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Preface for series

The subject of signals and systems, particularly linear systems, is by now
an entrenched part of the curriculum in many engineering disciplines, particu-
larly electrical engineering. Furthermore, the offshoots of signals and systems
theory—e.g., control theory, signal processing, and communications theory—are
themselves well-developed and equally basic to many engineering disciplines. As
many a student will agree, the subject of signals and systems is one with a reliance
on tools from many areas of mathematics. However, much of this mathematics is
not revealed to undergraduates, and necessarily so. Indeed, a complete account-
ing of what is involved in signals and systems theory would take one, at times
quite deeply, into the fields of linear algebra (and to a lesser extent, algebra in gen-
eral), real and complex analysis, measure and probability theory, and functional
analysis. Indeed, in signals and systems theory, many of these topics are woven
together in surprising and often spectacular ways. The existing texts on signals
and systems theory, and there is a true abundance of them, all share the virtue
of presenting the material in such a way that it is comprehensible with the bare
minimum background.

Should I bother reading these volumes?

This virtue comes at a cost, as it must, and the reader must decide whether
this cost is worth paying. Let us consider a concrete example of this, so that the
reader can get an idea of the sorts of matters the volumes in this text are intended
to wrestle with. Consider the function of time

f (t) =

e−t, t ≥ 0,
0, t < 0.

In the text (Example 13.1.3–2) we shall show that, were one to represent this
function in the frequency domain with frequency represented by ν, we would get

f̂ (ν) =

∫
R

f (t)e−2iπνt dt =
1

1 + 2iπν
.

The idea, as discussed in Chapter 9, is that f̂ (ν) gives a representation of the
“amount” of the signal present at the frequency ν. Now, it is desirable to be able
to reconstruct f from f̂ , and we shall see in Section 13.2 that this is done via the
formula

f (t)“=”
∫
R

f̂ (ν)e2iπνt dν. (FT)

The easiest way to do the integral is, of course, using a symbolic manipulation
program. I just tried this with Mathematica®, and I was told it could not do the
computation. Indeed, the integral does not converge! Nonetheless, in many tables of
Fourier transforms (that is what the preceding computations are about), we are told
that the integral in (FT) does indeed produce f (t). Are the tables wrong? Well, no.
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But they are only correct when one understands exactly what the right-hand side
of (FT) means. What it means is that the integral converges, in L2(R;C) to f . Let us
say some things about the story behind this that are of a general nature, and apply
to many ideas in signal and system theory, and indeed to applied mathematics as
a whole.
1. The story, it is the story of the L2-Fourier transform, is not completely trivial. It

requires some delving into functional analysis at least, and some background in
integration theory, if one wishes to understand that “L” stands for “Lebesgue,”
as in “Lebesgue integration.” At its most simple-minded level, the theory is
certainly understandable by many undergraduates. Also, at its most simple-
minded level, it raises more questions than it answers.

2. The story, even at the most simple-minded level alluded to above, takes some
time to deliver. The full story takes a lot of time to deliver.

3. It is not necessary to fully understand the story, perhaps even the most simple-
minded version of it, to be a user of the technology that results.

4. By understanding the story well, one is led to new ideas, otherwise completely
hidden, that are practically useful. In control theory, quadratic regulator theory,
and in signal processing, the Kalman filter, are examples of this. missing stuff
has written about this, in fact.

5. The full story of the L2-Fourier transform, and the issues stemming from it,
directly or otherwise, are beautiful.
The nature of the points above, as they relate to this series, are as follows.

Points 1 and 2 indicate why the story cannot be told to all undergraduates, or
even most graduate students. Point 3 indicates why it is okay that the story not
be told to everyone. Point 4 indicates why it is important that the story be told
to someone. Point 5 should be thought of as a sort of benchmark as to whether
the reader should bother with understanding what is in this series. Here is how to
apply it. If one reads the assertion that this is a beautiful story, and their reaction
is, “Okay, but there better be a payoff,” or, “So what?” or, “Beautiful to who?” then
perhaps they should steer clear of this series. If they read the assertion that this
is a beautiful story, and respond with, “Really? Tell me more,” then I hope they
enjoy these books. They were written for such readers. Of course, most readers’
reactions will fall somewhere in between the above extremes. Such readers will
have to sort out for themselves whether the volumes in this series lie on the right
side, for them, of being worth reading. For these readers I will say that this series
is heavily biased towards readers who react in an unreservedly positive manner to
the assertions of intrinsic beauty.

For readers skeptical of assertions of the usefulness of mathematics, an interest-
ing pair of articles concerning this is [RWH:80].missing stuff

What is the best way of getting through this material?

Now that a reader has decided to go through with understanding what is in
these volumes, they are confronted with actually doing so: a possibly nontrivial



iii

matter, depending on their starting point. Let us break down our advice according
to the background of the reader.

I look at the tables of contents, and very little seems familiar. Clearly if nothing seems
familiar at all, then a reader should not bother reading on until they have acquired
an at least passing familiarity with some of the topics in the book. This can be
done by obtaining an undergraduate degree in electrical engineering (or similar),
or pure or applied mathematics.

If a reader already possess an undergraduate degree in mathematics or engi-
neering, then certainly some of the following topics will appear to be familiar: linear
algebra, differential equations, some transform analysis, Fourier series, system the-
ory, real and/or complex analysis. However, it is possible that they have not been
taught in a manner that is sufficiently broad or deep to quickly penetrate the texts
in this series. That is to say, relatively inexperienced readers will find they have
some work to do, even to get into topics with which they have some familiarity.
The best way to proceed in these cases depends, to some extent, on the nature of
one’s background.

I am familiar with some or all of the applied topics, but not with the mathematics. For
readers with an engineering background, even at the graduate level, the depth
with which topics are covered in these books is perhaps a little daunting. The best
approach for such readers is to select the applied topic they wish to learn more
about, and then use the text as a guide. When a new topic is initiated, it is clearly
stated what parts of the book the reader is expected to be familiar with. The reader
with a more applied background will find that they will not be able to get far
without having to unravel the mathematical background almost to the beginning.
Indeed, readers with a typical applied background will typically be lacking a good
background in linear algebra and real analysis. Therefore, they will need to invest
a good deal of effort acquiring some quite basic background. At this time, they will
quickly be able to ascertain whether it is worth proceeding with reading the books
in this series.

I am familiar with some or all of the mathematics, but not with the applied topics. Readers
with an undergraduate degree in mathematics will fall into this camp, and probably
also some readers with a graduate education in engineering, depending on their
discipline. They may want to skim the relevant background material, just to see
what they know and what they don’t know, and then proceed directly to the applied
topics of interest.

I am familiar with most of the contents. For these readers, the series is one of reference
books.

Comments on organisation

In the current practise of teaching areas of science and engineering connected
with mathematics, there is much emphasis on “just in time” delivery of mathe-
matical ideas and techniques. Certainly I have employed this idea myself in the
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classroom, without thinking much about it, and so apparently I think it a good
thing. However, the merits of the “just in time” approach in written work are, in
my opinion, debatable. The most glaring difficulty is that the same mathematical
ideas can be “just in time” for multiple non-mathematical topics. This can even
happen in a single one semester course. For example—to stick to something ger-
mane to this series—are differential equations “just in time” for general system
theory? for modelling? for feedback control theory? The answer is, “For all of
them,” of course. However, were one to choose one of these topics for a “just in
time” written delivery of the material, the presentation would immediately become
awkward, especially in the case where that topic were one that an instructor did
not wish to cover in class.

Another drawback to a “just in time” approach in written work is that, when
combined with the corresponding approach in the classroom, a connection, per-
haps unsuitably strong, is drawn between an area of mathematics and an area
of application of mathematics. Given that one of the strengths of mathematics
is to facilitate the connecting of seemingly disparate topics, inside and outside of
mathematics proper, this is perhaps an overly simplifying way of delivering math-
ematical material. In the “just simple enough, but not too simple” spectrum, we
fall on the side of “not too simple.”

For these reasons and others, the material in this series is generally organised
according to its mathematical structure. That is to say, mathematical topics are
treated independently and thoroughly, reflecting the fact that they have life inde-
pendent of any specific area of application. We do not, however, slavishly follow
the Bourbaki1 ideals of logical structure. That is to say, we do allow ourselves the
occasional forward reference when convenient. However, we are certainly careful
to maintain the standards of deductive logic that currently pervade the subject of
“mainstream” mathematics. We also do not slavishly follow the Bourbaki dictum
of starting with the most general ideas, and proceeding to the more specific. While
there is something to be said for this, we feel that for the subject and intended
readership of this series, such an approach would be unnecessarily off-putting.

1Bourbaki refers to “Nicolas Bourbaki,” a pseudonym given (by themselves) to a group of French
mathematicians who, beginning in mid-1930’s, undertook to rewrite the subject of mathematics.
Their dictums include presenting material in a completely logical order, where no concepts is
referred to before being defined, and starting developments from the most general, and proceeding
to the more specific. The original members include Henri Cartan, André Weil, Jean Delsarte, Jean
Dieudonné, and Claude Chevalley, and the group later counted such mathematicians as Roger
Godement, Jean-Pierre Serre, Laurent Schwartz, Emile Borel, and Alexander Grothendieck among
its members. They have produced eight books on fundamental subjects of mathematics.
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Chapter 1

Set theory and terminology

The principle purpose of this chapter is to introduce the mathematical notation
and language that will be used in the remainder of these volumes. Much of this
notation is standard, or at least the notation we use is generally among a collection
of standard possibilities. In this respect, the chapter is a simple one. However, we
also wish to introduce the reader to some elementary, although somewhat abstract,
mathematics. The secondary objective behind this has three components.
1. We aim to provide a somewhat rigorous foundation for what follows. This

means being fairly clear about defining the (usually) somewhat simple concepts
that arise in the chapter. Thus “intuitively clear” concepts like sets, subsets,
maps, etc., are given a fairly systematic and detailed discussion. It is at least
interesting to know that this can be done. And, if it is not of interest, it can be
sidestepped at a first reading.

2. This chapter contains some results, and many of these require very simple
proofs. We hope that these simple proofs might be useful to readers who are
new to the world where everything is proved. Proofs in other chapters in these
volumes may not be so useful for achieving this objective.

3. The material is standard mathematical material, and should be known by any-
one purporting to love mathematics.

Do I need to read this chapter? Readers who are familiar with standard mathe-
matical notation (e.g., who understand the symbols ∈,⊆,∪,∩,×, f : S→ T,Z>0, and
Z) can simply skip this chapter in its entirety. Some ideas (e.g., relations, orders,
Zorn’s Lemma) may need to be referred to during the course of later chapters, but
this is easily done.

Readers not familiar with the above standard mathematical notation will have
some work to do. They should certainly read Sections 1.1, 1.2, and 1.3 closely
enough that they understand the language, notation, and main ideas. And they
should read enough of Section ?? that they know what objects, familiar to them
from their being human, the symbols Z>0 and Z refer to. The remainder of the
material can be overlooked until it is needed later. •
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Section 1.1

Sets

The basic ingredient in modern mathematics is the set. The idea of a set is
familiar to everyone at least in the form of “a collection of objects.” In this section,
we shall not really give a definition of a set that goes beyond that intuitive one.
Rather we shall accept this intuitive idea of a set, and move forward from there.
This way of dealing with sets is called naı̈ve set theory. There are some problems
with naı̈ve set theory, as described in Section ??, and these lead to a more formal
notion of a set as an object that satisfies certain axioms, those given in Section ??.
However, these matters will not concern us much at the moment.

Do I need to read this section? Readers familiar with basic set theoretic notation
can skip this section. Other readers should read it, since it contains language,
notation, and ideas that are absolutely commonplace in these volumes. •

1.1.1 Definitions and examples

First let us give our working definition of a set. A set is, for us, a well-defined
collection of objects. Thus one can speak of everyday things like “the set of red-
haired ladies who own yellow cars.” Or one can speak of mathematical things like
“the set of even prime numbers.” Sets are therefore defined by describing their
members or elements, i.e., those objects that are in the set. When we are feeling less
formal, we may refer to an element of a set as a point in that set. The set with no
members is the empty set, and is denoted by ∅. If S is a set with member x, then
we write x ∈ S. If an object x is not in a set S, then we write x < S.

1.1.1 Examples (Sets)
1. If S is the set of even prime numbers, then 2 ∈ S.
2. If S is the set of even prime numbers greater than 3, then S is the empty set.
3. If S is the set of red-haired ladies who own yellow cars and if x = Ghandi, then

x < S. •

If it is possible to write the members of a set, then they are usually written
between braces { }. For example, the set of prime numbers less that 10 is written
as {2, 3, 5, 7} and the set of physicists to have won a Fields Prize as of 2005 is
{Edward Witten}.

A set S is a subset of a set T if x ∈ S implies that x ∈ T. We shall write S ⊆ T,
or equivalently T ⊇ S, in this case. If x ∈ S, then the set {x} ⊆ S with one element,
namely x, is a singleton. Note that x and {x} are different things. For example, x ∈ S
and {x} ⊆ S. If S ⊆ T and if T ⊆ S, then the sets S and T are equal, and we write
S = T. If two sets are not equal, then we write S , T. If S ⊆ T and if S , T, then S
is a proper or strict subset of T, and we write S ⊂ T if we wish to emphasise this
fact.



2016/11/26 1.1 Sets 4

1.1.2 Notation (Subsets and proper subsets) We adopt a particular convention for
denoting subsets and proper subsets. That is, we write S ⊆ T when S is a subset
of T, allowing for the possibility that S = T. When S ⊆ T and S , T we write
S ⊂ T. In this latter case, many authors will write S ( T. We elect not to do this.
The convention we use is consistent with the convention one normally uses with
inequalities. That is, one normally writes x ≤ y and x < y. It is not usual to write
x � y in the latter case. •

Some of the following examples may not be perfectly obvious, so may require
sorting through the definitions.

1.1.3 Examples (Subsets)
1. For any set S, ∅ ⊆ S (see Exercise 1.1.1).
2. {1, 2} ⊆ {1, 2, 3}.
3. {1, 2} ⊂ {1, 2, 3}.
4. {1, 2} = {2, 1}.
5. {1, 2} = {2, 1, 2, 1, 1, 2}. •

A common means of defining a set is to define it as the subset of an existing
set that satisfies conditions. Let us be slightly precise about this. A one-variable
predicate is a statement which, in order that its truth be evaluated, needs a single
argument to be specified. For example, P(x) = “x is blue” needs the single argument
x in order that it be decided whether it is true or not. We then use the notation

{x ∈ S | P(x)}

to denote the members x of S for which the predicate P is true when evaluated at
x. This is read as something like, “the set of x’s in S such that P(x) holds.”

For sets S and T, the relative complement of T in S is the set

S − T = {x ∈ S | x < T}.

Note that for this to make sense, we do not require that T be a subset of S. It is a
common occurrence when dealing with complements that one set be a subset of
another. We use different language and notation to deal with this. If S is a set and
if T ⊆ S, then S \ T denotes the absolute complement of T in S, and is defined by

S \ T = {x ∈ S | x < T}.

Note that, if we forget that T is a subset of S, then we have S \T = S−T. Thus S−T
is the more general notation. Of course, if A ⊆ T ⊆ S, one needs to be careful when
using the words “absolute complement of A,” since one must say whether one is
taking the complement in T or the larger complement in S. For this reason, we
prefer the notation we use rather the commonly encountered notation AC or A′ to
refer to the absolute complement. Note that one should not talk about the absolute
complement to a set, without saying within which subset the complement is being
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taken. To do so would imply the existence of “a set containing all sets,” an object
that leads one to certain paradoxes (see Section ??).

A useful set associated with every set S is its power set, by which we mean the
set

2S = {A | A ⊆ S}.

The reader can investigate the origins of the peculiar notation in Exercise 1.1.3.

1.1.2 Unions and intersections

In this section we indicate how to construct new sets from existing ones.
Given two sets S and T, the union of S and T is the set S ∪ T whose members

are members of S or T. The intersection of S and T is the set S∩ T whose members
are members of S and T. If two sets S and T have the property that S ∩ T = ∅, then
S and T are said to be disjoint. For sets S and T their symmetric complement is the
set

S4T = (S − T) ∪ (T − S).

Thus S4T is the set of objects in union S∪T that do not lie in the intersection S∩T.
The symmetric complement is so named because S4T = T4S. In Figure 1.1 we

S T S T

S T S T S T

Figure 1.1 S ∪ T (top left), S ∩ T (top right), S − T (bottom left),
S4T (bottom middle), and T − S (bottom right)

give Venn diagrams describing union, intersection, and symmetric complement.
The following result gives some simple properties of pairwise unions and in-

tersections of sets. We leave the straightforward verification of some or all of these
to the reader as Exercise 1.1.5.

1.1.4 Proposition (Properties of unions and intersections) For sets S and T, the follow-
ing statements hold:

(i) S ∪ ∅ = S;
(ii) S ∩ ∅ = ∅;
(iii) S ∪ S = S;
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(iv) S ∩ S = S;
(v) S ∪ T = T ∪ S (commutativity);
(vi) S ∩ T = T ∩ S (commutativity);
(vii) S ⊆ S ∪ T;
(viii) S ∩ T ⊆ S;
(ix) S ∪ (T ∪U) = (S ∪ T) ∪U (associativity);
(x) S ∩ (T ∩U) = (S ∩ T) ∩U (associativity);
(xi) S ∩ (T ∪U) = (S ∩ T) ∪ (S ∩U) (distributivity);
(xii) S ∪ (T ∩U) = (S ∪ T) ∩ (S ∪U) (distributivity).

We may more generally consider not just two sets, but an arbitrary collection
S of sets. In this case we posit the existence of a set, called the union of the sets
S , with the property that it contains each element of each set S ∈ S . Moreover,
one can specify the subset of this big set to only contain members of sets from S .
This set we will denote by ∪S∈S S. We can also perform a similar construction with
intersections of an arbitrary collection S of sets. Thus we denote by ∩S∈S S the set,
called the intersection of the sets S , having the property that x ∈ ∩S∈S S if x ∈ S for
every S ∈ S . Note that we do not need to posit the existence of the intersection.

Let us give some properties of general unions and intersections as they relate
to complements.

1.1.5 Proposition (De Morgan’s1 Laws) Let T be a set and let S be a collection of subsets of
T. Then the following statements hold:

(i) T \ (∪S∈S S) = ∩S∈S (T \ S);
(ii) T \ (∩S∈S S) = ∪S∈S (T \ S).

Proof (i) Let x ∈ T \ (∪S∈S ). Then, for each S ∈ S , x < S, or x ∈ T \ S. Thus
x ∈ ∩S∈S (T \ S). Therefore, T \ (∪S∈S ) ⊇ ∩S∈S (T \ S). Conversely, if x ∈ ∩S∈S (T \ S),
then, for each S ∈ S , x < S. Therefore, x < ∪S∈S . Therefore, x ∈ T \ (∪S∈S ), thus
showing that ∩S∈S (T \ S) ⊆ T \ (∪S∈S ). It follows that T \ (∪S∈S ) = ∩S∈S (T \ S).

(ii) This follows in much the same manner as part (i), and we leave the details to
the reader. �

1.1.6 Remark (Showing two sets are equal) Note that in proving part (i) of the preced-
ing result, we proved two things. First we showed that T \ (∪S∈S ) ⊆ ∩S∈S (T \ S)
and then we showed that ∩S∈S (T \ S) ⊆ T \ (∪S∈S ). This is the standard means of
showing that two sets are equal; first show that one is a subset of the other, and
then show that the other is a subset of the one. •

For general unions and intersections, we also have the following generalisation
of the distributive laws for unions and intersections. We leave the straightforward
proof to the reader (Exercise 1.1.6)

1Augustus De Morgan (1806–1871) was a British mathematician whose principal mathematical
contributions were to analysis and algebra.
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1.1.7 Proposition (Distributivity laws for general unions and intersections) Let T be
a set and let S be a collection of sets. Then the following statements hold:

(i) T ∩ (∪S∈S S) = ∪S∈S(T ∩ S);
(ii) T ∪ (∩S∈S S) = ∩S∈S(T ∪ S).

There is an alternative notion of the union of sets, one that retains the notion
of membership in the original set. The issue that arises is this. If S = {1, 2} and
T = {2, 3}, then S ∪ T = {1, 2, 3}. Note that we lose with the usual union the fact
that 1 is an element of S only, but that 2 is an element of both S and T. Sometimes
it is useful to retain these sorts of distinctions, and for this we have the following
definition.

1.1.8 Definition (Disjoint union) missing stuff For sets S and T, their disjoint union is
the set

S
◦

∪T = {(S, x) | x ∈ S} ∪ {(T, y) | y ∈ T}. •

Let us see how the disjoint union differs from the usual union.

1.1.9 Example (Disjoint union) Let us again take the simple example S = {1, 2} and
T = {2, 3}. Then S ∪ T = {1, 2, 3} and

S
◦

∪T = {(S, 1), (S, 2), (T, 2), (T, 3)}.

We see that the idea behind writing an element in the disjoint union as an ordered
pair is that the first entry in the ordered pair simply keeps track of the set from
which the element in the disjoint union was taken. In this way, if S∩ T , ∅, we are
guaranteed that there will be no “collapsing” when the disjoint union is formed. •

1.1.3 Finite Cartesian products

As we have seen, if S is a set and if x1, x2 ∈ S, then {x1, x2} = {x2, x1}. There are
times, however, when we wish to keep track of the order of elements in a set. To
accomplish this and other objectives, we introduce the notion of an ordered pair.
First, however, in order to make sure that we understand the distinction between
ordered and unordered pairs, we make the following definition.

1.1.10 Definition (Unordered pair) If S is a set, an unordered pair from S is any subset of
S with two elements. The collection of unordered pairs from S is denoted by S(2). •

Obviously one can talk about unordered collections of more than two elements
of a set, and the collection of subsets of a set S comprised of k elements is denoted
by S(k) and called the set of unordered k-tuples.

With the simple idea of an unordered pair, the notion of an ordered pair is more
distinct.
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1.1.11 Definition (Ordered pair and Cartesian product) Let S and T be sets, and let x ∈ S
and y ∈ T. The ordered pair of x and y is the set (x, y) = {{x}, {x, y}}. The Cartesian
product of S and T is the set

S × T = {(x, y) | x ∈ S, y ∈ T}. •

The definition of the ordered pair seems odd at first. However, it is as it is to
secure the objective that if two ordered pairs (x1, y1) and (x2, y2) are equal, then
x1 = x2 and y1 = y2. The reader can check in Exercise 1.1.8 that this objective is in
fact achieved by the definition. It is also worth noting that the form of the ordered
pair as given in the definition is seldom used after its initial introduction.

Clearly one can define the Cartesian product of any finite number of sets
S1, . . . ,Sk inductively. Thus, for example, S1 × S2 × S3 = (S1 × S2) × S3. Note
that, according to the notation in the definition, an element of S1 × S2 × S3 should
be written as ((x1, x2), x3). However, it is immaterial that we define S1 × S2 × S3

as we did, or as S1 × S2 × S3 = S1 × (S2 × S3). Thus we simply write elements in
S1 × S2 × S3 as (x1, x2, x3), and similarly for a Cartesian product S1 × · · · × Sk. The
Cartesian product of a set with itself k-times is denoted by Sk. That is,

Sk = S × · · · × S︸      ︷︷      ︸
k-times

.

In Section 1.4.2 we shall indicate how to define Cartesian products of more than
finite collections of sets.

Let us give some simple examples.

1.1.12 Examples (Cartesian products)
1. If S is a set then note that S × ∅ = ∅. This is because there are no ordered pairs

from S and ∅. It is just as clear that ∅ × S = ∅. It is also clear that, if S × T = ∅,
then either S = ∅ or T = ∅.

2. If S = {1, 2} and T = {2, 3}, then

S × T = {(1, 2), (1, 3), (2, 2), (2, 3)}. •

Cartesian products have the following properties.

1.1.13 Proposition (Properties of Cartesian product) For sets S, T, U, and V, the following
statements hold:

(i) (S ∪ T) ×U = (S ×U) ∪ (T ×U);
(ii) (S ∩U) × (T ∩ V) = (S × T) ∩ (U × V);
(iii) (S − T) ×U = (S ×U) − (T ×U).

Proof Let us prove only the first identity, leaving the remaining two to the reader. Let
(x,u) ∈ (S∪ T)×U. Then x ∈ S∪ T and u ∈ U. Therefore, x is an element of at least one
of S and T. Without loss of generality, suppose that x ∈ S. Then (x,u) ∈ S × U and so
(x,u) ∈ (S×U)∪ (T×U). Therefore, (S∪T)×U = (S×U)∪ (T×U). Conversely, suppose
that (x,u) ∈ (S×U)∪(T×U). Without loss of generality, suppose that (x,u) ∈ S×U. Then
x ∈ S ⊆ S∪T and u ∈ U. Therefore, (x,u) ∈ (S∪T)×U. Thus (S×U)∪(T×U) ⊆ (S∪T)×U,
giving the result. �
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1.1.14 Remark (“Without loss of generality”) In the preceding proof, we twice em-
ployed the expression “without loss of generality.” This is a commonly encoun-
tered expression, and is frequently used in one of the following two contexts. The
first, as above, indicates that one is making an arbitrary selection, but that were
another arbitrary selection to have been made, the same argument holds. This
is a more or less straightforward use of “without loss of generality.” A more so-
phisticated use of the expression might indicate that one is making a simplifying
assumption, and that this is okay, because it can be shown that the general case
follows easily from the simpler one. The trick is to then understand how the general
case follows from the simpler one, and this can sometimes be nontrivial, depending
on the willingness of the writer to describe this process. •

Exercises

1.1.1 Prove that the empty set is a subset of every set.
Hint: Assume the converse and arrive at an absurdity.

1.1.2 Let S be a set, let A,B,C ⊆ S, and let A ,B ⊆ 2S.
(a) Show that A4∅ = A.
(b) Show that (S \ A)4(S \ B) = A4B.
(c) Show that A4C ⊆ (A4B) ∪ (B4C).
(d) Show that (

∪A∈A A
)
4

(
∪B∈BB

)
⊆ ∪(A,B)∈A ×B(A4B),(

∩A∈A A
)
4

(
∩B∈BB

)
⊆ ∩(A,B)∈A ×B(A4B),

∩(A,B)∈A ×B(A4B) ⊆
(
∩A∈A A

)
4

(
∪B∈BB

)
.

1.1.3 If S is a set with n members, show that 2S is a set with 2n members.
1.1.4 Let S be a set with m elements. Show that the number of subsets of S having

k distinct elements is ( m
k ) = m!

k!(m−k)! .

1.1.5 Prove as many parts of Proposition 1.1.4 as you wish.
1.1.6 Prove Proposition 1.1.7.
1.1.7 Let S be a set with n members and let T be a set with m members. Show that

S
◦

∪T is a set with nm members.
1.1.8 Let S and T be sets, let x1, x2 ∈ S, and let y1, y2 ∈ T. Show that (x1, y1) = (x2, y2)

if and only if x1 = x2 and y1 = y2.
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Section 1.2

Relations

Relations are a fundamental ingredient in the description of many mathematical
ideas. One of the most valuable features of relations is that they allow many useful
constructions to be explicitly made only using elementary ideas from set theory.

Do I need to read this section? The ideas in this section will appear in many
places in the series, so this material should be regarded as basic. However, readers
looking to proceed with minimal background can skip the section, referring back
to it when needed. •

1.2.1 Definitions

We shall describe in this section “binary relations,” or relations between ele-
ments of two sets. It is possible to define more general sorts of relations where
more sets are involved. However, these will not come up for us.

1.2.1 Definition (Relation) A binary relation from S to T (or simply a relation from S
to T) is a subset of S × T. If R ⊆ S × T and if (x, y) ∈ R, then we shall write x R y,
meaning that x and y are related by R. A relation from S to S is a relation in S. •

The definition is simple. Let us give some examples to give it a little texture.

1.2.2 Examples (Relations)
1. Let S be the set of husbands and let T be the set of wives. Define a relation R

from S to T by asking that (x, y) ∈ R if x is married to y. Thus, to say that x and
y are related in this case means to say that x is married to y.

2. Let S be a set and consider the relation R in the power set 2S of S given by

R = {(A,B) | A ⊆ B}.

Thus A is related to B if A is a subset of B.
3. Let S be a set and define a relation R in S by

R = {(x, x) | x ∈ S}.

Thus, under this relation, two members in S are related if and only if they are
equal.

4. Let S be the set of integers, let k be a positive integer, and define a relation Rk in
S by

Rk = {(n1,n2) | n1 − n2 = k}.

Thus, if n ∈ S, then all integers of the form n + mk for an integer m are related to
n. •
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1.2.3 Remark (“If” versus “if and only if”) In part 3 of the preceding example we used
the expression “if and only if” for the first time. It is, therefore, worth saying a few
words about this commonly used terminology. One says that statement A holds
“if and only if” statement B holds to mean that statements A and B are exactly
equivalent. Typically, this language arises in theorem statements. In proving such
theorems, it is important to note that one must prove both that statement A implies
statement B and that statement B implies statement A.

To confuse matters, when stating a definition, the convention is to use “if” rather
than “if and only if”. It is not uncommon to see “if and only if” used in definitions,
the thinking being that a definition makes the thing being defined as equivalent to
what it is defined to be. However, there is a logical flaw here. Indeed, suppose one
is defining “X” to mean that “Proposition A applies”. If one writes “X if and only
if Proposition A applies” then this makes no sense. Indeed the “only if” part of this
statement says that the statement “Proposition A applies” if “X” holds. But “X” is
undefined except by saying that it holds when “Proposition A applies”. •

In the next section we will encounter the notion of the inverse of a function; this
idea is perhaps known to the reader. However, the notion of inverse also applies
to the more general setting of relations.

1.2.4 Definition (Inverse of a relation) If R ⊆ S × T is a relation from S to T, then the
inverse of R is the relation R−1 from T to S defined by

R−1 = {(y, x) ∈ T × S | (x, y) ∈ R}. •

There are a variety of properties that can be bestowed upon relations to en-
sure they have certain useful attributes. The following is a partial list of such
properties.

1.2.5 Definition (Properties of relations) Let S be a set and let R be a relation in S. The
relation R is:

(i) reflexive if (x, x) ∈ R for each x ∈ S;
(ii) irreflexive if (x, x) < R for each x ∈ S;
(iii) symmetric if (x1, x2) ∈ R implies that (x2, x1) ∈ R;
(iv) antisymmetric if (x1, x2) ∈ R and (x2, x1) ∈ R implies that x1 = x2;
(v) transitive if (x1, x2) ∈ R and (x2, x3) ∈ R implies that (x1, x3) ∈ R. •

1.2.6 Examples (Example 1.2.2 cont’d)
1. The relation of inclusion in the power set 2S of a set S is reflexive, antisymmetric,

and transitive.
2. The relation of equality in a set S is reflexive, symmetric, antisymmetric, and

transitive.
3. The relation Rk in the set S of integers is reflexive, symmetric, and transitive. •
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1.2.2 Equivalence relations

In this section we turn our attention to an important class of relations, and we
indicate why these are important by giving them a characterisation in terms of a
decomposition of a set.

1.2.7 Definition (Equivalence relation, equivalence class) An equivalence relation in
a set S is a relation R that is reflexive, symmetric, and transitive. For x ∈ S, the
set of elements of S related to x is denoted by [x], and is the equivalence class of x
with respect to R. An element x′ in an equivalence class [x] is a representative of
that equivalence class. The set of equivalence classes is denoted by S/R (typically
pronounced as S modulo R). •

It is common to denote that two elements x1, x2 ∈ S are related by an equivalence
relation by writing x1 ∼ x2. Of the relations defined in Example 1.2.2, we see that
those in parts 3 and 4 are equivalence relations, but that in part 2 is not.

Let us now characterise equivalence relations in a more descriptive manner. We
begin by defining a (perhaps seemingly unrelated) notion concerning subsets of a
set.

1.2.8 Definition (Partition of a set) A partition of a set S is a collection A of subsets of
S having the properties that

(i) two distinct subsets in A are disjoint and
(ii) S = ∪A∈A A. •

We now prove that there is an exact correspondence between equivalence classes
associated to an equivalence relation.

1.2.9 Proposition (Equivalence relations and partitions) Let S be a set and let R be an
equivalence relation in S. Then the set of equivalence classes with respect to R is a partition
of S.

Conversely, if A is a partition of S, then the relation

{(x1, x2) | x1, x2 ∈ A for some A ∈ A }

is an equivalence relation in S.
Proof We first claim that two distinct equivalence classes are disjoint. Thus we let
x1, x2 ∈ S and suppose that [x1] , [x2]. Suppose that x ∈ [x1] ∩ [x2]. Then x ∼ x1
and x ∼ x2, or, by transitivity of R, x1 ∼ x and x ∼ x2. By transitivity of R, x1 ∼ x2,
contradicting the fact that [x1] , [x2]. To show that S is the union of its equivalence
classes, merely note that, for each x ∈ S, x ∈ [x] by reflexivity of R.

Now let A be a partition and defined R as in the statement of the proposition.
Let x ∈ S and let A be the element of A that contains x. Then clearly we see that
(x, x) ∈ R since x ∈ A. Thus R is reflexive. Next let (x1, x2) ∈ R and let A be the element
of A such that x1, x2 ∈ A. Clearly then, (x2, x1) ∈ R, so R is symmetric. Finally, let
(x1, x2), (x2, x3 ∈ R. Then there are elements A12,A23 ∈ A such that x1, x2 ∈ A12 and
such that x2, x3 ∈ A23. Since A12 and A23 have the point x2 in common, we must have
A12 = A23. Thus (x1, x3 ∈ A12 = A23, giving transitivity of R. �
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Exercises

1.2.1 In a set S define a relation R = {(x, y) ∈ S × S | x = y}.
(a) Show that R is an equivalence relation.
(b) Show that S/R = S.
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Section 1.3

Maps

Another basic concept in all of mathematics is that of a map between sets.
Indeed, many of the interesting objects in mathematics are maps of some sort. In
this section we review the notation associated with maps, and give some simple
properties of maps.

Do I need to read this section? The material in this section is basic, and will be
used constantly throughout the series. Unless you are familiar already with maps
and the notation associated to them, this section is essential reading. •

1.3.1 Definitions and notation

We begin with the definition.

1.3.1 Definition (Map) For sets S and T, a map from S to T is a relation R from S to
T having the property that, for each x ∈ S, there exists a unique y ∈ T such that
(x, y) ∈ R. The set S is the domain of the map and the set T is the codomain of the
map. The set of maps from S to T is denoted by TS.2 •

By definition, a map is a relation. This is not how one most commonly thinks
about a map, although the definition serves to render the concept of a map in terms
of concepts we already know. Suppose one has a map from S to T defined by a
relation R. Then, given x ∈ S, there is a single y ∈ T such that x and y are related.
Denote this element of T by f (x), since it is defined by x. When one refers to a
map, one more typically refers to the assignment of the element f (x) ∈ T to x ∈ S.
Thus one refers to the map as f , leaving aside the baggage of the relation as in the
definition. Indeed, this is how we from now on will think of maps. The definition
above does, however, have some use, although we alter our language, since we are
now thinking of a map as an “assignment.” We call the set

graph( f ) = {(x, f (x)) | x ∈ S} ⊆ S × T

(which we originally called the map in Definition 1.3.1) the graph of the map
f : S→ T.

If one wishes to indicate a map f with domain S and codomain T, one typically
writes f : S→ T to compactly express this. If one wishes to define a map by saying
what it does, the notation

f : S→ T
x 7→ what x gets mapped to

2The idea behind this notation is the following. A map from S to T assigns to each point in S
a point in T. If S and T are finite sets with k and l elements, respectively, then there are l possible
values that can be assigned to each of the k elements of S. Thus the set of maps has lk elements.
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is sometimes helpful. Sometimes we shall write this in the text as f : x 7→
“what x gets mapped to”. Note the distinct uses of the symbols “→” and “ 7→”.

1.3.2 Notation (f versus f(x)) Note that a map is denoted by “ f ”. It is quite common to
see the expression “consider the map f (x)”. Taken literally, these words are difficult
to comprehend. First of all, x is unspecified. Second of all, even if x were specified,
f (x) is an element of T, not a map. Thus it is considered bad form mathematically
to use an expression like “consider the map f (x)”. However, there are times when
it is quite convenient to use this poor notation, with an understanding that some
compromises are being made. For instance, in this volume, we will be frequently
dealing simultaneously with functions of both time (typically denoted by t) and
frequency (typically denoted by ν). Thus it would be convenient to write “consider
the map f (t)” when we wish to write a map that we are considering as a function
of time, and similarly for frequency. Nonetheless, we shall refrain from doing this,
and shall consistently use the mathematically precise language “consider the map
f ”. •

The following is a collection of examples of maps. Some of these examples
are not just illustrative, but also define concepts and notation that we will use
throughout the series.

1.3.3 Examples (Maps)
1. There are no maps having ∅ as a domain or codomain since there are no elements

in the empty set.
2. If S is a set and if T ⊆ S, then the map iT : T → S defined by iT(x) = x is called

the inclusion of T in S.
3. The inclusion map iS : S → S of a set S into itself (since S ⊆ S) is the identity

map, and we denote it by idS.
4. If f : S → T is a map and if A ⊆ S, then the map from A to T which assigns to

x ∈ A the value f (x) ∈ T is called the restriction of f to A, and is denoted by
f |A : A→ T.

5. If S is a set with A ⊆ S, then the map χA from S to the integers defined by

χA(x) =

1, x ∈ A,
0, x < A,

is the characteristic function of A.
6. If S1, . . . ,Sk are sets, if S1 × · · · × Sk is the Cartesian product, and if j ∈ {1, . . . , k},

then the map
pr j : S1 × · · · × S j × · · · × Sk → S j

(x1, . . . , x j, . . . , xk) 7→ x j

is the projection onto the jth factor.
7. If R is an equivalence relation in a set S, then the map πR : S→ S/R defined by

πR(x) = [x] is called the canonical projection associated to R.
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8. If S, T, and U are sets and if f : S→ T and g : T→ U are maps, then we define a
map g ◦ f : S→ U by g ◦ f (x) = g( f (x)). This is the composition of f and g.

9. If S and T1, . . . ,Tk are sets then a map f : S→ T1 × · · · × Tk can be written as

f (x) = ( f1(x), . . . , fk(x))

for maps f j : S→ T j, j ∈ {1, . . . , k}. In this case we will write f = f1 × · · · × fk. •

Next we introduce the notions of images and preimages of points and sets.

1.3.4 Definition (Image and preimage) Let S and T be sets and let f : S→ T be a map.
(i) If A ⊆ S, then f (A) = { f (x) | x ∈ A}.
(ii) The image of f is the set image( f ) = f (S) ⊆ T.
(iii) If B ⊆ T, then f −1(B) = {x ∈ S | f (x) ∈ B} is the preimage of B under f . If

B = {y} for some y ∈ T, then we shall often write f −1(y) rather that f −1({y}). •

Note that one can think of f as being a map from 2S to 2T and of f −1 as being a
map from 2T to 2S. Here are some elementary properties of f and f −1 thought of in
this way.

1.3.5 Proposition (Properties of images and preimages) Let S and T be sets, let f : S→ T
be a map, let A ⊆ S and B ⊆ T, and let A and B be collections of subsets of S and T,
respectively. Then the following statements hold:

(i) A ⊆ f−1(f(A));
(ii) f(f−1(B)) ⊆ B;
(iii) ∪A∈A f(A) = f(∪A∈A A);
(iv) ∪B∈Bf−1(B) = f−1(∪B∈BB);
(v) ∩A∈A f(A) = f(∩A∈A A);
(vi) ∩B∈Bf−1(B) = f−1(∩B∈BB).

Proof We shall prove only some of these, leaving the remainder for the reader to
complete.

(i) Let x ∈ A. Then x ∈ f−1( f (x)) since f (x) = f (x).
(iii) Let y ∈ ∪A∈A f (A). Then y = f (x) for some x ∈ ∪A∈A A. Thus y ∈ f (∪A∈A A).

Conversely, let y ∈ f (∪A∈A A). Then, again, y = f (x) for some x ∈ ∪A∈A A, and so
y ∈ ∪A∈A f (A).

(vi) Let x ∈ ∩B∈B f−1(B). Then, for each B ∈ B, x ∈ f−1(B). Thus f (x) ∈ B for all
B ∈ B and so f (x) ∈ ∩B∈BB. Thus x ∈ f−1(∩B∈BB). Conversely, if x ∈ f−1(∩B∈BB), then
f (x) ∈ B for each B ∈ B. Thus x ∈ f−1(B) for each B ∈ B, or x ∈ ∩B∈B f−1(B). �

1.3.2 Properties of maps

Certain basic features of maps will be of great interest.
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1.3.6 Definition (Injection, surjection, bijection) Let S and T be sets. A map f : S→ T
is:

(i) injective, or an injection, if f (x) = f (y) implies that x = y;
(ii) surjective, or a surjection, if f (S) = T;
(iii) bijective, or a bijection, if it is both injective and surjective. •

1.3.7 Remarks (One-to-one, onto, 1–1 correspondence)
1. It is not uncommon for an injective map to be said to be 1–1 or one-to-one, and

that a surjective map be said to be onto. In this series, we shall exclusively use
the terms injective and surjective, however. These words appear to have been
given prominence by their adoption by Bourbaki (see footnote on page iv).

2. If there exists a bijection f : S→ T between sets S and T, it is common to say that
there is a 1–1 correspondence between S and T. This can be confusing if one is
familiar with the expression “1–1” as referring to an injective map. The words
“1–1 correspondence” mean that there is a bijection, not an injection. In case S
and T are in 1–1 correspondence, we shall also say that S and T are equivalent. •

Closely related to the above concepts, although not immediately obviously so,
are the following notions of inverse.

1.3.8 Definition (Left-inverse, right-inverse, inverse) Let S and T be sets, and let f : S→
T be a map. A map g : T→ S is:

(i) a left-inverse of f if g ◦ f = idS;
(ii) a right-inverse of f if f ◦ g = idT;
(iii) an inverse of f if it is both a left- and a right-inverse. •

In Definition 1.2.4 we gave the notion of the inverse of a relation. Functions,
being relations, also possess inverses in the sense of relations. We ask the reader to
explore the relationships between the two concepts of inverse in Exercise 1.3.7.

The following result relates these various notions of inverse to the properties of
injective, surjective, and bijective.

1.3.9 Proposition (Characterisation of various inverses) Let S and T be sets and let
f : S→ T be a map. Then the following statements hold:

(i) f is injective if and only if it possesses a left-inverse;
(ii) f is surjective if and only if it possess a right-inverse;
(iii) f is bijective if and only if it possesses an inverse;
(iv) there is at most one inverse for f;
(v) if f possesses a left-inverse and a right-inverse, then these necessarily agree.

Proof (i) Suppose that f is injective. For y ∈ image( f ), define g(y) = x where f−1(y) =
{x}, this being well-defined since f is injective. For y < image( f ), define g(y) = x0 for
some x0 ∈ S. The map g so defined is readily verified to satisfy g ◦ f = idS, and so is
a left-inverse. Conversely, suppose that f possesses a left-inverse g, and let x1, x2 ∈ S
satisfy f (x1) = f (x2). Then g ◦ f (x1) = g ◦ f (x2), or x1 = x2. Thus f is injective.
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(ii) Suppose that f is surjective. For y ∈ T let x ∈ f−1(y) and define g(y) = x.3 With
g so defined it is easy to see that f ◦ g = idT, so that g is a right-inverse. Conversely,
suppose that f possesses a right-inverse g. Now let y ∈ T and take x = g(y). Then
f (x) = f ◦ g(y) = y, so that f is surjective.

(iii) Since f is bijective, it possesses a left-inverse gL and a right-inverse gR. We
claim that these are equal, and each is actually an inverse of f . We have

gL = gL ◦ idT = gL ◦ f ◦ gR = idS ◦ gR = gR,

showing equality of gL and gR. Thus each is a left- and a right-inverse, and therefore
an inverse for f .

(iv) Let g1 and g2 be inverses for f . Then, just as in part (iii),

g1 = g1 ◦ idT = g1 ◦ f ◦ g2 = idS ◦ g2 = g2.

(v) This follows from the proof of part (iv), noting that there we only used the facts
that g1 is a left-inverse and that g2 is a right-inverse. �

In Figure 1.2 we depict maps that have various of the properties of injectivity,

Figure 1.2 A depiction of maps that are injective but not sur-
jective (top left), surjective but not injective (top right), and
bijective (bottom)

surjectivity, or bijectivity. From these cartoons, the reader may develop some
intuition for Proposition 1.3.9. In the case that f : S → T is a bijection, we denote
its unique inverse by f −1 : T → S. The confluence of the notation f −1 introduced
when discussing preimages is not a problem, in practice.

3Note that the ability to choose an x from each set f−1(y) requires the Axiom of Choice (see
Section ??).
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It is worth mentioning at this point that the characterisation of left- and right-
inverses in Proposition 1.3.9 is not usually very helpful. Normally, in a given
setting, one will want these inverses to have certain properties. For vector spaces,
for example, one may want left- or right-inverses to be linear (see missing stuff ), and
for topological spaces, for another example, one may want a left- or right-inverse
to be continuous (see Chapter ??).

1.3.3 Graphs and commutative diagrams

Often it is useful to be able to understand the relationship between a number of
maps by representing them together in a diagram. We shall be somewhat precise
about what we mean by a diagram by making it a special instance of a graph.
We shall encounter graphs in missing stuff , although for the present purposes
we merely use them as a means of making precise the notion of a commutative
diagram.

First the definitions for graphs.

1.3.10 Definition (Graph) A graph is a pair (V,E) where V is a set, an element of which
is called a vertex, and E is a subset of the set V(2) of unordered pairs from V, an
element of which is called an edge. If {v1, v2} ∈ E is an edge, then the vertices v1 and
v2 are the endvertices of this edge. •

In a graph, it is the way that vertices and edges are related that is of interest. To
capture this structure, the following language is useful.

1.3.11 Definition (Adjacent and incident) Let (V,E) be a graph. Two vertices v1, v2 ∈ V
are adjacent if {v1, v2} ∈ E and a vertex v ∈ V and an edge e ∈ E are incident if there
exists v′ ∈ V such that e = {v, v′}. •

One typically represents a graph by placing the vertices in some sort of array on
the page, and then drawing a line connecting two vertices if there is a corresponding
edge associated with the two vertices. Some examples make this process clear.

1.3.12 Examples (Graphs)
1. Consider the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}.

There are many ways one can lay out the vertices on the page, but for this
diagram, it is most convenient to arrange them in a square. Doing so gives rise
to the following representation of the graph:

1 2

3 4

The vertices 1 and 2 are adjacent, but the vertices 1 and 4 are not. The vertex 1
and the edge {1, 2} are incident, but the vertex 1 and the edge {3, 4} are not.
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2. For the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {2, 3}, {3, 4}}

we have the representation

1 2 3 4

Note that we allow the same edge to appear twice, and we allow for an edge to
connect a vertex to itself. We observe that the vertices 2 and 3 are adjacent, but
the vertices 1 and 3 are not. Also, the vertex 3 and the edge {2, 3} are incident,
but the vertex 4 and the edge {1, 2} are not. •

Often one wishes to attach “direction” to vertices. This is done with the follow-
ing notion.

1.3.13 Definition (Directed graph) A directed graph, or digraph, is a pair (V,E) where V
is a set an element of which is called a vertex and E is a subset of the set V × V of
ordered pairs from V an element of which is called an edge. If e = (v1, v2) ∈ E is an
edge, then v1 is the source for e and v2 is the target for e. •

Note that every directed graph is certainly also a graph, since one can assign an
unordered pair to every ordered pair of vertices.

The examples above of graphs are easily turned into directed graphs, and we
see that to represent a directed graph one needs only to put a “direction” on an
edge, typically via an arrow.

1.3.14 Examples (Directed graphs)
1. Consider the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}.

A convenient representation of this directed graph is as follows:

1 //

��

2

��
3 // 4

2. For the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}

we have the representation

199 // 2 // 3``
// 4 •

Of interest in graph theory is the notion of connecting two, perhaps nonadjacent,
vertices with a sequence of edges (the notion of a sequence is familiar, but will be
made precise in Section 1.4.3). This is made precise as follows.
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1.3.15 Definition (Path)
(i) If (V,E) is a graph, a path in the graph is a sequence (a j) j∈{1,...,k} in V ∪ E with

the following properties:

(a) a1, ak ∈ V;
(b) for j ∈ {1, . . . , k − 1}, if a j ∈ V (resp. a j ∈ E), then a j+1 ∈ E (resp. a j+1 ∈ V).

(ii) If (V,E) is a directed graph, a path in the graph is a sequence (a j) j∈{1,...,k} in V∪E
with the following properties:

(a) (a j) j∈{1,...,k} is a path in the graph associated to (V,E);
(b) for j ∈ {2, . . . , k − 1}, if a j ∈ E, then a j = (a j−1, a j+1).

(iii) If (a j) j∈{1,...,k} is a path, the length of the path is the number of edges in the path.
(iv) For a path (a j) j∈{1,...,k}, the source is the vertex a1 and the target is the vertex

ak. •

Let us give some examples of paths for graphs and for directed graphs.

1.3.16 Examples (Paths)
1. For the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}},

there are an infinite number of paths. Let us list a few:

(a) (1), (2), (3), and (4);
(b) (4, {3, 4}, 3, {1, 3}, 1);
(c) (1, {1, 2}, 2, {2, 4}, 4, {3, 4}, 3, {1, 3}, 1);
(d) (1, {1, 2}, 2, {1, 2}, 1, {1, 2}, 2, {1, 2}, 1).

Note that for this graph there are infinitely many paths.
2. For the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)},

there are a finite number of paths:

(a) (1), (2), (3), and (4);
(b) (1, (1, 2), 2);
(c) (1, (1, 2), 2, (2, 4), 4);
(d) (1, (1, 3), 3);
(e) (1, (1, 3), 3, (2, 4), 4);
(f) (2, (2, 4));

(g) (3, (3, 4), 4).

3. For the graph (V,E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {2, 3}, {3, 4}}

some examples of paths are:
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(a) (1), (2), (3), and (4);
(b) (1, {1, 2}, 2, {2, 3}, 3, {2, 3}, 2, {1, 2}, 1);
(c) (4, {3, 4}, 3).

There are an infinite number of paths for this graph.
4. For the directed graph (V,E) with

V = {1, 2, 3, 4}, E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}

some paths include:
(a) (1), (2), (3), and (4);
(b) (1, (1, 2), 2, (2, 3), 3, (3, 2), 2, (2, 3), 3, (3, 4), 4);
(c) (3, (3, 4), 4).

This directed graph has an infinite number of paths by virtue of the fact that the
path (2, (2, 3), 3, (3, 2), 2) can be repeated an infinite number of times. •

1.3.17 Notation (Notation for paths of nonzero length) For paths which contain at least
one edge, i.e., which have length at least 1, the vertices in the path are actually
redundant. For this reason we will often simply write a path as the sequence of
edges contained in the path, since the vertices can be obviously deduced. •

There is a great deal one can say about graphs, a little of which we will say in
missing stuff . However, for our present purposes of defining diagrams, the notions
at hand are sufficient. In the definition we employ Notation 1.3.17.

1.3.18 Definition (Diagram, commutative diagram) Let (V,E) be a directed graph.
(i) A diagram on (V,E) is a family (Sv)v∈V of sets associated with each vertex and

a family ( fe)e∈E of maps associated with each edge such that, if e = (v1, v2),
then fe has domain Sv1 and codomain Sv2 .

(ii) If P = (e j) j∈{1,...,k} is a path of nonzero length in a diagram on (V,E), the compo-
sition along P is the map fek

◦ · · · ◦ fe1 .
(iii) A diagram is commutative if, for every two vertices v1, v2 ∈ V and any two

paths P1 and P2 with source v1 and target v2, the composition along P1 is equal
to the composition along P2. •

The notion of a diagram, and in particular a commutative diagram is straight-
forward.

1.3.19 Examples (Diagrams and commutative diagrams)
1. Let S1, S2, S3, and S4 be sets and consider maps f21 : S1 → S2, f31 : S1 → S3,

f42 : S2 → S4, and f43 : S3 → S4.4missing stuff Note that if we assign set S j to j
for each j ∈ {1, 2, 3, 4}, then this gives a diagram on (V,E) where

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}.
4It might seem more natural to write, for example, f12 : S1 → S2 to properly represent the normal

order of the domain and codomain. However, we instead write f21 : S1 → S2 for reasons having to
do with conventions that will become convenient in .
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This diagram can be represented by

S1
f21 //

f31
��

S2

f42
��

S3 f43

// 4

The diagram is commutative if and only if f42 ◦ f21 = f43 ◦ f31.
2. Let S1, S2, S3, and S4 be sets and let f11 : S1 → S1, f21 : S1 → S2, f32 : S2 → S3,

f23 : S3 → S2, and f43 : S3 → S4 be maps. This data then represents a commutative
diagram on the directed graph (V,E) where

V = {1, 2, 3, 4}, E = {(1, 1), (1, 2), (2, 3), (2, 3), (3, 4)}.

