τ in this case. Now, for (δ, s) ∈ [0, δ0] × R>0,
define σ(δ, s) ∈ R≥0 by asking that σ(δ, τ(δ, ϵ)) = ϵ, i.e., s 7→ σ(δ, s) is the inverse of
ϵ 7→ τ(δ, ϵ). The properties of Lemma 3 also hold for σ in this case.

To complete the proof, we let δ0 ∈ R>0 be as above and define

β : [0, δ) ×R≥0 → R≥0

(δ, s) 7→
√
α(δ)σ( δ0

2 , s).

The following lemma gives the essential feature of β.

5 Lemma β ∈ KL([0, δ0
2 ) ×R≥0;R≥0).

Proof For fixed s ∈ R≥0, the function

δ 7→
√
α(δ)σ( δ0

2 , s)

is in K([0, δ0
2 );R≥0) because:

1. δ 7→ α(δ) is continuous and strictly increasing since α ∈ K([0, δ0);R≥0);
2. the product of strictly increasing functions is and strictly increasing;
3. x 7→

√
x is continuous and strictly increasing on R≥0;

4. the composition of continuous strictly increasing functions is continuous and
strictly increasing;

5. α(0) = 0 since α ∈ K([0, δ0);R≥0).
For fixed δ ∈ [0, δ0

2 ), the function

s 7→
√
α(δ)σ( δ0

2 , s)

is in L(R≥0;R≥0) because:
1. s 7→ σ(δ, s) is continuous and strictly decreasing by parts (ii) and (iii) of Lemma 3;
2. lims→∞ σ(δ, s) = 0 by Lemma 3(iv). ▼
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Now let (t0, x) ∈ T × U satisfy ∥x − x0∥ <
δ0
2 and let ξ be the solution to the initial

value problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Then
∥ξ(t) − x0∥ ≤ α(∥x − x0∥), t ≥ t0.

Also, for t > t0 and δ ∈ [0, δ0
2 ], if (t0, x) ∈ T × U satisfies ∥x − x0∥ < δ, and if ξ is the

solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

then we have

t − t0 = τ(δ, σ(δ, t − t0)) ≥ T(δ, σ(δ, t − t0)) +
δ

t − t0
> T(δ, σ(δ, t − t0)).

By definition of T, this means that

∥ξ(t) − x0∥ ≤ σ(δ, t − t0).

Continuity of σ in the second argument means that this relation holds, not just for
t > t0, but for t ≥ t0. Combining the inequalities

∥ξ(t) − x0∥ ≤ α(∥x − x0∥), ∥ξ(t) − x0∥ ≤ σ(δ, t − t0) < σ( δ0
2 , t − t0)

which we have shown to hold for (t0, x) ∈ T ×U satisfying ∥x − x0∥ <
δ0
2 and for t ≥ t0,

we have

∥ξ(t) − x0∥ ≤

√
α(∥x − x0∥)σ( δ0

2 , t − t0) = β(∥x − x0∥, t − t0),

which gives this part of the lemma. ■
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Section 10.7

Lyapunov’s Second Method: Stability theorems

Much of the basic stability theory used in practice originates with the work
of Aleksandr Mikhailovich Lyapunov (1857–1918). In this section and the next
we shall cover what are commonly called “Lyapunov’s First Method” (also “Lya-
punov’s Indirect Method”) and “Lyapunov’s Second Method” (also “Lyapunov’s
Direct Method”). The First Method is a useful one in that it allows one to deduce
stability from the linearisation, and often the stability of the linearisation can be
determined by computing a polynomial (Section 10.3.1) and performing compu-
tations with its coefficients (Section 10.4). The Second Method, on the other hand,
involves hypothesising a function—called a “Lyapunov function”—with certain
properties. In practice and in general, it is to be regarded as impossible to find a
Lyapunov function. However, the true utility of the Second Method is that, once
one has a Lyapunov function, there is a great deal one can say about the differential
equation. However, such matters lie beyond the scope of the present text, and we
refer to the references for further discussion.

It goes without saying that we shall discuss the Second Method first. Lya-
punov’s Second Method, or Direct Method, is a little. . . er. . . indirect, since it has to
do with considering functions with certain properties. We shall consider in the text
four settings for Lyapunov’s Second Method. We shall treat each of the four cases
in a self-contained manner, so a reader does not have to understand the (somewhat
complicated) most general setting in order to understand the (less complicated)
less general settings. Therefore, let us provide a roadmap for these cases.

10.7.1 Road map for Lyapunov’s Second Method We list the four settings for Lya-
punov’s Second Method, and what should be read to comprehend them, together
or separately.
1. General nonautonomous equations. The most general setting is that of equations

that are nonautonomous, i.e., time-varying, and not necessarily linear. Here
one needs to carefully discriminate between uniform and nonuniform stability
notions. The material required to access the result on these equations is:

(a) class K- and class KL-functions in Section 10.6.1;
(b) time-invariant definite and semidefinite functions in Section 10.6.2;
(c) time-varying definite and semidefinite functions in Section 10.6.3;
(d) characterisations of stability using class K- and class KL-functions in Sec-

tion 10.6.6;
(e) the results on Lyapunov’s Second Method in Section 10.7.1;
(f) the theorems of Sections 10.7.2, 10.7.3, and 10.7.4 are corollaries of the

more general theorems, although we also give independent proofs.
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2. General autonomous equations. Here we consider autonomous ordinary differen-
tial that are not necessarily linear. The simplifications assumed by not having to
discriminate between uniform and nonuniform stability make the results here
significantly simpler than those for nonautonomous equations. The material
needed to understand the results in this case is:

(a) understand Definition 10.6.5;
(b) the results on Lyapunov’s Second Method in Section 10.7.2;
(c) the theorems of Section 10.7.4 are corollaries of the more general theorems,

although we also give independent proofs. •

3. Time-varying linear equations. The next class of equations one can consider are
linear homogeneous time-varying ordinary differential equations. Note that
it is necessary to understand the results on Lyapunov’s Second Method here
in order to prove the results on Lyapunov’s First Method for nonautonomous
equations. In order to understand this material, the following material needs
to be read:

(a) time-invariant quadratic functions in Section 10.6.4;
(b) time-varying quadratic functions in Section 10.6.5;
(c) the results on Lyapunov’s Second Method in Section 10.7.3.

4. Time-invariant linear equations. Our final setting concerns linear homogeneous
time-invariant ordinary differential equations. Note that these results are re-
quired to understand the results on Lyapunov’s First Method for autonomous
equations. In this setting, one needs to read the following material:

(a) time-invariant quadratic functions in Section 10.6.4;
(b) the result on Lyapunov’s Second Method in Section 10.7.4;
(c) the theorems of Section 10.7.4 are corollaries of the more general theorems,

although we also give independent proofs. •

10.7.1 The Second Method for nonautonomous equations

Now, after that lengthy diversion concerning sort of elementary properties of
functions, we come to Lyapunov’s Section Method. We shall consider this method
in four settings, nonautonomous/autonomous and nonlinear/linear. We begin with
the most general setting, that for nonautonomous nonlinear equations.

In Lyapunov’s Second Method, we will need to evaluate the derivative of a
function along the solutions of an ordinary differential equation. To facilitate this,
we make the following definition.

10.7.2 Definition (Lie derivative of a function along an ordinary differential equation)
Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn
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and let f : T ×U→ R be of class C1. The Lie derivative of f along F is

LF f : T ×U→ R

(t, x) 7→
∂ f
∂t

(t, x) +
n∑

j=1

F̂ j(t, x)
∂ f
∂x j

(t, x).
•

10.7.3 Lemma (Essential property of the Lie derivative I) Let F be an ordinary differential
equation with right-hand side

F̂ : T ×U→ Rn

and let f : T ×U→ R be of class C1. If ξ : T′ → U is a solution for F, then

d
dt

f(t, ξ(t)) = LFf(t, ξ(t)).

Proof Using the Chain Rule and the fact that

ξ̇(t) = F̂(t, ξ(t)),

we have

d
dt

f (t, ξ(t)) =
∂ f
∂t

(t, ξ(t)) +
n∑

j=1

∂ f
∂x j

(t, ξ(t))
dξ j

dt
(t)

=
∂ f
∂t

(t, ξ(t)) +
n∑

j=1

∂ f
∂x j

(t, ξ(t))F̂ j(t, ξ(t))

= LF f (t, ξ(t)),

as desired. ■

We collect our basic results on Lyapunov’s Second Method in this case in the
following result.

10.7.4 Theorem (Lyapunov’s Second Method for nonautonomous ordinary differen-
tial equations) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and that F satisfies
Assumption 10.2.1. Then the following statements hold.

(i) The equilibrium point x0 is stable if there exists V: T × U → R with the following
properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) −LFV ∈ TVLPSD(x0).
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(ii) The equilibrium point x0 is uniformly stable if there exists V: T ×U→ R with the
following properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) V ∈ TVLD(x0);
(d) −LFV ∈ TVLPSD(x0).

(iii) The equilibrium point x0 is asymptotically stable if there exists V: T×U→ R with
the following properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) −LFV ∈ TVLPD(x0).

(iv) The equilibrium point x0 is uniformly asymptotically stable if there exists V: T×U→
R with the following properties:

(a) V is of class C1;
(b) V ∈ TVLPD(x0);
(c) V ∈ TVLD(x0);
(d) −LFV ∈ TVLPD(x0).

Proof (i) Let t0 ∈ T. Let r ∈ R>0 be such that
1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0), and
3. −LFV ∈ TVLPSD2r(x0).
By definition of time-varying locally positive, let f ∈ LPD2r(x0) be such that

f (x) ≤ V(t, x) (10.23)

for all (t, x) ∈ T × B(r, x0). Also let g ∈ LPSDr(x0) be such that

LFV(t, x) ≤ −g(x) ≤ 0

for (t, x) ∈ T × B(r, x0). Let c ∈ R>0 be such that

c < inf{ f (x) | ∥x − x0∥ = r}

and then define
f−1(≤ c) = {x ∈ B(r, x0) | f (x) ≤ c}.

Also, for t ∈ T, denote

V−1
t (≤ c) = {x ∈ B(r, x0) | V(t, x) ≤ c}.

By (10.23), we have

V−1
t (≤ c) ⊆ f−1(≤ c) ⊆ B(r, x0), t ∈ T.
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Define α2 : [0, 2r]→ R by

β(s) = sup{V(t0, x) | ∥x − x0∥ ≤ s}.

A reference to the proof of Lemma 10.6.6(i) gives α2 ∈ K([0, 2r);R≥0) such that and

V(t0, x) ≤ β(∥x − x0∥) ≤ α2(∥x − x0∥), x ∈ B(r, x0).

Note that lims→0 α2(s) = 0, and so there exists δ ∈ R>0 such that α2(s) < c for s ∈ [0, δ].
Note that

x ∈ B(δ, x0) =⇒ V(t0, x) ≤ c.

Let x ∈ B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x. (10.24)

The following technical lemmata are required to proceed with the proof, and will recur
a number of times for proofs relating to Lyapunov’s Second Method.

1 Lemma The solution ξ satisfies ξ(t) ∈ B(r, x0) for t ≥ t0.

Proof Suppose this is not true. Then, by continuity of ξ, there exists a largest T ∈ R>0

such that ξ(t) ∈ B(r, x0) for all t ∈ [t0, t0+T]. This implies, by continuity of t 7→ V(t, ξ(t)),
that

∥ξ(T) − x0∥ = r. (10.25)

Using the facts that
x ∈ B(δ, x0) ⊆ V−1

t0
(≤ c) ⊆ B(r, x0),

and that
d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ 0, t ∈ [t0, t0 + T]

(the leftmost equality by Lemma 10.7.3), we have

V(T, ξ(T)) = V(t0, ξ(t0)) +
∫ T

t0

V(t, ξ(t)) dt

= V(t0, ξ(t0)) +
∫ T

t0

LFV(t, ξ(t)) dt < c.

(10.26)

However, this contradicts (10.25) and the definition of c, and so we conclude the
lemma. ▼

The next lemma we state in some generality, since it asserts a generally useful
fact.
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2 Lemma Let F be an ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

satisfies supT = ∞ and Assumption 10.2.1. Let K ⊆ U be compact and assume that, for
every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0,

satisfies ξ(t) ∈ K for t ≥ t0.
Then, for every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0,

is defined on [t0,∞).

Proof Suppose the hypotheses of the lemma hold, but the conclusions do not. Thus
there exists (t0, x) ∈ T × K for which the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x0, (10.27)

in not defined for all t ∈ [t0,∞). Then there exists a largest T ∈ R>0 such that the
solution of the initial value problem is defined on [t0, t0+T). Let (t j) j∈Z>0 be a sequence
in [t0, t0 + T) converging to t0 + T. By the Bolzano–Weierstrass Theorem, the sequence
(ξ(t j)) j∈Z>0 has a convergent subsequence (ξ(t jk))k∈Z>0 :

lim
k→∞

ξ(t jk) = y ∈ K.

Now, by Theorem 3.2.8(ii), there exists ϵ ∈ R>0 such that the solution η to the initial
value problem

η̇(t) = F̂(t,η(t)), η(t0 + T) = y,

is defined on t ∈ [t0 + T − ϵ, t0 + T + ϵ]. Moreover, by assumption, η(t) ∈ K for every
t ∈ [t0 + T − ϵ, t0 + T + ϵ]. Define ξ : [t0, t0 + T + ϵ]→ K by

ξ(t) =

ξ(t), t ∈ [t0, t0 + T),
η(t), t ∈ [t0 + T, t0 + T + ϵ].

Note, then, that ξ is a solution to the differential equation and satisfies the initial
condition ξ(t0) = x. Thus we have arrived at a contradiction to the solution to the
initial value problem (10.27) being defined only on [t0, t0 + T). ▼

By combining the preceding two lemmata, we conclude that the solution ξ to the
initial value problem (10.24) with x ∈ B(δ, x0) satisfies (1) ξ(t) ∈ B(r, x0) for all t ≥ t0 and
(2) it is defined on [t0,∞). Moreover, by the computation (10.26),

ξ(t) ∈ V−1
t (≤ c) ⊆ f−1(≤ c).

By Lemma 10.6.6, there exists α1 ∈ K([0, 2r);R≥0) such that

α1(∥x − x0∥) ≤ f (x), x ∈ B(r, x0).
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Let x ∈ B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since x ∈ B(δ, x0), our arguments above imply that ξ is defined on [t0,∞) and that
ξ(t) ∈ B(r, x0) for t ≥ t0. Moreover,

α1(∥ξ(t) − x0∥) ≤ f1(ξ(t)) ≤ V(t, ξ(t)) ≤ V(t0, ξ(t0)) ≤ α2(∥ξ(t0) − x0∥)

for t ≥ t0. Thus
∥ξ(t) − x0∥ ≤ α

−1
1 ◦ α2(∥ξ(t0) − x0∥)

for t ≥ t0. Since α−1
1
◦ α2 ∈ K([0, 2r);R≥0) by Lemma 10.6.2, we can now conclude

uniform stability from Lemma 10.6.18(ii).
(ii) Let r ∈ R>0 be such that

1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0),
3. V ∈ TVLD2r(x0), and
4. −LFV ∈ TVLPSD2r(x0).
By definition of time-varying locally positive and locally decrescent, let f1, f2 ∈
LPD2r(x0) be such that

f1(x) ≤ V(t, x) ≤ f2(x) (10.28)

for all (t, x) ∈ T × B(r, x0). Also let g ∈ LPSDr(x0) be such that

LFV(t, x) ≤ −g(x) ≤ 0

for (t, x) ∈ T × B(r, x0). Let c ∈ R>0 be such that

c < inf{ f1(x) | ∥x − x0∥ = r}

and then define
f−1
1 (≤ c) = {x ∈ B(r, x0) | f1(x) ≤ c}

and
f−1
2 (≤ c) = {x ∈ B(r, x0) | f2(x) ≤ c}.

