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Appendix A

General versions of the Chain Rule and the
Leibniz Rule

At various points in the text, we will wish to have on hand explicit formulae for
the Taylor series for compositions and products of smooth or holomorphic functions.
These are messy inductive computations, and here we provide these for completeness.
The formulae are stated in [Abraham, Marsden, and Ratiu 1988, Supplement 2.4A],
and here we provide proofs. We shall work simultaneously with the real and complex
cases. Thus F € {R,C}. If F = R then we wish to consider mappings that are of class
C”™ (with mappings of class C* being a subset of these) and if F = C then we wish
to consider mappings that are of class C" (noting that these mappings are infinitely
[F-differentiable by Theorem 1.1.23). Thus, throughout this section, we let r = oo if
F=Randr=holif F=C.

A.1 The general Chain Rule

First we look at the Chain Rule, using the following notation. Let r € Z., and let

,,,,,

property thato € G, _,, satisfies
ori+--+ri+1)<---<o(ri+--+r1j+71), j€f0,1,...,k=1},

with the understanding that 7y = 0. Thuso € €,,,_,, rearranges {1, ...,r} in such a way
that order is preserved in the first r; entries, the next r, entries, and so on. Let us also

..........

.....

(r1 + 1)st place, the (r, + 1)st place, and so on.
With this notation, we can state and prove the higher-order Chain Rule, a full proof
being difficult to locate in the literature.

Lemma (Higher-order Chain Rule) Let U C F" and V C F™ be open, consider maps
g:U— Vand f: V — FX, and let x € U. If gand f are of class C" then f o g is of class C" and,
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moreover,
D'(fog)(x) - (v1,..., V)

=Zr: Z Z D'f(g(x)) - (D"'g(X) * (Voqt), - -+ Vo)s- - -

=1 11, r]€Z>o 0eCs

Tl s
T ~+1=t K

Drjg(X) . (Vg(rl+4..+rj71+1), e ,Vg(r))) (Al)

forvy, ..., v, € F™.
Proof The proof is by induction on r. For r = 1 the result is simply the usual Chain
Rule [Abraham, Marsden, and Ratiu 1988, Theorem 2.4.3]. Assume the result is true for
reil,...,s}. We thus have

D(fo8)x) - (v, ..., ss1)

Z 2. Z D’f(g(x (D* g(x) - (Vo(2), - - - 1 V(1)) - - -

j=1 $1,..,8j€Z>0 ceo
Sl+ +S]—

DS]g(x) ' (v0(51+"'+5j,1+2)l cecy vO’(S+1)))
for every vy,...,vs41 € F", and where o € 6:1 5 C & permutes the set {2,...,s + 1} in the

obvious way.
Let us now make an observation about permutations. Let j € {1,...,5 + 1}, let

si,...,s;., € Zso satisfy s] + -+ + s;., =s+1, and let 0’ € 6; o - For brevity denote
Sy

t=s+-+s forl€{1,...,j'}. We have two cases.

1. s;=1 Inthlscaselet] = j'—1,defines; =], forl € {1,. —1},and lett; = s1+---+s;

forle{l,...,j}. We then have

(@), (0" (ty =s5 +1),...,0" (), ..., (a’(t;., - s}, +1),. ..,a'(t},)))
= ((1), (G(tz — S+ 1), e ,O(tz)), ce ,(O(t]'/ — Sy + 1), .. .,O(t]’/))), (A2)

where o € C55<, + € S5 permutes {2,...,5 + 1} in the obvious way. Note that this
s
uniquely specifies s1,...,s; and o.
2. si # 1: Here we take j = ', 51 = si -1, = s; for I € {2,...,j}. Let us denote
tir=s1+---+s;forlefl,... ,j} Then there exist lp € {1, ..., j} giving the corresponding
cyclet € Gjgivenby 7 =(1 --- [p)ando € S such that

S7(1)/51(2)r+++r57(j)

(GG VL0 WO (L GAR AR VIO ()
=((1,0(tzq) =8z + 1), ..., 0(tz@)), - -+, (Ote() = Sejy + 1), -+ -, 0(te)),  (A3)

where o permutes {2, ...,s + 1} in the obvious way. Note that this uniquely specifies
$1,.-.,8j, T,and 0. Note that the cycle 7 is necessary to ensure that 0’(1) = 1, anecessary

condition that 0" € 5 . The cycle serves to place the slot into which the “1” is

inserted at the beginning of the slot list.
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Conversely, let j € {1,...,s}, let sy,...,s; € Zs( have the property thats; +--- +s; = s, and

1.

Wetake j = j+1,lets] =1 ands; =s_1forle{2,...,s+1}. Definet; =s1 +--- +5.
Then thereexistso” € S  such that(A.2) holds. Moreover, this uniquely determines
SR

si,...,s;., and o’.