The diagram is represented as

S1f11 66
f21 // S2

f32 // S3

f23

dd
f43 // S4

While it is possible to write down conditions for this diagram to be commuta-
tive, there will be infinitely many such conditions. In practice, one encounters
commutative diagrams with only finitely many paths with a given source and
target. This example, therefore, is not so interesting as a commutative diagram,
but is more interesting as a signal flow graph, as we shall see missing stuff . •

Exercises

1.3.1 Let S, T, U, and V be sets, and let f : S → T, g : T → U, and h : U → V be
maps. Show that h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

1.3.2 Let S, T, and U be sets and let f : S → T and g : T → U be maps. Show that
(g ◦ f )−1(C) = f −1(g−1(C)) for every subset C ⊆ U.

1.3.3 Let S and T be sets, let f : S → T, and let B ⊆ T. Show that f −1(T \ B) =
S \ f −1(B).

1.3.4 If S, T, and U are sets and if f : S → T and g : T → U are bijections, then
show that (g ◦ f )−1 = f −1

◦ g−1.
1.3.5 Let S, T and U be sets and let f : S→ T and g : T→ U be maps.

(a) Show that if f and g are injective, then so too is g ◦ f .
(b) Show that if f and g are surjective, then so too is g ◦ f .

1.3.6 Let S and T be sets, let f : S→ T be a map, and let A ⊆ S and B ⊆ T. Do the
following:
(a) show that if f is injective then A = f −1( f (A));
(b) show that if f is surjective then f ( f −1(B)) = B.

1.3.7 Let S and T be sets and let f : S→ T be a map.
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(a) Show that if f is invertible as a map, then “the relation of its inverse is the
inverse of its relation.” (Part of the question is to precisely understand
the statement in quotes.)

(b) Show that the inverse of the relation defined by f is itself the relation
associated to a function if and only if f is invertible.

1.3.8 Show that equivalence of sets, as in Remark 1.3.7–2, is an “equivalence
relation”5 on collection of all sets.

5The quotes are present because the notion of equivalence relation, as we have defined it, applies
to sets. However, there is no set containing all sets; see Section ??.
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Section 1.4

Indexed families of sets and general Cartesian products

In this section we discuss general collections of sets, and general collections
of members of sets. In Section 1.1.3 we considered Cartesian products of a finite
collection of sets. In this section, we wish to extend this to allow for an arbitrary
collection of sets. The often used idea of an index set is introduced here, and will
come up on many occasions in the text.

Do I need to read this section? The idea of a general family of sets, and notions
related to it, do not arise in a lot of places in these volumes. But they do arise.
The ideas here are simple (although the notational nuances can be confusing), and
so perhaps can be read through. But the reader in a rush can skip the material,
knowing they can look back on it if necessary. •

1.4.1 Indexed families and multisets

Recall that when talking about sets, a set is determined only by the concept of
membership. Therefore, for example, the sets {1, 2, 2, 1, 2} and {1, 2} are the same
since they have the same members. However, what if one wants to consider a set
with two 1’s and three 2’s? The way in which one does this is by the use of an index
to label the members of the set.

1.4.1 Definition (Indexed family of elements) Let A and S be sets. An indexed family
of elements of S with index set A is a map f : A → S. The element f (a) ∈ S is
sometimes denoted as xa and the indexed family is denoted as (xa)a∈A. •

missing stuff
With the notion of an indexed family we can make sense of “repeated entries”

in a set, as is shown in the first of these examples.

1.4.2 Examples (Indexed family)
1. Consider the two index sets A1 = {1, 2, 3, 4, 5} and A2 = {1, 2} and let S be the set

of natural numbers. Then the functions f1 : A1 → S and f2 : A2 → S defined by

f1(1) = 1, f1(2) = 2, f1(3) = 2, f1(4) = 1, f1(5) = 2,
f2(1) = 1, f2(2) = 2,

give the indexed families (x1 = 1, x2 = 2, x3 = 2, x4 = 1, x5 = 2) and (x1 = 1, x2 =
2), respectively. In this way we can arrive at a set with two 1’s and three 2’s, as
desired. Moreover, each of the 1’s and 2’s is assigned a specific place in the list
(x1, . . . , x5).

2. Any set S gives rise in a natural way to an indexed family of elements of S
indexed by S itself: (x)x∈S. •

We can then generalise this notion to an indexed family of sets as follows.
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1.4.3 Definition (Indexed family of sets) Let A and S be sets. An indexed family of
subsets of S with index set A is an indexed family of elements of 2S with index set
A. Thus an indexed family of subsets of S is denoted by (Sa)a∈A where Sa ⊆ S for
a ∈ A. •

We use the notation∪a∈ASa and∩a∈ASa to denote the union and intersection of an
indexed family of subsets indexed by A. Similarly, when considering the disjoint
union of an indexed family of subsets indexed by A, we define this to be

◦

∪
a∈A

Sa = ∪a∈A({a} × Sa).

Thus an element in the disjoint union has the form (a, x) where x ∈ Sa. Just as with
the disjoint union of a pair of sets, the disjoint union of a family of sets keeps track
of the set that element belongs to, now labelled by the index set A, along with the
element. A family of sets (Sa)a∈A is pairwise disjoint if, for every distinct a1, a2 ∈ A,
Sa1 ∩ Sa2 = ∅.

Often when one writes (Sa)a∈A, one omits saying that the family is “indexed
by A,” this being understood from the notation. Moreover, many authors will say
things like, “Consider the family of sets {Sa},” so omitting any reference to the index
set. In such cases, the index set is usually understood (often it is Z>0). However,
we shall not use this notation, and will always give a symbol for the index set.

Sometimes we will simply say something like, “Consider a family of sets (Sa)a∈A.”
When we say this, we tacitly suppose there to be a set S which contains each of the
sets Sa as a subset; the union of the sets Sa will serve to give such a set.

There is an alternative way of achieving the objective of allowing sets where the
same member appears multiple times.

1.4.4 Definition (Multiset, submultiset) A multiset is an ordered pair (S, φ) where S is
a set and φ : S → Z≥0 is a map. A multiset (T, ψ) is a submultiset of (S, φ) if T ⊆ S
and if ψ(x) ≤ φ(x) for every x ∈ T. •

This is best illustrated by examples.

1.4.5 Examples (Multisets)
1. The multiset alluded to at the beginning of this section is (S, φ) with S = {1, 2},

and φ(1) = 2 and φ(2) = 3. Note that some information is lost when considering
the multiset (S, φ) as compared to the indexed family (1, 2, 2, 1, 2); the order of the
elements is now immaterial and only the number of occurrences is accounted
for.

2. Any set S can be thought of as a multiset (S, φ) where φ(x) = 1 for each x ∈ S.
3. Let us give an example of how one might use the notion of a multiset. Let

P ⊆ Z>0 be the set of prime numbers and let S be the set {2, 3, 4, . . . } of integers
greater than 1. As we shall prove in Corollary ??, every element n ∈ S can be
written in a unique way as n = pk1

1 · · · p
km
m for distinct primes p1, . . . , pm and for
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k1, . . . , km ∈ Z>0. Therefore, for every n ∈ S there exists a unique multiset (P, φn)
defined by

φn(p) =

k j, p = p j,

0, otherwise,

understanding that k1, . . . , km and p1, . . . , pm satisfy n = pk1
1 · · · p

km
m . •

1.4.6 Notation (Sets and multisets from indexed families of elements) Let A and S
be sets and let (xa)a∈A be an indexed family of elements of S. If for each x ∈ S the set
{a ∈ A | xa = x} is finite, then one can associate to (xa)a∈A a multiset (S, φ) by

φ(x) = card{a ∈ A | xa = x}.

This multiset is denoted by {xa}a∈A. One also has a subset of S associated with the
family (xa)a∈A. This is simply the set

{x ∈ S | x = xa for some a ∈ A}.

This set is denoted by {xa | a ∈ A}. Thus we have three potentially quite different
objects:

(xa)a∈A, {xa}a∈A, {xa | a ∈ A},

arranged in decreasing order of information prescribed (be sure to note that the
multiset in the middle is only defined when the sets {a ∈ A | xa = x} are finite). This
is possibly confusing, although there is not much in it, really.

For example, the indexed family (1, 2, 2, 1, 2) gives the multiset denoted
{1, 1, 2, 2, 2} and the set {1, 2}. Now, this is truly confusing since there is no no-
tational discrimination between the set {1, 1, 2, 2, 2} (which is simply the set {1, 2})
and the multiset {1, 1, 2, 2, 2} (which is not the set {1, 2}). However, the notation is
standard, and the hopefully the intention will be clear from context.

If the map a 7→ xa is injective, i.e., the elements in the family (xa)a∈A are distinct,
then the three objects are in natural correspondence with one another. For this
reason we can sometimes be a bit lax in using one piece of notation over another. •

1.4.2 General Cartesian products

Before giving general definitions, it pays to revisit the idea of the Cartesian
product S1 × S2 of sets S1 and S2 as defined in Section 1.1.3 (the reason for our
change from S and T to S1 and S2 will become clear shortly). Let A = {1, 2}, and let
f : A→ S1∪S2 be a map satisfying f (1) ∈ S1 and f (2) ∈ S2. Then ( f (1), f (2)) ∈ S1×S2.
Conversely, given a point (x1, x2) ∈ S1 × S2, we define a map f : A → S1 ∪ S2 by
f (1) = x1 and f (2) = x2, noting that f (1) ∈ S1 and f (2) ∈ S2.

The punchline is that, for a pair of sets S1 and S2, their Cartesian product is in
1–1 correspondence with maps f from A = {1, 2} to S1∪S1 having the property that
f (x1) ∈ S1 and f (x2) ∈ S2. There are two things to note here: (1) the use of the set A
to label the sets S1 and S2 and (2) the alternative characterisation of the Cartesian
product.

Now we generalise the Cartesian product to families of sets.
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1.4.7 Definition (Cartesian product) The Cartesian product of a family of sets (Sa)a∈A is
the set ∏

a∈A

Sa = { f : A→ ∪a∈ASa | f (a) ∈ Sa}. •

Note that the analogue to the ordered pair in a general Cartesian product is
simply the set f (A) for some f ∈

∏
a∈A Sa. The reader should convince themselves

that this is indeed the appropriate generalisation.

1.4.3 Sequences

The notion of a sequence is very important for us, and we give here a general
definition for sequences in arbitrary sets.

1.4.8 Definition (Sequence, subsequence) Let S be a set.
(i) A sequence in S is an indexed family (x j) j∈Z>0 of elements of S with index set

Z>0.
(ii) A subsequence of a sequence (x j) j∈Z>0 in S is a map f : A→ S where

(a) A ⊆ Z>0 is a nonempty set with no upper bound and
(b) f (k) = xk for all k ∈ A.

If the elements in the set A are ordered as j1 < j2 < j3 < · · · , then the
subsequence may be written as (x jk)k∈Z>0 . •

Note that in a sequence the location of the elements is important, and so the
notation (x j) j∈Z>0 is the correct choice. It is, however, not uncommon to see se-
quences denoted {x j} j∈Z>0 . According to Notation 1.4.6 this would imply that the
same element in S could only appear in the list (x j) j∈Z>0 a finite number of times.
However, this is often not what is intended. However, there is seldom any real
confusion induced by this, but the reader should simply be aware that our (not
uncommon) notational pedantry is not universally followed.

1.4.4 Directed sets and nets

What we discuss in this section is a generalisation of the notion of a sequence.
A sequence is a collection of objects where there is a natural order to the objects
inherited from the total order of Z>0.

First we define the index sets for this more general type of sequence.

1.4.9 Definition (Directed set) A directed set is a partially ordered set (D,�) with the
property that, for x, y ∈ D, there exists z ∈ D such that x � z and y � z. •

Thus for any two elements in a directed set D it is possible to find an element
greater than either, relative to the specified partial order. Let us give some examples
to clarify this.
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1.4.10 Examples (Directed sets)
1. The set (Z>0,≤) is a directed set since clearly one can find a natural number

exceeding any two specified natural numbers.
2. The partially ordered set ([0,∞),≤) is similarly a directed set.
3. The partially ordered set ((0, 1],≥) is also a directed set since, given x, y ∈ (0, 1],

one can find an element of (0, 1] which is smaller than either x or y.
4. Next take D = R \ {x0} and consider the partial order � on D defined by x � y

if |x − x0| ≤ |y − y0|. This may be shown to be a directed set since, given two
elements x, y ∈ R \ {x0}, one can find another element of R \ {x0}which is closer
to x0 than either x or y.

5. Let S be a set with more than one element and consider the partially ordered
set (2S

\ {∅},�) specified by A � B if A ⊇ B. This is readily verified to be a partial
order. However, this order does not make (S,⊇) a directed set. Indeed, suppose
that A,B ∈ 2S

\ {∅} are disjoint. Since the only set contained in both A and B is
the empty set, it follows that there is no element T ∈ 2S

\ {∅} for which A ⊇ T
and B ⊇ T. •

The next definition is of the generalisation of sequences built on the more general
notion of index set given by a directed set.

1.4.11 Definition (Net) Let (D,�) be a directed set. A net in a set S defined on D is a map
φ : D→ S from D into S. •

As with a sequence, it is convenient to instead write {xα}α∈D where xα = φ(α) for
a net. The idea here is that a net generalises the notion of a sequence to the case
where the index set may not be countable and where the order is more general than
the total order of Z.

Exercises

1.4.1
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Section 1.5

Some words about proving things

Rigour is an important part of the presentation in this series, and if you are
so unfortunate as to be using these books as a text, then hopefully you will be
asked to prove some things, for example, from the exercises. In this section we
say a few (almost uselessly) general things about techniques for proving things.
We also say some things about poor proof technique, much (but not all) of which
is delivered with tongue in cheek. The fact of the matter is that the best way to
become proficient at proving things is to (1) read a lot of (needless to say, good)
proofs, and (2) most importantly, get lots of practice. What is certainly true is that
it much easier to begin your theorem-proving career by proving simple things.
In this respect, the proofs and exercises in this chapter are good ones. Similarly,
many of the proofs and exercises in Chapters 4 and ?? provide a good basis for
honing one’s theorem-proving skills. By contrast, some of the results in Chapter 2
are a little more sophisticated, while still not difficult. As we progress through
the preparatory material, we shall increasingly encounter material that is quite
challenging, and so proofs that are quite elaborate. The neophyte should not be so
ambitious as to tackle these early on in their mathematical development.

Do I need to read this section? Go ahead, read it. It will be fun. •

1.5.1 Legitimate proof techniques

The techniques here are the principle ones use in proving simple results. For
very complicated results, many of which appear in this series, one is unlikely to
get much help from this list.
1. Proof by definition: Show that the desired proposition follows directly from the

given definitions and assumptions. Theorems that have already been proven
to follow from the definitions and assumptions may also be used. Proofs of
this sort are often abbreviated by “This is obvious.” While this may well be
true, it is better to replace this hopelessly vague assertion with something more
meaningful like “This follows directly from the definition.”

2. Proof by contradiction: Assume that the hypotheses of the desired proposition
hold, but that the conclusions are false, and make no other assumption. Show
that this leads to an impossible conclusion. This implies that the assumption
must be false, meaning the desired proposition is true.

3. Proof by induction: In this method one wishes to prove a proposition for an
enumerable number of cases, say 1, 2, . . . ,n, . . . . One first proves the proposition
for case 1. Then one proves that, if the proposition is true for the nth case, it is
true for the (n + 1)st case.

4. Proof by exhaustion: One proves the desired proposition to be true for all cases.
This method only applies when there is a finite number of cases.
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5. Proof by contrapositive: To show that proposition A implies proposition B, one
shows that proposition B not being true implies that proposition A is not true.
It is common to see newcomers get proof by contrapositive and proof by con-
tradiction confused.

6. Proof by counterexample: This sort of proof is typically useful in showing that
some general assertion does not hold. That is to say, one wishes to show that
a certain conclusion does not follow from certain hypotheses. To show this, it
suffices to come up with a single example for which the hypotheses hold, but
the conclusion does not. Such an example is called a counterexample.

1.5.2 Improper proof techniques

Many of these seem so simple that a first reaction is, “Who would be dumb
enough to do something so obviously incorrect.” However, it is easy, and some-
times tempting, to hide one of these incorrect arguments inside something compli-
cated.
1. Proof by reverse implication: To prove that A implies B, shows that B implies A.
2. Proof by half proof: One is required to show that A and B are equivalent, but one

only shows that A implies B. Note that the appearance of “if and only if” means
that you have two implications to prove!

3. Proof by example: Show only a single case among many. Assume that only a
single case is sufficient (when it is not) or suggest that the proof of this case
contains most of the ideas of the general proof.

4. Proof by picture: A more convincing form of proof by example. Pictures can
provide nice illustrations, but suffice in no part of a rigorous argument.

5. Proof by special methods: You are allowed to divide by zero, take wrong square
roots, manipulate divergent series, etc.

6. Proof by convergent irrelevancies: Prove a lot of things related to the desired result.
7. Proof by semantic shift: Some standard but inconvenient definitions are changed

for the statement of the result.
8. Proof by limited definition: Define (or implicitly assume) a set S, for which all of

whose elements the desired result is true, then announce that in the future only
members of the set S will be considered.

9. Proof by circular cross-reference: Delay the proof of a lemma until many theorems
have been derived from it. Use one or more of these theorems in the proof of
the lemma.

10. Proof by appeal to intuition: Cloud-shaped drawings frequently help here.
11. Proof by elimination of counterexample: Assume the hypothesis is true. Then show

that a counterexample cannot exist. (This is really just a well-disguised proof by
reverse implication.) A common variation, known as “begging the question”
involves getting deep into the proof and then using a step that assumes the
hypothesis.
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12. Proof by obfuscation: A long plotless sequence of true and/or meaningless syn-
tactically related statements.

13. Proof by cumbersome notation: Best done with access to at least four alphabets
and special symbols. Can help make proofs by special methods look more
convincing.

14. Proof by cosmology: The negation of a proposition is unimaginable or meaning-
less.

15. Proof by reduction to the wrong problem: To show that the result is true, compare
(reduce/translate) the problem (in)to another problem. This is valid if the other
problem is then solvable. The error lies in comparing to an unsolvable problem.

Exercises

1.5.1 Find the flaw in the following inductive “proof” of the fact that, in any class,
if one selects a subset of students, they will have received the same grade.

Suppose that we have a class with students S = {S1, . . . ,Sm}. We
shall prove by induction on the size of the subset that any subset
of students receive the same grade. For a subset {S j1}, the asser-
tion is clearly true. Now suppose that the assertion holds for all
subsets of S with k students with k ∈ {1, . . . , l}, and suppose we
have a subset {S j1 , . . . ,S jl ,S jl+1} of l + 1 students. By the induction
hypothesis, the students from the set {S j1 , . . . ,S jl} all receive the
same grade. Also by the induction hypothesis, the students from
the set {S2, . . . ,S jl ,S jl+1} all receive the same grade. In particular, the
grade received by student S jl+1 is the same as the grade received by
student S jl . But this is the same as the grade received by students
S j1 , . . . ,S jl−1 , and so, by induction, we have proved that all students
receive the same grade.

In the next exercise you will consider one of Zeno’s paradoxes. Zeno6 is best known
for having developed a collection of paradoxes, some of which touch surprisingly
deeply on mathematical ideas that were not perhaps fully appreciated until the
19th century. Many of his paradoxes have a flavour similar to the one we give here,
which may be the most commonly encountered during dinnertime conversations.

1.5.2 Consider the classical problem of the Achilles chasing the tortoise. A tortoise
starts off a race T seconds before Achilles. Achilles, of course, is faster than
the tortoise, but we shall argue that, despite this, Achilles will actually never
overtake the tortoise.

At time T when Achilles starts after the tortoise, the tortoise will be
some distance d1 ahead of Achilles. Achilles will reach this point
after some time t1. But, during the time it took Achilles to travel
distance d1, the tortoise will have moved along to some point d2

ahead of d1. Achilles will then take a time t2 to travel the distance
6Zeno of Elea (∼490BC–∼425BC) was an Italian born philosopher of the Greek school.
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d2. But by then the tortoise will have travelled another distance
d3. This clearly will continue, and when Achilles reaches the point
where the tortoise was at some moment before, the tortoise will
have moved inexorably ahead. Thus Achilles will never actually
catch up to the tortoise.

What is the flaw in the argument?



Chapter 2

Real numbers and their properties

Real numbers and functions of real numbers form an integral part of mathe-
matics. Certainly all students in the sciences receive basic training in these ideas,
normally in the form of courses on calculus and differential equations. In this
chapter we establish the basic properties of the set of real numbers and of functions
defined on this set. In particular, using the construction of the integers in Section ??
as a starting point, we define the set of real numbers, thus providing a fairly firm
basis on which to develop the main ideas in these volumes. We follow this by dis-
cussing various structural properties of the set of real numbers. These cover both
algebraic properties (Section 2.2.1) and topological properties (Section 2.5). After
this, we discuss important ideas like continuity and differentiability of real-valued
functions of a real variable.

Do I need to read this chapter? Yes you do, unless you already know its con-
tents. While the construction of the real numbers in Section 2.1 is perhaps a little
bit of an extravagance, it does set the stage for the remainder of the material. More-
over, the material in the remainder of the chapter is, in some ways, the backbone
of the mathematical presentation. We say this for two reasons.
1. The technical material concerning the structure of the real numbers is, very

simply, assumed knowledge for reading everything else in the series.
2. The ideas introduced in this chapter will similarly reappear constantly through-

out the volumes in the series. But here, many of these ideas are given their
most concrete presentation and, as such, afford the inexperienced reader the
opportunity to gain familiarity with useful techniques (e.g., the ε−δ formalism)
in a setting where they presumably possess some degree of comfort. This will
be crucial when we discuss more abstract ideas in Chapters ??, ??, and ??, to
name a few. •
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Section 2.1

Construction of the real numbers

In this section we undertake to define the set of real numbers, using as our
starting point the set Z of integers constructed in Section ??. The construction
begins by building the rational numbers, which are defined, loosely speaking, as
fractions of integers. We know from our school days that every real number can be
arbitrarily well approximated by a rational number, e.g., using a decimal expansion.
We use this intuitive idea as our basis for defining the set of real numbers from the
set of rational numbers.

Do I need to read this section? If you feel comfortable with your understanding
of what a real number is, then this section is optional reading. However, it is worth
noting that in Section 2.1.2 we first use the ε − δ formalism that is so important
in the analysis featured in this series. Readers unfamiliar/uncomfortable with this
idea may find this section a good place to get comfortable with this idea. It is
also worth mentioning at this point that the ε − δ formalism is one with which it
is difficult to become fully comfortable. Indeed, PhD theses have been written on
the topic of how difficult it is for students to fully assimilate this idea. We shall
not adopt any unusual pedagogical strategies to address this matter. However,
students are well-advised to spend some time understanding ε − δ language, and
instructors are well-advised to appreciate the difficulty students have in coming to
grips with it. •

2.1.1 Construction of the rational numbers

The set of rational numbers is, roughly, the set of fractions of integers. However,
we do not know what a fraction is. To define the set of rational numbers, we
introduce an equivalence relation ∼ in Z ×Z>0 by

( j1, k1) ∼ ( j2, k2) ⇐⇒ j1 · k2 = j2 · k1.

We leave to the reader the straightforward verification that this is an equivalence
relation. Using this relation we define the rational numbers as follows.

2.1.1 Definition (Rational numbers) A rational number is an element of (Z ×Z>0)/ ∼.
The set of rational numbers is denoted by Q. •

2.1.2 Notation (Notation for rationals) For the rational number [( j, k)] we shall typically
write j

k , reflecting the usual fraction notation. We shall also often write a typical
rational number as “q” when we do not care which equivalence class it comes from.
We shall denote by 0 and 1 the rational numbers [(0, 1)] and [(1, 1)], respectively •

The set of rational numbers has many of the properties of integers. For example,
one can define addition and multiplication for rational numbers, as well as a total
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order in the set of rationals. However, there is an important construction that can
be made for rational numbers that cannot generally be made for integers, namely
that of division. Let us see how this is done.

2.1.3 Definition (Addition, multiplication, and division in Q) Define the operations of
addition, multiplication, and division in Q by

(i) [( j1, k1)] + [( j2, k2)] = [( j1 · k2 + j2 · k1, k1 · k2)],
(ii) [( j1, k1)] · [( j2, k2)] = [( j1 · j2, k1 · k2)], and

(iii) [( j1, k1)]/[( j2, k2)] = [( j1·k2, k1· j2)] (we will also write [( j1,k1)]
[( j2,k2)] for [( j1, k1)]/[( j2, k2)]),

respectively, where [( j1, k1)], [( j2, k2)] ∈ Q and where, in the definition of division,
we require that j2 , 0. We will sometimes omit the “·” when in multiplication. •

We leave to the reader as Exercise 2.1.1 the straightforward task of showing that
these definitions are independent of choice of representatives in Z ×Z>0. We also
leave to the reader the assertion that, with respect to Notation 2.1.2, the operations
of addition, multiplication, and division of rational numbers assume the familiar
form:

j1

k1
+

j2

k2
=

j1 · k2 + j2 · k1

k1 · k2
,

j1

k1
·

j2

k2
=

j1 · j2

k2 · k2
,

j1
k1

j2
k2

=
j1 · k2

k1 · j2
.

For the operation of division, it is convenient to introduce a new concept. Given
[( j, k)] ∈ Q with j , 0, we define [( j, k)]−1

∈ Q by [(k, j)]. With this notation, division
then can be written as [( j1, k1)]/[( j2, k2)] = [( j1, k1)] · [( j2, k2)]−1. Thus division is really
just multiplication, as we already knew. Also, if q ∈ Q and if k ∈ Z≥0, then we define
qk
∈ Q inductively by q0 = 1 and qk+

= qk
· q. The rational number qk is the kth power

of q.
Let us verify that the operations above satisfy the expected properties. Note

that there are now some new properties, since we have the operation of division,
or multiplicative inversion, to account for. As we did for integers, we shall write
−q for −1 · q.

2.1.4 Proposition (Properties of addition and multiplication in Q) Addition and multi-
plication in Q satisfy the following rules:

(i) q1 + q2 = q2 + q1, q1,q2 ∈ Q (commutativity of addition);
(ii) (q1 + q2) + q3 = q1 + (q2 + q3), q1,q2,q3 ∈ Q (associativity of addition);
(iii) q + 0 = q, q ∈ Q (additive identity);
(iv) q + (−q) = 0, q ∈ Q (additive inverse);
(v) q1 · q2 = q2 · q1, q1,q2 ∈ Q (commutativity of multiplication);
(vi) (q1 · q2) · q3 = q1 · (q2 · q3), q1,q2,q3 ∈ Q (associativity of multiplication);
(vii) q · 1 = q, q ∈ Q (multiplicative identity);
(viii) q · q−1 = 1, q ∈ Q \ {0} (multiplicative inverse);
(ix) r · (q1 + q2) = r · q1 + r · q2, r,q1,q2 ∈ Q (distributivity);
(x) qk1 · qk2 = qk1+k2 , q ∈ Q, k1,k2 ∈ Z≥0.
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Moreover, if we define iZ : Z→ Q by iZ(k) = [(k, 1)], then addition and multiplication in
Q agrees with that in Z:

iZ(k1) + iZ(k2) = iZ(k1 + k2), iZ(k1) · iZ(k2) = iZ(k1 · k2).
Proof All of these properties follow directly from the definitions of addition and
multiplication, using Proposition ??. �

Just as we can naturally think ofZ≥0 as being a subset ofZ, so too can we think
of Z as a subset of Q. Moreover, we shall very often do so without making explicit
reference to the map iZ.

Next we consider on Q the extension of the partial order ≤ and the strict partial
order <.

2.1.5 Proposition (Order on Q) On Q define two relations < and ≤ by

[(j1,k1)] < [(j2,k2)] ⇐⇒ j1 · k2 < k1 · j2,
[(j1,k1)] ≤ [(j2,k2)] ⇐⇒ j1 · k2 ≤ k1 · j2.

Then ≤ is a total order and < is the corresponding strict partial order.
Proof First let us show that the relations defined make sense, in that they are inde-
pendent of choice of representative. Thus we suppose that [( j1, k1)] = [( j̃1, k̃1)] and that
[( j2, k2)] = [( j̃2, k̃2)]. Then

[( j1, k1)] ≤ [( j2, k2)]
⇐⇒ j1 · k2 ≤ k1 · j2
⇐⇒ j1 · k2 · j2 · k̃2 · j̃1 · k1 ≤ k1 · j2 · j̃2 · k1 · j1 · k̃1

⇐⇒ ( j̃1 · k̃2) · ( j1 · j2 · k1 · k2) ≤ ( j̃2 · k̃1) · ( j1 · j2 · k1 · k2)

⇐⇒ j̃1 · k̃2 ≤ j̃2 · k̃1.

This shows that the definition of ≤ is independent of representative. Of course, a
similar argument holds for <.

That ≤ is a partial order, and that < is its corresponding strict partial order, follow
from a straightforward checking of the definitions, so we leave this to the reader.

Thus we only need to check that ≤ is a total order. Let [( j1, k1)], [( j2, k2)] ∈ Q. Then,
by the Trichotomy Law forZ, either j1 ·k2 < k1 · j2, k1 · j2 < j1 ·k2, or j1 ·k2 = k1 · j2. But this
directly implies that either [( j1, k1)] < [( j2, k2)], [( j2, k2)] < [( j1, k1)], or [( j1, k1)] = [( j2, k2)],
respectively. �

The total order on Q allows a classification of rational numbers as follows.

2.1.6 Definition (Positive and negative rational numbers) A rational number q ∈ Q is:
(i) positive if 0 < q;
(ii) negative if q < 0;
(iii) nonnegative if 0 ≤ q;
(iv) nonpositive if q ≤ 0.

The set of positive rational numbers is denoted by Q>0 and the set of nonnegative
rational numbers is denoted by Q≥0. •

As we did with natural numbers and integers, we isolate the Trichotomy Law.
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2.1.7 Corollary (Trichotomy Law forQ) For q, r ∈ Q, exactly one of the following possibilities
holds:

(i) q < r;
(ii) r < q;
(iii) q = r.

The following result records the relationship between the order on Q and the
arithmetic operations.

2.1.8 Proposition (Relation between addition and multiplication and <) For q, r, s ∈
Q, the following statements hold:

(i) if q < r then q + s < r + s;
(ii) if q < r and if s > 0 then s · q < s · r;
(iii) if q < r and if s < 0 then s · r < s · q;
(iv) if 0 < q, r then 0 < q · r;
(v) if q < r and if either

(a) 0 < q, r or
(b) q, r < 0,

then r−1 < q−1.
Proof (i) Write q = [( jq, kq)], r = [( jr, kr)], and s = [( js, ks)]. Since q < r, jq · kr ≤ jr · kq.
Therefore,

jq · kr · k2
s < jr · kq · k2

s

=⇒ jq · kr · k2
s + js · kq · kr · ks < jr · kq · k2

s + j2 · kq · kr · ks,

using Proposition ??. This last inequality is easily seen to be equivalent to q + s < r + s.
(ii) Write q = [( jq, kq)], r = [( jr, kr)], and s = [( js, ks)]. Since s > 0 it follows that js > 0.

Since q ≤ r it follows that jq · kr ≤ jr · kq. From Proposition ?? we then have

jq · js · js · ks ≤ jr · kq · js · ks,

which is equivalent to s · q ≤ s · r by definition of multiplication.
(iii) The result here follows, as does (ii), from Proposition ??, but now using the fact

that js < 0.
(iv) This is a straightforward application of the definition of multiplication and <.
(v) This follows directly from the definition of <. �

The final piece of structure we discuss for rational numbers is the extension of
the absolute value function defined for integers.

2.1.9 Definition (Rational absolute value function) The absolute value function on Q
is the map from Q to Q≥0, denoted by q 7→ |q|, defined by

|q| =


q, 0 < q,
0, q = 0,
−q, q < 0.

•

The absolute value function on Q has properties like that on Z.
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2.1.10 Proposition (Properties of absolute value on Q) The following statements hold:
(i) |q| ≥ 0 for all q ∈ Q;
(ii) |q| = 0 if and only if q = 0;
(iii) |r · q| = |r| · |q| for all r,q ∈ Q;
(iv) |r + q| ≤ |r| + |q| for all r,q ∈ Q (triangle inequality);
(v) |q−1

| = |q|−1 for all q ∈ Q \ {0}.
Proof Parts (i), (ii), and (v), follow directly from the definition, and part (iii) follows in
the same manner as the analogous statement in Proposition ??. Thus we have only to
prove part (iv). We consider various cases.

1. |r| ≤ |q|:
(a) 0 ≥ r, q: Since |r + q| = r + q, and |r| = r and |q| = q, this follows directly.
(b) r < 0, 0 ≤ q: Let r = [( jr, kr)] and q = [( jq, kq)]. Then r < 0 gives jr < 0 and

0 ≤ q gives jq ≥ 0. We now have

|r + q| =
∣∣∣∣ jr · kq + jq · kr

kr · kq

∣∣∣∣ =
| jr · kq + jq · kr|

kr · kq

and

|r| + |q| =
| jr| · kq + | jq| · kr

kr · kq
.

Therefore,

|r + q| =
| jr · kq + jq · kr|

kr · kq

≤
| jr| · kq + | jq| · kr

kr · kq

= |r| + |q|,

where we have used Proposition 2.1.8.
(c) r, q < 0: Here |r + q| = |−r + (−q)| = |−(r + q)| = −(r + q), and |r| = −r and
|q| = −q, so the result follows immediately.

2. |q| ≤ |r|: This argument is the same as above, swapping r and q. �

2.1.11 Remark Having been quite fussy about how we arrived at the set of integers and
the set of rational numbers, and about characterising their important properties,
we shall now use standard facts about these, some of which we may not have
proved, but which can easily be proved using the definitions of Z and Q. Some
of the arithmetic properties of Z and Q that we use without comment are in fact
proved in Section ?? in the more general setting of rings. However, we anticipate
that most readers will not balk at the instances where we use unproved properties
of integers and rational numbers. •
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2.1.2 Construction of the real numbers from the rational numbers

Now we use the rational numbers as the building block for the real numbers.
The idea of this construction, which was originally due to Cauchy1, is the intuitive
idea that the rational numbers may be used to approximate well a real number.
For example, we learn in school that any real number is expressible as a decimal
expansion (see Exercise 2.4.8 for the precise construction of a decimal expansion).
However, any finite length decimal expansion (and even some infinite length dec-
imal expansions) is a rational number. So one could define real numbers as a limit
of decimal expansions in some way. The problem is that there may be multiple
decimal expansions giving rise to the same real number. For example, the decimal
expansions 1.0000 and 0.9999 . . . represent the same real number. The way one
gets around this potential problem is to use equivalence classes, of course. But
equivalence classes of what? This is where we begin the presentation, proper.

2.1.12 Definition (Cauchy sequence, convergent sequence) Let (q j) j∈Z>0 be a sequence
in Q. The sequence:

(i) is a Cauchy sequence if, for each ε ∈ Q>0, there exists N ∈ Z>0 such that
|q j − qk| < ε for j, k ≥ N;

(ii) converges to q0 if, for each ε ∈ Q>0, there exists N ∈ Z>0 such that |q j − q0| < ε
for j ≥ N.

(iii) is bounded if there exists M ∈ Q>0 such that |q j| < M for each j ∈ Z>0. •

The set of Cauchy sequences in Q is denoted by CS(Q). A sequence converging to
q0 has q0 as its limit. •

The idea of a Cauchy sequence is that the terms in the sequence can be made
arbitrarily close as we get to the tail of the sequence. A convergent sequence,
however, gets closer and closer to its limit as we get to the tail of the sequence. Our
instinct is probably that there is a relationship between these two ideas. One thing
that is true is the following.

2.1.13 Proposition (Convergent sequences are Cauchy) If a sequence (qj)j∈Z>0 converges
to q0, then it is a Cauchy sequence.

Proof Let ε ∈ Q>0 and choose N ∈ Z>0 such that |q j − q0| < ε
2 for j ≥ N. Then, for

j, k ≥ N we have

|q j − qk| = |q j − q0 − qk + q0| = |q j − q0| + |qk − q0| < ε
2 + ε

2 = ε,

using the triangle inequality of Proposition 2.1.10. �

Cauchy sequences have the property of being bounded.

1The French mathematician Augustin Louis Cauchy (1789–1857) worked in the areas of complex
function theory, partial differential equations, and analysis. His collected works span twenty-seven
volumes.
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2.1.14 Proposition (Cauchy sequences are bounded) If (qj)j∈Z>0 is a Cauchy sequence,
then it is bounded.

Proof Choose N ∈ Z>0 such that |q j − qk| < 1 for j, k ∈ Z>0. Then take MN to be the
largest of the nonnegative rational numbers |q1|, . . . , |qN |. Then, for j ≥ N we have,
using the triangle inequality,

|q j| = |q j − qN + qN | ≤ |q j − qN | + |qN | < 1 + MN,

giving the result by taking M = MN + 1. �

The question as to whether there are nonconvergent Cauchy sequences is now
the obvious one.

2.1.15 Example (Nonconvergent Cauchy sequences in Q exist) If one already knows
the real numbers exist, it is somewhat easy to come up with Cauchy sequences in
Q. However, to fabricate one “out of thin air” is not so easy.

For k ∈ Z>0, since 2k + 5 > k + 4, it follows that 22k+5
− 2k+4 > 0. Let mk be the

smallest nonnegative integer for which

m2
k ≥ 22k+5

− 2k+4. (2.1)

The following contains a useful property of mk.

1 Lemma m2
k ≤ 22k+5.

Proof First we show that mk ≤ 2k+3. Suppose that mk > 2k+3. Then

(mk − 1)2 > (2k+3
− 1)2 = 22k+6

− 2k+4 + 1 = 2(22k+5
− 2k+4) + 1) > 22k+5

− 2k+4,

which contradicts the definition of mk.
Now suppose that m2

k > 22k+5. Then

(mk − 1)2 = m2
k − 2mk + 1 > 22k+5

− 2k+4 + 1 > 22k+5
− 2k+4,

again contradicting the definition of mk. H

Now define qk = mk
2k+2 .

2 Lemma (qk)k∈Z>0 is a Cauchy sequence.

Proof By Lemma 1 we have

q2
k =

m2
k

22k+4
≤

22k+5

22k+4
= 2, k ∈ Z>0,

and by (2.1) we have

q2
k =

m2
k

22k+4
≥

22k+5

22k+4
−

2k+4

22k+4
= 2 −

1
2k
, k ∈ Z>0.
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Summarising, we have

2 −
1
2k
≤ q2

k ≤ 2, k ∈ Z>0. (2.2)

Then, for j, k ∈ Z>0 we have

2 −
1
2k
≤ q2

k ≤ 2, 2 −
1
2 j ≤ q2

k ≤ 2 =⇒ −
1
2 j ≤ q2

j − q2
k ≤

1
2k
.

Next we have, from (2.1),

q2
k =

m2
k

22k+4
≥

22k+5

22k+4
−

2k+4

22k+4
= 2 −

1
2k
, k ∈ Z>0,

from which we deduce that q2
k ≥ 1, which itself implies that qk ≥ 1. Next, using this

fact and (q j − qk)2 = (q j + qk)(q j − qk) we have

−
1
2 j

1
q j + qk

≤ q j − qk ≤
1
2 j

1
q j + qk

=⇒ −
1

2 j+1 ≤ q j − qk ≤
1

2k+1
, j, k ∈ Z>0.

(2.3)
Now let ε ∈ Q>0 and choose N ∈ Z>0 such that 1

2N+1 < ε. Then we immediately have
|q j − qk| < ε, j, k ≥ N, using (2.3). H

The following result gives the character of the limit of the sequence (qk)k∈Z>0 ,
were it to be convergent.

3 Lemma If q0 is the limit for the sequence (qk)k∈Z>0 , then q2
0 = 2.

Proof We claim that if (qk)k∈Z>0 converges to q0, then (q2
k)k∈Z>0 converges to q2

0. Let
M ∈ Q>0 satisfy |qk| < M for all k ∈ Z>0, this being possible by Proposition 2.1.14.
Now let ε ∈ Q>0 and take N ∈ Z>0 such that

|qk − q0| <
ε

M + |q0|
.

Then
|q2

k − q2
0| = |qk − q0||qk + q0| < ε,

giving our claim.
Finally, we prove the lemma by proving that (q2

k)k∈Z>0 converges to 2. Indeed,
let ε ∈ Q>0 and note that, if N ∈ Z>0 is chosen to satisfy 1

2N < ε. Then, using (2.2),
we have

|q2
k − 2| ≤

1
2k
< ε, k ≥ N,

as desired. H

Finally, we have the following result, which is contained in the mathematical
works of Euclid.
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4 Lemma There exists no q0 ∈ Q such that q2
0 = 2.

Proof Suppose that q2
0 = [( j0, k0)] and further suppose that there is no integer m

such that q0 = [(mj0,mk0)]. We then have

q2
0 =

j2
0

k2
0

= 2 =⇒ j2
0 = 2k2

0.

Thus j2
0 is even, and then so too is j0 (why?). Therefore, j0 = 2 j̃0 and so

q2
0 =

4 j̃2
0

k2
0

= 2 =⇒ k2
0 = 2 j̃2

0

which implies that k2
0, and hence k0 is also even. This contradicts our assumption

that there is no integer m such that q0 = [(mj0,mk0)]. H

With these steps, we have constructed a Cauchy sequence that does not con-
verge. •

Having shown that there are Cauchy sequences that do not converge, the idea
is now to define a real number to be, essentially, that to which a nonconvergent
Cauchy sequence would converge if only it could. First we need to allow for the
possibility, realised in practice, that different Cauchy sequences may converge to
the same limit.

2.1.16 Definition (Equivalent Cauchy sequences) Two sequences (q j) j∈Z>0 , (r j) j∈Q ∈

CS(Q) are equivalent if the sequence (q j − r j) j∈Z>0 converges to zero. We write
(q j) j∈Z>0 ∼ (r j) j∈Z>0 if the two sequences are equivalent. •

We should verify that this notion of equivalence of Cauchy sequences is indeed
an equivalence relation.

2.1.17 Lemma The relation ∼ defined in CS(Q) is an equivalence relation.
Proof It is clear that the relation ∼ is reflexive and symmetric. To prove transitivity,
suppose that (q j) j∈Z>0 ∼ (r j) j∈Z>0 and that (r j) j∈Z>0 ∼ (s j) j∈Z>0 . For ε ∈ Q>0 let N ∈ Z>0
satisfy

|q j − r j| <
ε
2 , |r j − s j| <

ε
2 , j ≥ N.

Then, using the triangle inequality,

|q j − s j| = |q j − r j + r j − s j| ≤ |q j − r j| + |r j − s j| < ε, j ≥ Z>0,

showing that (q j) j∈Z>0 ∼ (s j) j∈Z>0 . �

We are now prepared to define the set of real numbers.

2.1.18 Definition (Real numbers) A real number is an element of CS(Q)/ ∼. The set of
real numbers is denoted by R. •

The definition encodes, in a precise way, our intuition about what a real number
is. In the next section we shall examine some of the properties of the set R.

Let us give the notation we will use for real numbers, since clearly we do not
wish to write these explicitly as equivalence classes of Cauchy sequences.
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2.1.19 Notation (Notation for reals) We shall frequently write a typical element in R as
“x”. We shall denote by 0 and 1 the real numbers associated with the Cauchy
sequences (0) j∈Z>0 and (1) j∈Z>0 . •

Exercises

2.1.1 Show that the definitions of addition, multiplication, and division of rational
numbers in Definition 2.1.3 are independent of representative.

2.1.2 Show that the order and absolute value on Q agree with those on Z. That is
to say, show the following:
(a) for j, k ∈ Z, j < k if and only if iZ( j) < iZ(k);
(b) for k ∈ Z, |k| = |iZ(k)|.
(Note that we see clearly here the abuse of notation that follows from using
< for both the order on Z and Q and from using |·| as the absolute value
both on Z and Q. It is expected that the reader can understand where the
notational abuse occurs.)

2.1.3 Show that the set of rational numbers is countable using an argument along
the following lines.

1. Construct a doubly infinite grid in the plane with a point at each integer
coordinate. Note that every rational number q = n

m is represented by
the grid point (n,m).

2. Start at the “centre” of the grid with the rational number 0 being as-
signed to the grid point (0, 0), and construct a spiral which passes
through each grid point. Note that this spiral should hit every grid
point exactly once.

3. Use this spiral to infer the existence of a bijection from Q to Z>0.

The following exercise leads you through Cantor’s famous “diagonal argument”
for showing that the set of real numbers is uncountable.

2.1.4 Fill in the gaps in the following construction, justifying all steps.
1. Let {x j | j ∈ Z>0} be a countable subset of (0, 1).
2. Construct a doubly infinite table for which the kth column of the jth

row contains the kth term in the decimal expansion for x j.
3. Construct x̄ ∈ (0, 1) by declaring the kth term in the decimal expansion

for x̄ to be different from the kth term in the decimal expansion for xk.
4. Show that x̄ is not an element of the set {x j | j ∈ Z>0}.

Hint: Be careful to understand that a real number might have different decimal
expansions.

2.1.5 Show that for any x ∈ R and ε ∈ R>0 there exists k ∈ Z>0 and an odd integer
j such that |x − j

2k | < ε.
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Section 2.2

Properties of the set of real numbers

In this section we present some of the well known properties as the real numbers,
both algebraic and (referring ahead to the language of Chapter ??) topological.

Do I need to read this section? Many of the properties given in Sec-
tions 2.2.1, 2.2.2 and 2.2.3 will be well known to any student with a high school
education. However, these may be of value as a starting point in understanding
some of the abstract material in Chapters 4 and ??. Similarly, the material in Sec-
tion 2.2.4 is “obvious.” However, since this material will be assumed knowledge,
it might be best for the reader to at least skim the section, to make sure there is
nothing new in it for them. •

2.2.1 Algebraic properties of R

In this section we define addition, multiplication, order, and absolute value for
R, mirroring the presentation forQ in Section 2.1.1. Here, however, the definitions
and verifications are not just trivialities, as they are for Q.

First we define addition and multiplication. We do this by defining these
operations first on elements of CS(Q), and then showing that the operations depend
only on equivalence class. The following is the key step in doing this.

2.2.1 Proposition (Addition, multiplication, and division of Cauchy sequences) Let
(qj)j∈Z>0 , (rj)j∈Z>0 ∈ CS(Q). Then the following statements hold.

(i) The sequence (qj +rj)j∈Z>0 is a Cauchy sequence which we denote by (qj)j∈Z>0 +(rj)j∈Z>0 .
(ii) The sequence (qj · rj)j∈Z>0 is a Cauchy sequence which we denote by (qj)j∈Z>0 · (rj)j∈Z>0 .
(iii) If, for all j ∈ Z>0, qj , 0 and if the sequence (qj)j∈Z>0 does not converge to 0, then

(q−1
j )j∈Z>0 is a Cauchy sequence.

Furthermore, if (q̃j)j∈Z>0 , (r̃j)j∈Z>0 ∈ CS(Q) satisfy

(q̃j)j∈Z>0 ∼ (qj)j∈Z>0 , (r̃j)j∈Z>0 ∼ (r̃j)j∈Z>0 ,

then
(iv) (q̃j)j∈Z>0 + (r̃j)j∈Z>0 = (qj)j∈Z>0 + (rj)j∈Z>0 ,
(v) (q̃j)j∈Z>0 · (r̃j)j∈Z>0 = (qj)j∈Z>0 · (rj)j∈Z>0 , and
(vi) if, for all j ∈ Z>0, qj, q̃j , 0 and if the sequences (qj)j∈Z>0 , (q̃j)j∈Z>0 do not converge to

0, then (q̃j)j∈Z>0 ∼ (qj)j∈Z>0 .
Proof (i) Let ε ∈ Q>0 and let N ∈ Z>0 have the property that |q j − qk|, |r j − rk| <

ε
2 for

all j, k ≥ N. Then, using the triangle inequality,

|(q j + r j) − (qk + rk)| ≤ |q j − qk| + |r j − rk| = ε, j, k ≥ N.
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(ii) Let M ∈ Q>0 have the property that |q j|, |r j| < M for all j ∈ Z>0. For ε ∈ Q>0 let
N ∈ Z>0 have the property that |q j − qk|, |r j − rk| <

ε
2M for all j, k ≥ N. Then, using the

triangle inequality,

|(q j · r j) − (qk · rk)| = |q j(r j − rk) − rk(qk − q j)|
≤ |q j||r j − rk| + |rk||qk − q j| < ε, j, k ≥ N.

(iii) We claim that if (q j) j∈Z>0 satisfies the conditions stated, then there exists δ ∈ Q>0
such that |qk| ≥ δ for all k ∈ Z>0. Indeed, since (q j) j∈Z>0 does not converge to zero, choose
ε ∈ Q>0 such that, for all N ∈ Z>0, there exists j ≥ N for which |q j| ≥ ε. Next take
N ∈ Z>0 such that |q j − qk| <

ε
2 for j, k ≥ N. Then there exists Ñ ≥ N such that |qÑ | ≥ ε.

For any j ≥ N we then have

|q j| = |qÑ − (qÑ − q j)| ≥ ||qÑ | − |qÑ − q j|| ≥ ε −
ε
2 = ε

2 ,

where we have used Exercise 2.2.7. The claim follows by taking δ to be the smallest of
the numbers ε

2 , |q1|, . . . , |qN |.
Now let ε ∈ Q>0 and choose N ∈ Z>0 such that |q j − qk| < δ

2ε for j, k ≥ N. Then

|q−1
j − q−1

k | =
∣∣∣∣qk − q j

q jqk

∣∣∣∣ < δ2ε

δ2 = ε, j, k ≥ N.

(iv) For ε ∈ Q>0 let N ∈ Z>0 have the property that |q̃ j − q j|, |r̃ j − r j| <
ε
2 . Then, using

the triangle inequality,

|(q̃ j + r̃ j) − (qk + rk)| ≤ |q̃ j − qk| + |r̃k − rk| < ε, j, k ≥ N.

(v) Let M ∈ Q>0 have the property that |q̃ j|, |r j| < M for all j ∈ Z>0. Then, for
ε ∈ Q>0, take N ∈ Z>0 such that |r̃ j − rk|, |q̃ j − qk| <

ε
2M for j, k ≥ N. We then use the

triangle inequality to give

|(q̃ j · r̃ j) − (qk · rk)| = |q̃ j(r̃ j − rk) − rk(qk − q̃ j)| < ε, j, k ≥ N.

(vi) Let δ ∈ Q>0 satisfy |q j|, |q̃ j| ≥ δ for all j ∈ Z>0. Then, for ε ∈ Q>0, choose N ∈ Z>0
such that |q̃ j − q j| < δ2ε for j ≥ N. Then we have

|q̃−1
j − q−1

j | =
∣∣∣∣q j − q̃ j

q jq̃ j

∣∣∣∣ < δ2ε

δ2 , j ≥ N,

so completing the proof. �

The requirement, in parts (iii) and (vi), that the sequence (q j) j∈Z>0 have no zero
elements is not really a restriction in the same way as is the requirement that the
sequence not converge to zero. The reason for this is that, as we showed in the
proof, if the sequence does not converge to zero, then there exists ε ∈ Q>0 and
N ∈ Z>0 such that |q j| > ε for j ≥ N. Thus the tail of the sequence is guaranteed
to have no zero elements, and the tail of the sequence is all that matters for the
equivalence class.

Now that we have shown how to add and multiply Cauchy sequences inQ, and
that this addition and multiplication depends only on equivalence classes under
the notion of equivalence given in Definition 2.1.16, we can easily define addition
and multiplication in R.
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2.2.2 Definition (Addition, multiplication, and division in R) Define the operations of
addition, multiplication, and division in R by

(i) [(q j) j∈Z>0] + [(r j) j∈Z>0] = [(q j) j∈Z>0 + (r j) j∈Z>0],
(ii) [(q j) j∈Z>0] · [(r j) j∈Z>0] = [(q j) j∈Z>0 · (r j) j∈Z>0],
(iii) [(q j) j∈Z>0]/[(r j) j∈Z>0] = [(q j/r j) j∈Z>0 + (r j) j∈Z>0],

respectively, where, in the definition of division, we require that the sequence
(r j) j∈Z>0 have no zero elements, and that it not converge to 0. We will sometimes
omit the “·” when writing multiplication. •

Similarly to what we have done previously withZ andQ, we let−x = [(−1) j∈Z>0]·
x. For x ∈ R\ {0}, we also denote by x−1 the real number corresponding to a Cauchy
sequence ( 1

q j
) j∈Z>0 , where x = [(q j) j∈Z>0].

