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Chapter 5

Holomorphic and real analytic jet bundles

In this chapter we study quite carefully the structure of jet bundles. Jets can
be thought of as a way of adapting the notion of Taylor series to the differential
geometric setting. As we shall see, this adaptation requires a little care if one is to
properly describe the algebraic structure of these jets. In order to present the theory
in appropriate context, our development will include some discussion of the smooth
case, along with the holomorphic and real analytic case. We shall see that jet bundles,
in the holomorphic and real analytic case, have a nice correspondence with germs that
one does not have in the smooth case.

We give a completely self-contained account of jet bundles here. However, fur-
ther details and some applications can be found in Saunders [1989] in [Kolář, Michor,
and Slovák 1993, Chapter IV], at least in the real case. We do not know of a refer-
ence that covers the holomorphic case, although the constructions are straightforward
adaptations of the real ones.

5.1 Preliminaries to jet bundle constructions

Prior to embarking on our construction of jet bundles, it is helpful to organise a
few preliminary constructions. Throughout this section, as usual, we use F to denote
either R or C. We will talk about objects of class Cr with r ∈ {∞, ω} if F = R and F = C
if r = hol. We will, as in the preceding section, denote TM = T1,0M and T∗M =

∧1,0(M)
if M is a holomorphic manifold. This will greatly facilitate simultaneously treating the
real and complex cases of the constructions we make in this section.

5.1.1 Affine spaces and affine bundles

Intuitively, an affine space is a “vector space without an origin.” In an affine space,
one can add a vector to an element, and one can take the difference of two elements
to get a vector. But one cannot add two elements. Precisely, we have the following
definition.

5.1.1 Definition (Affine space) Let F be a field and let V be an F-vector space. An affine
space modelled on V is a set A and a map φ : V×A→ A with the following properties:

(i) for every x, y ∈ A there exists an v ∈ V such that y = φ(v, x) (transitivity);
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(ii) φ(v, x) = x for every x ∈ A implies that v = 0 (faithfulness);
(iii) φ(0, x) = x, and
(iv) φ(u + v, x) = φ(u, φ(v, x)).

The notation x + v if often used for φ(v, x) and, for x, y ∈ A, we denote by y − x ∈ V the
unique vector such that φ(y − x, x) = y. •

An affine space is “almost” a vector space. The following result says that, if one
chooses any point in an affine space as an “origin,” then the affine space becomes a
vector space.

5.1.2 Proposition (Vector spaces from affine spaces) Let A be an affine space modelled on
the F-vector space V. For x0 ∈ A define vector addition on A by

x1 + x2 = x0 + ((x1 − x0) + (x2 − x0))

and scalar multiplication on A by

a x = x0 + (a (x − x0)).

These operations make A into a F-vector space and the map x 7→ x − x0 is an isomorphism of
this F-vector space with V.

Proof The boring verification of the satisfaction of the vector space axioms we leave to
the reader. To verify that the map x 7→ x − x0 is a vector space isomorphism, compute

(x1 + x2) − x0 = (x0 + ((x1 − x0) + (x2 − x0))) − x0 = (x1 − x0) + (x2 − x0)

and
a x − x0 = (x0 + (a (x − x0))) − x0 = a (x − x0),

as desired. �

Let us denote by Φx0 : Ax0 → V the isomorphism defined in Proposition 5.1.2. Note
that we have

Φx0(x) = x − x0, Φ−1
x0

(v) = x0 + v.

We shall use these formulae below.
We have the notion of an affine subspace of an affine space.

5.1.3 Definition (Affine subspace) Let V be a F-vector space and let A be an affine space
modelled on V with φ : V × A → A the map defining the affine structure. A subset B
of A is an affine subspace if there is a subspace U of V with the property that φ|U × B
takes values in B. •

Let us give a list of alternative characterisations of affine subspaces.
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5.1.4 Proposition (Characterisations of affine subspaces) Let A be an affine space modelled
on the F-vector space V and let B ⊆ A. The following statements are equivalent:

(i) B is an affine subspace of A;
(ii) there exists a subspace U of V such that, for each x0 ∈ B, B = {x0 + u | u ∈ U};
(iii) if x0 ∈ B then {y − x0 | y ∈ B} ⊆ V is a subspace.

Proof (i) =⇒ (ii) Let B ⊆ A be an affine subspace and let U ⊆ V be a subspace for which
φ|U × B takes values in B. Let x0 ∈ B. For y ∈ B there exists a unique u ∈ V such that
y = x0 + u. Since φ|U × B takes values in B it follows that u ∈ U. Therefore,

B ⊆ {x0 + u | u ∈ U}.

Also, if u ∈ U then x0 + u ∈ B by definition of an affine subspace, giving

B ⊇ {x0 + u | u ∈ U},

and so giving this part of the result.
(ii) =⇒ (iii) Let U ⊆ V be a subspace for which, for each x0 ∈ B, B = {x0 + u | u ∈ U}.

Obviously, {y − x0 | y ∈ B} = U and so this part of the result follows.
(iii) =⇒ (i) Let x0 ∈ B and denote U = {y − x0 | y ∈ B}; by hypothesis, U is a subspace.

Moreover, for u ∈ U and y ∈ B we have

φ(u, y) = φ(u, x0 + (y − x0)) = x0 + (u + y − x0) ∈ B,

giving the result. �

We also have notions of maps between affine spaces. To make this definition, it is
convenient to denote by Ax0 the set A with the F-vector space structure defined as in
Proposition 5.1.2 by a choice of x0 ∈ A.

5.1.5 Definition (Affine map) If A and B are affine spaces modelled on F-vector spaces V
and U, respectively, a map φ : A → B is an affine map if, for some x0 ∈ A, φ is a linear
map between the vector spaces Ax0 and Bφ(x0). •

Associated with an affine map is an induced linear map between the corresponding
vector spaces.

5.1.6 Proposition (Linear map associated to an affine map) Let V and U be F-vector spaces,
let A and B be affine spaces modelled on V and U, respectively, and let φ : A→ B be an affine
map. Let x0 ∈ A be such that φ ∈ HomF(Ax0 ; Bφ(x0)). Then the map L(φ) : V→ U defined by

L(φ)(v) = φ(x0 + v) − φ(x0)

is linear. Moreover,
(i) if x1, x2 ∈ A are such that x2 = x1 + v, then L(φ)(v) = φ(x2) − φ(x1) and
(ii) if x′0 ∈ A then φ(x) = φ(x′0) + L(φ)(x − x′0) for every x ∈ V.
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Proof Note that L(φ) = Φφ(x0) ◦φ ◦Φ−1
x0

. Linearity of L(φ) follows since all maps in the
composition are linear.

(i) Now let x1, x2 ∈ A and denote v = x2 − x1. Write x1 = x0 + v1 and x2 = x0 + v2 for
v1, v2 ∈ V. Then

v2 − v1 = (x0 + v2) − (x0 + v1) = x2 − x1 = v,

and so

φ(x2) − φ(x1) = φ(x0 + v2) − φ(x0 + v1)
= (φ(x0) + φ(x0 + v2)) − (φ(x0) + φ(x0 + v1))
= (φ(x0 + v2) − φ(x0)) − (φ(x0 + v1) − φ(x0))

= Φφ(x0) ◦φ ◦Φ
−1
x0

(v2) −Φφ(x0) ◦φ ◦Φ
−1
x0

(v1)

= L(φ)(v2 − v1) = L(φ)(v),

as desired.
(ii) By the previous part of the result,

L(φ)(x − x′0) = φ(x) − φ(x′0),

from which the result follows by rearrangement. �

The linear map L(φ) is called the linear part of φ. The last assertion of the propo-
sition says that an affine map is determined by its linear part and what it does to a
single element in its domain.

It is possible to give a few equivalent characterisations of affine maps.

5.1.7 Proposition (Characterisations of affine maps) Let V and U be F-vector spaces, let A
and B be affine spaces modelled on U and V, respectively, and let φ : A → B be a map. Then
the following statements are equivalent:

(i) φ is an affine map;
(ii) φ ∈ HomF(Ax0 ; Bφ(x0)) for every x0 ∈ A;
(iii) Φφ(x0) ◦φ ◦Φ−1

x0
∈ HomF(V; U) for some x0 ∈ V;

(iv) Φφ(x0) ◦φ ◦Φ−1
x0
∈ HomF(V; U) for all x0 ∈ V.

Proof (i) =⇒ (ii) By Proposition 5.1.6 we have

φ(x) = φ(x0) + L(φ)(x − x0)

for every x, x0 ∈ A, and from this the result follows.
(ii) =⇒ (iii) This follows immediately from Proposition 5.1.6.
(iii) =⇒ (iv) This also follows immediately from Proposition 5.1.6.
(iv) =⇒ (i) Let x0 ∈ A. Define a linear map L(φ) = Φφ(x0) ◦φ ◦Φ−1

x0
. Then

φ(x) = φ(x0) + L(φ)(x − x0).

Clearly, then, φ is an affine map. �

Now we make the preceding algebraic constructions geometric.
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5.1.8 Definition (Affine bundle) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C
if r = hol. Let π : E→ M be an F-vector bundle of class Cr. A Cr-affine bundle over M
modelled on E is a fibre bundle τ : A→ M of class Cr and a map φ : E ×M A→ A suchdefine

that the diagram

E ×M A
φ //

pr1
��

A
τ
��

E π
// M

commutes and such that a + e , φ(e, a) makes Ax into an affine space modelled on Ex

for each x ∈ M. Here pr1 is projection onto the first factor. •

We can define subbundles of affine bundles and maps between affine bundles.

5.1.9 Definition (Affine subbundle) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let
F = C if r = hol. Let F be an F-vector subbundle of class Cr of the F vector bundle
π : E → M of class Cr and let τ : A → M be a Cr-affine bundle modelled on E. A Cr-
affine subbundle of A modelled on F is a Cr-subbundle B of the fibre bundle τ : A→ M
such that Bx is an affine subspace of Ax associated with Fb for each x ∈ M. •

5.1.10 Definition (Affine bundle map) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let
F = C if r = hol. If τ1 : A1 → M1 and τ2 : A2 → M2 are Cr-affine bundles then a Cr-affine
bundle map between these affine bundles is a Cr-map Φ : A1 → A2 for which there
exists a Cr-map Φ0 : M1 → M2 such that the diagram

A1
Φ //

τ1

��

A2

τ2

��
M1 Φ0

// M2

commutes and with the property that Φ|τ−1
1 (x) : τ−1

1 (x)→ τ−1
2 (Φ0(x)) is an affine map. If

Φ is a Cr-diffeomorphism we say it is an affine bundle isomorphism. •

5.1.2 Inverse systems

We shall be interested in spaces of infinite jets, and shall consider the algebraic
structure on these. To do so, it is useful to have at hand the notion of the inverse
limit, and in this section we make this a little precise. In Section GA2.2.3.7 we discuss
inverse limits more comprehensively in their proper setting of category theory.

The approach for all of our various sorts of jet bundles is the same, and relies on
the following category theory-based construction.
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5.1.11 Definition (Inverse system, inverse limit) Let (I,�) be an inverse totally ordered
set, i.e., (I,�) is an totally ordered set where � is defined by i � j if j � i. Let C = (O ,F )
be a category, i.e., O is a family of objects and F is a family of morphisms. An I-inverse
system in C is a family S = (Si)i∈I of objects from C with a family

M = (π j
i : S j → Si| j, i ∈ I, j � i)

of morphisms from F satisfying

(i) π j
i = πk

i
◦π j

k for all i, j, k ∈ Z>0 such that j � k � i and

(ii) πi
i = idSi for all i ∈ I.

A inverse limit of an inverse system (S ,M ) is a pair (S∞, (π∞i )i∈I), where S∞ ∈ O is an
object and π∞i : S∞ → Si, i ∈ I, are morphisms from F such that

(iii) the diagram
S∞

π∞j

��

π∞i

��
S j

π
j
i

// Si

(5.1)

commutes for every i, j ∈ I such that j � i and
(iv) if T ∈ O and if fi : T→ Si, i ∈ I, are morphisms from F such that the diagram

T
f j

��

fi

��
S j

π
j
i

// Si

(5.2)

commutes for every i, j ∈ I such that j � i, then there exists a unique morphism
g : T→ S∞ from F such that the diagram

T
g
�� fi   

S∞ π∞i

// Si

(5.3)

commutes for every i ∈ I.
We often denote S∞ = inv limI Si, suppressing all of the maps involved when they are
understood. •

The so-called universal property of the inverse limit expressed by condition (iv) is
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encapsulated by the diagram

T

g
��

f j

��

fi

��

S∞

π∞j�� π∞i ��
S j

π
j
i

// Si

which commutes for i, j ∈ I with j � i for a unique morphism g.
We shall certainly not make use of the preceding definition in general categories.

Our interest will be restricted to sets, vector spaces, and commutative algebras. In
these cases we can describe inverse limits more or less concretely. Let

(S = (Sk)k∈Z>0 ,M = (πk
l : Sk → Sl)k,l∈Z>0, k≥l)

be an inverse system in the category of vector spaces or commutative algebras over
some field F. Define

S∞ = {φ : I→
◦

∪
i∈I

Si | φ(i) ∈ Si, π
j
i
◦φ( j) = φ(i)}

and define π∞i : S∞ → Si by π∞i (φ) = φ(i), i ∈ I. If the category is that of F-vector spaces,
we define addition and scalar multiplication in S∞ component-wise:

(φ + ψ)(i) = φ(i) + ψ(i), (aφ)(i) = a(φ(i)), i ∈ I, φ, ψ ∈ S∞, a ∈ F.

If the category is that of F-algebras, then we additionally define the product in S∞
component-wise:

(φ · ψ)(i) = φ(i) · ψ(i), i ∈ I, φ, ψ ∈ S∞.

Let us verify that (S∞, (π∞i )i∈I) is an inverse limit.

5.1.12 Lemma (Inverse limits exist and are unique) Let F be a field and let (I,�) be an inverse
totally ordered set. Let

(S = (Si)i∈I,M = (πj
i : Sj → Si)i,j∈I, j�i)

be an I-inverse system in the category of sets, F-vector spaces, or F-algebras. If (S∞, (π∞i )i∈I) is
as constructed above, then it is an inverse limit. Moreover, if (T∞, (ρ∞i )i∈I) is an inverse limit,
then there exists a unique isomorphism ι : T∞ → S∞ such that the diagram

T∞
ι //

ρ∞i   

S∞

π∞i��
Si

commutes for every i ∈ I.
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Proof First of all, note that the direct product of (Si)i∈I is∏
i∈I

Si = {φ : I→
◦

∪
i∈I

Si | φ(i) ∈ Si}.

In the category of F-vector spaces or algebras, the operations are defined component-wise.
Let us verify that S∞ is a subspace or subalgebra in the case we are looking at these
categories. For a ∈ F, φ,ψ ∈ S∞, and i, j ∈ I with j � i we have

π
j
i (aφ( j)) = π

j
i (a(φ( j))) = aπ j

i (φ( j)) = aφ(i),

π
j
i ((φ + ψ)( j)) = π

j
i (φ( j) + ψ( j)) = π

j
i (φ( j)) + π

j
i (ψ( j)) = φ(i) + ψ(i) = (φ + ψ)(i),

and, in the case of commutative algebras,

π
j
i ((φ · ψ)( j)) = π

j
i (φ( j) · ψ( j)) = (π j

i (φ( j))) · π j
i (ψ( j)) = φ(i) · ψ(i) = (φ · ψ)(i).

This shows that S∞ is an object in the appropriate category. Similarly styled computations
show that the maps π∞i , i ∈ I, are morphisms in the appropriate category.