Also, for t ∈ T, denote

V−1
t (≤ c) = {x ∈ B(r, x0) | V(t, x) ≤ c}.

By (10.28), we have

f−1
2 (≤ c) ⊆ V−1

t (≤ c) ⊆ f−1
1 (≤ c) ⊆ B(r, x0), t ∈ T.

Let x ∈ f−1
2 (≤ c), let t0 ∈ T, and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x. (10.29)

The following lemma is an adaptation of Lemma 1 to our current setting.
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3 Lemma The solution ξ satisfies ξ(t) ∈ B(r, x0) for t ≥ t0.

Proof Suppose this is not true. Then, by continuity of ξ, there exists a largest T ∈ R>0

such that ξ(t) ∈ B(r, x0) for all t ∈ [t0, t0+T]. This implies, by continuity of t 7→ V(t, ξ(t)),
that

∥V(T, ξ(T)) − x0∥ = r. (10.30)

Using the facts that
x ∈ f−1

2 (t0,≤ c) ⊆ V−1
t0

(≤ c) ⊆ B(r, x0),

and that
d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ 0, t ∈ [t0, t0 + T]

(the leftmost equality by Lemma 10.7.3), we have

V(T, ξ(T)) = V(t0, ξ(t0)) +
∫ T

t0

V(t, ξ(t)) dt

= V(t0, ξ(t0)) +
∫ T

t0

LFV(t, ξ(t)) dt < c.

(10.31)

However, this contradicts (10.30) and the definition of c, and so we conclude the
lemma. ▼

By combining the preceding lemma with Lemma 2, we conclude that the solution
ξ to the initial value problem (10.29) with x ∈ f−1

2 (≤ c) satisfies (1) ξ(t) ∈ B(r, x0) for all
t ≥ t0 and (2) it is defined on [t0,∞). Moreover, by the computation (10.31),

ξ(t) ∈ V−1
t (≤ c) ⊆ f−1

1 (≤ c).

By Lemma 10.6.6, there exist α1, α2 ∈ K([0, 2r);R≥0) such that

α1(∥x − x0∥) ≤ f1(x), f2(x) ≤ α2(∥x − x0∥), x ∈ B(r, x0).

Now let δ ∈ (0, r] be sufficiently small that α2(s) ≤ c for s ∈ [0, δ]. Note that

x ∈ B(δ, x0) =⇒ α2(∥x − x0∥) ≤ c =⇒ x ∈ f−1
2 (≤ c).

Let (t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Since x ∈ f−1
2 (≤ c), our arguments above imply that ξ is defined on [t0,∞) and that

ξ(t) ∈ B(r, x0) for t ≥ t0. Moreover,

α1(∥ξ(t) − x0∥) ≤ f1(ξ(t)) ≤ V(t, ξ(t)) ≤ V(t0, ξ(t0)) ≤ f2(ξ(t0)) ≤ α2(∥ξ(t0) − x0∥)

for t ≥ t0. Thus
∥ξ(t) − x0∥ ≤ α

−1
1 ◦ α2(∥ξ(t0) − x0∥)

for t ≥ t0. Since α−1
1
◦ α2 ∈ K([0, 2r);R≥0) by Lemma 10.6.2, we can now conclude

uniform stability from Lemma 10.6.18(ii).
(iii) Let t0 ∈ T. Let r ∈ R>0 be such that
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1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0),
3. −LFV ∈ TVLPD2r(x0).
As in the proof of part (i), we let f1 ∈ LPD2r(x0) and α1 ∈ K([0, 2r);R≥0) be such that

α1(∥x − x0∥) ≤ f1(x) ≤ V(t, x)

for (t, x) ∈ T × B(r, x0). Also as in the proof of part (i), let α2 ∈ K([0, 2r);R≥0) be such
that

V(t0, x) ≤ α2(∥x − x0∥), x ∈ B(r, x0).

Also let f3 ∈ LPD2r(x0) and α3 ∈ K([0, 2r);R≥0) be such that

α3(∥x − x0∥) ≤ f3(x) ≤ −LFV(t, x)

for (t, x) ∈ T × B(r, x0).
Of course, we then conclude stability of x0 from part (i). We then have

V(t, x) ≤ α2(∥x − x0∥) =⇒ α3 ◦ α
−1
2 ◦ V(t, x) ≤ α3(∥x − x0∥) (10.32)

for (t, x) ∈ T × B(r, x0). By Lemma 10.6.2 we have α3 ◦ α−1
2 ∈ K([0, r);R≥0) and,

therefore, by Lemma 10.6.3, there exists a locally Lipschitz α ∈ K([0, r);R≥0) such that
α(s) ≤ α3 ◦α−1

2 (x) for all x ∈ [0, r). Now let δ be as in the proof of part (i). Let x ∈ B(δ, x0)
and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Recall that
1. ξ(t) ∈ Br(x0,) for all t ∈ [t0,∞) by Lemma 1,
2. V(t, ξ(t)) ≤ c for all t ∈ [t0,∞) by definition of δ.
Using Lemma 10.7.3 and (10.32), we then have

d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ −α3(∥ξ(t) − x0∥) ≤ −α ◦ V(t, ξ(t)).

The following technical lemma is now required.

4 Lemma Let F be a scalar ordinary differential equation with right-hand side

F̂ : T ×U→ R

where U ⊆ R is open. For (t0,y0) ∈ T ×U, let ξ, η : T′ → U be of class C1 and satisfy

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = y0

and
η̇(t) < F̂(t,η(t)), η(t0) = y0.

Then η(t) < ξ(t) for t > t0.
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Proof We have
η̇(t0) < F̂(t0, y0) = ξ̇(t0).

Therefore, by continuity of the derivatives, there exists ϵ ∈ R>0 such that

η̇(t) < ξ̇(t), t ∈ [t0, t0 + ϵ].

Therefore, for t ∈ (t0, t0 + ϵ],

η(t) =
∫ t

t0

η̇(τ) dτ <
∫ t

t0

ξ̇(τ) dτ = ξ(t).

Now suppose that it does not hold that η(t) < ξ(t) for all t ≥ t0. Then let

T = inf{t ≥ t0 | η(t) ≥ ξ(t)} > t0 + ϵ.

By continuity, η(T) = ξ(T). Thus

η̇(T) = η̇(T) − F̂(T, η(T))︸              ︷︷              ︸
<0

+F̂(T, η(T))

< ξ̇(t) − F̂(T, ξ(T))︸             ︷︷             ︸
=0

+F̂(T, ξ(T)) = ξ̇(T).

On the other hand, for h ∈ R>0 (sufficiently small for the expression to be defined) we
have

η(T) − η(T − h)
h

>
ξ(T) − ξ(T − h)

h
,

and taking the limit as h → 0 gives η̇(T) ≥ ξ̇(T), contradicting our computation just
proceeding. ▼

By Lemma 10.6.4, there exists ψ ∈ KL([0, r) × [t0,∞);R≥0) such that, if y ∈ [0, r),
then the solution to the initial value problem

η̇(t) = −α(η(t)), η(t0) = y,

is ψ(y, t) for t ≥ t0. By Lemma 4 we have

V(t, ξ(t)) ≤ ψ(V(t0, x), t), t ≥ t0.

Therefore,

∥ξ(t) − x0∥ ≤ α
−1
1 ◦ ψ(V(t0, x), t)

≤ α−1
1 ◦ ψ(α2(∥x − x0∥), t).

By Lemma 10.6.2(iii), the mapping

β : [0, r) × [t0,∞)→ R

(s, τ) 7→ α−1
1 ◦ ψ(α2(s), τ)

is of class KL. The asymptotic stability of x0 now follows from Lemma 10.6.18(iii).
(iv) Let r ∈ R>0 be such that
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1. B(2r, x0) ⊆ U,
2. V ∈ TVLPD2r(x0),
3. V ∈ TVLD2r(x0), and
4. −LFV ∈ TVLPD2r(x0).
As in the proof of part (ii), we let f1, f2 ∈ LPD2r(x0) and α1, α2 ∈ K([0, 2r);R≥0) be such
that

α1(∥x − x0∥) ≤ f1(x) ≤ V(t, x) ≤ f2(x) ≤ α2(∥x − x0∥)

for (t, x) ∈ T × B(r, x0). Also let f3 ∈ LPD2r(x0) and α3 ∈ K([0, 2r);R≥0) be such that

α3(∥x − x0∥) ≤ f3(x) ≤ −LFV(t, x)

for (t, x) ∈ T × B(r, x0).
Of course, we then conclude uniform stability of x0 from part (ii). We then have

V(t, x) ≤ α2(∥x − x0∥) =⇒ α3 ◦ α
−1
2 ◦ V(t, x) ≤ α3(∥x − x0∥) (10.33)

for (t, x) ∈ T × B(r, x0). By Lemma 10.6.2 we have α3 ◦ α−1
2 ∈ K([0, r);R≥0) and,

therefore, by Lemma 10.6.3, there exists a locally Lipschitz α ∈ K([0, r);R≥0) such
that α(s) ≤ α3 ◦ α−1

2 (x) for all x ∈ [0, r). Now let δ be as in the proof of part (ii). Let
(t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x.

Recall that
1. ξ(t) ∈ Br(x0,) for all t ∈ [t0,∞) by Lemma 3,
2. V(t, ξ(t)) ≤ c for all t ∈ [t0,∞) by definition of δ.
Using Lemma 10.7.3 and (10.33), we then have

d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ −α3(∥ξ(t) − x0∥) ≤ −α ◦ V(t, ξ(t)).

By Lemma 10.6.4, there exists ψ ∈ KL([0, r) ×R≥0;R≥0) such that, if y ∈ [0, r) and
t0 ∈ R, then the solution to the initial value problem

η̇(t) = −α(η(t)), η(t0) = y,

is ψ(y, t − t0) for t ≥ t0. By Lemma 4 we have

V(t, ξ(t)) ≤ ψ(V(t0, x), t − t0), t ≥ t0.

Therefore,

∥ξ(t) − x0∥ ≤ α
−1
1 ◦ ψ(V(t0, x), t − t0)

≤ α−1
1 ◦ ψ(α2(∥x − x0∥), t − t0).

By Lemma 10.6.2(iii), the mapping

β : [0, r) ×R≥0 → R

(s, τ) 7→ α−1
1 ◦ ψ(α2(s), τ)

is of class KL. The uniform asymptotic stability of x0 now follows from
Lemma 10.6.18(iv). ■
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10.7.5 Terminology The function V in the statement of the preceding theorem is typically
called a Lyapunov function. It is not uncommon for this terminology to be used
imprecisely, in the sense that when one sees the expression “Lyapunov function,” it
is clear only from context whether one is in case (i), (ii), (iii), or (iv) of the preceding
theorem. Typically this is not to be thought of as confusing, as the context indeed
makes this clear. •

We also have the following sufficient condition for exponential stability (as
opposed to mere asymptotic stability) which comes with the flavour of Lyapunov’s
Second Method.

10.7.6 Theorem (Lyapunov’s Second Method for exponential stability of nonau-
tonomous ordinary differential equations) Let F be an ordinary differential equation
with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and F satisfies
Assumption 10.2.1. Then x0 is uniformly exponentially stable if there exists V: T×U→ R
with the following properties:

(i) V is of class C1;
(ii) there exists C1, α1, r1 ∈ R>0 such that

C1∥x − x0∥
α1 ≤ V(t, x) ≤ C−1

1 ∥x − x0∥
α1

for all (t, x) ∈ T × B(r1, x0);
(iii) there exists C2, α2, r2 ∈ R>0 such that

LFV(t, x) ≤ −C2∥x − x0∥
α2

for all (t, x) ∈ T × B(r2, x0).
Proof Let r, α ∈ R>0 be such that
1. C1∥x − x0∥

α
≤ V(t, x) ≤ C−1

1 ∥x − x0∥
α for all (t, x) ∈ T × B(2r, x0) and

2. −LFV(t, x) ≥ C2∥x − x0∥
α for all (t, x) ∈ T × B(r, x0).

Let c ∈ R>0 be such that

c < inf{C1∥x − x0∥
α
| ∥x − x0∥ = r}.

We then let δ ∈ R>0 be such that, if x ∈ B(δ, x0), then C2∥x−x0∥ ≤ c. Let (t0, x) ∈ T×B(δ, x0)
and let ξ be the solution to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0 = x.

We then argue as in Lemmata 3 and 2 from the proof of Theorem 10.7.4 that ξ(t) ∈
B(r, x0) for t ≥ t0 and that ξ is defined for all t ∈ [t0,∞). Now compute, using
Lemma 10.7.3 and the definitions of C1, C2, and α,

d
dt

V(t, ξ(t)) = LFV(t, ξ(t)) ≤ −C2∥ξ(t) − x0∥
α
≤ −C1C2V(t, ξ(t)).
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By Lemma 4 of Theorem 10.7.4,

V(t, ξ(t)) ≤ V(t0, ξ(t0))e−C1C2(t−t0)

for t ≥ t0. Now, again using the definition of C1 and α,

∥ξ(t) − x0∥ ≤

(
V(t, ξ(t))

C1

)1/α

≤

(
V(t0, ξ(t0))e−C1C2(t−t0)

C1

)1/α

≤
∥x − x0∥

C2α
1

e−C1C2(t−t0)/α

for all t ≥ t0. Recalling that the preceding estimates are valid for any (t0, x) ∈ T×B(δ, x0),
we conclude uniform exponential stability of x0. ■

10.7.2 The Second Method for autonomous equations

In the preceding section we gave a quite general version of Lyapunov’s Sec-
ond Method applied to nonautonomous ordinary differential equations. As can
be seen, the proofs are lengthy and a little detailed. Here we consider the simpler
autonomous case, for which we give a self-contained proof for a reader wish-
ing for a “light” alternative. In stating the result in this case, we recall from
Proposition 10.2.5 that “stability” and “uniform stability” are equivalent, and
that “asymptotic stability” and “uniform asymptotic stability” are equivalent for
nonautonomous ordinary differential equations.

Before we get to the statement of the main result, we first give the non-time-
varying version of the definition of Lie derivative.

10.7.7 Definition (Lie derivative of a function along an autonomous ordinary dif-
ferential equation) Let F be an autonomous ordinary differential equation with
right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let f : U→ R be of class C1. The Lie derivative of f along F is

LF0 f : U→ R

x 7→
n∑

j=1

F̂0, j(x)
∂ f
∂x j

(x).
•

10.7.8 Lemma (Essential property of the Lie derivative II) Let F be an autonomous
ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(t, x),
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and let f : U→ R be of class C1. If ξ : T′ → U is a solution for F, then

d
dt

f(ξ(t)) = LF0f(ξ(t)).