As with integers and rational numbers, we can define powers of real numbers.
For x ∈ R \ {0} and k ∈ Z≥0 we define xk

∈ R inductively by x0 = 1 and xk+
= xk

· x.
As usual, we call xk the kth power of x. For k ∈ Z \Z≥0, we take xk = (x−k)−1. For
real numbers, the notion of the power of a number can be extended. Let us show
how this is done. In the statement of the result, we use the notion of positive real
numbers which are not defined until Definition 2.2.8. Also, in our proof, we refer
ahead to properties of R that are not considered until Section 2.3. However, it is
convenient to state the construction here.

2.2.3 Proposition (x1/k) For x ∈ R>0 and k ∈ Z>0, there exists a unique y ∈ R>0 such that
yk = x. We denote the number y by x1/k.

Proof Let Sx = {y ∈ R | yk < x}. Since x ≥ 0, 0 ∈ S so S , ∅. We next claim that
max{1, x} is an upper bound for Sx. First suppose that x < 1. Then, for y ∈ Sx, yk < x < 1,
and so 1 is an upper bound for Sx. If x ≥ 1 and y ∈ Sx, then we claim that y ≤ x. Indeed,
if y > x then yk > xk > x, and so y < Sx. This shows that Sx is upper bounded by x
in this case. Now we know that Sx has a least upper bound by Theorem 2.3.7. Let y
denote this least upper bound.

We shall now show that yk = x. Suppose that yk , x. From Corollary 2.2.9 we
have yk < x or yk > x.

Suppose first that yk < x. Then, for ε ∈ R>0 we have

(y + ε)k = εk + ak−1yεk−1 + · · · + a1yk−1ε + yk

for some numbers a1, . . . , ak−1 (these are the binomial coefficients of Exercise 2.2.1). If
ε ≤ 1 then εk

≤ ε for k ∈ Z>0. Therefore, if ε ≤ 1 we have

(y + ε)k
≤ ε(1 + ak−1y + · · · + a1yk−1) + yk.

Now, if ε < min{1, x−yk

1+ak−1 y+···+aa yk−1 }, then (y + ε)k < x, contradicting the fact that y is an
upper bound for Sx.

Now suppose that yk > x. Then, for ε ∈ R>0, we have

(y − ε)k = (−1)kεk + (−1)k−1ak−1yεk−1 + · · · − a1yk−1ε + yk.
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The sum on the right involves terms that are positive and negative. This sum will
be greater than the corresponding sum with the positive terms involving powers of ε
removed. That is to say,

(y − ε)k > yk
− a1yk−1ε − a3yk−3ε3 + · · · .

For ε ≤ 1 we again gave εk
≤ ε for k ∈ Z>0. Therefore

(y − ε)k > yk
− (a1yk−1 + a3yk−3 + · · · )ε.

Thus, if ε < min{1, yk
−x

a1 yk−1+a3 yk−3+···
} we have (y − ε)k > x, contradicting the fact that y is

the least upper bound for Sx.
We are forced to conclude that yk = x, so giving the result. �

If x ∈ R>0 and q =
j
k ∈ Q with j ∈ Z and k ∈ Z>0, we define xq = (x1/k) j.

Let us record the basic properties of addition and multiplication, mirroring
analogous results forQ. The properties all follow easily from the similar properties
forQ, along with Proposition 2.2.1 and the definition of addition and multiplication
in R.

2.2.4 Proposition (Properties of addition and multiplication in R) Addition and multi-
plication in R satisfy the following rules:

(i) x1 + x2 = x2 + x1, x1, x2 ∈ R (commutativity of addition);
(ii) (x1 + x2) + x3 = x1 + (x2 + x3), x1, x2, x3 ∈ R (associativity of addition);
(iii) x + 0 = x, t ∈ R (additive identity);
(iv) x + (−x) = 0, x ∈ R (additive inverse);
(v) x1 · x2 = x2 · x1, x1, x2 ∈ R (commutativity of multiplication);
(vi) (x1 · x2) · x3 = x1 · (x2 · x3), x1, x2, x3 ∈ R (associativity of multiplication);
(vii) x · 1 = x, x ∈ R (multiplicative identity);
(viii) x · x−1 = 1, x ∈ R \ {0} (multiplicative inverse);
(ix) y · (x1 + x2) = y · x1 + y · x2, y, x1, x2 ∈ R (distributivity);
(x) xk1 · xk2 = xk1+k2 , x ∈ R, k1,k2 ∈ Z≥0.

Moreover, if we define iQ : Q → R by iQ(q) = [(q)j∈Z>0], then addition and multiplication
in R agrees with that in Q:

iQ(q1) + iQ(q2) = iQ(q1 + q2), iQ(q1) · iQ(q2) = iQ(q1 · q2).

As we have done in the past with Z ⊆ Q, we will often regard Q as a subset of
R without making explicit mention of the inclusion iQ. Note that this also allows
us to think of both Z≥0 and Z as subsets of R, since Z≥0 is regarded as a subset
of Z, and since Z ⊆ Q. Of course, this is nothing surprising. Indeed, perhaps the
more surprising thing is that it is not actually the case that the definitions do not
precisely give Z≥0 ⊆ Z ⊆ Q ⊆ R!

Now is probably a good time to mention that an element of R that is not
in the image of iQ is called irrational. Also, one can show that the set Q of
rational numbers is countable (Exercise 2.1.3), but that the setR of real numbers is
uncountable (Exercise 2.1.4). Note that it follows that the set of irrational numbers
is uncountable, since an uncountable set cannot be a union of two countable sets.
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2.2.2 The total order on R

Next we define in R a natural total order. To do so requires a little work. The
approach we take is this. On the set CS(Q) of Cauchy sequences in Q we define
a partial order that is not a total order. We then show that, for any two Cauchy
sequences, in each equivalence class in CS(Q) with respect to the equivalence
relation of Definition 2.1.16, there exists representatives that can be compared
using the order. In this way, while the order on the set of Cauchy sequences is not
a total order, there is induced a total order on the set of equivalence classes.

First we define the partial order on the set of Cauchy sequences.

2.2.5 Definition (Partial order on CS(Q)) The partial order � on CS(Q) is defined by

(q j) j∈Z>0 � (r j) j∈Z>0 ⇐⇒ q j ≤ r j, j ∈ Z>0. •

This partial order is clearly not a total order. For example, the Cauchy sequences
(1

j ) j∈Z>0 and ( (−1) j

j ) j∈Z>0 are not comparable with respect to this order. However, what
is true is that equivalence classes of Cauchy sequences are comparable. We refer the
reader to Definition 2.1.16 for the definition of the equivalence relation we denote
by ∼ in the following result.

2.2.6 Proposition Let (qj)j∈Z>0 , (rj)j∈Z>0 ∈ CS(Q) and suppose that (qj)j∈Z>0 / (rj)j∈Z>0 . The
following two statements hold:

(i) There exists (q̃j)j∈Z>0 , (r̃j)j∈Z>0 ∈ CS(Q) such that

(a) (q̃j)j∈Z>0 ∼ (qj)j∈Z>0 and (r̃j)j∈Z>0 ∼ (rj)j∈Z>0 , and
(b) either (q̃j)j∈Z>0 ≺ (r̃j)j∈Z>0 or (r̃j)j∈Z>0 ≺ (q̃j)j∈Z>0 .

(ii) There does not exist (q̃j)j∈Z>0 , (q̄j)j∈Z>0 , (r̃j)j∈Z>0 , (r̄j)j∈Z>0 ∈ CS(Q) such that

(a) (q̃j)j∈Z>0 ∼ (q̄j)j∈Z>0 ∼ (qj)j∈Z>0 and (r̃j)j∈Z>0 ∼ (r̄j)j∈Z>0 ∼ (rj)j∈Z>0 , and
(b) one of the following two statements holds:

I. (q̃j)j∈Z>0 ≺ (r̃j)j∈Z>0 and (r̄j)j∈Z>0 ≺ (q̄j)j∈Z>0 ;
II. (r̃j)j∈Z>0 ≺ (q̃j)j∈Z>0 and (q̄j)j∈Z>0 ≺ (r̄j)j∈Z>0 .

Proof (i) We begin with a useful lemma.

1 Lemma With the given hypotheses, there exists δ ∈ Q>0 and N ∈ Z>0 such that |qj − rj| ≥ δ
for all j ≥ N.

Proof Since (q j − r j) j∈Z>0 does not converge to zero, choose ε ∈ Q>0 such that, for
all N ∈ Z>0, there exists j ≥ N such that |q j − r j| ≥ ε. Now take N ∈ Z>0 such that
|q j − qk|, |rk − rk| ≤

ε
4 for j, k ≥ N. Then, by our assumption about ε, there exists Ñ ≥ N

such that |qÑ − rÑ | ≥ ε. Then, for any j ≥ N, we have

|q j − r j| = |(qÑ − rÑ) − (qÑ − rÑ) − (q j − r j)|
≥ ||qÑ − rÑ | − |(qÑ − rÑ) − (q j − r j)|| ≥ ε − ε

2 .

The lemma follows by taking δ = ε
2 . H
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Now take N and δ as in the lemma. Then take Ñ ∈ Z>0 such that |q j−qk|, |r j−rk| <
δ
2

for j, k ≥ Ñ. Then, using the triangle inequality,

|(q j − r j) − (qk − rk)| ≤ δ, j, k ≥ Ñ.

Now take K to be the larger of N and Ñ. We then have either qK − rK ≥ δ or rK − qK ≥ δ.
First suppose that qK − rK ≥ δ and let j ≥ K. Either q j − r j ≥ δ or r j − q j ≥ δ. If the latter,
then

q j − r j ≤ −δ =⇒ (q j − rk) − (qK − rK) ≤ 2δ,

contradicting the definition of K. Therefore, we must have q j − r j ≥ δ for all j ≥ K. A
similar argument when rK − qK ≥ δ shows that r j − q j ≥ δ for all j ≥ K. For j ∈ Z>0 we
then define

q̃ j =

qK, j < K,
q j, j ≥ K,

r̃ j =

rK, j < K,
r j, j ≥ K,

,

and we note that the sequences (q̃ j) j∈Z>0 and (r̃ j) j∈Z>0 satisfy the required conditions.
(ii) Suppose that

1. (q j) j∈Z>0 / (r j) j∈Z>0 ,
2. (q̃ j) j∈Z>0 ∼ (q̄ j) j∈Z>0 ∼ (q j) j∈Z>0 ,
3. (r̃ j) j∈Z>0 ∼ (r̄ j) j∈Z>0 ∼ (r j) j∈Z>0 , and
4. (q̃ j) j∈Z>0 ≺ (r̃ j) j∈Z>0 .

From the previous part of the proof we know that there exists δ ∈ Q>0 and N ∈ Z>0
such that q̃ j − r̃ j ≥ δ for j ≥ N. Then take Ñ ∈ Z>0 such that |q̃ j − q̄ j|, |r̃ j − r̄ j| <

δ
4 for

j ≥ Ñ. This implies that for j ≥ Ñ we have

|(q̃ j − r̃ j) − (q̄ j − r̄ j)| < δ
2 .

Therefore,
(q̄ j − r̄ j) > (q̃ j − r̃ j) − δ

2 , j ≥ Ñ.

If additionally j ≥ N, then we have

(q̄ j − r̄ j) > δ − δ
2 = δ

2 .

This shows the impossibility of (r̄ j) j∈Z>0 ≺ (q̄ j) j∈Z>0 . A similar argument shows that
(r̃ j) j∈Z>0 ≺ (q̃ j) j∈Z>0 bars the possibility that (q̄ j) j∈Z>0 ≺ (r̄ j) j∈Z>0 . �

Using the preceding result, the following definition then makes sense.

2.2.7 Definition (Order on R) The total order on R is defined by x ≤ y if and only if
there exists (q j) j∈Z>0 , (r j) j∈Z>0 ∈ CS(Q) such that

(i) x = [(q j) j∈Z>0] and y = [(r j) j∈Z>0] and
(ii) (q j) j∈Z>0 � (r j) j∈Z>0 . •

Note that we have used the symbol “≤” for the total order onZ, Q, andR. This
is justified since, if we think of Z ⊆ Q ⊆ R, then the various total orders agree
(Exercises 2.1.2 and 2.2.5).

We have the usual language and notation we associate with various kinds of
numbers.
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2.2.8 Definition (Positive and negative real numbers) A real number x is:
(i) positive if 0 < x;
(ii) negative if x < 0;
(iii) nonnegative if 0 ≤ x;
(iv) nonpositive if x ≤ 0.

The set of positive real numbers is denoted by R>0, the set of nonnegative real
numbers is denoted by R≥0, the set of negative real numbers is denoted by R<0,
and the set of nonpositive real numbers is denoted by R≤0. •

Now is a convenient moment to introduce some simple notation and concepts
that are associated with the natural total order on R. The signum function is the
map sign: R→ {−1, 0, 1} defined by

sign(x) =


−1, x < 0,
0, x = 0,
1, x > 0.

For x ∈ R, dxe is the ceiling of x which is the smallest integer not less than x.
Similarly, bxc is the floor of x which is the largest integer less than or equal to x. In
Figure 2.1 we show the ceiling and floor functions.
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Figure 2.1 The ceiling function (left) and floor function (right)

A consequence of our definition of order is the following extension of the
Trichotomy Law to R.

2.2.9 Corollary (Trichotomy Law for R) For x,y ∈ R, exactly one of the following possibili-
ties holds:

(i) x < y;
(ii) y < x;
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(iii) x = y.

As with integers and rational numbers, addition and multiplication of real
numbers satisfy the expected properties with respect to the total order.

2.2.10 Proposition (Relation between addition and multiplication and <) For x,y, z ∈
R, the following statements hold:

(i) if x < y then x + z < y + z;
(ii) if x < y and if z > 0 then z · x < z · y;
(iii) if x < y and if z < 0 then z · y < z · x;
(iv) if 0 < x,y then 0 < x · y;
(v) if x < y and if either

(a) 0 < x,y or
(b) x,y < 0,

then y−1 < x−1.
Proof These statements all follow from the similar statements for Q, along with
Proposition 2.2.6. We leave the straightforward verifications to the reader as Exer-
cise 2.2.4. �

2.2.3 The absolute value function on R

In this section we generalise the absolute value function on Q. As we shall see
in subsequent sections, this absolute value function is essential for providing much
of the useful structure of the set of real numbers.

The definition of the absolute value is given as usual.

2.2.11 Definition (Real absolute value function) The absolute value function on R is
the map from R to R≥0, denoted by x 7→ |x|, defined by

|x| =


x, 0 < x,
0, x = 0,
−x, x < 0. •

Note that we have used the symbol “|·|” for the absolute values on Z, Q, andR.
This is justified since, if we think of Z ⊆ Q ⊆ R, then the various absolute value
functions agree (Exercises 2.1.2 and 2.2.5).

The real absolute value function has the expected properties. The proof of the
following result is straightforward, and so omitted.

2.2.12 Proposition (Properties of absolute value on R) The following statements hold:
(i) |x| ≥ 0 for all x ∈ R;
(ii) |x| = 0 if and only if x = 0;
(iii) |x · y| = |x| · |y| for all x,y ∈ R;
(iv) |x + y| ≤ |x| + |y| for all x,y ∈ R (triangle inequality);
(v) |x−1

| = |x|−1 for all x ∈ R \ {0}.
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2.2.4 Properties of Q as a subset of R

In this section we give some seemingly obvious, and indeed not difficult to
prove, properties of the rational numbers as a subset of the real numbers.

The first property bears the name of Archimedes,2 but Archimedes actually
attributes this to Eudoxus.3 In any case, it is an Ancient Greek property.

2.2.13 Proposition (Archimedean property of R) Let ε ∈ R>0. Then, for any x ∈ R there
exists k ∈ Z>0 such that k · ε > x.

Proof Let (q j) j∈Z>0 and (e j) j∈Z>0 be Cauchy sequences in Q such that x = [(q j) j∈Z>0]
and ε = [(e j) j∈Z>0]. By Proposition 2.1.14 there exists M ∈ R>0 such that |q j| < M for
all j ∈ Z>0, and by Proposition 2.2.6 we may suppose that e j > δ for j ∈ Z>0, for some
δ ∈ Q>0. Let k ∈ Z>0 satisfy k > M+1

δ (why is this possible?). Then we have

k · e j >
M + 1
δ
· δ = M + 1 ≥ q j + 1, j ∈ Z>0.

Now consider the sequence (k · e j − q j) j∈Z>0 . This is a Cauchy sequence by Proposi-
tion 2.2.1 since it is a sum of products of Cauchy sequences. Moreover, our computa-
tions show that each term in the sequence is larger than 1. Also, this Cauchy sequence
has the property that [(k · e j − q j) j∈Z>0] = k · ε − x. This shows that k · ε − x ∈ R>0, so
giving the result. �

The Archimedean property roughly says that there are no real numbers which
are greater all rational numbers. The next result says that there are no real numbers
that are smaller than all rational numbers.

2.2.14 Proposition (There is no smallest positive real number) If ε ∈ R>0 then there
exists q ∈ Q>0 such that q < ε.

Proof Since ε−1
∈ R>0 let k ∈ Z>0 satisfy k ·1 > ε−1 by Proposition 2.2.13. Then taking

q = k−1
∈ Q>0 gives q < ε. �

Using the preceding two results, it is then easy to see that arbitrarily near any
real number lies a rational number.

2.2.15 Proposition (Real numbers are well approximated by rational numbers I) If
x ∈ R and if ε ∈ R>0, then there exists q ∈ Q such that |x − q| < ε.

Proof If x = 0 then the result follows by taking q = 0. Let us next suppose that x > 0.
If x < ε then the result follows by taking q = 0, so we assume that x ≥ ε. Let δ ∈ Q>0
satisfy δ < ε by Proposition 2.2.14. Then use Proposition 2.2.13 to choose k ∈ Z>0
to satisfy k · δ > x. Moreover, since x > 0, we will assume that k is the smallest such

2Archimedes of Syracuse (287 BC–212 BC) was a Greek mathematician and physicist (although
in that era such classifications of scientific aptitude were less rigid than they are today). Much of his
mathematical work was in the area of geometry, but many of Archimedes’ best known achievements
were in physics (e.g., the Archimedean Principle in fluid mechanics). The story goes that when the
Romans captured Syracuse in 212 BC, Archimedes was discovered working on some mathematical
problem, and struck down in the act by a Roman soldier.

3Eudoxus of Cnidus (408 BC–355 BC) was a Greek mathematician and astronomer. His mathe-
matical work was concerned with geometry and numbers.
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number. Since x ≥ ε, k ≥ 2. Thus (k − 1) · δ ≤ x since k is the smallest natural number
for which k · δ > x. Now we compute

0 ≤ x − (k − 1) · δ < k · δ − (k − 1) · δ = δ < ε.

It is now easy to check that the result holds by taking q = (k− 1) · δ. The situation when
x < 0 is easily shown to follow from the situation when x > 0. �

The following stronger result is also useful, and can be proved along the same
lines as Proposition 2.2.15, using the Archimedean property of R. The reader is
asked to do this as Exercise 2.2.3.

2.2.16 Corollary (Real numbers are well approximated by rational numbers II) If x,y ∈
R with x < y, then there exists q ∈ Q such that x < q < y.

One can also show that irrational numbers have the same property.

2.2.17 Proposition (Real numbers are well approximated by irrational numbers) If
x ∈ R and if ε ∈ R>0, then there exists y ∈ R \Q such that |x − y| < ε.

Proof By Corollary 2.2.16 choose q1, q2 ∈ Q such that x − ε < q1 < q2 < x + ε. Then
the number

y = q1 +
q2 − q1
√

2
is irrational and satisfies q1 < y < q2. Therefore, x − ε < y < x + ε, or |x − y| < ε. �

It is also possible to state a result regarding the approximation of a collection
of real numbers by rational numbers of a certain form. The following result gives
one such result.

2.2.18 Theorem (Dirichlet Simultaneous Approximation Theorem) If x1, . . . , xk ∈ R and
if N ∈ Z>0, then there exists m ∈ {1, . . . ,Nk

} and m1, . . . ,mk ∈ Z such that

max{|mx1 −m1|, . . . , |mxk −mk|} <
1
N
.

Proof Let
C = [0, 1)k

⊆ Rk

be the “cube” in Rk. For j ∈ {1, . . . ,N} denote I j = [ j−1
N ,

j
N ) and note that the sets

{I j1 × · · · × I jk ⊆ C | j1, . . . , jk ∈ {1, . . . ,N}}

form a partition of the cube C into Nk “subcubes.” Now consider the Nk + 1 points

{(lx1, . . . , lxk) | l ∈ {0, 1, . . . ,Nk
}}

in Rk. If bxc denotes the floor of x ∈ R (i.e., the largest integer less than or equal to x),
then

{(lx1 − blx1c, . . . , lxk − blxkc) | l ∈ {0, 1, . . . ,Nk
}}

is a collection of Nk +1 numbers in C. Since C is partitioned into the Nk cubes, it must be
that at least two of these Nk +1 points lie in the same cube. Let these points correspond
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to l1, l2 ∈ {0, 1, . . . ,nk
} with l2 > l1. Then, letting m = l2 − l2 and m j = bl2x jc − bl1x jc,

j ∈ {1, . . . , k}, we have

|mx j −m j| = |l2 − bl2x jc − (l1x j − bl1x jc)| <
1
N

for every j ∈ {1, . . . , k}, which is the result since m ∈ {1, . . . ,Nk
}. �

2.2.19 Remark (Dirichlet’s “pigeonhole principle”) The proof of the preceding theorem
is a clever application of the so-called “pigeonhole principle,” whose use seems
to have been pioneered by Dirichlet. The idea behind this principle is simple.
One uses the problem data to define elements x1, . . . , xm of some set S. One then
constructs a partition (S1, . . . ,Sk) of S with the property that, if any x j1 , x j2 ∈ Sl for
some l ∈ {1, . . . , k} and some j1, j2 ∈ {1, . . . ,m}, then the desired result holds. If k > m
this is automatically satisfied. •

Note that the previous result gives an arbitrarily accurate simultaneous approx-
imation of the numbers x1, . . . , x j by rational numbers with the same denominator
since we have ∣∣∣∣x j −

m j

m

∣∣∣∣ < 1
mNk

≤
1

Nk+1
.

By choosing N large, our simultaneous approximations can be made as good as
desired.

Let us now ask a somewhat different sort of question. Given a fixed set
a1, . . . , ak ∈ R, what are the conditions on these numbers such that, given any
set x1, . . . , xk ∈ R, we can find another number b ∈ R such that the approximations
|ba j − x j|, j ∈ {1, . . . , k}, are arbitrarily close to integer multiples of a certain number.
The exact reason why this is interesting is not immediately clear, but becomes clear
in Theorem ?? when we talk about the geometry of the unit circle in the complex
plane. In any event, the following result addresses this approximation question,
making reference to the notion of linear independence which we discuss in Sec-
tion 4.3.3. In the statement of the theorem, we think of R as being a Q-vector
space.

2.2.20 Theorem (Kronecker Approximation Theorem) For a1, . . . , ak ∈ R and ∆ ∈ R>0 the
following statements hold:

(i) if {a1, . . . , ak} are linearly over Q then, for any x1, . . . , xk ∈ R, for any ε ∈ R>0 and
for any N ∈ Z>0, there exists b ∈ R with b > N and integers m1, . . . ,mk such that

max{|ba1 − x1 −m1∆|, . . . , |bak − xk −mk∆|} < ε;

(ii) if {∆, a1, . . . , ak} are linearly over Q then, for any x1, . . . , xk ∈ R, for any ε ∈ R>0,
and for any N ∈ Z>0, there exists b ∈ Z with b > N and integers m1, . . . ,mk such
that

max{|ba1 − x1 −m1∆|, . . . , |bak − xk −mk∆|} < ε.
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Proof Let us first suppose that ∆ = 1.
We prove the two assertions together, using induction on k.
First we prove (i) for k = 1. Thus suppose that {a1} , {0}. Let x1 ∈ R, let ε ∈ R>0,

and let N ∈ Z>0. If m1 is an integer greater than N and if b = a−1
1 (x1 + m1), then we have

ba1 − x1 −m1 = 0, giving the result in this case.
Next we prove that if (i) holds for k = r then (ii) also holds for k = r. Thus suppose

that {1, a1, . . . , ar} are linearly independent overQ. Let x1, . . . , xr ∈ R, let ε ∈ R>0, and let
N ∈ Z>0. By the Dirichlet Simultaneous Approximation Theorem, let m,m′1, . . . ,m

′
r ∈ Z

with m ∈ Z>0 be such that

|ma j −m′j| <
ε
2
, j ∈ {1, . . . , r}.

We claim that {ma1−m′1, . . . ,mar−m′r} are linearly independent overQ. Indeed, suppose
that

q1(ma1 −m′1) + · · · + qr(mar −m′r) = 0

for some q1, . . . , qr ∈ Q. Then we have

(mq1)a1 + · · · + (mqr)ar) − (m′1q1 + · · · + m′rqr)1 = 0.

By linear independence of {1, a1, . . . , ar} over Q it follows that mq j = 0, j ∈ {1, . . . , r},
and so q j = 0, j ∈ {1, . . . , r}, giving the desired linear independence. Since {ma1 −

m′1, . . . ,mar −m′r} are linearly independent over Q, we may use our assumption that (i)
holds for k = r to give the existence of b′ ∈ R with b′ > N + 1 and integers m′′1 , . . . ,m

′′
r

such that
|b′(ma j −m′j) − x j −m′′j | <

ε
2
, j ∈ {1, . . . , r}.

Now let b = bb′cm > N and m j = m′′j +bb′cm′j, j ∈ {1, . . . , k}. Using the triangle inequality
we have

|ba j − x j −m j| = |bb′mca j − x j − (m′′j + bb′cm′j)|

= |bb′c(ma j −m′j) − x j −m′′j |

= |(bb′c − b′)(ma j −m′j) + b′(ma j −m′j) − x j −m′′j |

≤ |(bb′c − b′)(ma j −m′j)| + |b
′(ma j −m′j) − x j −m′′j | < ε,

as desired.
Now we prove that (ii) with k = r implies (i) with k = r + 1. Thus let a1, . . . , ar+1 be

linearly independent over Q. Let x1, . . . , xr+1 ∈ R, let ε ∈ R>0, and let N ∈ Z>0. Note
that linear independence implies that ar+1 , 0 (see Proposition 4.3.19(ii)). We claim
that {1, a1

ar+1
, . . . , ar

ar+1
} are linearly independent over Q. Since (ii) holds for k = r there

exists b′ ∈ Z with b′ > N and integers m′1, . . . ,m
′
r such that∣∣∣∣b′ a j

ar+1
−

(
x j − xr+1

a j

ar+1

)
−m′j

∣∣∣∣ < ε, j ∈ {1, . . . , r}.

Rewriting this as ∣∣∣∣(b′ + xr+1

ar+1

)
a j − x j −m′j

∣∣∣∣ < ε, j ∈ {1, . . . , r},
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and noting that (b′ + xr+1

ar+1

)
ar+1 − xr+1 − b′ = 0,

which gives (i) by taking

b =
b′ + xr+1

ar+1
, m1 = m′1, . . . , mr = m′r, mr+1 = b′.

The above induction arguments give the theorem with ∆ = 1. Now let us relax the
assumption that ∆ = 1. Thus let ∆ ∈ R>0. Let us define a′j = ∆−1a j, j ∈ {1, . . . , k}. We
claim that {a′1, . . . , a

′

k} is linearly independent overQ if {a1, . . . , ak} is linearly independent
over Q. Indeed, suppose that

q1a′1 + · · · + qka′k = 0

for some q1, . . . , qk ∈ Q. Multiplying by ∆ and using the linear independence of
{a1, . . . , ak} immediately gives q j = 0, j ∈ {1, . . . , k}. We also claim that {1, a′1, . . . , a

′

k} is
linearly independent over Q if {∆, a1, . . . , ak} is linearly independent over Q. Indeed,
suppose that

q0 1 + q1a′1 + · · · + qka′k = 0

for some q0, q1, . . . , qk ∈ Q. Multiplying by ∆ and using the linear independence of
{∆, a1, . . . , ak} immediately gives q j = 0, j ∈ {1, . . . , k}. Let x1, . . . , xk ∈ R, ε ∈ R>0, and
N ∈ Z. Define x′j = ∆−1x j, j ∈ {1, . . . , k}. Since the theorem holds for ∆ = 1, there exists
b > N (with b ∈ R for part (i) and b ∈ Z for part (ii)) such that

|ba′j − x′j −m1| <
ε
∆
, j ∈ {1, . . . , k}.

Multiplying the inequality by ∆ gives the result. �

2.2.5 The extended real line

It is sometimes convenient to be able to talk about the concept of “infinity” in a
somewhat precise way. We do so by using the following idea.

2.2.21 Definition (Extended real line) The extended real line is the set R ∪ {−∞} ∪ {∞},
and we denote this set by R. •

Note that in this definition the symbols “−∞” and “∞” are to simply be thought
of as labels given to the elements of the singletons {−∞} and {∞}. That they
somehow correspond to our ideas of what “infinity” means is a consequence of
placing some additional structure on R, as we now describe.

First we define “arithmetic” in R. We can also define some rules for arithmetic
in R.
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2.2.22 Definition (Addition and multiplication in R) For x, y ∈ R, define

x + y =



x + y, x, y ∈ R,
∞, x ∈ R, y = ∞, or x = ∞, y ∈ R,
∞, x = y = ∞,

−∞, x = −∞, y ∈ R or x ∈ R, y = −∞,

−∞, x = y = −∞.

The operations∞ + (−∞) and (−∞) +∞ are undefined. Also define

x · y =



x · y, x, y ∈ R,
∞, x ∈ R>0, y = ∞, or x = ∞, y ∈ R>0,

∞, x ∈ R<0, y = −∞, or x = −∞, y ∈ R<0,

∞, x = y = ∞, or x = y = −∞,

−∞, x ∈ R>0, y = −∞, or x = −∞, y ∈ R>0,

−∞, x ∈ R<0, y = ∞, or x = ∞, y ∈ R<0,

−∞, x = ∞, y = −∞ or x = −∞, y = ∞,

0, x = 0, y ∈ {−∞,∞} or x ∈ {−∞,∞}, y = 0. •

2.2.23 Remarks (Algebra in R)
1. The above definitions of addition and multiplication on R do not make this a

field. Thus, in some sense, the operations are simply notation, since they do not
have the usual properties we associate with addition and multiplication.

2. Note we do allow multiplication between 0 and −∞ and ∞. This convention
is not universally agreed upon, but it will be useful for us to do adopt this
convention in Chapter 5. •

2.2.24 Definition (Order on R) For x, y ∈ R, write

x ≤ y ⇐⇒



x = y, or
x, y ∈ R, x ≤ y, or
x ∈ R, y = ∞, or
x = −∞, y ∈ R, or
x = −∞, y = ∞. •

This is readily verified to be a total order onR, with −∞ being the least element
and∞ being the greatest element of R. As with R, we have the notation

R>0 = {x ∈ R | x > 0}, R≥0 = {x ∈ R | x ≥ 0}.

Finally, we can extend the absolute value on R to R.
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2.2.25 Definition (Extended real absolute value function) The extended real absolute
function is the map from R to R≥0, denoted by x 7→ |x|, and defined by

|x| =


|x|, x ∈ R,
∞, x = ∞,

∞, x = −∞. •

2.2.6 sup and inf

We recall from Definition ?? the notation sup S and inf S for the least upper
bound and greatest lower bound, respectively, associated to a partial order. This
construction applies, in particular to the partially ordered set (R,≤). Note that if
A ⊆ R then we might possibly have sup(A) = ∞ and/or inf(A) = −∞. In brief
section we give a few properties of sup and inf.

The following property of sup and inf is often useful.

2.2.26 Lemma (Property of sup and inf) Let A ⊆ R be such that inf(A), sup(A) ∈ R and let
ε ∈ R>0. Then there exists x+, x− ∈ A such that

x+ + ε > sup(A), x− − ε < inf(A).

Proof We prove the assertion for sup, as the assertion for inf follows along similar
lines, of course. Suppose that there is no x+ ∈ A such that x+ + ε > sup(A). Then
x ≤ sup(A) − ε for every x ∈ A, and so sup(A) − ε is an upper bound for A. But this
contradicts sup(A) being the least upper bound. �

Let us record and prove the properties of interest for sup.

2.2.27 Proposition (Properties of sup) For subsets A,B ⊆ R and for a ∈ R>0, the following
statements hold:

(i) if A + B = {x + y | x ∈ A, y ∈ B}, then sup(A + B) = sup(A) + sup(B);
(ii) if −A = {−x | x ∈ A}, then sup(−A) = − inf(A);
(iii) if aA = {ax | x ∈ A}, then sup(aA) = a sup(A);
(iv) if I ⊆ R is an interval, if A ⊆ R, if f : I → R is strictly monotonically (see

Definition 3.1.27), and if f(A) = {f(x) | x ∈ A}, then sup(f(A)) = f(sup(A)).
Proof (i) Let x ∈ A and y ∈ B so that x + y ∈ A + B. Then x + y ≤ sup A + sup B which
implies that sup A + sup B is an upper bound for A + B. Since sup(A + B) is the least
upper bound this implies that sup(A + B) ≤ sup A + sup B. Now let ε ∈ R>0 and let
x ∈ A and y ∈ B satisfy sup A − x < ε

2 and sup B − y < ε
2 . Then

sup A + sup B − (x + y) < ε.

Thus, for any ε ∈ R>0, there exists x + y ∈ A + B such that sup A + sup B − (x + y) < ε.
Therefore, sup A + sup B ≤ sup(A + B).

(ii) Let x ∈ −A. Then sup(−A) ≥ x or − sup(−A) ≤ −x. Thus − sup(−A) is a lower
bound for A and so inf(A) ≥ − sup(−A). Next let ε ∈ R>0 and let x ∈ −A satisfy
x + ε > sup(−A). Then −x − ε < − sup(−A). Thus, for every ε ∈ R>0, there exists y ∈ A
such that y − (− sup(−A)) < ε. Thus − sup(−A) ≥ inf(A), giving this part of the result.
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(iii) Let x ∈ A and note that since sup(A) ≥ x, we have a sup(A) ≥ ax. Thus a sup(A)
is an upper bound for aA, and so we must have sup(aA) ≤ a sup(A). Now let ε ∈ R>0
and let x ∈ A be such that x + ε

a > sup(A). Then ax + ε > a sup(A). Thus, given ε ∈ R>0
there exists y ∈ aA such that a sup(A) − ax < ε. Thus a sup(A) ≤ sup(aA).

(iv) missing stuff �

For inf the result is, of course, quite similar. We leave the proof, which mirrors
the above proof for sup, to the reader.

2.2.28 Proposition (Properties of inf) For subsets A,B ⊆ R and for a ∈ R≥0, the following
statements hold:

(i) if A + B = {x + y | x ∈ A, y ∈ B}, then inf(A + B) = inf(A) + inf(B);
(ii) if −A = {−x | x ∈ A}, then inf(−A) = − sup(A);
(iii) if aA = {ax | x ∈ A}, then inf(aA) = a inf(A);
(iv) if I ⊆ R is an interval, if A ⊆ R, if f : I → R is strictly monotonically (see

Definition 3.1.27), and if f(A) = {f(x) | x ∈ A}, then inf(f(A)) = f(inf(A)).

If S ⊆ R is a finite set, then both sup S and inf S are elements of S. In this case
we might denote max S = sup S and min S = inf S.

2.2.7 Notes

The Archimedean property of R seems obvious. The lack of the Archimedean
property would mean that there exists t for which t > N for every natural number N.
This property is actually possessed by certain fields used in so-called “nonstandard
analysis,” and we refer the interested reader to [AR:74].

Theorem 2.2.18 is due to JPGLD:42, and the proof is a famous use of the
“pigeonhole principle.” Theorem 2.2.20 is due to [LK:99], and the proof we give
is from [KLK:86].

Exercises

2.2.1 Prove the Binomial Theorem which states that, for x, y ∈ R and k ∈ Z>0,

(x + y)k =

k∑
j=0

Bk, jx jyk− j,

where

Bk, j =

(
k
j

)
,

k!
j!(k − j)!

, j, k ∈ Z>0, j ≤ k,

are the binomial coefficients, and k! = 1 · 2 · · · · · k is the factorial of k. We
take the convention that 0! = 1.

2.2.2 Let q ∈ Q \ {0} and x ∈ R \Q. Show the following:
(a) q + x is irrational;
(b) qx is irrational;
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(c) x
q is irrational;

(d) q
x is irrational.

2.2.3 Prove Corollary 2.2.16.
2.2.4 Prove Proposition 2.2.10.
2.2.5 Show that the order and absolute value on R agree with those on Q. That is

to say, show the following:
(a) for q, r ∈ Q, q < r if and only if iQ(q) < iQ(r);
(b) for q ∈ Q, |q| = |iQ(q)|.
(Note that we see clearly here the abuse of notation that follows from using
< for both the order on Z and Q and from using |·| as the absolute value
both on Z and Q. It is expected that the reader can understand where the
notational abuse occurs.)

2.2.6 Do the following:
(a) show that if x ∈ R>0 satisfies x < 1, then xk < x for each k ∈ Z>0 satisfying

k ≥ 2;
(b) show that if x ∈ R>0 satisfies x > 1, then xk > x for each k ∈ Z>0 satisfying

k ≥ 2.
2.2.7 Show that, for t, s ∈ R, ||t| − |s|| ≤ |t − s|.
2.2.8 Show that if s, t ∈ R satisfy s < t, then there exists q ∈ Q such that s < q < t.
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Section 2.3

Sequences in R

In our construction of the real numbers, sequences played a key rôle, inasmuch
as Cauchy sequences of rational numbers were integral to our definition of real
numbers. In this section we study sequences of real numbers. In particular, in
Theorem 2.3.5 we prove the result, absolutely fundamental in analysis, that R is
“complete,” meaning that Cauchy sequences of real numbers converge.

Do I need to read this section? If you do not already know the material in this
section, then it ought to be read. It is also worth the reader spending some time over
the idea that Cauchy sequences of real numbers converge, as compared to rational
numbers where this is not the case. The same idea will arise in more abstract
settings in Chapter ??, and so it will pay to understand it well in the simplest
case. •

2.3.1 Definitions and properties of sequences

In this section we consider the extension to R of some of the ideas considered
in Section 2.1.2 concerning sequences in Q. As we shall see, it is via sequences,
and other equivalent properties, that the nature of the difference between Q and R
is spelled out quite clearly.

We begin with definitions, generalising in a trivial way the similar definitions
for Q.

2.3.1 Definition (Cauchy sequence, convergent sequence, bounded sequence,
monotone sequence) Let (x j) j∈Z>0 be a sequence in R. The sequence:

(i) is a Cauchy sequence if, for each ε ∈ R>0, there exists N ∈ Z>0 such that
|x j − xk| < ε for j, k ≥ N;

(ii) converges to s0 if, for each ε ∈ R>0, there exists N ∈ Z>0 such that |x j − s0| < ε
for j ≥ N;

(iii) diverges if it does not converge to any element in R;
(iv) is bounded above if there exists M ∈ R such that x j < M for each j ∈ Z>0;
(v) is bounded below if there exists M ∈ R such that x j > M for each j ∈ Z>0;
(vi) is bounded if there exists M ∈ R>0 such that |x j| < M for each j ∈ Z>0;
(vii) is monotonically increasing if x j+1 ≥ x j for j ∈ Z>0;
(viii) is strictly monotonically increasing if x j+1 > x j for j ∈ Z>0;
(ix) is monotonically decreasing if x j+1 ≤ x j for j ∈ Z>0;
(x) is strictly monotonically decreasing if x j+1 < x j for j ∈ Z>0;
(xi) is constant if x j = x1 for every j ∈ Z>0;
(xii) is eventually constant if there exists N ∈ Z>0 such that x j = xN for every

j ≥ N. •
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Associated with the notion of convergence is the notion of a limit. We also, for
convenience, wish to allow sequences with infinite limits. This makes for some
rather subtle use of language, so the reader should pay attention to this.

2.3.2 Definition (Limit of a sequence) Let (x j) j∈Z>0 be a sequence.
(i) If (x j) j∈Z>0 converges to s0, then the sequence has s0 as a limit, and we write

lim j→∞ x j = s0.
(ii) If, for every M ∈ R>0, there exists N ∈ Z>0 such that x j > M (resp. xk < −M)

for j ≥ N, then the sequence diverges to ∞ (resp. diverges to −∞), and we
write lim j→∞ x j = ∞ (resp. lim j→∞ x j = −∞);

(iii) If lim j→∞ x j ∈ R, then the limit of the sequence (x j) j∈Z>0 exists.
(iv) If the limit of the sequence (x j) j∈Z>0 does not exist, does not diverge to ∞, or

does not diverge to −∞, then the sequence is oscillatory. •

The reader can prove in Exercise 2.3.1 that limits, if they exist, are unique.
That convergent sequences are Cauchy, and that Cauchy sequences are bounded

follows in exactly the same manner as the analogous results, stated as Proposi-
tions 2.1.13 and 2.1.14, for Q. Let us state the results here for reference.

2.3.3 Proposition (Convergent sequences are Cauchy) If a sequence (xj)j∈Z>0 converges
to x0, then it is a Cauchy sequence.

2.3.4 Proposition (Cauchy sequences are bounded) If (xj)j∈Z>0 is a Cauchy sequence in
R then it is bounded.

Moreover, what is true for R, and that is not true for Q, is that every Cauchy
sequence converges.

2.3.5 Theorem (Cauchy sequences in R converge) If (xj)j∈Z>0 is a Cauchy sequence in R
then there exists s0 ∈ R such that (xj)j∈Z>0 converges to s0.

Proof For j ∈ Z>0 choose q j ∈ Q>0 such that |x j − q j| <
1
j , this being possible by

Proposition 2.2.15. For ε ∈ R>0 let N1 ∈ Z>0 satisfy |x j − xk| <
ε
2 for j, k ≥ N1. By

Proposition 2.2.13 let N2 ∈ Z>0 satisfy N2 · 1 > 4ε−1, and let N be the larger of N1 and
N2. Then, for j, k ≥ N, we have

|q j − qk| = |q j − x j + x j − xk + xk − qk| ≤ |x j − q j| + |x j − xk| + |xk − qk| <
1
j + ε

2 + 1
k < ε.

Thus (q j) j∈Z>0 is a Cauchy sequence, and so we define s0 = [(q j) j∈Z>0].
Now we show that (q j) j∈Z>0 converges to s0. Let ε ∈ R>0 and take N ∈ Z>0 such

that |q j − qk| <
ε
2 , j, k ≥ N, and rewrite this as

ε
2 < q j − qk + ε, ε

2 < −qk + qk + ε, j, k ≥ N. (2.4)

For j0 ≥ N consider the sequence (q j − q j0 + ε) j∈Z>0 . This is a Cauchy sequence by
Proposition 2.2.1. Moreover, by Proposition 2.2.6, [(q j − q j0 + ε) j∈Z>0] > 0, using the
first of the inequalities in (2.4). Thus we have s0 − q j0 + ε > 0, or

−ε < s0 − q j0 , j0 ≥ N.
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Arguing similarly, but using the second of the inequalities (2.4), we determine that

s0 − q j0 < ε, j0 ≥ N.

This gives |s0 − q j| < ε for j ≥ N, so showing that (q j) j∈Z>0 converges to s0.
Finally, we show that (x j) j∈Z>0 converges to s0. Let ε ∈ R>0 and take N1 ∈ Z>0

such that |s0 − q j| <
ε
2 for j ≥ N1. Also choose N2 ∈ Z>0 such that N2 · 1 > 2ε−1 by

Proposition 2.2.13. If N is the larger of N1 and N2, then we have

|s0 − x j| = |s0 − q j + q j − x j| ≤ |s0 − q j| + |q j − x j| <
ε
2 + 1

j < ε,

for j ≥ N, so giving the result. �

2.3.6 Remark (Completeness of R) The property of R that Cauchy sequences are con-
vergent gives, in the more general setting of Section ??, R the property of being
complete. Completeness is an extremely important concept in analysis. We shall
say some words about this in Section 6.3.2; for now let us just say that the subject
of calculus would not exist, but for the completeness of R. •

2.3.2 Some properties equivalent to the completeness of R

Using the fact that Cauchy sequences converge, it is easy to prove two other
important features of R, both of which seem obvious intuitively.

2.3.7 Theorem (Bounded subsets of R have a least upper bound) If S ⊆ R is
nonempty and possesses an upper bound with respect to the standard total order ≤, then S
possesses a least upper bound with respect to the same total order.

Proof Since S has an upper bound, there exists y ∈ R such that x ≤ y for all x ∈ S. Now
choose some x ∈ S. We then define two sequences (x j) j∈Z>0 and (y j) j∈Z>0 recursively as
follows:

1. define x1 = x and y1 = y;
2. suppose that x j and y j have been defined;

3. if there exists z ∈ S with 1
2 (x j + y j) < z ≤ y j, take x j+1 = z and y j+1 = y j;

4. if there is no z ∈ S with 1
2 (x j + y j) < z ≤ y j, take x j+1 = x j and y j+1 = 1

2 (x j + y j).
A lemma characterises these sequences.

1 Lemma The sequences (xj)j∈Z>0 and (yj)j∈Z>0 have the following properties:
(i) xj ∈ S for j ∈ Z>0;
(ii) xj+1 ≥ xj for j ∈ Z>0;
(iii) yj is an upper bound for S for j ∈ Z>0;
(iv) yj+1 ≤ yj for j ∈ Z>0;

(v) 0 ≤ yj − xj ≤
1
2j (y − x) for j ∈ Z>0.

Proof We prove the result by induction on j. The result is obviously true for = 0. Now
suppose the result true for j ∈ {1, . . . , k}.

First take the case where there exists z ∈ S with 1
2 (xk + yk) < z ≤ yk, so that

xk+1 = z and yk+1 = yk. Clearly xk+1 ∈ S and yk+1 ≥ yk. Since yk ≥ xk by the induction
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hypotheses, 1
2 (xk + yk) ≥ xk giving xk+1 = z ≥ xk. By the induction hypotheses, yk+1 is

an upper bound for S. By definition of xk+1 and yk+1,

yk+1 − xk+1 = yk − z ≥ 0

and
yk+1 − xk+1 = yk − z = yk −

1
2 (yk − xk) = 1

2 (yk − xk),

giving yk+1 − xk+1 ≤
1

2k+1 (y − x) by the induction hypotheses.
Now we take the case where there is no z ∈ S with 1

2 (x j + y j) < z ≤ y j, so that
xk+1 = xk and yk+1 = 1

2 (xk + yk). Clearly xk+1 ≥ xk and xk+1 ∈ S. If yk+1 were not an upper
bound for S, then there exists a ∈ S such that a > yk+1. By the induction hypotheses, yk
is an upper bound for S so a ≤ yk. But this means that 1

2 (yk + xk) < a ≤ yk, contradicting
our assumption concerning the nonexistence of z ∈ S with 1

2 (x j + y j) < z ≤ y j. Thus
yk+1 is an upper bound for S. Since xk ≤ yk by the induction hypotheses,

yk+1 = 1
2 (yk + xk) ≤ yk.

Also
yk+1 − xk+1 = 1

2 (yk − xk)

by the induction hypotheses. This completes the proof. H

The following lemma records a useful fact about the sequences (x j) j∈Z>0 and
(y j) j∈Z>0 .

2 Lemma Let (xj)j∈Z>0 and (yj)j∈Z>0 be sequences in R satisfying:
(i) xj+1 ≥ xj, j ∈ Z>0;
(ii) yj+1 ≤ yj, j ∈ Z>0;
(iii) the sequence (yj − xj)j∈Z>0 converges to 0.

Then (xj)j∈Z>0 and (yj)j∈Z>0 converge, and converge to the same limit.

Proof First we claim that x j ≤ yk for all j, k ∈ Z>0. Indeed, suppose not. Then
there exists j, k ∈ Z>0 such that x j > yk. If N is the larger of j and k, then we have
yN ≤ yk < x j ≤ xN. This implies that

xm − ym ≥ x j − ym ≥ x j − yk > 0, m ≥ N,

which contradicts the fact that (y j − x j) j∈Z>0 converges to zero.
Now, for ε ∈ R>0 let N ∈ Z>0 satisfy |y j − x j| < ε for j ≥ N, or, simply, y j − x j < ε

for j ≥ N. Now let j, k ≥ N, and suppose that j ≥ k. Then

0 ≤ x j − xk ≤ x j − yk < ε.

Similarly, if j ≤ k we have 0 ≤ xk − x j < ε. In other words, |x j − xk| < ε for j, k ≥ N.
Thus (x j) j∈Z>0 is a Cauchy sequence. In like manner one shows that (y j) j∈Z>0 is also a
Cauchy sequence. Therefore, by Theorem 2.3.5, these sequences converge, and let us
denote their limits by s0 and t0, respectively. However, since (x j) j∈Z>0 and (y j) j∈Z>0 are
equivalent Cauchy sequences in the sense of Definition 2.1.16, it follows that s0 = t0. H
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Using Lemma 1 we easily verify that the sequences (x j) j∈Z>0 and (y j) j∈Z>0 satisfy
the hypotheses of Lemma 2. Therefore these sequences converge to a common limit,
which we denote by s. We claim that s is a least upper bound for S. First we show that
it is an upper bound. Suppose that there is x ∈ S such that x > s and define ε = x − s.
Since (y j) j∈Z>0 converges to s, there exists N ∈ Z>0 such that |s− y j| < ε for j ≥ N. Then,
for j ≥ N,

y j − s < ε = x − s,

implying that y j < x, and so contradicting Lemma 1.
Finally, we need to show that s is a least upper bound. To see this, let b be an upper

bound for S and suppose that b < s. Define ε = s − b, and choose N ∈ Z>0 such that
|s − x j| < ε for j ≥ N. Then

s − x j < ε = s − b,

implying that b < x j for j ≥ N. This contradicts the fact, from Lemma 1, that x j ∈ S and
that b is an upper bound for S. �

As we shall explain more fully in Aside 2.3.9, the least upper bound property
of the real numbers as stated in the preceding theorem is actually equivalent to the
completeness of R. In fact, the least upper bound property forms the basis for an
alternative definition of the real numbers using Dedekind cuts.4 Here the idea is
that one defines a real number as being a splitting of the rational numbers into
two halves, one corresponding to the rational numbers less than the real number
one is defining, and the other corresponding to the rational numbers greater than
the real number one is defining. Historically, Dedekind cuts provided the first
rigorous construction of the real numbers. We refer to Section 2.3.9 for further
discussion. We also comment, as we discuss in Aside 2.3.9, that any construction
of the real numbers with the property of completeness, or an equivalent, will
produce something that is “essentially” the real numbers as we have defined them.

Another consequence of Theorem 2.3.5 is the following.

2.3.8 Theorem (Bounded, monotonically increasing sequences in R converge) If
(xj)j∈Z>0 is a bounded, monotonically increasing sequence in R, then it converges.

Proof The subset (x j) j∈Z>0 of R has an upper bound, since it is bounded. By Theo-
rem 2.3.7 let b be the least upper bound for this set. We claim that (x j) j∈Z>0 converges
to b. Indeed, let ε ∈ R>0. We claim that there exists some N ∈ Z>0 such that b − xN < ε
since b is a least upper bound. Indeed, if there is no such N, then b ≥ x j + ε for all
j ∈ Z>0 and so b − ε

2 is an upper bound for (x j) j∈Z>0 that is smaller than b. Now, with
N chosen so that b − xN < ε, the fact that (x j) j∈Z>0 is monotonically increasing implies
that |b − x j| < ε for j ≥ N, as desired. �

It turns out that Theorems 2.3.5, 2.3.7, and 2.3.8 are equivalent. But to make
sense of this requires one to step outside the concrete representation we have given
for the real numbers to a more axiomatic one. This can be skipped, so we present
it as an aside.

4After Julius Wihelm Richard Dedekind (1831–1916), the German mathematician, did work in
the areas of analysis, ring theory, and set theory. His rigorous mathematical style has had a strong
influence on modern mathematical presentation.
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2.3.9 Aside (Complete ordered fields) An ordered field is a field F (see Definition 4.2.1
for the definition of a field) equipped with a total order satisfying the conditions

1. if x < y then x + z < y + z for x, y, z ∈ F and

2. if 0 < x, y then 0 < x · y.