Next we show that (S∞, (π∞i )i∈I) is indeed an inverse limit. Firstly,

π
j
i
◦π∞j (φ) = π

j
i (φ( j)) = φ(i) = π∞i (φ),

giving commutativity of the diagram (5.1). Next let T ∈ O and if fi : T → Si, i ∈ I, are
morphisms from F such that the diagram (5.2) commutes, then define g : T → S∞ by
g(y)(i) = fi(y). We leave to the reader the elementary exercise of verifying that g is a
morphism in the appropriate category. We also immediately have

π∞i ◦ g(y) = fi(y),

giving the commutativity of the diagram (5.3). If g′ : T→ S∞ is any other such morphism,
then the commutativity of the diagram (5.3) commutes, then it immediately follows that
g′(y)(i) = fi(y), giving g′ = g.

Finally, we prove the last assertion of the lemma, supposing that (T∞, (ρ∞i )i∈I) is an
inverse limit. By the second of the properties of inverse limits, let ι : T∞ → S∞ be the
unique morphism for which π∞i ◦ ι = ρ∞i for each i ∈ I. All that remains to show is that ι is
an isomorphism. Since (T∞, (ρ∞i )i∈I) and (S∞, (π∞i )i∈I) are inverse limits, by the second of
the defining properties of inverse limits, there exists unique morphisms ι : T∞ → S∞ and
ι′ : S∞ → T∞ such that π∞i ◦ ι = ρ∞i and ρ∞i ◦ ι

′ = π∞i for each i ∈ I. Thus

π∞i ◦ ι ◦ ι
′ = ρ∞i ◦ ι

′ = π∞i .

Thus we have
π

j
i
◦π∞j ◦ ι ◦ ι

′ = π
j
i
◦π∞j = π∞i .

Thus if we replace “T” with “S∞” and “ fi” with “π∞i ◦ ι ◦ ι
′” in the diagram (5.2), the

diagram commutes. Since (S∞, (π∞i )i∈I) is an inverse limit, there exists a unique morphism
g : S∞ → S∞ such that the corresponding diagram (5.3) commutes. However, the identity
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morphism make this diagram commutative, and so we must have g = idS∞ . This means
that the diagram

S∞
idS∞ //

π∞i ◦ ι ◦ ι
′

!!

S∞
π∞i
��

Si

commutes for every i ∈ I. Thus the morphism ι ◦ ι′ has the property that the diagram

S∞
ι ◦ ι′ //

π∞i !!

S∞
π∞i
��

Si

commutes for every i ∈ I. However, the identity morphism in S∞ is the unique morphism
which makes the preceding diagram commute since (S∞, (π∞i )i∈I) is an inverse limit. Thus
ι ◦ ι′ = idS∞ . By reversing arrows, one similarly shows that ι′ ◦ ι = idT∞ , and this completes
the proof. �

5.1.3 Symmetric tensors and derivatives

The kth F-derivative Dk f (x0) of a map f : U → Fm from an open subset U ⊆ Fn

is an element of the set Lk
sym(Fn;Fm) of symmetric multilinear maps from (Fn)k to Fm.

This set is naturally isomorphic (essentially by definition) to TSk((Fn)∗) ⊗ Fm. Given
the results of Section F.2.4, this F-vector space is isomorphic to Sk((Fn)∗) ⊗ Fm. Let us
discuss making this observation geometric.

Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let us
consider manifolds M and N of class Cr and let Φ ∈ Cr(M; N). Given our discussion of
the previous paragraph, one might be tempted to say that the kth derivative of Φ at
x0 ∈ M is to be regarded as an element of Sk(T∗x0

M)⊗ TΦ(x0)N. This temptation leads one
into trouble, since the kth partial derivative of the local representative of Φ at x0 is not
generally the local representative of an element of Sk(T∗x0

M) ⊗ TΦ(x0)N. It is when k = 1,
of course, and the reader is invited to see that the coordinate transformation rules are
not satisfied in the case when k ≥ 2. What is true, however, is the following.

5.1.13 Proposition (kth derivatives of maps whose first k − 1 derivatives vanish) Let
r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds
of class Cr, let Φ ∈ Cr(M; N), let (U, φ) be a F-chart for M about x0, let (V, ψ) be a F-chart for N
about φ(x0), and let k ∈ Z>0. Suppose that Φ is such that the jth-derivative, j ∈ {1, . . . ,k − 1}
of the local representative Φφψ vanishes at φ(x0). Then the following statements hold:

(i) the jth derivative, j ∈ {1, . . . ,k − 1} of the local representative Φφ′ψ′ vanishes at φ′(x0)
for any F-charts (U′, φ′) about x0 and (V′, ψ′) about φ(x0);

(ii) the local representative of kth derivative of Φ at x0 is the coordinate representative of an
element of Sk(T∗x0

M) ⊗ Tφ(x0)N.
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Proof (i) This follows directly from Lemma A.1.1.
(ii) Let (x1, . . . , xn) and (x̃1, . . . , x̃n) be coordinates for M about x0 and let (y1, . . . , ym)

and (ỹ1, . . . , ỹm) be coordinates for N about φ(x0). Let (Φ1, . . . ,Φm) and (Φ̃1, . . . , Φ̃m) be the
corresponding components of the local representatives of Φ. An inspection of Lemma A.1.1
shows that

∂kΦ̃a

∂x̃ j1 · · · ∂x̃ jk
=

n∑
l1,...,lk=1

m∑
b=1

∂xl1

∂x̃ j1
· · ·

∂xlk

∂x̃ jk

∂Φb

∂x j1 · · · ∂x jk

∂ỹa

∂yb
+ Ψ,

where Ψ is a linear combination of the first k−1 derivatives of the components Φ1, . . . ,Φm.
Thus, when evaluated at φ(x0), these terms are zero, and from this this part of the result
follows. �

Let Φ : M → N be of class Cr. The point of the preceding discussion is that the kth
derivative of a function cannot really be talked about intrinsically unless the first k− 1
derivatives vanish. Thus, one is led to the understanding that the object of interest is
all derivatives from the 0th to the kth. What kind of space describes these derivatives?
An obvious guess, based on Proposition 5.1.13, is that the totality of all derivatives 0
through k at x0 should take values in

k⊕
j=0

S j(T∗x0
M) ⊗ TΦ(x0)N.

More generally, we might guess that the Taylor series of Φ at x0 takes values in the
direct product ∏

j∈Z≥0

S j(T∗x0
M) ⊗ TΦ(x0)N

(cf. Proposition 4.2.6). This obvious guess is, in fact, incorrect. The reason is that the
derivatives do not change coordinates in the right way, and the reader is encouraged
to explore this by considering again the case of how derivatives from 0 to 2 transform
under changes of coordinate. Thus the pressing question now is, “What is the structure
of the set of derivatives of maps between manifolds?” This is the subject of this chapter,
and in fact we turn to this right now.

5.2 Jet bundles of F-valued maps

We shall consider three settings for the study of jet bundles: (1) jets of func-
tions; (2) jets of general maps between manifolds; (3) jets of sections of vector bundles.
These three settings are not mutually exclusive; for example the first and third obvi-
ously are subsumed by the second. However, as we shall see, each setting has distinct
structure and the structure of the second two settings is described by understanding
the first. Thus we start by looking at jets of functions. Throughout this section, and
indeed this chapter, we let F ∈ {R,C} and r ∈ {∞, ω,hol} and adopt the convention that
r ∈ {∞, ω} when F = R and r = hol when F = C. We also use the same symbol d to
stand for the real or complex differential.



28/02/2014 5.2 Jet bundles of F-valued maps 11

5.2.1 Definitions

We begin with the definition.

5.2.1 Definition (Functions agreeing to order k) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let x0 ∈ M, let U and
V be neighbourhoods of x0, let f ∈ Cr(U) and g ∈ Cr(V), and let k ∈ Z≥0. The pairs ( f ,U)
and (g,V) agree to order k at x0 if, for every Cr-curve γ : I→ M for which 0 ∈ int(I) and
γ(0) = x0,

( f ◦γ)( j)(0) = (g ◦γ)( j)(0),

j ∈ {0, 1, . . . , k}. •

5.2.2 Remark (The rôle of functions defined on neighbourhoods) In the preceding defi-
nition we defined agreement of functions defined only on a neighbourhood of a point.
This is inessential in the smooth case, since a smooth function defined in a neighbour-
hood of x0 can be extended, using the Tietze Extension Theorem [Abraham, Marsden,
and Ratiu 1988, Proposition 5.5.8], to a globally defined function agreeing to order k
with the locally defined function. In the real analytic and holomorphic case, this is
no longer generally true. For example, on a compact holomorphic manifold, a non-
constant locally defined function cannot be extended to one that is globally defined
and agrees to any order greater than zero. Other examples of this appear at the end
of Section 5.6.3. Most standard treatments of jet bundles are developed in the smooth
setting, and so work with globally defined functions. •

Let us verify that this definition has the desired characterisation in coordinates.

5.2.3 Proposition (Agreement to order k in coordinates) Let r ∈ {∞, ω,hol} and let F = R
if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let x0 ∈ M, let U and
V be neighbourhoods of x0, let f ∈ Cr(U) and g ∈ Cr(V), and let k ∈ Z≥0. Then the following
statements are equivalent:

(i) (f,U) and (g,V) agree to order k at x0;
(ii) for any F-chart (W, φ) about x0 with W ⊆ U ∩ V and with coordinates (x1, . . . , xn), it

holds that
∂m(f ◦φ−1)
∂xj1 · · · ∂xjm

(φ(x0)) =
∂m(g ◦φ−1)
∂xj1 · · · ∂xjm

(φ(x0))

for j1, . . . , jm ∈ {1, . . . ,n} and m ∈ {0, 1, . . . ,k}.
Proof (i) =⇒ (ii) Let (W, φ) be a F-chart about x0 with coordinates (x1, . . . , xn). Let us
suppose, without loss of generality that φ(x0) = 0. Let γ : I → M be a Cr-curve (recalling
that I is an open subset of F) such that γ(0) = x0. Since ( f ,U) and (g,V) agree to order k
we have f ◦γ(0) = g ◦γ(0) giving f (x0) = g(x0), and giving the desired statement for m = 0.
Now let m ∈ {1, . . . , k} and let j1, . . . , jm ∈ {1, . . . ,m}. Let l ∈ {1, . . . ,n} and let il be the
number of occurrences of l in the list j1, . . . , jm. Let ε ∈ R>0 be sufficiently small that( ti1

i1!
, . . . ,

tin

in!

)
∈ φ(W)



12 5 Holomorphic and real analytic jet bundles 28/02/2014

for t ∈ D1(0, ε). Define γ : D1(0, ε)→ M by

φ ◦γ(t) =
( ti1

i1!
, . . . ,

tin

in!

)
,

and note that, by symmetry of partial derivatives [Abraham, Marsden, and Ratiu 1988,
Proposition 2.4.14], we have

∂m(φ ◦γ)
∂x j1 · · · ∂x jm

(0) =
∂m(φ ◦γ)

∂xi1
1 · · · ∂xin

n

(0) = 1,

and all other derivatives ofφ ◦γ are zero at t = 0. It follows immediately from Lemma A.1.1
that

( f ◦γ)(m)(0) = ( f ◦φ−1
◦φ ◦γ)(m)(0) =

∂m( f ◦φ−1)
∂x j1 · · · ∂x jm

(φ(x0)),

and similarly for g. This gives the desired assertion immediately.
(ii) =⇒ (i) Under the stated hypotheses we obviously have f (x0) = g(x0) and so

f ◦γ(0) = g ◦γ(0) for any curve γ for which γ(0) = x0. Let m ∈ {1, . . . , k} and let γ : I→ M be
a curve such that 0 ∈ int(I) and γ(0) = x0. Then

( f ◦γ)(m)(0) = ( f ◦φ−1
◦φ ◦γ)(m)(0)

and similarly for g. By Lemma A.1.1 it follows that the mth derivative of the composition
( f ◦φ−1) ◦ (φ ◦γ) involves the derivatives 0 to m at φ(x0) and 0, respectively, of the two
components of the composition. The same statement holds for g, of course. By hypothesis,
the derivatives 0 to m of f ◦φ−1 and g ◦φ−1 agree φ(x0), and so it follows that

( f ◦γ)(m)(0) = (g ◦γ)(m)(0),

as desired. �

Let M be a manifold of class Cr, let x0 ∈ M, let U and V be neighbourhoods of x0,
let f ∈ Cr(U) and g ∈ Cr(V), and let k ∈ Z≥0. Let us write ( f ,U) ∼k,x0 (g,V) if ( f ,U) and
(g,V) agree to order k at x0. The relation ∼k,x0 is obviously an equivalence relation in
the set of pairs ( f ,U) with U a neighbourhood of x0 and f ∈ Cr(U). For convenience,
let us abbreviate by F r(x0) the set of such pairs.

5.2.4 Definition (Jets of functions) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let
F = C if r = hol. Let M be a manifold of class Cr, let x0 ∈ M, and let k ∈ Z≥0.

(i) A k-jet of functions at x0 is an equivalence class under the equivalence rela-
tion ∼k,x0 .

(ii) The equivalence class of ( f ,U) ∈ F r(x0) is denoted by jk f (x0).
(iii) We denote

Jk
(x0,s0)(M;F) = { jk f (x0) | ( f ,U) ∈ F r(x0), f (x0) = s0}

and Jk
x0

(M;F) = ∪s0∈FJk
(x0,s0)(M;F).
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(iv) We denote Jk(M;F) = ∪(x,s)∈M×FJk
(x,s)(M;F) which we call the bundle of k-jets of

functions. By convention, J0(M;F) = M × F.
(v) For k, l ∈ Z≥0 with k ≥ l we denote by ρk

l : Jk(M;F) → Jl(M;F) the projection
defined by ρk

l ( jk f (x)) = jl f (x). We abbreviate ρk
0 by ρk.

(vi) We abbreviate T∗kx0
M = Jk

(x0,0)(M;F) and T∗kM = ∪x∈MT∗kx M. •

5.2.2 Geometric structure

Let us now understand the structure of the jet bundles Jk(M;F). We begin by
verifying that the jet bundles are manifolds.

5.2.5 Lemma (Differentiable structure of jet bundles of functions) Let r ∈ {∞, ω,hol} and
let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let k ∈ Z≥0,
and let (U, φ) be a F-chart for M. Define (jkU, jkφ) by

jkU = {jkf(x) | (f,W) ∈ F r(x), x ∈ U}

and
jkφ : jkU→ φ(U) × F × L1

sym(Fn;F) × · · · × Lk
sym(Fn;F)

jkf(x) 7→ (φ(x), f(x),D(f ◦φ−1)(φ(x)), . . . ,Dk(f ◦φ−1)(φ(x))).

Then (jkU, jkφ) is an F-chart for Jk(M;F). Moreover, if ((Ua, φa))a∈A is an atlas for M, then
((jkUa, jkφa))a∈A is an atlas for Jk(M;F).

Proof For the first assertion of the lemma, we must show that jkφ is a bijection from jkU
onto an open subset of

Fn
× F × L1

sym(Fn;F) × · · · × Lk
sym(Fn;F).

First note that
jkφ( jkU) = φ(U) × F × L1

sym(Fn;F) × · · · × Lk
sym(Fn;F).

This can be shown by, for each

(x, s,A1, . . . ,Ak) ∈ φ(U) × F × L1
sym(Fn;F) × · · · × Lk

sym(Fn;F),

explicitly constructing a polynomial function in coordinates such that f (x) = s and D j f (x) =
A j, j ∈ {1, . . . , k}. This was done, for example, as part of our proof of Theorem 1.1.4. Next we
show that jkφ is a bijection. Suppose that jkφ( jk f (x)) = jkφ( jkg(y)) for jk f (x), jkg(y) ∈ jkU.
Thus, by definition of jkφ, the first k derivatives of f and g (including the zeroth) agree.
By Proposition 5.2.3 it follows that jk f (x) = jkg(y). Thus ( jkU, jkφ) is an F-chart.