Proof Using the Chain Rule and the fact that

ξ̇(t) = F̂0(ξ(t)),

we have

d
dt

f (ξ(t)) =
n∑

j=1

∂ f
∂x j

(ξ(t))
dξ j

dt
(t)

=

n∑
j=1

∂ f
∂x j

(ξ(t))F̂0, j(ξ(t))

= LF0 f (ξ(t)),

as desired. ■

We can now state the main concerning Lyapunov’s Second Method in the nonau-
tonomous case.

10.7.9 Theorem (Lyapunov’s Second Method for autonomous ordinary differential
equations) Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and that F satisfies
Assumption 10.2.1. Then the following statements hold.

(i) The equilibrium point x0 is stable if there exists V: U → R with the following
properties:

(a) V is of class C1;
(b) V ∈ LPD(x0);
(c) −LF0V ∈ LPSD(x0).

(ii) The equilibrium point x0 is asymptotically stable if there exists V: U→ R with the
following properties:

(a) V is of class C1;
(b) V ∈ LPD(x0);
(c) −LF0V ∈ LPD(x0).

We shall give two proofs of Theorem 10.7.9, one assuming Theorem 10.7.4 and
one independent of that more general theorem.
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Proof of Theorem 10.7.9, assuming Theorem 10.7.4 In this case, the theorem is an easy
corollary of the more general Theorem 10.7.4. Indeed, the hypotheses of parts (i)
and (ii) of Theorem 10.7.9 immediately imply those of parts (ii) and (iv), respectively,
of Theorem 10.7.4. ■

Independent proof of Theorem 10.7.9 (i) Let ϵ ∈ R>0. Let r ∈ (0, ϵ2 ] be chosen so that

1. B(2r, x0) ⊆ U,
2. V ∈ LPD2r(x0), and
3. −LF0V ∈ LPSD2r(x0).
Let c ∈ R>0 be such that

c < inf{V(x) | ∥x − x0∥ = r}

and define
V−1(≤ c) = {x ∈ B(r, x0) | V(x) ≤ c}.

Then V−1(≤ c) ⊆ B(r, x0) by continuity of V and the definition of c. By continuity of V,
let δ ∈ R>0 be such that, if x ∈ B(δ, x0), then V(x) < c. Therefore, we have

B(δ, x0) ⊆ V−1(≤ c) ⊆ B(r, x0).

Let (t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x.

The following lemmata, which essentially appear in the proof of Theorem 10.7.4, are
repeated here for the purposes of making the proof self-contained.

1 Lemma The solution ξ satisfies ξ(t) ∈ B(r, x0) for t ≥ t0.

Proof Suppose this is not true. Then, by continuity of ξ, there exists a largest T ∈ R>0

such that ξ(t) ∈ B(r, x0) for all t ∈ [t0, t0 + T]. This implies, by continuity of t 7→ V(ξ(t)),
that

∥V(ξ(T)) − x0∥ = r. (10.34)

Using the facts that
x ∈ B(δ, x0) ⊆ V−1(≤ c) ⊆ B(r, x0),

and that
d
dt

V(ξ(t)) = LF0V(ξ(t)) ≤ 0, t ∈ [t0, t0 + T]

(the leftmost equality by Lemma 10.7.8), we have

V(ξ(T)) = V(ξ(t0)) +
∫ T

t0

V(ξ(t)) dt

= V(ξ(t0)) +
∫ T

t0

LF0V(ξ(t)) dt < c.

(10.35)

However, this contradicts (10.34) and the definition of c, and so we conclude the
lemma. ▼
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2 Lemma Let F be an autonomous ordinary differential equation whose right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x)

satisfies supT = ∞ and Assumption 10.2.1. Let K ⊆ U be compact and assume that, for
every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x0,

satisfies ξ(t) ∈ K for t ≥ t0.
Then, for every (t0, x) ∈ T × K, the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x0,

is defined on [t0,∞).

Proof Suppose the hypotheses of the lemma hold, but the conclusions do not. Thus
there exists (t0, x) ∈ T × K for which the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x0, (10.36)

in not defined for all t ∈ [t0,∞). Then there exists a largest T ∈ R>0 such that the
solution of the initial value problem is defined on [t0, t0+T). Let (t j) j∈Z>0 be a sequence
in [t0, t0 + T) converging to t0 + T. By the Bolzano–Weierstrass Theorem, the sequence
(ξ(t j)) j∈Z>0 has a convergent subsequence (ξ(t jk))k∈Z>0 :

lim
k→∞

ξ(t jk) = y ∈ K.

Now, by Theorem 3.2.8(ii), there exists ϵ ∈ R>0 such that the solution η to the initial
value problem

η̇(t) = F̂0(η(t)), η(t0 + T) = y,

is defined on t ∈ [t0 + T − ϵ, t0 + T + ϵ]. Moreover, by assumption, η(t) ∈ K for every
t ∈ [t0 + T − ϵ, t0 + T + ϵ]. Define ξ : [t0, t0 + T + ϵ]→ K by

ξ(t) =

ξ(t), t ∈ [t0, t0 + T),
η(t), t ∈ [t0 + T, t0 + T + ϵ].

Note, then, that ξ is a solution to the differential equation and satisfies the initial
condition ξ(t0) = x. Thus we have arrived at a contradiction to the solution to the
initial value problem (10.36) being defined only on [t0, t0 + T). ▼

Since r ≤ ϵ
2 < ϵ, the preceding lemma immediately proves stability of x0.

(ii) Let r, δ ∈ R>0 be chosen so that
1. B(2r, x0) ⊆ U,
2. V ∈ LPD2r(x0),
3. −LF0V ∈ LPD(x0), and
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4. if (t0, x) ∈ T × B(δ, x0) and if ξ is the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x,

then ξ(t) ∈ B(r, x0) for t ≥ t0 and ξ is defined on [t0,∞).
The last condition is possible by virtue of our arguments in part (i).

Let (t0, x) ∈ T × B(δ, x0) and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x.

Since d
dt V(ξ(t)) < 0 for all t ≥ t0, it follows that t 7→ V(ξ(t)) is strictly decreasing. Thus,

since V is nonnegative, there exists γ ∈ R≥0 such that

lim
t→∞

V(ξ(t)) = γ.

We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. Let α ∈ R>0 be such that, if
x ∈ B(α, x0), then V(x) < γ. Therefore, ξ(t) ∈ B(r, x0) \ B(α, x0). Denote

β = inf{−LF0V(x) | ∥x − x0∥ ∈ [α, r]},

the infimum existing because it is over a compact set by . Moreover, since LF0V isref

negative definite, β ∈ R>0. Now we calculate

V(ξ(t)) = V(ξ(t0)) +
∫ t

t0

d
dτ

V(ξ(τ)) dτ

= V(ξ(t0)) +
∫ t

t0

LF0V(ξ(τ)) dτ

≤ V(ξ(t0)) − β(t − t0).

This implies that limt→∞V(ξ(t)) = −∞. This contradiction leads us to conclude that
γ = 0.

Finally, we must show that this implies that

lim
t→∞
∥ξ(t) − x0∥ = 0

(still supposing ξ to be the solution for initial condition (t0, x) ∈ T × B(δ, x0)). To this
end, let ϵ ∈ R>0 and let b ∈ R>0 be such that

b < inf{V(x) | ∥x − x0∥ = ϵ}.

Then, as we argued above that V−1(≤ c) ⊆ B(r, x0), here we conclude that V−1(≤ b) ⊆
B(ϵ, x0). Therefore, if we let T ∈ R>0 be sufficiently large that V(ξ(t)) ≤ b for t ≥ T, then
ξ(t) ∈ B(ϵ, x0) for all t ≥ T. ■

10.7.10 Terminology The function V in the statement of the preceding theorem is typically
called a Lyapunov function. It is not uncommon for this terminology to be used
imprecisely, in the sense that when one sees the expression “Lyapunov function,” it
is clear only from context whether one is in case (i) or (ii) of the preceding theorem.
Typically this is not to be thought of as confusing, as the context indeed makes this
clear. •
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10.7.11 Remark (Automatic implications of Theorem 10.7.9) We recall from Proposi-
tion 10.2.5 that uniform stability and stability are equivalent for autonomous or-
dinary differential equations, and similarly that uniform asymptotic stability and
asymptotic stability are equivalent. •

10.7.12 Theorem (Lyapunov’s Second Method for exponential stability of au-
tonomous ordinary differential equations) Let F be an autonomous ordinary differ-
ential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞ and F satisfies
Assumption 10.2.1. Then x0 is exponentially stable if there exists V: U → R with the
following properties:

(i) V is of class C1;
(ii) there exist C1, α1, r1 ∈ R>0 such that

C1∥x − x0∥
α1 ≤ V(x) ≤ C−1

1 ∥x − x0∥
α1

for all x ∈ B(r1, x0);
(iii) there exist C2, α2, r2 ∈ R>0 such that

LF0V(x) ≤ −C2∥x − x0∥
α2

for all x ∈ B(r2, x0).
Proof Let r, α ∈ R>0 be such that
1. C1∥x − x0∥

α
≤ V(x) ≤ C−1

1 ∥x − x0∥
α for all x ∈ B(2r, x0) and

2. −LF0V(x) ≥ C2∥x − x0∥
α for all x ∈ B(r, x0).

Let c ∈ R>0 be such that

c < inf{C1∥x − x0∥
α
| ∥x − x0∥ = r}.

We then let δ ∈ R>0 be such that, if x ∈ B(δ, x0), then C2∥x−x0∥ ≤ c. Let (t0, x) ∈ T×B(δ, x0)
and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x.

We then argue as in Lemmata 1 and 2 from the proof of Theorem 10.7.9 that ξ(t) ∈
B(r, x0) for t ≥ t0 and that ξ is defined for all t ∈ [t0,∞). Now compute, using
Lemma 10.7.8 and the definitions of C1, C2, and α,

d
dt

V(ξ(t)) = LFV(ξ(t)) ≤ −C2∥ξ(t) − x0∥
α
≤ −C1C2V(ξ(t)).

The following technical lemma is now required.
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1 Lemma Let F be an autonomous scalar ordinary differential equation with right-hand side

F̂ : T ×U→ R

(t, x) 7→ F̂0(x),

where U ⊆ R is open. For (t0,y0) ∈ T ×U, let ξ, η : T′ → U be of class C1 and satisfy

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = y0

and
η̇′(t) < F̂0(η(t)), η(t0) = y0.

Then η(t) < ξ(t) for t > t0.
Proof We have

η̇(t0) < F̂(y0) = ξ̇(t0).

Therefore, by continuity of the derivatives, there exists ϵ ∈ R>0 such that

η̇(t) < ξ̇(t), t ∈ [t0, t0 + ϵ].

Therefore, for t ∈ (t0, t0 + ϵ],

η(t) =
∫ t

t0

η̇(τ) dτ <
∫ t

t0

ξ̇(τ) dτ = ξ(t).

Now suppose that it does not hold that η(t) < ξ(t) for all t ≥ t0. Then let

T = inf{t ≥ t0 | η(t) ≥ ξ(t)} > t0 + ϵ.

By continuity, η(T) = ξ(T). Thus

η′(T) = η′(T) − F̂(η(T))︸            ︷︷            ︸
<0

+F̂(T, η(T))

< ξ′(t) − F̂(ξ(T))︸           ︷︷           ︸
=0

+F̂(ξ(T)) = ξ′(T).

On the other hand, for h ∈ R>0 (sufficiently small for the expression to be defined) we
have

η(T) − η(T − h)
h

>
ξ(T) − ξ(T − h)

h
,

and taking the limit as h → 0 gives η′(T) ≥ ξ′(T), contradicting our computation just
proceeding. ▼

By the lemma,
V(ξ(t)) ≤ V(ξ(t0))e−C1C2(t−t0)

for t ≥ t0. Now, again using the definition of C1 and α,

∥ξ(t) − x0∥ ≤

(
V(ξ(t))

C1

)1/α

≤

(
V(ξ(t0))e−C1C2(t−t0)

C1

)1/α

≤
∥x − x0∥

C2α
1

e−C1C2(t−t0)/α

for all t ≥ t0. Recalling that the preceding estimates are valid for any (t0, x) ∈ T×B(δ, x0),
we conclude exponential stability of x0. ■
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10.7.3 The Second Method for time-varying linear equations

The next two sections will be concerned with Lyapunov’s Second Method for
systems of linear homogeneous ordinary differential equations. In this section
we treat the time-varying case, and in the next we treat the time-invariant case.
While it is relatively easy to prove the theorems in this case using the general,
not for linear equations, results of Sections 10.7.1 and 10.7.2, we instead give self-
contained proofs that illustrate the special character of stability for linear differential
equations that we studied in Section 10.3.

In the study of Lyapunov’s Second Method for linear equations, one works with
Lyapunov functions that are especially adapted to the linear structure of the equa-
tions, namely the quadratic functions of Sections 10.6.4 and 10.6.5. In working
with such functions, the derivatives along solutions, called the “Lie derivative” in
Definitions 10.7.2 and 10.7.7, take a particular form that leads to the following
definition and associated following result.

10.7.13 Definition (Lyapunov pair for time-varying linear ordinary differential equa-
tions) Let F be a system of linear homogeneous ordinary differential equations in
an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A : T → L(V; V). Suppose that V has an inner product ⟨·, ·⟩. A Lyapunov pair
for F is a pair (P,Q) where

(i) P,Q : T→ L(V; V) are such that P is of class C1, Q is continuous, and P(t) and
Q(t) are symmetric, and

(ii) Ṗ(t) + P(t) ◦ A(t) + AT(t) ◦ P(t) = −Q(t) for all t ∈ T. •

Note that, with the notion of a Lyapunov pair, one can think of (1) P as being
given, and part (ii) of the definition prescribing Q or (2) Q as being given, in which
case part (ii) prescribing a linear differential equation for P. Both ways of thinking
about this will be useful.

At first encounter, such a definition seems to come from nowhere. However, the
motivation for it is straightforward, as the following lemma shows, and its proof
makes clear.

10.7.14 Lemma (Derivative of quadratic function along solutions of a linear ordinary
differential equation) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)
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for A: T→ L(V; V). Suppose that V has an inner product ⟨·, ·⟩. Let P: T→ L(V; V) be of
class C1 and such that P(t) is symmetric for every t ∈ T and let fP be the corresponding time-
varying quadratic function as in Definition 10.6.14. Then, for any solution ξ : T→ V for
F, we have

d
dt

fP(t, ξ(t)) = −fQ(t, ξ(t)),

where (P,Q) is a Lyapunov pair for F.
Proof We shall represent solutions using the state transition map as in Section 5.2.1.2.
Thus, if (t0, x) ∈ T × V, the solution to the initial value problem

ξ̇(t) = A(t)(ξ(t)), ξ(t0) = x,

is ξ(t) = ΦA(t, t0)(x). Now we directly compute

d
dt

fP(t,ΦA(t, t0)(x)) =
d
dt
⟨P(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩

= ⟨Ṗ(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩ + ⟨P(t) ◦ d
dtΦA(t, t0)(x),ΦA(t, t0)(x)⟩

+ ⟨P(t) ◦ΦA(t, x0)(x), d
dtΦA(t, t0)(x)⟩

= ⟨Ṗ(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩ + ⟨P(t) ◦ A(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩
+ ⟨P(t) ◦ΦA(t, x0)(x)),A(t) ◦ΦA(t, t0)(x)⟩

= − ⟨Q(t) ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩,

where (P,Q) is a Lyapunov pair, i.e.,

Q(t) = −Ṗ(t) − P(t) ◦ A(t) − AT(t) ◦ P(t), t ∈ T. ■

The lemma allows us to provide the following connection to the Lie derivative
characterisations of Lemmata 10.7.3 and 10.7.8.