Note that in an ordered field one can define the absolute value exactly as we have
done for Z, Q, and R. There are many examples of ordered fields, of which Q and
R are two that we have seen. However, if one adds to the conditions for an ordered
field an additional condition, then this turns out to essentially uniquely specify the
set of real numbers. (We say “essentially” since the uniqueness is up to a bijection
that preserves the field structure as well as the order.) This additional structure
comes in various forms, of which three are as stated in Theorems 2.3.5, 2.3.7,
and 2.3.8. To be precise, we have the following theorem.

Theorem If F is an ordered field, then the following statements are equivalent:
(i) every Cauchy sequence converges;
(ii) each set possessing an upper bound possesses a least upper bound;
(iii) each bounded, monotonically increasing sequence converges.

We have almost proved this theorem with our arguments above. To see this,
note that in the proof of Theorem 2.3.7 we use the fact that Cauchy sequences
converge. Moreover, the argument can easily be adapted from the special case of
R to a general ordered field. This gives the implication (i) =⇒ (ii) in the theorem
above. In like manner, the proof of Theorem 2.3.8 gives the implication (ii) =⇒ (iii),
since the proof is again easily seen to be valid for a general ordered field. The
argument for the implication (iii) =⇒ (i) is outlined in Exercise 2.3.5. An ordered
field satisfying any one of the three equivalent conditions (i), (ii), and (iii) is called
a complete ordered field. Thus there is essentially only one complete ordered field,
and it is R. ♠

2.3.3 Tests for convergence of sequences

There is generally no algorithmic way, other than checking the definition, to
ascertain when a sequence converges. However, there are a few simple results that
are often useful, and here we state some of these.

2.3.10 Proposition (Squeezing Principle) Let (xj)j∈Z>0 , (yj)j∈Z>0 , and (zj)j∈Z>0 be sequences in
R satisfying

(i) xj ≤ zj ≤ yj for all j ∈ Z>0 and
(ii) limj→∞ xj = limj→∞ yj = α.

Then limj→∞ zj = α.
Proof Let ε ∈ R>0 and let N1,N2 ∈ Z>0 have the property that |x j − α| <

ε
3 for j ≥ N1

and |y j − α| <
ε
3 . Then, for j ≥ max{N1,N2},

|x j − y j| = |x j − α + α − y j| ≤ |x j − α| + |y j − α| <
2ε
3 ,
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using the triangle inequality. Then, for j ≥ max{N1,N2}, we have

|z j − α| = |z j − x j + x j − α| ≤ |z j − x j| + |x j − α| ≤ |y j − x j| + |x j − α| = ε,

again using the triangle inequality. �

The next test for convergence of a series is sometimes useful.

2.3.11 Proposition (Ratio Test for sequences) Let (xj)j∈Z>0 be a sequence in R for which
limj→∞

∣∣∣xj+1

xj

∣∣∣ = α. If α < 1 then the sequence (xj)j∈Z>0 converges to 0, and if α > 1 then the
sequence (xj)j∈Z>0 diverges.

Proof For α < 1, define β = 1
2 (α + 1). Then α < β < 1. Now take N ∈ Z>0 such that∣∣∣∣∣∣∣∣x j+1

x j

∣∣∣∣ − α∣∣∣∣ < 1
2 (1 − α), j > N.

This implies that ∣∣∣∣x j+1

x j

∣∣∣∣ < β.
Now, for j > N,

|x j| < β|x j−1| < β
2
|x j−1| < · · · < β

j−N
|xN |.

Clearly the sequence (x j) j∈Z>0 converges to 0 if and only if the sequence obtained by
replacing the first N terms by 0 also converges to 0. If this latter sequence is denoted
by (y j) j∈Z>0 , then we have

0 ≤ y j ≤
|xN |

βN β j.

The sequence ( |xN |

βN β
j) j∈Z>0 converges to 0 since β < 1, and so this part of the result

follows from the Squeezing Principle.
For α > 1, there exists N ∈ Z>0 such that, for all j ≥ N, x j , 0. Consider

the sequence (y j) j∈Z>0 which is 0 for the first N terms, and satisfies y j = x−1
j for the

remaining terms. We then have
∣∣∣ y j+1

y j

∣∣∣ < α−1 < 1, and so, from the first part of the proof,
the sequence (y j) j∈Z>0 converges to 0. Thus the sequence (|y j|) j∈Z>0 converges to ∞,
which prohibits the sequence (y j) j∈Z>0 from converging. �

In Exercise 2.3.3 the reader can explore the various possibilities for the ratio test
when lim j→∞

∣∣∣x j+1

x j

∣∣∣ = 1.

2.3.4 lim sup and lim inf

Recall from Section 2.2.6 the notions of sup and inf for subsets ofR. Associated
with the least upper bound and greatest lower bound properties of R is a useful
notion that weakens the usual idea of convergence. In order for us to make a
sensible definition, we first prove a simple result.
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2.3.12 Proposition (Existence of lim sup and lim inf) For any sequence (xj)j∈Z>0 in R, the
limits

lim
N→∞

(
sup{xj | j ≥ N}

)
, lim

N→∞

(
inf{xj | j ≥ N}

)
exist, diverge to∞, or diverge to −∞.

Proof Note that the sequences (sup{x j | j ≥ N})N∈Z>0 and (inf{x j | j ≥ N})N∈Z>0 in R
are monotonically decreasing and monotonically increasing, respectively, with respect
to the natural order on R. Moreover, note that a monotonically increasing sequence
in R is either bounded by some element of R, or it is not. If the sequence is upper
bounded by some element of R, then by Theorem 2.3.8 it either converges or is the
sequence (−∞) j∈Z>0 . If it is not bounded by some element in R, then either it diverges
to ∞, or it is the sequence (∞) j∈Z>0 (this second case cannot arise in the specific case
of the monotonically increasing sequence (sup{x j | j ≥ N})N∈Z>0 . In all cases, the limit
limN→∞

(
sup{x j | j ≥ N}

)
exists or diverges to ∞. A similar argument for holds for

limN→∞
(
inf{x j | j ≥ N}

)
. �

2.3.13 Definition (lim sup and lim inf) For a sequence (x j) j∈Z>0 in R denote

lim sup
j→∞

x j = lim
N→∞

(
sup{x j | j ≥ N}

)
,

lim inf
j→∞

x j = lim
N→∞

(
inf{x j | j ≥ N}

)
. •

Before we get to characterising lim sup and lim inf, we give some examples to
illustrate all the cases that can arise.

2.3.14 Examples (lim sup and lim inf)
1. Consider the sequence (x j = (−1) j) j∈Z>0 . Here we have lim sup j→∞ x j = 1 and

lim inf j→∞ x j = −1.
2. Consider the sequence (x j = j) j∈Z>0 . Here lim sup j→∞ x j = lim inf j→∞ = ∞.
3. Consider the sequence (x j = − j) j∈Z>0 . Here lim sup j→∞ x j = lim inf j→∞ = −∞.
4. Define

x j =

 j, j even,
0, j odd.

We then have lim sup j→∞ x j = ∞ and lim inf j→∞ x j = 0.
5. Define

x j =

− j, j even,
0, j odd.

We then have lim sup j→∞ x j = 0 and lim inf j→∞ = −∞.
6. Define

x j =

 j, j even,
− j, j odd.

We then have lim sup j→∞ x j = ∞ and lim inf j→∞ = −∞. •
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There are many ways to characterise lim sup and lim inf, and we shall indicate
but a few of these.

2.3.15 Proposition (Characterisation of lim sup) For a sequence (xj)j∈Z>0 in R and α ∈ R,
the following statements are equivalent:

(i) α = lim supj→∞ xj;
(ii) α = inf{sup{xj | j ≥ k} | k ∈ Z>0};
(iii) for each ε ∈ R>0 the following statements hold:

(a) there exists N ∈ Z>0 such that xj < α + ε for all j ≥ N;
(b) for an infinite number of j ∈ Z>0 it holds that xj > α − ε.

Proof (i) ⇐⇒ (ii) Let yk = sup{x j | j ≥ k} and note that the sequence (yk)k∈Z>0 is
monotonically decreasing. Therefore, the sequence (yk)k∈Z>0 converges if and only if it
is lower bounded. Moreover, if it converges, it converges to inf(yk)k∈Z>0 . Putting this
all together gives the desired implications.

(i) =⇒ (iii) Let yk be as in the preceding part of the proof. Since limk→∞ yk = α,
for each ε ∈ R>0 there exists N ∈ Z>0 such that |yk − α| < ε for k ≥ N. In particular,
yN < α + ε. Therefore, x j < α + ε for all j ≥ N, so (iii a) holds. We also claim that, for
every ε ∈ R>0 and for every N ∈ Z>0, there exists j ≥ N such that x j > yN − ε. Indeed,
if x j ≤ yN − ε for every j ≥ N, then this contradicts the definition of yN. Since yN ≥ α
we have x j > yN − ε ≥ α − ε for some j. Since N is arbitrary, (iii b) holds.

(iii) =⇒ (i) Condition (iii a) means that there exists N ∈ Z>0 such that yk < α + ε for
all k ≥ N. Condition (iii b) implies that yk > α − ε for all k ∈ Z>0. Combining these
conclusions shows that limk→∞ yk = α, as desired. �

The corresponding result for lim inf is the following. The proof follows in the
same manner as the result for lim sup.

2.3.16 Proposition (Characterisation of lim inf) For a sequence (xj)j∈Z>0 in R and α ∈ R,
the following statements are equivalent:

(i) α = lim infj→∞ xj;
(ii) α = sup{inf{xj | j ≥ k} | k ∈ Z>0};
(iii) for each ε ∈ R>0 the following statements hold:

(a) there exists N ∈ Z>0 such that xj > α − ε for all j ≥ N;
(b) for an infinite number of j ∈ Z>0 it holds that xj < α + ε.

Finally, we characterise the relationship between lim sup, lim inf, and lim.

2.3.17 Proposition (Relationship between lim sup, lim inf, and lim) For a sequence
(xj)j∈Z>0 and s0 ∈ R, the following statements are equivalent:

(i) limj→∞ xj = s0;
(ii) lim supj→∞ xj = lim infj→∞ xj = s0.

Proof (i) =⇒ (ii) Let ε ∈ R>0 and take N ∈ Z>0 such that |x j − s0| < ε for all j ≥ N.
Then x j < s0 + ε and x j > s0 − ε for all j ≥ N. The current implication now follows from
Propositions 2.3.15 and 2.3.16.

(ii) =⇒ (i) Let ε ∈ R>0. By Propositions 2.3.15 and 2.3.16 there exists N1,N2 ∈ Z>0
such that x j − s0 < ε for j ≥ N1 and s0 − x j < ε for j ≥ N2. Thus |x j − s0| < ε for
j ≥ max{N1,N2}, giving this implication. �
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2.3.5 Multiple sequences

It will be sometimes useful for us to be able to consider sequences indexed, not
by a single index, but by multiple indices. We consider the case here of two indices,
and extensions to more indices are done by induction.

2.3.18 Definition (Double sequence) A double sequence in R is a family of elements of
R indexed by Z>0 × Z>0. We denote a double sequence by (x jk) j,k∈Z>0 , where x jk is
the image of ( j, k) ∈ Z>0 ×Z>0 in R. •

It is not a priori obvious what it might mean for a double sequence to converge,
so we should carefully say what this means.

2.3.19 Definition (Convergence of double sequences) Let s0 ∈ R. A double sequence
(x jk) j,k∈Z>0 :

(i) converges to s0, and we write lim j,k→∞ x jk = s0, if, for each ε ∈ R>0, there exists
N ∈ Z>0 such that |s0 − x jk| < ε for j, k ≥ N;

(ii) has s0 as a limit if it converges to s0.
(iii) is convergent if it converges to some member of R;
(iv) diverges if it does not converge;
(v) diverges to ∞ (resp. diverges to −∞), and we write lim j,k→∞ x jk = ∞

(resp. lim j,k→∞ x jk = −∞) if, for each M ∈ R>0, there exists N ∈ Z>0 such
that x jk > M (resp. x jk < −M) for j, k ≥ N;

(vi) has a limit that exists if lim j,k→∞ x jk ∈ R;
(vii) is oscillatory if the limit of the sequence does not exist, does not diverge to

∞, or does not diverge to −∞. •

Note that the definition of convergence requires that one check both indices at
the same time. Indeed, if one thinks, as it is useful to do, of a double sequence
as assigning a real number to each point in an infinite grid defined by the set
Z>0 ×Z>0, convergence means that the values on the grid can be made arbitrarily
small outside a sufficiently large square (see Figure 2.2). It is useful, however,
to have means of computing limits of double sequences by computing limits of
sequences in the usual sense. Our next results are devoted to this.

2.3.20 Proposition (Computation of limits of double sequences I) Suppose that for the
double sequence (xjk)j,k∈Z>0 it holds that

(i) the double sequence is convergent and
(ii) for each j ∈ Z>0, the limit limk→∞ xjk exists.

Then the limit limj→∞(limk→∞ xjk) exists and is equal to limj,k→∞ xjk.
Proof Let s0 = lim j,k→∞ x jk and denote s j = limk→∞ x jk, j ∈ Z>0. For ε ∈ R>0 take
N ∈ Z>0 such that |x jk − s0| < ε

2 for j, k ≥ N. Also take N j ∈ Z>0 such that |x jk − s j| <
ε
2

for k ≥ N j. Next take j ≥ N and let k ≥ max{N,N j}. We then have

|s j − s0| = |s j − x jk + x jk − s0| ≤ |s j − x jk| + |x jk − s0| < ε,

using the triangle inequality. �
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Figure 2.2 Convergence of a double sequence: by choosing the
square large enough, the values at the unshaded grid points
can be arbitrarily close to the limit

2.3.21 Proposition (Computation of limits of double sequences II) Suppose that for the
double sequence (xjk)j,k∈Z>0 it holds that

(i) the double sequence is convergent,
(ii) for each j ∈ Z>0, the limit limk→∞ xjk exists, and
(iii) for each k ∈ Z>0, the limit limj→∞ xjk exists.

Then the limits limj→∞(limk→∞ xjk) and limk→∞(limj→∞ xjk) exist and are equal to
limj,k→∞ xjk.

Proof This follows from two applications of Proposition 2.3.20. �

Let us give some examples that illustrate the idea of convergence of a double
sequence.

2.3.22 Examples (Double sequences)
1. It is easy to check that the double sequence ( 1

j+k ) j,k∈Z>0 converges to 0. Indeed, for
ε ∈ R>0, if we take N ∈ Z>0 such that 1

2N < ε, it follows that 1
j+k < ε for j, k ≥ N.

2. The double sequence ( j
j+k ) j,k∈Z>0 does not converge. To see this we should find

ε ∈ R>0such that, for any N ∈ Z>0, there exists j, k ≥ N for which j
j+k ≥ ε. Take

ε = 1
2 and let N ∈ Z>0. Then, if j, k ≥ N satisfy j ≥ 2k, we have j

j+k ≥ ε.

Note that for this sequence, the limits lim j→∞
j

j+k and limk→∞
j

j+k exist for each
fixed k and j, respectively. This cautions about trying to use these limits to infer
convergence of the double sequence.

3. The double sequence ( (−1) j

k ) j,k∈Z>0 is easily seen to converge to 0. However, the
limit lim j→∞

(−1) j

k does not exist for any fixed k. Therefore, one needs condition (ii)
in Proposition 2.3.20 and conditions (ii) and (iii) in Proposition 2.3.21 in order
for the results to be valid. •
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2.3.6 Algebraic operations on sequences

It is of frequent interest to add, multiply, or divide sequences and series. In
such cases, one would like to ensure that convergence of the sequences or series is
sufficient to ensure convergence of the sum, product, or quotient. In this section
we address this matter.

2.3.23 Proposition (Algebraic operations on sequences) Let (xj)j∈Z>0 and (yj)j∈Z>0 be
sequences converging to s0 and t0, respectively, and let α ∈ R. Then the following
statements hold:

(i) the sequence (αxj)j∈Z>0 converges to αs0;
(ii) the sequence (xj + yj)j∈Z>0 converges to s0 + t0;
(iii) the sequence (xjyj)j∈Z>0 converges to s0t0;
(iv) if, for all j ∈ Z>0, yj , 0 and if s0 , 0, then the sequence ( xj

yj
)j∈Z>0 converges to s0

t0
.

Proof (i) The result is trivially true for a = 0, so let us suppose that a , 0. Let ε ∈ R>0
and choose N ∈ Z>0 such that |x j − s0| < ε

|α| . Then, for j ≥ N,

|αx j − αs0| = |α||x j − s0| < ε.

(ii) Let ε ∈ R>0 and take N1,N2 ∈ Z>0 such that

|x j − s0| < ε
2 , j ≥ N1, |y j − t0| < ε

2 , j ≥ N2.

Then, for j ≥ max{N1,N2},

|x j + y j − (s0 + t0)| ≤ |x j − s0| + |y j − t0| = ε,

using the triangle inequality.
(iii) Let ε ∈ R>0 and define N1,N2,N3 ∈ Z>0 such that

|x j − s0| < 1, j ≥ N1, =⇒ |x j| < |s0| + 1, j ≥ N1,

|x j − s0| <
ε

2(|t0| + 1)
, j ≥ N2,

|y j − t0| <
ε

2(|s0| + 1)
, j ≥ N2.

Then, for j ≥ max{N1,N2,N3},

|x jy j − s0t0| = |x jy j − x jt0 + x jt0 − s0t0|

= |x j(y j − t0) + t0(x j − s0)|
≤ |x j||y j − t0| + |t0||x j − s0|

≤ (|s0| + 1)
ε

2(|s0| + 1)
+ (|t0| + 1)

ε
2(|t0| + 1)

= ε.

(iv) It suffices using part (iii) to consider the case where x j = 1, j ∈ Z>0. For ε ∈ R>0
take N1.N2 ∈ Z>0 such that

|y j − t0| <
|t0|

2
, j ≥ N1, =⇒ |y j| >

|t0|

2
, j ≥ N1,

|y j − t0| <
|t0|

2ε
2
, j ≥ N2.
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Then, for j ≥ max{N1,N2},∣∣∣∣ 1
y j
−

1
t0

∣∣∣∣ =
∣∣∣∣ y j − t0

y jt0

∣∣∣∣ ≤ |t0|
2ε

2
2
|t0|

1
|t0|

= ε,

as desired. �

As we saw in the statement of Proposition 2.2.1, the restriction in part (iv) that
y j , 0 for all j ∈ Z>0 is not a real restriction. The salient restriction is that the
sequence (y j) j∈Z>0 not converge to 0.

2.3.7 Convergence using R-nets

Up to this point in this section we have talked about convergence of sequences.
However, in practice it is often useful to take limits of more general objects where
the index set is notZ>0, but a subset ofR. In Section 1.4.4 we introduced a general-
isation of sequences called nets. In this section we consider particular cases of nets,
calledR-nets, that arise commonly when dealing with real numbers and subsets of
real numbers. These will be particularly useful when considering the relationships
between limits and functions. As we shall see, this slightly more general notion of
convergence can be reduced to standard convergence of sequences. We comment
that the notions of convergence in this section can be generalised to general nets,
and we refer the reader to missing stuff for details.

Our objective is to understand what is meant by an expression like limx→a φ(a),
where φ : A→ R is a map from a subset A of R to R. We will mainly be interested
in subsets A of a rather specific form. However, we consider the general case so as
to cover all situations that might arise.

2.3.24 Definition (R-directed set) A R-directed set is a pair D = (A,�) where the partial
order � is defined by x � y if either

(i) x ≤ y,
(ii) x ≥ y, or
(iii) there exists x0 ∈ R such that |x − x0| ≤ |y − x0| (we abbreviate this relation as

x ≤x0 y). •

Note that if D = (A,�) is aR-directed set, then it is indeed a directed set because,
corresponding to the three cases of the definition,

1. if x, y ∈ A, then z = max{x, y} has the property that x � z and y � z (for the
first case in the definition),

2. if x, y ∈ A, then z = min{x, y} has the property that x � z and y � z (for the
second case in the definition), or

3. if x, y ∈ A then, taking z to satisfy |z− x0| = min{|x− x0|, |y− x0|}, we have x � z
and y � z (for the third case of the definition).

Let us give some examples to illustrate the sort of phenomenon one can see for
R-directed sets.
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2.3.25 Examples (R-directed sets)
1. Let us take the R-directed set ([0, 1],≤). Here we see that, for any x, y ∈ [0, 1],

we have x ≤ 1 and y ≤ 1.
2. Next take the R-directed set ([0, 1),≤). Here, there is no element z of [0, 1) for

which x ≤ z and y ≤ z for every x, y ∈ [0, 1). However, it obviously holds that
x ≤ 1 and y ≤ 1 for every x, y ∈ [0, 1).

3. Next we consider the R directed set ([0,∞),≥). Here we see that, for any
x, y ∈ [0,∞), x ≥ 0 and y ≥ 0.

4. Next we consider the R directed set ((0,∞),≥). Here we see that there is no
element z ∈ (0,∞) such that, for every x, y ∈ (0,∞), x ≥ z and y ≥ z. However, it
is true that x ≥ 0 and y ≥ 0 for every x, y ∈ (0,∞).

5. Now we take theR-directed set ([0,∞),≤). Here we see that there is no element
z ∈ [0,∞) such that x ≤ z and y ≤ z for every x, y ∈ [0,∞). Moreover, there is
also no element z ∈ R for which x ≤ z and y ≤ z for every x, y ∈ [0,∞).

6. Next we take theR-directed set (Z,≤). As in the preceding example, there is no
element z ∈ [0,∞) such that x ≤ z and y ≤ z for every x, y ∈ [0,∞). Moreover,
there is also no element z ∈ R for which x ≤ z and y ≤ z for every x, y ∈ [0,∞).

7. Now consider the R-directed set (R,≤0). Note that 0 ∈ R has the property that,
for any x, y ∈ R, x ≤0 0 and y ≤0 0.

8. Similar to the preceding example, consider theR-directed set (R \ {0},≤0). Here
there is no element z ∈ R \ {0} such that x ≤0 z and y ≤0 z for every x, y ∈ R \ {0}.
However, we clearly have x ≤0 0 and y ≤0 0 for every x, y ∈ R \ {0}. •

The examples may seem a little silly, but this is just because the notion of a
R-directed set is, in and of itself, not so interesting. What is more interesting is the
following notion.

2.3.26 Definition (R-net, convergence in R-nets) If D = (A,�) is a R-directed set, a
R-net in D is a map φ : A→ R. A R-net φ : A→ R in a R-directed set D = (A,�)

(i) converges to s0 ∈ R if, for any ε ∈ R>0, there exists x ∈ A such that |φ(y)−s0| < ε
for any y ∈ A satisfying x � y,

(ii) has s0 as a limit if it converges to s0, and we write s0 = limD φ,
(iii) diverges if it does not converge,
(iv) diverges to∞ ((resp. diverges to−∞, and we write limD φ = ∞ (resp. limD φ =
−∞), if, for each M ∈ R>0, there exists x ∈ A such that φ(y) > M (resp. φ(y) <
−M) for every y ∈ A for which x � y,

(v) has a limit that exists if limD φ ∈ R, and
(vi) is oscillatory if the limit of the R-net does not exist, does not diverge to ∞,

and does not diverge to −∞. •
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2.3.27 Notation (Limits of R-nets) The importance R-nets can now be illustrated by
showing how they give rise to a collection of convergence phenomenon. Let us
look at various cases for convergence of a R-net in a R-directed set D = (A,�).

(i) �=≤: Here there are two subcases to consider.

(a) sup A = x0 < ∞: In this case we write limD φ = limx↑x0 φ(x).
(b) sup A = ∞: In this case we write limD φ = limx→∞ φ(x).

(ii) �=≥: Again we have two subcases.

(a) inf A = x0 > −∞: In this case we write limD φ = limx↓x0 φ(x).
(b) inf A = −∞: In this case we write limD φ = limx→−∞ φ(x).

(iii) �=≤x0 : There are three subcases here that we wish to distinguish.

(a) sup A = x0: Here we denote limD φ = limx↑x0 φ(x).
(b) inf A = x0: Here we denote limD φ = limx↓x0 φ(x).
(c) x0 < {inf A, sup A}: Here we denote limD φ = limx→x0 φ(x). •

In the case when the directed set is an interval, we have the following notation
that unifies the various limit notations for this special often encountered case.

2.3.28 Notation (Limit in an interval) Let I ⊆ R be an interval, let φ : I → R be a map,
and let a ∈ I. We define limx→Ia φ(x) by

(i) limx→Ia φ(x) = limx↑a φ(x) if a = sup I,
(ii) limx→Ia φ(x) = limx↓a φ(x) if a = inf I, and
(iii) limx→Ia φ(x) = limx→a φ(x) otherwise. •

We expect that most readers will be familiar with the idea here, even if the
notation is not conventional. Let us also give the notation a precise characterisation
in terms of limits of sequences in the case when the point x0 is in the closure of the
set A.

2.3.29 Proposition (Convergence in R-nets in terms of sequences) Let (A,�) be a R-
directed set and let φ : A→ R be a R-net in (A,�). Then, corresponding to the cases and
subcases of Notation 2.3.27, we have the following statements:

(i) (a) if x0 ∈ cl(A), the following statements are equivalent:

I. limx↑x0 φ(x) = s0;
II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =

x0;

(b) the following statements are equivalent:

I. limx→∞ φ(x) = s0;
II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
∞;

(ii) (a) if x0 ∈ cl(A), the following statements are equivalent:

I. limx↓x0 φ(x) = s0;
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II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
x0;

(b) the following statements are equivalent:
I. limx→−∞ φ(x) = s0;

II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
−∞;

(iii) (a) if x0 ∈ cl(A), the following statements are equivalent:
I. limx↑x0 φ(x) = s0;
II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =

x0;
(b) if x0 ∈ cl(A), the following statements are equivalent:

I. limx↓x0 φ(x) = s0;
II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =

x0;
(c) the following statements are equivalent:

I. limx→∞ φ(x) = s0;
II. limj→∞ φ(xj) = s0 for every sequence (xj)j∈Z>0 in A satisfying limj→∞ xj =
∞;

Proof These statements are all proved in essentially the same way, so let us prove
just, say, part (i a).

First suppose that limx↑x0 φ(x) = s0, and let (x j) j∈Z>0 be a sequence in A converging
to x0. Let ε ∈ R>0 and choose x ∈ A such that |φ(y) − s0| < ε whenever y ∈ A satisfies
x ≤ y. Then, since lim j→∞ x j = x0, there exists N ∈ Z>0 such that x ≤ x j for all j ≥ N.
Clearly, |φ(x j) − s0| < ε, so giving convergence of (φ(x j)) j∈Z>0 to s0 for every sequence
(x j) j∈Z>0 in A converging to x0.

For the converse, suppose that limx↑x0 φ(x) , s0. Then there exists ε ∈ R>0 such
that, for any x ∈ A, we have a y ∈ A with x ≤ y for which |φ(y)− s0| ≥ ε. Since x0 ∈ cl(A)
it follows that, for any j ∈ Z>0, there exists x j ∈ B( 1

j , x0) ∩ A such that |φ(x j) − s0| ≥ ε.
Thus the sequence (x j) j∈Z>0 in A converging to x0 has the property that (φ(x j)) j∈Z>0 does
not converge to s0. �

Of course, similar conclusions hold when “convergence to s0” is replaced with
“divergence,” “convergence to ∞,” “convergence to −∞,” or “oscillatory.” We
leave the precise statements to the reader.

Let us give some examples to illustrate that this is all really nothing new.

2.3.30 Examples (Convergence in R-nets)
1. Consider the R-directed set ([0,∞),≤) and the corresponding R-net φ defined

by φ(x) = 1
1+x2 . This R-net then converges to 0. Let us verify this using the

formal definition of convergence of a R-net. For ε ∈ R>0 choose x > 0 such that
x2 = 1

ε >
1
ε − 1. Then, if x ≤ y, we have∣∣∣∣ 1

1 + y2 − 0
∣∣∣∣ < 1

1 + x2 < ε,
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giving convergence to limx→∞ φ(x) = 0 as stated.
2. Next consider the R-directed set ((0, 1],≥) and the corresponding R-net φ de-

fined by φ(x) = x sin 1
x . We claim that this R-net converges to 0. To see this, let

ε ∈ R>0 and let x ∈ (0, ε). Then we have, for x ≥ y,∣∣∣y sin 1
y − 0

∣∣∣ = y ≤ x < ε,

giving limx↓0 φ(x) = 0 as desired.
3. Consider the R-directed set ([0,∞),≤) and the associated R-net φ defined by

φ(x) = x. In this case we have limx→∞ φ(x) = ∞.
4. Consider the R-directed set ([0,∞),≤) and the associated R-net φ defined by

φ(x) = x sin x. In this case, due to the oscillatory nature of sin, limx→∞ φ(x) does
not exist, nor does it diverge to either∞ or −∞.

5. Take the R-directed set (R \ {0},≤0). Define the R-net φ by φ(x) = x. Clearly,
limx→0 φ(x) = 0. •

There are also generalisations of lim sup and lim inf toR-nets. We let D = (A,�)
be a R-directed set and let φ : A → R be a R-net in this R-directed set. We denote
by supD φ, infD φ : A→ R the R-nets in D given by

sup
D
φ(x) = sup{φ(y) | x � y}, inf

D
φ(x) = inf{φ(y) | x � y}.

Then we define

lim sup
D

φ = lim
D

sup
D
φ, lim inf

D
φ = lim

D
inf

D
φ.

These allow us to talk of limits in cases where limits in the usual sense to not exist.
Let us consider this via an example.

2.3.31 Example (lim sup and lim inf in R-nets) We consider the R-directed set D =
([0,∞),≤) and let φ be the R-net defined by φ(x) = e−x + sin x.5 We claim that
lim supD φ = 1 and that lim infD φ = −1. Let us prove the first claim, and leave the
second as an exercise. We then have

sup
D
φ(x) = sup{e−y + sin y | x ≤ y} = e−x + 1.

First note that supD φ(x) ≥ 1 for every x ∈ [0,∞), and so lim supD φ ≥ 1. Now let
ε ∈ R>0 and take x > log ε. Then, for any y ≥ x,

sup
D
φ(y) = e−y + 1 ≤ 1 + ε.

Therefore, lim supD φ ≤ 1, and so lim supD φ = 1, as desired. •

5We have not yet defined e−x or sin x. The reader who is unable to go on without knowing what
these functions really are can skip ahead to Section 3.6.
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2.3.8 A first glimpse of Landau symbols

In this section we introduce for the first time the so-called Landau symbols.
These provide commonly used notation for when two functions behave “asymp-
totically” the same. Given our development of R-nets in the preceding section, it
is easy for us to be fairly precise here. We also warn the reader that the Landau
symbols often get used in an imprecise or vague way. We shall try to avoid such
usage.

We begin with the definition.

2.3.32 Definition (Landau symbols “O” and “o”) Let D = (A,�) be a R-directed set and
let φ : A→ R.

(i) Denote by OD(φ) the functions ψ : A → R for which there exists x0 ∈ A and
M ∈ R>0 such that |ψ(x)| ≤M|φ(x)| for x ∈ A satisfying x0 � x.

(ii) Denote by oD(φ) the functions ψ : A → R such that, for any ε ∈ R>0, there
exists x0 ∈ A such that |ψ(x)| < ε|φ(x)| for x ∈ A satisfying x0 � x.

If ψ ∈ OD(φ) (resp. ψ ∈ oD(φ)) then we say that ψ is big oh of φ (resp. little oh of
φ). •

It is very common to see simply O(φ) and o(φ) in place of OD(φ) and oD(φ). This
is because the most common situation for using this notation is in the case when
sup A = ∞ and �=≤. In such cases, the notation indicates means, essentially, that
ψ ∈ O(φ) if ψ has “size” no larger than φ for large values of the argument and that
ψ ∈ o(φ) if ψ is “small” compared to φ for large values of the argument. However,
we shall use the Landau symbols in other cases, so we allow the possibility of
explicitly including the R-directed set in our notation for the sake of clarity.

It is often the case that the comparison functionφ is positive on A. In such cases,
one can give a somewhat more concrete characterisation of OD and oD.

2.3.33 Proposition (Alternative characterisation of Landau symbols) Let D = (A,�)
be a R-directed set, and let φ : A→ R>0 and ψ : A→ R. Then

(i) ψ ∈ OD(φ) if and only if lim supD
ψ
φ < ∞ and

(ii) ψ ∈ oD(φ) if and only if limD
ψ
φ = 0.

Proof We leave this as Exercise 2.3.6. �

Let us give some common examples of where the Landau symbols are used.
Some examples will make use of ideas we have not yet discussed, but which we
imagine are familiar to most readers.

2.3.34 Examples (Landau symbols)
1. Let I ⊆ R be an interval for which x0 ∈ I and let f : I → R. Consider the R-

directed set D = (I \ {x0},≤x0) and the R-net φ in D given by φ(x) = 1. Define
g f ,x0 : I→ R by g f ,x0(x) = f (x0). We claim that f is continuous at x0 if and only if
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f − g f ,x0 ∈ oD(φ). Indeed, by Theorem 3.1.3 we have that f is continuous at x0 if
and only if

lim
x→Ix0

f (x) = f (x0)

=⇒ lim
x→Ix0

( f (x) − g f ,x0(x)) = 0

=⇒ lim
x→Ix0

( f (x) − g f ,x0(x))
φ(x)

= 0

=⇒ f − g f ,x0 ∈ oD(φ).

The idea is that f is continuous at x0 if and only if f is “approximately constant”
near x0.

2. Let I ⊆ R be an interval for which x0 ∈ I and let f : I → R. For L ∈ R define
g f ,x0,L : I \ {x0} → R by

gx0,L(x) = f (x0) + L(x − x0).

Consider the R-directed set D = (I \ {x0},≤x0), and define φ : I \ {x0} → R>0

by φ(x) = |x − x0|. Then we claim that f is differentiable at x0 with derivative
f ′(x0) = L if and only if f−g f ,x0,L ∈ oD(φ). Indeed, by definition, f is differentiable
at x0 with derivative f ′(x0) = L if and only if, then

lim
x→Ix0

f (x) − f (x0)
x − x0

= L

⇐⇒ lim
x→Ix0

1
x − x0

(
f (x) − g f ,x0,L(x)

)
= 0

⇐⇒ lim
x→Ix0

1
|x − x0|

(
f (x) − g f ,x0,L(x)

)
= 0

⇐⇒ f (x) − g f ,x0,L(x) ∈ oD(φ),

using Proposition 2.3.33. The idea is that f is differentiable at x0 if and only if
f is “nearly linear” at x0.

3. We can generalise the preceding two examples. Let I ⊆ R be an interval, let
x0 ∈ I, and consider theR-directed set (I\{x0},≤x0). For m ∈ Z≥0 define theR-net
φm in D by φm(x) = |x − x0|

m. We shall say that a function f : I → R vanishes
to order m at x0 if f ∈ OD(φm). Moreover, f is m-times differentiable at x0 with
f ( j)(x0)alpha j, j ∈ {0, 1, . . . ,m}, if and only if f − g f ,x0,α ∈ oD(φm), where

g f ,x0,α(x) = α0 + α1x + · · · + αmxm.

4. One of the common places where Landau symbols are used is in the analysis
of the complexity of algorithms. An algorithm, loosely speaking, takes some
input data, performs operations on the data, and gives an outcome. A very
simple example of an algorithm is the multiplication of two square matrices,
and we will use this simple example to illustrate our discussion. It is assumed
that the size of the input data is measured by an integer N. For example, for
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the multiplication of square matrices, this integer is the size of the matrices.
The complexity of an algorithm is then determined by the number of steps,
denoted by, say, ψ(N), of a certain type in the algorithm. For example, for
the multiplication of square matrices, this number is normally taken to be the
number of multiplications that are needed, and this is easily seen to be no more
than N2. To describe the complexity of the algorithm, one finds uses Landau
symbols in the following way. First of all, we use theR-directed set D = (Z>0,≤).
If φ : Z>0 → R>0 is such that ψ ∈ OD(φ), then we say the algorithm is O(φ). For
example, matrix multiplication is O(N2).
In Theorem 14.2.20 we show that the computational complexity of the so-called
Cooley–Tukey algorithm for computing the FFT is O(N log N).
Since we are talking about computational complexity of algorithms, it is a good
time to make mention of an important problem in the theory of computa-
tional complexity. This discussion is limited to so-called decision algorithms,
where the outcome is an affirmative or negative declaration about some prob-
lem, e.g., is the determinant of a matrix bounded by some number. For such an
algorithm, a verification algorithm is an algorithm that checks whether given
input data does indeed give an affirmative answer. Denote by P the class of
algorithms that are O(Nm) for some m ∈ Z>0. Such algorithms are known as
polynomial time algorithms. Denote by NP the class of algorithms for which
there exists a verification algorithm that is O(Nm) for some m ∈ Z>0. An impor-
tant unresolved question is, “Does P=NP?” •

2.3.9 Notes

Citation for Dedekind cuts.

Exercises

2.3.1 Show that if (x j) j∈Z>0 is a sequence in R and if lim j→∞ x j = x0 and lim j→∞ x j =
x′0, then x0 = x′0.

2.3.2 Answer the following questions:
(a) find a subset S ⊆ Q that possesses an upper bound in Q, but which has

no least element;
(b) find a bounded monotonic sequence in Q that does not converge in Q.

2.3.3 Do the following.

(a) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣ x j+1

x j

∣∣∣ = 1 and which converges
in R.

(b) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣ x j+1

x j

∣∣∣ = 1 and which diverges
to∞.

(c) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣ x j+1

x j

∣∣∣ = 1 and which diverges
to −∞.

(d) Find a sequence (x j) j∈Z>0 for which lim j→∞

∣∣∣x j+1

x j

∣∣∣ = 1 and which is oscilla-
tory.
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2.3.4 missing stuff

In the next exercise you will show that the property that a bounded, monotonically
increasing sequence converges implies that Cauchy sequences converge. This com-
pletes the argument needed to prove the theorem stated in Aside 2.3.9 concerning
characterisations of complete ordered fields.

2.3.5 Assume that every bounded, monotonically increasing sequence in R con-
verges, and using this show that every Cauchy sequence in R converges
using an argument as follows.

1. Let (x j) j∈Z>0 be a Cauchy sequence.
2. Let I0 = [a, b] be an interval that contains all elements of (x j) j∈Z>0 (why

is this possible?)
3. Split [a, b] into two equal length closed intervals, and argue that in at

least one of these there is an infinite number of points from the sequence.
Call this interval I1 and let xki ∈ (x j) j∈Z>0 ∩ I1.

4. Repeat the process for I1 to find an interval I2 which contains an infinite
number of points from the sequence. Let xk2 ∈ (x j) j∈Z>0 ∩ I2.

5. Carry on doing this to arrive at a sequence (xk j) j∈Z>0 of points in R and
a sequence (I j) j∈Z>0 .

6. Argue that the sequence of left endpoints of the intervals (I j) j∈Z>0 is a
bounded monotonically increasing sequence, and that the sequence of
right endpoints is a bounded monotonically decreasing sequence. and
so both converge.

7. Show that they converge to the same number, and that the sequence
(xk j) j∈Z>0 also converges to this limit.

8. Show that the sequence (x j) j∈Z>0 converges to this limit.
2.3.6 Prove Proposition 2.3.33.
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Section 2.4

Series in R

From a sequence (x j) j∈R in R, one can consider, in principle, the infinite sum∑
∞

j=1 x j. Of course, such a sum a priori makes no sense. However, as we shall see in
Chapter 8, such infinite sums are important for characterising certain discrete-time
signal spaces. Moreover, such sums come up frequently in many places in analysis.
In this section we outline some of the principle properties of these sums.

Do I need to read this section? Most readers will probably have seen much of
the material in this section in their introductory calculus course. What might
be new for some readers is the fairly careful discussion in Theorem 2.4.5 of the
difference between convergence and absolute convergence of series. Since absolute
convergence will be of importance to us, it might be worth understanding in what
ways it is different from convergence. The material in Section 2.4.7 can be regarded
as optional until it is needed during the course of reading other material in the text.

•

2.4.1 Definitions and properties of series

A series in R is an expression of the form

S =

∞∑
j=1

x j, (2.5)

where x j ∈ R, j ∈ Z>0. Of course, the problem with this “definition” is that the
expression (2.5) is meaningless as an element of R unless it possesses additional
features. For example, if x j = 1, j ∈ Z>0, then the sum is infinite. Also, if x j = (−1) j,
j ∈ Z>0, then it is not clear what the sum is: perhaps it is 0 or perhaps it is 1.
Therefore, to be precise, a series is prescribed by the sequence of numbers (x j) j∈Z>0 ,
and is represented in the form (2.5) in order to distinguish it from the sequence
with the same terms.

If the expression (2.5) is to have meaning as a number, we need some sort of
condition placed on the terms in the series.

2.4.1 Definition (Convergence and absolute convergence of series) Let (x j) j∈Z>0 be a
sequence in R and consider the series

S =

∞∑
j=1

x j.

The corresponding sequence of partial sums is the sequence (Sk)k∈Z>0 defined by

Sk =

k∑
j=1

x j.
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Let s0 ∈ R. The series:
(i) converges to s0, and we write

∑
∞

j=1 x j = s0, if the sequence of partial sums
converges to s0;

(ii) has s0 as a limit if it converges to s0;
(iii) is convergent if it converges to some member of R;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j=1

|x j|

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) diverges to∞ (resp. diverges to−∞), and we write

∑
∞

j=1 x j = ∞ (resp.
∑
∞

j=1 x j =
−∞), if the sequence of partial sums diverges to∞ (resp. diverges to −∞);

(viii) has a limit that exists if lim j→∞ S j ∈ R;
(ix) is oscillatory if the sequence of partial sums is oscillatory. •

Let us consider some examples of series in R.

2.4.2 Examples (Series in R)
1. First we consider the geometric series

∑
∞

j=1 x j−1 for x ∈ R. We claim that this
series converges if and only if |x| < 1. To prove this we claim that the sequence
(Sk)k∈Z>0 of partial sums is defined by

Sk =

1−xk+1

1−x , x , 1,
k, x = 1.

The conclusion is obvious for x = 1, so we can suppose that x , 1. The
conclusion is obvious for k = 1, so suppose it true for j ∈ {1, . . . , k}. Then

Sk+1 =

k+1∑
j=1

x j = xk+1 +
1 − xk+1

1 − x
=

xk+1
− xk+2 + 1 − xk+1

1 − x
=

1 − xk+2

1 − x
,

as desired. It is clear, then, that if x = 1 then the series diverges to∞. If x = −1
then the series is directly checked to be oscillatory; the sequence of partial sums
is {1, 0, 1, . . . }. For x > 1 we have

lim
k→∞

Sk = lim
k→∞

1 − xk+1

1 − x
= ∞,

showing that the series diverges to ∞ in this case. For x < −1 it is easy to see
that the sequence of partial sums is oscillatory, but increasing in magnitude.
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This leaves the case when |x| < 1. Here, since the sequence (xk+1)k∈Z>0 converges
to zero, the sequence of partial sums also converges, and converges to 1

1−x .
(We have used the results concerning the swapping of limits with algebraic
operations as described in Section 2.3.6.)

2. We claim that the series
∑
∞

j=1
1
j diverges to ∞. To show this, we show that the

sequence (Sk)k∈Z>0 is not upper bounded. To show this, we shall show that
S2k ≥ 1 + 1

2k for all k ∈ Z>0. This is true directly when k = 1. Next suppose that
S2 j ≥ 1 + 1

2 j for j ∈ {1, . . . , k}. Then

S2k+1 = S2k +
1

2k + 1
+

1
2k + 2

+ · · · +
1

2k+1

≥ 1 +
1
2

k +
1

2k+1
+ · · · +

1
2k+1︸              ︷︷              ︸

2k terms

= 1 +
1
2

k +
2k

2k+1
= 1 +

1
2

(k + 1).

Thus the sequence of partial sums is indeed unbounded, and since it is mono-
tonically increasing, it diverges to∞, as we first claimed.

3. We claim that the series S =
∑
∞

j=1
(−1) j+1

j converges. To see this, we claim that, for
any m ∈ Z>0, we have

S2 ≤ S4 ≤ · · · ≤ S2m ≤ S2m−1 ≤ · · · ≤ S3 ≤ S1.

That S2 ≤ S4 ≤ · · · ≤ S2m follows since S2k − S2k−2 = 1
2k−1 −

1
2k > 0 for k ∈ Z>0. That

S2m ≤ S2m−1 follows since S2m−1 − S2m = 1
2m . Finally, S2m−1 ≤ · · · ≤ S3 ≤ S1

since S2k−1 − S2k+1 = 1
2k −

1
2k+1 > 0 for k ∈ Z>0. Thus the sequences

(S2k)k∈Z>0 and (S2k−1)k∈Z>0 are monotonically increasing and monotonically de-
creasing, respectively, and their tails are getting closer and closer together since
limm→∞ S2m−1 − S2m = 1

2m = 0. By Lemma 2 from the proof of Theorem 2.3.7, it
follows that the sequences (S2k)k∈Z>0 and (S2k−1)k∈Z>0 converge and converge to
the same limit. Therefore, the sequence (Sk)k∈Z>0 converges as well to the same
limit. One can moreover show that the limit of the series is log 2, where log
denotes the natural logarithm.

Note that we have now shown that the series
∑
∞

j=1
(−1) j+1

j converges, but does not
converge absolutely; therefore, it is conditionally convergent.

4. We next consider the harmonic series
∑
∞

j=1 j−k for k ∈ Z≥0. For k = 1 this agrees
with our example of part 2. We claim that this series converges if and only if
k > 1. We have already considered the case of k = 1. For k < 1 we have j−k

≥ j−1

for j ∈ Z>0. Therefore,
∞∑
j=1

j−k
≥

∞∑
j=1

j−1 = ∞,

showing that the series diverges to∞.
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For k > 1 we note that the sequence of partial sums is monotonically increasing.
Thus, so show convergence of the series it suffices by Theorem 2.3.8 to show
that the sequence of partial sums is bounded above. Let N ∈ Z>0 and take
j ∈ Z>0 such that N < 2 j

− 1. Then the Nth partial sum satisfies

SN ≤ S2 j−1 = 1 +
1
2k

+
1
3k

+ · · · +
1

(2 j − 1)k

= 1 +
( 1
2k

+
1
3k

)
︸    ︷︷    ︸

2 terms

+
( 1
4k

+ · · · +
1
7k

)
︸            ︷︷            ︸

4 terms

+ · · · +
( 1
(2 j−1)k

+ · · · +
1

(2 j − 1)k

)
︸                         ︷︷                         ︸

2 j−1 terms

< 1 +
2
2k

+
4
4k

+ · · · +
2 j−1

(2 j−1)k

= 1 +
1

2k−1
+

( 1
2k−1

)2
+ · · · +

( 1
2k−1

) j−1
.

Now we note that the last expression on the right-hand side is bounded above
by the sum

∑
∞

j=1(2k−1) j−1, which is a convergent geometric series as we saw in
part 1. This shows that SN is bounded above by this sum for all N, so showing
that the harmonic series converges for k > 1.

5. The series
∑
∞

j=1(−1) j+1 does not converge, and also does not diverge to∞ or −∞.
Therefore, it is oscillatory. •

Let us next explore relationships between the various notions of convergence.
First we relate the notions of convergence and absolute convergence in the only
possible way, given that the series

∑
j=1

(−1) j+1

j has been shown to be convergent, but
not absolutely convergent.

2.4.3 Proposition (Absolutely convergent series are convergent) If a series
∑
∞

j=1 xj is
absolutely convergent, then it is convergent.

Proof Denote

sk =

k∑
j=1

x j, σk =

k∑
j=1

|x j|,

and note that (σk)k∈Z>0 is a Cauchy sequence since the series
∑
∞

j=1 x j is absolutely
convergent. Thus let ε ∈ R>0 and choose N ∈ Z>0 such that |σk − σl| < ε for k, l ≥ N.
For m > k we then have

|sm − sk| =
∣∣∣∣ m∑
j=k+1

x j

∣∣∣∣ ≤ m∑
j=k+1

|x j| = |σm − σk| < ε,

where we have used Exercise 2.4.3. Thus, for m > k ≥ N we have |sm− sk| < ε, showing
that (sk)k∈Z>0 is a Cauchy sequence, and so convergent by Theorem 2.3.5. �

The following result is often useful.
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2.4.4 Proposition (Swapping summation and absolute value) For a sequence (xj)j∈Z>0 ,
if the series S =

∑
∞

j=1 xj is absolutely convergent, then∣∣∣∣ ∞∑
j=1

xj

∣∣∣∣ ≤ ∞∑
j=1

|xj|.

Proof Define

S1
m =

∣∣∣∣ m∑
j=1

x j

∣∣∣∣, S2
m =

m∑
j=1

|x j|, m ∈ Z>0.

By Exercise 2.4.3 we have S1
m ≤ S2

m for each m ∈ Z>0. Moreover, by Proposition 2.4.3
the sequences (S1

m)m∈Z>0 and (S2
m)m∈Z>0 converge. It is then clear (why?) that

lim
m→∞

S1
m ≤ lim

m→∞
S2

m,

which is the result. �

It is not immediately clear on a first encounter why the notion of absolute
convergence is useful. However, as we shall see in Chapter 8, it is the notion of
absolute convergence that will be of most use to us in our characterisation of discrete
signal spaces. The following result indicates why mere convergence of a series is
perhaps not as nice a notion as one would like, and that absolute convergence is in
some sense better behaved.missing stuff

2.4.5 Theorem (Convergence and rearrangement of series) For a series S =
∑
∞

j=1 xj, the
following statements hold:

(i) if S is conditionally convergent then, for any s0 ∈ R, there exists a bijectionφ : Z>0 →

Z>0 such that the series Sφ =
∑
∞

j=1 xφ(j) converges to s0;
(ii) if S is conditionally convergent then there exists a bijection φ : Z>0 → Z>0 such that

the series Sφ =
∑
∞

j=1 xφ(j) diverges to∞;
(iii) if S is conditionally convergent then there exists a bijection φ : Z>0 → Z>0 such that

the series Sφ =
∑
∞

j=1 xφ(j) diverges to −∞;
(iv) if S is conditionally convergent then there exists a bijection φ : Z>0 → Z>0 such that

the limit of the partial sums for the series Sφ =
∑
∞

j=1 xφ(j) is oscillating;
(v) if S is absolutely convergent then, for any bijection φ : Z>0 → Z>0, the series

Sφ =
∑
∞

j=1 xφ(j) converges to the same limit as the series S.

Proof We shall be fairly “descriptive” concerning the first four parts of the proof.
More precise arguments can be tediously fabricated from the ideas given. We shall use
the fact, given as Exercise 2.4.1, that if a series is conditionally convergent, then the
two series formed by the positive terms and the negative terms diverge.

(i) First of all, rearrange the terms in the series so that the positive terms are
arranged in decreasing order, and the negative terms are arranged in increasing order.
We suppose that s0 ≥ 0, as a similar argument can be fabricated when s0 < 0. Take as
the first elements of the rearranged sequence the enough of the first few positive terms
in the sequence so that their sum exceeds s0. As the next terms, take enough of the
first few negative terms in the series such that their sum, combined with the already



89 2 Real numbers and their properties 2016/11/26

chosen positive terms, is less than s0. Now repeat this process. Because the series
was initially rearranged so that the positive and negative terms are in descending and
ascending order, respectively, one can show that the construction we have given yields
a sequence of partial sums that starts greater than s0, then monotonically decreases to
a value less than s0, then monotonically increases to a value greater than s0, and so
on. Moreover, at the end of each step, the values get closer to s0 since the sequence
of positive and negative terms both converge to zero. An argument like that used in
the proof of Proposition 2.3.10 can then be used to show that the resulting sequence
of partial sums converges to s0.

(ii) To get the suitable rearrangement, proceed as follows. Partition the negative
terms in the sequence into disjoint finite sets S−j , j ∈ Z>0. Now partition the positive
terms in the sequence as follows. Define S+

1 to be the first N1 positive terms in the
sequence, where N1 is sufficiently large that the sum of the elements of S+

1 exceeds by
at least 1 in absolute value the sum of the elements from S−1 . This is possible since the
series of positive terms in the sequence diverges to ∞. Now define S+

2 by taking the
next N2 positive terms in the sequence so that the sum of the elements of S+

2 exceeds
by at least 1 in absolute value the sum of the elements from S−2 . Continue in this way,
defining S+

3 ,S
+
4 , . . .. The rearrangement of the terms in the series is then made by taking

the first collection of terms to be the elements of S+
1 , the second collection to be the

elements of S−1 , the third collection to be the elements of S+
2 , and so on. One can verify

that the resulting sequence of partial sums diverges to∞.
(iii) The argument here is entirely similar to the previous case.
(iv) This result follows from part (i) in the following way. Choose an oscillating

sequence (y j) j∈Z>0 . For y1, by part (i) one can find a finite number of terms from the
original series whose sum is as close as desired to y1. These will form the first terms
in the rearranged series. Next, the same argument can be applied to the remaining
elements of the series to yield a finite number of terms in the series that are as close
as desired to y2. One carries on in this way, noting that since the sequence (y j) j∈Z>0 is
oscillating, so too will be the sequence of partial sums for the rearranged series.