To verify that an atlas for M induces an atlas for Jk(M;F), we must verify that the
overlap maps are F-diffeomorphisms. Thus let (Ua, φa) and (Ub, φb) be F-charts for M such
that Ua ∩ Ub , ∅. Note that, obviously, jkUa ∩ jkUb , ∅. Let us suppose that Ua = Ub = U,
for simplicity and without loss of generality. For a Cr-map ψ : N → F with domain an
open subset N ⊆ Fn, let us abbreviate

jkψ : N→ N × F × L1
sym(Fn;F) × · · · × Lk

sym(Fn;F)
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as the map
jkψ(x) = (x, ψ(x),Dψ(x), . . . ,Dkψ(x)).

Let x ∈ U. With the notation above we have

jkφb( jk f (x)) = jk( f ◦φ−1
b )(φb(x)) = jk( f ◦φ−1

a ◦φa ◦φ
−1
b )(φb(x)). (5.4)

Now we use a lemma.

1 Sublemma Let ψ : N→ N′ be a Cr-diffeomorphism of open subsets N and N′ of Fn and define a
map

Jkψ : N × F × L1
sym(Fn;F) × · · · × Lk

sym(Fn;F)→ N′ × F × L1
sym(F;Fn) × · · · × Lk

sym(Fn;F)

by asking that

Jkψ(x,g(x),Dg(x), . . . ,Dkg(x))

= (ψ(x), (g ◦ψ−1)(ψ(x)),D(g ◦ψ−1)(ψ(x)), . . . ,Dk(g ◦ψ−1)(ψ(x))),

for any Cr-function g: N→ F. Then Jkψ is a Cr-diffeomorphism.

Proof First of all, note that the map Jkψ is well-defined by Lemma A.1.1.
Next we prove that Jkψ is of class Cr. We prove this by induction on k. For k = 1 we

have
J1ψ(x, y,α) = (ψ(x), y, (Dψ−1(x))∗(α)),

and the lemma follows in this case from the Inverse Function Theorem. Now suppose
that the lemma holds for k ∈ {1, . . . ,m}. Then, for g ∈ Cr(N), the first m derivatives of
g ◦ψ−1 are Cr-functions of the first m derivatives of g by the induction hypothesis. Then,
by Lemma A.1.1,

Dm+1(g ◦ψ−1)(ψ(x)) = Dm+1g(x) · (Dψ−1(ψ(x)), . . . ,Dψ−1(ψ(x))) + G(x,Dg(x), . . . ,Dmg(x),

where the function G is a Cr-function of x and the first m derivatives of g. Thus the first
m+1 derivatives of g ◦ψ−1 are Cr-functions of the first m+1 derivatives of g, and this gives
Jkψ as being of class Cr.

Now we prove that Jkψ is invertible. To see this, one needs only to note that the map

(y, x,Dh(y), . . . ,Dkh(y)) 7→ (ψ−1(y), x,D(h ◦ψ)(ψ−1(y)), . . . ,Dk(h ◦ψ)(ψ−1(y))),

for h ∈ Cr(N′), is the inverse of Jkψ. Moreover, this inverse is of class Cr by the same
argument as in the preceding paragraph. H

By (5.4) we have

jkφb( jk f (x)) = Jk(φb ◦φ
−1
a )( jk( f ◦φ−1

a )(φa(x))).

Since φa ◦φ−1
b is an F-diffeomorphism, the overlap condition for jet bundle charts holds.�

An F-chart for Jk(M;F) as in the lemma is called a natural chart. The lemma gives
the following result which further refines the differentiable structure of the jet bundles
Jk(M;F).
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5.2.6 Theorem (Fibre and vector bundle structure for jet bundles of functions) Let
r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of
class Cr and let k, l ∈ Z≥0 with k ≥ l. Then

(i) ρk
l : Jk(M;F)→ Jl(M;F) is a locally trivial fibre bundle.

Moreover, if pr1 : M × F→ M denotes the projection onto the first factor, then
(ii) pr1 ◦ρk : Jk(M;F)→ M is a vector bundle and
(iii) (pr1 ◦ρk)|T∗kM : T∗kM→ M is a vector bundle.

Proof (i) This follows since the local representative of ρk
l is

(x, s,A1, . . . ,Ak) 7→ (x, s,A1, . . . ,Al),

which shows that ρk
l is a surjective submersion and that ρk

l : Jk(M;F) → Jl(M;F) is locally
trivial with respect to the natural coordinate charts.

Let (Ua, φa) and (Ub, φb) beF-charts for M with ( jkUa, jkφa) and ( jkUb, jkφb) the associated
natural charts for Jk(M;F). Parts (ii) and (iii) follow since, by Lemma A.1.1 and our
computations from Lemma 5.2.5, the overlap map relating jkφb( jk f (x)) to jkφa( jk f (x)) are
linear in the coordinate components of the derivatives of f . �

Note that the vector bundle operations in

pr1 ◦ρk : Jk(M;F)→ M and (pr1 ◦ρk)|T∗kM : T∗kM→ M

are both defined by

jk f (x) + jkg(x) = jk( f + g)(x), ajk f (x) = jk(a f )(x).

5.2.3 Algebraic structure

Now that the jet bundles are manifolds, let us examine their algebraic structure. A
key to doing this is the following result.

5.2.7 Lemma (Products of vanishing functions) Let r ∈ {∞, ω,hol} and let F = R if r ∈
{∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let x0 ∈ M, let U be a
neighbourhood of x0, let f1, . . . , fk ∈ Cr(U) be functions vanishing at x0, and define f = f1 · · · fk.
Then the first k− 1 derivatives of f vanish at x0 and the kth derivative of f at x0 (which makes
sense by Proposition 5.1.13) is

df1(x0) � · · · � dfk(x0) ∈ Sk(T∗x0
M).

Moreover,

Sk(T∗x0
M) = spanF(df1(x0) � · · · � dfk(x0) | f1, . . . , fk ∈ Cr(M), f1(x0) = · · · = fk(x0) = 0).

Proof Let us first prove that the first k − 1 derivatives of f vanish at x0. To do so, we use
the general form of the Leibniz Rule from Lemma A.2.2. We apply this result to the case
where n1, . . . ,nk = m = 1, where L(x1, . . . , xk) = x1 · · · xk, and where f1, . . . , f j are (abusing
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notation) the local representatives. One easily sees that the jth derivatives of f vanish at x0
since each term in the sum in Lemma A.2.2 will involve a term with the zeroth derivative
of one of the functions f1, . . . , fk. Since these functions vanish at x0, the derivatives must
also vanish.

Now we prove that the derivative has the stated form. By Corollary F.2.13,

d f1(x0) � · · · � d fk(x0) =
∑
σ∈Sk

d fσ(1)(x0) ⊗ · · · ⊗ d fσ(k)(x0).

Therefore, in an F-chart (U, φ) with coordinates (x1, . . . , xn), we can use Lemma A.2.2 and
the fact that the functions f1, . . . , fk vanish to x0 to compute

Dk( f ◦φ−1)(φ(x0)) =

n∑
j1,..., jk=1

∂k( f1 ◦φ−1
· · · fk ◦φ−1)

∂x j1 · · · ∂x jk
(φ(x0))dx j1 ⊗ · · · ⊗ dx jk

=

n∑
j1,..., jk=1

∑
σ∈Sk

∂( f1 ◦φ−1)

∂x jσ(1)
(φ(x0)) · · ·

∂( fk ◦φ−1)

∂x jσ(k)
(φ(x0))dx jσ(1) ⊗ · · · ⊗ dx jσ(k)

=

n∑
j1,..., jk=1

∑
σ∈Sk

∂( fσ(1) ◦φ−1)

∂x j1
(φ(x0)) · · ·

∂( fσ(k) ◦φ
−1)

∂x jk
(φ(x0))dx j1 ⊗ · · · ⊗ dx jk

= d( f1 ◦φ−1)(φ(x0)) � · · · � d( fk ◦φ−1)(φ(x0)),

as desired.
For the final assertion of the lemma, let (U, φ) be anF-chart about x0 such thatφ(x0) = 0.

For j ∈ {1, . . . ,n} let f j ∈ Cr(U) have the property that f j ◦φ−1(x) = x j for x ∈ U. Since

Sk(T∗x0
M) = spanF(d f1(x0) � · · · � d fk(x0)),

the result follows. �

Let k ∈ Z>0 and let x0 ∈ M, We define a map

εk,x0 : Sk(T∗x0
M)→ Jk

(x0,0)(M;F)

by
εk(d f1(x0) � · · · � d fk(x0)) = jk( f1 · · · fk)(x0),

where f1, . . . , fk all vanish at x0. That this gives a well-defined map on all of Sk(T∗x0
M)

follows from Lemma 5.2.7. The following lemma is then important.

5.2.8 Lemma (Structure of jets of functions vanishing to order k − 1) Let r ∈ {∞, ω,hol}
and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr and let
x0 ∈ M. Then the following sequence of F-vector spaces is exact:

0 // Sk(T∗x0
M)

εk,x0 // Jk
(x0,0)(M;F)

ρk
k−1 // Jk−1

(x0,0)(M;F) // 0
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Proof First let us show that εk,x0 is injective. Let A ∈ Sk(T∗x0
M) be such that εk,x0(A) = 0.

Let ( f ,U) ∈ F r(x0) be such that the first k − 1 derivatives of f at x0 vanish and such that
jk f (x0) = εk,x0(A). Thus jk f (x0) = 0 and so the first k derivatives of f vanish at x0 and so
A = 0, giving the desired injectivity.

By construction, the image of εk,x0 consists of k-jets of functions whose first k − 1
derivatives vanish. Thus image(εk,x0) ⊆ ker(ρk

k−1). Let n be the dimension of the connected
component of M containing x0. By Corollary F.2.10 it follows that dimF(image(εk,x0)) =(n+k−1

n−1
)
. By Corollary F.2.10 and Lemma 5.2.5,

dimF(Jk(M;F)) = n + 1 +

k∑
j=1

(
n + k − 1

n − 1

)
.

Thus dimF(Jk(M;F)) − dimF(Jk−1(M;F)) =
(n+k−1

n−1
)
, showing that image(εk,x0) = ker(ρk

k−1) by
dimension counting and since εk,x0 is injective. Since it is clear that ρk

k−1 is surjective, the
lemma follows. �

Now let us make the preceding pointwise construction global. Note that Sk(T∗M) is
an F-vector bundle over M. Let us denote by σk : Sk(T∗M)→ M the canonical projection.
Note that we then have the pull-back vector bundle ρ∗k−1σk : ρ∗k−1Sk(T∗M) → Jk−1(M;F).
Our constructions above all took place, not in Jk(M;F), but in T∗kM since we were
considering functions which vanish at the point under consideration. Let us make a
mild abuse of notation and denote ρk

k−1 = ρk−1
k |T

∗kM and ρk = (pr1 ◦ρk)|T∗kM. We then
have a mapping εk : ρ∗k−1Sk(T∗M) → T∗kM obtained by extending the above pointwise
construction. Since the local representative of εk in natural coordinates is

((x, 0,A1, . . . ,Ak−1),Ak) 7→ (x, 0,A1, . . . ,Ak−1,Ak),

it follows that εk is a vector bundle mapping of class Cr.

5.2.9 Theorem (Affine bundle structure for jet bundles of functions) Let r ∈ {∞, ω,hol}
and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr and let
k ∈ Z>0. Then the sequence of F-vector bundles

0 // ρ∗k−1Sk(T∗M)
εk // T∗kM

ρk
k−1 // T∗k−1M // 0

is exact, and, as a consequence, ρk
k−1 : T∗kM→ T∗k−1M is an affine bundle of class Cr modelled

on the pull-back vector bundle ρ∗k−1Sk(T∗M).
Proof The exactness of the sequence follows from Lemma 5.2.8. For the final statement
we prove the following general fact.

1 Lemma Let U, V, and W be vector bundles over M. If

0 // U Φ // V Ψ //W // 0

is an exact sequence of vector bundles over idM, then ker(Ψ) is an affine bundle modelled on
image(Φ), where, by definition, v + u = v + Φ(u), i.e., the affine structure of V is addition
restricted to V ×Φ(U).
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Proof The only possibly nontrivial facts to verify are that the affine structure is faithful
and transitive. Let us prove transitivity. Let v1, v2 ∈ ker(Ψ)x. Thus v2 − v1 ∈ ker(Ψ)x and
so, by exactness of the sequence, there exists u ∈ Ux such that v2 − v1 = u, i.e., v2 = v1 + u.
This gives transitivity. Now we prove faithfulness. Let v ∈ Vx and let u1,u2 ∈ Ux be such
that v + Φ(u1) = v + Φ(u2). Thus Φ(u1) = Φ(u2), and injectivity of Φ gives u1 = u2. H

The theorem follows immediately from the lemma. �

The preceding constructions can be generalised when considering general projec-
tions ρk

l : Jk(M;F)→ Jl(M;F). Let us outline how this works since it gives some context
to our constructions above. First we need some notation. Let k, l ∈ Z>0 with k > l
and let x0 ∈ M. Denote by Zk

l,x0
(M;F) the subset of Jk

(x0,0)(M;F) consisting of k-jets of
functions whose first l derivatives vanish at x0. Note that Zk

l,x0
(M;F) is a subspace of

T∗kx0
M. This can be seen by noting that, in natural coordinates, elements of Zk

l,x0
(M;F)

are represented as
(x, 0, 0, . . . , 0,Al+1, . . . ,Ak),

and that this form is preserved by the overlap maps. Define εk
l,x0

: Zk
l,x0

(M;F) →
Jk

(x0,0)(M;F) to be the inclusion. Then one shows that the sequence

0 // Zk
l,x0

(M;F)
εk

l,x0 // Jk
(x0,0)(M;F)

ρk
l // Jl

(x0,0)(M;F) // 0

of vector bundles is exact. What is interesting about the case when l = k − 1 is that the
structure of Zk

l,x0
(M;F) can be understood in terms of the symmetric algebra of T∗x0

M.
We shall see the preceding constructions concerning the affine structure of jets

mirrored in the structure of our other jet bundles below. The point is that the natural
structure of sets of derivatives is not that of a vector bundle, but rather an affine bundle.

There is additional structure of T∗kM that is of interest. As we noted in Lemma 5.2.5,
T∗kx0

M has the structure of a F-vector space, and the vector space operations are

jk f (x0) + jkg(x0) = jk( f + g)(x0), ajk f (x0) = jk(a f )(x0).

It is also true that T∗kx0
M possesses a product defined by

( jk f (x0)) · ( jkg(x0)) = jk( f g)(x0).

That this product makes sense in T∗kx0
M follows from the Leibniz Rule, Lemma A.2.2.

Thus we have the following result.

5.2.10 Theorem (Algebra structure of jets of functions) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let x0 ∈ M, and let
k ∈ Z>0. Then T∗kx0

M has the structure of am F-algebra with the algebra operations being those
inherited from the pointwise algebra operations on functions.
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Moreover, let (U, φ) be an F-chart for M about x0 such that φ(x0) = 0 and let
χ1
φ, . . . , χ

n
φ : U → F be the coordinate functions for the chart. Then the coordinate functions

generate the algebra T∗kx0
M, i.e.,

T∗kx0
M = span

(
jm((χ1

φ)p1 · · · (χn
φ)pn)(x0) | m ∈ {1, . . . ,k}, p1 + · · · + pn = m

)
.

Proof Only the final assertion remains to be proved. Note that, if p1 + · · · + pn = m, the
coordinate representation of jm((χ1

φ)p1 · · · (χn
φ)pn)(x0) is

dxp1
1 � · · · � dxpn

n , (5.5)

following the constructions at the end of Section 1.1.2. As we saw in the proof of Corol-
lary F.2.10, the set {

dxp1
1 � · · · � dxpn

n

∣∣∣ p1 + · · · + pn = m
}

is a basis for Sm(T∗xM). Note that we have the following exact sequence,

T∗kx0
M // T∗k−1

x0
M · · · T∗2x0

M // T∗x0
M // 0

the horizontal arrows being the canonical projections. By Lemma 5.2.8, it follows that

dimF(T∗kx0
M) =

k∑
m=1

dimF(Sm(T∗xM)).