We take j = jand let [y € {1,..., j}. Then take T € S; to be the cycle (1 --- ly). We then

define s] = s;1) + 1 and s} = s for I € {2,..., j}. Then there exists 0’ € S; . such
e

that (A.3) holds. Note that this uniquely specifies s}, ..., s}, and ¢’.

Using this observation, along with the usual Chain Rule and the symmetry of the

derivatives of f of order up to s, we then compute

D*(fog)(x) - (01,...,0s41)

Y Y Y Difige) 050 o,

j=1 sl,...,sj€Z>0 aesjlr__/sj
s1+---+sj=s

D*'g(x) - (Vg2)s - Vo(sy+1))r - - -+

Deig(x) - (v0(51+~-~+s]-_1+2)1 e Ug(s41)))

+DIf(g(0) - (D" g(x) - (01, 06(2)s - -+, Votsy 1) -+
Dfig(x) - (vg(sl+.‘.+sj_1+2), e Ug(s+1) F e

+ DIf(g(®) - (D 8(x) - (Wo) -+ Vators1)s -+
Dsfg(x) - (v1, Uo(sy++5j1+2)7 -+ 1 va(s+1)))

s+1

-Y Y Y D) (D@ - @ty 0oy

=1 si,...,s},€Z>0 G'E‘S:, v
’ ’ LA ]7
sl+~~-+s],, =s+1

...,D’7 g(x) - (O (5t +1)r s Vor(s+1)))s

as desired. m

A.1.2 Remark (On the higher-order Chain Rule) In the single-variable case, the formula
for the higher-order Chain Rule is due to Faa di Bruno [1855], an Italian mathematician
and priest. The combinatorics of the formula arise in various places, including in the
study of cumulants in probability theory. Generalisations of the Faa di Bruno formula
to multiple-variables is enticing and have been studied by various people. Some useful
formulae are given by Constantine and Savits [1996]. .

A.2 The general Leibniz Rule

Next we turn to the Leibniz Rule. To prove this, we first prove a result about
derivatives of multilinear maps. Since derivatives are themselves multilinear maps, it
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will be useful to discriminate notationally between points in the domain of the map
and points in the domain of the derivative of the map. Thus we shall write a point in
F™ x--- xF"™ as (xy,...,xr) when we mean it to be in the domain of the map L and we
shall write a point in F"* @ --- ® "* as (v, ..., vx) when we mean it to be an argument
of the derivative. The argument of the rth derivative is an element of (F" @ - -- @ F"*)"
and will be written as

((011, .. -/vlk)/ ey (Url, . /vrk))-

Forre{l,...,k} define
Dye =, i | j1,---,jr €1{1,...,k} distinct}.

For {j1,...,j;} € Dy let us denote by {ji,...,j; } the complement of {ji,...,;} in
{1,...,k}. Now, for {j1,..., j} € D, define

Aj,,..;, EL(EF @ 0F k)@ E & 0F"),F"o---0F")

by asking that
/\jl ..... jk((xll ey xk—r); (vll ceey 'Uy))

be obtained by placing x; in slot j; for [ € {1,...,k — r} and by placing v; in slot j; for
lefl,...,r}.
With this notation we have the following lemma.

Lemma (Derivatives of multilinear maps) If L € L(F™ & - -- @ F™; F™) is a multilinear
map then L is infinitely differentiable. Moreover, for r € {1, ..., k} we have

D'L(x1,...,x1) - (Vi1, -, V1K), - o, (Ve1, v oo, Vi)

and for r > k we have D'L(x, ..., xx) = 0.
Proof We prove the result by induction on r. For r = 1 the lemma asserts that

DL(x()l/ o /ka) : (vll cee rvk) = L(vlleZI ce /x()k)
+ L(XQ1,T)2,...,x0k) + -0+ L(x01,x02,...,vk).

To verify this we must show that
Him  ||LGer,..., %) = L(xon, - .., Xor) — L(x1 — Xo1, - ., Xox)

= (X01,-+X0k)

— L(xo1, .., % — xo)|| /(1 = x01, .., 2 — )| = 0. (A.4)
We do this by induction on k. For k = 1 we have

L(x1) — L(x01) — L(x1 — x01) = 0,
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and so (A.4) holds trivially. Now suppose that (A.4) holds for k = s > 2 and let L €
L(F™, ..., F"+1; ™). We first note that the numerator in the limit in (A.4) can be written as

L(x1, ..., xs,x0s+1)) — L(x01, - - ., X0s, X0(s+1)) + L(xX1, - . ., X5, X5 — X0(s41))
— L(x1 — x01, - -+, X0s, X0(s+1)) — *** — L(X01, - - - , X5 — X0s, X0(s:+1))
— L(x01, - - -, X0s, Xs+1 = X0(s+1))-
By the induction hypothesis we have
(x}/igs) |ILGr, - .., 2, Xo(s41)) = L(¥o1, - - -, Xos, Xos1))
(X010 %05)
— L(%1 — Xo1, - - -, X0s, Xo(s+1) — L(¥01, - - -, X5 — X0s, X0(s1))|

/N1 = x01, ..., %5 — x05)l| = 0.