(v) Let y j = xφ( j) for j ∈ Z>0. Then define sequences (x+
j ) j∈Z>0 , (x−j ) j∈Z>0 , (y+

j ) j∈Z>0 ,
and (y−j ) j∈Z>0 by

x+
j = max{x j, 0}, x−j = max{−x j, 0},

y+
j = max{y j, 0}, y−j = max{−y j, 0}, j ∈ Z>0,

noting that |x j| = max{x−j , x
+
j } and |y j| = max{y−j , y

+
j } for j ∈ Z>0. By Proposition 2.4.8

it follows that the series

S+ =

∞∑
j=1

x+
j , S− =

∞∑
j=1

x−j , S+
φ =

∞∑
j=1

y+
j , S−φ =

∞∑
j=1

y−j

converge. We claim that for each k ∈ Z>0 we have

k∑
j=1

x+
j ≤

∞∑
j=1

y+
j .

To see this, we need only note that there exists N ∈ Z>0 such that

{x+
1 , . . . , x

+
k } ⊆ {y

+
1 , . . . , y

+
N}.
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With N having this property,

k∑
j=1

x+
j ≤

N∑
j=1

y+
j ≤

∞∑
j=1

y+
j ,

as desired. Therefore,
∞∑
j=1

x+
j ≤

∞∑
j=1

y+
j .

Reversing the argument gives
∞∑
j=1

y+
j ≤

∞∑
j=1

x+
j =⇒

∞∑
j=1

x+
j =

∞∑
j=1

y+
j .

A similar argument also gives
∞∑
j=1

x−j =

∞∑
j=1

y−j .

This then gives
∞∑
j=1

y j =

∞∑
j=1

y+
j −

∞∑
j=1

y−j =

∞∑
j=1

x+
j −

∞∑
j=1

x−j =

∞∑
j=1

x j,

as desired. �

The theorem says, roughly, that absolute convergence is necessary and sufficient
to ensure that the limit of a series be independent of rearrangement of the terms in
the series. Note that the necessity portion of this statement, which is parts (i)–(iv)
of the theorem, comes in a rather dramatic form which suggests that conditional
convergence behaves maximally poorly with respect to rearrangement.

2.4.2 Tests for convergence of series

In this section we give some of the more popular tests for convergence of a series.
It is infeasible to expect an easily checkable general condition for convergence.
However, in some cases the tests we give here are sufficient.

First we make a simple general observation that is very often useful; it is merely
a reflection that the convergence of a series depends only on the tail of the series.
We shall often make use of this result without mention.

2.4.6 Proposition (Convergence is unaffected by changing a finite number of
terms) Let

∑
j=1 xj and

∑
∞

j=1 yj be series in R and suppose that there exists K ∈ Z and
N ∈ Z>0 such that xj = yj+K for j ≥ N. Then the following statements hold:

(i) the series
∑
∞

j=1 xj converges if and only if the series
∑
∞

j=1 yj converges;
(ii) the series

∑
∞

j=1 xj diverges if and only if the series
∑
∞

j=1 yj diverges;
(iii) the series

∑
∞

j=1 xj diverges to∞ if and only if the series
∑
∞

j=1 yj diverges to∞;
(iv) the series

∑
∞

j=1 xj diverges to −∞ if and only if the series
∑
∞

j=1 yj diverges to −∞.

The next convergence result is also a more or less obvious one.
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2.4.7 Proposition (Sufficient condition for a series to diverge) If the sequence (xj)j∈Z>0

does not converge to zero, then the series
∑
∞

j=1 xj diverges.
Proof Suppose that the series

∑
∞

j=1 x j converges to s0 and let (Sk)k∈Z>0 be the sequence
of partial sums. Then xk = Sk − Sk−1. Then

lim
k→∞

xk = lim
k→∞

Sk − lim
k→∞

Sk−1 = s0 − s0 = 0V,

as desired. �

Note that Example 2.4.2–2 shows that the converse of this result is false. That
is to say, for a series to converge, it is not sufficient that the terms in the series go
to zero. For this reason, checking the convergence of a series numerically becomes
something that must be done carefully, since the blind use of the computer with
a prescribed numerical accuracy will suggest the false conclusion that a series
converges if and only if the terms in the series go to zero as the index goes to
infinity.

Another more or less obvious result is the following.

2.4.8 Proposition (Comparison Test) Let (xj)j∈Z>0 and (yj)j∈Z>0 be sequences of nonnegative
numbers for which there exists α ∈ R>0 satisfying yj ≤ αxj, j ∈ Z>0. Then the following
statements hold:

(i) the series
∑
∞

j=1 yj converges if the series
∑
∞

j=1 xj converges;

(ii) the series
∑
∞

j=1 xj diverges if the series
∑
∞

j=1 yj diverges.

Proof We shall show that, if the series
∑
∞

j=1 x j converges, then the sequence (Tk)k∈Z>0

of partial sums for the series
∑
∞

j=1 y j is a Cauchy sequence. Since the sequence (Sk)k∈Z>0

for
∑
∞

j=1 x j is convergent, it is Cauchy. Therefore, for ε ∈ R>0 there exists N ∈ Z>0 such
that whenever k,m ≥ N, with k > m without loss of generality,

Sk − Sm =

k∑
j=m+1

x j < εα
−1.

Then, for k,m ≥ N with k > m we have

Tk − Tm =

k∑
j=m+1

y j ≤ α
k∑

j=m+1

x j < ε,

showing that (Tk)k∈Z>0 is a Cauchy sequence, as desired.
The second statement is the contrapositive of the first. �

Now we can get to some less obvious results for convergence of series. The first
result concerns series where the terms alternate sign.
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2.4.9 Proposition (Alternating Test) Let (xj)j∈Z>0 be a sequence in R satisfying
(i) xj > 0 for j ∈ Z>0,
(ii) xj+1 ≤ xj for j ∈ Z>0, and
(iii) limj→∞ xj = 0.

Then the series
∑
∞

j=1(−1)j+1xj converges.
Proof The proof is a straightforward generalisation of that given for Example 2.4.2–3,
and we leave for the reader the simple exercise of verifying that this is so. �

Our next result is one that is often useful.

2.4.10 Proposition (Ratio Test for series) Let (xj)j∈Z>0 be a nonzero sequence inRwith
∑
∞

j=1 xj

the corresponding series. Then the following statements hold:
(i) if lim supj→∞

∣∣∣xj+1

xj

∣∣∣ < 1, then the series converges absolutely;

(ii) if there exists N ∈ Z>0 such that
∣∣∣xj+1

xj

∣∣∣ > 1 for all j ≥ N, then the series diverges.

Proof (i) By Proposition 2.3.15 there exists β ∈ (0, 1) and N ∈ Z>0 such that
∣∣∣x j+1

x j

∣∣∣ < β
for j ≥ N. Then ∣∣∣∣ x j

xN

∣∣∣∣ =
∣∣∣∣xN+1

xN

∣∣∣∣∣∣∣∣xN+2

xN+1

∣∣∣∣ · · · ∣∣∣∣ x j

x j−1

∣∣∣∣ < β j−N, j > N,

implying that

|x j| <
|xN |

βN β j.

Since β < 1, the geometric series
∑
∞

j=1 β
j converges. The result for α < 1 now follows

by the Comparison Test.
(ii) The sequence (x j) j∈Z>0 cannot converge to 0 in this case, and so this part of the

result follows from Proposition 2.4.7. �

The following simpler test is often stated as the Ratio Test.

2.4.11 Corollary (Weaker version of the Ratio Test) If (xj)j∈Z>0 is a nonzero sequence in
R for which limj→∞

∣∣∣xj+1

xj

∣∣∣ = α, then the series
∑
∞

j=1 xj converges absolutely if α < 1 and
diverges if α > 1.

2.4.12 Remark (Nonzero assumption in Ratio Test) In the preceding two results we
asked that the terms in the series be nonzero. This is not a significant limitation.
Indeed, one can enumerate the nonzero terms in the series, and then apply the ratio
test to this. •

Our next result has a similar character to the previous one.
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2.4.13 Proposition (Root Test) Let (xj)j∈Z>0 be a sequence for which lim supj→∞|xj|
1/j = α.

Then the series
∑
∞

j=1 xj converges absolutely if α < 1 and diverges if α > 1.
Proof First take α < 1 and define β = 1

2 (α + 1). Then, just as in the proof of Proposi-
tion 2.4.10, α < β < 1. By Proposition 2.3.15 there exists N ∈ Z>0 such that |x j|

1/ j < β
for j ≥ N. Thus |x j| < β j for j ≥ N. Note that

∑
∞

j=N+1 β
j converges by Example 2.4.2–1.

Now
∑
∞

j=0|x j| converges by the Comparison Test.
Next takeα > 1. In this case we have lim j→∞|x j| , 0, and so we conclude divergence

from Proposition 2.4.7. �

The following obvious corollary is often stated as the Root Test.

2.4.14 Corollary (Weaker version of Root Test) Let (xj)j∈Z>0 be a sequence for which
limj→∞|xj|

1/j = α. Then the series
∑
∞

j=1 xj converges absolutely if α < 1 and diverges
if α > 1.

The Ratio Test and the Root Test are related, as the following result indicates.

2.4.15 Proposition (Root Test implies Ratio Test) If (pj)j∈Z≥0 is a sequence in R>0 then

lim inf
j→∞

pj+1

pj
≤ lim inf

j→∞
p1/j

j

lim sup
j→∞

p1/j
j ≤ lim sup

j→∞

pj+1

pj
.

In particular, for a sequence (xj)j∈Z>0 , if limj→∞

∣∣∣xj+1

xj

∣∣∣ exists, then limj→∞|xj|
1/j = limj→∞

∣∣∣xj+1

xj

∣∣∣.
Proof For the first inequality, let α = lim inf j→∞

p j+1

p j
. First consider the case where

α = ∞. Then, given M ∈ R>0, there exists N ∈ Z>0 such that
p j+1

p j
> M for j ≥ N. Then

we have ∣∣∣∣ p j

pN

∣∣∣∣ =
∣∣∣∣pN+1

pN

∣∣∣∣∣∣∣∣pN+1

pN+1

∣∣∣∣ · · · ∣∣∣∣ p j

p j−1

∣∣∣∣ > M j−N, j > N.

This gives

p j >
pN

MN M j, j > N.

Thus p1/ j
j > ( pN

MN )1/ jM. Since lim j→∞(pNβ−N)1/ j = 1 (cf. the definition of Pa in Sec-

tion 3.6.3), we have lim inf j→∞ p1/ j
j > M, giving the desired conclusion in this case,

since M is arbitrary. Next consider the case when α ∈ R>0 and let β < α. By Proposi-
tion 2.3.16 there exists N ∈ Z>0 such that

p j+1

p j
≥ β for j ≥ N. Performing just the same

computation as above gives p j ≥ β j−NpN for j ≥ N. Therefore, p1/ j
j ≥ (pNβ−N)1/ jβ. Since

lim j→∞(pNβ−N)1/ j = 1 we have lim inf j→∞ p1/ j
j ≥ β. The first inequality follows since

β < α is arbitrary.
Now we prove the second inequality. Let α = lim sup j→∞

p j+1

p j
. If α = ∞ then the

second inequality in the statement of the result is trivial. If α ∈ R>0 then let β > α and
note that there exists N ∈ Z>0 such that

p j+1

p j
≤ β for j ≥ N by Proposition 2.3.15. In

particular, just as in the proof of Proposition 2.4.10, p j ≤ β j−NpN for j ≥ N. Therefore,
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p1/ j
j ≤ (pNβ−N)1/ jβ. Since lim j→∞(pNβ−N)1/ j = 1 we then have lim inf j→∞ p1/ j

j ≤ β. the
second inequality follows since β > α is arbitrary.

The final assertion follows immediately from the two inequalities using Proposi-
tion 2.3.17. �

In Exercises 2.4.6 and 2.4.7 the reader can explore the various possibilities for
the ratio test and root test when lim j→∞

∣∣∣x j+1

x j

∣∣∣ = 1 and lim j→∞|x j|
1/ j = 1, respectively.

The final result we state in this section can be thought of as the summation
version of integration by parts.

2.4.16 Proposition (Abel’s6 partial summation formula) For sequences (xj)j∈Z>0 and
(yj)j∈Z>0 of real numbers, denote Sk =

∑k
j=1 xj. Then

k∑
j=1

xjyj = Skyk+1 −

k∑
j=1

Sj(yj+1 − yj) = Sky1 +

k∑
j=1

(Sk − Sj)(yj+1 − yj).

Proof Let S0 = 0 by convention. Since x j = S j − S j−1 we have

n∑
j=1

x jy j =

n∑
j=1

(S j − S j−1)y j =

n∑
j=1

S jy j −

n∑
j=1

S j−1y j.

Trivially,
n∑

j=1

S j−1y j =

n∑
j=1

S jy j+1 − Snyn+1.

This gives the first equality of the lemma. The second follows from a substitution of

yn+1 =

n∑
j=1

(y j+1 − y j) + y1

into the first equality. �

2.4.3 e and π

In this section we consider two particular convergent series whose limits are
among the most important of “physical constants.”

2.4.17 Definition (e) e =

∞∑
j=0

1
j!

. •

Note that the series defining e indeed converges, for example, by the Ratio Test.
Another common representation of e as a limit is the following.

6Niels Henrik Abel (1802–1829) was a Norwegian mathematician who worked in the area of
analysis. An important theorem of Abel, one that is worth knowing for people working in applica-
tion areas, is a theorem stating that there is no expression for the roots of a quintic polynomial in
terms of the coefficients that involves only the operations of addition, subtraction, multiplication,
division and taking roots.



95 2 Real numbers and their properties 2016/11/26

2.4.18 Proposition (Alternative representations of e) We have

e = lim
j→∞

(
1 + 1

j

)j
= lim

j→∞

(
1 + 1

j

)j+1
.

Proof First note that if the limit lim j→∞

(
1 + 1

j

) j
exists, then, by Proposition 2.3.23,

lim
j→∞

(
1 + 1

j

) j+1
= lim

j→∞

(
1 + 1

j )
(
1 + 1

j

) j
= lim

j→∞

(
1 + 1

j )
j.

Thus we will only prove that e = lim j→∞

(
1 + 1

j )
j.

Let

Sk =

k∑
j=0

1
k!
, Ak =

(
1 + 1

k

)k
, Bk =

(
1 + 1

k

)k+1
,

be the kth partial sum of the series for e and the kth term in the proposed sequence for
e. By the Binomial Theorem (Exercise 2.2.1) we have

Ak =
(
1 + 1

k

)k
=

k∑
j=0

(
k
j

)
1
k j .

Moreover, the exact form for the binomial coefficients can directly be seen to give

Ak =

k∑
j=0

1
j!

(
1 −

1
k

)(
1 −

2
k

)
. . .

(
1 −

j − 1
k

)
.

Each coefficient of 1
j! , j ∈ {0, 1, . . . , k} is then less than 1. Thus Ak ≤ Sk for each k ∈ Z≥0.

Therefore, lim supk→∞Ak ≤ lim supk→∞ Sk. For m ≤ k the same computation gives

Ak ≥

m∑
j=0

1
j!

(
1 −

1
k

)(
1 −

2
k

)
. . .

(
1 −

j − 1
k

)
.

Fixing m and letting k→∞ gives

lim inf
k→∞

Ak ≥

m∑
j=0

1
j!

= Sm.

Thus lim infk→∞Ak ≥ lim infm→∞ Sm, which gives the result when combined with our
previous estimate lim supk→∞Ak ≤ lim supk→∞ Sk. �

It is interesting to note that the series representation of e allows us to conclude
that e is irrational.
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2.4.19 Proposition (Irrationality of e) e ∈ R \Q.
Proof Suppose that e = l

m for l,m ∈ Z>0. We compute

(m − 1)!l = m!e = m!
∞∑
j=0

1
j!

=

m∑
j=0

m!
j!

+

∞∑
j=m+1

m!
j!
,

which then gives
∞∑

j=m+1

m!
j!

= (m − 1)!l −
m∑

j=0

m!
j!
,

which implies that
∑
∞

j=m+1
m!
j! ∈ Z>0. We then compute, using Example 2.4.2–1,

0 <
∞∑

j=m+1

m!
j!
<

∞∑
j=m+1

1
(m + 1) j−m =

∞∑
j=1

1
(m + 1) j =

1
m+1

1 − 1
m+1

=
1
m
≤ 1.

Thus
∑
∞

j=m+1
m!
j! ∈ Z>0, being an integer, must equal 1, and, moreover, m = 1. Thus we

have
∞∑
j=2

1
j!

= e − 2 = 1 =⇒ e = 3.

Next let

α =

∞∑
j=1

( 1
2 j−1
−

1
j!

)
,

noting that this series for α converges, and converges to a positive number since each
term in the series is positive. Then, using Example 2.4.2–1,

α = (2 − (e − 1)) =⇒ e = 3 − α.

Thus e < 3, and we have arrived at a contradiction. �

Next we turn to the number π. Perhaps the best description of π is that it is the
ratio of the circumference of a circle with the diameter of the circle. Indeed, the use
of the Greek letter “p” (i.e., π) has its origins in the word “perimeter.” However,
to make sense of this definition, one must be able to talk effectively about circles,
what the circumference means, etc. This is more trouble than it is worth for us at
this point. Therefore, we give a more analytic description of π, albeit one that, at
this point, is not very revealing of what the reader probably already knows about
it.

2.4.20 Definition (π) π = 4
∞∑
j=0

(−1) j

2 j + 1
. •

By the Alternating Test, this series representation for π converges.
We can also fairly easily show that π is irrational, although our proof uses some

facts about functions on R that we will not discuss until Chapter 3.
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2.4.21 Proposition (Irrationality of π) π ∈ R \Q.
Proof In Section 3.6.4 we will give a definition of the trigonometric functions, sin and
cos, and prove that, on (0, π), sin is positive, and that sin 0 = sinπ = 0. We will also
prove the rules of differentiation for trigonometric functions necessary for the proof
we now present.

Note that if π is rational, then π2 is also rational. Therefore, it suffices to show that
π2 is irrational.

Let us suppose that π2 = l
m for l,m ∈ Z>0. For k ∈ Z>0 define fk : [0, 1]→ R by

fk(x) =
xk(1 − x)k

k!
,

noting that image( f ) ⊆ [0, 1
k! ]. It is also useful to write

fk(x) =
1
k!

2k∑
j=k

c jx j,

where we observe that c j, j ∈ {k, k + 1, . . . , 2k} are integers. Define g j : [0, 1]→ R by

gk(x) = k j
k∑

j=0

(−1) jπ2(k− j) f (2 j)(x).

A direct computation shows that

f ( j)
k (0) = 0, j < k, j > 2k,

and that

f ( j)
k (0) =

j!
k!

c j, j ∈ {k, k + 1, . . . , 2k},

is an integer. Thus f and all of its derivatives take integer values at x = 0, and therefore
also at x = 1 since fk(x) = fk(1 − x). One also verifies directly that gk(0) and gk(1) are
integers.

Now we compute

d
dx

(g′k(x) sinπx − πgk(x) cosπx) = (g′′k (x) + π2gk(x)) sinπx

= mkπ2k+2 f (x) sinπx = π2lk f (x) sinπx,

using the definition of gk and the fact that π2 = l
m . By the Fundamental Theorem of

Calculus we then have, after a calculation,

πlk
∫ 1

0
f (x) sinπx dx = gk(0) + gk(1) ∈ Z>0.

But we then have, since the integrand in the above integral is nonnegative,

0 < πlk
∫ 1

0
f (x) sinπx dx <

πlk

k!

given the bounds on fk. Note that limk→∞
lk
k! = 0. Since the above computations hold

for any k, if we take k sufficiently large that πlk
k! < 1, we arrive at a contradiction. �
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2.4.4 Doubly infinite series

We shall frequently encounter series whose summation index runs not from 1
to ∞, but from −∞ to ∞. Thus we call a family (x j) j∈Z of elements of R a doubly
infinite sequence in R, and a sum of the form

∑
∞

j=−∞ x j a doubly infinite series. A
little care need to be shown when defining convergence for such series, and here
we give the appropriate definitions.

2.4.22 Definition (Convergence and absolute convergence of doubly infinite series)
Let (x j) j∈Z be a doubly infinite sequence and let S =

∑
∞

j=−∞ x j be the corresponding
doubly infinite series. The sequence of single partial sums is the sequence (Sk)k∈Z>0

where

Sk =

k∑
j=−k

x j,

and the sequence of double partial sums is the double sequence (Sk,l)k,l∈Z>0 defined
by

Sk,l =

l∑
j=−k

x j.

Let s0 ∈ R. The doubly infinite series:
(i) converges to s0 if the double sequence of partial sums converges to s0;
(ii) has s0 as a limit if it converges to s0;
(iii) is convergent if it converges to some element of R;
(iv) converges absolutely, or is absolutely convergent, if the doubly infinite series

∞∑
j=−∞

|x j|

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) diverges to ∞ (resp. diverges to −∞), and we write

∑
∞

j=−∞ x j = ∞

(resp.
∑
∞

j=−∞ x j = −∞), if the sequence of double partial sums diverges to
∞ (resp. diverges to −∞);

(viii) has a limit that exists if
∑
∞

j=−∞ x j ∈ R;
(ix) is oscillatory if the limit of the double sequence of partial sums is oscillatory. •
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2.4.23 Remark (Partial sums versus double partial sums) Note that the convergence
of the sequence of partial sums is not a very helpful notion, in general. For exam-
ple, the series

∑
∞

j=−∞ j possesses a sequence of partial sums that is identically zero,
and so the sequence of partial sums obviously converges to zero. However, it is
not likely that one would wish this doubly infinite series to qualify as convergent.
Thus partial sums are not a particularly good measure of convergence. However,
there are situations—for example, the convergence of Fourier series (see Chap-
ter 12)—where the standard notion of convergence of a doubly infinite series is
made using the partial sums. However, in these cases, there is additional structure
on the setup that makes this a reasonable thing to do. •

The convergence of a doubly infinite series has the following useful, intuitive
characterisation.

2.4.24 Proposition (Characterisation of convergence of doubly infinite series) For a
doubly infinite series S =

∑
∞

j=−∞ xj, the following statements are equivalent:
(i) S converges;
(ii) the two series

∑
∞

j=0 xj and
∑
∞

j=1 x−j converge.
Proof For k, l ∈ Z>0, denote

Sk,l =

l∑
−k

x j, S+
k =

k∑
j=0

x j, S−k =

−1∑
−k

x j,

so that Sk,l = S−k + S+
l .

(i) =⇒ (ii) Let ε ∈ R>0 and choose N ∈ Z>0 such that |S j,k − s0| < ε
2 for j, k ≥ N. Now

let j, k ≥ N, choose some l ≥ N, and compute

|S+
j − S+

k | ≤ |S
+
j + S−l − s0| + |S+

k + S−l − s0| < ε.

Thus (S+
j ) j∈Z>0 is a Cauchy sequence, and so is convergent. A similar argument shows

that (S−j ) j∈Z>0 is also a Cauchy sequence.
(ii) =⇒ (i) Let s+ be the limit of

∑
∞

j=0 x j and let s− be the limit of
∑
∞

j=1 x− j. For ε ∈ R>0

define N+,N− ∈ Z>0 such that |S+
j − s+

| < ε
2 , j ≥ N+, and |S−j − s−| < ε

2 , j ≤ −N−. Then,
for j, k ≥ max{N−,N+

},

|S j,k − (s+ + s−)| = |S+
k − s+ + S−j − s−| ≤ |S+

k − s+| + |S−j − s−| < ε,

thus showing that S converges. �

Thus convergent doubly infinite series are really just combinations of conver-
gent series in the sense that we have studied in the preceding sections. Thus,
for example, one can use the tests of Section 2.4.2 to check for convergence of a
doubly infinite series by applying them to both “halves” of the series. Also, the
relationships between convergence and absolute convergence for series also hold
for doubly infinite series. And a suitable version of Theorem 2.4.5 also holds
for doubly infinite series. These facts are so straightforward that we will assume
them in the sequel without explicit mention; they all follow directly from Proposi-
tion 2.4.24.
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2.4.5 Multiple series

Just as we considered multiple sequences in Section 2.3.5, we can consider
multiple series. As we did with sequences, we content ourselves with double
series.

2.4.25 Definition (Double series) A double series in R is a sum of the form
∑
∞

j,k=1 x jk

where (x jk) j,k∈Z>0 is a double sequence in R. •

While our definition of a series was not entirely sensible since it was not really
identifiable as anything unless it had certain convergence properties, for double
series, things are even worse. In particular, it is not clear what

∑
∞

j,k=1 x jk means. Does

it mean
∑
∞

j=1

(∑
∞

k=1 x jk

)
? Does it mean

∑
∞

k=1

(∑
∞

j=1 x jk

)
? Or does it mean something

different from both of these? The only way to rectify our poor mathematical
manners is to define convergence for double series as quickly as possible.

2.4.26 Definition (Convergence and absolute convergence of double series) Let
(x jk) j,k∈Z>0 be a double sequence in R and consider the double series

S =

∞∑
j,k=1

x jk.

The corresponding sequence of partial sums is the double sequence (S jk) j,k∈Z>0

defined by

S jk =

j∑
l=1

k∑
m=1

xlm.

Let s0 ∈ R. The double series:
(i) converges to s0, and we write

∑
∞

j,k=1 x jk = s0, if the double sequence of partial
sums converges to s0;

(ii) has s0 as a limit if it converges to s0;
(iii) is convergent if it converges to some member of R;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j,k=1

|x jk|

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge;
(vii) diverges to ∞ (resp. diverges to −∞), and we write

∑
∞

j,k=1 x jk = ∞

(resp.
∑
∞

j,k=1 x jk = −∞), if the double sequence of partial sums diverges to
∞ (resp. diverges to −∞);
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(viii) has a limit that exists if
∑
∞

j,k=1 x jk ∈ R;
(ix) is oscillatory if the sequence of partial sums is oscillatory. •

Note that the definition of the partial sums, S jk, j, k ∈ Z>0, for a double series is
unambiguous since

j∑
l=1

k∑
m=1

xlm =

k∑
m=1

j∑
l=1

xlm,

this being valid for finite sums. The idea behind convergence of double series,
then, has an interpretation that can be gleaned from that in Figure 2.2 for double
sequences.

Let us state a result, derived from similar results for double sequences, that
allows the computation of limits of double series by computing one limit at a
time.

2.4.27 Proposition (Computation of limits of double series I) Suppose that for the double
series

∑
∞

j,k=1 xjk it holds that
(i) the double series is convergent and
(ii) for each j ∈ Z>0, the series

∑
∞

k=1 xjk converges.
Then the series

∑
∞

j=1(
∑
∞

k=1 xjk) converges and its limit is equal to
∑
∞

j,k=1 xjk.
Proof This follows directly from Proposition 2.3.20. �

2.4.28 Proposition (Computation of limits of double series II) Suppose that for the double
series

∑
∞

j,k=1 xjk it holds that
(i) the double series is convergent,
(ii) for each j ∈ Z>0, the series

∑
∞

k=1 xjk converges, and
(iii) for each k ∈ Z>0, the limit

∑
∞

j=1 xjk converges.

Then the series
∑
∞

j=1(
∑
∞

k=1 xjk) and
∑
∞

k=1(
∑
∞

j=1 xjk) converge and their limits are both equal
to

∑
∞

j,k=1 xjk.
Proof This follows directly from Proposition 2.3.21. �

missing stuff

2.4.6 Algebraic operations on series

In this section we consider the manner in which series interact with algebraic
operations. The results here mirror, to some extent, the results for sequences in
Section 2.3.6. However, the series structure allows for different ways of thinking
about the product of sequences. Let us first give these definitions. For notational
convenience, we use sums that begin at 0 rather than 1. This clearly has no affect
on the definition of a series, or on any of its properties.
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2.4.29 Definition (Products of series) Let S =
∑
∞

j=0 x j and T =
∑
∞

j=0 y j be series in R.
(i) The product of S and T is the double series

∑
∞

j,k=0 x jyk.

(ii) The Cauchy product of S and T is the series
∑
∞

k=0

(∑k
j=0 x jyk− j

)
. •

Now we can state the basic results on algebraic manipulation of series.

2.4.30 Proposition (Algebraic operations on series) Let S =
∑
∞

j=0 xj and T =
∑
∞

j=0 yj be
series in R that converges to s0 and t0, respectively, and let α ∈ R. Then the following
statements hold:

(i) the series
∑
∞

j=0 αxj converges to αs0;
(ii) the series

∑
∞

j=0(xj + yj) converges to s0 + t0;
(iii) if S and T are absolutely convergent, then the product of S and T is absolutely

convergent and converges to s0t0;
(iv) if S and T are absolutely convergent, then the Cauchy product of S and T is absolutely

convergent and converges to s0t0;
(v) if S or T are absolutely convergent, then the Cauchy product of S and T is convergent

and converges to s0t0;
(vi) if S and T are convergent, and if the Cauchy product of S and T is convergent, then

the Cauchy product of S and T converges to s0t0.

Proof (i) Since
∑k

j=0 αx j = α
∑k

j=0 x j, this follows from part (i) of Proposition 2.3.23.

(ii) Since
∑
∞

j=0(x j + y j) =
∑k

j=0 x j +
∑k

j=0 y j, this follows from part (ii) of Proposi-
tion 2.3.23.

(iii) and (iv) To prove these parts of the result, we first make a general argument.
We note that Z≥0 ×Z≥0 is a countable set (e.g., by Proposition ??), and so there exists a
bijection, in fact many bijections, φ : Z>0 → Z≥0 ×Z≥0. For such a bijection φ, suppose
that we are given a double sequence (x jk) j,k∈Z≥0 and define a sequence (xφj ) j∈Z>0 by

xφj = xkl where (k, l) = φ( j). We then claim that, for any bijectionφ : Z>0 → Z≥0×Z≥0, the

double series A =
∑
∞

k,l=1 xkl converges absolutely if and only if the series Aφ =
∑
∞

j=1 xφj
converges absolutely.

Indeed, suppose that the double series |A| =
∑
∞

k,l=1|xkl| converges to β ∈ R. For
ε ∈ R>0 the set

{(k, l) ∈ Z≥0 ×Z≥0 | ||A|kl − β| ≥ ε}

is then finite. Therefore, there exists N ∈ Z>0 such that, if (k, l) = φ( j) for j ≥ N, then
||A|kl − β| < ε. It therefore follows that ||Aφ

| j − β| < ε for j ≥ N, where |Aφ
| denotes the

series
∑
∞

j=1|x
φ
j |. This shows that the series |Aφ

| converges to β.

For the converse, suppose that the series |Aφ
| converges to β. Then, for ε ∈ R>0 the

set
{ j ∈ Z>0 | ||Aφ

| j − β| ≥ ε}

is finite. Therefore, there exists N ∈ Z>0 such that

{(k, l) ∈ Z≥0 | k, l ≥ N} ∩ {(k, l) ∈ Z≥0 | ||Aφ
|φ−1(k,l) − β| ≥ ε} = ∅.

It then follows that for k, l ≥ N we have ||A|kl − β| < ε, showing that |A| converges to β.
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Thus we have shown that A is absolutely convergent if and only if Aφ is absolutely
convergent for any bijection φ : Z>0 → Z≥0×Z≥0. From part (v) of Theorem 2.4.5, and
its generalisation to double series, we know that the limit of an absolutely convergent
series or double series is independent of the manner in which the terms in the series
are arranged.

Consider now a term in the product of S and T. It is easy to see that this term
appears exactly once in the Cauchy product of S and T. Conversely, each term in the
Cauchy product appears exactly one in the product. Thus the product and Cauchy
product are simply rearrangements of one another. Moreover, each term in the product
and the Cauchy product appears exactly once in the expression

( N∑
j=0

x j

)( N∑
k=0

yk

)
as we allow N to go to∞. That is to say,

∞∑
j,k=0

x jyk =

∞∑
k=0

( k∑
j=k

x jyk− j

)
= lim

N→∞

( N∑
j=0

x j

)( N∑
k=0

yk

)
.

However, this last limit is exactly s0t0, using part (iii) of Proposition 2.3.23.
(v) Without loss of generality, suppose that S converges absolutely. Let (Sk)k∈Z>0 ,

(Tk)k∈Z>0 , and ((ST)k)k∈Z>0 be the sequences of partial sums for S, T, and the Cauchy
product, respectively. Also define τk = Tk − t0, k ∈ Z≥0. Then

(ST)k = x0y0 + (x0y1 + x1y0) + · · · + (x0yk + · · · + xky0)
= x0Tk + x1Tk−1 + · · · + xkT0

= x0(t0 + τk) + x1(t0 + τk−1) + · · · + xk(t0 + τ0)
= Skt0 + x0τk + x1τk−1 + · · · + xkτ0.

Since limk→∞ Skt0 = s0t0 by part (i), this part of the result will follow if we can show
that

lim
k→∞

(x0τk + x1τk−1 + · · · + xkτ0) = 0. (2.6)

Denote

σ =

∞∑
j=0

|x j|,

and for ε ∈ R>0 choose N1 ∈ Z>0 such that |τ j| ≤
ε

2σ for j ≥ N1, this being possible since
(τ j) j∈Z>0 clearly converges to zero. Then, for k ≥ N1,

|x0τk + x1τk−1 + · · · + xkτ0| ≤ |x0τk + · · · + xk−N1−1τN1−1| + |xk−N1τN1 + · · · + xkτ0|

≤
ε
2 + |xk−N1τN1 + · · · + xkτ0|.

Since limk→∞ xk = 0, choose N2 ∈ Z>0 such that

|xk−N1τN1 + · · · + xkτ0| < ε
2
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for k ≥ N2. Then

lim sup
k→∞

|x0τk + x1τk−1 + · · · + xkτ0| = lim
k→∞

sup{|x0τ j + x1τ j−1 + · · · + x jτ0| | j ≥ k}

≤ lim
k→∞

sup{ ε2 + |xk−N1τN1 + · · · + xkτ0| | j ≥ k}

≤ sup{ ε2 + |xk−N1τN1 + · · · + xkτ0| | j ≥ N2} ≤ ε.

Thus
lim sup

k→∞
|x0τk + x1τk−1 + · · · + xkτ0| ≤ 0,

and since clearly
lim inf

k→∞
|x0τk + x1τk−1 + · · · + xkτ0| ≥ 0,

we infer that (2.6) holds by Proposition 2.3.17.
(vi) The reader can prove this as Exercise ??. �

The reader is recommended to remember the Cauchy product when we talk
about convolution of discrete-time signals in Section 11.1.3.

missing stuff

2.4.7 Series with arbitrary index sets

It will be helpful on a few occasions to be able to sum series whose index set is
not necessarily countable, and here we indicate how this can be done. This material
should be considered optional until one comes to that point in the text where it is
needed.

2.4.31 Definition (Sum of series for arbitrary index sets) Let A be a set and let (xa)a∈A

be a family of elements of R. Let A+ = {a ∈ A | xa ∈ [0,∞]} and A− = {a ∈ A | xa ∈

[−∞, 0]}.
(i) If xa ∈ [0,∞] for a ∈ A, then

∑
a∈A xa = sup{

∑
a∈A′ xa | A′ ⊆ A is finite}.

(ii) For a general family,
∑

a∈A xa =
∑

a+∈A+
xa+ −

∑
a−∈A−(−xa−), provided that at least

one of
∑

a+∈A+
xa+ or

∑
a−∈A−(−xa−) is finite.

(iii) If both
∑

a+∈A+
xa+ are

∑
a−∈A−(−xa−) are finite, then (xa)a∈A is summable. •

We should understand the relationship between this sort of summation and our
existing notion of the sum of a series in the case where the index set is Z>0.

2.4.32 Proposition (A summable series with index set Z>0 is absolutely convergent)
A sequence (xj)j∈Z>0 in R is summable if and only if the series S =

∑
∞

j=1 xj is absolutely
convergent.

Proof Consider the sequences (x+
j ) j∈Z>0 and (x−j ) j∈Z>0 defined by

x+
j = max{x j, 0}, x−j = max{−x j, 0}, j ∈ Z>0.

Then (x j) j∈Z>0 is summable if and only if both of the expressions

sup
{∑

j∈A′
x+

j

∣∣∣∣ A′ ⊆ Z>0 is finite
}
, sup

{∑
j∈A′

x−j
∣∣∣∣ A′ ⊆ Z>0 is finite

}
(2.7)
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are finite.
First suppose that (x j) j∈Z>0 is summable. Therefore, if (S+

k )k∈Z>0 and (S−k )k∈Z>0 are
the sequences of partial sums

S+
k =

k∑
j=1

x+
j , S−k =

k∑
j=1

x−j ,

then these sequences are increasing and so convergent by (2.7). Then, by Proposi-
tion 2.3.23,

∞∑
j=1

|x j| =

∞∑
j=1

x+
j +

∞∑
j=1

x−j

giving absolute convergence of S.
Now suppose that S is absolutely convergent. Then the subsets {S+

k | k ∈ Z>0} and
{S−k | k ∈ Z>0} are bounded above (as well as being bounded below by zero) so that
both expressions

sup{S+
k | k ∈ Z>0}, sup{S−k | k ∈ Z>0}

are finite. Then for any finite set A′ ⊆ Z>0 we have∑
j∈A′

x+
j ≤ S+

sup A′ ,
∑
j∈A′

x−j ≤ S−sup A′ .

From this we deduce that

sup
{∑

j∈A′
x+

j

∣∣∣∣ A′ ⊆ Z>0 is finite
}
≤ sup{S+

k | k ∈ Z>0},

sup
{∑

j∈A′
x−j

∣∣∣∣ A′ ⊆ Z>0 is finite
}
≤ sup{S−k | k ∈ Z>0},

which implies that (x j) j∈Z>0 is summable. �

Now we can actually show that, for a summable family of real numbers, only
countably many of them can be nonzero.

2.4.33 Proposition (A summable family has at most countably many nonzero mem-
bers) If (xa)a∈A is summable, then the set {a ∈ A | xa , 0} is countable.

Proof Note that for any k ∈ Z>0, the set {a ∈ A | |xa| ≥
1
k } must be finite if (xa)a∈A is

summable (why?). Thus, since

{a ∈ A | |xa| , 0} = ∪k∈Z>0{a ∈ A | |xa| ≥
1
k },

the set {a ∈ A | xa , 0} is a countable union of finite sets, and so is countable by
Proposition ??. �

A legitimate question is, since a summable family reduces to essentially being
countable, why should we bother with the idea at all? The reason is simply that it
will be notationally convenient in Section 3.3.4.
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2.4.8 Notes

The numbers e and π are not only irrational, but have the much stronger
property of being transcendental. This means that they are not the roots of any
polynomial having rational coefficients (see Definition ??). That e is transcendental
was proved by Hermite7 in 1873, and the that π is transcendental was proved by
Lindemann8 in 1882.

The proof we give for the irrationality of π is essentially that of IN:47; this is
the most commonly encountered proof, and is simpler than the original proof of
Lambert9 presented to the Berlin Academy in 1768.

Exercises

2.4.1 Let S =
∑
∞

j=1 x j be a series in R, and, for j ∈ Z>0, define

x+
j = max{x j, 0}, x−j = max{0,−x j}.

Show that, if S is conditionally convergent, then the series S+ =
∑
∞

j=1 x+
j and

S− =
∑
∞

j=1 x−j diverge to∞.

2.4.2 In this exercise we consider more carefully the paradox of Zeno given in
Exercise 1.5.2. Let us attach some symbols to the relevant data, so that
we can say useful things. Suppose that the tortoise travels with constant
velocity vt and that Achilles travels with constant velocity va. Suppose that
the tortoise gets a head start of t0 seconds.
(a) Compute directly using elementary physics (i.e., time/distance/velocity

relations) the time at which Achilles will overtake the tortoise, and the
distance both will have travelled during that time.

(b) Consider the sequences (d j) j∈Z>0 and (t j) j∈Z>0 defined so that
1. d1 is the distance travelled by the tortoise during the head start time

t0,
2. t j, j ∈ Z>0, is the time it takes Achilles to cover the distance d j,
3. d j, j ≥ 2, is the distance travelled by the tortoise in time t j−1.

Find explicit expressions for these sequences in terms of t0, vt, and va.
(c) Show that the series

∑
∞

j=1 d j and
∑
∞

j=1 t j converge, and compute their
limits.

(d) What is the relationship between the limits of the series in part (c) and
the answers to part (a).

7Charles Hermite (1822–1901) was a French mathematician who made contributions to the fields
of number theory, algebra, differential equations, and analysis.

8Carl Louis Ferdinand von Lindemann (1852–1939) was born in what is now Germany. His
mathematical contributions were in the areas of analysis and geometry. He also was interested in
physics.

9Johann Heinrich Lambert (1728–1777) was born in France. His mathematical work included
contributions to analysis, geometry, and probability. He also made contributions to astronomical
theory.
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(e) Does this shed some light on how to resolve Zeno’s paradox?
2.4.3 Show that ∣∣∣∣ m∑

j=1

x j

∣∣∣∣ ≤ m∑
j=1

|x j|

for any finite family (x1, . . . , xm) ⊆ R.
2.4.4 State the correct version of Proposition 2.4.4 in the case that S =

∑
∞

j=1 x j is not
absolutely convergent, and indicate why it is not a very interesting result.

2.4.5 For a sum

S =

∞∑
j=1

s j,

answer the following questions.
(a) Show that if S converges then the sequence (s j) j∈Z>0 converges to 0.
(b) Is the converse of part (a) true? That is to say, if the sequence (s j) j∈Z>0

converges to zero, does S converge? If this is true, prove it. If it is not
true, give a counterexample.

2.4.6 Do the following.

(a) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣ x j+1

x j

∣∣∣ = 1 and which converges in
R.

(b) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣ x j+1

x j

∣∣∣ = 1 and which diverges to∞.

(c) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣ x j+1

x j

∣∣∣ = 1 and which diverges to
−∞.

(d) Find a series
∑
∞

j=1 x j for which lim j→∞

∣∣∣x j+1

x j

∣∣∣ = 1 and which is oscillatory.

2.4.7 Do the following.
(a) Find a series

∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which converges in

R.
(b) Find a series

∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which diverges to∞.

(c) Find a series
∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which diverges to

−∞.
(d) Find a series

∑
∞

j=1 x j for which lim j→∞|x j|
1/ j = 1 and which is oscillatory.

The next exercise introduces the notion of the decimal expansion of a real number.
An infinite decimal expansion is a series in Q of the form

∞∑
j=0

a j

10 j

where a0 ∈ Z and where a j ∈ {0, 1, . . . , 9}, j ∈ Z>0. An infinite decimal expansion is
eventually periodic if there exists k,m ∈ Z>0 such that a j+k = a j for all j ≥ m.

2.4.8 (a) Show that the sequence of partial sums for an infinite decimal expansion
is a Cauchy sequence.
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(b) Show that, for every Cauchy sequence (q j) j∈Z>0 , there exists a sequence
(d j) j∈Z>0 of partial sums for a decimal expansion having the property
that [(q j) j∈Z>0] = [(d j) j∈Z>0] (the equivalence relation is that in the Cauchy
sequences in Q as defined in Definition 2.1.16).

(c) Give an example that shows that two distinct infinite decimal expansions
can be equivalent.

(d) Show that if two distinct infinite decimal expansions are equivalent, and
if one of them is eventually periodic, then the other is also eventually
periodic.

The previous exercises show that every real number is the limit of a (not
necessarily unique) infinite decimal expansion. The next exercises charac-
terise the infinite decimal expansions that correspond to rational numbers.
First you will show that an eventually periodic decimal expansion corre-
sponds to a rational number. Let

∑
∞

j=0
a j

10 j be an eventually periodic infinite
decimal expansion and let k,m ∈ Z>0 have the property that a j+k = a j for
j ≥ m. Denote by x ∈ R the number to which the infinite decimal expansion
converges.
(e) Show that

10m+kx =

∞∑
j=0

b j

10 j , 10mx =

∞∑
j=0

c j

10 j

are decimal expansions, and give expressions for b j and c j, j ∈ Z>0, in
terms of a j, j ∈ Z>0. In particular, show that b j = c j for j ≥ 1.

(f) Conclude that (10m+k
− 10m)x is an integer, and so x is therefore rational.

Next you will show that the infinite decimal expansion of a rational number
is eventually periodic. Thus let q ∈ Q.
(g) Let q = a

b for a, b ∈ Z and with b > 0. For j ∈ {0, 1, . . . , b}, let r j ∈

{0, 1, . . . , b − 1} satisfy 10 j

b = s j +
r j

b for s j ∈ Z, i.e., r j is the remainder after
dividing 10 j by b. Show that at least two of the numbers {r0, r1, . . . , rb}

must agree, i.e., conclude that rm = rm+k for k,m ∈ Z≥0 satisfying 0 ≤ m <
m + k ≤ b.
Hint: There are only b possible values for these b + 1 numbers.

(h) Show that b exactly divides 10m+k
− 10k with k and m as above. Thus

bc = 10m+k
− 10k for some c ∈ Z.

(i) Show that
a
b

= 10−m ac
10k − 1

,

and so write
q = 10−m

(
s +

r
10k − 1

)
for s ∈ Z and r ∈ {0, 1, . . . , 10k

− 1}, i.e., r is the remainder after dividing
ac by 10k

− 1.
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(j) Argue that we can write

b =

k∑
j=1

b j10 j,

for b j ∈ {0, 1, . . . , 9}, j ∈ {1, . . . , k}.
(k) With b j, j ∈ {1, . . . , k} as above, define an infinite decimal expansion∑

∞

j=0
a j

10 j by asking that a0 = 0, that a j = b j, j ∈ {1, . . . , k}, and that a j+km = a j

for j,m ∈ Z>0. Let d ∈ R be the number to which this decimal expansion
converges. Show that (10k

− 1)d = b, so d ∈ Q.
(l) Show that 10mq = s + d, and so conclude that 10mq has the eventually

periodic infinite decimal expansion s +
∑
∞

j=1
a j

10 j .
(m) Conclude that q has an eventually periodic infinite decimal expansion,

and then conclude from (d) that any infinite decimal expansion for q is
eventually periodic.
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Section 2.5

Subsets of R

In this section we study in some detail the nature of various sorts of subsets of
R. The character of these subsets will be of some importance when we consider
the properties of functions defined on R, and/or taking values in R. Our presen-
tation also gives us an opportunity to introduce, in a fairly simple setting, some
concepts that will appear later in more abstract settings, e.g., open sets, closed sets,
compactness.

Do I need to read this section? Unless you know the material here, it is indeed
a good idea to read this section. Many of the ideas are basic, but some are not
(e.g., the Heine–Borel Theorem). Moreover, many of the not-so-basic ideas will
appear again later, particularly in Chapter ??, and if a reader does not understand
the ideas in the simple case ofR, things will only get more difficult. Also, the ideas
expressed here will be essential in understanding even basic things about signals
as presented in Chapter 8. •

2.5.1 Open sets, closed sets, and intervals

One of the basic building blocks in the understanding of the real numbers is the
idea of an open set. In this section we define open sets and some related notions,
and provide some simple properties associated to these ideas.

First, it is convenient to introduce the following ideas.

2.5.1 Definition (Open ball, closed ball) For r ∈ R>0 and x0 ∈ R,
(i) the open ball in R of radius r about x0 is the set

B(r, x0) = {x ∈ R | |x − x0| < r},

and
(ii) the closed ball of radius r about x0 is the set

B(r, x0) = {x ∈ R | |x − x0| ≤ r}. •

These sets are simple to understand, and we depict them in Figure 2.3. With

x x
( ) ][

Figure 2.3 An open ball (left) and a closed ball (right) in R

the notion of an open ball, it is easy to give some preliminary definitions.
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2.5.2 Definition (Open and closed sets in R) A set A ⊆ R is:
(i) open if, for every x ∈ A, there exists ε ∈ R>0 such that B(ε, x) ⊆ A (the empty

set is also open, by declaration);
(ii) closed if R \ A is open. •

A trivial piece of language associated with an open set is the notion of a neigh-
bourhood.

2.5.3 Definition (Neighbourhood in R) A neighbourhood of an element x ∈ R is an open
set U for which x ∈ U. •

Some authors allow a “neighbourhood” to be a set A which contains a neigh-
bourhood in our sense. Such authors will then frequently call what we call a
neighbourhood an “open neighbourhood.”

Let us give some examples of sets that are open, closed, or neither. The examples
we consider here are important ones, since they are all examples of intervals, which
will be of interest at various times, and for various reasons, throughout these
volumes. In particular, the notation we introduce here for intervals will be used a
great deal.

2.5.4 Examples (Intervals)
1. For a, b ∈ R with a < b the set

(a, b) = {x ∈ R | a < x < b}

is open. Indeed, let x ∈ (a, b) and let ε = 1
2 min{b − x, x − a}. It is then easy to see

that B(ε, x) ⊆ (a, b). If a ≥ b we take the convention that (a, b) = ∅.
2. For a ∈ R the set

(a,∞) = {x ∈ R | a < x}

is open. For example, if x ∈ (a,∞) then, if we define ε = 1
2 (x − a), we have

B(ε, x) ⊆ (a,∞).
3. For b ∈ R the set

(−∞, b) = {x ∈ R | x < b}

is open.
4. For a, b ∈ R with a ≤ b the set

[a, b] = {x ∈ R | a ≤ x ≤ b}

is closed. Indeed, R \ [a, b] = (−∞, a) ∪ (b,∞). The sets (−∞, a) and (b,∞) are
both open, as we have already seen. Moreover, it is easy to see, directly from
the definition, that the union of open sets is also an open set. Therefore,R\ [a, b]
is open, and so [a, b] is closed.

5. For a ∈ R the set
[a,∞) = {x ∈ R | a ≤ x}

is closed since it complement in R is (−∞, a) which is open.
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6. For b ∈ R the set
(−∞, b] = {x ∈ R | x ≤ b}

is closed.
7. For a, b ∈ R with a < b the set

(a, b] = {x ∈ R | a < x ≤ b}

is neither open nor closed. To see that it is not open, note that b ∈ (a, b], but that
any open ball about b will contain points not in (a, b]. To see that (a, b] is not
closed, note that a ∈ R \ (a, b], and that any open ball about a will contain points
not in R \ (a, b].

8. For a, b ∈ R with a < b the set

[a, b) = {x ∈ R | a ≤ x < b}

is neither open nor closed.
9. The set R is both open and closed. That it is open is clear. That it is closed

follows since R \ R = ∅, and ∅ is, by convention, open. We will sometimes,
although not often, write R = (−∞,∞). •

We shall frequently denote typical interval by I, and the set of intervals we
denote by I . If I and J are intervals with J ⊆ I, we will say that J is a subinterval
of I. The expressions “open interval” and “closed interval” have their natural
meanings as intervals that are, as subsets of R, open and closed, respectively. An
interval that is neither open nor closed will be called half-open or half-closed. A
left endpoint (resp. right endpoint) for an interval I is a number x ∈ R such that
inf I = x (resp. sup I = x). An endpoint x, be it left or right, is open if x < I and is
closed if x ∈ I. If inf I = −∞ (resp. sup I = ∞), then we saw that I is unbounded on
the left (resp. unbounded on the right). We will also use the interval notation to
denote subsets of the extended real numbers R. Thus, we may write

1. (a,∞] = (a,∞) ∪ {∞},

2. [a,∞] = [a,∞) ∪ {∞},

3. [−∞, b) = (−∞, b) ∪ {−∞},

4. [−∞, b] = (−∞, b] ∪ {−∞}, and

5. [−∞,∞] = (−∞,∞) ∪ {−∞,∞} = R.

The following characterisation of intervals is useful.

2.5.5 Proposition (Characterisation of intervals) A subset I ⊆ R is an interval if and only
if, for each a, b ∈ I with a < b, [a, b] ⊆ I.

Proof It is clear from the definition that, if I is an interval, then, for each a, b ∈ I with
a < b, [a, b] ⊆ I. So suppose that, for each a, b ∈ I with a < b, [a, b] ⊆ I. Let A = inf I and
let B = sup I. We have the following cases to consider.
1. A = B: Trivially I is an interval.
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2. A,B ∈ R and A , B: Choose a1, b1 ∈ I such that a1 < b1. Define a j+1, b j+1 ∈ I, j ∈ Z>0,
inductively as follows. Let a j+1 be a point in I to the left of 1

2 (A+a j) and let b j+1 be a
point in I to the right of 1

2 (b j + B). These constructions make sense by definition of
A and B. Note that (a j) j∈Z>0 is a monotonically decreasing sequence converging to
A and that (b j) j∈Z>0 is a monotonically increasing sequence converging to B. Also,⋃

j∈Z>0

[a j, b j] ⊆ I.