10.7.15 Corollary (Lie derivative of quadratic function along a linear ordinary differ-
ential equation) Let F be a system of linear homogeneous ordinary differential equations
in an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T → L(V; V). Suppose that V has an inner product ⟨·, ·⟩. Let P: T → L(V; V) be
of class C1 and such that P(t) is symmetric for every t ∈ T and let fP be the corresponding
time-varying quadratic function as in Definition 10.6.14. Then,

LFfP(t, x) = −fQ(t, x), (t, x) ∈ T × V.
Proof From the proof of the preceding lemma we have

d
dt

fP(t,ΦA(t, t0)(x)) = − fQ(t,ΦA(t, t0)(x)).

Evaluating at t = t0 gives the result. ■

We can now state and prove our main result concerning Lyapunov’s Second
Method for time-varying linear ordinary differential equations.
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10.7.16 Theorem (Lyapunov’s Second Method for linear time-varying ordinary differ-
ential equations) Let F be a system of linear homogeneous ordinary differential equations
in an n-dimensional R-vector space V and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T→ L(V; V). Suppose that A is continuous and that supT = ∞. Suppose that V
has an inner product ⟨·, ·⟩. Then the following statements hold.

(i) The equation F is stable if there exists P,Q: T→ L(V; V) with the following proper-
ties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) Q is positive-semidefinite.

(ii) The equation F is uniformly stable if there exists P,Q: T → L(V; V) with the
following properties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) P is decrescent;
(f) Q is positive-semidefinite.

(iii) The equation F is asymptotically stable if there exists P,Q: T → L(V; V) with the
following properties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) Q is positive-definite.

(iv) The equation F is uniformly asymptotically stable if there exists P,Q: T→ L(V; V)
with the following properties:

(a) P is of class C1 and Q is continuous;
(b) P(t) and Q(t) are symmetric for every t ∈ T;
(c) (P,Q) is a Lyapunov pair for F;
(d) P is positive-definite;
(e) P is decrescent;
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(f) Q is positive-definite.

We shall give two proofs of Theorem 10.7.16, one assuming Theorem 10.7.4
and the other an independent proof. The independent proof is interesting in and
of itself because it makes use of methods particular to linear equations.

Proof of Theorem 10.7.16, assuming Theorem 10.7.4 If we collect together the conclu-
sions of Lemma 10.6.16 and Corollary 10.7.15, we see that the hypotheses of parts (i)–
(iv) of Theorem 10.7.16 imply those of the corresponding parts of Theorem 10.7.4, and
thus the conclusions also correspond. ■

Independent proof of Theorem 10.7.16 (i) Let t0 ∈ T. Since P is positive-definite, by defi-
nition and by Lemma 10.6.13, there exists C1 ∈ R>0 such that

C1∥x∥2 ≤ fP(t, x), t ∈ T, x ∈ V.

By Lemma 10.6.13, there exists C2 ∈ R>0 such that

fP(t0, x) ≤ C1∥x∥2, x ∈ V.

Since Q is positive-semidefinite, by Lemma 10.7.14 we have

d
dt

fP(t,ΦA(t, t0)(x)) ≤ 0

for all x ∈ V and t ≥ t0. Therefore, we have

C1∥ΦA(t, t0)(x)∥2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2∥x∥2

for every x ∈ V and t ≥ t0. Thus

∥ΦA(t, t0)(x)∥ ≤
√

C2/C1∥x∥,

which gives stability.
(ii) Here, since P is positive-definite and decrescent, by definition and by

Lemma 10.6.13, we have C1,C2 ∈ R>0 such that

C1∥x∥2 ≤ fP(t, x) ≤ C2∥x∥2, t ∈ T.

As in the proof of part (i),
d
dt

fP(t,ΦA(t, t0)(x)) ≤ 0

for all (t0, x) ∈ T × V and t ≥ t0. Therefore,

C1∥ΦA(t, t0)(x)∥2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2∥x∥2

for all (t0, x) ∈ T × V and t ≥ t0. Thus,

∥ΦA(t, t0)(x)∥ ≤
√

C2/C1∥x∥

for every (t0, x) ∈ T × V and t ≥ t0. This gives uniform stability, as desired.
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(iii) Let t0 ∈ T. Here we have stability from part (i). From that part of the proof we
also have C1,C2 ∈ R>0 (with C2 possibly depending on t0) such that

C1∥ΦA(t, t0)(x)∥2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2∥x∥2

for every x ∈ V and t ≥ t0. Since Q is positive-definite, by definition and by
Lemma 10.6.13, there exists C3 ∈ R>0 such that

C3∥x∥2 ≤ fQ(t, x), (t, x) ∈ T × V.

Thus, by Lemma 10.7.14, we have

d
dt

fP(t,ΦA(t, t0)(x)) = − fQ(t,ΦA(t, t0)) ≤ −C3∥ΦA(t, t0)(x)∥2.

for all x ∈ V and t ≥ t0. Therefore, there exists γ ∈ R≥0 such that

lim
t→∞

fP(t,ΦA(t, t0)(x)) = γ.

We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. We then have

fP(t,ΦA(t, t0)(x)) = fP(t0, x) +
∫ t

t0

d
dτ

fP(τ,ΦA(τ, t0)(x)) dτ

= fP(t0, x) −
∫ t

t0

fQ(τ,ΦA(τ, t0)) dτ

≤ fP(t0, x) − C3

∫ t

t0

∥ΦA(τ, t0)(x)∥2 dτ

≤ fP(t0, x) −
C3

C1

∫ t

t0

fP(τ,ΦA(τ, t0)(x)) dτ

≤ fP(t0, x) −
C3

C1
γ(t − t0).

This implies that limt→∞ fP(t,ΦA(t, t0)(x)) = −∞. This contradiction leads us to con-
clude that γ = 0. Finally, we then have

lim
t→∞
∥ΦA(t, t0)(x)∥2 ≤ lim

t→∞
C−1

1 fP(t,ΦA(t, t0)(x)) = 0,

which gives asymptotic stability.
(iv) Here we have uniform stability from part (i). From that part of the proof we

also have C1,C2 ∈ R>0 such that

C1∥ΦA(t, t0)(x)∥2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2∥x∥2

for every (t0, x) ∈ T × V and t ≥ t0. Since Q is positive-definite by definition and by
Lemma 10.6.13, there exists C3 ∈ R>0 such that

C3∥x∥2 ≤ fQ(t, x), (t, x) ∈ T × V.
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Thus, by Lemma 10.7.14, we have

d
dt

fP(t,ΦA(t, t0)(x)) = − fQ(t,ΦA(t, t0)) ≤ −C3∥ΦA(t, t0)(x)∥2.

for all (t0, x) ∈ T × V and t ≥ t0. Therefore, there exists γ ∈ R≥0 such that

lim
t→∞

fP(t,ΦA(t, t0)(x)) = γ.

We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. We then have

fP(t,ΦA(t, t0)(x)) = fP(t0, x) +
∫ t

t0

d
dτ

fP(τ,ΦA(τ, t0)(x)) dτ

= fP(t0, x) −
∫ t

t0

fQ(τ,ΦA(τ, t0)) dτ

≤ fP(t0, x) − C3

∫ t

t0

∥ΦA(τ, t0)(x)∥2 dτ

≤ fP(t0, x) −
C3

C1

∫ t

t0

fP(τ,ΦA(τ, t0)(x)) dτ

≤ fP(t0, x) −
C3

C1
γ(t − t0).

This implies that limt→∞ fP(t,ΦA(t, t0)(x)) = −∞. This contradiction leads us to con-
clude that γ = 0. Finally, we then have

lim
t→∞
∥ΦA(t, t0)(x)∥2 ≤ lim

t→∞
C−1

1 fP(t,ΦA(t, t0)(x)) = 0,

which gives uniform asymptotic stability, since C1, C2, and C3 are independent of t0.■

10.7.17 Remark (Automatic implications of Theorem 10.7.16) We recall from Theo-
rem 10.2.9 that the conclusions of stability, uniform stability, asymptotic stability,
and uniform asymptotic stability are actually of the global sort given in Defini-
tion 10.2.7. Moreover, from Proposition 10.3.1 we see that uniform stability and
stability are equivalent for linear homogeneous equations with constant coeffi-
cients, and similarly that uniform asymptotic stability and asymptotic stability are
equivalent. •

10.7.4 The Second Method for linear equations with constant coefficients

The final setting in which we consider conditions for stability using Lyapunov’s
Second Method is that for linear homogeneous ordinary differential equations with
constant coefficients.

As in the time-varying setting of the preceding section, in this section we work
with Lyapunov functions that are especially adapted to the linear structure of the
equations, namely the quadratic functions of Sections 10.6.4. In working with
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such functions, the derivatives along solutions, called the “Lie derivative” in Defi-
nitions 10.7.2 and 10.7.7, take a particular form that leads to the following defini-
tion and associated following result. What we have, of course, is a specialisation
Definition 10.7.13.

10.7.18 Definition (Lyapunov pair for linear ordinary differential equations with con-
stant coefficients) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensionalR-vector space V with constant coefficients and with
right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that V has an inner product ⟨·, ·⟩. A Lyapunov pair for F
is a pair (P,Q) where

(i) P,Q ∈ L(V; V) are symmetric, and
(ii) P ◦ A + AT

◦ P = −Q. •

As in the time-varying case, one can think of (1) P as being given, and part (ii) of
the definition prescribing Q or (2) Q as being given, and (ii) of the definition giving
a linear algebraic equation for P. Both ways of thinking about this will be useful.

Let us indicate the significance of the notion of a Lyapunov pair in this context.

10.7.19 Lemma (Derivative of quadratic function along solutions of a linear ordinary
differential equation with constant coefficients) Let F be a system of linear homoge-
neous ordinary differential equations in an n-dimensional R-vector space V with constant
coefficients and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that V has an inner product ⟨·, ·⟩. Let P ∈ L(V; V) be symmetric
and let fP be the corresponding quadratic function as in Definition 10.6.10. Then, for any
solution ξ : T→ V for F, we have

d
dt

fP(ξ(t)) = −fQ(ξ(t)),

where (P,Q) is a Lyapunov pair for F.
Proof We shall represent solutions using the state transition map as in Section 5.2.1.2.
Thus, if (t0, x) ∈ T × V, the solution to the initial value problem

ξ̇(t) = A(ξ(t)), ξ(t0) = x,
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is ξ(t) = ΦA(t, t0)(x). Now we directly compute

d
dt

fP(ΦA(t, t0)(x)) =
d
dt
⟨P ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩

= ⟨P ◦ d
dtΦA(t, t0)(x),ΦA(t, t0)(x)⟩

+ ⟨P ◦ΦA(t, x0)(x), d
dtΦA(t, t0)(x)⟩

= ⟨P ◦ A ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩
+ ⟨P ◦ΦA(t, x0)(x)),A ◦ΦA(t, t0)(x)⟩

= − ⟨Q ◦ΦA(t, t0)(x),ΦA(t, t0)(x)⟩,

where (P,Q) is a Lyapunov pair, i.e.,

Q = −P ◦ A − AT
◦ P. ■

The lemma allows us to provide the following connection to the Lie derivative
characterisation Lemma 10.7.8.

10.7.20 Corollary (Lie derivative of quadratic function along a linear ordinary differ-
ential equation with constant coefficients) Let F be a system of linear homogeneous
ordinary differential equations in an n-dimensional R-vector space V with constant coeffi-
cients and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that V has an inner product ⟨·, ·⟩. Let P ∈ L(V; V) be symmetric
and let fP be the corresponding quadratic function as in Definition 10.6.10. Then,

LFfP(x) = −fQ(x), x ∈ V.

Proof From the proof of the preceding lemma we have

d
dt

fP(ΦA(t, t0)(x)) = − fQ(ΦA(t, t0)(x)).

Evaluating at t = t0 gives the result. ■

We may now state our first result.

10.7.21 Theorem (Lyapunov’s Second Method for linear ordinary differential equa-
tions with constant coefficients) Let F be a system of linear homogeneous ordinary
differential equations in an n-dimensional R-vector space V with constant coefficients and
with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product ⟨·, ·⟩.
Then the following statements hold.
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(i) The equation F is stable if there exists P,Q ∈ L(V; V) with the following properties:

(a) P and Q are symmetric;
(b) (P,Q) is a Lyapunov pair for F;
(c) P is positive-definite;
(d) Q is positive-semidefinite.

(ii) The equation F is asymptotically stable if there exists P,Q ∈ L(V; V) with the
following properties:

(a) P and Q are symmetric;
(b) (P,Q) is a Lyapunov pair for F;
(c) P is positive-definite;
(d) Q is positive-definite.

We shall give two proofs of Theorem 10.7.21, one assuming Theorem 10.7.9
and the other an independent proof. The independent proof is interesting in and
of itself because it makes use of methods particular to linear equations.

Proof of Theorem 10.7.21, assuming Theorem 10.7.9 If we collect together the conclu-
sions of Lemma 10.6.12 and Corollary 10.7.20, we see that the hypotheses of parts (i)
and (ii) of Theorem 10.7.21 imply those of the corresponding parts of Theorem 10.7.9,
and thus the conclusions also correspond. ■

Independent proof of Theorem 10.7.21 (i) Let t0 ∈ T. Since P is positive-definite, by
Lemma 10.6.13, there exists C1,C2 ∈ R>0 such that

C1∥x∥2 ≤ fP(x) ≤ C2∥x∥2, x ∈ V.

Since Q is positive-semidefinite, by Lemma 10.7.19 we have

d
dt

fP(ΦA(t, t0)(x)) ≤ 0

for all x ∈ V and t ≥ t0. Therefore, we have

C1∥ΦA(t, t0)(x)∥2 ≤ fP(t,ΦA(t, t0)(x)) ≤ fP(t0, x) ≤ C2∥x∥2

for every x ∈ V and t ≥ t0. Thus

∥ΦA(t, t0)(x)∥ ≤
√

C2/C1∥x∥,

which gives stability.
(ii) Let t0 ∈ T. Here we have stability from part (i). From that part of the proof we

also have C1,C2 ∈ R>0 such that

C1∥ΦA(t, t0)(x)∥2 ≤ fP(ΦA(t, t0)(x)) ≤ fP(x) ≤ C2∥x∥2

for every x ∈ V and t ≥ t0. Since Q is positive-definite, by Lemma 10.6.13, there exists
C3 ∈ R>0 such that

C3∥x∥2 ≤ fQ(x), x ∈ V.
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Thus, by Lemma 10.7.19, we have

d
dt

fP(ΦA(t, t0)(x)) = − fQ(ΦA(t, t0)) ≤ −C3∥ΦA(t, t0)(x)∥2.

for all x ∈ V and t ≥ t0. Therefore, there exists γ ∈ R≥0 such that

lim
t→∞

fP(ΦA(t, t0)(x)) = γ.