From Lemma 1.1.1 and Corollary F.2.10 and since T∗kx0
M contains all vectors of the

form (5.5), the theorem follows. �

5.2.4 Infinite jets

In this section we define precisely the notion of an infinite jet of an F-valued
function, and consider the algebraic structure of the set of such infinite jets, using
our constructions from Section 5.1.2. It is also possible to consider topological and
differentiable structures on infinite jets, but we will not make use of this structure here.
We shall, however, need to understand the topological structure for infinite jet bundles
in Section 7.5, and in Section 7.5.1 we shall take the requisite measures to describe
this topology. We also refer to [Saunders 1989, Chapter 7].

Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. We let M be a
manifold of class Cr and let x0 ∈ M. Note that

((T∗kx0
M)k∈Z>0 , (ρ

k
l )k,l∈Z>0, k≥l)

is a inverse system of F-algebras. By Lemma 5.1.12, we can define the F-algebra

T∗∞x0
M = inv lim

k→∞
T∗kx0

M

with the associated F-algebra homomorphisms ρ∞k : T∗∞x0
M → T∗kx0

M. If ( f ,U) ∈ F r(x0)
satisfies f (x0) = 0 then we define j∞ f (x0) ∈ T∗∞x0

M by asking that j∞ f (x0)(k) = jk f (x0) for
each k ∈ Z≥0.
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5.3 Jet bundles of curves

In this section we define jet bundles associated with curves. We shall not make
much direct use of this construction, but it will provide a useful way of thinking
about jets between manifolds in Lemma 5.4.1 below. Also, it serves to provide a more
complete picture of the general theory of jets which is useful in and of itself. As in
all of our discussions about jets, we let F ∈ {R,C} and r ∈ {∞, ω,hol} and adopt the
convention that r ∈ {∞, ω} when F = R and r = hol when F = C. We also remind the
reader that we are talking about curves in the general sense of having a domain I as
an open subset of F.

5.3.1 Definitions

We begin with the following definition, using the terminology that a curve at x0 ∈ M
is a curve γ : I → M where I ⊆ F is an open subset for which 0 ∈ I and γ(0) = x0. We
also recall from the preceding section that F r(x0) is the set of pairs ( f ,U) where U is a
neighbourhood of x0 and f ∈ Cr(U).

5.3.1 Definition (Curves agreeing to order k) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω}
and let F = C if r = hol. Let M be a manifold of class Cr, let I, J ⊆ F be open sets for
which 0 ∈ I and 0 ∈ J, let x0 ∈ M, let γ : I → M and let σ : J → M be curves at x0 of class
Cr, and let k ∈ Z≥0. The curves γ and σ agree to order k at x0 if, for every ( f ,U) ∈ F r(x0),

( f ◦γ)( j)(0) = ( f ◦σ)( j)(0),

j ∈ {0, 1, . . . , k}. •

As with functions agreeing to order k, one can readily verify that curves agreeing
to order k have the expected characterisation in coordinates.

5.3.2 Proposition (Agreement to order k in coordinates) Let r ∈ {∞, ω,hol} and let F = R
if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let I, J ⊆ F be open sets
for which 0 ∈ I and 0 ∈ J, let x0 ∈ M, let γ : I → M and let σ : J → M be curves at x0 of class
Cr, and let k ∈ Z≥0. Then the following two statements are equivalent:

(i) γ and σ agree to order k at x0;
(ii) for any F-chart (U, φ) about x0, it holds that

dm(φ ◦γ)
dtm (0) =

dm(φ ◦σ)
dtm (0), m ∈ {0, 1, . . . ,k}.

Proof (i) =⇒ (ii) Let (U, φ) be an F-chart about x0 and let χ j
φ

: U→ F, j ∈ {1, . . . ,n}, be the

coordinate functions for the chart. Let ε ∈ R>0 be such that Bn(ε, φ(x0)) ⊆ φ(U). Then, if γ
and σ agree to order k at x0,

(χ j
φ
◦γ)(l)(0) = (χ j

φ
◦σ)(l)(0), l ∈ {0, 1, . . . , k}.



28/02/2014 5.3 Jet bundles of curves 21

By Lemma A.1.1,

(χ j
φ
◦γ)(m)(0) = ((χ j

φ
◦φ−1) ◦ (φ ◦γ))(m)(0) =

dm(φ ◦γ)
dtm (0), j ∈ {1, . . . ,n}, m ∈ {0, 1, . . . , k},

and similarly for σ. From this, this part of the result follows.
(ii) =⇒ (i) Let (U, φ) be a F-chart about x0 and let ( f ,V) ∈ F r(x0). We have

( f ◦γ)(m)(0) = (( f ◦φ−1) ◦ (φ ◦γ))(m)(0), m ∈ {0, 1, . . . , k},

and similarly for σ. Using this formula, Lemma A.1.1, and the hypotheses of this part of
the proposition, it follows that

( f ◦γ)(m)(0) = ( f ◦σ)(m)(0), m ∈ {0, 1, . . . , k},

giving the result. �

For x0 ∈ M we define an equivalence relation ∼k,x0 in the set of Cr-curves at x0 by
asking that γ ∼k,x0 σ if γ and σ agree to order k at x0. We can now define jets for curves.
For convenience, denote by C r(x0) the set of pair (γ, I) where I ⊆ F is open with 0 ∈ I
and where γ : I→ M is of class Cr and satisfies γ(0) = x0.

5.3.3 Definition (Jets of curves) Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C
if r = hol. Let M be a manifold of class Cr, let x0 ∈ M, and let k ∈ Z≥0.

(i) A k-jet of curves at x0 is an equivalence class in C r(x0) under the equivalence
relation ∼k,x0 .

(ii) The equivalence class of (γ, I) ∈ C r(x0) is denoted by jkγ(0).
(iii) We denote

Tk
x0

M = { jkγ(0) | (γ, I) ∈ C r(x0)}.

(iv) We denote TkM = ∪x∈MTk
xM which we call the bundle of k-jets of curves. By

convention, T0M = M.
(v) For k, l ∈ Z≥0 with k ≥ l we denote by ρk

l : TkM → TlM the projection defined by
ρk

l ( jkγ(0)) = jlγ(0). We abbreviate ρk
0 by ρk. •

Note that, by definition, T1M = TM. Thus T1M is to be thought of as the space of
“velocities” on M. Correspondingly, the sets TkM, k > 1, are to be thought of as spaces
of higher-order derivatives, accelerations, etc.

5.3.2 Geometric structure

As with the bundle of jets of F-valued functions, one can give some structure to
the bundles TkM. We begin by describing the natural differentiable structure of these
sets. We make an abuse of notation regarding charts, using the same notation as in
Lemma 5.2.5. This ought not cause any confusion since the context should make clear
the meaning of the symbols.
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5.3.4 Lemma (Differentiable structure of jet bundles of curves) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let k ∈ Z≥0, and
let (U, φ) be an F-chart for M. Define (jkU, jkφ) by

jkU = {jkγ(0) | γ a curve at x, x ∈ U}

and
jkφ : jkU→ φ(U) × Fn

× · · · × Fn︸         ︷︷         ︸
k times

jkγ(0) 7→ ((φ ◦γ)(0), (φ ◦γ)′(0), . . . , (φ ◦γ)(k)(0)).

Then (jkU, jkφ) is an F-chart for TkM. Moreover, if ((Ua, φa))a∈A is an atlas for M, then
((jkUa, jkφa))a∈A is an atlas for TkM.

Proof We first show that jkφ is a bijection from jkU onto the open setφ(U)×(Fn)k
⊆ (Fn)k+1.

First we show that jkφ is surjective. Let (x,v1, . . . ,vk) ∈ φ(U)× (Fn)k. Let γ be a curve whose
local representative is

t 7→ x + tv1 + · · · +
tk

k!
vk

for t sufficiently small. Note that jkφ( jkγ(0)) = (x,v1, . . . ,vk), giving the desired surjectivity.
To show that jkφ is injective, suppose that jkφ( jkγ(0)) = jkφ( jkσ(0)) for Cr-curves γ and σ
at x ∈ U. This implies that the first k Taylor coefficients at 0 of φ ◦γ and φ ◦σ in coordinates
agree. By Lemma A.1.1 this implies that the first k Taylor coefficients at 0 of f ◦γ and f ◦σ
agree, noting that

f ◦γ = ( f ◦φ−1) ◦ (φ ◦γ),

and similarly for σ. Thus jkγ(0) = jkσ(0), giving bijectivity of jkφ.
For the final assertion of the lemma, we must show that the overlap condition is

satisfied. Thus let (Ua, φa) and (Ub, φb) be F-charts for which Ua ∩ Ub , ∅. It is clear that
jkUa ∩ jkUb , ∅. We suppose without loss of generality that U = Ua = Ub. For an open set
I ⊆ F for which 0 ∈ I, for an open set N ⊆ Fn, and for a Cr-curve γ : I→ N, we denote

jkγ(0) = (γ(0),γ′(0), . . . ,γ(k)(0)).

Note that
jkφb( jkγ(0)) = jk(φb ◦γ)(0) = jk(φa ◦φ

−1
a ◦φb ◦γ)(0). (5.6)

With this in mind, we give a lemma.

1 Sublemma Let ψ : N→ N′ be a Cr-diffeomorphism of open subsets N and N′ of Fn and define a
map

Jkψ : N × (Fn)k
→ N′ × (Fn)k

by asking that

Jkψ(γ(0),γ′(0), . . . ,γ(k)(0)) = (ψ ◦γ(0), (ψ ◦γ)′(0), (ψ ◦γ)(k)(0))

for any Cr-curve γ : I→ N for which 0 ∈ I. Then Jkψ is a diffeomorphism.
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Proof First of all, note that the map Jkψ is well-defined by Lemma A.1.1.
Next we prove that Jkψ is of class Cr. We prove this by induction on k. For k = 1 we

have
J1ψ(x,v) = (ψ(x),Dψ(x) · v),

and the lemma follows immediately in this case. Now suppose that the lemma holds for
k ∈ {1, . . . ,m}. Then, for γ : I→ N with 0 ∈ I, the first m derivatives ofψ ◦γ are Cr-functions
of the first m derivatives of γ by the induction hypothesis. Then, by Lemma A.1.1,

Dm+1(ψ ◦γ)(0) = Dψ(γ(0)) · γ(m+1)(0) + G(γ(0),γ′(0), . . . ,γ(m)(0)),

where the function G is a Cr-function of the first m derivatives of γ. Thus the first m + 1
derivatives of ψ ◦γ are Cr-functions of the first m + 1 derivatives of γ, and this gives that
Jkψ is of class Cr.

Now we prove that Jkψ is invertible. To see this, one needs only to note that the map

(σ(0),σ′(0), . . . ,σ(k)(0)) 7→ (ψ ◦σ(0), (ψ ◦σ)′(0), (ψ ◦σ)(k)(0))

for a Cr-curve σ : I → N′ for which 0 ∈ I, is the inverse of Jkψ. Moreover, this inverse is of
class Cr by the same argument as in the preceding paragraph. H

By (5.6) we have
jkφb( jkγ(0)) = Jk(φb ◦φ

−1
a )( jk(φa ◦γ)(0)).

Since φa ◦φ−1
b is a diffeomorphism, the overlap condition for jet bundle charts holds. �

An F-chart for TkM as in the lemma is called a natural chart. The lemma gives
the following result which further refines the differentiable structure of the jet bundles
TkM.

5.3.5 Theorem (Fibre bundle structure for jet bundles of curves) Let r ∈ {∞, ω,hol} and
let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr and let
k, l ∈ Z≥0 with k ≥ l. Then ρk

l : TkM→ TlM is a locally trivial fibre bundle.
Proof This follows since the local representative of ρk

l is

(x,v1, . . . ,vk) 7→ (x,v1, . . . ,vl),

which shows that ρk
l is a surjective submersion and that ρk

l : TkM → TlM is locally trivial
with respect to the natural coordinate charts. �

5.3.3 Algebraic structure

Note that TkM does not have an obvious vector bundle structure like T∗kM, except
in the case that k = 1, in which case T1M is simply the tangent bundle. (We shall see in
Section 5.4.3 that Tk

xM does possess algebraic structure.) However, TkM does have an
affine structure. First let us describe an injection of TxM into Tk

xM. Let k ∈ Z>0 and let
I ⊆ F be an open set for which 0 ∈ I. Denote

Ik = {t ∈ F | tk
∈ I}
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and let τk : Ik → I be defined by τk(t) = tk

k! . We let x ∈ M and define εk,x : TxM→ Tk
xM by

εk,x(v) = jk(γ ◦τk)(0),

where γ : I → M is a Cr-curve for which γ′(0) = v. Now, to define the affine structure,
let jkγ(0) ∈ Tk

xM and let v ∈ TxM. Suppose that γ has domain I ⊆ F, let J ⊆ F be an open
set for which 0 ∈ J, and let σ : J × I→ M be a Cr-map for which

1. σ(0, t) = γ(t) for every t ∈ I and

2. d
ds

∣∣∣
s=0
σ(s, 0) = v.

Then define Î = I ∩ J and γ̂ : Î→ M by γ̂(t) = σ(τk(t), t). We then define

jkγ(0) + v = jkγ̂(0).

The notation is intended to suggest that jkγ̂(0) is the affine addition of v to jkγ(0). The
proof of the following result contains all of the ingredients to ensure that this makes
sense.

5.3.6 Theorem (Affine bundle structure for jet bundles of curves) Let r ∈ {∞, ω,hol} and
let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifold of class Cr, let k ≥ 0, let
x ∈ M, and let v ∈ TxM. Then the diagram

Tk
xM +v //

ρk
k−1 ##

Tk
xM

ρk
k−1{{

Tk−1
x M

commutes and the map (v, jkγ(0)) 7→ jkγ(0) + v makes (ρk
k−1)−1(jk−1γ(0)) an affine space

modelled on TxM.
Proof Let us first derive the local representative in natural coordinates for jkγ(0) + v. Let
(U, φ) be an F-chart about x and let

(x,v1, . . . ,vk) ∈ φ(U) × (Fn)k, v ∈ Fn

be the coordinate representations for jkγ(0) and v, respectively. The local representative
for σ has the form (s, t) 7→ σ(s, t) for a Cr-map σ : J′ × I′ → φ(U) satisfying

1. σ(0, t) = γ(t) and
2. D1σ(0, 0) = v,

where γ is the local representative of γ. Thus the local representative γ̂ of γ̂ is given by
γ̂(t) = σ(τk(t), t). To facilitate taking derivatives of γ̂, let us denote ιk(t) = (τk(t), t) so that
γ̂ = σ ◦ ιk. Note that

1. Dιk(0, 0) = (0, 1),
2. Dmιk(0, 0) = (0, 0) for m ∈ {2, . . . , k − 1}, and
3. Dkιk(0, 0) = (1, 0).
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Then, by Lemma A.1.1,

Dmγ̂(0) = Dmσ ◦ ιk(0) = Dm
2 σ(0) = vm, m ∈ {1, . . . , k − 1}

and
Dkγ̂(0) = Dkσ ◦ ιk(0) = Dk

2σ(0, 0) + D1σ(0, 0) = vk + v.

Thus the local representative of jkγ(0) + v is

(x,v1, . . . ,vk + v).

This shows that jkγ(0) + v does not depend on the choice of σ. Moreover, the assertions of
the theorem follow directly from the form of this local representative. �

5.4 Jet bundles of maps between manifolds

In this section we consider jets of mappings between manifolds. We do this by
making use of notion of jets of functions and curves as considered in the preceding
sections. As we have done all along in this chapter, we let F ∈ {R,C} and r ∈ {∞, ω,hol}
and adopt the convention that r ∈ {∞, ω} when F = R and r = hol when F = C. We
also use the same symbol d to stand for the real or complex differential. Also, when
we say “curve” we mean a map of class Cr from I where I ⊆ F is open.

5.4.1 Definitions

The key to our construction is the following lemma.