We also have either ∪ j∈Z>0[a j, b j] = (A,B), ∪ j∈Z>0[a j, b j] = [A,B), ∪ j∈Z>0[a j, b j] =
(A,B], or ∪ j∈Z>0[a j, b j] = [A,B]. Therefore we conclude that I is an interval with
endpoints A and B.

3. A = −∞ and B ∈ R. Choose a1, b1 ∈ I with aa < b1 < B. Define a j+1, b j+1 ∈ I, j ∈ Z>0,
inductively by asking that a j+1 be a point in I to the left of a j − 1 and that b j+1 be
a point in I to the right of 1

2 (b j + B). These constructions make sense by definition
of A and B. Thus (a j) j∈Z>0 is a monotonically decreasing sequence in I diverging to
−∞ and (b j) j∈Z>0 is a monotonically increasing sequence in I converging to B. Thus⋃

j∈Z>0

[a j, b j] =⊆ I.

Note that either
⋃

j∈Z>0
[a j, b j] = (−∞,B) or

⋃
j∈Z>0

[a j, b j] = (−∞,B]. This means
that either I = (−∞,B) or I = (−∞,B].

4. A ∈ R and B = ∞: A construction entirely like the preceding one shows that either
I = (A,∞) or I = [A,∞).

5. A = −∞ and B = ∞: Choose a1, b1 ∈ I with a1 < b1. Inductively define a j+1, b j+1 ∈ I,
j ∈ Z>0, by asking that a j+1 be a point in I to the left of a j and that b j+1 be a point
in I to the right of b j. We then conclude that⋃

j∈Z>0

[a j, b j] = R =⊆ I,

and so I = R.
In all cases we have concluded that I is an interval. �

The following property of open sets will be useful for us, and tells us a little
about the character of open sets.

2.5.6 Proposition (Open sets inR are unions of open intervals) If U ⊆ R is a nonempty
open set then U is a countable union of disjoint open intervals.

Proof Let x ∈ U and let Ix be the largest open interval containing x and contained in
U. This definition of Ix makes sense since the union of open intervals containing x is
also an open interval containing x. Now to each interval can be associated a rational
number within the interval. Therefore, the number of intervals to cover U can be
associated with a subset ofQ, and is therefore countable or finite. This shows that U is
indeed a finite or countable union of open intervals. �
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2.5.2 Partitions of intervals

In this section we consider the idea of partitioning an interval of the form [a, b].
This is a construction that will be useful in a variety of places, but since we dealt
with intervals in the previous section, this is an appropriate time to make the
definition and the associated constructions.

2.5.7 Definition (Partition of an interval) A partition of an interval [a, b] is a family
(I1, . . . , Ik) of intervals such that

(i) int(I j) , ∅ for j ∈ {1, . . . , k},
(ii) [a, b] = ∪k

j=1I j, and

(iii) I j ∩ Il = ∅ for j , l.
We denote by Part([a, b]) the set of partitions of [a, b]. •

We shall always suppose that a partition (I1, . . . , Ik) is totally ordered so that the
left endpoint of I j+1 agrees with the right endpoint of I j for each j ∈ {1, . . . , k − 1}.
That is to say, when we write a partition, we shall list the elements of the set
according to this total order. Note that associated to a partition (I1, . . . , Ik) are the
endpoints of the intervals. Thus there exists a family (x0, x1, . . . , xk) of [a, b], ordered
with respect to the natural total order on R, such that, for each j ∈ {1, . . . , k}, x j−1

is the left endpoint of I j and x j is the right endpoint of I j. Note that necessarily
we have x0 = a and xk = b. The set of endpoints of the intervals in a partition
P = (I1, . . . , Ik) we denote by EP(P). In Figure 2.4 we show a partition with all

[

t0 = a

]

t7 = b

I1

t1

I2

t2

I3

t3

I4

t4

I5

t5

I6

t6

I7

Figure 2.4 A partition

ingredients labelled. For a partition P with EP(P) = (x0, x1, . . . , xk), denote

|P| = max{|x j − xl| | j, l ∈ {1, . . . , k}},

which is the mesh of P. Thus |P| is the length of the largest interval of the partition.
It is often useful to be able to say one partition is finer than another, and the

following definition makes this precise.

2.5.8 Definition (Refinement of a partition) If P1 and P2 are partitions of an interval
[a, b], then P2 is a refinement of P1 if EP(P1) ⊆ EP(P2). •

Next we turn to a sometimes useful construction involving the addition of
certain structure onto a partition. This construction is rarely used in the text, so
may be skipped until it is encountered.
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2.5.9 Definition (Tagged partition, δ-fine tagged partition) Let [a, b] be an interval and
let δ : [a, b]→ R>0.

(i) A tagged partition of [a, b] is a finite family of pairs ((c1, I1), . . . , (ck, Ik)) where
(I1, . . . , Ik) is a partition and where c j is contained in the union of I j with its
endpoints.

(ii) A tagged partition ((c1, I1), . . . , (ck, Ik)) is δ-fine if the interval I j, along with its
endpoints, is a subset of B(δ(c j), c j). •

The following result asserts that δ-fine tagged partitions always exist.

2.5.10 Proposition (δ-fine tagged partitions exist) For any positive function δ : [a, b] →
R>0, there exists a δ-fine tagged partition.

Proof Let ∆ be the set of all points x ∈ (a, b] such that there exists a δ-fine tagged
partition of [a, x]. Note that (a, a + δ(a)) ⊆ ∆ since, for each x ∈ (a, a + δ(a)), ((a, [a, x]))
is a δ-fine tagged partition of [a, x]. Let b′ = sup ∆. We will show that b′ = b and that
b′ ∈ ∆.

Since b′ = sup ∆ there exists b′′ ∈ ∆ such that b′ − δ(b′) < b′′ < b′. Then there exists
a δ-fine partition P′ of [a, b′]. Now P′ ∪ ((b′, (b′′, b′])) is δ-fine tagged partition of [a, b′].
Thus b′ ∈ ∆.

Now suppose that b′ < b and choose b′′ < b such that b′ < b′′ < b′ + δ(b′). If P is
a tagged partition of [a, b′] (this exists since b′ ∈ ∆), then P ∪ ((b′, (b′, b′′])) is a δ-fine
tagged partition of [a, b′′]. This contradicts the fact that b′ = sup ∆. Thus we conclude
that b′ = b. �

2.5.3 Interior, closure, boundary, and related notions

Associated with the concepts of open and closed are a collection of useful
concepts.

2.5.11 Definition (Accumulation point, cluster point, limit point in R) Let A ⊆ R. A
point x ∈ R is:

(i) an accumulation point for A if, for every neighbourhood U of x, the set
A ∩ (U \ {x}) is nonempty;

(ii) a cluster point for A if, for every neighbourhood U of x, the set A ∩ U is
infinite;

(iii) a limit point of A if there exists a sequence (x j) j∈Z>0 in A converging to x.
The set of accumulation points of A is called the derived set of A, and is denoted
by der(A). •

2.5.12 Remark (Conventions concerning “accumulation point,” “cluster point,” and
“limit point”) There seems to be no agreed upon convention about what is meant
by the three concepts of accumulation point, cluster point, and limit point. Some
authors make no distinction between the three concepts at all. Some authors
lump two together, but give the third a different meaning. As we shall see in
Proposition 2.5.13 below, sometimes there is no need to distinguish between two
of the concepts. However, in order to keep as clear as possible the transition to
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the more abstract presentation of Chapter ??, we have gone with the most pedantic
interpretation possible for the concepts of “accumulation point,” “cluster point,”
and “limit point.” •

The three concepts of accumulation point, cluster point, and limit point are
actually excessive for R since, as the next result shall indicate, two of them are
exactly the same. However, in the more general setup of Chapter ??, the concepts
are no longer equivalent.

2.5.13 Proposition (“Accumulation point” equals “cluster point” inR) For a set A ⊆ R,
x ∈ R is an accumulation point for A if and only if it is a cluster point for A.

Proof It is clear that a cluster point for A is an accumulation point for A. Suppose
that x is not a cluster point. Then there exists a neighbourhood U of x for which the set
A∩U is finite. If A∩U = {x}, then clearly x is not an accumulation point. If A∩U , {x},
then A ∩ (U \ {x}) ⊇ {x1, . . . , xk}where the points x1, . . . , xk are distinct from x. Now let

ε = 1
2 min{|x1 − x|, . . . , |xk − x|}.

Clearly A ∩ (B(ε, x) \ {x}) is then empty, and so x is not an accumulation point for A. �

Now let us give some examples that illustrate the differences between accumu-
lation points (or equivalently cluster points) and limit points.

2.5.14 Examples (Accumulation points and limit points)
1. For any subset A ⊆ R and for every x ∈ A, x is a limit point for A. Indeed, the

constant sequence (x j = x) j∈Z>0 is a sequence in A converging to x. However, as
we shall see in the examples to follow, it is not the case that all points in A are
accumulation points.

2. Let A = (0, 1). The set of accumulation points of A is then easily seen to be [0, 1].
The set of limit points is also [0, 1].

3. Let A = [0, 1). Then, as in the preceding example, both the set of accumulation
points and the set of limit points are the set [0, 1].

4. Let A = [0, 1] ∪ {2}. Then the set of accumulation points is [0, 1] whereas the set
of limit points is A.

5. Let A = Q. One can readily check that the set of accumulation points of A is R
and the set of limit points of A is also R. •

The following result gives some properties of the derived set.

2.5.15 Proposition (Properties of the derived set in R) For A,B ⊆ R and for a family of
subsets (Ai)i∈I of R, the following statements hold:

(i) der(∅) = ∅;
(ii) der(R) = R;
(iii) der(der(A)) = der(A);
(iv) if A ⊆ B then der(A) ⊆ der(B);
(v) der(A ∪ B) = der(A) ∪ der(B);
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(vi) der(A ∩ B) ⊆ der(A) ∩ der(B).
Proof Parts (i) and (ii) follow directly from the definition of the derived set.

(iii) missing stuff
(iv) Let x ∈ der(A) and let U be a neighbourhood of x. Then the set A ∩ (U \ {x}) is

nonempty, implying that the set B ∩ (U \ {x}) is also nonempty. Thus x ∈ der(B).
(v) Let x ∈ der(A∪B) and let U be a neighbourhood of x. Then the set U∩((A∪B)\{x})

is nonempty. But

U ∩ ((A ∪ B) \ {x}) = U ∩ ((A \ {x}) ∪ (B \ {x}))
= (U ∩ (A \ {x})) ∪ (U ∩ (B \ {x})). (2.8)

Thus it cannot be that both U∩ (A\ {x}) and U∩ (B\ {x}) are empty. Thus x is an element
of either der(A) or der(B).

Now let x ∈ der(A)∪der(A). Then, using (2.8), U∩ ((A∪B) \ {x}) is nonempty, and
so x ∈ der(A ∪ B).

(vi) Let x ∈ der(A∩B) and let U be a neighbourhood of x. Then U∩((A∩B)\{x}) , ∅.
We have

U ∩ ((A ∩ B) \ {x}) = U ∩ ((A \ {x}) ∩ (B \ {x}))

Thus the sets U ∩ (A \ {x}) and U ∩ (B \ {x}) are both nonempty, showing that x ∈
der(A) ∩ der(B). �

Next we turn to characterising distinguished subsets of subsets of R.

2.5.16 Definition (Interior, closure, and boundary in R) Let A ⊆ R.
(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(R \ A). •

In other words, the interior of A is the largest open set contained in A. Note
that this definition makes sense since a union of open sets is open (Exercise 2.5.1).
In like manner, the closure of A is the smallest closed set containing A, and this
definition makes sense since an intersection of closed sets is closed (Exercise 2.5.1
again). Note that int(A) is open and cl(A) is closed. Moreover, since bd(A) is the
intersection of two closed sets, it too is closed (Exercise 2.5.1 yet again).

Let us give some examples of interiors, closures, and boundaries.

2.5.17 Examples (Interior, closure, and boundary)
1. Let A = int(0, 1). Then int(A) = (0, 1) since A is open. We claim that cl(A) = [0, 1].

Clearly [0, 1] ⊆ cl(A) since [0, 1] is closed and contains A. Moreover, the only
smaller subsets contained in [0, 1] and containing A are [0, 1), (0, 1], and (0, 1),
none of which are closed. We may then conclude that cl(A) = [0, 1]. Finally
we claim that bd(A) = {0, 1}. To see this, note that we have cl(A) = [0, 1]
and cl(R \ A) = (−∞, 0] ∪ [1,∞) (by an argument like that used to show that
cl(A) = [0, 1]). Therefore, bd(A) = cl(A) ∩ cl(R \ A) = {0, 1}, as desired.
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2. Let A = [0, 1]. Then int(A) = (0, 1). To see this, we note that (0, 1) ⊆ int(A) since
(0, 1) is open and contained in A. Moreover, the only larger sets contained in
A are [0, 1), (0, 1], and [0, 1], none of which are open. Thus int(A) = (0, 1), just
as claimed. Since A is closed, cl(A) = A. Finally we claim that bd(A) = {0, 1}.
Indeed, cl(A) = [0, 1] and cl(R \ A) = (−∞, 0] ∪ [1,∞). Therefore, bd(A) =
cl(A) ∩ cl(R \ A) = {0, 1}, as claimed.

3. Let A = (0, 1) ∪ {2}. We have int(A) = (0, 1), cl(A) = [0, 1] ∪ {2}, and bd(A) =
{0, 1, 2}. We leave the simple details of these assertions to the reader.

4. Let A = Q. One readily ascertains that int(A) = ∅, cl(A) = R, and bd(A) = R. •

Now let us give a characterisation of interior, closure, and boundary that are
often useful in practice. Indeed, we shall often use these characterisations without
explicitly mentioning that we are doing so.

2.5.18 Proposition (Characterisation of interior, closure, and boundary in R) For A ⊆
R, the following statements hold:

(i) x ∈ int(A) if and only if there exists a neighbourhood U of x such that U ⊆ A;
(ii) x ∈ cl(A) if and only if, for each neighbourhood U of x, the set U ∩A is nonempty;
(iii) x ∈ bd(A) if and only if, for each neighbourhood U of x, the sets U∩A and U∩(R\A)

are nonempty.
Proof (i) Suppose that x ∈ int(A). Since int(A) is open, there exists a neighbourhood
U of x contained in int(A). Since int(A) ⊆ A, U ⊆ A.

Next suppose that x < int(A). Then, by definition of interior, for any open set U for
which U ⊆ A, x < U.

(ii) Suppose that there exists a neighbourhood U of x such that U ∩ A = ∅. Then
R \U is a closed set containing A. Thus cl(A) ⊆ R \U. Since x < R \U, it follows that
x < cl(A).

Suppose that x < cl(A). Then x is an element of the open set R \ cl(A). Thus there
exists a neighbourhood U of x such that U ⊆ R \ cl(A). In particular, U ∩ A = ∅.

(iii) This follows directly from part (ii) and the definition of boundary. �

Now let us state some useful properties of the interior of a set.

2.5.19 Proposition (Properties of interior in R) For A,B ⊆ R and for a family of subsets
(Ai)i∈I of R, the following statements hold:

(i) int(∅) = ∅;
(ii) int(R) = R;
(iii) int(int(A)) = int(A);
(iv) if A ⊆ B then int(A) ⊆ int(B);
(v) int(A ∪ B) ⊇ int(A) ∪ int(B);
(vi) int(A ∩ B) = int(A) ∩ int(B);
(vii) int(∪i∈IAi) ⊇ ∪i∈I int(Ai);
(viii) int(∩i∈IAi) ⊆ ∩i∈I int(Ai).
Moreover, a set A ⊆ R is open if and only if int(A) = A.
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Proof Parts (i) and (ii) are clear by definition of interior. Part (v) follows from part (vii),
so we will only prove the latter.

(iii) This follows since the interior of an open set is the set itself.
(iv) Let x ∈ int(A). Then there exists a neighbourhood U of x such that U ⊆ A. Thus

U ⊆ B, and the result follows from Proposition 2.5.18.
(vi) Let x ∈ int(A) ∩ int(B). Since int(A) ∩ int(B) is open by Exercise 2.5.1, there

exists a neighbourhood U of x such that U ⊆ int(A) ∩ int(B). Thus U ⊆ A ∩ B. This
shows that x ∈ int(A ∩ B). This part of the result follows from part (viii).

(vii) Let x ∈ ∪i∈I int(Ai). By Exercise 2.5.1 the set ∪i∈I int(Ai) is open. Thus there
exists a neighbourhood U of x such that U ⊆ ∪i∈I int(Ai). Thus U ⊆ ∪i∈IAi, from which
we conclude that x ∈ int(∪i∈IAi).

(viii) Let x ∈ int(∩i∈IAi). Then there exists a neighbourhood U of x such that
U ⊆ ∩i∈IAi. It therefore follows that U ⊆ Ai for each i ∈ I, and so that x ∈ int(Ai) for
each i ∈ I.

The final assertion follows directly from Proposition 2.5.18. �

Next we give analogous results for the closure of a set.

2.5.20 Proposition (Properties of closure in R) For A,B ⊆ R and for a family of subsets
(Ai)i∈I of R, the following statements hold:

(i) cl(∅) = ∅;
(ii) cl(R) = R;
(iii) cl(cl(A)) = cl(A);
(iv) if A ⊆ B then cl(A) ⊆ cl(B);
(v) cl(A ∪ B) = cl(A) ∪ cl(B);
(vi) cl(A ∩ B) ⊆ cl(A) ∩ cl(B);
(vii) cl(∪i∈IAi) ⊇ ∪i∈I cl(Ai);
(viii) cl(∩i∈IAi) ⊆ ∩i∈I cl(Ai).
Moreover, a set A ⊆ R is closed if and only if cl(A) = A.

Proof Parts (i) and (ii) follow immediately from the definition of closure. Part (vi)
follows from part (viii), so we will only prove the latter.

(iii) This follows since the closure of a closed set is the set itself.
(iv) Suppose that x ∈ cl(A). Then, for any neighbourhood U of x, the set U ∩ A is

nonempty, by Proposition 2.5.18. Since A ⊆ B, it follows that U ∩ B is also nonempty,
and so x ∈ cl(B).

(v) Let x ∈ cl(A ∪ B). Then, for any neighbourhood U of x, the set U ∩ (A ∪ B) is
nonempty by Proposition 2.5.18. By Proposition 1.1.4, U∩ (A∪B) = (U∩A)∪ (U∩B).
Thus the sets U ∩ A and U ∩ B are not both nonempty, and so x ∈ cl(A) ∪ cl(B). That
cl(A) ∪ cl(B) ⊆ cl(A ∪ B) follows from part (vii).

(vi) Let x ∈ cl(A ∩ B). Then, for any neighbourhood U of x, the set U ∩ (A ∩ B) is
nonempty. Thus the sets U ∩ A and U ∩ B are nonempty, and so x ∈ cl(A) ∩ cl(B).

(vii) Let x ∈ ∪i∈I cl(Ai) and let U be a neighbourhood of x. Then, for each i ∈ I,
U∩Ai , ∅. Therefore, ∪i∈I(U∩Ai) , ∅. By Proposition 1.1.7, ∪i∈I(U∩Ai) = U∩ (∪i∈IAi),
showing that U ∩ (∪i∈IAi) , ∅. Thus x ∈ cl(∪i∈IAi).
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(viii) Let x ∈ cl(∩i∈IAi) and let U be a neighbourhood of x. Then the set U ∩ (∩i∈IAi)
is nonempty. This means that, for each i ∈ I, the set U∩Ai is nonempty. Thus x ∈ cl(Ai)
for each i ∈ I, giving the result. �

Note that there is a sort of “duality” between int and cl as concerns their
interactions with union and intersection. This is reflective of the fact that open and
closed sets themselves have such a “duality,” as can be seen from Exercise 2.5.1.
We refer the reader to Exercise 2.5.4 to construct counterexamples to any missing
opposite inclusions in Propositions 2.5.19 and 2.5.20.

Let us state some relationships between certain of the concepts we have thus
far introduced.

2.5.21 Proposition (Joint properties of interior, closure, boundary, and derived set
in R) For A ⊆ R, the following statements hold:

(i) R \ int(A) = cl(R \A);
(ii) R \ cl(A) = int(R \A).
(iii) cl(A) = A ∪ bd(A);
(iv) int(A) = A − bd(A);
(v) cl(A) = int(A) ∪ bd(A);
(vi) cl(A) = A ∪ der(A);
(vii) R = int(A) ∪ bd(A) ∪ int(R \A).

Proof (i) Let x ∈ R \ int(A). Since x < int(A), for every neighbourhood U of x it holds
that U 1 A. Thus, for any neighbourhood U of x, we have U ∩ (R \ A) , ∅, showing
that x ∈ cl(R \ A).

Now let x ∈ cl(R \A). Then for any neighbourhood U of x we have U∩ (R \A) , ∅.
Thus x < int(A), so x ∈ R \ A.

(ii) The proof here strongly resembles that for part (i), and we encourage the reader
to provide the explicit arguments.

(iii) This follows from part (v).
(iv) Clearly int(A) ⊆ A. Suppose that x ∈ A ∩ bd(A). Then, for any neighbourhood

U of x, the set U ∩ (R \ A) is nonempty. Therefore, no neighbourhood of x is a subset
of A, and so x < int(A). Conversely, if x ∈ int(A) then there is a neighbourhood U of x
such that U ⊆ A. The precludes the set U ∩ (R \ A) from being nonempty, and so we
must have x < bd(A).

(v) Let x ∈ cl(A). For a neighbourhood U of x it then holds that U ∩ A , ∅. If
there exists a neighbourhood V of x such that V ⊆ A, then x ∈ int(A). If there exists no
neighbourhood V of x such that V ⊆ A, then for every neighbourhood V of x we have
V ∩ (R \ A) , ∅, and so x ∈ bd(A).

Now let x ∈ int(A) ∪ bd(A). If x ∈ int(A) then x ∈ A and so x ∈⊆ cl(A). If x ∈ bd(A)
then it follows immediately from Proposition 2.5.18 that x ∈ cl(A).

(vi) Let x ∈ cl(A). If x < A then, for every neighbourhood U of x, U ∩ A =
U ∩ (A \ {x}) , ∅, and so x ∈ der(A).

If x ∈ A ∪ der(A) then either x ∈ A ⊆ cl(A), or x < A. In this latter case, x ∈ der(A)
and so the set U ∩ (A \ {x}) is nonempty for each neighbourhood U of x, and we again
conclude that x ∈ cl(A).
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(vii) Clearly int(A) ∩ int(R \ A) = ∅ since A ∩ (R \ A) = ∅. Now let x ∈ R \ (int(A) ∪
int(R \A)). Then, for any neighbourhood U of x, we have U 1 A and U 1 (R \A). Thus
the sets U ∩ (R \ A) and U ∩ A must both be nonempty, from which we conclude that
x ∈ bd(A). �

An interesting class of subset of R is the following.

2.5.22 Definition (Discrete subset of R) A subset A ⊆ R is discrete if there exists ε ∈ R>0

such that, for each x, y ∈ A, |x − y| ≥ ε. •

Let us give a characterisation of discrete sets.

2.5.23 Proposition (Characterisation of discrete sets in R) A discrete subset A ⊆ R is
countable and has no accumulation points.

Proof It is easy to show (Exercise 2.5.6) that if A is discrete and if N ∈ Z>0, then the
set A ∩ [−N,N] is finite. Therefore

A = ∪N∈Z>0A ∩ [−N,N],

which gives A as a countable union of finite sets, implying that A is countable by
Proposition ??. Now let ε ∈ R>0 satisfy |x − y| ≥ ε for x, y ∈ A. Then, if x ∈ A then the
set A ∩ B( ε2 , x) is empty, implying that x is not an accumulation point. If x < A then
B( ε2 , x) can contain at most one point from A, which again prohibits x from being an
accumulation point. �

The notion of a discrete set is actually a more general one having to do with
what is known as the discrete topology (cf. Example ??–??). The reader can explore
some facts about discrete subsets of R in Exercise 2.5.6.

2.5.4 Compactness

The idea of compactness is absolutely fundamental in much of mathematics.
The reasons for this are not at all clear to a newcomer to analysis. Indeed, the
definition we give for compactness comes across as extremely unmotivated. This
might be particularly since for R (or more generally, in Rn) compact sets have a
fairly banal characterisation as sets that are closed and bounded (Theorem 2.5.27).
However, the original definition we give for a compact set is the most useful one.
The main reason it is useful is that it allows for certain pointwise properties to be
automatically extended to the entire set. A good example of this is Theorem 3.1.24,
where continuity of a function on a compact set is extended to uniform continuity
on the set. This idea of uniformity is an important one, and accounts for much of
the value of the notion of compactness. But we are getting ahead of ourselves.

As indicated in the above paragraph, we shall give a rather strange seeming
definition of compactness. Readers looking for a quick and dirty definition of
compactness, valid for subsets of R, can refer ahead to Theorem 2.5.27. Our
construction relies on the following idea.
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2.5.24 Definition (Open cover of a subset of R) Let A ⊆ R.
(i) An open cover for A is a family (Ui)i∈I of open subsets ofR having the property

that A ⊆ ∪i∈IUi.
(ii) A subcover of an open cover (Ui)i∈I of A is an open cover (V j) j∈J of A having

the property that (V j) j∈J ⊆ (Ui)i∈I. •

The following property of open covers of subsets of R is useful.

2.5.25 Lemma (Lindelöf10 Lemma for R) If (Ui)i∈I is an open cover of A ⊆ R, then there
exists a countable subcover of A.

Proof Let B = {B(r, x) | x, r ∈ Q}. Note that B is a countable union of countable sets,
and so is countable by Proposition ??. Therefore, we can write B = (B(r j, x j)) j∈Z>0 .
Now define

B′ = {B(r j, x j) | B(r j, x j) ⊆ Ui for some i ∈ I}.

Let us write B′ = (B(r jk , x jk))k∈Z>0 . We claim that B′ covers A. Indeed, if x ∈ A
then x ∈ Ui for some i ∈ I. Since Ui is open there then exists k ∈ Z>0 such that
x ∈ B(r jk , x jk) ⊆ Ui. Now, for each k ∈ Z>0, let ik ∈ I satisfy B(r jk , x jk) ⊆ Uik . Then the
countable collection of open sets (Uik)k∈Z>0 clearly covers A since B′ covers A. �

Now we define the important notion of compactness, along with some other
related useful concepts.

2.5.26 Definition (Bounded, compact, and totally bounded in R) A subset A ⊆ R is:

(i) bounded if there exists M ∈ R>0 such that A ⊆ B(M, 0);
(ii) compact if every open cover (Ui)i∈I of A possesses a finite subcover;
(iii) precompact11 if cl(A) is compact;
(iv) totally bounded if, for every ε ∈ R>0 there exists x1, . . . , xk ∈ R such that

A ⊆ ∪k
j=1B(ε, x j). •

The simplest characterisation of compact subsets ofR is the following. We shall
freely interchange our use of the word compact between the definition given in
Definition 2.5.26 and the conclusions of the following theorem.

2.5.27 Theorem (Heine–Borel12 Theorem in R) A subset K ⊆ R is compact if and only if it
is closed and bounded.

Proof Suppose that K is closed and bounded. We first consider the case when K =
[a, b]. Let O = (Ui)i∈I be an open cover for [a, b] and let

S[a,b] = {x ∈ R | x ≤ b and [a, x] has a finite subcover in O}.

10Ernst Leonard Lindelöf (1870–1946) was a Finnish mathematician who worked in the areas of
differential equations and complex analysis.

11What we call “precompact” is very often called “relatively compact.” However, we shall use
the term “relatively compact” for something different.

12Heinrich Eduard Heine (1821–1881) was a German mathematician who worked mainly with
special functions. Félix Edouard Justin Emile Borel (1871–1956) was a French mathematician, and
he worked mainly in the area of analysis.
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Note that S[a,b] , ∅ since a ∈ S[a,b]. Let c = sup S[a,b]. We claim that c = b. Suppose
that c < b. Since c ∈ [a, b] there is some ī ∈ I such that c ∈ Uī. As Uī is open, there is
some ε ∈ R>0 sufficiently small that B(ε, c) ⊆ Uī. By definition of c, there exists some
x ∈ (c − ε, c) for which x ∈ S[a,b]. By definition of S[a,b] there is a finite collection of open
sets Ui1 , . . . ,Uim from O which cover [a, x]. Therefore, the finite collection Ui1 , . . . ,Uim ,Uī
of open sets covers [a, c+ε). This then contradicts the fact that c = sup S[a,b], so showing
that b = sup S[a,b]. The result follows by definition of S[a,b].

Now suppose that K is a general closed and bounded set. Then K ⊆ [a, b] for some
suitable a, b ∈ R. Suppose that O = (Ui)i∈I is an open cover of K, and define a new open
cover Õ = O ∪ (R \K). Note that ∪i∈IUi ∪ (R \K) = R showing that Õ is an open cover
for R, and therefore also is an open cover for [a, b]. By the first part of the proof, there
exists a finite subset of Õ which covers [a, b], and therefore also covers K. We must
show that this finite cover can be chosen so as not to include the set R \ K as this set is
not necessarily in O . However, if [a, b] is covered by Ui1 , . . . ,Uik ,R \ K, then one sees
that K is covered by Ui1 , . . . ,Uik , since K ∩ (R \ K) = ∅. Thus we have arrived at a finite
subset of O covering K, as desired.

Now suppose that K is compact. Consider the following collection of open subsets:
OK = (B(ε, x))x∈K. Clearly this is an open cover of K. Thus there exists a finite collection
of point x1, . . . , xk ∈ K such that (B(ε, x j)) j∈{1,...,k} covers K. If we take

M = max{|x1|, . . . , |xk|} + 2

then we easily see that K ⊆ B(M, 0), so that K is bounded. Now suppose that K is not
closed. Then K ⊂ cl(K). By part (vi) of Proposition 2.5.21 there exists an accumulation
point x0 of K that is not in K. Then, for any j ∈ Z>0 there exists a point x j ∈ K such that
|x0 − x j| <

1
j . Define

U j = (−∞, x0 −
1
j ) ∪ (x0 + 1

j ,∞),

noting that U j is open, since it is the union of open sets (see Exercise 2.5.1). We claim
that (U j) j∈Z>0 is an open cover of K. Indeed, we will show that ∪ j∈Z>0U j = R \ {x0}.
To see this, let x ∈ R \ {x0} and choose k ∈ Z>0 such that 1

k < |x − x0|. Then it follows
by definition of Uk that x ∈ Uk. Since x0 < K, we then have K ⊆ ∪ j∈Z>0U j. Next we
show that there is no finite subset of (U j) j∈Z>0 that covers K. Indeed, consider a finite
set j1, . . . , jk ∈ Z>0, and suppose without loss of generality that j1 < · · · < jk. Then the
point x jk+1 satisfies |x0 − x jk+1| <

1
jk+1 <

1
jk

, implying that x jk+1 < U jk ⊇ · · · ⊇ U j1 . Thus,
if K is not closed, we have constructed an open cover of K having no finite subcover.
From this we conclude that if K is compact, then it is closed. �

The Heine–Borel Theorem has the following useful corollary.

2.5.28 Corollary (Closed subsets of compact sets in R are compact) If A ⊆ R is
compact and if B ⊆ A is closed, then B is compact.

Proof Since A is bounded by the Heine–Borel Theorem, B is also bounded. Thus B is
also compact, again by the Heine–Borel Theorem. �

In Chapter ?? we shall encounter many of the ideas in this section in the more
general setting of topological spaces. Many of the ideas forR transfer directly to this
more general setting. However, with compactness, some care must be exercised.
In particular, it is not true that, in a general topological space, a subset is compact
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if and only if it is closed and bounded. Indeed, in a general topological space, the
notion of bounded is not defined. It is not an uncommon error for newcomers to
confuse “compact” with “closed and bounded” in situations where this is not the
case.

missing stuff
The following result is another equivalent characterisation of compact subsets

of R, and is often useful.

2.5.29 Theorem (Bolzano–Weierstrass13 Theorem in R) A subset K ⊆ R is compact if and
only if every sequence in K has a subsequence which converges in K.

Proof First suppose that K is compact. Let (x j) j∈Z>0 be a sequence in K. Since K
is bounded by Theorem 2.5.27, the sequence (x j) j∈Z>0 is bounded. We next show
that there exists either a monotonically increasing, or a monotonically decreasing,
subsequence of (x j) j∈Z>0 . Define

D = { j ∈ Z>0 | xk > x j, k > j}

If the set D is infinite, then we can write D = ( jk)k∈Z>0 . By definition of D, it follows
that x jk+1 > x jk for each k ∈ Z>0. Thus the subsequence (x jk)k∈Z>0 is monotonically
increasing. If the set D is finite choose j1 > sup D. Then there exists j2 > j1 such that
x j2 ≤ x j1 . Since j2 > sup D, there then exists j3 > j2 such that x j3 ≤ x j2 . By definition
of D, this process can be repeated inductively to yield a monotonically decreasing
subsequence (x jk)k∈Z>0 . It now follows from Theorem 2.3.8 that the sequence (x jk)k∈Z>0 ,
be it monotonically increasing or monotonically decreasing, converges.

Next suppose that every sequence (x j) j∈Z>0 in K possesses a convergent subse-
quence. Let (Ui)i∈I be an open cover of K, and by Lemma 2.5.25 choose a countable
subcover which we denote by (U j) j∈Z>0 . Now suppose that every finite subcover of
(U j) j∈Z>0 does not cover K. This means that, for every k ∈ Z>0, the set Ck = K \

(
∪

k
j=1U j

)
is nonempty. Thus we may define a sequence (xk)k∈Z>0 in R such that xk ∈ Ck. Since
the sequence (xk)k∈Z>0 is in K, it possesses a convergent subsequence (xkm)m∈Z>0 , by
hypotheses. Let x be the limit of this subsequence. Since x ∈ K and since K = ∪ j∈Z>0U j,
x ∈ Ul for some l ∈ Z>0. Since the sequence (xkm)m∈Z>0 converges to x, it follows that
there exists N ∈ Z>0 such that xkm ∈ Ul for m ≥ N. But this contradicts the definition of
the sequence (xk)k∈Z>0 , forcing us to conclude that our assumption is wrong that there
is no finite subcover of K from the collection (U j) j∈Z>0 . �

The following property of compact intervals of R is useful.

2.5.30 Theorem (Lebesgue14 number for compact intervals) Let I = [a, b] be a compact
interval. Then for any open cover (Uα)α∈A of [a, b], there exists δ ∈ R>0, called the

13Bernard Placidus Johann Nepomuk Bolzano (1781–1848) was a Czechoslovakian philosopher,
mathematician, and theologian who made mathematical contributions to the field of analysis. Karl
Theodor Wilhelm Weierstrass (1815–1897) is one of the greatest of all mathematicians. He made
significant contributions to the fields of analysis, complex function theory, and the calculus of
variations.

14Henri Léon Lebesgue (1875–1941) was a French mathematician. His work was in the area of
analysis. The Lebesgue integral is considered to be one of the most significant contributions to
mathematics in the past century or so.
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Lebesgue number of I, such that, for each x ∈ [a, b], there exists α ∈ A such that
B(δ, x) ∩ I ⊆ Uα.

Proof Suppose there exists an open cover (Uα)α∈A such that, for all δ ∈ R>0, there
exists x ∈ [a, b] such that none of the sets Uα, α ∈ A, contains B(δ, x) ∩ I. Then there
exists a sequence (x j) j∈Z>0 in I such that

{α ∈ A | B( 1
j , x j) ⊆ Uα} = ∅

for each j ∈ Z>0. By the Bolzano–Weierstrass Theorem there exists a subsequence
(x jk)k∈Z>0 that converges to a point, say x, in [a, b]. Then there exists ε ∈ R>0 and α ∈ A
such that B(ε, x) ⊆ Uα. Now let N ∈ Z>0 be sufficiently large that |x jk − x| < ε

2 for k ≥ N
and such that 1

jN
< ε

2 . Now let k ≥ N. Then, if y ∈ B( 1
jk
, x jk) we have

|y − x| = |y − x jk + x jk − x| ≤ |y − x jk | + |x − x jk | < ε.

Thus we arrive at the contradiction that B( 1
jk
, x jk) ⊆ Uα. �

The following result is sometimes useful.

2.5.31 Proposition (Countable intersections of nested compact sets are nonempty)
Let (Kj)j∈Z>0 be a collection of compact subsets of R satisfying Kj+1 ⊆ Kj. Then ∩j∈Z>0Kj is
nonempty.

Proof It is clear that K = ∩ j∈Z>0K j is bounded, and moreover it is closed by Exer-
cise 2.5.1. Thus K is compact by the Heine–Borel Theorem. Let (x j) j∈Z>0 be a sequence
for which x j ∈ K j for j ∈ Z>0. This sequence is thus a sequence in K1 and so, by the
Bolzano–Weierstrass Theorem, has a subsequence (x jk)k∈Z>0 converging to x ∈ K1. The
sequence (x jk+1)k∈Z>0 is then a sequence in K2 which is convergent, so showing that
x ∈ K2. Similarly, one shows that x ∈ K j for all j ∈ Z>0, giving the result. �

Finally, let us indicate the relationship between the notions of relative compact-
ness and total boundedness. We see that for R these concepts are the same. This
may not be true in general.missing stuff

2.5.32 Proposition (“Precompact” equals “totally bounded” in R) A subset of R is
precompact if and only if it is totally bounded.

Proof Let A ⊆ R.
First suppose that A is precompact. Since A ⊆ cl(A) and since cl(A) is bounded by

the Heine–Borel Theorem, it follows that A is bounded. It is then easy to see that A is
totally bounded.

Now suppose that A is totally bounded. For ε ∈ R>0 let x1, . . . , xk ∈ R have the
property that A ⊆ ∪k

j=1B(ε, x j). If

M0 = max{|x j − xl| | j, l ∈ {i, . . . , k}} + 2ε,

then it is easy to see that A ⊆ B(M, 0) for any M > M0. Then cl(A) ⊆ B(M, 0) by part (iv)
of Proposition 2.5.20, and so cl(A) is bounded. Since cl(A) is closed, it follows from
the Heine–Borel Theorem that A is precompact. �

missing stuff missing stuff
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2.5.5 Connectedness

The idea of a connected set will come up occasionally in these volumes. Intu-
itively, a set is connected if it cannot be “broken in two.” We will study it more
systematically in missing stuff , and here we only give enough detail to effectively
characterise connected subsets of R.

2.5.33 Definition (Connected subset ofR) Subsets A,B ⊆ R are separated if A∩cl(B) = ∅
and cl(A)∩B = ∅. A subset S ⊆ R is disconnected if S = A∪B for nonempty separated
subsets A and B. A subset S ⊆ R is connected if it is not disconnected. •

Rather than give examples, let us simply immediately characterise the con-
nected subsets of R, since this renders all examples trivial to understand.

2.5.34 Theorem (Connected subsets of R are intervals and vice versa) A subset S ⊆ R
is connected if and only if S is an interval.

Proof Suppose that S is not an interval. Then, by Proposition 2.5.5, there exists
a, b ∈ S with a < b and c ∈ (a, b) such that c < S. Let Ac = S∩ (−∞, c) and Bc = S∩ (c,∞),
and note that both Ac and Bc are nonempty. Also, since c < S, S = Ac ∪ Bc. Since
(−∞, c) ∩ [c,∞) = ∅ and (−∞, c] ∩ (c,∞) = ∅, Ac and Bc are separated. That S is not
connected follows.

Now suppose that S is not connected, and write S = A∪B for nonempty separated
sets A and B. Without loss of generality, let a ∈ A and b ∈ B have the property that
a < b. Note that A ∩ [a, b] is bounded so that c = sup A ∩ [a, b] exists in R. Then
c ∈ cl(A ∩ [a, b]) ⊆ cl(A) ∩ [a, b]. In other words, c ∈ cl(A). Since cl(A) ∩ B = ∅, c < B.
If c < A then c < S, and so S is not connected by Proposition 2.5.5. If c ∈ A then,
since A ∩ cl(B) = ∅, c < cl(B). In this case there exists an open interval containing c
that does not intersect cl(B). In particular, there exists d > c such that d < B. Since
d > c we also have d < A, and so d < S. Again we conclude that S is not an interval by
Proposition 2.5.5. �

Let us consider a few examples.

2.5.35 Examples (Connected subsets of sets)
1. If D ⊆ R is a discrete set as given in Definition 2.5.22. From Theorem 2.5.34

we see that the only subsets of D that are connected are singletons.
2. Note that it also follows from Theorem 2.5.34 that the only connected subsets

of Q ⊆ R are singletons. However, Q is not discrete. •

2.5.6 Sets of measure zero

The topic of this section will receive a full treatment in the context of measure
theory as presented in Chapter 5. However, it is convenient here to talk about a
simple concepts from measure theory, one which formalises the idea of a set being
“small.” We shall only give here the definition and a few examples. The reader
should look ahead to Chapter 5 for more detail.
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2.5.36 Definition (Set of measure zero in R) A subset A ⊆ R has measure zero, or is of
measure zero, if

inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ A ⊆
⋃

j∈Z>0

(a j, b j)
}

= 0. •

The idea, then, is that one can cover a set A with open intervals, each of which
have some length. One can add all of these lengths to get a total length for the
intervals used to cover A. Now, if one can make this total length arbitrarily small,
then the set has measure zero.

2.5.37 Notation (“Almost everywhere” and “a.e.”) We give here an important piece of
notation associated to the notion of a set of measure zero. Let A ⊆ R and let
P : A→ {true, false} be a property defined on A (see the prelude to the Principle of
Transfinite Induction, Theorem ??). The property P holds almost everywhere, a.e.,
or for almost every x ∈ A if the set {x ∈ A | P(x) = false} has measure zero. •

This is best illustrated with some examples.

2.5.38 Examples (Sets of measure zero)
1. Let A = {x1, . . . , xk} for some distinct x1, . . . , xk ∈ R. We claim that this set has

measure zero. Note that for any ε ∈ R>0 the intervals (x j−
ε
4k , x j+

ε
4k ), j ∈ {1, . . . , k},

clearly cover A. Now consider the countable collection of open intervals

((x j −
ε
4k , x j + ε

4k )) j∈{1,...,k} ∪ ((0, ε
2 j+1 )) j∈Z>0

obtained by adding to the intervals covering A a collection of intervals around
zero. The total length of these intervals is

k∑
j=1

|(x j + ε
4k ) − (x j −

ε
4k )| +

ε
2

∞∑
j=1

1
2 j =

ε
2

+
ε
2
,

using the fact that
∑
∞

j=1
ε
2 j = 1 (by Example 2.4.2–1). Since inf{2kε | ε ∈ R>0} = 0,

our claim that A has zero measure is validated.
2. Now let A = Q be the set of rational numbers. To show that A has measure

zero, note that from Exercise 2.1.3 that A is countable. Thus we can write the
elements of A as (q j) j∈Z>0 . Now let ε ∈ R>0 and for j ∈ Z>0 define a j = q j −

ε
2 j and

b j = q j + ε
2 j . Then the collection (a j, b j), j ∈ Z>0, covers A. Moreover,

∞∑
j=1

|b j − a j| =

∞∑
j=1

2ε
2 j = 2ε,

using the fact, shown in Example 2.4.2–1, that the series
∑
∞

j=1
1
2 j converges to 1.

Now, since inf{2ε | ε ∈ R>0} = 0, it follows that A indeed has measure zero.
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3. Let A = R \ Q be the set of irrational numbers. We claim that this set does not
have measure zero. To see this, let k ∈ Z>0 and consider the set Ak = A∩ [−k, k].
Now let ε ∈ R>0. We claim that if ((a j, b j)) j∈Z>0 , is a collection of open intervals
for which Ak ⊆ ∪ j∈Z>0(a j, b j), then

∞∑
j=1

|b j − a j| ≥ 2k − ε. (2.9)

To see this, let ((cl, dl))l∈Z>0 be a collection of intervals such that Q ∩ [−k, k] ⊆
∪l∈Z>0(cl, dl) and such that

∞∑
l=1

|dl − cl| < ε.

Such a collection of intervals exists since we have already shown that Q, and
therefore Q ∩ [−k, k], has measure zero (see Exercise 2.5.7). Now note that

[−k, k] ⊆
( ⋃

j∈Z>0

(a j, b j)
)
∪

( ⋃
l∈Z>0

(cl, dl)
)
,

so that ( ∞∑
j=1

|b j − a j|
)

+
( ∞∑

l=1

|dl − cl|
)
≥ 2k.

From this we immediately conclude that (2.9) does indeed hold. Moreover, (2.9)
holds for every k ∈ Z>0, for every ε ∈ R>0, and for every open cover ((a j, b j)) j∈Z>0

of Ak. Thus,

inf
{ ∞∑

l=1

|b̃l − ãl|

∣∣∣∣ A ⊆
⋃

l∈Z>0

(ãl, b̃l)
}
≥ inf

{ ∞∑
j=1

|b j − a j|

∣∣∣∣ Ak ⊆

⋃
j∈Z>0

(a j, b j)
}
≥ 2k − ε

for every k ∈ Z>0 and for every ε ∈ R>0. This precludes A from having measure
zero. •

The preceding examples suggest sets of measure zero are countable. This is
not so, and the next famous example gives an example of an uncountable set with
measure zero.

2.5.39 Example (An uncountable set of measure zero: the middle-thirds Cantor set)
In this example we construct one of the standard “strange” sets used in real analysis
to exhibit some of the characteristics that can possibly be attributed to subsets ofR.
We shall also use this set in a construction in Example 3.2.27 to give an example
of a continuous monotonically increasing function whose derivative is zero almost
everywhere.
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Let C0 = [0, 1]. Then define

C1 = [0, 1
3 ] ∪ [ 2

3 , 1],

C2 = [0, 1
9 ] ∪ [ 2

9 ,
1
3 ] ∪ [ 2

3 ,
7
9 ] ∪ [ 8

9 , 1],
...

so that Ck is a collection of 2k disjoint closed intervals each of length 3−k (see
Figure 2.5). We define C = ∩k∈Z>0Ck, which we call the middle-thirds Cantor set.

C2

C1

C0

Figure 2.5 The first few sets used in the construction of the
middle-thirds Cantor set

Let us give some of the properties of C.

1 Lemma C has the same cardinality as [0, 1].
Proof Note that each of the sets Ck, k ∈ Z≥0, is a collection of disjoint closed
intervals. Let us write Ck = ∪2k

j=1Ik, j, supposing that the intervals Ik, j are enumerated
such that the right endpoint of Ik, j lies to the left of the left endpoint of Ik, j+1 for
each k ∈ Z≥0 and j ∈ {1, . . . , 2k

}. Now note that each interval Ik+1, j, k ∈ Z≥0,
j ∈ {1, . . . , 2k+1

} comes from assigning two intervals to each of the intervals Ik, j,
k ∈ Z≥0, j ∈ {1, . . . , 2k

}. Assign to an interval Ik+1, j, k ∈ Z≥0, j ∈ {1, . . . , 2k
}, the

number 0 (resp. 1) if it the left (resp. right) interval coming from an interval Ik, j′

of Ck. In this way, each interval in Ck, k ∈ Z≥0, is assigned a 0 or a 1 in a unique
manner. Since, for each point in x ∈ C, there is exactly one j ∈ {1, . . . , 2k

} such
that x ∈ Ik, j. Therefore, for each point in C there is a unique decimal expansion
0.n1n2n3 . . . where nk ∈ {0, 1}. Moreover, for every such decimal expansion, there is
a corresponding point in C. However, such decimal expansions are exactly binary
decimal expansions for points in [0, 1]. In other words, there is a bijection from C
to [0, 1]. H

2 Lemma C is a set of measure zero.
Proof Let ε ∈ R>0. Note that each of the sets Ck can be covered by a finite number
of closed intervals whose lengths sum to

(
2
3 )k. Therefore, each of the sets Ck can be

covered by open intervals whose lengths sum to
(

2
3 )k + ε

2 . Choosing k sufficiently

large that
(

2
3 )k < ε

2 we see that C is contained in the union of a finite collection of
open intervals whose lengths sum to ε. Since ε is arbitrary, it follows that C has
measure zero. H
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This example thus shows that sets of measure zero, while “small” in some sense,
can be “large” in terms of the number of elements they possess. Indeed, in terms of
cardinality, C has the same size as [0, 1], although their measures differ by as much
as possible. •

2.5.7 Cantor sets

The remainder of this section is devoted to a characterisation of certain sorts of
exotic sets, perhaps the simplest example of which is the middle-thirds Cantor set
of Example 2.5.39. This material is only used occasionally, and so can be omitted
until the reader feels they need/want to understand it.

The qualifier “middle-thirds” in Example 2.5.39 makes one believe that there
might be a general notion of a “Cantor set.” This is indeed the case.

2.5.40 Definition (Cantor set) Let I ⊆ R be a closed interval. A subset A ⊆ I is a Cantor
set if

(i) A is closed,
(ii) int(A) = ∅, and
(iii) every point of A is an accumulation point of A. •

We leave it to the reader to verify in Exercise 2.5.10 that the middle-thirds
Cantor set is a Cantor set, according to the previous definition.

One might wonder whether all Cantor sets have the properties of having the
cardinality of an interval and of having measure zero. To address this, we give a
result and an example. The result shows that all Cantor sets are uncountable.

2.5.41 Proposition (Cantor sets are uncountable) If A ⊆ R is a nonempty set having
the property that each of its points is an accumulation point, then A is uncountable. In
particular, Cantor sets are uncountable.

Proof Any finite set has no accumulation points by Proposition 2.5.13. Therefore
A must be either countably infinite or uncountable. Suppose that A is countable and
write A = (x j) j∈Z>0 . Let y1 ∈ A \ {x1}. For r1 < |x1 − y1| we have x1 < B(r1, y1). We
note that y1 is an accumulation point for A \ {x1, x2}; this follows immediately from
Proposition 2.5.13. Thus there exists y2 ∈ A \ {x1, x2} such that y2 ∈ B(r1, y1) and such
that y2 , y1. If r2 < min{|x2− y2|, r1−|y2− y2|} then x2 < B(r2, y2) and B(r2, y2) ⊆ B(r1, y1)
by a simple application of the triangle inequality. Continuing in this way we define a
sequence (B(r j, y j)) j∈Z>0 of closed balls having the following properties:

1. B(r j+1, y j+1) ⊆ B(r j, y j) for each j ∈ Z>0;

2. x j < B(r j, y j) for each j ∈ Z>0.

Note that (B(r j, y j) ∩ A) j∈Z>0 is a nested sequence of compact subsets of A, and so by
Proposition 2.5.31, ∩ j∈Z>0(B(r j, y j) ∩ A) is a nonempty subset of A. However, for any
j ∈ Z>0, x j < ∩ j∈Z>0(B(r j, y j) ∩A), and so we arrive, by contradiction, to the conclusion
that A is not countable. �

The following example shows that Cantor sets may not have measure zero.



131 2 Real numbers and their properties 2016/11/26

2.5.42 Example (A Cantor set not having zero measure) We will define a subset of
[0, 1] that is a Cantor set, but does not have measure zero. The construction mirrors
closely that of Example 2.5.39.

We let ε ∈ (0, 1). Let Cε,0 = [0, 1] and define Cε,1 by deleting from Cε,0 an open
interval of length ε

2 centered at the midpoint of Cε,0. Note that Cε,1 consists of two
disjoint closed intervals whose lengths sum to 1 − ε

2 . Next define Cε,2 by deleting
from Cε,1 two open intervals, each of length ε

8 , centered at the midpoints of each
of the intervals comprising Cε,1. Note that Cε,2 consists of four disjoint closed
intervals whose lengths sum to 1 − ε

4 . Proceed in this way, defining a sequence of
sets (Cε,k)k∈Z>0 , where Cε,k consists of 2k disjoint closed intervals whose lengths sum
to 1 −

∑k
j=1

ε
2 j = 1 − ε. Take Cε = ∩k∈Z>0Cε,k.

Let us give the properties of Cε in a series of lemmata.