Since
l(x1 — x01, - - -, x5 — x05)| < [1(x1 = X01, - -, X5 — X0s, X541 — X0(s4+1))ll
this implies that
lim ||L(x1, R x0(5+1)) - L(x01, cen ,xOS,xO(S+1))
(%1 2o X5 X5 41)
—(X01 -/ %0s X0(s+1))

— L(x1 — Xo1, - - -, X0s, X0(s+1) — L(¥01, - - -, X5 — X0s, X0(541))|
/(x1 = x01,. .., % — X0s, Xs41 — X0+ )|l = 0. (A.5)
We also have
lim ||L(x1,...,xs, w) - L(xm,...,xoS, w)” =0

(X1, X5 X 11) [1%s+1—%0(s+1)l [1xs+1—%0(s+1)l

—(X01+,%05,X0(s+1))

by continuity of L. Since

lIxs+1 — 2o+l < (1 = x01, - - -, Xs — X0s, X511 — Xo(s+1))l

this gives

lim ILGe1, - %, Xou1 = Xogsen) = L(¥o, - - - Xos, Xse1 — Xog+1))
(210 X5,Xs511)
—(X01,-+X05 X0 (s+1))

/N1 = xo1, - - -, X5 — X0s, X541 — Xo(s+1))l| = 0. (A.6)

Combining (A.5) and (A.6) gives (A.4) for the case when k = s + 1 and so gives the
conclusion of the lemma in the case when r = 1.

Now suppose that the lemma holds for r € {1,...,s} with s < k and let L €
L(F™,..., F"%;F"). Let us fix {j1,..., js} € D;x and denote the complement of {ji,..., js} in
{1,....k by {ji,--, jl’(_s}, just as in our definitions before the statement of the lemma. Let
us also fix v, € F"i forl € {1,...,s}. Then define

. n’, ; .
Poj oyt BN X X ™ = (F 1 X X ks ) X (B X X )

(xl,...,xk) = ((x]'i,...,x]v

kis), (vjl, .. .,v]-s)).
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Now define 8o, :FM X - X F% — F™ by 8,0, = LoA oP and note that
177Y)s

Jireerfs © 0 s

g"’jw-"r"’js (X1, e ,xk) =L o)\]-lp_.,]-s((xj;, e ,x]';H), (7)]'1, e ,"0]'5)).

By Lemma A.1.1 we have

ngjl,_“,vjs (1, xp) - (uq, ..., ug)
=D(LeAj, i )(Px1, ..., %)) °Dpv/~1,...,v/~s (1, xp) - (uq, ..., ug).

Note that since P, s is essentially a linear map (precisely, it is affine, meaning linear
plus constant) we have

DPU,.I,_“,Z,,.S (e, v xp) - (uq, ..., i) = ((ufi’ . ,uj;_s), ,...,0).

Note thatsince LoA;,, ;. € L(IE‘nj5 Leee, ks JF, L Fs; F™) (as is readily verified), by the
induction hypothesis,
D(L OAjll"'!jS)(xjg’ cee ,legis,le, ce ,xjs) . ((u]i, cee ,u]';H), (u]-l, cee ,u]-s))
= LoAhp-v]’s((u]'i’ ... ,x]‘i_s), (le, ... ,x]'S)) +...
+L 0/\]'1,.",]'5((36]';, . ,x]-;(_s), (le, ey ujs)).

Therefore,

ngfl/'“/vfs (x], cee /xk) ' (ull sy uk)
=L 0/\]-1’.",]'5((1«!]'1, .. .,x]';(_s), (Ujl, . ,U]'S)) +...
+L 0/\]'1,“.,]’5((3(]‘1, ... ,uj;(_s), (vjl, ... ,’0]'5)).

Thus, forv; € F", j € {1,...,k}, we have

ngjl,...,vjs (xll cee /xk) ’ (vll cee ,Uk)
= Z L°/\j1,---,js,js+1((xjif'"'xj,;_<s+1))f (v]-l,...,v]-s+1)).
Js+1#1,rJs)

Thus, using this relation along with linearity of the derivative, Lemma A.1.1, and the
induction hypothesis, we compute

1
D f(x1, .. 0) - (011, -+, 010, (021, -+, 02), ooy e ooy (V1)) - -+ Dis1)0))
= Z Z gvg(z)jZI,,,,z;g<s+1)jS+l (xll oo /xk) ' (vlll ceey vlk)

0€Gs {j2,.rJs+1}EDs i

Z Z Z ]1’ ']g’]5+1((x]1 ) ’le/c—(su))’

0€Cs {f2,rJs+1}€Ds k J1E{ 2, Js+1}

(01, Vo(2)jar - Vo(s41)jss1))

= 2. LMy ),

Uees+l {]1 r~-~rjs+1 }ED5+1,k

(Vo)jys -+ - 1 Vo(s+1)jern))s
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where, in the second and third line, we define 0 € & to be a bijection of {1, ...,s + 1} by
permutation of the last s elements.