5.4.1 Lemma (Characterisations of kth-order agreement for maps) Let r ∈ {∞, ω,hol}
and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr, let
x0 ∈ M and let y0 ∈ N, let U be a neighbourhood of x0 and let V be a neighbourhood of y0, and
let Φ,Ψ ∈ Cr(U;V) be such that Φ(x0) = Ψ(x0) = y0. Let (U′, φ) be an F-chart for M about x0

and let (V′, ψ) be an F-chart for N about y0 such that Φ(U′),Ψ(U′) ⊆ V′. Then, for k ∈ Z≥0,
the following statements are equivalent:

(i) DmΦφψ(Φ(x0)) = DmΨφψ(Ψ(x0)), m ∈ {0, 1, . . . ,k};
(ii) jk(Φ ◦γ)(0) = jk(Ψ ◦γ)(0) for every (γ, I) ∈ C r(x0);
(iii) jk(f ◦Φ)(x0) = jk(f ◦Ψ)(x0) for every (f,W) ∈ F r(y0).

Proof (i) =⇒ (ii) By Lemma A.1.1, the local representative for the mth derivative of Φ ◦γ
involves the local representatives for the first m derivatives of Φ and γ, and similarly for
Ψ ◦γ. Thus, if the local representatives for the first k derivatives of Φ and Ψ agree, then so
too do the local representative for the first k derivatives of Φ ◦γ and Ψ ◦γ. This part of the
lemma then follows from Proposition 5.3.2.

(ii) =⇒ (iii) Let ( f ,V) ∈ F r(y0). By hypothesis, the curves Φ ◦γ and Ψ ◦γ agree to order
k at y0 for every (γ, I) ∈ Rr(x0). Thus, by definition,

( f ◦ (Φ ◦γ))( j)(0) = ( f ◦ (Ψ ◦γ))( j)(0), j ∈ {0, 1, . . . , k},
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for every (γ, I) ∈ C r(x0). Again by definition, this means that f ◦Φ and f ◦Ψ agree to
order k at y0. But this means, by a final application of the definitions, that jk( f ◦Φ)(x0) =
jk( f ◦Ψ)(x0).

(iii) =⇒ (i) Without loss of generality, suppose that the chart (V′, ψ) has the property
that ψ(Φ(x0)) = 0 ∈ Fm. Also suppose that φ takes values in Fn. Let coordinates in the
chart (U′, φ) be denoted by (x1, . . . , xn) and coordinates in the chart (V′, ψ) be denoted
by (y1, . . . , ym). Let j ∈ {1, . . . , k} and let j1, . . . , jn ∈ Z≥0 be such that j1 + · · · + jn = j.
Let J = ( j1, . . . , jn) and let l ∈ {1, . . . ,m}. Now define fl, j : ψ(V) → F by fl, j(y) = y j

l . By
Lemma A.1.1,

∂ j( fl, j ◦Φ ◦φ−1)

∂x j1
1 · · · ∂x jn

n

(φ(x0)) =
∂ j( fl, j ◦ψ−1)

y j
l

(0)
∂ j(ψ ◦Φ ◦φ−1)l

∂x j1
1 · · · ∂x jn

n

(φ(x0)) = j!
∂ j(ψ ◦Φ ◦φ−1)l

∂x j1
1 · · · ∂x jn

n

(φ(x0)).

A similar expression holds for Ψ. Since jk( fl, j ◦Φ)(x0) = jk( fl, j ◦Ψ)(x0), we may conclude
from Proposition 5.2.3 that

∂ j(ψ ◦Φ ◦φ−1)l

∂x j1
1 · · · ∂x jn

n

(φ(x0)) =
∂ j(ψ ◦Ψ ◦φ−1)l

∂x j1
1 · · · ∂x jn

n

(φ(x0)).

Since this holds for every l ∈ {1, . . . ,m} and for every multi-index J for which |J| ≤ k, this
implication of the lemma follows. �

Let x0 ∈ M, y0 ∈ N, and k ∈ Z≥0. For convenience, let us denote by M r(x0, y0) the
set of triples (Φ,U,V) such that U is a neighbourhood of x0, V is a neighbourhood of
y0, and Φ ∈ Cr(U;V) satisfies Φ(x0) = y0. Based on the above lemma, we can have the
following equivalent characterisations of an equivalence relation ∼k,x0,y0 in M r(x0, y0):
1. Φ ∼k,x0,y0 Ψ if DmΦφψ(Φ(x0)) = DmΨφψ(Ψ(x0)), m ∈ {0, 1, . . . , k}, for all F-charts (U, φ)

for M about x0 and F-charts (V, ψ) for N about y0 such that Φ(U),Ψ(U) ⊆ V;
2. Φ ∼k,x0,y0 Ψ if jk(Φ ◦γ)(0) = jk(Ψ ◦γ)(0) for every (γ, I) ∈ C r(x0);
3. Φ ∼k,x0,y0 Ψ if jk( f ◦Φ)(x0) = jk( f ◦Ψ)(x0) for every ( f ,W) ∈ F r(y0).
This allows us to make the following definition.

5.4.2 Definition (Jets of maps between manifolds) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr, let x0 ∈ M, let
y0 ∈ N, and let k ∈ Z≥0.

(i) A k-jet of maps at (x0, y0) is an equivalence class in M r(x0, y0) under the equiva-
lence relation ∼k,x0,y0 .

(ii) The equivalence class of (Φ,U,V) ∈M r(x0, y0) is denoted by jkΦ(x0).
(iii) We denote

Jk
(x0,y0)(M; N) = { jkΦ(x0) | (Φ,U,V) ∈M r(x0, y0)}.

(iv) We denote Jk(M; N) = ∪(x,y)∈M×NJk
(x0,y0)(M; N). By convention, J0(M; N) = M × N.

(v) For k, l ∈ Z≥0 with k ≥ l we denote by ρk
l : Jk(M; N) → Jl(M; N) the projection

defined by ρk
l ( jkΦ(x0)) = jl(Φ(x0)). We abbreviate ρk

0 by ρk. •
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5.4.2 Geometric structure

Let us describe the differentiable structure for jet bundles of maps between mani-
folds.

5.4.3 Lemma (Differentiable structure of jet bundles of maps between manifolds) Let
r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be
manifolds of class Cr, let k ∈ Z≥0, and let (U, φ) and (V, ψ) be F-charts for M and N. Define
(jk(U × V), jk(φ × ψ)) by

jk(U × V) = {jkΦ(x) | x ∈ U, (Φ,U′,V′) ∈M r(x0,y0)}

and
jk(φ × ψ) : jk(U × V)→ φ(U) × ψ(V) × L1

sym(Fn;Fm) × · · · × Lk
sym(Fn;Fm)

jkΦ(x) 7→ φ(x), ψ ◦Φ(x),DΦφψ(φ(x)), . . . ,DkΦφψ(φ(x)).

Then (jk(U × V), jk(φ × ψ)) is an F-chart for Jk(M; N). Moreover, if ((Ua, φa))a∈A and
((Vb, ψb))b∈B are atlases for M and N, respectively, then ((jk(Ua × Vb), jk(φa × ψb)))(a,b)∈A×B

is an atlas for Jk(M; N).
Proof Let us first show that jk(φ × ψ) is a bijection from jk(U × V) to

φ(U) × ψ(V) × L1
sym(Fn;Fm) × · · · × Lk

sym(Fn;Fm).

To see that jk(φ × ψ) is surjective, let

(x0, y0,A1, . . . ,Ak) ∈ φ(U) × ψ(V) × L1
sym(Fn;Fm) × · · · × Lk

sym(Fn;Fm)

and define Φ : Fn
→ Fm so that Φ(x0) = y0 and D jΦ(x) = A j, j ∈ {1, . . . , k}. This con-

struction was done as part of the proof of Theorem 1.1.4. Let r ∈ R>0 be such that
Bn(r, x0) ⊆ φ(U) and such that Φ(Bn(r, x0)) ⊆ ψ(V). Then the function Φ(x) = Φ(φ(x))
defined on φ−1(Bn(r, x0)) has the property that

jk(φ × ψ)( jkΦ(x)) = (x0, y0,A1, . . . ,Ak).

Next we show that jk(φ × ψ) is injective. Suppose that

jk(φ × ψ)( jkΦ(x)) = jk(φ × ψ)( jkΨ(x)).

This implies that Φ(x) = Ψ(x) and that

D jΦφψ(φ(x)) = D jΨφψ(φ(x)), j ∈ {1, . . . , k}.

By Lemma 5.4.1 it follows that jkΦ(x) = jkΨ(x), and so ( jk(U × V), jk(φ × ψ)) is an F-chart.
Next we verify that the charts satisfy the overlap condition. Let (Ua ×Vb, φa ×ψb) and

(Uα × Uβ, φα × ψβ) be product charts for M × N such that their intersection is nonempty.
Note that

(Ua × Vb) ∩ (Uα × Uβ) = (Ua ∩ Uα) × (Vb ∩ Vβ).
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Thus we may assume, without loss of generality, that Ua = Uα = U and that Vb = Vβ = V.
IfΨ : N→M is a Cr-map between open subsets N ⊆ Fn and M ⊆ Fm, define

jkΨ : N→ N ×M × Lsym(1;Fn)Fm
× · · · × Lsym(k;Fn)Fm

x 7→ (x,Ψ(x),DΨ(x), . . . ,DkΨ(x)).

With this notation we have

jk(φα × ψβ)( jkΦ(x)) = jk(ψβ ◦Φ ◦φ−1
α )(φα(x)) = jk(ψβ ◦ψ−1

b ◦ψb ◦Φ ◦φ
−1
a ◦φa ◦φ

−1
α )(φα(x)).

(5.7)
We now use a lemma.

1 Sublemma Let φ : N→ N′ be a Cr-diffeomorphism of open subsets N,N′ ⊆ Fn, let ψ : M→M′

be a Cr-diffeomorphism of open subsets M,M′ ⊆ Fm, and define a map

Jk(φ × ψ) : N ×M × L1
sym(Fn;Fm) × · · · × Lk

sym(Fn;Fm)

→ N′ ×M′ × L1
sym(Fn;Fm) × · · · × Lk

sym(Fn;Fm)

by asking that

Jk(φ × ψ)(x,Ψ(x),DΨ(x),DkΨ(x))

= (φ(x), (ψ ◦Ψ ◦φ−1)(φ(x)),D(ψ ◦Ψ ◦φ−1)(φ(x)), . . . ,Dk(ψ ◦Ψ ◦φ−1)(φ(x)))

for any Cr-mapΨ : N→M. Then Jk(φ × ψ) is a Cr-diffeomorphism.

Proof By Lemma A.1.1, Jk(φ × ψ) is well-defined.
To prove that the map is of class Cr, we use induction on k. For k = 1 we have

J1(φ × ψ)(x, y,A) = (φ(x), ψ(y),Dψ(y) ◦A ◦Dφ−1(x)).

By the Inverse Function Theorem, it follows that J1(φ×ψ) is of class Cr. Now suppose that
Jk(φ × ψ) is of class Cr for k ∈ {1, . . . ,m}. By Lemma A.1.1,

Dm+1(ψ ◦Ψ ◦φ−1)(φ(x))(v1, . . . ,vm+1)

= Dψ(y) ◦Dm+1Ψ(x) · (Dφ−1(x) · v1, . . . ,Dφ−1(x) · vm+1)
+ G(x, y,DΨ(x), . . . ,DmΨ(x),v1, . . . ,vm+1),

where G is a Cr-function of its arguments. By the induction hypothesis, Jm+1(φ × ψ) is of
class Cr.

To verify that Jk(φ × ψ) is a bijection, we note that its inverse is defined by the map
satisfying

(x′,Φ(x′),DΦ(x′),DkΦ(x′))

= (φ−1(x′), (ψ−1
◦Φ ◦φ)(φ−1(x′)),D(ψ−1

◦Φ ◦φ)(φ−1(x′)), . . . ,Dk(ψ−1
◦Φ ◦φ)(φ−1(x′)))

for a Cr-map Φ : N′ → M′. Moreover, this inverse is of class Cr by the same arguments
used to prove that Jk(φ × ψ) is of class Cr. H
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Rephrasing (5.7), we have

jk(φα × ψβ)( jkΦ(x)) = Jk((φα ◦φ−1
a ) × (ψβ ◦ψ−1

b ))( jk(ψb ◦Φ ◦φ
−1
a )(φa(x))).

By the lemma, this implies that the overlap map is a diffeomorphism. �

As with the analogous charts constructed for jet bundles of curves and functions,
the charts from the preceding lemma are called natural charts for Jk(M; N). Also as in
the previous cases, these charts allow us to give fibre bundle structure to jet bundles.

5.4.4 Theorem (Fibre bundle structure for jet bundles of maps) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr and let
k, l ∈ Z≥0 with k ≥ l. Then

(i) ρk
l : Jk(M; N)→ Jl(M; N) is a locally trivial fibre bundle.

Moreover, if pr1 : M × N→ M and pr2 : M × N→ N are the projections, then
(ii) pr1 ◦ρk : Jk(M; N)→ M and pr1 ◦ρk : Jk(M; N)→ M are locally trivial fibre bundles.

Proof The local representative of ρk
l in natural charts is

(x, y,A1, . . . ,Ak) 7→ (x, y,A1, . . . ,Al).

From this the first assertion follows immediately. The second assertion also follows easily
from this formula for the local representative. �

The following result characterises jets of compositions of maps.

5.4.5 Proposition (Jets commute with composition) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let k ∈ Z≥0. Let M, N, and P be manifolds of
class Cr, let x0 ∈ M, y0 ∈ N, and z0 ∈ P, and let U be a neighbourhood of x0, V be a
neighbourhood of y0, and W be a neighbourhood of z0. If (Φ1,U,V), (Φ2,U,V) ∈M r(x0,y0)
and (Ψ1,V,W), (Ψ2,V,W) ∈M r(y0, z0) satisfy jkΦ1(x0) = jkΦ2(x0) and jkΨ1(y0) = jkΨ2(y0),
then jk(Ψ1 ◦Φ1)(x0) = jk(Ψ2 ◦Φ2)(x0).

Proof Let (γ, I) ∈ C r(x0). Since jkΦ1(x0) = jkΦ2(x0) it follows from Lemma 5.4.1 that

jk(Φ1 ◦γ)(0) = jk(Φ2 ◦γ)(0). (5.8)

We next claim that
jk(Ψ1 ◦Φ1 ◦γ)(0) = jk(Ψ1 ◦Φ2 ◦γ)(0). (5.9)

Indeed, let ( f ,W′) ∈ F r(z0). Since f ◦Ψ1 is of class Cr on some neighbourhood of y0, it
follows from Definition 5.3.1 and (5.8) that

( f ◦Ψ1 ◦Φ1 ◦γ)( j)(0) = ( f ◦Ψ1 ◦Φ2 ◦γ)( j)(0), j ∈ {1, . . . , k}.

Since this holds for every ( f ,W′) ∈ F r(z0), it follows by definition that (5.9) holds. Similarly,

jk(Ψ2 ◦Φ1 ◦γ)(0) = jk(Ψ2 ◦Φ2 ◦γ)(0). (5.10)

Since jkΨ1(y0) = jkΨ2(y0) it follows from Lemma 5.4.1 that

jk(Ψ1 ◦Φ1 ◦γ)(0) = jk(Ψ2 ◦Φ1 ◦γ)(0).
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From the preceding equation and (5.10) we have

jk(Ψ1 ◦Φ1 ◦γ)(0) = jk(Ψ2 ◦Φ2 ◦γ)(0),

giving the result by Lemma 5.4.1 since the preceding equality holds for every curve γ. �

The point of the result is that the composition of jets can be defined to be the jet of
composition. That is, if (Φ,U,V) ∈M r(x0, y0) and (Ψ,V,W) ∈M r(y0, z0), then

jkΨ(y0) ◦ jkΦ(x0) = jk(Ψ ◦Φ)(x0). (5.11)

5.4.3 Algebraic structure

Now let us examine the algebraic structure of jet bundles of maps. This algebraic
structure will come in two parts. The first characterisation relates jets of maps to jets
of functions.