1 Lemma Cε is a Cantor set.
Proof That Cε is closed follows from Exercise 2.5.1 and the fact that it is the
intersection of a collection of closed sets. To see that int(Cε) = ∅, let I ⊆ [0, 1] be an
open interval and suppose that I ⊆ Cε. This means that I ⊆ Cε,k for each k ∈ Z>0.
Note that the sets Cε,k, k ∈ Z>0, are unions of closed intervals, and that for any
δ ∈ R>0 there exists N ∈ Z>0 such that the lengths of the intervals comprising Cε,k

are less than δ for k ≥ N. Thus the length of I must be zero, and so I = ∅. Thus
Cε contains no nonempty open intervals, and so must have an empty interior. To
see that every point of Cε is an accumulation point of Cε, we note that all points in
Cε are endpoints for one of the closed intervals comprising Cε,k for some k ∈ Z>0.
Moreover, it is clear that every neighbourhood of a point in Cε must contain another
endpoint from one of the closed intervals comprising Cε,k for some k ∈ Z>0. Indeed,
were this not the case, this would imply the existence of a nonempty open interval
contained in Cε, and we have seen that there can be no such interval. H

2 Lemma Cε is uncountable.
Proof This can be proved in exactly the same manner as the middle-thirds Cantor
set was shown to be uncountable. H

3 Lemma Cε does not have measure zero.
Proof Once one knows the basic properties of Lebesgue measure, it follows imme-
diately that Cε has, in fact, measure 1 − ε. However, since we have not yet defined
measure, let us prove that Cε does not have measure zero, using only the definition
of a set of measure zero. Let ((a j, b j)) j∈Z>0 be a countable collection of open intervals
having the property that

Cε ⊆

⋃
j∈Z>0

(a j, b j).

Since Cε is closed, it is compact by Corollary 2.5.28. Therefore, there exists a finite
collection ((a jl , b jl))l∈{1,...,m} of intervals having the property that

Cε ⊆

m⋃
l=1

(a jl , b jl). (2.10)
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We claim that there exists k ∈ Z>0 such that

Cε,k ⊆

m⋃
l=1

(a jl , b jl). (2.11)

Indeed, suppose that, for each k ∈ Z>0 there exists xk ∈ Cε,k such that xk < ∪m
l=1(a jl , b jl).

The sequence (xk)k∈Z>0 is then a sequence in the compact set Cε,1, and so by the
Bolzano–Weierstrass Theorem, possesses a subsequence (xkr)r∈Z>0 converging to
x ∈ Cε,1. But the sequence (xkr+1)r∈Z>0 is then a convergent sequence in Cε,2, so
x ∈ Cε,2. Continuing in this way, x ∈ ∩k∈Z>0Cε,k. Moreover, the sequence (xk)k∈Z>0

is also a sequence in the closed set [0, 1] − ∪m
l=1(a jl , b jl), and so we conclude that

x ∈ [0, 1]−∪m
l=1(a jl , b jl). Thus we contradict the condition (2.10), and so there indeed

must be a k ∈ Z>0 such that (2.11) holds. However, this implies that any collection
of open intervals covering Cε must have lengths which sum to at least 1 − ε. Thus
Cε cannot have measure zero. H

Cantor sets such as Cε are sometimes called fat Cantor sets, reflecting the fact
that they do not have measure zero. Note, however, that they are not that fat, since
they have an empty interior! •

2.5.8 Notes

Some uses of δ-fine tagged partitions in real analysis can be found in the paper
of RAG:98.

Exercises

2.5.1 For an arbitrary collection (Ua)a∈A of open sets and an arbitrary collection
(Cb)b∈B of closed sets, do the following:
(a) show that ∪a∈AUa is open;
(b) show that ∩b∈BCb is closed;
For open sets U1 and U2 and closed sets C1 and C2, do the following:
(c) show that U1 ∩U2 is open;
(d) show that C1 ∪ C2 is closed.

2.5.2 Show that a set A ⊆ R is closed if and only if it contains all of its limit points.
2.5.3 For A ⊆ R, show that bd(A) = bd(R \ A).
2.5.4 Find counterexamples to the following statements (cf. Proposi-

tions 2.5.15, 2.5.19, and 2.5.20):
(a) int(A ∪ B) ⊆ int(A) ∪ int(B);
(b) int(∪i∈IAi) ⊆ ∪i∈I int(Ai);
(c) int(∩i∈IAi) ⊇ ∩i∈I int(Ai);
(d) cl(A ∩ B) ⊇ cl(A) ∩ cl(B);
(e) cl(∪i∈IAi) ⊆ ∪i∈I cl(Ai);
(f) cl(∩i∈IAi) ⊇ ∩i∈I cl(Ai).
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Hint: No fancy sets are required. Intervals will suffice in all cases.
2.5.5 For each of the following statements, prove the statement if it is true, and

give a counterexample if it is not:
(a) int(A1 ∪ A2) = int(A1) ∪ int(A2);
(b) int(A1 ∩ A2) = int(A1) ∩ int(A2);
(c) cl(A1 ∪ A2) = cl(A1) ∪ cl(A2);
(d) cl(A1 ∩ A2) = cl(A1) ∩ cl(A2);
(e) bd(A1 ∪ A2) = bd(A1) ∪ bd(A2);
(f) bd(A1 ∩ A2) = bd(A1) ∩ bd(A2).

2.5.6 Do the following:
(a) show that any finite subset of R is discrete;
(b) show that a discrete bounded set is finite;
(c) find a set A ⊆ R that is countable and has no accumulation points, but

that is not discrete.
2.5.7 Show that if A ⊆ R has measure zero and if B ⊆ A, then B has measure zero.
2.5.8 Show that any countable subset of R has measure zero.
2.5.9 Let (Z j) j∈Z>0 be a family of subsets of R that each have measure zero. Show

that ∪ j∈Z>0Z j also has measure zero.
2.5.10 Show that the set C constructed in Example 2.5.39 is a Cantor set.



Chapter 3

Functions of a real variable

In the preceding chapter we endowed the setRwith a great deal of structure. In
this chapter we employ this structure to endow functions whose domain and range
is R with some useful properties. These properties include the usual notions of
continuity and differentiability given in first-year courses on calculus. The theory
of the Riemann integral is also covered here, and it can be expected that students
will have at least a functional familiarity with this. However, students who have
had the standard engineering course (at least in North American universities)
dealing with these topics will find the treatment here a little different than what
they are used to. Moreover, there are also topics covered that are simply not part of
the standard undergraduate curriculum, but which still fit under the umbrella of
“functions of a real variable.” These include a detailed discussion of functions of
bounded variation, an introductory treatment of absolutely continuous functions,
and a generalisation of the Riemann integral called the Riemann–Stieltjes integral.

Do I need to read this chapter? For readers having had a good course in anal-
ysis, this chapter can easily be bypassed completely. It can be expected that all
other readers will have some familiarity with the material in this chapter, although
not perhaps with the level of mathematical rigour we undertake. This level of
mathematical rigour is not necessarily needed, if all one wishes to do is deal with
R-valued functions defined on R (as is done in most engineering undergraduate
programs). However, we will wish to use the ideas introduced in this chapter,
particularly those from Section 3.1, in contexts far more general than the simple
one of R-valued functions. Therefore, it will be helpful, at least, to understand the
simple material in this chapter in the rigorous manner in which it is presented.

As for the more advanced material, such as is contained in Sections 3.3, ??,
and ??, it is probably best left aside on a first reading. The reader will be warned
when this material is needed in the presentation.

Some of what we cover in this chapter, particularly notions of continuity, dif-
ferentiability, and Riemann integrability, will be covered in more generality in
Chapter ??. Aggressive readers may want to skip this material here and proceed
directly to the more general case. •
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Section 3.1

Continuous R-valued functions on R

The notion of continuity is one of the most important in all of mathematics.
Here we present this important idea in its simplest form: continuity for functions
whose domain and range are subsets of R.

Do I need to read this section? Unless you are familiar with this material, it is
probably a good idea to read this section fairly carefully. It builds on the structure
ofR built up in Chapter 2 and uses this structure in an essential way. It is essential
to understand this if one is to understand the more general ideas of continuity that
will arise in Chapter ??. This section also provides an opportunity to improve one’s
facility with the ε − δ formalism. •

3.1.1 Definition and properties of continuous functions

In this section we will deal with functions defined on an interval I ⊆ R. This
interval might be open, closed, or neither, and bounded, unbounded, or neither. In
this section, we shall reserve the letter I to denote such a general interval. It will
also be convenient to say that a subset A ⊆ I is open if A = U ∩ I for an open subset
U of R.1 For example, if I = [0, 1], then the subset [0, 1

2 ) is an open subset of I, but
not an open subset of R. We will be careful to explicitly say that a subset is open in
I if this is what we mean. There is a chance for confusion here, so the reader is advised to
be alert!

Let us give the standard definition of continuity.

3.1.1 Definition (Continuous function) Let I ⊆ R be an interval. A map f : I→ R is:
(i) continuous at x0 ∈ I if, for every ε ∈ R>0, there exists δ ∈ R>0 such that
| f (x) − f (x0)| < ε whenever x ∈ I satisfies |x − x0| < δ;

(ii) continuous if it is continuous at each x0 ∈ I;
(iii) discontinuous at x0 ∈ I if it is not continuous at x0;
(iv) discontinuous if it is not continuous. •

The idea behind the definition of continuity is this: one can make the values
of a continuous function as close as desired by making the points at which the
function is evaluated sufficiently close. Readers not familiar with the definition
should be prepared to spend some time embracing it. An often encountered
oversimplification of continuity is illustrated in Figure 3.1. The idea is supposed
to be that the function whose graph is shown on the left is continuous because its
graph has no “gaps,” whereas the function on the right is discontinuous because
its graph does have a “gap.” As we shall see in Example 3.1.2–4 below, it is

1This is entirely related to the notion of relative topology which we will discuss in Section ?? for
sets of multiple real variables and in Definition ?? within the general context of topological spaces.
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x

f(x)

x

f(x)

Figure 3.1 Probably not always the best way to envision conti-
nuity versus discontinuity

possible for a function continuous at a point to have a graph with lots of “gaps” in
a neighbourhood of that point. Thus the “graph gap” characterisation of continuity
is a little misleading.

Let us give some examples of functions that are continuous or not. More
examples of discontinuous functions are given in Example 3.1.9 below. We suppose
the reader to be familiar with the usual collection of “standard functions,” at least
for the moment. We shall consider some such functions in detail in Section 3.6.

3.1.2 Examples (Continuous and discontinuous functions)
1. For α ∈ R, define f : R→ R by f (x) = α. Since | f (x) − f (x0)| = 0 for all x, x0 ∈ R,

it follows immediately that f is continuous.
2. Define f : R→ R by f (x) = x. For x0 ∈ R and ε ∈ R>0 take δ = ε. It then follows

that if |x − x0| < δ then | f (x) − f (x0)| < ε, giving continuity of f .
3. Define f : R→ R by

f (x) =

x sin 1
x , x , 0,

0, x = 0.

We claim that f is continuous. We first note that the functions f1, f2 : R → R
defined by

f1(x) = x, f2(x) = sin x

are continuous. Indeed, f1 is continuous from part 2 and in Section 3.6 we will
prove that f2 is continuous. The function f3 : R \ {0} → R defined by f3(x) = 1

x
is continuous on any interval not containing 0 by Proposition 3.1.15 below. It
then follows from Propositions 3.1.15 and 3.1.16 below that f is continuous at
x0, provided that x0 , 0. To show continuity at x = 0, let ε ∈ R>0 and take δ = ε.
Then, provided that |x| < δ,

| f (x) − f (0)| =
∣∣∣x sin 1

x

∣∣∣ ≤ |x| < ε,
using the fact that image(sin) ⊆ [−1, 1]. This shows that f is continuous at 0,
and so is continuous.
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4. Define f : R→ R by

f (x) =

x, x ∈ Q,
0, otherwise.

We claim that f is continuous at x0 = 0 and discontinuous everywhere else.
To see that f is continuous at x0 = 0, let ε ∈ R>0 and choose δ = ε. Then, for
|x − x0| < δ we have either f (x) = x or f (x) = 0. In either case, | f (x) − f (x0)| < ε,
showing that f is indeed continuous at x0 = 0. Note that this is a function whose
continuity at x0 = 0 is not subject to an interpretation like that of Figure 3.1 since
the graph of f has an uncountable number of “gaps” near 0.
Next we show that f is discontinuous at x0 for x0 , 0. We have two possibilities.

(a) x0 ∈ Q: Let ε < 1
2 |x0|. For any δ ∈ R>0 the set B(δ, x0) will contain points

x ∈ R for which f (x) = 0. Thus for any δ ∈ R>0 the set B(δ, x0) will contain
points x such that | f (x)− f (x0)| = |x0| > ε. This shows that f is discontinuous
at nonzero rational numbers.

(b) x0 ∈ R \Q: Let ε = 1
2 |x0|. For any δ ∈ R>0 we claim that the set B(δ, x0) will

contain points x ∈ R for which | f (x)| > ε (why?). It then follows that for
any δ ∈ R>0 the set B(δ, x0) will contain points x such that | f (x) − f (x0)| =
| f (x)| > ε, so showing that f is discontinuous at all irrational numbers.

5. Let I = (0,∞) and on I define the function f : I→ R by f (x) = 1
x . It follows from

Proposition 3.1.15 below that f is continuous on I.
6. Next take I = [0,∞) and define f : I→ R by

f (x) =

 1
x , x ∈ R>0,

0, x = 0.

In the previous example we saw that f is continuous at all points in (0,∞).
However, at x = 0 the function is discontinuous, as is easily verified. •

The following alternative characterisations of continuity are sometimes useful.
The first of these, part (ii) in the theorem, will also be helpful in motivating the
general definition of continuity given for topological spaces in Section ??. The
reader will wish to recall from Notation 2.3.28 the notation limx→Ix0 f (x) for taking
limits in intervals.

3.1.3 Theorem (Alternative characterisations of continuity) For a function f : I → R
defined on an interval I and for x0 ∈ I, the following statements are equivalent:

(i) f is continuous at x0;
(ii) for every neighbourhood V of f(x0) there exists a neighbourhood U of x0 in I such

that f(U) ⊆ V;
(iii) limx→Ix0 f(x) = f(x0).

Proof (i) =⇒ (ii) Let V ⊆ R be a neighbourhood of f (x0). Let ε ∈ R>0 be defined such
that B(ε, f (x0)) ⊆ V, this being possible since V is open. Since f is continuous at x0,
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there exists δ ∈ R>0 such that, if x ∈ B(δ, x0) ∩ I, then we have f (x) ∈ B(ε, f (x0)). This
shows that, around the point x0, we can find an open set in I whose image lies in V.

(ii) =⇒ (iii) Let (x j) j∈Z>0 be a sequence in I converging to x0 and let ε ∈ R>0. By
hypothesis there exists a neighbourhood U of x0 in I such that f (U) ⊆ B(ε, f (x0)). Thus
there exists δ ∈ R>0 such that f (B(δ, x0) ∩ I) ⊆ B(ε, f (x0)) since U is open in I. Now
choose N ∈ Z>0 sufficiently large that |x j − x0| < δ for j ≥ N. It then follows that
| f (x j) − f (x0)| < ε for j ≥ N, so giving convergence of ( f (x j)) j∈Z>0 to f (x0), as desired,
after an application of Proposition 2.3.29.

(iii) =⇒ (i) Let ε ∈ R>0. Then, by definition of limx→Ix0 f (x) = f (x0), there exists
δ ∈ R>0 such that, for x ∈ B(δ, x0) ∩ I, | f (x) − f (x0)| < ε, which is exactly the definition
of continuity of f at x0. �

3.1.4 Corollary For an interval I ⊆ R, a function f : I→ R is continuous if and only if f−1(V)
is open in I for every open subset V of R.

Proof Suppose that f is continuous. If V∩ image( f ) = ∅ then clearly f−1(V) = ∅which
is open. So assume that V ∩ image( f ) , ∅ and let x ∈ f−1(V). Since f is continuous at x
and since V is a neighbourhood of f (x), there exists a neighbourhood U of x such that
f (U) ⊆ V. Thus U ⊆ f−1(V), showing that f−1(V) is open.

Now suppose that f−1(V) is open for each open set V and let x ∈ R. If V is a
neighbourhood of f (x) then f−1(V) is open. Then there exists a neighbourhood U of
x such that U ⊆ f−1(V). By Proposition 1.3.5 we have f (U) ⊆ f ( f−1(V)) ⊆ V, thus
showing that f is continuous. �

The reader can explore these alternative representations of continuity in Exer-
cise 3.1.9.

A stronger notion of continuity is sometimes useful. As well, the following
definition introduces for the first time the important notion of “uniform.”

3.1.5 Definition (Uniform continuity) Let I ⊆ R be an interval. A map f : I → R is
uniformly continuous if, for every ε ∈ R>0, there exists δ ∈ R>0 such that | f (x1) −
f (x2)| < ε whenever x1, x2 ∈ I satisfy |x1 − x2| < δ. •

3.1.6 Remark (On the idea of “uniformly”) In the preceding definition we have en-
countered for the first time the idea of a property holding “uniformly.” This is
an important idea that comes up often in mathematics. Moreover, it is an idea
that is often useful in applications of mathematics, since the absence of a property
holding “uniformly” can have undesirable consequences. Therefore, we shall say
some things about this here.

In fact, the comparison of continuity versus uniform continuity is a good one
for making clear the character of something holding “uniformly.” Let us compare
the definitions.
1. One defines continuity of a function at a point x0 by asking that, for each ε ∈ R>0,

one can find δ ∈ R>0 such that if x is within δ of x0, then f (x) is within ε of f (x0).
Note that δwill generally depend on ε, and most importantly for our discussion
here, on x0. Often authors explicitly write δ(ε, x0) to denote this dependence of
δ on both ε and x0.
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2. One defines uniform continuity of a function on the interval I by asking that,
for each ε ∈ R>0, one can find δ ∈ R>0 such that if x1 and x2 are within δ of one
another, then f (x1) and f (x2) are within ε of one another. Here, the number δ
depends only on ε. Again, to reflect this, some authors explicitly write δ(ε), or
state explicitly that δ is independent of x.

The idea of “uniform” then is that a property, in this case the existence of δ ∈ R>0

with a certain property, holds for the entire set I, and not just for a single point. •

Let us give an example to show that uniformly continuous is not the same as
continuous.

3.1.7 Example (Uniform continuity versus continuity) Let us give an example of a
function that is continuous, but not uniformly continuous. Define f : R → R by
f (x) = x2. We first show that f is continuous at each point x0 ∈ R. Let ε ∈ R>0

and choose δ such that 2|x0|δ + δ2 < ε (why is this possible?). Then, provided that
|x − x0| < δ, we have

| f (x) − f (x0)| = |x2
− x2

0| = |x − x0||x + x0|

≤ |x − x0|(|x| + |x0|) ≤ |x − x0|(2|x0| + |x − x0|)
≤ δ(2|x0| + δ) < ε.

Thus f is continuous.
Now let us show that f is not uniformly continuous. We will show that there

exists ε ∈ R>0 such that there is no δ ∈ R>0 for which |x − x0| < δ ensures that
| f (x) − f (x0)| < ε for all x0. Let us take ε = 1 and let δ ∈ R>0. Then define x0 ∈ R

such that δ
2

∣∣∣2x0 + δ
2

∣∣∣ > 1 (why is this possible?). We then note that x = x0 + δ
2 satisfies

|x − x0| < δ, but that

| f (x) − f (x0)| = |x2
− x2

0| = |x − x0||x + x0| =
δ
2

∣∣∣2x0 + δ
2

∣∣∣ > 1 = ε.

This shows that f is not uniformly continuous. •

3.1.2 Discontinuous functions2

It is often useful to be specific about the nature of a discontinuity of a function
that is not continuous. The following definition gives names to all possibilities.
The reader may wish to recall from Section 2.3.7 the discussion concerning taking
limits using an index set that is a subset of R.

3.1.8 Definition (Types of discontinuity) Let I ⊆ R be an interval and suppose that
f : I→ R is discontinuous at x0 ∈ I. The point x0 is:

(i) a removable discontinuity if limx→Ix0 f (x) exists;
(ii) a discontinuity of the first kind, or a jump discontinuity, if the limits

limx↓x0 f (x) and limx↑x0 f (x) exist;

2This section is rather specialised and technical and so can be omitted until needed. However,
the material is needed at certain points in the text.
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(iii) a discontinuity of the second kind, or an essential discontinuity, if at least
one of the limits limx↓x0 f (x) and limx↑x0 f (x) does not exist.

The set of all discontinuities of f is denoted by D f . •

In Figure 3.2 we depict the various sorts of discontinuity. We can also illustrate

x

f(x)

x

f(x)

x

f(x)

x

f(x)

Figure 3.2 A removable discontinuity (top left), a jump disconti-
nuity (top right), and two essential discontinuities (bottom)

these with explicit examples.

3.1.9 Examples (Types of discontinuities)
1. Let I = [0, 1] and let f : I→ R be defined by

f (x) =

x, x ∈ (0, 1],
1, x = 0.

It is clear that f is continuous for all x ∈ (0, 1], and is discontinuous at x = 0.
However, since we have limx→I0 f (x) = 0 (note that the requirement that this
limit be taken in I amounts to the fact that the limit is given by limx↓0 f (x) = 0),
it follows that the discontinuity is removable.
Note that one might be tempted to also say that the discontinuity is a jump
discontinuity since the limit limx↓0 f (x) exists and since the limit limx↑0 f (x)
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cannot be defined here since 0 is a left endpoint for I. However, we do require
that both limits exist at a jump discontinuity, which has as a consequence the
fact that jump discontinuities can only occur at interior points of an interval.

2. Let I = [−1, 1] and define f : I → R by f (x) = sign(x). We may easily see that f
is continuous at x ∈ [−1, 1] \ {0}, and is discontinuous at x = 0. Then, since we
have limx↓0 f (x) = 1 and limx↑0 f (x) = −1, it follows that the discontinuity at 0 is
a jump discontinuity.

3. Let I = [−1, 1] and define f : I→ R by

f (x) =

sin 1
x , x , 0,

0, x = 0.

Then, by Proposition 3.1.15 (and accepting continuity of sin), f is continuous at
x ∈ [−1, 1]\{0}. At x = 0 we claim that we have an essential discontinuity. To see
this we note that, for any ε ∈ R>0, the function f restricted to [0, ε) and (−ε, 0]
takes all possible values in set [−1, 1]. This is easily seen to preclude existence
of the limits limx↓0 f (x) and limx↑0 f (x).

4. Let I = [−1, 1] and define f : I→ R by

f (x) =

1
x , x ∈ (0, 1],
0, x ∈ [−1, 0].

Then f is continuous at x ∈ [−1, 1] \ {0} by Proposition 3.1.15. At x = 0 we claim
that f has an essential discontinuity. Indeed, we have limx↓ f (x) = ∞, which
precludes f having a removable or jump discontinuity at x = 0. •

The following definition gives a useful quantitative means of measuring the
discontinuity of a function.

3.1.10 Definition (Oscillation) Let I ⊆ R be an interval and let f : I → R be a function.
The oscillation of f is the function ω f : I→ R defined by

ω f (x) = inf{sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} | δ ∈ R>0}. •

Note that the definition makes sense since the function

δ 7→ sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I}

is monotonically increasing (see Definition 3.1.27 for a definition of monotonically
increasing in this context). In particular, if f is bounded (see Definition 3.1.20
below) then ω f is also bounded. The following result indicates in what way ω f

measures the continuity of f .
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3.1.11 Proposition (Oscillation measures discontinuity) For an interval I ⊆ R and a
function f : I→ R, f is continuous at x ∈ I if and only if ωf(x) = 0.

Proof Suppose that f is continuous at x and let ε ∈ R>0. Choose δ ∈ R>0 such that if
y ∈ B(δ, x) ∩ I then | f (y) − f (x)| < ε

2 . Then, for x1, x2 ∈ B(δ, x) we have

| f (x1) − f (x2)| ≤ | f (x1) − f (x)| + | f (x) − f (x2)| < ε.

Therefore,
sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} < ε.

Since ε is arbitrary this gives

inf{sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} | δ ∈ R>0} = 0,

meaning that ω f (x) = 0.
Now suppose that ω f (x) = 0. For ε ∈ R>0 let δ ∈ R>0 be chosen such that

sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I} < ε.

In particular, | f (y) − f (x)| < ε for all y ∈ B(δ, x) ∩ I, giving continuity of f at x. �

Let us consider a simple example.

3.1.12 Example (Oscillation for a discontinuous function) We let I = [−1, 1] and define
f : I→ R by f (x) = sign(x). It is then easy to see that

ω f (x) =

0, x , 0,
2, x = 0. •

We close this section with a technical property of the oscillation of a function.
This property will be useful during the course of some proofs in the text.

3.1.13 Proposition (Closed preimages of the oscillation of a function) Let I ⊆ R be an
interval and let f : I→ R be a function. Then, for every α ∈ R≥0, the set

Aα = {x ∈ I | ωf(x) ≥ α}

is closed in I.
Proof The result where α = 0 is clear, so we assume that α ∈ R>0. For δ ∈ R>0 define

ω f (x, δ) = sup{| f (x1) − f (x2)| | x1, x2 ∈ B(δ, x) ∩ I}

so that ω f (x) = limδ→0ω f (x, δ). Let (x j) j∈Z>0 be a sequence in Aα converging to x ∈ R
and let (ε j) j∈Z>0 be a sequence in (0, α) converging to zero. Let j ∈ Z>0. We claim that
there exists points y j, z j ∈ B(ε j, x j)∩I such that | f (y j)− f (z j)| ≥ α−ε j. Suppose otherwise
so that for every y, z ∈ B(ε j, x j) ∩ I we have | f (y) − f (z)| < α − ε j. It then follows that
limδ→0ω f (x j, δ) ≤ α− ε j < α, contradicting the fact that x j ∈ Aα. We claim that (y j) j∈Z>0

and (z j) j∈Z>0 converge to x. Indeed, let ε ∈ R>0 and choose N1 ∈ Z>0 sufficiently large
that ε j <

ε
2 for j ≥ N1 and choose N2 ∈ Z>0 such that |x j − x| < ε

2 for j ≥ N2. Then, for
j ≥ max{N1,N2}we have

|y j − x| ≤ |y j − x j| + |x j − x| < ε.



145 3 Functions of a real variable 2016/11/26

Thus (y j) j∈Z>0 converges to x, and the same argument, and therefore the same conclu-
sion, also applies to (z j) j∈Z>0 .

Thus we have sequences of points (y j) j∈Z>0 and (z j) j∈Z>0 in I converging to x and
a sequence (ε j) j∈Z>0 in (0, α) converging to zero for which | f (y j) − f (z j)| ≥ α − ε j. We
claim that this implies that ω f (x) ≥ α. Indeed, suppose that ω f (x) < α. There exists
N ∈ Z>0 such that α − ε j > α − ω f (x) for every j ≥ N. Therefore,

| f (y j) − f (z j)| ≥ α − ε j > α − ω f (x)

for every j ≥ N. This contradicts the definition of ω f (x) since the sequences (y j) j∈Z>0

and (z j) j∈Z>0 converge to x.
Now we claim that the sequence (x j) j∈Z>0 converges to x. Let ε ∈ R>0 and let

N1 ∈ Z>0 be large enough that |x − y j| <
ε
2 for j ≥ N1 and let N2 ∈ Z>0 be large enough

that ε j <
ε
2 for j ≥ N2. Then, for j ≥ max{N1,N2}we have

|x − x j| ≤ |x − y j| + |y j − x j| < ε,

as desired.
This shows that every sequence in Aα converges to a point in Aα. It follows from

Exercise 2.5.2 that Aα is closed. �

The following corollary is somewhat remarkable, in that it shows that the set of
discontinuities of a function cannot be arbitrary.

3.1.14 Corollary (Discontinuities are the countable union of closed sets) Let I ⊆ R be
an interval and let f : I→ R be a function. Then the set

Df = {x ∈ I | f is not continuous at x}

is the countable union of closed sets.
Proof This follows immediately from Proposition 3.1.13 after we note that

D f = ∪k∈Z>0{x ∈ I | ω f (x) ≥ 1
k }. �

missing stuff

3.1.3 Continuity and operations on functions

Let us consider how continuity behaves relative to simple operations on func-
tions. To do so, we first note that, given an interval I and two functions f , g : I→ R,
one can define two functions f + g, f g : I→ R by

( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x)g(x),

respectively. Moreover, if g(x) , 0 for all x ∈ I, then we define( f
g

)
(x) =

f (x)
g(x)

.

Thus one can add and multiplyR-valued functions using the operations of addition
and multiplication in R.



2016/11/26 3.1 Continuous R-valued functions on R 146

3.1.15 Proposition (Continuity, and addition and multiplication) For an interval I ⊆ R,
if f,g: I → R are continuous at x0 ∈ I, then both f + g and fg are continuous at x0. If
additionally g(x) , 0 for all x ∈ I, then f

g is continuous at x0.
Proof To show that f + g and f g are continuous at x0 if f and g are continuous at
x0, let (x j) j∈Z>0 be a sequence in I converging to x0. Then, by Theorem 3.1.3 the se-
quences ( f (x j)) j∈Z>0 and (g(x j)) j∈Z>0 converge to f (x0) and g(x0), respectively. Then,
by Proposition 2.3.23, the sequences ( f (x j) + g(x j)) j∈Z>0 and ( f (x j)g(x j)) j∈Z>0 converge
to f (x0) + g(x0) and f (x0)g(x0), respectively. Then lim j→∞( f + g)(x j) = ( f + g)(x0) and
lim j→∞( f g)(x j) = ( f g)(x0), and the result follows by Proposition 2.3.29 and Theo-
rem 3.1.3.

Now suppose that g(x) , 0 for every x ∈ I. Then there exists ε ∈ R>0 such that
|g(x0)| > 2ε. By Theorem 3.1.3 take δ ∈ R>0 such that g(B(δ, x0)) ⊆ B(ε, g(x0)). Thus g is
nonzero on the ball B(δ, x0). Now let (x j) j∈Z>0 be a sequence in B(δ, x0) converging to x0.
Then, as above, the sequences ( f (x j)) j∈Z>0 and (g(x j)) j∈Z>0 converge to f (x0) and g(x0),
respectively. We can now employ Proposition 2.3.23 to conclude that the sequence( f (x j)

g(x j)

)
j∈Z>0

converges to f (x0)
g(x0) , and the last part of the result follows by Proposition 2.3.29

and Theorem 3.1.3. �

3.1.16 Proposition (Continuity and composition) Let I, J ⊆ R be intervals and let f : I→ J
and f : J → R be continuous at x0 ∈ I and f(x0) ∈ J, respectively. Then g ◦ f : I → R is
continuous at x0.

Proof Let W be a neighbourhood of g ◦ f (x0). Since g is continuous at f (x0) there exists
a neighbourhood V of f (x0) such that g(V) ⊆W. Since f is continuous at x0 there exists
a neighbourhood U of x0 such that f (U) ⊆ V. Clearly g ◦ f (U) ⊆ W, and the result
follows from Theorem 3.1.3. �

3.1.17 Proposition (Continuity and restriction) If I, J ⊆ R are intervals for which J ⊆ I, and
if f : I→ R is continuous at x0 ∈ J ⊆ I, then f|J is continuous at x0.

Proof This follows immediately from Theorem 3.1.3, also using Proposition 1.3.5,
after one notes that open subsets of J are of the form U ∩ I where U is an open subset
of I. �

Note that none of the proofs of the preceding results use the definition of
continuity, but actually use the alternative characterisations of Theorem 3.1.3.
Thus these alternative characterisations, while less intuitive initially (particularly
the one involving open sets), they are in fact quite useful.

Let us finally consider the behaviour of continuity with respect to the operations
of selection of maximums and minimums.

3.1.18 Proposition (Continuity and min and max) If I ⊆ R is an interval and if f,g: I→ R
are continuous functions, then the functions

I 3 x 7→ min{f(x),g(x)} ∈ R, I 3 x 7→ max{f(x),g(x)} ∈ R

are continuous.
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Proof Let x0 ∈ I and let ε ∈ R>0. Let us first assume that f (x0) > g(x0). That is to say,
assume that ( f − g)(x0) ∈ R>0. Continuity of f and g ensures that there exists δ1 ∈ R>0
such that if x ∈ B(δ1, x0) ∩ I then ( f − g)(x) ∈ R>0. That is, if x ∈ B(δ1, x0) ∩ I then

min{ f (x), g(x)} = g(x), max{ f (x), g(x)} = f (x).

Continuity of f ensures that there exists δ2 ∈ R>0 such that if x ∈ B(δ2, x0) ∩ I then
| f (x) − f (x0)| < ε. Similarly, continuity of f ensures that there exists δ3 ∈ R>0 such that
if x ∈ B(δ3, x0) ∩ I then |g(x) − g(x0)| < ε. Let δ4 = min{δ1, δ2}. If x ∈ B(δ4, x0) ∩ I then

|min{ f (x), g(x)} −min{ f (x0), g(x0)}| = |g(x) − g(x0)| < ε

and
|max{ f (x), g(x)} −max{ f (x0), g(x0)}| = | f (x) − f (x0)| < ε.

This gives continuity of the two functions in this case. Similarly, swapping the rôle
of f and g, if f (x0) < g(x0) one can arrive at the same conclusion. Thus we need only
consider the case when f (x0) = g(x0). In this case, by continuity of f and g, choose
δ ∈ R>0 such that | f (x) − f (x0)| < ε and |g(x) − g(x0)| < ε for x ∈ B(δ, x0) ∩ I. Then let
x ∈ B(δ, x0) ∩ I. If f (x) ≥ g(x) then we have

|min{ f (x), g(x)} −min{ f (x0), g(x0)}| = |g(x) − g(x0)| < ε

and
|max{ f (x), g(x)} −max{ f (x0), g(x0)}| = | f (x) − f (x0)| < ε.

This gives the result in this case, and one similarly gets the result when f (x) < g(x). �

3.1.4 Continuity, and compactness and connectedness

In this section we will consider some of the relationships that exist between
continuity, and compactness and connectedness. We see here for the first time
some of the benefits that can be drawn from the notion of continuity. Moreover, if
one studies the proofs of the results in this section, one can see that we use the actual
definition of compactness (rather than the simpler alternative characterisation of
compact sets as being closed and bounded) to great advantage.

The first result is a simple and occasionally useful one.

3.1.19 Proposition (The continuous image of a compact set is compact) If I ⊆ R is a
compact interval and if f : I→ R is continuous, then image(f) is compact.

Proof Let (Ua)a∈A be an open cover of image( f ). Then ( f−1(Ua))a∈A is an open cover
of I, and so there exists a finite subset (a1, . . . , ak) ⊆ A such that ∪k

j=1 f−1(Uak) = I. It

is then clear that ( f ( f−1(Ua1)), . . . , f ( f−1(Uak))) covers image( f ). Moreover, by Propo-
sition 1.3.5, f ( f−1(Ua j)) ⊆ Ua j , j ∈ {1, . . . , k}. Thus (Ua1 , . . . ,Uak) is a finite subcover of
(Ua)a∈A. �

A useful feature that a function might possess is that of having bounded values.

3.1.20 Definition (Bounded function) For an interval I, a function f : I→ R is:

(i) bounded if there exists M ∈ R>0 such that image( f ) ⊆ B(M, 0);
(ii) locally bounded if f |J is bounded for every compact interval J ⊆ I;
(iii) unbounded if it is not bounded. •
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3.1.21 Remark (On “locally”) This is our first encounter with the qualifier “locally” as-
signed to a property, in this case, of a function. This concept will appear frequently,
as for example in this chapter with the notion of “locally bounded variation” (Def-
inition 3.3.6) and “locally absolutely continuous” (Definition 5.9.23). The idea in
all cases is the same; that a property holds “locally” if it holds on every compact
subset. •

For continuous functions it is sometimes possible to immediately assert bound-
edness simply from the property of the domain.

3.1.22 Theorem (Continuous functions on compact intervals are bounded) If I =
[a, b] is a compact interval, then a continuous function f : I→ R is bounded.

Proof Let x ∈ I. As f is continuous, there exists δ ∈ R>0 so that | f (y) − f (x)| < 1
provided that |y − x| < δ. In particular, if x ∈ I, there is an open interval Ix in I with
x ∈ Ix such that | f (y)| ≤ | f (x)| + 1 for all x ∈ Ix. Thus f is bounded on Ix. This can be
done for each x ∈ I, so defining a family of open sets (Ix)x∈I. Clearly I ⊆ ∪x∈IIx, and
so, by Theorem 2.5.27, there exists a finite collection of points x1, . . . , xk ∈ I such that
I ⊆ ∪k

j=1Ix j . Obviously for any x ∈ I,

| f (x)| ≤ 1 + max{ f (x1), . . . , f (xk)},

thus showing that f is bounded. �

In Exercise 3.1.7 the reader can explore cases where the theorem does not hold.
Related to the preceding result is the following.

3.1.23 Theorem (Continuous functions on compact intervals achieve their extreme
values) If I = [a, b] is a compact interval and if f : [a, b] → R is continuous, then there
exist points xmin, xmax ∈ [a, b] such that

f(xmin) = inf{f(x) | x ∈ [a, b]}, f(xmax) = sup{f(x) | x ∈ [a, b]}.

Proof It suffices to show that f achieves its maximum on I since if f achieves its
maximum, then − f will achieve its minimum. So let M = sup{ f (x) | x ∈ I}, and
suppose that there is no point xmax ∈ I for which f (xmax) = M. Then f (x) < M for each
x ∈ I. For a given x ∈ I we have

f (x) = 1
2 ( f (x) + f (x)) < 1

2 ( f (x) + M).

Continuity of f ensures that there is an open interval Ix containing x such that, for each
y ∈ Ix ∩ I, f (y) < 1

2 ( f (x) + M). Since I ⊆ ∪x∈IIx, by the Heine–Borel theorem, there exists
a finite number of points x1, . . . , xk such that I ⊆ ∪k

j=1Ix j . Let m = max{ f (x1), . . . , f (xk)}
so that, for each y ∈ Ix j , and for each j ∈ {1, . . . , k}, we have

f (y) < 1
2 ( f (x j) + M) < 1

2 (m + M),

which shows that 1
2 (m+M) is an upper bound for f . However, since f attains the value

m on I, we have m < M and so 1
2 (m + M) < M, contradicting the fact that M is the least

upper bound. Thus our assumption that f cannot attain the value M on I is false. �
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The theorem tells us that a continuous function on a bounded interval actually
attains its maximum and minimum value on the interval. You should understand
that this is not the case if I is neither closed nor bounded (see Exercise 3.1.8).

Our next result gives our first connection between the concepts of uniformity
and compactness. This is something of a theme in analysis where continuity is
involved. A good place to begin to understand the relationship between compact-
ness and uniformity is the proof of the following theorem, since it is one of the
simplest instances of the phenomenon.

3.1.24 Theorem (Heine–Cantor Theorem) Let I = [a, b] be a compact interval. If f : I → R
is continuous, then it is uniformly continuous.

Proof Let x ∈ [a, b] and let ε ∈ R>0. Since f is continuous, then there exists δx ∈

R>0 such that, if |y − x| < δx, then | f (y) − f (x)| < ε
2 . Now define an open interval

Ix = (x − 1
2δx, x + 1

2δx). Note that [a, b] ⊆ ∪x∈[a,b]Ix, so that the open sets (Ix)x∈[a,b]
cover [a, b]. By definition of compactness, there then exists a finite number of open
sets from (Ix)x∈[a,b] that cover [a, b]. Denote this finite family by (Ix1 , . . . , Ixk) for some
x1, . . . , xk ∈ [a, b]. Take δ = 1

2 min{δx1 , . . . , δxk}. Now let x, y ∈ [a, b] satisfy |x − y| < δ.
Then there exists j ∈ {1, . . . , k} such that x ∈ Ix j since the sets Ix1 , . . . , Ixk cover [a, b]. We
also have

|y − x j| = |y − x + x − x j| ≤ |y − x| + |x − x j| <
1
2δx j + 1

2δx j = δx j ,

using the triangle inequality. Therefore,

| f (y) − f (x)| = | f (y) − f (x j) + f (x j) − f (x)|
≤ | f (y) − f (x j)| + | f (x j) − f (x)| < ε

2 + ε
2 = ε,

again using the triangle inequality. Since this holds for any x ∈ [a, b], it follows that f
is uniformly continuous. �

Next we give a standard result from calculus that is frequently useful.

3.1.25 Theorem (Intermediate Value Theorem) Let I be an interval and let f : I → R be
continuous. If x1, x2 ∈ I then, for any y ∈ [f(x1), f(x2)], there exists x ∈ I such that
f(x) = y.

Proof Since otherwise the result is obviously true, we may suppose that y ∈
( f (x1), f (x2)). Also, since we may otherwise replace f with − f , we may without loss
of generality suppose that x1 < x2. Now define S = {x ∈ [x1, x2] | f (x) ≤ y} and let
x0 = sup S. We claim that f (x0) = y. Suppose not. Then first consider the case where
f (x0) > y, and define ε = f (x0)− y. Then there exists δ ∈ R>0 such that | f (x)− f (x0)| < ε
for |x − x0| < δ. In particular, f (x0 − δ) > y, contradicting the fact that x0 = sup S.
Next suppose that f (x0) < y. Let ε = y − f (x0) so that there exists δ ∈ R>0 such that
| f (x)− f (x0)| < ε for |x− x0| < δ. In particular, f (x0 + δ) < y, contradicting again the fact
that x0 = sup S. �

In Figure 3.3 we give the idea of the proof of the Intermediate Value Theorem.
There is also a useful relationship between continuity and connected sets.
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f(x2)

y
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Figure 3.3 Illustration of the Intermediate Value Theorem

3.1.26 Proposition (The continuous image of a connected set is connected) If I ⊆ R
is an interval, if S ⊆ I is connected, and if f : I→ R is continuous, then f(S) is connected.

Proof Suppose that f (S) is not connected. Then there exist nonempty separated
sets A and B such that f (S) = A ∪ B. Let C = S ∩ f−1(A) and D = S ∩ f−1(B). By
Propositions 1.1.4 and 1.3.5 we have

C ∪D = (S ∩ f−1(A)) ∪ (S ∩ f−1(B))

= S ∩ ( f−1(A) ∪ f−1(B)) = S ∩ f−1(A ∪ B) = S.

By Propositions 2.5.20 and 1.3.5, and since f−1(cl(A)) is closed, we have

cl(C) = cl( f−1(A)) ⊆ cl( f−1(cl(A)) = f−1(cl(A)).

We also clearly have D ⊆ f−1(B). Therefore, by Proposition 1.3.5,

cl(C) ∩D ⊆ f−1(cl(A)) ∩ f−1(B) = f−1(cl(A) ∩ B) = ∅.

We also similarly have C∩ cl(D) = ∅. Thus S is not connected, which gives the result.�

3.1.5 Monotonic functions and continuity

In this section we consider a special class of functions, namely those that are
“increasing” or “decreasing.”

3.1.27 Definition (Monotonic function) For I ⊆ R an interval, a function f : I→ R is:
(i) monotonically increasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) ≤ f (x2);
(ii) strictly monotonically increasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) <

f (x2);
(iii) monotonically decreasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) ≥ f (x2);
(iv) strictly monotonically decreasing if, for every x1, x2 ∈ I with x1 < x2, f (x1) >

f (x2);
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(v) constant if there exists α ∈ R such that f (x) = α for every x ∈ I. •

Let us see how monotonicity can be used to make some implications about the
continuity of a function. In Theorem 3.2.26 below we will explore some further
properties of monotonic functions.

3.1.28 Theorem (Characterisation of monotonic functions I) If I ⊆ R is an interval and if
f : I→ R is either monotonically increasing or monotonically decreasing, then the following
statements hold:

(i) the limits limx↓x0 f(x) and limx↑x0 f(x) exist whenever they make sense as limits in I;
(ii) the set on which f is discontinuous is countable.

Proof We can assume without loss of generality (why?), we assume that I = [a, b] and
that f is monotonically increasing.

(i) First let us consider limits from the left. Thus let x0 > a and consider limx↑x0 f (x).
For any increasing sequence (x j) j∈Z>0 ⊆ [a, x0) converging to x0 the sequence ( f (x j)) j∈Z>0

is bounded and increasing. Therefore it has a limit by Theorem 2.3.8. In a like manner,
one shows that right limits also exist.

(ii) Define
j(x0) = lim

x↓x0
f (x) − lim

x↑x0
f (x)

as the jump at x0. This is nonzero if and only if x0 is a point of discontinuity of f . Let
A f be the set of points of discontinuity of f . Since f is monotonically increasing and
defined on a compact interval, it is bounded and we have∑

x∈A f

j(x) ≤ f (b) − f (a). (3.1)

Now let n ∈ Z>0 and denote

An =
{
x ∈ [a, b]

∣∣∣ j(x) > 1
n

}
.

The set An must be finite by (3.1). We also have

A f =
⋃

n∈Z>0

An,

meaning that A f is a countable union of finite sets. Thus A f is itself countable. �

Sometimes the following “local” characterisation of monotonicity is useful.

3.1.29 Proposition (Monotonicity is “local”) A function f : I→ R defined on an interval I is
(i) monotonically increasing if and only if, for every x ∈ I, there exists a neighbourhood

U of x such that f|U ∩ I is monotonically increasing;
(ii) strictly monotonically increasing if and only if, for every x ∈ I, there exists a

neighbourhood U of x such that f|U ∩ I is strictly monotonically increasing;
(iii) monotonically decreasing if and only if, for every x ∈ I, there exists a neighbourhood

U of x such that f|U ∩ I is monotonically decreasing;
(iv) strictly monotonically decreasing if and only if, for every x ∈ I, there exists a

neighbourhood U of x such that f|U ∩ I is strictly monotonically decreasing.



2016/11/26 3.1 Continuous R-valued functions on R 152

Proof We shall only prove the first assertion as the other follow from an identical
sort of argument. Also, the “only if” assertion is clear, so we need only prove the “if”
assertion.

Let x1, x2 ∈ I with x1 < x2. By hypothesis, for x ∈ [x1, x2], there exists εx ∈ R>0
such that, if we define Ux = (x − ε, x + ε), then f |Ux ∩ I is monotonically increasing.
Note that (Ux)x∈[x1,x2] covers [x1, x2] and so, by the Heine–Borel Theorem, there exists
ξ1, . . . , ξk ∈ [x1, x2] such that [x1, x2] ⊆ ∪k

j=1Uξ j . We can assume that ξ1, . . . , ξk are
ordered so that x1 ∈ Uξ1 , that Uξ j+1 ∩ Uξ j , ∅, and such that x2 ∈ Uξk . We have that
f |Uξ1 ∩ I is monotonically increasing. Since f |Uξ2 ∩ I is monotonically increasing and
since Uξ1 ∩Uξ2 , ∅, we deduce that f |(Uξ1 ∪Uξ2) ∩ I is monotonically increasing. We
can continue this process to show that

f |(Uξ1 ∪ · · · ∪Uξk) ∩ I

is monotonically increasing, which is the result. �

In thinking about the graph of a continuous monotonically increasing function,
it will not be surprising that there might be a relationship between monotonicity and
invertibility. In the next result we explore the precise nature of this relationship.

3.1.30 Theorem (Strict monotonicity and continuity implies invertibility) Let I ⊆ R be
an interval, let f : I→ R be continuous and strictly monotonically increasing (resp. strictly
monotonically decreasing). If J = image(f) then the following statements hold:

(i) J is an interval;
(ii) there exists a continuous, strictly monotonically increasing (resp. strictly monoton-

ically decreasing) inverse g: J→ I for f.
Proof We suppose f to be strictly monotonically increasing; the case where it is strictly
monotonically decreasing is handled similarly (or follows by considering − f , which is
strictly monotonically increasing if f is strictly monotonically decreasing).

(i) This follows from Theorem 2.5.34 and Proposition 3.1.26, where it is shown
that intervals are the only connected sets, and that continuous images of connected
sets are connected.

(ii) Since f is strictly monotonically increasing, if f (x1) = f (x2), then x1 = x2. Thus f
is injective as a map from I to J. Clearly f : I→ J is also surjective, and so is invertible.
Let y1, y2 ∈ J and suppose that y1 < y2. Then f (g(y1)) < f (g(y2)), implying that
g(y1) < g(y2). Thus g is strictly monotonically increasing. It remains to show that the
inverse g is continuous. Let y0 ∈ J and let ε ∈ R>0. First suppose that y0 ∈ int(J). Let
x0 = g(y0) and, supposing ε sufficiently small, define y1 = f (x0 − ε) and y2 = f (x0 + ε).
Then let δ = min{y0 − y1, y2 − y0}. If y ∈ B(δ, y0) then y ∈ (y1, y2), and since g is strictly
monotonically increasing

x0 − ε = g(y1) < g(y) < g(y2) = x0 + ε.

Thus g(y) ∈ B(ε, y0), giving continuity of g at x0. An entirely similar argument can be
given if y0 is an endpoint of J. �



153 3 Functions of a real variable 2016/11/26

3.1.6 Convex functions and continuity

In this section we see for the first time the important notion of convexity, here
in a fairly simple setting.

Let us first define what we mean by a convex function.

3.1.31 Definition (Convex function) For an interval I ⊆ R, a function f : I→ R is:
(i) convex if

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2)

for every x1, x2 ∈ I and s ∈ [0, 1];
(ii) strictly convex if

f ((1 − s)x1 + sx2) < (1 − s) f (x1) + s f (x2)

for every distinct x1, x2 ∈ I and for every s ∈ (0, 1);
(iii) concave if − f is convex;
(iv) strictly concave if − f is strictly convex. •

Let us give some examples of convex functions.

3.1.32 Examples (Convex functions)
1. A constant function x 7→ c, defined on any interval, is both convex and concave

in a trivial way. It is neither strictly convex nor strictly concave.
2. A linear function x 7→ ax+b, defined on any interval, is both convex and concave.

It is neither strictly convex nor strictly concave.
3. The function x 7→ x2, defined on any interval, is strictly convex. Let us verify

this. For s ∈ (0, 1) and for x, y ∈ R we have, using the triangle inequality,

((1 − s)x + sy)2
≤ |(1 − s)x + sy|2 < (1 − s)2x2 + s2y2

≤ (1 − s)x2 + sy2.

4. We refer to Section 3.6.1 for the definition of exponential function exp: R→ R.
We claim that exp is strictly convex. This can be verified explicitly with some
effort. However, it follows easily from the fact, proved as Proposition 3.2.30
below, that a function like exp that is twice continuously differentiable with a
positive second-derivative is strictly convex. (Note that exp′′ = exp.)

5. We claim that the function log defined in Section 3.6.2 is strictly concave as a
function on R>0. Here we compute log′′(x) = − 1

x2 , which gives strict convexity
of − log (and hence strict concavity of log) by Proposition 3.2.30 below.

6. For x0 ∈ R, the function nx0 : R→ R defined by nx0 = |x − x0| is convex. Indeed,
if x1, x2 ∈ R and s ∈ [0, 1] then

nx0((1 − s)x1 + sx2) = |(1 − s)x1 + sx2 − x0| = |(1 − s)(x1 − x0) + s(x2 − x0)|
≤ (1 − s)|x1 − x0| + s|x2 − x0| = (1 − s)nx0(x1) + snx0(x2),

using the triangle inequality. •
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Let us give an alternative and insightful characterisation of convex functions.
For an interval I ⊆ R define

EI = {(x, y) ∈ I2
| s < t}

and, for a, b ∈ I, denote

Lb = {a ∈ I | (a, b) ∈ EI}, Ra = {b ∈ I | (a, b) ∈ EI}.

Now, for f : I→ R define s f : EI → R by

s f (a, b) =
f (b) − f (a)

b − a
.

With this notation at hand, we have the following result.

3.1.33 Lemma (Alternative characterisation of convexity) For an interval I ⊆ R, a func-
tion f : I→ R is (strictly) convex if and only if, for every a, b ∈ I, the functions

Lb 3 a 7→ sf(a, b) ∈ R, Ra 3 b 7→ sf(a, b) ∈ R (3.2)

are (strictly) monotonically increasing.
Proof First suppose that f is convex. Let a, b, c ∈ I satisfy a < b < c. Define s ∈ (0, 1)
by s = b−a

c−a and note that the definition of convexity using this value of s gives

f (b) ≤
c − b
c − a

f (a) +
b − a
c − a

f (c).

Simple rearrangement gives

c − b
c − a

f (a) +
b − a
c − a

f (c) = f (a) +
f (c) − f (a)

c − a
(b − a) = f (c) −

f (c) − f (a)
c − a

(c − b),

and so we have
f (b) − f (a)

b − a
≤

f (c) − f (a)
c − a

,
f (c) − f (a)

c − a
≤

f (c) − f (b)
c − b

.

In other words, s f (a, b) ≤ s f (a, c) and s f (a, c) ≤ s f (b, c). Since this holds for every a, b, c ∈ I
with a < b < c, we conclude that the functions (3.2) are monotonically increasing, as
stated. If f is strictly convex, then the inequalities in the above computation are strict,
and one concludes that the functions (3.2) are strictly monotonically increasing.