We claim that γ = 0. Suppose otherwise, and that γ ∈ R>0. We then have

fP(ΦA(t, t0)(x)) = fP(x) +
∫ t

t0

d
dτ

fP(ΦA(τ, t0)(x)) dτ

= fP(x) −
∫ t

t0

fQ(ΦA(τ, t0)) dτ

≤ fP(x) − C3

∫ t

t0

∥ΦA(τ, t0)(x)∥2 dτ

≤ fP(x) −
C3

C1

∫ t

t0

fP(ΦA(τ, t0)(x)) dτ

≤ fP(x) −
C3

C1
γ(t − t0).

This implies that limt→∞ fP(ΦA(t, t0)(x)) = −∞. This contradiction leads us to conclude
that γ = 0. Finally, we then have

lim
t→∞
∥ΦA(t, t0)(x)∥2 ≤ lim

t→∞
C−1

1 fP(ΦA(t, t0)(x)) = 0,

which gives asymptotic stability. ■

10.7.22 Remark (Automatic implications of Theorem 10.7.21) We recall from Theo-
rem 10.2.9 that the conclusions of stability, uniform stability, asymptotic stability,
and uniform asymptotic stability are actually of the global sort given in Defini-
tion 10.2.7. •

10.7.23 Example (Example 10.3.5 cont’d) We again look at the linear homogeneous
ordinary differential equation F on V = R2 defined by the 2 × 2 matrix

A =
[

0 1
−b −a

]
.

The inner product we use is the standard one:

⟨(u1,u2), (v1, v2)⟩R2 = u1v1 + u2v2.

In this case, the induced norm is the standard norm for R2. Note that, if L ∈
L(R2;R2), then the transpose with respect to the standard inner product is just the
usual matrix transpose.

For this example, there are various cases to consider, and we look at them
separately in view of Theorem 10.7.21. In the following discussion, the reader
should compare the conclusions with those of Example 10.3.5.
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1. a = 0 and b = 0: In this case, we know the system is unstable. Thus we
will certainly not be able to find a Lyapunov pair (P,Q) for F with P positive-
definite and Q positive-semidefinite. Note, however, that without knowing
more, just the lack of existence of such a (P,Q) does not allow us to conclude
anything about stability in this case. We shall have more to say about this case
in Example 10.9.3–1.

2. a = 0 and b > 0: The matrices

P =
[
b 0
0 1

]
, Q =

[
0 0
0 0

]
have the property that (P,Q) is a Lyapunov pair for F. Since P is positive-definite
and Q is positive-semidefinite, stability follows from part (i) of Theorem 10.7.21.
Note that asymptotic stability cannot be concluded from this P and Q using
part (ii) (and indeed asymptotic stability does not hold in this case).

3. a = 0 and b < 0: We shall consider this case in Example 10.9.3–2, where we will
be able to use Lyapunov methods to conclude instability.

4. a > 0 and b = 0: Here we take

P =
[
a2 a
a 2

]
, Q =

[
0 0
0 2a

]
and verify that (P,Q) is a Lyapunov pair for F. The eigenvalues of P are
{

1
2 (a2 + 2 ±

√

a4 + 4)}. One may verify that a2 + 2 >
√

a4 + 4, thus P is positive-
definite. Since Q is positive-semidefinite, we conclude stability of F from part (i)
of Theorem 10.7.21. However, we cannot conclude asymptotic stability from
part (ii); indeed, asymptotic stability does not hold.

5. a > 0 and b > 0: Here we take

P =
[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
having the property that (P,Q) is a Lyapunov pair for F. Since P is positive-
definite and Q is positive-semidefinite, from part (i) of Theorem 10.7.21 we
can conclude stability for F. However, we cannot conclude asymptotic stability
using part (ii). However, we do have asymptotic stability in this case. We can
rectify this in one of two ways.

(a) By choosing a different P and Q with both positive-semidefinite, we can
ensure asymptotic stability by part (ii) of Theorem 10.7.21. Theorem 10.9.2
guarantees that this is possible.

(b) By resorting to an invariance principle, we can rescue things for this partic-
ular P and Q. This is explained in Theorem 10.8.8, and in Example 10.8.9
for this example particularly.
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6. a > 0 and b < 0: We shall consider this case in Example 10.9.3–3, where we will
be able to use Lyapunov methods to conclude instability.

7. a < 0 and b = 0: This case is much like case 1 in that the system is unstable;
thus we cannot find a Lyapunov pair (P,Q) for F with P positive-definite and
Q positive-semidefinite. In Example 10.9.3–4 we shall have more to say about
this case.

8. a < 0 and b > 0: We shall consider this case in Example 10.9.3–5, where we will
be able to use Lyapunov methods to conclude instability.

9. a < 0 and b < 0: We shall consider this case in Example 10.9.3–6, where we will
be able to use Lyapunov methods to conclude instability. •

The reader can see from this example that, even for a simple linear ordinary dif-
ferential equation with constant coefficients, the sufficient conditions of Lyapunov’s
Second Method leave a great deal of room for improvement. In the subsequent
sections we shall address this somewhat, although it is still the case that the method
is one that is difficult to apply conclusively.

Notes and references

[Liapunov 1893]
[Bacciotti and Rosier 2005] for Lyapunov’s Second Method.
[Kellett 2014] for comparison functions.
The original reference for this work is [LaSalle 1968].
[Barbashin and Krasovskiı̆ 1952]
Theorem 10.9.1 is due to Chetaev.

Exercises

10.7.1 Determine whether the following functions are or are not of class K:
(a) [0,∞) ∋ x 7→ tan−1(x) ∈ R≥0;
(b) [0, b) ∋ x 7→ xα ∈ R≥0 for b ∈ R>0 ∪ {∞} and α ∈ R>0;
(c) [0, b) ∋ x 7→ min{ϕ1(x), ϕ2(x)} ∈ R≥0 for b ∈ R>0∪{∞} andϕ1, ϕ2 : [0, a)→
R≥0 of class K;

(d) [0, π) ∋ x 7→ cos(x − π
2 ) + 1 ∈ R≥0;

(e) [0, 2π) ∋ x 7→ cos(x − π
2 ) + 1 ∈ R≥0;

(f) [0, b) ∋ x 7→

ln(x), x > 0,
0, x = 0

for b ∈ R>0 ∪ {∞}.

10.7.2 Prove Lemma 10.6.2.
10.7.3 Determine whether the following functions are or are not of class L:

(a) [a,∞) ∋ y 7→ e−σy
∈ R≥0 for a ∈ R and σ ∈ R>0;

(b) [a,∞) ∋ y 7→ yα for a ∈ R and α 1;
(c) (−π2 ,

π
2 ) ∋ y 7→ tan−1(y);
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(d) [a,∞) ∋ y 7→ − ln(y) for a ∈ R.
10.7.4 Determine whether the following functions are or are not of class KL:

(a) [0, b) × [a,∞) ∋ (x, y) 7→ ϕ(x)ψ(y), where ϕ is one of the functions from
Exercise 10.7.1 and ψ is one of the functions from Exercise 10.7.3;

(b) [0, b) × [0,∞) ∋ (x, y) 7→
x

αxy + 1
for b ∈ R>0 ∪ {∞} and α ∈ R>0;

(c) [0, b) × [0,∞) ∋ (x, y) 7→
x√

2x2y + 1
.

10.7.5 Let F be the system of linear ordinary differential equations in R2 defined
by the 2 × 2-matrix

A =
[
0 1
0 a

]
,

for a ≥ 0. Show that if (P,Q) is a Lyapunov pair for F for which Q is
positive-semidefinite, then (A,Q) is not observable.
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Section 10.8

Invariance principles

We shall see in Section 10.10 that the sufficient conditions for asymptotic stabil-
ity of some of the flavours of Lyapunov’s Second Method are actually also neces-
sary. However, in practice, one often produces a locally positive-definite function
whose Lie derivative is merely negative-semidefinite, not negative-definite as one
needs for asymptotic stability. In order to deal with this commonly encountered
situation, we provide in this section a strategy that falls under a general umbrella
of what are know of as “invariance principles.” We prove two associated theorems,
one for autonomous, not necessarily linear, ordinary differential equations and one
for linear ordinary differential equations with constant coefficients.

10.8.1 Invariant sets and limit sets

In order to prove our result for general autonomous ordinary differential equa-
tions, we need a collection of preliminary definitions and results.

10.8.1 Definition (Invariant set) Let F be an ordinary differential equation with right-
hand side

F̂ : T ×U→ Rn.

A subset A ⊆ U is:
(i) F-invariant if, for all (t0, x) ∈ T×A, the solution ξ : T′ → U to the initial value

problem
ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ξ(t) ∈ A for every t ∈ T′;
(ii) positively F-invariant if, for all (t0, x) ∈ T × A, the solution ξ : T′ → U to the

initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies ξ(t) ∈ A for every t ≥ t0. •

10.8.2 Definition (Positive limit set) Let F be an autonomous ordinary differential equa-
tion with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞ and that 0 ∈ T. Let x0 ∈ U and let ξ : T′ → U be the
solution to the initial value problem

ξ̇ = F̂0(ξ(t)), ξ(0) = x0,
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and suppose that supT′ = ∞.
(i) A point x ∈ U is a positive limit point of x0 if there exists a sequence (t j) j∈Z>0 ⊆

R such that
(a) t j < t j+1, j ∈ Z>0,
(b) lim j→∞ t j = ∞, and
(c) lim j→∞ ξ(t j) = x.

(ii) The positive limit set of x0, denoted by Ω(F, x0), is the set of positive limit
points of x0. •

Positive limit sets have many interesting properties.

10.8.3 Lemma (Properties of the positive limit set) Let F be an autonomous ordinary
differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Let A ⊆ U be compact and positively F-invariant. If x0 ∈ A, then Ω(F, x0) is a nonempty,
compact, and positively F-invariant subset of A. Furthermore, if ξ : T′ → U is the solution
to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x0,

then
lim
t→∞

dΩ(F,x0)(ξ(t)) = 0.

Proof Let (t j) j∈Z>0 ⊆ R>0 satisfy t j < t j+1, j ∈ Z>0, and lim j→∞ t j = ∞. The sequence
(ξ(t j)) j∈Z>0 ⊆ A has a convergence subsequence by the Bolzano–Weierstrass Theorem. ref

By definition, the limit x will be inΩ(F, x0). Since A is closed and positively-invariant,
x ∈ A. Thus Ω(F, x0) is a nonempty subset of A.

If x ∈ A\Ω(F, x0), then there exists ϵ ∈ R>0 and T ∈ R>0 such that B(ϵ, x)∩{ξ(t) | t ≥
T} = ∅. Therefore, A\Ω(F, x0) is open, and thusΩ(F, x0) is closed and so compact since
A is compact. ref

Let x ∈ Ω(F, x0) and let t ∈ R≥0. There then exists a sequence (t j) j∈Z>0 such that

lim
j→∞

ξ(t j) = x.

Let η j, j ∈ Z>0, be the solution to the initial value problem

η̇ j(t) = F̂0(η j(t)), η(0) = ξ(t j).

Then
lim
j→∞

ξ(t + t j) = lim
j→∞

η j(t) = ξ(t),

by continuity of solutions with respect to initial conditions. This shows that ξ(t) ∈
Ω(F, x0), and so that Ω(F, x) is positively X-invariant.

Lastly, suppose that there exists ϵ ∈ R>0 and a sequence (t j) j∈Z>0 in R>0 such that
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1. t j < t j+1, j ∈ Z>0,
2. lim j→∞ t j = ∞, and
3. dΩ(F,x0)(ξ(t j)) ≥ ϵ, j ∈ Z>0.
By the Bolzano–Weierstrass Theorem, since A is compact there exists a convergent
subsequence (t jk)k∈Z>0 such that (ξ(t jk))k∈Z>0 converges to, say x ∈ A. Note that x ∈
Ω(F, x0). However, we also have dΩ(F,x0)(x) ≥ ϵ. This contradiction means that we
must have

lim
t→∞

dΩ(F,x0)(ξ(t)) = 0,

as claimed. ■

10.8.2 Invariance principle for autonomous equations

We are now ready to present the LaSalle Invariance Principle on the asymptotic
behavior of the integral curves of vector fields.

10.8.4 Theorem (LaSalle Invariance Principle) Let F be an autonomous ordinary differential
equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞ and that 0 ∈ T. Let A ⊆ U be compact and positively F-invariant.
Let V: U → R be continuously differentiable and satisfy LF0V(x) ≤ 0 for all x ∈ A, and
let B be the largest positively F-invariant set contained in {x ∈ A | LF0V(x) = 0}. Then
the following statements hold:

(i) for every x ∈ A, the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x,

satisfies limt→∞ dB(ξ(t)) = 0;
(ii) if B consists of a finite number of isolated points, then, for every x ∈ A, there exists

y ∈ B such that the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x,

satisfies limt→∞ ξ(t) = y.
Proof (i) The function V|A is bounded from below, because it is continuous on the
compact set A. For x ∈ A, let ξ be the solution to the initial value problemref

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x.

The function t 7→ V ◦ ξ(t) is nonincreasing and bounded from below. Therefore,
limt→∞V ◦ ξ(t) exists and is equal to, say, α ∈ R. Now, let y ∈ Ω(F, x) and let (t j) j∈Z>0

satisfy lim j→∞ ξ(tk) = y. By continuity of V, α = lim j→∞V ◦ ξ(tk) = V(y). This proves
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that V(y) = α for all y ∈ Ω(F, x). BecauseΩ(F, x) is positively F-invariant, if y ∈ Ω(F, x)
and if η is the solution to the initial value problem

η̇(t) = F̂0(η(t)), η(0) = y,

then η(t) ∈ Ω(F, x) for all t ∈ R>0. Therefore, V ◦ η(t) = α for all t ∈ R>0 and, therefore,
by Lemma 10.7.8, LF0V(y) = 0. Now, because LF0V(y) = 0 for all y ∈ Ω(F, x), we
know that

Ω(F, x) ⊆ {x ∈ A | LF0V(x) = 0}.

This implies that Ω(F, x) ⊆ B, and this proves this part of the theorem.
(ii) Let x ∈ A and let ξ be the solution to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(0) = x.

Since B = {y1, . . . , yk} is comprised of isolated points, there exists ϵ ∈ R>0 such that

B(2ϵ, y j1) ∩ B(2ϵ, y j2) = ∅

for all j1, j2 ∈ {1, . . . , k}. By assumption and by part (i), there exists T ∈ R>0 such that

ξ(t) ∈ ∪k
j=1B(ϵ, y j), t ≥ T.

Since ξ is continuous, ξ([T,∞)) is connected by . This, however, implies that there must ref

exist y ∈ B such that ξ([T,∞)) ⊆ B(ϵ, y), giving this part of the theorem. ■

The following more or less immediate corollary provides a common situation
where the LaSalle Invariance Principle is used.

10.8.5 Corollary (Barbashin–Krasovskiı̆ criterion) Let F be an autonomous ordinary dif-
ferential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞ and that 0 ∈ T. Let x0 ∈ U be an equilibrium point for F.
Assume tha there exists a function V: U→ R with the following properties:

(i) V is of class C1;
(ii) V ∈ LPD(x0);
(iii) −LF0V ∈ LPSD(x0).

Let C = {x ∈ U | LF0V(x) = 0}. If there exists r ∈ R>0 such that the only positively
F-invariant subset of C ∩ B(r, x0) is {x0}, then x0 is asymptotically stable.