5.4.6 Theorem (Maps between spaces of jets of functions) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr, let x0 ∈ M
and let y0 ∈ N, and let (Φ,U,V) ∈M r(x0,y0). Then the map jkΦ(x0) : T∗ky0

N→ T∗kx0
M defined

by jkΦ(x0)(jkf(y0)) = jk(Φ∗f)(x0) is a well-defined homomorphism of F-algebras.
Moreover, if Ψ : T∗ky0

N → T∗kx0
M is a homomorphism of F-algebras, then there exists

(Φ,U,V) ∈M r(x0,y0) such that Ψ = jkΦ(x0).
Proof First let us verify that jkΦ(x0) is well-defined. Let ( f ,V), (g,V) ∈ F r(y0) be such that
jk f (y0) = jkg(y0). Note that Φ∗ f = f ◦Φ and so Φ∗ f (x0) = 0. By the higher-order Chain Rule,
Lemma A.1.1, the coordinate expression for jk(Φ∗ f )(x0) depends on the first k-derivatives
of f at y0 and Φ at x0. By Proposition 5.2.3 it follows that jk(Φ∗ f )(x0) = jk(Φ∗g)(x0) and so
jkΦ(x0) is well-defined, as claimed.

Let us now verify that jkΦ(x0) is a homomorphism of F-algebras. Using elementary
properties of pull-back [Abraham, Marsden, and Ratiu 1988, Proposition 4.2.3] we have

jkΦ(x0)( jk f (x0) + jkg(x0)) = jkΦ(x0)( jk( f + g)(x0)) = jk(Φ∗( f + g))(x0)
= jk(Φ∗ f )(x0) + jk(Φ∗g)(x0) = jkΦ(x0)( jk f (y0)) + jkΦ(x0)( jkg(y0)).

In like manner we computecorrect?

jkΦ(x0)( jk( f g)(y0)) = jkΦ(x0)( jk f (y0)) jkΦ(x0)( jkg(y0)),

and from this we deduce that jkΦ(x0) is an algebra homomorphism as desired.
Now we verify the last assertion of the theorem. Let (U, φ) be an F-chart for M about

x0 and let (V, ψ) be an F-chart for N about y0. Suppose, without loss of generality, that
φ(x0) = 0 and that ψ(y0) = 0. Suppose that n is the dimension of the connected component
of M containing x0 and that m is the dimension of the connected component of N containing
y0. By Lemma 5.2.5, the charts (U, φ) and (V, ψ) establish F-algebra isomorphisms

φ̂k : T∗kx0
M→ L1

sym(Fn;F) × · · · × Lk
sym(Fn;F),

ψ̂k : T∗ky0
N→ L1

sym(Fm;F) × · · · × Lk
sym(Fm;F).



28/02/2014 5.4 Jet bundles of maps between manifolds 31

Let
Ψ̂ : L1

sym(Fm;F) × · · · × Lk
sym(Fm;F)→ L1

sym(Fn;F) × · · · × Lk
sym(Fn;F)

be given by Ψ̂ = φ̂k ◦Ψ ◦ ψ̂−1
k . Note that Ψ̂ is an F-algebra homomorphism. If (e1, . . . , en)

denotes the standard dual basis for L1
sym(Fn;F) ' (Fn)∗ and if ( f 1, . . . , f m) denotes the

standard dual basis for L1
sym(Fm;F) ' (Fm)∗, then write

Ψ̂( f a, 0, . . . , 0) =
( n∑

j=1

Ψa
je

j, 0, . . . , 0
)
, a ∈ {1, . . . ,m},

noting that the right-hand side will have the given form by the high-order Leibniz Rule,
Lemma A.2.2, since the argument on the left corresponds to a function whose derivatives
of order higher than one vanish, i.e., a linear function. Now define Φ̂ : Fn

→ Fm by

Φ̂(x1, . . . , xn) =
( n∑

j=1

Ψ1
j x

j, . . . ,
n∑

j=1

Ψm
j x j

)
,

and note that
Ψ̂( f a, 0, . . . , 0) = jkΦ̂(0)( f a, 0, . . . , 0), a ∈ {1, . . . ,m}.

Since the elements

(e j, 0, . . . , 0) ∈ L1
sym(Fn;F) × · · · × Lk

sym(Fn;F), j ∈ {1, . . . ,n},

( f a, 0, . . . , 0) ∈ L1
sym(Fm;F) × · · · × Lk

sym(Fm;F), a ∈ {1, . . . ,m},

generate the F-algebras by Theorem 5.2.10, it follows that Ψ̂ = jkΦ̂(0). �

Next let us examine the affine bundle structure of Jk(M; N). To do this we use our
interpretation from the preceding theorem of elements of Jk

(x0,y0)(M; N) as algebra homo-

morphisms. We first establish a mapping from εk,(x0,y0) : Sk(T∗x0
M)⊗Ty0N→ Jk

(x0,y0)(M; N).
We shall first simply state the constructions, keeping in mind that these construc-
tions will be made sense of in the ensuing proofs. Let ( f1,U), . . . , ( fk,U) ∈ F r(x0), let
(g,V) ∈ F r(x0), and let Y be a vector field defined on V. Let us abbreviate f = f1 · · · fk.
We then define a homomorphism H f ,Y : T∗ky0

N→ T∗kx0
M by

H f ,Y( jkg(y0)) = jk(L Yg(y0) f1 · · · fk)(x0).

Let us be clear what the preceding expression means. The function whose k-jet is being
taken at x0 is the function

x 7→ L Yg(y0) f1 · · · fk(x),

with L Yg(y0) being thought of as a scalar.
Now one defines the proposed map εk,(x0,y0) by asking that

εk,(x0,y0)(d f1(x0) � · · · � d fk(x0)) ⊗ Y(y0) = H f ,Y,

understanding that we identify homomorphisms of the F-algebras T∗ky0
N and T∗x0

k M
with Jk

(x0,y0)(M; N). The following lemma gives some meaning to the preceding con-
structions.
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5.4.7 Lemma (k-jets whose first k − 1 derivatives are zero) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr, let
(x0,y0) ∈ M × N, and let k ∈ Z>0. Let Φy0 ∈ C∞(M; N) be defined by Phiy0(x) = y0. Then the
map εk,(x0,y0) : Sk(T∗x0

M)⊗TN→ Jk(M; N) is a well-defined bijection onto (ρk
k−1)−1(jk−1Φy0(x0)).

Proof We adopt the notation preceding the statement of the lemma. We first claim that
H f ,Y is, in fact, a homomorphism of F-algebras. Clearly H f ,Y is F-linear. Also,

H f ,Y( jkg(y0) jkh(y0)) = H f ,Y( jk(gh)(x0)) = L Y(gh)(y0) jk( f1 · · · fk)(x0)

= (L Yg(y0)h(y0) + g(y0)L Yh(y0)) jk( f1 · · · fk)(x0)
= H f ,Y( jkg(y0))h(y0) + g(y0)H f ,Y( jkh(y0)),

as desired.
We next claim that H f ,Y ∈ (ρk

k−1)−1( jk−1Φy0(x0)). By Lemma 5.2.7 it follows that
jk−1(H f ,Y) = 0. Since jk−1Φy0(x0) = 0 we have jk−1(H f ,Y) = jk−1Φy0(x0), as desired.

We next note that H f ,Y is actually a map from T∗1y0
N ' T∗y0

N to T∗kx0
M, and the domain is

regarded as T∗ky0
N by composition on the right with the projection ρk

1. That is, we have

H f ,Y( jkg(y0)) = jk((dg(y0) · Y(y0)) f1 · · · fk)(x0).

With the above discussion in hand, let us make a construction. Let α1, . . . , αk ∈

T∗x0
M and let u ∈ Ty0N. Let ( f j,U) ∈ F r(x0) be such that f j(x0) = 0 and d f j(x0) = α j,

j ∈ {1, . . . , k}, and let Y be a vector field defined on a neighbourhood V of y0 such that
Y(y0) = u. Abbreviate α = (α1, . . . , αk). Then define an element Hα,u of Sk(T∗x0

M) ⊗ Ty0N '
HomF(T∗y0

N; Sk(T∗x0
M)) by

Hα,u = α1 � · · · � αk ⊗ u.

The constructions of the two preceding paragraphs and Lemma 5.2.7 show that

H f ,Y = εk,x0
◦Hα,u ◦ρ

k
1,

where f and Y are related to α and u as above, where εk,x0 : Sk(T∗x0
M)→ T∗kx0

M is as defined
preceding Lemma 5.2.8, and where ρk

1 : T∗ky0
N → T∗y0

N is the projection. By Lemma 5.2.7
and since H f ,Y depends only on the value of Y at y0, it follows that this expression is
independent of the choices made for f and Y. This all shows that εk,(x0,y0) is a well-defined
map from Sk(T∗x0

M) ⊗ Ty0N to (ρk
k−1)−1( jkΦy0(x0)). Moreover, noting that (ρk

k−1)−1( jkΦy0(x0))
is an F-vector space (cf. the proof of Proposition 5.1.13), the map constructed is a linear
map.

Thus it remains to show that this map is a bijection. Suppose that εk,(x0,y0)(A) = 0.
By [Hungerford 1980, Theorem IV.5.11] let us write

A = A1 ⊗ u1 + · · · + Am ⊗ um

for A1, . . . ,Am ∈ Sk(T∗x0
M) and for a basis (u1, . . . ,um) for Ty0N. Thus, by definition of

εk,(x0,y0), we have
(dg(y0) · u1)A1 + · · · + (dg(y0) · um)Am = 0

for every (g,V) ∈ F r(y0). Taking g such that dg(y0) is the ath basis vector dual to (u1, . . . ,um)
gives Aa = 0. Since this can be done for every a ∈ {1, . . . ,m}, we have A = 0. Thus εk,(x0,y0)
is injective. Surjectivity of εk,(x0,y0) follows from Lemma 5.2.7. �

With the preceding constructions, we can state the following result.
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5.4.8 Theorem (Affine structure of jets of maps) Let r ∈ {∞, ω,hol} and let F = R if
r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr and let
k ∈ Z>0. Then ρk

k−1 : Jk(M; N) → Jk−1(M; N) is an affine bundle modelled on the pull-back of
Sk(T∗M) ⊗ TN (as a vector bundle with base M × N) to Jk−1(M; N).

Proof Let (x0, y0) ∈ M × N. Let Ψ ∈ Jk
(x0,y0)(M; N) and let A ∈ Sk(T∗x0

M) ⊗ Ty0N. We regard

Ψ and εk,(x0,y0)(A) as homomorphisms from T∗ky0
N to T∗kx0

M. We have ρk(Ψ( jkg(y0))) = 0 for
every (g,V) ∈ F r(y0) since T∗0x0

M is the equivalence class of functions taking the value zero.
By Lemma 5.4.7 it follows that ρk

k−1(εk,(x0,y0)(A))( jkg(y0)) = 0 for every (g,V) ∈ F r(y0). Thus
Ψ( jkg(y0)) = jkg1(x0) for (g1,U) ∈ F r(x0) vanishing at x0 and εk,(x0,y0)(A)( jkg(y0)) = jkg2(x0)
for (g2,U) ∈ F r(x0) vanishing to order k − 1 at x0. It follows from Lemma A.2.2 that
jk(g1h2)(x0) = 0 and jk(g2h2)(x0) = 0 for every g, h ∈ Cr(N). Therefore,

Ψ( jkg(y0) jkh(y0)) + εk,(x0,y0)(A)( jkg(y0) jkh(y0)) = Ψ( jkg(y0))Ψ( jkh(y0))

= (Ψ( jkg(y0)) + εk,(x0,y0)(A)( jkg(y0))) · (Ψ( jkh(y0)) + εk,(x0,y0)(A)( jkh(y0))).

This shows that the homomorphisms Ψ and εk,(x0,y0)(A) can be added.
Moreover, in natural local coordinates for Jk(M; N) and Sk(T∗M) ⊗ TN, the local repre-

sentatives of Ψ, A, and Ψ + εk,(x0,y0)(A) are

(x, y,A1, . . . ,Ak−1,Ak), (x, y,B), (x, y,A1, . . . ,Ak−1,Ak + B),

respectively, which gives the desired affine bundle structure. �

Let us make a few cautionary remarks about what structure is not possessed by
jets bundles of maps between manifolds.
1. Unlike the fibres T∗kx0

M, the fibres Jk
(x0,y0)(M; N) are not generally F-vector spaces since

there is not generally a notion of addition in the codomain N.
2. As a consequence, one cannot generally write an exact sequence

0 // Sk(T∗x0
M) ⊗ TN

εk,(x0 ,y0)// Jk
(x0,y0)(M; N)

ρk
k−1 // Jk−1

(x0,y0)(M; N) // 0

since the entries in the sequence are not all F-vector spaces.

5.4.4 Infinite jets

Now we shall consider the structure of the infinite jets for maps between manifolds.
Thus we let M and N be Cr-manifolds and let x0 ∈ M and y0 ∈ N. Note that

((Jk
(x0,y0)(M; N))k∈Z>0 , (ρ

k
l )k,l∈Z>0, k≥l)

is an inverse system of sets. We also have the projections ρ∞k : J∞(x0,y0)(M; N) →
Jk

(x0,y0)(M; N). By Lemma 5.1.12 we have the set

J∞(x0,y0)(M; N) = inv lim
k→∞

Jk
(x0,y0)(M; N).

Let us consider now the algebraic structure of the set J∞(x0,y0)(M; N).
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5.4.9 Proposition (Elements of J∞
(x0,y0)

(M; N) as algebra homomorphisms) Let r ∈
{∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds
of class Cr and let x0 ∈ M and y0 ∈ N. If Φ ∈ J∞(x0,y0)(M; N) then the map AΦ : T∗∞y0

N→ T∗∞x0
M

defined by
AΦ(φ)(k) = Φ(k)(φ(k))

is a homomorphism of F-algebras for which the diagram

T∗∞y0
N

Φ ◦ρ∞l

��

Φ ◦ρ∞k

��

AΦ

��
T∗∞x0

M

ρ∞kww ρ∞l ''
T∗kx0

M
ρk

l

// T∗lx0
M

(5.12)

commutes for every k, l ∈ Z>0 with k ≥ l.
Moreover, if A: T∗∞y0

N→ T∗∞x0
M is a homomorphism of F-algebras for which the diagram

T∗∞y0
N

A ◦ρ∞k

||

A ◦ρ∞l

""
T∗ky0

M
ρk

l

// T∗lx0
M

(5.13)

commutes for every k, l ∈ Z>0 with k ≥ l, then there exists Φ ∈ J∞(x0,y0)(M; N) such that A = AΦ.
Proof Using the fact that, for each k ∈ Z>0, Φ(k) is a homomorphism of the F-algebras T∗ky0

N
and T∗kx0

M, one easily verifies that AΦ is a homomorphism ofF-algebras. The commutativity
of the diagram (5.12) follows by direct verification.