The preceding argument gives the result when r € {1,...,k}. For r > k we argue as
follows. We first note that

D'L((v11, ..., o1), -+, Wkt - -, OR)) = Z L(0g(y1, - - - Uo(ik)- (A7)

UESk

It follows that D'L = 0 for r > k. |
Now we can prove the desired Leibniz Rule.

A.2.2 Lemma (Higher-order Leibniz Rule) Let U C F" be open, let f;: W — F,j € {1,...,k},
be r times differentiable at xo € U, and let L € L(F™, ..., F™;F™). If f: U — F™ is defined by

f(x) = L(fi(x), ..., f(x))

then £ is r times differentiable at x, and, moreover,

Drf(XO) . (Vl, ceey Vr) = Z Z L(Drlfl(X()) . (Vg(l), ey Vg(rl)), ceey

r1,... TkEZ>0 UE‘Srl er

Ir1+-+rK=r k

Drkfk(xo) : (Va(r1+---+rk_1+1)/ ceey Va(r)))

forvy, ..., v, € F™.
Proof We prove the theorem by induction on 7, noting that the case of r = 1 follows from
Lemma A.1.1, and Lemma A.2.1, using the fact that f = Lo(f; X --- X f;).
Assume the result is true for r € {1, ..., s} and suppose that f,, ..., f, are of class Cs+l,
Thus, for fixed v4, ..., vs € F" the function

x> DPf(x) - (v2,...,0541)

Y Y LA® @owy- o)

S, SkEL>0 06651'.“ Sk
S1+-+5 =S

Dskfk(x) : (vcr(sl+~~-+sk,1+2)/ sy v0(5+1)))/

is differentiable at xp, where we think of 0 € &; as a permutation of the set {2,...,s + 1} in
the obvious way.

Let us now make an observation about permutations. Let s/, ... ,sl’( € Zs( have the
property thats) +---+s;, =s+1landleto’ € Sy, . For brevity denote t; =s) 4+ s} for
j €1{1,...,k}. Then there exist unique sy, ..., sx € Zxo (denote t; =s1 +---+s;, j € {1,...,k}),
o€ G, and jo € {1,...,k} such that
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and

(o't =s7+1),...,0"(t]), .. .,(a’(t’ s +1),.. o’(t}o)),...,
(@'t —s,+1)+--+0 (tk))) =((o(t1 —s1 +1),...,0(t)),...,
(1,0(1‘]‘0 - Sjo)/ .. .,G(tjo +1)),...,
(o(tk = s), ..., 0t +1)), (A.8)

with the convention that o permutes the set {1, ... ,t;.o - s;.o,t;.o - s;.o +2,...,8+ 1} in the

obvious way. The point is that a’(t}o - s}o +1) =1, and by definition of S, this means

that a’(t;.0 - s;.o + 1) must appear at the beginning of one of the “slots” of length s7, ..., s;.
Conversely, let si1,...,5c € Z>o be such that 51 + -+ s = s > 2and let 0 € S, .
Denote tj = sy + -+~ +s; for j € {1,...,k}. Then, for each jo € {1 ,k} there exist unique
si,...,sl’{ € Zso (denote t;. =8+ + s] j€{l1,...,k}) such that
5 = {?+ 1 / ’ ”
jtL 7=

-----

Using this observation, and since the result holds for r =1 and r = s, we get

and ¢’ € 651 st such that (A.8) holds.

D f(xg) - (v1,...,0s1) = (D(D°f)(x0) - (02, ..., Vs41)) - V1
=( Y, ) L) @100 Vo),

S yuees Sk€Z>0 Uevql

S1+-+S=s k

D kfk<xo> Y COR S ) B

(X Z LDSlfl(xO (o)1 Vs #1)), -+

-Sk€ZL>0 GE\DSI
Sl+ +SK=S

D5k+1fk (x0) - (v1, Og(sq+-4sp_142)7 s vo(s+l))))

= Z Z LD f1(x0) - o), - -+ Vo)1) - - -

CA A/ O’e\./im/sl
syt ts=s+1

D% f(%0) - (Vo(s) 445 1), - -+ Va(s+1)s

as desired. ]
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