Proof As in the proof of Theorem 10.7.9(i), the fact that V ∈ LPD(x0) ensures that there
is a closed subset of some ball about x0 that is F-positively invariant. The corollary
then follows from Theorem 10.8.4. ■

10.8.3 Invariance principle for linear equations with constant coefficients

Next we turn to an invariance principle specifically adapted to linear ordinary
differential equations with constant coefficients. Unsurprisingly, the construction is
linear algebraic in nature. The key to the construction is the following definition.
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10.8.6 Definition (Observability operator, observable pair) Let V and W be finite-
dimensional R-vector spaces, and let A ∈ L(V; V) and C ∈ L(V; W).

(i) The observability operator for the pair (A,C) is the linear map

O(A,C) : V→ UdimR(V)

v 7→ (C(v),C ◦ A(v), . . . ,CdimR(V)−1
◦ A(v)).

(ii) The pair (A,C) is observable if rank(O(A,C)) = dimR(V). •

This definition, while clear, does not capture the essence of the attribute of
observability. The following result goes towards clarifying this.

10.8.7 Lemma (Characterisation of observability) Let V and W be finite-dimensional R-
vector spaces, and let A ∈ L(V; V) and C ∈ L(V; W). Let T ⊆ R be a time-domain for
which 0 ∈ T and int(T) , ∅. Then (A,C) is observable if and only if, given x1, x2 ∈ V
with ξ1, ξ2 : T→ V the solutions to the initial value problems

ξ̇a(t) = A(ξa(t)), ξa(0) = xa, a ∈ {1, 2},

we have C ◦ ξ1 = C ◦ ξ2 if and only if x1 = x2.
Moreover, ker(O(A,C)) is the largest A-invariant subspace contained in ker(C).
Proof Let n = dimR(V).

First suppose that (A,C) is observable and that C ◦ξ1 = C ◦ξ2. Then, differentiating
successively with respect to t,

d j(C ◦ ξa)
dt j (0) = C ◦ A j(xa), j ∈ Z≥0, a ∈ {1, 2}.

Thus we have
C ◦ A j(x1) = C ◦ A j(x2), j ∈ Z≥0.

Thus x1 − x2 ∈ ker(O(A,C)), and so x1 = x2 since O(A,C) is observable.
Next suppose that (A,C) is not observable, and so O(A,C) is not injective. Thus

there exists a nonzero x0 ∈ ker(O(A,C)), meaning that C ◦A j(x0) = 0, j ∈ {0, 1, . . . ,n−1}.
By the Cayley–Hamilton Theorem, this implies that C◦A j(x0) = 0 for j ∈ Z≥0. Therefore,
for any t ≥ 0

∞∑
j=0

C ◦ A j

j!
(x0) = C ◦ eAt(x0) = 0.

Therefore, taking x1 = x0 and x2 = 0, C ◦ ξ1 = C ◦ ξ2 while x1 , x2.
Now we prove the final assertion of the lemma. First let us show that ker(O(A,C)) ⊆

ker(C). If x ∈ ker(O(A,C)), then C ◦ A j(x) = 0 for j ∈ {0, 1, . . . ,n − 1}. This holds in
particular for j = 0, giving the desired conclusion in this case.

Next we show that the kernel of O(A,C) is A-invariant. Let x ∈ ker(O(A,C)) and
compute

O(A,C) ◦ A(x) = (C ◦ A(x), . . . ,C ◦ An(x)).
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Since x ∈ ker(O(A,C)), we have

C ◦ A(x) = 0, . . . ,C ◦ An−1(x) = 0.

Also, by the Cayley–Hamilton Theorem, C ◦ An(x) = 0. This shows that

O(A, c) ◦ A(x) = 0,

or that A(x) ∈ ker(O(A,C)).
Finally, we show that, if S is an A-invariant subspace contained in ker(C), then S is

a subspace of ker(O(A,C)). Given such an S and x ∈ S, C(x) = 0. Since S is A-invariant,
A(x) ∈ V, and since S ⊆ ker(C), C ◦ A(x) = 0. Proceeding in this way we see that

C ◦ A2(x) = · · · = C ◦ An−1(x) = 0.

But this means exactly that x is in ker(O(A,C)). ■

The idea of observability is this. The linear map C we view as providing us
with “measurements” in W of the states in V. The pair (A,C) is observable if we can
deduce the state behaviour of the system merely by observing the measurements
via C.

With this brief discussion of observability, we can now state a version of Theo-
rem 10.8.4 adapted specially for linear differential equations.

10.8.8 Theorem (Invariance principle for linear ordinary differential equations with
constant coefficients) Let F be a system of linear homogeneous ordinary differential
equations in an n-dimensional R-vector space V with constant coefficients and with right-
hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product ⟨·, ·⟩.
Then F is asymptotically stable if there exists P,Q ∈ L(V; V) with the following properties:

(i) P and Q are symmetric;
(ii) (P,Q) is a Lyapunov pair for F;
(iii) P is positive-definite;
(iv) Q is positive-semidefinite;
(v) (A,Q) is observable.

We shall offer two proofs of the preceding theorem, one assuming the more
general Theorem 10.8.4 and the other an independent proof.

Proof of Theorem 10.8.8, assuming Theorem 10.8.4 Under the hypotheses of Theo-
rem 10.8.8, the function V = fP satisfies the hypotheses of Corollary 10.8.5. The
subset C from the statement of Corollary 10.8.5 is then exactly the subspace ker(Q).
Since (A,Q) is observable, by Lemma 10.8.7 {0} is the largest A-invariant subspace of
ker(Q). Since any invariant subset is contained in an invariant subspace—namely the
subspace generated by the subset—it follows that the only F-invariant subset of C is {0}.
Thus Theorem 10.8.8 follows from Theorem 10.8.4, specifically its Corollary 10.8.5.■
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Independent proof of Theorem 10.8.8 We suppose that P is positive-definite, Q is positive-
semidefinite, (A,Q) is observable, and that F is not asymptotically stable. By Theo-
rem 10.7.9(i) we know that F is stable, so it must be the case that A has at least one
eigenvalue on the imaginary axis, and, therefore, a nontrivial periodic solution ξ. From
our characterisation of the operator exponential in Procedures 5.2.23 and 5.2.26, we
know that this periodic solution takes values in a two-dimensional subspace that we
shall denote by L. What’s more, every solution of F with initial condition in L is
periodic and remains in L, i.e., L is F-invariant. Indeed, if x ∈ L, then

A(x) = lim
t→0

eAt(x) − x
t

∈ L

since x, eAt(x) ∈ L. We also claim that the subspace L is in ker(Q). To see this, suppose
that the solutions in L have period T. We have, for any solution ξ : [0,T]→ L for F, by
Lemma 10.7.19,

0 = fP ◦ ξ(T) − fP ◦ ξ(0) =
∫ T

0

d fP ◦ ξ
dt

(t) dt = −
∫ T

0
fQ ◦ ξ(t) dt.

Since Q is positive-semidefinite, this implies that fQ ◦ ξ(t) = 0 for t ∈ [0,T]. Thus L ⊆
ker(Q), as claimed. Thus, with our initial assumptions, we have shown the existence
of a nontrivial A-invariant subspace of ker(Q). This is a contradiction, however, since
(A,Q) is observable. It follows, therefore, that F is asymptotically stable. ■

Let us resume our Example 10.7.23 to conclude asymptotic stability in the case
where this is possible.

10.8.9 Example (Example 10.7.23 cont’d) We continue with the linear homogeneous
ordinary differential equation F on V = R2 defined by the 2 × 2 matrix

A =
[

0 1
−b −a

]
.

Again, we use the standard inner product.
We consider the case where a > 0 and b > 0, since we know that A is Hurwitz

in this case. We take

P =
[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
,

noting that P is positive-definite, Q is positive-semidefinite, and (P,Q) is a Lya-
punov pair for F. Using Theorem 10.7.21, we can only conclude stability, and not
asymptotic stability. But we can compute

O(A,Q) =


0 0
0 2a
0 0
−2ab −2a2

 ,
implying that (A,Q) is observable. We can thus conclude from Theorem 10.8.8
that F is asymptotically stable. •
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Section 10.9

Lyapunov’s Second Method: Instability theorems

In this section we provide two so-called instability theorems. While our re-
sults above in this section give sufficient conditions for various flavours of sta-
bility, instability theorems give sufficient conditions for instability. The instabil-
ity results we give fit under the umbrella of Lyapunov’s Second method since
the characterisations we give involve functions having certain properties. While
our sufficient conditions for stability using Lyapunov’s Second Method in Sec-
tions 10.7.1, 10.7.2, 10.7.3, and 10.7.4 are quite comprehensive, we shall back
off from this level of exhaustiveness here, and only give two theorems, both for
autonomous ordinary differential equations, one in the linear case and one in the
not necessarily linear case.

10.9.1 Instability theorem for autonomous equations

Let us state the more general result first. Some notation is useful. Let U ⊆ Rn

be open, let f : U → R be continuous, and let x0 ∈ U. We suppose that r ∈ R>0 is
such that B(r, x0) ⊆ U and define, for a ∈ R,

f −1(r, > a) = {x ∈ B(r, x0) | f (x) > a}.

With this simple piece of notation, we then have the following result.

10.9.1 Theorem (An instability for autonomous ordinary differential equations) Let
F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x).

Suppose that supT = ∞. Then an equilibrium state x0 ∈ U is unstable if there exists a
function V: U→ R and r ∈ R>0 with the following properties:

(i) V is of class C1;
(ii) V(x0) = 0;
(iii) B(r, x0) ⊆ U;
(iv) V−1(s, > 0) , ∅ for every s ∈ (0, r);
(v) LF0V(x) ∈ R>0 for x ∈ B(r, x0).

Proof Let ϵ = r
2 and let δ ∈ R>0. We show that there exists (t0, x) ∈ T × B(δ, x0) such

that the solution ξ to the initial value problem

ξ̇(t) = F̂0(ξ(t)), ξ(t0) = x
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satisfies ξ(T) < B(ϵ, x0) for some T ≥ t0. Indeed, let δ ∈ R>0 and choose x ∈ V−1(s, > 0)
for s ≤ min{ϵ, δ}. We claim that ξ(T) < B(ϵ, x0) for some T ≥ t0. Suppose otherwise and
let

β = inf{LF0V(x′) | x′ ∈ B(ϵ, x0),V(x′) ≥ V(x)}.

Note that β ∈ R>0 since it is the infimum of a positive-valued function over the compact
set

B(ϵ, x0) ∩ {x′ ∈ B(ϵ, x0) | V(x′) ≥ V(x)}.

Now we calculate, using Lemma 10.7.8,ref

V(ξ(t)) = V(ξ(t0)) +
∫ t

t0

d
dτ

V(ξ(τ)) dτ

= V(x) +
∫ t

t0

LF0V(ξ(τ)) dτ

≥ V(x) + β(t − t0).

Thus t 7→ V(ξ(t)) is unbounded as t → ∞, which is a contradiction since x 7→ V(x) is
bounded on B(ϵ, x0). Thus we conclude that ξ(T) < B(ϵ, x0) for some T ≥ t0. This gives
the desired instability. ■

10.9.2 Instability theorem for linear equations with constant coefficients

Next we consider an instability theorem for linear homogeneous ordinary differ-
ential equations with constant coefficients. The result we give is one that makes use
of very particular attributes of linear ordinary differential equations, and, in par-
ticular, makes use of the notion of observability introduced in Definition 10.8.6.

10.9.2 Theorem (An instability theorem for linear ordinary differential equations
with constant coefficients) Let F be a system of linear homogeneous ordinary dif-
ferential equations in an n-dimensional R-vector space V with constant coefficients and
with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product ⟨·, ·⟩.
Then F is unstable if there exists P,Q ∈ L(V; V) with the following properties:

(i) P and Q are symmetric;
(ii) (P,Q) is a Lyapunov pair for F;
(iii) P is not positive-semidefinite;
(iv) Q is positive-semidefinite;
(v) (A,Q) is observable.

Proof Since Q is positive-semidefinite and (A,Q) is observable, the argument from
the proof of Theorem 10.8.8 shows that there are no nontrivial periodic solutions for
F. Thus this part of the theorem will follow if we can show that F is not asymptotically
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stable. By hypothesis, there exists x0 ∈ V so that fP(x0) < 0. Let ξ(t) = eAt(x0) be the
solution of F with initial condition x0 at t = 0. As in the proof of Theorem 10.7.21(i),
we have fP ◦ ξ(t) ≤ fP(x0) < 0 for all t ≥ 0 since Q is positive-semidefinite. Denote

r = inf{∥x∥ | fP(x) ≤ fP(x0)},

and observe that r ∈ R>0. We have shown that ∥ξ(t)∥ ≥ r for all t ≥ 0. This prohibits
internal asymptotic stability, and in this case, internal stability. ■

Let us use this theorem to fill in a few gaps left by our treatment of Exam-
ple 10.7.23.

10.9.3 Example (Example 10.7.23 (cont’d)) We continue with the linear homogeneous
ordinary differential equation F on V = R2 defined by the 2 × 2 matrix

A =
[

0 1
−b −a

]
.

Again, we use the standard inner product.
We consider here the unstable cases.

1. a = 0 and b = 0: In this case, by Exercise 10.7.5, if (P,Q) is a Lyapunov pair for
F with Q positive-semidefinite, then (A,Q) is not observable. This means that
we cannot conclude instability using Theorem 10.9.2.

2. a = 0 and b < 0: If we define

P =
1
2

[
0 1
1 0

]
, Q =

[
−b 0
0 1

]
,

then one verifies that (P,Q) is a Lyapunov pair for F. However, P is not positive-
semidefinite (its eigenvalues are {± 1

2 }), while Q is positive-definite. Since Q is
invertible, one can immediately conclude observability, and, therefore, conclude
instability from Theorem 10.9.2.

3. a > 0 and b < 0: We use the Lyapunov pair (P,Q) with

P =
[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
.

Here we compute

O(A,Q) =


0 0
0 2a
0 0
−2ab −2a2

 .
Since P is not positive-semidefinite, since Q is positive-semidefinite, and since
(A,Q) is observable we conclude from Theorem 10.9.2 that F is unstable.
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4. a < 0 and b = 0: In this case, as in case 1, if (P,Q) is a Lyapunov pair for F with
Q positive-semidefinite, then (A,Q) is not observable. Thus the instability that
holds in this case cannot be determined from Theorem 10.9.2.

5. a < 0 and b > 0: We note that, if

P =
[
−b 0
0 −1

]
, Q =

[
0 0
0 −2a

]
,

then (P,Q) is a Lyapunov pair for F. We also have

O(A,Q) =


0 0
0 −2a
0 0

2ab 2a2

 .
Thus (A,Q) is observable. Since P is not positive-definite and since Q is positive-
semidefinite, we conclude from Theorem 10.9.2 that F is unstable.

6. Here we again take

P =
[
−b 0
0 −1

]
, Q =

[
0 0
0 −2a

]
.