For the second assertion of the proposition, since T∗∞y0
N is an F-algebra, since the maps

A ◦ρ∞k , k ∈ Z>0, are F-algebra homomorphisms, and since T∗∞x0
M is an inverse limit, by the

definition of inverse limit there exists a uniqueF-algebra homomorphism B : T∗∞y0
N→ T∗∞x0

M
for which the diagram

T∗∞y0
N

A ◦ρ∞l

��

A ◦ρ∞k

��

B
��

T∗∞x0
M

ρ∞kww ρ∞l ''
T∗kx0

M
ρk

l

// T∗lx0
M

commutes for every k, l ∈ Z>0 such that k ≥ l. Let us verify that B = A. For φ ∈ T∗∞y0
N we

have
B(φ)(k) = B ◦ρ∞k (φ) = A ◦ρ∞k (φ) = A(φ)(k),
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using commutativity of the preceding diagram. Next we must show that A = AΦ for some

Φ ∈ J∞(x0,y0)(M; N). However, this follows by defining Φ : Z>0 →
◦

∪k∈Z>0 T∗k(x0,y0)(M; N) by

Φ(k)( jk f (y0)) = A ◦ρ∞k (φ),

where φ ∈ T∗∞y0
N is such that φ(k) = jk f (y0). By the commutativity of the diagram (5.13) it

follows that this definition of Φ ensures that Φ(k) is a map from T∗ky0
N to T∗kx0

M. Moreover,
using the fact that A and ρ∞k are homomorphisms of F-algebras, one easily verifies that
Φ(k) is a homomorphism of F-algebras. By Theorem 5.4.6 it follows that Φ so defined is
an element of J∞(x0,y0)(M; N). �

Thus J∞(x0,y0)(M; N) is to be thought of as the set of homomorphisms of the F-algebras
J∞y0

N and J∞x0
M, exactly as is the case for finite jets in Theorem 5.4.6. If Φ ∈M r(x0, y0)

then we define j∞Φ(x0) ∈ J∞(x0,y0)(M; N) by j∞Φ(x0)(k) = jkΦ(x0) for each k ∈ Z≥0.

5.5 Jet bundles of vector bundles

In this section we study the jet bundles associated with a vector bundle. Thus
we let πE : E → M be a vector bundle over M. Since sections of E are smooth maps
between manifolds, we can talk about jets of sections as jets of maps in the usual sense.
However, since sections have additional structure, this structure is reflected in the
structure of the jets. In this section we explicate this additional structure.

5.5.1 Definitions

Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. We
consider a vector bundle π : E → M of class Cr. For x0 ∈ M we denote by S r(x0) the
set of pairs (ξ,U) where U is a neighbourhood of x0 and ξ ∈ Γr(E|U). For k ∈ Z≥0 we
define an equivalence relation ∼k,x0 in S r(x0) by saying that ξ ∼k,x0 η if ξ 'k,x0,ξ(x0) η in
M r(x0, ξ(x0)). With this notation we can make the following definition.

5.5.1 Definition (Jet bundles associated with a vector bundle) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let πE : E→ M be a vector bundle of class
Cr, let x0 ∈ M, and let k ∈ Z≥0.

(i) A k-jet of sections at x0 is an equivalence class in S r(x0) under the equivalence
relation ∼k,x0 .

(ii) The equivalence class of (ξ,U) ∈ S r(x0) is denoted by jkξ(x0).
(iii) We denote

Jk
x0

E = { jkξ(x0) | (ξ,U) ∈ S r(x0)}.

(iv) We denote JkE = ∪x∈MJk
xE. By convention, J0E = E.

(v) For k, l ∈ Z≥0 with k ≥ l we denote by ρk
l : JkE → JlE the projection defined by

ρk
l ( jkξ(x0)) = jlξ(x0). We abbreviate ρk

0 by ρk. •
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We can give a coordinate characterisation of the equivalence relation used to char-
acterise jets of sections of vector bundles.

5.5.2 Lemma (Characterisation of sections whose k-jets agree) Let r ∈ {∞, ω,hol} and
let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let πE : E → M be a vector bundle of class
Cr, let x0 ∈ M, let k ∈ Z≥0, and let ξ, η ∈ Γr(E). Let (V, ψ) be an F-vector bundle chart for E
with (U, φ) the induced F-chart for M. Denote by

ξψ = pr2 ◦ψ ◦ξ ◦φ
−1 : φ(U)→ Fm, ηψ = pr2 ◦ψ ◦η ◦φ

−1 : φ(U)→ Fm

the local representatives of ξ and η, respectively, where pr2 : φ(U)×Fm
→ Fm is the projection

onto the second factor and where n,m ∈ Z>0 are such that ψ is Fn
× Fm-valued. Then the

following statements are equivalent:
(i) jkξ(x0) = jkη(x0);
(ii) Djξψ(φ(x0)) = Djηψ(φ(x0)), j ∈ {1, . . . ,k}.

Proof This follows from Lemma 5.4.1, noting that the local representatives of ξ and η, as
maps from M to E, are

x 7→ (x, ξψ(x)), x 7→ (x,ηψ(x)).

Since these local representatives agree in the first component, the lemma follows. �

5.5.2 Geometric structure

Of course we have JkE ⊆ Jk(M; E). It happens that JkE is a submanifold. It is also a
vector bundle.

5.5.3 Lemma (Vector bundle structure of jet bundles of vector bundles) Let r ∈
{∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. If πE : E → M is a
vector bundle of class Cr, then JkE is a Cr-submanifold of Jk(M; E). If (V, ψ) is an F-vector
bundle chart for E with (U, φ) the associated F-chart for M, then define (jkV, jkψ) by

jkV = {jkξ(x) | (ξ,W) ∈ S r(x0), x ∈ V}

and
jkψ : jkV→ φ(U) × Fm

× L1
sym(Fn;Fm) × Lk

sym(Fn;Fm)

jkξ(x) 7→ (φ(x), ξψ(φ(x)),Dξψ(φ(x)), . . . ,Dkξψ(φ(x)),

where n,m ∈ Z>0 are such that ψ is Fn
× Fm-valued and φ is Fn-valued, and ξψ is the local

representative of ξ as in the preceding lemma. Then (jkV, jkψ) is an F-vector bundle chart for
JkE. Moreover, if ((jkVa, jkψa))a∈A is a vector bundle atlas for E, then ((jkVa, jkψa))a∈A is a
vector bundle atlas for JkE. Finally, the vector bundle operations in JkE are given by

jkξ(x) + jkη(x) = jk(ξ + η)(x), ajkξ(x) = jk(aξ)(x),

where ξ, η ∈ Γr(E) and a ∈ F.
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Proof We shall prove the first assertion of the lemma along the way to proving the second
assertion. Associated to the F-vector bundle chart (V, ψ) for E and the corresponding F-
chart (U, φ) for M is the natural chart ( jk(U×V), jk(φ×ψ)) for Jk(M; N) given in Lemma 5.4.3.
If we restrict the domain of this chart to JkE ∩ jk(U × V) we get

jk(φ × ψ)( jkξ(x)) = (φ(x), (φ(x), ξψ(φ(x))), (In,Dξψ(φ(x))), . . . , (0,Dkξψ(φ(x)))),

noting that L j
sym(Fn;Fn

⊕ Fm) ' L j
sym(Fn;Fn) ⊕ L j

sym(Fn;Fm) for j ∈ Z≥0. It is clear that by
mere rearranging of the components in the domain of jk(φ×ψ) we arrive at a submanifold
chart with domain jkV, codomain

φ(U) × Fm
× L1

sym(Fn;Fm) × · · · × Lk
sym(Fn;Fm) × FN

for an appropriate N, and where the first component of the chart is jkψ and the second part
of which is 0 ∈ FN. This establishes that JkE is a submanifold of Jk(M; N) and that ( jkV, jkψ)
is an F-chart. Moreover, it also satisfies the hypotheses for an F-vector bundle chart.

Next we verify that the overlap condition for vector bundle charts is satisfied by the
charts just constructed. Let (Va, ψa) and (Vb, ψb) be overlapping F-vector bundle charts.
For simplicity and without loss of generality, suppose that Va = Vb = V. Denote by (U, φa)
and (U, φb) the corresponding induced F-charts for M. The overlap map for the vector
bundle E that has the form

ψb ◦ψ
−1
a (x,v) = (φb ◦φ

−1
a (x),B(x) · v),

where B : φa(U)→ GL(m;F) is of class Cr with m the fibre dimension of E|U. For ξ ∈ Γr(E)
we write

ξψa(x) = pr2 ◦ψa ◦ξ ◦φ
−1
a (x).

Thus we have

ξψb
(x) = pr2 ◦ψb ◦ψ

−1
a ◦ψa ◦ξ ◦ ◦φ

−1
a ◦φa ◦φ

−1
b (x) = (B(φa ◦φ

−1
b (x)) · ξψa(φa ◦φ

−1
b (x))).

We claim that the jth derivative of ξψb
at x is linear in ξψa and its derivatives up to order

j at φa ◦φb(x). This is proved by induction on j. For j = 0 the assertion is true by virtue of
the vector bundle overlap condition for E. Assume the assertion is true for j = r. Thus

Drξψb
(x) =

r∑
j=0

Lr, j(D jξψa(φa ◦φ
−1
b (x))

where Lr, j ∈ L(L j
sym(Fn;Fm); Lr

sym(Fn;Fm)). Differentiating this expression with respect to x
yields an expression that is linear in the first r + 1 derivatives of ξψa at φa ◦φb(x), as desired.
This shows that the overlap map for the charts for JkE are F-linear in the fibre coordinates,
and so satisfy the compatibility conditions for F-vector bundle charts.

The final assertion of the lemma follows since the local representation of the vector
bundle operations for the vector bundle charts are exactly the local vector bundle opera-
tions. �
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5.5.3 Algebraic structure

Next let us examine the affine structure of jet bundles of vector bundles. Let
πE : E → M be a Cr-vector bundle, let x0 ∈ M, and let (ξ,U) ∈ S r(x0). Let
( f1,U), . . . , ( fk,U) ∈ F r(x0) be such that f j(x0) = 0, j ∈ {1, . . . , k}. Then define
εk,x0 : Sk(T∗x0

M) ⊗ Ex0 → Jk
x0

E by

εk,x0(d f1(x0) � · · · � d fk(x0) ⊗ ξ(x0)) = jk(( f1 · · · fk)ξ)(x0).

The following lemma shows that εk,x0 is well-defined, and gives it some meaning.

5.5.4 Lemma (Structure of jets of sections vanishing to order k − 1) Let r ∈ {∞, ω,hol}
and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let πE : E → M be a vector bundle of
class Cr and let x0 ∈ M. Then the following sequence of F-vector spaces is exact:

0 // Sk(T∗x0
M) ⊗ Ex0

εk,x0 // Jk
x0

E
ρk

k−1 // Jk−1
x0

E // 0

Proof Let us first show that εk,x0 is well-defined. That is, suppose that ( f j,U), (g j,U) ∈
F r(x0) satisfy f j(x0) = g j(x0) = 0 and d f j(x0) = dg j(x0), j ∈ {1, . . . , k}, and suppose
that (ξ,U), (η,U) ∈ S r(x0) satisfy ξ(x0) = η(x0). One then shows, using coordinates,
Lemma A.2.2, and a moments thought, that

jk(( f1 · · · fk)ξ)(x0) = jk((g1 · · · gk)η)(x0).

This shows that εk,x0 is indeed well-defined.
Next we show that εk,x0 is injective. Suppose that εk,x0(A) = 0 for A ∈ Sk(T∗x0

M) ⊗ Ex0 .
Let (u1, . . . ,um) be a basis for Ex0 and, using [Hungerford 1980, Theorem 5.11], write

A = A1 ⊗ u1 + · · · + Am ⊗ um

for A1, . . . ,Am ∈ Sk(T∗x0
M). Since (A1 ⊗ u1, . . . ,Am ⊗ um) are linearly independent, it follows

that A = 0. The exactness of the sequence now follows from the dimension counting
arguments from the proof of Lemma 5.2.8. �

To make the preceding constructions global, we denote by σk : Sk(T∗M) → M the
vector bundle projection and so have the pull-back vector bundle

ρ∗k−1(σk ⊗ πE) : ρ∗k−1(Sk(T∗M) ⊗ E)→ Jk−1E.

We also have the vector bundle mapping

εk : ρ∗k−1(Sk(T∗M) ⊗ E)→ JkE

over Jk−1E. Then the local representative of εk is

((x,v,A1, . . . ,Ak−1), (x,Ak)) 7→ (x,v,A1, . . . ,Ak−1,Ak),

showing that εk is a Cr-vector bundle map. Moreover, we have the following theorem.
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5.5.5 Theorem (Affine bundle structure for jet bundles of vector bundles) Let r ∈
{∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let πE : E → M be
a vector bundle of class Cr and let k ∈ Z>0. Then the sequence of vector bundles

0 // ρ∗k−1(Sk(T∗M) ⊗ E)
εk // JkE

ρk
k−1 // Jk−1E // 0

is exact, and, as a consequence, ρk
k−1 : JkE → Jk−1E is an affine bundle modelled on the

pull-back vector bundle ρ∗k−1(Sk(T∗M) ⊗ E).
Proof This follows immediately from the lemma from the proof of Theorem 5.2.9. �

As we observed with jets of functions following Theorem 5.2.9, the preceding con-
structions can be generalised. We briefly describe this generalisation; the verification
of the validity of all statements is an elementary exercise. Let k, l ∈ Z>0 satisfy k > l, and
let us denote by Zk

l,x0
the k-jets of sections whose l-jets are zero at x0. Let εk

l,x0
: Zk

l,x0
→ Jk

x0
E

be the inclusion. We then have the following exact sequence of F-vector spaces:

0 // Zk
l,x0

εk
l,x0 // Jk

x0
E

ρk
l // Jl

x0
E // 0

The case where l = k − 1 is distinguished since one has an isomorphism of Zk
k−1,x0

with
Sk(T∗x0

M) ⊗ Ex0 .
The following result gives an inclusion that will be of use to us.

5.5.6 Lemma (Character of iterated jet bundles) Let r ∈ {∞, ω,hol} and let F = R if r ∈
{∞, ω} and let F = C if r = hol. Let πE : E → M be a vector bundle of class Cr and let
k, l ∈ Z>0. Then the mapping

ιk,l : Jk+lE→ Jk(JlE)
jk+lξ(x) 7→ jk(jlξ(x))

is a well-defined monomorphism of vector bundles.
Proof We work locally in a vector bundle chart (V, ψ) for E with (U, φ) the associated
chart for M. Let ξ be a local section about x with local representative x 7→ ξ(x). The local
representative of jlξ is then

x 7→ (x, ξ(x),Dξ, . . . ,Dlξ),

and so the local representative of jk( jlξ) is

x 7→ ((x, ξ(x),Dξ, . . . ,Dlξ), (Dξ(x),D2ξ, . . . ,Dl+1ξ), . . . , (Dk+1ξ(x),Dk+2ξ, . . . ,Dk+lξ)).

Therefore, the local representative of ιk,l is given by

(x, ξ0, ξ1, . . . , ξk+l) 7→ ((x, ξ0, ξ1, . . . , ξk+l), (ξ1, ξ2, . . . , ξk+1), . . . , (ξk+1, ξk+2, . . . , ξk+l)).

This shows that ιk,l is well-defined, and keeping in mind the local characterisation of
the vector bundle structure for the domain and codomain, the map is readily seen to be
injective and fibre-linear. �
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5.5.4 Infinite jets

The only remaining jet bundle structure for which we need to understand the
structure of infinite jets is the infinite jet bundle of a vector bundle. Thus letπE : E→ M
be a vector bundle of class Cr and let x0 ∈ M. Note that

((Jk
x0

E)k∈Z>0 , (ρ
k
l )k,l∈Z>0, k≥l)

is an inverse system of F-vector spaces. Thus we can use Lemma 5.1.12 to define the
inverse limit

J∞x0
E = inv lim

k→∞
Jk

x0
E,

which is a F-vector space. We also have the projections ρ∞k : J∞x0
E → Jk

x0
E, k ∈ Z>0. If

(ξ,U) ∈ S r(x0) then we define j∞ξ(x0) ∈ J∞x0
E by j∞ξ(x0)(k) = jkξ(x0) for each k ∈ Z≥0.

5.6 Jets and germs

In this section we clarify the relationship between jets of functions (resp. maps,
sections of vector bundles) with germs of functions (resp. maps, sections of vector
bundles). While our interest is mainly in holomorphic and real analytic objects, for
appropriate context we also present the smooth case. We also take the opportunity to
present the notion of germs in the most general setting we shall need. This general
notion of germ is useful for some of the constructions we shall make .where?