The same argument as in the previous case will tell us that F is unstable. •
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Section 10.10

Lyapunov’s Second Method: Converse theorems

The results of Sections 10.7.1, 10.7.2, 10.7.3, and 10.7.4 provide useful sufficient
conditions for stability and asymptotic stability of equilibria. However, if there are
lots of examples of ordinary differential equations that are stable, but for which
the hypotheses of these theorems do not hold, then this reduces their potential
effectiveness in practice. For this reason, in this section we give six so-called
“converse theorems,” i.e., theorems that assert the manner in which the converses
of conditions like those in the preceding sections also hold. One is for general,
nonautonomous, not necessarily linear ordinary differential equations. The next is
for exponential stability for nonautonomous ordinary differential equations. Both
of these results are mirrored for autonomous systems, with self-contained proof
for readers wishing to sidestep time dependence. The other two are results for
linear homogeneous ordinary differential equations, one a result for time-varying
equations and the other a result for equations with constant coefficients.

10.10.1 Converse theorems for nonautonomous equations

We begin with the most general result.

10.10.1 Theorem (A converse theorem for nonautonomous ordinary differential
equations) Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− ≜ infT > −∞,
and that F satisfies Assumption 10.2.1. If x0 is uniformly asymptotically stable, then there
exists V: T ×U→ R such that

(i) V is of class C1,
(ii) V ∈ TVLPDs0(x0),
(iii) V ∈ TVLDs0(x0),
(iv) (t, x) 7→ ∂V

∂xj
(t, x) is in TVLDs0(x0), and

(v) −LFV ∈ TVLPDs0(x0).

Proof ■

Next we specialise the preceding result to exponential stability, not just asymp-
totic stability.
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10.10.2 Theorem (A converse theorem for exponential stability of nonautonomous
ordinary differential equations) Let F be an ordinary differential equation with right-
hand side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− ≜ infT > −∞,
and that there exists M, r ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂Fj

∂xk
(t, x)

∣∣∣∣∣∣∣ ≤M, j,k ∈ {1, . . . ,n}, (t, x) ∈ T × B(r, x0).

If there exist L, δ, σ ∈ R>0 such that, if x ∈ U satisfies ∥x − x0∥ < δ, then t 7→ ΦF(t, t0, x0)
is defined on [t0,∞) and satisfies

∥ΦF(t, t0, x) − x0∥ ≤ Le−σ(t−t0)
∥x − x0∥,

then there exist V: T ×U→ R and r0 ∈ R>0 such that
(i) V is of class C1;
(ii) there exists C1 ∈ R>0 such that∥∥∥∥∥∥∂V

∂xj
(t, x)

∥∥∥∥∥∥ ≤ C1∥x − x0∥, j ∈ {1, . . . ,n}, (t, x) ∈ T × B(r0, x0);

(iii) there exists C2 ∈ R>0 such that

C2∥x − x0∥
2
≤ V(t, x) ≤ C−1

2 ∥x − x0∥
2, (t, x) ∈ T × B(r0, x0);

(iv) there exists C3 ∈ R>0 such that

LFV(t, x) ≤ −C3∥x − x0∥
2, (t, x) ∈ T × B(r0, x0).

Proof We start with a few technical lemmata.

1 Lemma If T is an interval and if γ : T→ Rn is of class C1, thenAre we using this?

d
dt
∥γ(t)∥ ≤

∥∥∥∥∥dγ
dt

(t)
∥∥∥∥∥ .

Proof The first thing we need to do is understand what we mean by d
dt∥γ(t)∥, since

it may be that t 7→ ∥γ(t)∥ is not differentiable. We shall use the notion of weak
differentiability from . First let us suppose that γ(t) , 0. Then, by continuity, γ(τ) , 0ref

for τ nearby t. Then,

2
( d
dτ
∥γ(τ)∥

)
∥γ(t)∥ =

d
dτ
∥γ(τ)∥2 = 2

〈 d
dτ
γ(τ),γ(τ)

〉
Rn
.

Then, by the Cauchy–Bunyakovsky–Schwarz inequality,

2
( d
dτ
∥γ(τ)∥

)
∥γ(t)∥ = 2

〈 d
dτ
γ(τ),γ(τ)

〉
Rn
≤ 2

∥∥∥∥∥ d
dτ
γ(τ)

∥∥∥∥∥ ∥γ(τ)∥.
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Thus, when γ(t) , 0,
d
dt
∥γ(t)∥ ≤

∥∥∥∥∥ d
dτ
γ(τ)

∥∥∥∥∥ .
We need to account for the possibility that γ(t) may be zero. Note that

Γ ≜ {t ∈ T | ∥γ(t)∥ > 0}

is open. Thus, by , there exists a countable set J and a collection I j, j ∈ J, of open ref

intervals such that Γ = ∪∞j=1I j. Let ϕ ∈ D (T;R). Then∫
T
∥γ(t)∥ϕ̇(t) dt =

∑
j∈J

∫
I j

∥γ(t)∥ϕ̇(t) dt

= −
∑
j∈J

∫
I j

⟨
d
dtγ(t),γ(t)⟩
∥γ(t)∥

ϕ(t) dt.

using integration by parts. Thus t 7→ ∥γ(t)∥ is differentiable in the sense of distributions,
and its derivative in this sense is given by

d
dt
∥γ(t)∥ =

 ⟨
d
dtγ(t),γ(t)⟩
∥γ(t)∥ , γ(t) , 0,

0, γ(t) = 0.

The lemma now follows from our estimates above. ▼

2 Lemma Let T be an interval and let α, β, ξ : T→ R be such that
(i) α and β are continuous,
(ii) ξ is continuously differentiable, and
(iii) α(t)ξ(t) ≤ ξ̇(t) ≤ β(t)ξ(t), t ∈ T.

Then, for any t0 ∈ T,

ξ(t0)e
∫ t

t0
α(τ) dτ

≤ ξ(t) ≤ ξ(t0)e
∫ t

t0
β(τ) dτ

, t ≥ t0.

Proof Denote η : T→ R by

η(t) = exp
∫ t

t0
β(τ) dτ

.

A direct computation gives

dη
dt

(t) = β(t)η(t), t ∈ T.

Noting that η(t) > 0 for every t ∈ T, we then have

d
dt

(
ξ(t)
η(t)

)
=
η(t) d

dtξ(t) − ξ(t) d
dtη(t)

η(t)2 =
1
η(t)

(dξ
dt

(t) − β(t)ξ(t)
)
≤ 0

for t ≥ t0. Thus we have
ξ(t)
η(t)
≤
ξ(t0)
η(t0)

= ξ(t0), t ≥ t0.

This gives the rightmost inequality in the statement of the lemma. The leftmost
inequality follows from this by replacing “ξ” with “−ξ” and “β” with “α.” ▼
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3 Lemma Let F be an ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

and let x0 ∈ U. If there exists L ∈ R>0 such that

∥̂F(t, x)∥ ≤ L∥x − x0∥, (t, x) ∈ T ×U,

then, for (t0, x) ∈ T ×U, the solution ξ to the initial value problem

ξ̇(t) = F̂(t, ξ(t)), ξ(t0) = x,

satisfies
(i) | ddt∥ξ(t) − x0∥

2
| ≤ 2L∥ξ(t) − x0∥

2, t ≥ t0, and

(ii) ∥x − x0∥e−L(t−t0)
≤ ∥ξ(t) − x0∥ ≤ ∥x − x0∥eL(t−t0), t ≥ t0.

Proof We compute

d
dt
∥ξ(t) − x0∥

2 = 2
〈 d

dt
ξ(t), ξ(t) − x0

〉
Rn
.

Thus, by the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣ d
dt
∥ξ(t) − x0∥

2
∣∣∣∣∣ ≤ 2

∥∥∥∥∥ d
dt
ξ(t)

∥∥∥∥∥ ∥ξ(t) − x0∥

= 2∥̂F(t, ξ(t))∥∥ξ(t) − x0∥

≤ 2L∥ξ(t) − x0∥
2,

giving the first part of the result.
For the second part, we first note that, from the first part of the lemma,

−2L∥ξ(t) − x0∥
2
≤

d
dt
∥ξ(t) − x0∥

2
≤ 2L∥ξ(t) − x0∥

2.

The second part of the current lemma follows from Lemma 2. ▼

Let r0 < min{δ, r
L } and let h = ln(2k2)

2σ . Define

V(t, x) =
∫ t+h

t
∥ΦF(τ, t, x) − x0∥

2 dτ.

Then we have

V(t, x) ≤ L2
∥x − x0∥

2
∫ t+h

t
e−2σ(τ−t) dτ =

L2
∥x − x0∥

2(1 − e−2σh)
2σ

.

By Lemma 3 we have

∥ΦF(τ, t, x) − x0∥
2
≥ e−2L(t−τ)

∥x − x0∥
2,
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from which we conclude that

V(t, x) ≥ ∥x − x0∥
2
∫ t+h

t
e−2L(t−τ) dτ =

∥x − x0∥
2(1 − e−2Lh)
2L

.

Taking

C2 = min
{

L2(1 − e−2σh)
2σ

,
1 − e−2Lh

2L

}
gives condition (iii).

By Theorem 5.1.8, solutions depend continuously differentiably on initial condi-
tion and time. Therefore, by , we can differentiate V under the integral sign: switch integral and

derivative

∂V
∂t

(t, x) = ∥ΦF(t + h, t, x) − x0∥
2
− ∥ΦF(t, t, x)∥2

+ 2
∫ t+h

t

〈
ΦF(τ, t, x) − x0,

d
dt
ΦF(τ, t, x)

〉
dτ

and
∂V
∂x j

(t, x) = 2
∫ th

t

〈
ΦF(τ, t, x) − x0,

∂
∂x j
ΦF(τ, t, x)

〉
dτ.

By Exercise 3.2.6 and the preceding two equations we then deduce that

LFV(t, x) = ∥ΦF(t + h, t, x) − x0∥
2
− ∥x − x0∥

2

≤ − (1 − L2e−2σh)∥x − x0∥
2
≤ −

1
2
∥x − x0∥

2,

giving condition (iv).
Now we note, by the Chain Rule, that

d
dt

∂ΦF
j

∂xk
(τ, t, x)

 = n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x), j ∈ {1, . . . ,n},

and that
∂ΦF

j

∂xk
(t, t, x) =

1, j = k,
0, j , k.

That is to say, the Jacobian matrix of ΦF satisfies a linear ordinary differential equation
with initial condition being the identity matrix. We wish to use Lemma 3 with x0 being
the zero matrix and x = In. To do so, we need to estimate the right-hand side of the
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preceding equation: n∑
j,k=1

 n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)


2

1/2

≤

 n∑
j,k=1

 n∑
l=1

∣∣∣∣∣∣∣∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣∣


2
1/2

≤

 n∑
j,k=1

M
n∑

l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

 n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

≤

M2n
n∑

k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

≤M
√

n

 n∑
k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

.

Here we have used the hypotheses on F̂. Now we can use Lemma 3 to conclude that
n∑

j,k=1

∣∣∣∣∣∣∣∂Φ
F
j

∂xk
(τ, t, x)

∣∣∣∣∣∣∣
2

1/2

≤
√

neM
√

n(τ−t).

Therefore,  n∑
k=1

∂ΦF
k

∂x j
(τ, t, x)

2
1/2

≤
√

neM
√

n(τ−t).

Thus, using the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣∣∂V
∂x j

(t, x)

∣∣∣∣∣∣ ≤ 2
∫ t+h

t

∣∣∣∣∣∣
〈
ΦF(τ, t, x) − x0,

∂
∂x j
ΦF(τ, t, x)

〉∣∣∣∣∣∣ dτ

≤ 2L
√

n∥x − x0∥

∫ t+h

t
e−σ(τ−t)eM

√
n(τ−t) dτ,

giving condition (ii). ■

10.10.2 Converse theorems for autonomous equations

We now consider converse theorems for autonomous ordinary differential equa-
tions. The results essentially follow from those of the preceding section, but here
we state and prove them independently for readers not needing to deal with time-
varying equations.
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10.10.3 Theorem (A converse theorem for autonomous ordinary differential equa-
tions) Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F̂0(x),

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− ≜ infT > −∞,
and that F satisfies Assumption 10.2.1. If x0 is asymptotically stable, then there exists
V: T ×U→ R such that

(i) V is of class C1,
(ii) V ∈ LPDs0(x0),
(iii) V ∈ LDs0(x0),
(iv) (t, x) 7→ ∂V

∂xj
(t, x) is in LDs0(x0), and

(v) −LFV ∈ LPDs0(x0).

10.10.4 Theorem (A converse theorem for exponential stability of autonomous ordi-
nary differential equations) Let F be an ordinary differential equation with right-hand
side

F̂ : T ×U→ Rn

and let x0 ∈ U be an equilibrium point for F. Assume that supT = ∞, T− ≜ infT > −∞,
and that there exists M, r ∈ R>0 such that∣∣∣∣∣∣∣ ∂̂F0,j

∂xk
(x)

∣∣∣∣∣∣∣ ≤M, j,k ∈ {1, . . . ,n}, x ∈ B(r, x0).

If there exist L, δ, σ ∈ R>0 such that, if x ∈ U satisfies ∥x − x0∥ < δ, then t 7→ ΦF(t, t0, x0)
is defined on [t0,∞) and satisfies

∥ΦF(t, t0, x) − x0∥ ≤ Le−σ(t−t0)
∥x − x0∥,

then there exist V: U→ R and r0 ∈ R>0 such that
(i) V is of class C1;
(ii) there exists C1 ∈ R>0 such that∥∥∥∥∥∥∂V

∂xj
(x)

∥∥∥∥∥∥ ≤ C1∥x − x0∥, j ∈ {1, . . . ,n}, x ∈ B(r0, x0);

(iii) there exists C2 ∈ R>0 such that

C2∥x − x0∥
2
≤ V(x) ≤ C−1

2 ∥x − x0∥
2, x ∈ B(r0, x0);

(iv) there exists C3 ∈ R>0 such that

LFV(x) ≤ −C3∥x − x0∥
2, x ∈ B(r0, x0).

Proof We start with a few technical lemmata.
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1 Lemma Let F be an autonomous ordinary differential equation with right-hand side

F̂ : T ×U→ Rn

(t, x) 7→ F0(x)

and let x0 ∈ U. If there exists L ∈ R>0 such that

∥̂F0(x)∥ ≤ L∥x − x0∥, x ∈ U,

then, for t0, x) ∈ T ×U,
(i) | ddt∥Φ

F(t, t0, x) − x0∥
2
| ≤ 2L∥ΦF(t, t0, x) − x0∥

2, t ≥ t0, and

(ii) ∥x − x0∥e−L(t−t0)
≤ ∥ΦF(t, t0, x) − x0∥ ≤ ∥x − x0∥eL(t−t0), t ≥ t0.

Proof We compute

d
dt
∥ΦF(t, t0, x) − x0∥

2 = 2
〈 d

dt
ΦF(t, t0, x),ΦF(t, t0, x) − x0

〉
Rn
.

Thus, by the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣ d
dt
∥ΦF(t, t0, x) − x0∥

2
∣∣∣∣∣ ≤ 2

∥∥∥∥∥ d
dt
ΦF(t, t0, x)

∥∥∥∥∥ ∥ΦF(t, t0, x) − x0∥

= 2∥̂F(t,ΦF(t, t0, x))∥∥ΦF(t, t0, x) − x0∥

≤ 2L∥ΦF(t, t0, x) − x0∥
2,

giving the first part of the result.
For the second part, we first note that, from the first part of the lemma,

−2L∥ΦF(t, t0, x) − x0∥
2
≤

d
dt
∥ΦF(t, t0, x) − x0∥

2
≤ 2L∥ΦF(t, t0, x) − x0∥

2.

The second part of the current lemma follows from Lemma 2. ▼

Let r0 < min{δ, r
L } and let h = ln(2k2)

2σ . For some t ∈ T, define

V(x) =
∫ t+h

t
∥ΦF(τ, t, x) − x0∥

2 dτ.

Note that V(x) is independent of t by Exercise 3.1.19. Then we have

V(x) ≤ L2
∥x − x0∥

2
∫ t+h

t
e−2σ(τ−t) dτ =

L2
∥x − x0∥

2(1 − e−2σh)
2σ

.

By Lemma 1 we have

∥ΦF(τ, t, x) − x0∥
2
≥ e−2L(t−τ)

∥x − x0∥
2,

from which we conclude that

V(x) ≥ ∥x − x0∥
2
∫ t+h

t
e−2L(t−τ) dτ =

∥x − x0∥
2(1 − e−2Lh)
2L

.
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Taking

C2 = min
{

L2(1 − e−2σh)
2σ

,
1 − e−2Lh

2L

}
gives condition (iii).

By Theorem 5.1.8, solutions depend continuously differentiably on initial condi-
tion and time. Therefore, by , we can differentiate V under the integral sign: switch integral and

derivative

∂V
∂x j

(x) = 2
∫ t+h

t

〈
ΦF(τ, t, x) − x0,

∂
∂x j
ΦF(τ, t, x)

〉
dτ.

By Exercise 3.2.6 and the preceding two equations we then deduce that

LFV(x) = ∥ΦF(t + h, t, x) − x0∥
2
− ∥x − x0∥

2

≤ − (1 − L2e−2σh)∥x − x0∥
2
≤ −

1
2
∥x − x0∥

2,

giving condition (iv).
Now we note, by the Chain Rule, that

d
dt

∂ΦF
j

∂xk
(τ, t, x)

 = n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x), j ∈ {1, . . . ,n},

and that
∂ΦF

j

∂xk
(t, t, x) =

1, j = k,
0, j , k.

That is to say, the Jacobian matrix of ΦF satisfies a linear ordinary differential equation
with initial condition being the identity matrix. We wish to use Lemma 1 with x0 being
the zero matrix and x = In. To do so, we need to estimate the right-hand side of the
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preceding equation: n∑
j,k=1

 n∑
l=1

∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)


2

1/2

≤

 n∑
j,k=1

 n∑
l=1

∣∣∣∣∣∣∣∂F̂ j

∂xl
(τ, t, x)

∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣∣


2
1/2

≤

 n∑
j,k=1

M
n∑

l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

 n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣


2
1/2

≤

M2
n∑

j,k=1

n∑
l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

≤

M2n
n∑

k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

≤M
√

n

 n∑
k,l=1

∣∣∣∣∣∣∂ΦF
l

∂xk
(τ, t, x)

∣∣∣∣∣∣
2

1/2

.

Here we have used the hypotheses on F̂. Now we can use Lemma 1 to conclude that
n∑

j,k=1

∣∣∣∣∣∣∣∂Φ
F
j

∂xk
(τ, t, x)

∣∣∣∣∣∣∣
2

1/2

≤
√

neM
√

n(τ−t).

Therefore,  n∑
k=1

∂ΦF
k

∂x j
(τ, t, x)

2
1/2

≤
√

neM
√

n(τ−t).

Thus, using the Cauchy–Bunyakovsky–Schwarz inequality,∣∣∣∣∣∣∂V
∂x j

(t, x)

∣∣∣∣∣∣ ≤ 2
∫ t+h

t

∣∣∣∣∣∣
〈
ΦF(τ, t, x) − x0,

∂
∂x j
ΦF(τ, t, x)

〉∣∣∣∣∣∣ dτ

≤ 2L
√

n∥x − x0∥

∫ t+h

t
e−σ(τ−t)eM

√
n(τ−t) dτ,

giving condition (ii). ■

10.10.3 Converse theorem for time-varying linear equations

Next we turn to converse results for linear ordinary differential equations. The
first is for time-varying equations.
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10.10.5 Theorem (A converse theorem for time-varying linear ordinary differential
equations) Let F be a system of linear homogeneous ordinary differential equations in an
n-dimensional R-vector space V with constant coefficients and with right-hand side

F̂ : T × V→ V
(t, x) 7→ A(t)(x)

for A: T→ L(V; V) continuous and bounded. Suppose that supT = ∞. Suppose that V
has an inner product ⟨·, ·⟩. Let Q: T→ L(V; V) have the following properties:

(i) Q is continuous;
(ii) Q(t) is symmetric for every t ∈ T;
(iii) Q is positive-definite;
(iv) Q is decrescent.

Then there exists P: T→ L(V; V) with the following properties:
(i) P is of class C1;
(ii) P(t) is symmetric for every t ∈ T;
(iii) (P,Q) is a Lyapunov pair for F;
(iv) P is positive-definite;
(v) P is decrescent.

Proof By Exercise 10.3.2(f), let C1, σ ∈ R>0 be such that

|||ΦA(t, t0)||| ≤ C1e−σ(t−t0), t ∈ T, t ≥ t0. (10.37)

By Lemma 10.6.17, there exists C2 ∈ R>0 such that

C2⟨x, x⟩ ≤ fQ(t, x) ≤ C−1
2 ⟨x, x⟩, (t, x) ∈ T × V. (10.38)

We define

P(t) =
∫
∞

t
ΦA(τ, t)T

◦Q(τ) ◦ΦA(τ, t) dτ.

The integral exists by the inequalities (10.37) and (10.38).
For (t, x) ∈ T × V we compute

fP(t, x) =
∫
∞

t
fQ(τ,ΦA(τ, t)(x)) dτ

≤ C−1
2

∫
∞

t
∥ΦA(τ, t)(x)∥2 dτ

≤ C−1
2 ∥x∥

2
∫
∞

t
|||ΦA(τ, t)|||2 dτ

≤
C1

C2
∥x∥2

∫
∞

t
e−σ(τ−t) dτ =

C1

C2σ
∥x∥2.
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Since A is bounded, there exists M ∈ R>0 such that |||A(t)||| ≤ M for each t ∈ T, by
Lemma 1 from the proof of Theorem 10.10.2 we have

∥ΦA(τ, t)(x)∥2 ≥ ∥x∥2e−2M(τ−t), τ ≥ t.

Therefore,

fP(t, x) =
∫
∞

t
fQ(τ,ΦA(τ, t)(x)) dτ

≥ C2

∫
∞

t
∥ΦA(τ, t)(x)∥2 dτ

≥ C2∥x∥2
∫
∞

t
e−2M(τ−t) dτ =

C2

2M
∥x∥2.

Letting C = min{ C2
2M ,

C2σ
C1
}, we thus have

C⟨x, x⟩ ≤ fP(t, x) ≤ C−1
⟨x, x⟩,

showing that P is positive-definite and decrescent, by Lemma 10.6.17.
By the Fundamental Theorem of Calculus, P is continuously differentiable. By

(5.6) we have
d
dt
ΦA(τ, t) = −ΦA(τ, t) ◦ A(t).

Thus

Ṗ(t) = −Q(t) +
∫
∞

t

( d
dt
ΦA(τ, t)T

)
◦Q(τ) ◦ΦA(τ, t) dτ

+

∫
∞

t
ΦA(τ, t)T

◦Q(τ) ◦
( d
dt
ΦA(τ, t)

)
dτ

= −Q(t) −
∫
∞

t
A(t)T

◦ΦA(τ, t)T
◦Q(τ) ◦ΦA(τ, t) dτ

−

∫
∞

t
ΦA(τ, t)T

◦Q(τ) ◦ΦA(τ, t) ◦ A(t) dτ

= −Q(t) − A(t)T
◦ P(t) − P(t) ◦ A(t),

which shows that (P,Q) is a Lyapunov pair for F, as desired. ■

10.10.4 Converse theorem for linear equations with constant coefficients

Finally, we give a result for linear ordinary differential equations with constant
coefficients. Here the results we give are quite detailed, in keeping with our
detailed knowledge of such equations.

10.10.6 Theorem (A converse theorem for linear ordinary differential equations with
constant coefficients) Let F be a system of linear homogeneous ordinary differential



2022/03/07 10.10 Lyapunov’s Second Method: Converse theorems 831

equations in an n-dimensional R-vector space V with constant coefficients and with right-
hand side

F̂ : T × V→ V
(t, x) 7→ A(x)

for A ∈ L(V; V). Suppose that supT = ∞. Suppose that V has an inner product ⟨·, ·⟩. If
A is Hurwitz, then the following statements hold:

(i) for any symmetric Q ∈ L(V; V), there exists a unique symmetric P ∈ L(V; V) so that
(P,Q) is a Lyapunov pair for F;

(ii) if Q is positive-semidefinite with P the unique symmetric linear map for which (P,Q)
is a Lyapunov pair for F, then P is positive-semidefinite;

(iii) if Q is positive-semidefinite with P the unique symmetric linear map for which (P,Q)
is a Lyapunov pair for F, then P is positive-definite if and only if (A,Q) is observable.

Proof (i) We claim that, if we define

P =
∫
∞

0
eATt

◦Q ◦ eAt dt, (10.39)

then (P,Q) is a Lyapunov pair for F. First note that since A is Hurwitz, the integral
does indeed converge by . We also have ref

AT
◦ P + P ◦ A = AT

◦

(∫
∞

0
eATt

◦Q ◦ eAt dt
)
+

(∫
∞

0
eATt

◦Q ◦ eAt dt
)
◦ A

=

∫
∞

0

d
dt

(
eATt

◦Q ◦ eAt
)

dt

= eATt
◦Q ◦ eAt

∣∣∣∞
0 = −Q,

as desired. We now show that P as defined is the only symmetric linear map for which
(P,Q) is a Lyapunov pair for F. Suppose that P̂ also has the property that (P̂,Q) is a
Lyapunov pair for F, and let ∆ = P̂ − P. Then one sees that

AT
◦ ∆ + ∆ ◦ A = 0.

If we let
Λ(t) = eATt

◦ ∆ ◦ eAt,

then
dΛ
dt

(t) = eATt
◦

(
AT
◦ ∆ + ∆ ◦ A

)
◦ eAt = 0.

Therefore,Λ is constant, and sinceΛ(0) = ∆, it follows thatΛ(t) = ∆ for all t. However,
since A is Hurwitz, it also follows that limt→∞Λ(t) = 0. Thus ∆ = 0, so that P̂ = P.

(ii) If P is defined by (10.39), then we have

fP(x) =
∫
∞

0
⟨Q ◦ eAt(x), eAt(x)⟩dt.

Therefore, if Q is positive-semidefinite, it follows that P is positive-semidefinite.
(iii) Here we employ a lemma.
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1 Lemma If Q is positive-semidefinite then (A,Q) is observable if and only if the linear map P
defined by (10.39) is invertible.

Proof First suppose that (A,Q) is observable and let x ∈ ker(P). Then∫
∞

0
⟨Q ◦ eAt(x), eAt(x)⟩dt = 0.

Since Q is positive-semidefinite, this implies that eAt(x) ∈ ker(Q) for all t. Differentiating
this inclusion k times with respect to t gives Ak ◦ eAt(x) ∈ ker(Q) for any k ∈ Z>0.
Evaluating at t = 0 shows that x ∈ ker(O(A,C)). Since (A,Q) is observable, this implies
that x = 0. Thus we have shown that ker(P) = {0}, or equivalently that P is invertible.

Now suppose that P is invertible. Then the expression∫
∞

0
⟨Q ◦ eAt(x), eAt(x)⟩dt

is zero if and only if x = 0. Since Q is positive-semidefinite, this means that the
expression

⟨Q ◦ eAt(x), eAt(x)⟩

is zero if and only if x = 0. Since eAt is invertible, this implies that Q must be positive-
definite, and in particular, invertible. In this case, (A,Q) is clearly observable. ▼

With the lemma at hand, the remainder of the proof is straightforward. Indeed,
from part (ii), we know that P is positive-semidefinite. The lemma now says that P is
positive-definite if and only if (A,Q) is observable, as desired. ■

Let us resume our example started as Example 10.7.23.

10.10.7 Example (Example 10.7.23 cont’d) We resume looking at the case where

A =
[

0 1
−b −a

]
.

Let us look at a few cases to flesh out some aspects of Theorem 10.10.6.
1. a > 0 and b > 0: This is exactly the case when A is Hurwitz, so that part (i)

of Theorem 10.10.6 implies that, for any symmetric Q, there is a unique sym-
metric P so that (P,Q) is a Lyapunov pair for F. As we saw in the proof of
Theorem 10.10.6, one can determine P with the formula

P =
∫
∞

0
eATtQeAt dt. (10.40)

However, to do this in this example is a bit tedious since we would have to deal
with the various cases of a and b to cover all the various forms taken by eAt. For
example, suppose we take

Q =
[
1 0
0 1

]
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and let a = 2 and b = 2. Then we have

et = e−t

[
cos t + sin t sin t
−2 sin t cos t − sin t

]
In this case one can directly apply (10.40) with some effort to get

P =
[

5
4

1
4

1
4

3
8

]
.

If we let a = 2 and b = 1 then we compute

eAt = e−t

[
1 + t t
−t 1 − t

]
.

Again, a direct computation using (10.40) gives

P =
[

3
2

1
2

1
2

1
2

]
.

Note that our choice of Q is positive-definite and that (A,Q) is, therefore,
observable. Therefore, part (iii) of Theorem 10.10.6 implies that P is positive-
definite. It may be verified that the P’s computed above are indeed positive-
definite.
However, it is not necessary to make such hard work of this. After all, the
equation

ATP + PA = −Q

is nothing but a linear equation for P. That A is Hurwitz merely ensures a
unique solution for any symmetric Q. If we denote

P =
[
p11 p12

p12 p22

]
and continue to use

Q =
[
1 0
0 1

]
,

then we must solve the linear equations[
0 −b
1 −a

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−b −a

]
=

[
−1 0
0 −1

]
,

subject to a, b > 0. One can then determine P for general (at least nonzero) a
and b to be

P =
[

a2+b+b2

2ab
1
2b

1
2b

b+1
2ab

]
.

In this case, we are guaranteed that this is the unique P that does the job.
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2. a ≤ 0 and b = 0: As we have seen, in this case there is not always a solution to
the equation

ATP + PA = −Q. (10.41)

Indeed, when Q is positive-semidefinite and (A,Q) is observable, this equation
is guaranteed to not have a solution (see Exercise 10.7.5). This demonstrates
that when A is not Hurwitz, part (i) of Theorem 10.10.6 can fail in the matter of
existence.

3. a > 0 and b = 0: In this case we note that, for any C ∈ R, the matrix

P0 = C
[
a2 a
a 1

]
satisfies ATP+PA = 0. Thus, if P is any solution to (10.41), then P+P0 is also a
solution. If we take

Q =
[
0 0
0 2a

]
,

then, as we saw in Theorem 10.7.21, if

P =
[
a2 a
a 2

]
,

then (P,Q) is a Lyapunov pair for F. What we have shown is that (P + P0,Q)
is also a Lyapunov pair for F. Thus part (i) of Theorem 10.10.6 can fail in the
matter of uniqueness when A is not Hurwitz. •
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