5.6.1 Germs of functions, maps, and sections

We have given definitions of germs in Sections 2.3.1, 4.2.3, and 4.3.3. In this section
we expand these existing definitions and also define for the first time the notion of a
germ of maps between manifolds. The definitions of germs for various objects all have
a similar character, so we make all of our definitions together. We shall mostly use the
notion of germs at a point, but we will on occasion use germs for general sets. Thus
we give the definitions in this general case, but the reader is welcome to substitute the
set “A” with a point x0 in the following definitions if it is initially helpful.

5.6.1 Definition (Equivalence of locally defined functions, maps, and sections) Let
r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be
manifolds of class Cr and let πE : E→ M be a vector bundle of class Cr. Let A ⊆ M be a
set. Let U,V ⊆ M be neighbourhoods of A, let f ∈ Cr(U) and g ∈ Cr(V), let Φ ∈ Cr(U; N)
and Ψ ∈ Cr(V; N), and let ξ ∈ Γr(E|U) and η ∈ Γr(E|V).

(i) The pairs ( f ,U) and (g,V) are equivalent if there exists a neighbourhood W of A
such that W ⊆ U ∩ V and f |W = g|W.

(ii) The pairs (Φ,U) and (Ψ,V) are equivalent if there exists a neighbourhood W of
A such that W ⊆ U ∩ V and Φ|W = Ψ|W.

(iii) The pairs (ξ,U) and (η,V) are equivalent if there exists a neighbourhood W of A
such that W ⊆ U ∩ V and ξ|W = η|W. •
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One readily verifies that the above three notions of equivalence define an equiva-
lence relation on the set of stated pairs. Let us verify this in the case of functions. First
of all, it is clear that ( f ,U) is equivalent to itself by taking W = U. Symmetry of the
relation is also clear from the definition. To verify transitivity of the relation, suppose
that ( f ,U) and (g,V) are equivalent and that (g,V) and (h,W) are equivalent. Taking
W′ = U ∩ V ∩W, we see that W′ is a neighbourhood of x0 for which f |W′ = h|W′.
Thus ( f ,U) is equivalent to (h,W). The equivalence classes under these equivalence
relations are what we are interested in.

5.6.2 Definition (Germs of functions, maps, and sections) Let r ∈ {∞, ω,hol} and let
F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M and N be manifolds of class Cr and
let πE : E → M be a vector bundle of class Cr. Let A ⊆ M, let x0 ∈ M, and let y0 ∈ N.
Consider the equivalence relations from Definition 5.6.1.

(i) The set of Cr-germs of functions on M at A is the set of equivalence classes under
the equivalence relation Definition 5.6.1(i) and is denoted by C r

A,M. We abbreviate
C r

x0,M
= C r

{x0},M
.

(ii) The set of Cr-germs of maps from M to N at A is the set of equivalence classes un-
der the equivalence relation Definition 5.6.1(ii) and is denoted by C r

A(M; N). We
abbreviate C r

x0
(M; N) = C r

{x0}
(M; M). The subset of C r

x0
(M; N) consisting of equiva-

lence classes for pairs (Φ,U) satisfying f (x0) = y0 is denoted by C r
(x0,y0)(M; N).

(iii) The set of Cr-germs of sections of E at A is the set of equivalence classes under the
equivalence relation Definition 5.6.1(iii) and is denoted by G r

A,E. We abbreviate
G r

x0,M
= G r

{x0},M
. •

Let us denote the equivalence class of ( f ,U) (resp. (Φ,U), (ξ,U)) by [( f ,U)]A

(resp. [(Φ,U)]A, [(ξ,U)]A). We use the expected abbreviations [( f ,U)]x0 = [( f ,U)]{x0},
[(Φ,U)]x0 = [(Φ,U)]{x0}, and [(ξ,U)]x0 = [(ξ,U)]{x0}. If [(Φ,U)]x0 ∈ C r

(x0,y0)(M; N) then we
will write the equivalence class as [(Φ,U)](x0,y0) when we wish to emphasise the rôle of
y0.

Let us provide some algebraic structure for germs of functions and sections.

5.6.3 Proposition (Germs of functions are a ring and germs of sections are a module)
Let r ∈ {∞, ω,hol} and let F = R if r ∈ {∞, ω} and let F = C if r = hol. Let M be a manifolds
of class Cr and let πE : E → M be a vector bundle of class Cr. Let A ⊆ M. Then C r

A,M is an
F-algebra with the operations

a[(f,U)]A = [(af,U)]A,

[(f,U)]A + [(g,V)]A = [((f + g)|U ∩ V,U ∩ V)]A,

[(f,U)]A · [(g,V)]A = [((f · g)|U ∩ V,U ∩ V)]A,

and G r
A,E is a module over the ring C r

A,M (forgetting the F-vector space structure) with the
operations

[(ξ,U)]A + [(η,V)]A = [((ξ + η)|U ∩ V,U ∩ V)]A,

[(f,U)]A · [(ξ,V)]A = [((f · ξ)|U ∩ V,U ∩ V)]A.
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Proof This is quite routine. One must first verify that the operations are independent of
representatives of equivalence classes. Let us verify this in the case of the operation of
addition in C r

A,M, noting that the argument is the same for all other operations. Suppose
that [( f ,U′)]A and [( f ′,U′)]A are equivalent and that [(g,V)]A and [(g′,V′)]A are equivalent.
Let W = U ∩ U′ ∩ V ∩ V′. Then W ⊆ U ∩ V and W ⊆ U′ ∩ V′ and

( f + g)|W = ( f ′ + g′)|W.

Thus (( f + g)|U ∩ V,U ∩ V) and (( f ′ + g′)|U′ ∩ V′,U′ ∩ V′) are equivalent.
To complete the proof, one must show that the operations satisfy the ring and module

axioms. This is an elementary verification which we leave to the reader. �

It is also possible to define algebraic structure on C r
(x0,y0)(M; N). This rather mirrors

what we have already done with jets of mappings. First of all, we note that C r
(x0,0)(M;F)

is a subalgebra of C r
x0,M

= C r
x0

(M;F). For [(Φ,U)](x0,y0) we define a mapping from
C r

(y0,0)(N;F) to C r
(x0,0)(M;F) by

[( f ,V)](y0,0) 7→ [( f ◦Φ,U)](x0,0),

where V is a neighbourhood of y0 such that Φ(U) ⊆ V. We leave to the reader the task
of verifying that this mapping is well-defined, and is moreover a homomorphism of
F-algebras.

We shall often abbreviate [( f ,U)]A (resp. [(ξ,U)]A, [(Φ,U)]A) with [ f ]A (resp. [ξ]A,
[Φ]A) when the neighbourhood is not relevant.

5.6.2 Infinite jets and smooth germs

One can certainly imagine that there are relationships between the set of germs at
x0 and the set of jets at x0. However, this relationship is not as easy to characterise as
one might imagine. For example, the situation differs in a significant way between the
smooth and the analytic case.

We begin by considering the smooth case. We first need to define a map from
germs into jets.

5.6.4 Proposition (From germs of smooth maps to jets of maps) Let M and N be smooth
manifolds of positive dimension and let x0 ∈ M and y0 ∈ N. If [(Φ,W)](x0,y0) ∈ C∞(x0,y0)(M; N)
then there exists Ψ ∈ C∞(M; N) such that [(Φ,W)](x0,y0) = [(Ψ,M)](x0,y0). Moreover, the map

J(x0,y0) : [(Φ,W)](x0,y0) 7→ j∞Ψ(x0)

from C∞(x0,y0)(M; N) to J∞(x0,y0)(M; N) is well-defined, surjective, and not injective.
Proof Let (U, φ) be a chart for M about x0 and let (V, ψ) be a chart for N about x0. By
shrinking U if necessary, we assume that U ⊆W and that Φ(U) ⊆ V. For simplicity, assume
that φ(x0) = 0 and ψ(y0) = 0. Let r ∈ R>0 be such that Bn(r, 0) ⊆ φ(U). By the smooth Tietze
Extension Theorem [Abraham, Marsden, and Ratiu 1988, Proposition 5.5.8], letΦ0 : U→ R



28/02/2014 5.6 Jets and germs 43

be such that Φ0|Bn( r
2 , 0) = ψ ◦Φ ◦φ−1 and such that Φ0(x) = 0 for x ∈ φ(U) \ Bn(r, x0). If

Ψ ∈ C∞(M; N) is given by

Ψ(x) =

Φ0(φ(x)), x ∈ U ∩ φ−1(Bn(r, x0)),
y0, otherwise,

then [(Φ,W)](x0,y0) = [(Ψ,M)](x0,y0) since Φ and Ψ obviously agree on the neighbourhood
φ−1(Bn( r

2 , 0)) of x0.
To see that the map J(x0,y0) is well-defined, note that, if Ψ′ ∈ C∞(M; N) is any mapping

such that [(Φ,W)](x0,y0) = [(Ψ′,M)](x0,y0) and if (Φ′,W′) ∈ [(Φ,W)](x0,y0), then j∞Ψ′ depends
only on the values of Ψ′ in any neighbourhood of x0. Since any neighbourhood of x0
contains a neighbourhood on which Φ′ and Ψ′ agree, the well-definedness of J(x0,y0)
follows.

To prove surjectivity of J(x0,y0), let Θ ∈ J∞(x0,y0)(M; N). Let (U, φ) and (V, ψ) be
charts for M about x0 and for N about y0, respectively. For each k ∈ Z≥0 define Ak =
Dk(ψ ◦Φ ◦φ−1)(φ(x0)) ∈ Lk

sym(Rn;Rm) where Φ ∈ C∞(M; N) is such that ρ∞k (Θ) = jkΦ(x0).
By Borel’s Theorem, Theorem 1.1.4, let Ψ ∈ C∞(Rn;Rm) be such that DkΦ(φ(x0)) = Ak
for each k ∈ Z≥0. As in the first part of the proof, let Φ ∈ C∞(M; N) be such that the
local representative of Φ agrees with Ψ in a neighbourhood of φ(x0). It is then clear that
jkΦ(x0) = ρ∞k (Θ) for each k ∈ Z≥0, and so j∞Φ(x0) = Θ.

Now we show that J(x0,y0) is not injective. Since J(x0,y0) depends only on the local
value of maps, we can assume that M = U is a neighbourhood of 0 ∈ Rn and that N = Rm.
Then J(x0,y0) is not injective if and only if there exist smooth maps Φ,Φ′ : U→ Rm whose
derivatives of all orders agree and which differ on any neighbourhood of 0. Equivalently,
J(x0,y0) is not injective if and only if there exists a smooth map Φ : U→ Rm whose germ at
0 is not the germ of the zero map and whose derivatives of all orders vanish. It is easy to
furnish such a map, however. Indeed, define h : U→ R by

h(x) = exp
( 1
1 − ‖x‖2

)
and define Φ(x) = (h(x), . . . , h(x)). It is clear that the germ of Φ at 0 is not that of the
zero function. One can also determine that the derivatives of all orders of Φ vanish at
0, cf. [Abraham, Marsden, and Ratiu 1988, Page 82] and Example 1.1.5. �

A similar construction is possible for section of vector bundles.

5.6.5 Proposition (From germs of smooth sections to jets of sections) Let πE : E → M
be a smooth vector bundle for which M and the fibres of E have positive dimension and let
x0 ∈ M. If [(ξ,W)]x0 ∈ G∞(x0,y0),E then there exists η ∈ Γ∞(E) such that [(ξ,W)]x0 = [(η,M)]x0 .
Moreover, the map

Jx0 : [(ξ,W)]x0 7→ j∞ξ(x0)

from G∞x0,E
to J∞x0

E is well-defined, surjective, and not injective.
Proof The proof here follows closely that of Proposition 5.6.4. We leave to the reader the
exercise of making the appropriate adaptations. �
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Note that, in the smooth case, there is nothing gained, in some sense, by using
germs of objects rather than objects defined globally. Indeed, the first of the assertions
of Propositions 5.6.4 and 5.6.5 is exactly that the information contained in a germ is
obtained from a globally defined object. As we shall see in the next section, this is not
true in the analytic case.

5.6.3 Infinite jets and holomorphic and real analytic germs

Now we consider the ways in which jets are related to germs of holomorphic or
real analytic functions, mappings, and sections of vector bundles. We let F ∈ {R,C}
and r ∈ {ω,hol} and adopt the convention that r = ω when F = R and r = hol when
F = C. Let M and N be manifolds of class Cr and let πE : E→ M be a vector bundle of
class Cr. Let x0 ∈ M and y0 ∈ N. Note that we have inclusions

C r
x0,M ⊆ C∞x0

(M;F), C r
(x0,y0)(M; N) ⊆ C∞(x0,y0)(M; N), G r

x0,E ⊆ G∞x0,E.

Therefore, the maps J(x0,y0) and Jx0 from Propositions 5.6.4 and 5.6.5, respectively,
restrict to C r

(x0,y0)(M; N) and G r
x0,E

. Let us denote the restrictions by Ĵ(x0,y0) and Ĵx0 ,
respectively.

Let us characterise the properties of these restrictions.

5.6.6 Proposition (From germs of holomorphic or analytic maps to jets of maps) Let
F ∈ {R,C}, and let r = ω if F = R and r = hol if F = C. Let M and N be manifolds of class
Cr of positive dimension and let x0 ∈ M and y0 ∈ N. Then the map

Ĵ(x0,y0) : [(Φ,W)](x0,y0) 7→ j∞Ψ(x0)

from C r
(x0,y0)(M; N) to J∞(x0,y0)(M; N) is well-defined, injective, and not surjective.

Proof The well-definedness of Ĵ(x0,y0) follows from the well-definedness of J(x0,y0). Since
the definition of Ĵ(x0,y0) is characterised by local information, we can assume that M = U

is a neighbourhood of 0 ∈ Fn and that N = Fm. Suppose that Φ,Ψ : U′ → Fm are analytic
maps defined on a neighbourhood U′ ⊆ U of 0 and that j∞Φ(0) = j∞Ψ(0). This means that
the derivatives of all orders for Φ and Ψ agree at 0. By Theorem 1.1.17 it follows that the
Taylor series of Φ and Ψ converge. As we showed in Theorem 1.1.17, Φ and Ψ are equal to
their Taylor series in a neighbourhood of 0. In particular, there exists a neighbourhood of 0
on which Φ and Ψ agree, and so j∞Φ(0) = j∞Ψ(0). Thus we have the desired injectivity of
Ĵ(x0,y0). It is clear that Ĵ(x0,y0) is not surjective since the derivatives of analytic mappings
satisfy the derivative conditions prescribed by Theorem 1.1.17. �

An analogous result holds for analytic sections of vector bundles.

5.6.7 Proposition (From germs of analytic sections to jets of sections) Let F ∈ {R,C},
and let r = ω if F = R and r = hol if F = C. Let πE : E → M be a vector bundle of class Cr

for which M and the fibres of E have positive dimension and let x0 ∈ M. Then the map

Ĵx0 : [(ξ,W)]x0 7→ j∞η(x0)

from G r
x0,E

to J∞x0
E is well-defined, injective, and not surjective.
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Proof The proof here follows closely that of Proposition 5.6.6. We leave to the reader the
exercise of making the appropriate adaptations. �

The preceding results clearly point out distinctions between the correspondence
between germs and sections in the smooth and holomorphic and real analytic cases.
Other distinctions are illustrated at the end of Sections 4.2.3 and 4.3.3.

Finally we show that there can be no neighbourhood small enough that jets of
holomorphic or real analytic mappings defined on this neighbourhood recover all jets
of analytic functions.

5.6.8 Example (There is no fixed neighbourhood to which all jets can be extended) We
again take M = N = F and x0 = 0. Let ε ∈ R>0 and define fε : M → N by fε(x) = ε2

ε2+x2 .
Note that fε ∈ Cr(F) but the Taylor series for fε converges only on D1(0, ε). This implies
that, for any neighbourhoodU of 0, there exists an element of J∞0 (F;F) defining a power
series that does not converge on U. •
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