Next suppose that the functions (3.2) are monotonically increasing and let a, c ∈ I
with a < c and let s ∈ (0, 1). Define b = (1 − s)a + sc. A rearrangement of the inequality
s f (a, b) ≤ s f (a, c) gives

f (b) ≤
c − b
c − a

f (a) +
b − a
c − a

f (c)

=⇒ f ((1 − s)a + sc) ≤ (1 − s) f (a) + s f (c),

showing that f is convex since a, c ∈ I with a < c and s ∈ (0, 1) are arbitrary in the
above computation. If the functions (3.2) are strictly monotonically increasing, then
the inequalities in the preceding computations are strict, and so one deduces that f is
strictly convex. �

In Figure 3.4 we depict what the lemma is telling us about convex functions.
The idea is that the slope of the line connecting the points (a, f (a)) and (b, f (b)) in
the plane is nondecreasing in a and b.

The following inequality for convex functions is very often useful.
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Figure 3.4 A characterisation of a convex function

3.1.34 Theorem (Jensen’s inequality) For an interval I ⊆ R, for a convex function f : I→ R,
for x1, . . . , xk ∈ I, and for λ1, . . . , λk ∈ R≥0, we have

f
( λ1∑

j=1 λj
x1 + · · · +

λk∑k
j=1 λj

xk

)
≤

λ1∑k
j=1 λj

f(x1) + · · · +
λk∑k
j=1 λj

f(xk).

Moreover, if f is strictly convex and if λ1, . . . , λk ∈ R>0, than we have equality in the
preceding expression if and only if x1 = · · · = xk.

Proof We first comment that, with λ1, . . . , λk and x1, . . . , xk as stated,

λ1∑k
j=1 λ j

x1 + · · · +
λk∑k
j=1 λ j

xk ∈ I.

This is because intervals are convex, something that will become clear in Section ??.
It is clear that we can without loss of generality, by replacing λ j with

λ′m =
λm∑k
j=1 λ j

, m ∈ {1, . . . , k},

if necessary, that we can assume that
∑k

j=1 λ j = 1.
We first note that if x1 = · · · = xk then the inequality in the statement of the theorem

is an equality, no matter what the character of f .
The proof is by induction on k, the result being obvious when k = 1. So suppose

the result is true when k = m and let x1, . . . , xm+1 ∈ I and let λ1, . . . , λm+1 ∈ R≥0 satisfy∑m+1
j=1 λ j = 1. Without loss of generality (by reindexing if necessary), suppose that

λm+1 ∈ [0, 1). Note that
λ1

1 − λm+1
+ · · · +

λm

1 − λm+1
= 1

so that, by the induction hypothesis,

f
( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
≤

λ1

1 − λm+1
f (x1) + · · · +

λm

1 − λm+1
f (xm).
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Now, by convexity of f ,

f
(
(1 − λm+1)

( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1xm+1

)
≤ (1 − λm+1) f

( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1 f (xm+1).

The desired inequality follows by combining the previous two equations.
To prove the final assertion of the theorem, suppose that f is strictly convex, that

λ1, . . . , λk ∈ R>0 satisfy
∑k

j=1 λ j = 1, and that the inequality in the theorem is equality.
We prove by induction that x1 = · · · = xk. For k = 1 the assertion is obvious. Let us
prove the assertion for k = 2. Thus suppose that

f ((1 − λ)x1 + λx2) = (1 − λ) f (x1) + λ f (x2)

for x1, x2 ∈ I and for λ ∈ (0, 1). If x1 , x2 then we have, by definition of strict convexity,

f ((1 − λ)x1 + λx2) < (1 − λ) f (x1) + λ f (x2),

contradicting our hypotheses. Thus we must have x1 = x2. Now suppose the assertion
is true for k = m and let x1, . . . , xm+1 ∈ I, let λ1, . . . , λm+1 ∈ R>0 satisfy

∑m+1
j=1 λ j = 1, and

suppose that

f (λ1x1 + · · · + λm+1xm+1) = λ1 f (x1) + · · · + λm+1 f (xm+1).

Since none of λ1, . . . , λm+1 are zero we must have λm+1 ∈ (0, 1). Now note that

f (λ1x1 + · · ·+λm+1xm+1) = f
(
(1−λm+1)

( λ1

1 − λm+1
x1 + · · ·+

λm

1 − λm+1
xm

)
+λm+1xm+1

)
(3.3)

and that

λ1 f (x1) + · · · + λm+1 f (xm+1)

= (1 − λm+1) f
( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1 f (xm+1).

Therefore, by assumption,

f
(
(1 − λm+1)

( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1xm+1

)
= (1 − λm+1) f

( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
+ λm+1 f (xm+1). (3.4)

Since the assertion we are proving holds for k = 2 this implies that

xm+1 =
λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm. (3.5)

Now suppose that the numbers x1, . . . , xm are not all equal. Then, by the induction
hypothesis,

f
( λ1

1 − λm+1
x1 + · · · +

λm

1 − λm+1
xm

)
<

λ1

1 − λm+1
f (x1) + · · · +

λm

1 − λm+1
f (xm)
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since
λ1

1 − λm+1
+ · · · +

λm

1 − λm+1
= 1.

Therefore, combining (3.3) and (3.4)

f (λ1x1 + · · · + λm+1xm+1) < λ1 f (x1) + · · · + λm+1 f (xm+1),

contradicting our hypotheses. Thus we must have x1 = · · · = xm. From (3.5) we then
conclude that x1 = · · · = xm+1, as desired. �

An interesting application of Jensen’s inequality is the derivation of the so-called
arithmetic/geometric mean inequalities. If x1, . . . , xk ∈ R>0, their arithmetic mean is

1
k

(x1 + · · · + xk)

and their geometric mean is
(x1 · · · xk)1/k.

We first state a result which relates generalisations of the arithmetic and geometric
means.

3.1.35 Corollary (Weighted arithmetic/geometric mean inequality) Let x1, . . . , xk ∈ R≥0

and suppose that λ1, . . . , λk ∈ R>0 satisfy
∑k

j=1 λj = 1. Then

xλ1
1 · · · x

λk
k ≤ λ1x1 + · · · + λkxk,

and equality holds if and only if x1 = · · · = xk.
Proof Since the inequality obviously holds if any of x1, . . . , xk are zero, let us suppose
that these numbers are all positive. By Example 3.1.32–5, − log is convex. Thus
Jensen’s inequality gives

− log(λ1x1 + · · · + λkxk) ≤ −λ1 log(x1) − · · · − λk log(xk) = − log(xλ1
1 · · · x

λk
k ).

Since − log is strictly monotonically decreasing by Proposition 3.6.6(ii), the result fol-
lows. Moreover, since − log is strictly convex by Proposition 3.2.30, the final assertion
of the corollary follows from the final assertion of Theorem 3.1.34. �

The corollary gives the following inequality as a special case.

3.1.36 Corollary (Arithmetic/geometric mean inequality) If x1, . . . , xk ∈ R≥0 then

(x1 · · · xk)1/k
≤

x1 + · · · + xk

k
,

and equality holds if and only if x1 = · · · = xk.

Let us give some properties of convex functions. Further properties of convex
function are give in Proposition 3.2.29
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3.1.37 Proposition (Properties of convex functions I) For an interval I ⊆ R and for a
convex function f : I→ R, the following statements hold:

(i) if I is open, then f is continuous;
(ii) for any compact interval K ⊆ int(I), there exists L ∈ R>0 such that

|f(x1) − f(x2)| ≤ L|x1 − x2|, x1, x2 ∈ K.

Proof (ii) Let K = [a, b] ⊆ int(I) and let a′, b′ ∈ I satisfy a′ < a and b′ > b, this being
possible since K ⊆ int(I). Now let x1, x2 ∈ K and note that, by Lemma 3.1.33,

s f (a′, a) ≤ s f (x1, x2) ≤ s f (b, b′)

since a′ < x1, a ≤ x2, x1 ≤ b, and x2 < b′. Thus, taking L = max{s f (a′, a), s f (b, b′)}, we
have

−L ≤
f (x2) − f (x1)

x2 − x1
≤ L,

which gives the result.
(i) This follows from part (ii) easily. Indeed let x ∈ I and let K be a compact

subinterval of I such that x ∈ int(K), this being possible since I is open. If ε ∈ R>0, let
δ = ε

L . It then immediately follows that if |x − y| < δ then | f (x) − f (y)| < ε. �

Let us give some an example that illustrates that openness is necessary in the
first part of the preceding result.

3.1.38 Example (A convex discontinuous function) Let I = [0, 1] and define f : [0, 1]→
R by

f (x) =

1, x = 1,
0, x ∈ [0, 1).

If x1, x2 ∈ [0, 1) and if s ∈ [0, 1] then

0 = f ((1 − s)x1 + sx2) = (1 − s) f (x1) + s f (x2).

If x1 ∈ [0, 1), if x2 = 1, and if s ∈ (0, 1) then

0 = f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2) = s,

showing that f is convex as desired. Note that f is not continuous, but that its
discontinuity is on the boundary, as must be the case since convex functions on
open sets are continuous. •

Let us also present some operations that preserve convexity.

3.1.39 Proposition (Convexity and operations on functions) For an interval I ⊆ R and
for convex functions f,g: I→ R, the following statements hold:

(i) the function I 3 x 7→ max{f(x),g(x)} is convex;
(ii) the function af is convex if a ∈ R≥0;
(iii) the function f + g is convex;
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(iv) if J ⊆ R is an interval, if f takes values in J, and if φ : J → R is convex and
monotonically increasing, then φ ◦ f is convex;

(v) if x0 ∈ I is a local minimum for f (see Definition 3.2.15). then x0 is a minimum for
f.

Proof (i) Let x1, x2 ∈ I and let s ∈ [0, 1]. Then, by directly applying the definition of
convexity to f and g, we have

max{ f ((1 − s)x1 + sx2), g((1 − s)x1 + sx2)}
≤ (1 − s) max{ f (x1), g(x1)} + s max{ f (x2), g(x2)}.

(ii) This follows immediately from the definition of convexity.
(iii) For x1, x2 ∈ I and for s ∈ [0, 1] we have

f ((1 − s)x1 + sx2) + g((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2) + (1 − s)g(x1) + sg(x2)
= (1 − s)( f (x1) + g(x1)) + s( f (x2 + g(x2)),

by applying the definition of convexity to f and g.
(iv) For x1, x2 ∈ I and for s ∈ [0, 1], convexity of f gives

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2)

and so monotonicity of φ gives

φ ◦ f ((1 − s)x1 + sx2) ≤ φ((1 − s) f (x1) + s f (x2)).

Now convexity of φ gives

φ ◦ f ((1 − s)x1 + sx2) ≤ (1 − s)φ ◦ f (x1) + sφ ◦ f (x2),

as desired.
(v) Suppose that x0 is a local minimum for f , i.e., there is a neighbourhood U ⊆ I

of x0 such that f (x) ≥ f (x0) for all x ∈ U. Now let x ∈ I and note that

s 7→ (1 − s)x0 + sx

is continuous and lims→0(1 − s)x0 + sx = x0. Therefore, there exists s0 ∈ (0, 1] such that
(1 − s)x0 + sx ∈ U for all s ∈ (0, s0). Thus

f (x0) ≤ f ((1 − s)x0 + sx) ≤ (1 − s) f (x0) + s f (x)

for s ∈ (0, s0). Simplification gives f (x0) ≤ f (x) and so x0 is a minimum for f . �

3.1.7 Piecewise continuous functions

It is often of interest to consider functions that are not continuous, but which
possess only jump discontinuities, and only “few” of these. In order to do so, it is
convenient to introduce some notation. For and interval I ⊆ R, a function f : I→ R,
and x ∈ I define

f (x−) = lim
ε↓0

f (x − ε), f (x+) = lim
ε↓0

f (x + ε),

allowing that these limits may not be defined (or even make sense if x ∈ bd(I)).
We then have the following definition, recalling our notation concerning parti-

tions of intervals given in and around Definition 2.5.7.
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3.1.40 Definition (Piecewise continuous function) A function f : [a, b]→ R is piecewise
continuous if there exists a partition P = (I1, . . . , Ik), with EP(P) = (x0, x1, . . . , xk), of
[a, b] with the following properties:

(i) f | int(I j) is continuous for each j ∈ {1, . . . , k};
(ii) for j ∈ {1, . . . , k − 1}, the limits f (x j+) and f (x j−) exist;
(iii) the limits f (a+) and f (b−) exist. •

Let us give a couple of examples to illustrate some of the things that can happen
with piecewise continuous functions.

3.1.41 Examples (Piecewise continuous functions)
1. Let I = [−1, 1] and define f1, f2, f3 : I→ R by

f1(x) = sign(x),

f2(x) =

sign(x), x , 0,
1, x = 0,

f2(x) =

sign(x), x , 0,
−1, x = 0.

One readily verifies that all of these functions are piecewise continuous with
a single discontinuity at x = 0. Note that the functions do not have the same
value at the discontinuity. Indeed, the definition of piecewise continuity is
unconcerned with the value of the function at discontinuities.

2. Let I = [−1, 1] and define f : I→ R by

f (x) =

1, x , 0,
0, x = 0.

This function is, by definition, piecewise continuous with a single discontinuity
at x = 0. This shows that the definition of piecewise continuity includes func-
tions, not just with jump discontinuities, but with removable discontinuities. •

Exercises

3.1.1

Oftentimes, a continuity novice will think that the definition of continuity at x0

of a function f : I → R is as follows: for every ε ∈ R>0 there exists δ ∈ R>0 such
that if | f (x) − f (x0)| < ε then |x − x0| < δ. Motivated by this, let us call a function
fresh-from-high-school continuous if it has the preceding property at each point
x ∈ I.

3.1.2 Answer the following two questions.
(a) Find an interval I ⊆ R and a function f : I→ R such that f is continuous

but not fresh-from-high-school continuous.
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(b) Find an interval I ⊆ R and a function f : I→ R such that f is fresh-from-
high-school continuous but not continuous.

3.1.3 Let I ⊆ R be an interval and let f , g : I→ R be functions.
(a) Show that D f g ⊆ D f ∪Dg.
(b) Show that it is not generally true that D f ∩Dg ⊆ D f g.
(c) Suppose that f is bounded. Show that if x ∈ (D f ∩ (I \ Dg)) ∩ (I \ D f g),

then g(x) = 0.missing stuff
3.1.4 Let I ⊆ R be an interval and let f : I→ R be a function. For x ∈ I and δ ∈ R>0

define
ω f (x, δ) = sup{| f (x1), f (x2)| | x1, x2 ∈ B(δ, x) ∩ I}.

Show that, if y ∈ B(δ, x), then ω f (y, δ2 ) ≤ ω f (x, δ).
3.1.5 Recall from Theorem 3.1.24 that a continuous function defined on a compact

interval is uniformly continuous. Show that this assertion is generally false
if the interval is not compact.

3.1.6 Give an example of an interval I ⊆ R and a function f : I → R that is locally
bounded but not bounded.

3.1.7 Answer the following three questions.
(a) Find a bounded interval I ⊆ R and a function f : I → R such that f is

continuous but not bounded.
(b) Find a compact interval I ⊆ R and a function f : I → R such that f is

bounded but not continuous.
(c) Find a closed but unbounded interval I ⊆ R and a function f : I → R

such that f is continuous but not bounded.
3.1.8 Answer the following two questions.

(a) For I = [0, 1) find a bounded, continuous function f : I → R that does
not attain its maximum on I.

(b) For I = [0,∞) find a bounded, continuous function f : I → R that does
not attain its maximum on I.

3.1.9 Explore your understanding of Theorem 3.1.3 and its Corollary 3.1.4 by
doing the following.
(a) For the continuous function f : R → R defined by f (x) = x2, verify

Theorem 3.1.3 by (1) determining f −1(I) for a general open interval I
and (2) showing that this is sufficient to ensure continuity.
Hint: For the last part, consider using Proposition 2.5.6 and part (iv) of
Proposition 1.3.5.

(b) For the discontinuous function f : R → R defined by f (x) = sign(x),
verify Theorem 3.1.3 by (1) finding an open subset U ⊆ R for which
f −1(U) is not open and (2) finding a sequence (x j) j∈Z>0 converging to
x0 ∈ R for which ( f (x j)) j∈Z>0 does not converge to f (x0).

3.1.10 Find a continuous function f : I → R defined on some interval I and a
sequence (x j) j∈Z>0 such that the sequence (x j) j∈Z>0 does not converge but the
sequence ( f (x j)) j∈Z>0 does converge.



2016/11/26 3.1 Continuous R-valued functions on R 162

3.1.11 Let I ⊆ R be an interval and let f , g : I→ R be convex.
(a) Is it true that x 7→ min{ f (x), g(x)} is convex?
(b) Is it true that f − g is convex?

3.1.12 Let U ⊆ R be open and suppose that f : U → R is continuous and has the
property that

{x ∈ U | f (x) , 0}

has measure zero. Show that f (x) = 0 for all x ∈ U.
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Section 3.2

Differentiable R-valued functions on R

In this section we deal systematically with another topic with which most
readers are at least somewhat familiar: differentiation. However, as with everything
we do, we do this here is a manner that is likely more thorough and systematic
than that seen by some readers. We do suppose that the reader has had that sort
of course where one learns the derivatives of the standard functions, and learns to
apply some of the standard rules of differentiation, such as we give in Section 3.2.3.

Do I need to read this section? If you are familiar with, or perhaps even if you
only think you are familiar with, the meaning of “continuously differentiable,”
then you can probably forgo the details of this section. However, if you have not
had the benefit of a rigorous calculus course, then the material here might at least
be interesting. •

3.2.1 Definition of the derivative

The definition we give of the derivative is as usual, with the exception that,
as we did when we talked about continuity, we allow functions to be defined on
general intervals. In order to do this, we recall from Section 2.3.7 the notation
limx→Ix0 f (x).

3.2.1 Definition (Derivative and differentiable function) Let I ⊆ R be an interval and
let f : I→ R be a function.

(i) The function f is differentiable at x0 ∈ I if the limit

lim
x→Ix0

f (x) − f (x0)
x − x0

(3.6)

exists.
(ii) If the limit (3.6) exists, then it is denoted by f ′(x0) and called the derivative of

f at x0.
(iii) If f is differentiable at each point x ∈ I, then f is differentiable.
(iv) If f is differentiable and if the function x 7→ f ′(x) is continuous, then f is

continuously differentiable, or of class C1. •

3.2.2 Notation (Alternative notation for derivative) In applications where R-valued
functions are clearly to be thought of as functions of “time,” we shall sometimes
write ˙f rather than f ′ for the derivative.

Sometimes it is convenient to write the derivative using the convention f ′(x) =
d f
dx . This notation for derivative suffers from the same problems as the notation
“ f (x)” to denote a function as discussed in Notation 1.3.2. That is to say, one
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cannot really use d f
dx as a substitute for f ′, but only for f ′(x). Sometimes one can

kludge one’s way around this with something like d f
dx

∣∣∣
x=x0

to specify the derivative
at x0. But this still leaves unresolved the matter of what is the rôle of “x” in the
expression d f

dx

∣∣∣
x=x0

. For this reason, we will generally (but not exclusively) stick to

f ′, or sometimes ˙f . For notation for the derivative for multivariable functions, we
refer to Definition ??. •

Let us consider some examples that illustrate the definition.

3.2.3 Examples (Derivative)
1. Take I = R and define f : I → R by f (x) = xk for k ∈ Z>0. We claim that f is

continuously differentiable, and that f ′(x) = kxk−1. To prove this we first note
that

(x − x0)(xk−1 + xk−1x0 + · · · + xxk−2
0 + xk−1

0 ) = xk
− xk

0,

as can be directly verified. Then we compute

lim
x→x0

f (x) − f (x0)
x − x0

= lim
x→x0

xk
− xk

0

x − x0

= lim
x→x0

(xk−1 + xk−1x0 + · · · + xxk−2
0 + xk−1

0 ) = kxk−1
0 ,

as desired. Since f ′ is obviously continuous, we obtain that f is continuously
differentiable, as desired.

2. Let I = [0, 1] and define f : I→ R by

f (x) =

x, x , 0,
1, x = 0.

From Example 1 we know that f is continuously differentiable at points in
(0, 1]. We claim that f is not differentiable at x = 0. This will follow from
Proposition 3.2.7 below, but let us show this here directly. We have

lim
x→I0

f (x) − f (0)
x − 0

= lim
x↓0

x − 1
x

= −∞.

Thus the limit does not exist, and so f is not differentiable at x = 0, albeit in a
fairly stupid way.

3. Let I = [0, 1] and define f : I → R by f (x) =
√

x(1 − x). We claim that f is
differentiable at points in (0, 1), but is not differentiable at x = 0 or x = 1.
Providing that one believes that the function x 7→

√
x is differentiable on R>0

(see Section 3.6missing stuff ), then the continuous differentiability of f on (0, 1)
follows from the results of Section 3.2.3. Moreover, the derivative of f at
x ∈ (0, 1) can be explicitly computed as

f ′(x) =
1 − 2x

2
√

x(1 − x)
.
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To show that f is not differentiable at x = 0 we compute

lim
x→I0

f (x) − f (0)
x − 0

= lim
x↓0

√
1 − x
√

x
= ∞.

Similarly, at x = 1 we compute

lim
x→I1

f (x) − f (1)
x − 1

= lim
x↑1

−
√

x
√

x − 1
= −∞.

Since neither of these limits are elements of R, it follows that f is not differen-
tiable at x = 0 or x = 1.

4. Let I = R and define f : R→ R by

f (x) =

x2 sin 1
x , x , 0,

0, x = 0.

We first claim that f is differentiable. The differentiability of f at points x ∈ R\{0}
will follow from our results in Section 3.2.3 concerning differentiability, and
algebraic operations along with composition. Indeed, using these rules for
differentiation we compute that for x , 0 we have

f ′(x) = 2x sin 1
x − cos 1

x .

Next let us prove that f is differentiable at x = 0 and that f ′(0) = 0. We have

lim
x→0

f (x) − f (x)
x − 0

= lim
x→0

x sin 1
x .

Now let ε ∈ R>0. Then, for δ = ε we have∣∣∣x sin 1
x − 0

∣∣∣ < ε
since

∣∣∣sin 1
x

∣∣∣ ≤ 1. This shows that f ′(0) = 0, as claimed. This shows that f is
differentiable.
However, we claim that f is not continuously differentiable. Clearly there are
no problems away from x = 0, again by the results of Section 3.2.3. But we
note that f ′ is discontinuous at x = 0. Indeed, we note that f is the sum of
two functions, one (x sin 1

x ) of which goes to zero as x goes to zero, and the
other (− cos 1

x ) of which, when evaluated in any neighbourhood of x = 0, takes
all possible values in the interval [−1, 1]. This means that in any sufficiently
small neighbourhood of x = 0, the function f ′ will take all possible values in
the interval [−1

2 ,
1
2 ]. This precludes the limit limx→0 f ′(x) from existing, and so

precludes f ′ from being continuous at x = 0 by Theorem 3.1.3. •

Let us give some intuition about the derivative. Given an interval I and functions
f , g : I→ R, we say that f and g are tangent at x0 ∈ R if

lim
x→Ix0

f (x) − g(x)
x − x0

= 0.

In Figure 3.5 we depict the idea of two functions being tangent. Using this idea,
we can give the following interpretation of the derivative.



2016/11/26 3.2 Differentiable R-valued functions on R 166

x

f(x), g(x)

(
I

)
x0

f

g
f(x0) = g(x0)

Figure 3.5 Functions that are tangent

3.2.4 Proposition (Derivative and linear approximation) Let I ⊆ R, let x0 ∈ I, and let
f : I→ R be a function. Then there exists at most one number α ∈ R such that f is tangent
at x0 with the function x 7→ f(x0) + α(x − x0). Moreover, such a number α exists if and
only if f is differentiable at x0, in which case α = f′(x0).

Proof Suppose there are two such numbers α1 and α2. Thus

lim
x→Ix0

f (x) − ( f (x0) + α j(x − x0))
x − x0

= 0, j ∈ {1, 2}, (3.7)

We compute

|α1 − α2| =
|α1(x − x0) − α2(x − x0)|

|x − x0|

=
|− f (x) + f (x0) + α1(x − x0) + f (x) − f (x0) − α2(x − x0)|

|x − x0|

≤
| f (x) − f (x0) − α1(x − x0)|

|x − x0|
+
| f (x) − f (x0) − α2(x − x0)|

|x − x0|
.

Since α1 and α2 satisfy (3.7), as we let x→ x0 the right-hand side goes to zero showing
that |α1 − α2| = 0. This proves the first part of the result.

Next suppose that there exists α ∈ R such that

lim
x→Ix0

f (x) − ( f (x0) + α(x − x0))
x − x0

= 0.

It then immediately follows that

lim
x→Ix0

f (x) − f (x0)
x − x0

= α.

Thus f is differentiable at x0 with derivative equal to α. Conversely, if f is differentiable
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at x0 then we have

f ′(x0) = lim
x→Ix0

f (x) − f (x0)
x − x0

,

=⇒ lim
x→Ix0

f (x) − f (x0) − f ′(x0)(x − x0)
x − x0

= 0,

which completes the proof. �

The idea, then, is that the derivative serves, as we are taught in first-year
calculus, as the best linear approximation to the function, since the function x 7→
f (x0) + α(x − x0) is a linear function with slope α passing through f (x0).

We may also define derivatives of higher-order. Suppose that f : I → R is
differentiable, so that the function f ′ : I→ R can be defined. If the limit

lim
x→Ix0

f ′(x) − f ′(x0)
x − x0

exists, then we say that f is twice differentiable at x0. We denote the limit by f ′′(x0),
and call it the second derivative of f at x0. If f is differentiable at each point x ∈ I
then f is twice differentiable. If additionally the map x 7→ f ′′(x) is continuous, then
f is twice continuously differentiable, or of class C2. Clearly this process can be
continued inductively. Let us record the language coming from this iteration.

3.2.5 Definition (Higher-order derivatives) Let I ⊆ R be an interval, let f : I → R be a
function, let r ∈ Z>0, and suppose that f is (r − 1) times differentiable with g the
corresponding (r − 1)st derivative.

(i) The function f is r times differentiable at x0 ∈ I if the limit

lim
x→Ix0

g(x) − g(x0)
x − x0

(3.8)

exists.
(ii) If the limit (3.8) exists, then it is denoted by f (r)(x0) and called the rth derivative

of f at x0.
(iii) If f is r times differentiable at each point x ∈ I, then f is r times differentiable.
(iv) If f is r times differentiable and if the function x 7→ f (r)(x) is continuous, then

f is r times continuously differentiable, or of class Cr.
If f is of class Cr for each r ∈ Z>0, then f is infinitely differentiable, or of class C∞. •

3.2.6 Notation (Class C0) A continuous function will sometimes be said to be of class
C0, in keeping with the language used for functions that are differentiable to some
order. •

3.2.2 The derivative and continuity

In this section we simply do two things. We show that differentiable functions
are continuous (Proposition 3.2.7), and we (dramatically) show that the converse
of this is not true (Example 3.2.9).
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3.2.7 Proposition (Differentiable functions are continuous) If I ⊆ R is an interval and
if f : I→ R is a function differentiable at x0 ∈ I, then f is continuous at x0.

Proof Using Propositions 2.3.23 and 2.3.29 the limit

lim
x→Ix0

( f (x) − f (x0)
x − x0

)
(x − x0)

exists, and is equal to the product of the limits

lim
x→Ix0

f (x) − f (x0)
x − x0

, lim
x→Ix0

(x − x0),

i.e., is equal to zero. We therefore can conclude that

lim
x→Ix0

( f (x) − f (x0)) = 0,

and the result now follows from Theorem 3.1.3. �

If the derivative is bounded, then there is more that one can say.

3.2.8 Proposition (Functions with bounded derivative are uniformly continuous) If
I ⊆ R is an interval and if f : I → R is differentiable with f′ : I → R bounded, then f is
uniformly continuous.

Proof Let
M = sup{ f ′(t) | t ∈ I}.

Then, for every x, y ∈ I, by the Mean Value Theorem, Theorem 3.2.19 below, there
exists z ∈ [x, y] such that

f (x) − f (y) = f ′(z)(x − y) =⇒ | f (x) − f (y)| ≤M‖x − y‖.

Now let ε ∈ R>0 and let x ∈ I. Define δ = ε
M and note that if y ∈ I satisfies |x − y| < δ

then we have
| f (x) − f (y)| ≤M‖x − y‖ ≤ ε,

giving the desired uniform continuity. �

Of course, it is not true that a continuous function is differentiable; we have an
example of this as Example 3.2.3–3. However, things are much worse than that,
as the following example indicates.

3.2.9 Example (A continuous but nowhere differentiable function) For k ∈ Z>0 define
gk : R → R as shown in Figure 3.6. Thus gk is periodic with period 4 · 2−2k .3 We
then define

f (x) =

∞∑
k=1

2−kgk(x).

3We have not yet defined what is meant by a periodic function, although this is likely clear. In
case it is not, a function f : R→ R is periodic with period T ∈ R>0 if f (x + T) = f (x) for every x ∈ R.
Periodic functions will be discussed in some detail in Section 8.1.6.
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f(x)

1

−1 4 · 2−2k

Figure 3.6 The function gk

Since gk is bounded in magnitude by 1, and since the sum
∑
∞

k=1 2−k is absolutely
convergent (Example 2.4.2–4), for each x the series defining f converges, and so f
is well-defined. We claim that f is continuous but is nowhere differentiable.

It is easily shown by the Weierstrass M-test (see Theorem 3.5.15 below) that the
series converges uniformly, and so defines a continuous function in the limit by
Theorem 3.5.8. Thus f is continuous.

Now let us show that f is nowhere differentiable. Let x ∈ R, k ∈ Z>0, and choose
hk ∈ R such that |h| = 2−2k and such that x and x + hk lie on the line segment in the
graph of gk (this is possible since hk is small enough, as is easily checked). Let us
prove a few lemmata for this choice of x and hk.

1 Lemma gl(x + hk) = g(x) for l > k.

Proof This follows since gl is periodic with period 4 · 2−2l , and so is therefore also
periodic with period 2−2k since

4 · 2−2l

2−2k = 4 · 2−2l
−2k
∈ Z

for l > k. H

2 Lemma |gk(x + hk) − gk(x)| = 1.

Proof This follows from the fact that we have chosen hk such that x and x+hk lie on
the same line segment in the graph of gk, and from the fact that |hk| is one-quarter
the period of gk (cf. Figure 3.6). H

3 Lemma
∣∣∣∑k−1

j=1 2−jgj(x + hk) −
∑k−1

j=1 2−jgj(x)
∣∣∣ ≤ 2k2−2k−1 .

Proof We note that if x and x + hk are on the same line segment in the graph of
gk, then they are also on the same line segment of the graph of g j for j ∈ {1, . . . , k}.
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Using this fact, along with the fact that the slope of the line segments of the function
g j have magnitude 22 j , we compute

∣∣∣∣ k−1∑
j=1

2− jg j(x + hk) −
k−1∑
j=1

2− jg j(x)
∣∣∣∣

≤ (k − 1) max{|2− jg j(x + hk) − 2− jg j(x)| | j ∈ {1, . . . , k}}

= (k − 1)22k−1
2−2k

< 2k2−2k−1
.

The final inequality follows since k − 1 < 2k for k ≥ 1 and since 22k−12−2k
= 2−2k−1 . H

Now we can assemble these lemmata to give the conclusion that f is not differ-
entiable at x. Let x ∈ R, let ε ∈ R>0, choose k ∈ Z>0 such that 2−2k

< ε, and choose
hk as above. We then have∣∣∣∣ f (x + hk) − f (x)

hk

∣∣∣∣ = |

∑
∞

j=1 2− jg j(x + hk) −
∑
∞

j=1 2− jg j(x)

hk
|

= |

∑k−1
j=1 2− jg j(x + hk) −

∑k−1
j=1 2− jg j(x)

hk
+

2−k(gk(x + hk) − gk(x))
hk

|

≥ 2−k22k
− 2k2−2k−1

.

Since limk→∞(2−k22k
− 2k2−2k−1) = ∞, it follows that any neighbourhood of x will

contain a point y for which f (y)− f (x)
y−x will be as large in magnitude as desired. This

precludes f from being differentiable at x. Now, since x was arbitrary in our
construction, we have shown that f is nowhere differentiable as claimed.

In Figure 3.7 we plot the function

fk(x) =

k∑
j=1

2− jg j(x)

for j ∈ {1, 2, 3, 4}. Note that, to the resolution discernible by the eye, there is no
difference between f3 and f4. However, if we were to magnify the scale, we would
see the effects that lead to the limit function not being differentiable. •

3.2.3 The derivative and operations on functions

In this section we provide the rules for using the derivative in conjunction
with the natural algebraic operations on functions as described at the beginning
of Section 3.1.3. Most readers will probably be familiar with these ideas, at least
inasmuch as how to use them in practice.

3.2.10 Proposition (The derivative, and addition and multiplication) Let I ⊆ R be an
interval and let f,g: I → R be functions differentiable at x0 ∈ I. Then the following
statements hold:
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Figure 3.7 The first four partial sums for f

(i) f + g is differentiable at x0 and (f + g)′(x0) = f′(x0) + g′(x0);
(ii) fg is differentiable at x0 and (fg)′(x0) = f′(x0)g(x0) + f(x0)g′(x0) (product rule or

Leibniz’ 4 rule);
(iii) if additionally g(x0) , 0, then f

g is differentiable at x0 and

( f
g

)′
(x0) =

f′(x0)g(x0) − f(x0)g′(x0)
g(x0)2 (quotient rule).

Proof (i) We have

( f + g)(x) − ( f + g)(x0)
x − x0

=
f (x) − f (x0)

x − x0
+

g(x) − g(x0)
x − x0

.

Now we may apply Propositions 2.3.23 and 2.3.29 to deduce that

lim
x→Ix0

( f + g)(x) − ( f + g)(x0)
x − x0

= lim
x→Ix0

f (x) − f (x0)
x − x0

+ lim
x→Ix0

g(x) − g(x0)
x − x0

= f ′(x0) + g′(x0),

as desired.
4Gottfried Wilhelm von Leibniz (1646–1716) was born in Leipzig (then a part of Saxony), and

was a lawyer, philosopher, and mathematician. His main mathematical contributions were to the
development of calculus, where he had a well-publicised feud over priority with Newton, and
algebra. His philosophical contributions, mainly in the area of logic, were also of some note.
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(ii) Here we note that

( f g)(x) − ( f g)(x0)
x − x0

=
f (x)g(x) − f (x)g(x0) + f (x)g(x0) − f (x0)g(x0)

x − x0

= f (x)
g(x) − g(x0)

x − x0
+ g(x0)

f (x) − f (x0)
x − x0

.

Since f is continuous at x0 by Proposition 3.2.7, we may apply Propositions 2.3.23
and 2.3.29 to conclude that

lim
x→Ix0

( f g)(x) − ( f g)(x0)
x − x0

= f ′(x0)g(x0) + f (x0)g′(x0),

just as claimed.
(iii) By using part (ii), it suffices to consider the case where f is defined by f (x) = 1

(why?). Note that if g(x0) , 0, then there is a neighbourhood of x0 to which the
restriction of g is nowhere zero. Thus, without loss of generality, we suppose that
g(x) , 0 for all x ∈ I. But in this case we have

lim
x→Ix0

1
g(x) −

1
g(x0)

x − x0
= lim

x→Ix0

1
g(x)g(x0)

g(x0)
x − x0

= −
g′(x0)
g(x0)2 ,

giving the result in this case. We have used Propositions 2.3.23 and 2.3.29 as usual.�

The following generalisation of the product rule will be occasionally useful.

3.2.11 Proposition (Higher-order product rule) Let I ⊆ R be an interval, let x0 ∈ I, let
r ∈ Z>0, and suppose that f,g: I→ R are of class Cr−1 and are r-times differentiable at x0.
Then fg is r-times differentiable at x0, and

(fg)(r)(x0) =

r∑
j=0

(
r
j

)
f(j)(x0)g(r−j)(x0),

where (
r
j

)
=

r!
j!(r − j)!

.

Proof The result is true for r = 1 by Proposition 3.2.10. So suppose the result true for
k ∈ {1, . . . , r}. We then have

( f g)(r)(x) − ( f g)(r)(x0)
x − x0

=

∑r
j=0

( r
j
)

f ( j)(x)g(r− j)(x) −
∑r

j=0

( r
j
)

f ( j)(x0)g(r− j)(x0)

x − x0

=

r∑
j=0

(
r
j

)
f ( j)(x)g(r− j)(x) − f ( j)(x0)g(r− j)(x0)

x − x0
.

Now we note that

lim
x→Ix0

f ( j)(x)g(r− j)(x) − f ( j)(x0)g(r− j)(x0)
x − x0

= f ( j+1)(x0)g(r− j)(x0) + f ( j)(x0)g(r− j+1)(x0).
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Therefore,

lim
x→Ix0

( f g)(r)(x) − ( f g)(r)(x0)
x − x0

=

r∑
j=0

(
r
j

) (
f ( j+1)(x0)g(r− j)(x0) + f ( j)(x0)g(r− j+1)(x0)

)
= f (x0)g(r+1)(x0) +

r∑
j=0

(
r
j

)
f ( j+1)(x0)g(r− j)(x0) +

r∑
j=1

(
r
j

)
f ( j)(x0)g(r− j+1)(x0)

= f (x0)g(r+1)(x0) +

r+1∑
j=1

(
r

j − 1

)
f ( j)(x0)g(r− j+1)(x0)

+

r∑
j=1

(
r
j

)
f ( j)(x0)g(r− j+1)(x0)

= f (r+1)(x0)g(x0) + f (x0)g(r+1)(x0)

+

r∑
j=1

((
r
j

)
+

(
r

j − 1

))
f ( j)(x0)g(r− j+1)(x0)

= f (r+1)(x0)g(x0) + f (x0)g(r+1)(x0) +

r∑
j=1

(
r + 1

j

)
f ( j)(x0)g(r− j+1)(x0)

=

r+1∑
j=0

(
r + 1

j

)
f ( j)(x0)g(r− j)(x0).

In the penultimate step we have used Pascal’s5 Rule which states that(
r
j

)
+

(
r

j − 1

)
=

(
r + 1

j

)
.

We leave the direct proof of this fact to the reader. �

The preceding two results had to do with differentiability at a point. For con-
venience, let us record the corresponding results when we consider the derivative,
not just at a point, but on the entire interval.

3.2.12 Proposition (Class Cr, and addition and multiplication) Let I ⊆ R be an interval
and let f,g: I→ R be functions of class Cr. Then the following statements hold:

(i) f + g is of class Cr;
(ii) fg is of class Cr;
(iii) if additionally g(x) , 0 for all x ∈ I, then f

g is of class Cr.
Proof This follows directly from Propositions 3.2.10 and 3.2.11, along with the fact,
following from Proposition 3.1.15, that the expressions for the derivatives of sums,
products, and quotients are continuous, as they are themselves sums, products, and
quotients. �

5Blaise Pascal (1623–1662) was a French mathematician and philosopher. Much of his mathe-
matical work was on analytic geometry and probability theory.
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The following rule for differentiating the composition of functions is one of the
more useful of the rules concerning the behaviour of the derivative.

3.2.13 Theorem (Chain Rule) Let I, J ⊆ R be intervals and let f : I → J and g: J → R be
functions for which f is differentiable at x0 ∈ I and g is differentiable at f(x0) ∈ J. Then g ◦ f
is differentiable at x0, and (g ◦ f)′(x0) = g′(f(x0))f′(x0).

Proof Let us define h : J→ R by

h(y) =

 g(y)−g( f (x0))
y− f (x0) , g(y) , g( f (x0)),

g′( f (x0)), g(y) = g( f (x0)).

We have

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

=
(g ◦ f )(x) − (g ◦ f )(x0)

f (x) − f (x0)
f (x) − f (x0)

x − x0
= h( f (x))

f (x) − f (x0)
x − x0

,

provided that f (x) , f (x0). On the other hand, if f (x) = f (x0), we immediately have

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

= h( f (x))
f (x) − f (x0)

x − x0

since both sides of this equation are zero. Thus we simply have

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

= h( f (x))
f (x) − f (x0)

x − x0

for all x ∈ I. Note that h is continuous at f (x0) by Theorem 3.1.3 since

lim
y→I f (x0)

h(y) = g′(x0) = h(x0),

using the fact that g is differentiable at x0. Now we can use Propositions 2.3.23
and 2.3.29 to ascertain that

lim
x→Ix0

(g ◦ f )(x) − (g ◦ f )(x0)
x − x0

= lim
x→Ix0

h( f (x))
f (x) − f (x0)

x − x0
= g′( f (x0)) f ′(x0),

as desired. �

The derivative behaves as one would expect when restricting a differentiable
function.

3.2.14 Proposition (The derivative and restriction) If I, J ⊆ R are intervals for which J ⊆ I,
and if f : I→ R is differentiable at x0 ∈ J ⊆ I, then f|J is differentiable at x0.

Proof This follows since if the limit

lim
x→Ix0

f (x) − f (x0)
x − x0

exists, then so too does the limit

lim
x→Jx0

f (x) − f (x0)
x − x0

,

provided that J ⊆ I. �

missing stuff
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3.2.4 The derivative and function behaviour

From the behaviour of the derivative of a function, it is often possible to deduce
some important features of the function itself. One of the most important of these
concerns maxima and minima of a function. Let us define these concepts precisely.

3.2.15 Definition (Local maximum and local minimum) Let I ⊆ R be an interval and let
f : I→ R be a function. A point x0 ∈ I is a:

(i) local maximum if there exists a neighbourhood U of x0 such that f (x) ≤ f (x0)
for every x ∈ U;

(ii) strict local maximum if there exists a neighbourhood U of x0 such that f (x) <
f (x0) for every x ∈ U \ {x0};

(iii) local minimum if there exists a neighbourhood U of x0 such that f (x) ≥ f (x0)
for every x ∈ U;

(iv) strict local minimum if there exists a neighbourhood U of x0 such that f (x) >
f (x0) for every x ∈ U \ {x0}. •

Now we have the standard result that relates derivatives to maxima and min-
ima.

3.2.16 Theorem (Derivatives, and maxima and minima) For I ⊆ R an interval, f : I → R
a function, and x0 ∈ int(I), the following statements hold:

(i) if f is differentiable at x0 and if x0 is a local maximum or a local minimum for f, then
f′(x0) = 0;

(ii) if f is twice differentiable at x0, and if x0 is a local maximum (resp. local minimum)
for f, then f′′(x0) ≤ 0 (resp. f′′(x0) ≥ 0);

(iii) if f is twice differentiable at x0, and if f′(x0) = 0 and f′′(x0) ∈ R<0 (resp. f′′(x0) ∈ R>0),
then x0 is a strict local maximum (resp. strict local minimum) for f.

Proof (i) We will prove the case where x0 is a local minimum, since the case of a local
maximum is similar. If x0 is a local minimum, then there exists ε ∈ R>0 such that
f (x) ≥ f (x0) for all x ∈ B(ε, x0). Therefore, f (x)− f (x0)

x−x0
≥ 0 for x ≥ x0 and f (x)− f (x0)

x−x0
≤ 0 for

x ≤ x0. Since the limit limx→x0
f (x)− f (x0)

x−x0
exists, it must be equal to both limits

lim
x↓x0

f (x) − f (x0)
x − x0

, lim
x↑x0

f (x) − f (x0)
x − x0

.

However, since the left limit is nonnegative and the right limit is nonpositive, we
conclude that f ′(x0) = 0.

(ii) We shall show that if f is twice differentiable at x0 and f ′′(x0) is not less than
or equal to zero, then x0 is not a local maximum. The statement concerning the local
minimum is argued in the same way. Now, if f is twice differentiable at x0, and if
f ′′(x0) ∈ R>0, then x0 is a local minimum by part (iii), which prohibits it from being a
local maximum.

(iii) We consider the case where f ′′(x0) ∈ R>0, since the other case follows in the
same manner. Choose ε ∈ R>0 such that, for x ∈ B(ε, x0),∣∣∣∣ f ′(x) − f ′(x0)

x − x0
− f ′′(x0)

∣∣∣∣ < 1
2 f ′′(x0),
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this being possible since f ′′(x0) > 0 and since f is twice differentiable at x0. Since
f ′′(x0) > 0 it follows that, for x ∈ B(ε, x0),

f ′(x) − f ′(x0)
x − x0

> 0,

from which we conclude that f ′(x) > 0 for x ∈ (x0, x0 + ε) and that f ′(x) < 0 for
x ∈ (x0 − ε, x0). Now we prove a technical lemma.

1 Lemma Let I ⊆ R be an open interval, let f : I → R be a continuous function that is
differentiable, except possibly at x0 ∈ I. If f′(x) > 0 for every x > x0 and if f′(x) < 0 for every
x < x0, then x0 is a strict local minimum for f.

Proof We will use the Mean Value Theorem (Theorem 3.2.19) which we prove below.
Note that our proof of the Mean Value Theorem depends on part (i) of the present
theorem, but not on part that we are now proving. Let x ∈ I \ {x0}. We have two cases.
1. x > x0: By the Mean Value Theorem there exists a ∈ (x, x0) such that f (x) − f (x0) =

(x − x0) f ′(a). Since f ′(a) > 0 it then follows that f (x) > f (x0).
2. x < x0: A similar argument as in the previous case again gives f (x) > f (x0).
Combining these conclusions, we see that f (x) > f (x0) for all x ∈ I, and so x0 is a strict
local maximum for f . H

The lemma now immediately applies to the restriction of f to B(ε, x0), and so gives
the result. �

Let us give some examples that illustrate the value and limitations of the pre-
ceding result.

3.2.17 Examples (Derivatives, and maxima and minima)
1. Let I = R and define f : I→ Rby f (x) = x2. Note that f is infinitely differentiable,

so Theorem 3.2.16 can be applied freely. We compute f ′(x) = 2x, and so f ′(x) = 0
if and only if x = 0. Therefore, the only local maxima and local minima must
occur at x = 0. To check whether a local maxima, a local minima, or neither
exists at x = 0, we compute the second derivative which is f ′′(x) = 2. This is
positive at x = 0 (and indeed everywhere), so we may conclude that x = 0 is a
strict local maximum for f from part (iii) of the theorem.
Applying the same computations to g(x) = −x2 shows that x = 0 is a strict local
maximum for g.

2. Let I = R and define f : I→ R by f (x) = x3. We compute f ′(x) = 3x2, from which
we ascertain that all maxima and minima must occur, if at all, at x = 0. However,
since f ′′(x) = 6x, f ′′(0) = 0, and we cannot conclude from Theorem 3.2.16
whether there is a local maximum, a local minimum, or neither at x = 0. In
fact, one can see “by hand” that x = 0 is neither a local maximum nor a local
minimum for f .
The same arguments apply to the functions g(x) = x4 and h(x) = −x4 to show that
when the second derivative vanishes, it is possible to have all possibilities—a
local maximum, a local minimum, or neither—at a point where both f ′ and f ′′

are zero.
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3. Let I = [−1, 1] and define f : I→ R by

f (x) =

1 − x, x ∈ [0, 1],
1 + x, x ∈ [−1, 0).

“By hand,” one can check that f has a strict local maximum at x = 0, and strict
local minima at x = −1 and x = 1. However, we can detect none of these using
Theorem 3.2.16. Indeed, the local minima at x = −1 and x = 1 occur at the
boundary of I, and so the hypotheses of the theorem do not apply. This, indeed,
is why we demand that x0 lie in int(I) in the theorem statement. For the local
maximum at x = 0, the theorem does not apply since f is not differentiable at
x = 0. However, we do note that Lemma 1 (with modifications to the signs of
the derivative in the hypotheses, and changing “minimum” to “maximum” in
the conclusions) in the proof of the theorem does apply, since f is differentiable
at points in (−1, 0) and (0, 1), and for x > 0 we have f ′(x) < 0 and for x < 0 we
have f ′(x) > 0. The lemma then allows us to conclude that f has a strict local
maximum at x = 0. •

Next let us prove a simple result that, while not always of great value itself,
leads to the important Mean Value Theorem below.

3.2.18 Theorem (Rolle’s6 Theorem) Let I ⊆ R be an interval, let f : I→ R be continuous, and
suppose that for a, b ∈ I it holds that f|(a, b) is differentiable and that f(a) = f(b). Then
there exists c ∈ (a, b) such that f′(c) = 0.

Proof Since f |[a, b] is continuous, by Theorem 3.1.23 there exists x1, x2 ∈ [a, b] such
that image( f |[a, b]) = [ f (x1), f (x2)]. We have three cases to consider.
1. x1, x2 ∈ bd([a, b]): In this case it holds that f is constant since f (a) = f (b). Thus the

conclusions of the theorem hold for any c ∈ (a, b).
2. x1 ∈ int([a, b]): In this case, f has a local minimum at x1, and so by Theorem 3.2.16(i)

we conclude that f ′(x1) = 0.
3. x2 ∈ int([a, b]): In this case, f has a local maximum at x2, and so by Theorem 3.2.16(i)

we conclude that f ′(x2) = 0. �

Rolle’s Theorem has the following generalisation, which is often quite useful,
since it establishes links between the values of a function and the values of its
derivative.

3.2.19 Theorem (Mean Value Theorem) Let I ⊆ R be an interval, let f : I→ R be continuous,
and suppose that for a, b ∈ I it holds that f|(a, b) is differentiable. Then there exists c ∈ (a, b)
such that

f′(c) =
f(b) − f(a)

b − a
.

Proof Define g : I→ R by

g(x) = f (x) −
f (b) − f (a)

b − a
(x − a).

6Michel Rolle (1652–1719) was a French mathematician whose primary contributions were to
algebra.
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Using the results of Section 3.2.3 we conclude that g is continuous and differentiable
on (a, b). Moreover, direct substitution shows that g(b) = g(a). Thus Rolle’s Theorem
allows us to conclude that there exists c ∈ (a, b) such that g′(c) = 0. However, another
direct substitution shows that g′(c) = f ′(c) − f (b)− f (a)

b−a . �

In Figure 3.8 we give the intuition for Rolle’s Theorem, the Mean Value Theorem,

x

f(x)

a b

f(a) = f(b)

c
x

f(x)

a

f(a)

b

f(b)

c

Figure 3.8 Illustration of Rolle’s Theorem (left) and the Mean
Value Theorem (right)

and the relationship between the two results.
Another version of the Mean Value Theorem relates the values of two functions

with the values of their derivatives.

3.2.20 Theorem (Cauchy’s Mean Value Theorem) Let I ⊆ R be an interval and let f,g: I→
R be continuous, and suppose that for a, b ∈ I it holds that f|(a, b) and g|(a, b) are
differentiable, and that g′(x) , 0 for each x ∈ (a, b). Then there exists c ∈ (a, b) such that

f′(c)
g′(c)

=
f(b) − f(a)
g(b) − g(a)

.

Proof Note that g(b) , g(a) by Rolle’s Theorem, since g′(x) , 0 for x ∈ int(a, b). Let

α =
f (b) − f (a)
g(b) − g(a)

and define h : I → R by h(x) = f (x) − αg(x). Using the results of Section 3.2.3, one
verifies that h is continuous on I and differentiable on (a, b). Moreover, one can also
verify that h(a) = h(b). Thus Rolle’s Theorem implies the existence of c ∈ (a, b) for which
h′(c) = 0. A simple computation verifies that h′(c) = 0 is equivalent to the conclusion
of the theorem. �

We conclude this section with the useful L’Hôpital’s Rule. This rule for finding
limits is sufficiently useful that we state and prove it here in an unusual level of
generality.
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3.2.21 Theorem (L’Hôpital’s7 Rule) Let I ⊆ R be an interval, let x0 ∈ R, and let f,g: I → R
be differentiable functions with g′(x) , 0 for all x ∈ I−{x0}. Then the following statements
hold.

(i) Suppose that x0 is an open right endpoint for I and suppose that either
(a) limx↑x0 f(x) = 0 and limx↑x0 g(x) = 0 or
(b) limx↑x0 f(x) = ∞ and limx↑x0 g(x) = ∞,

and suppose that limx↑x0
f′(x)
g′(x) = s0 ∈ R. Then limx↑x0

f(x)
g(x) = s0.

(ii) Suppose that x0 is an left right endpoint for I and suppose that either
(a) limx↓x0 f(x) = 0 and limx↓x0 g(x) = 0 or
(b) limx↑x0 f(x) = ∞ and limx↓x0 g(x) = ∞,

and suppose that limx↓x0
f′(x)
g′(x) = s0 ∈ R. Then limx↓x0

f(x)
g(x) = s0.

(iii) Suppose that x0 ∈ int(I) and suppose that either
(a) limx→x0 f(x) = 0 and limx→x0 g(x) = 0 or
(b) limx→x0 f(x) = ∞ and limx→x0 g(x) = ∞,

and suppose that limx→x0
f′(x)
g′(x) = s0 ∈ R. Then limx→x0

f(x)
g(x) = s0.

The following two statements which are independent of x0 (thus we ask that g′(x) , 0 for
all x ∈ I) also hold.

(iv) Suppose that I is unbounded on the right and suppose that either
(a) limx→∞ f(x) = 0 and limx→∞ g(x) = 0 or
(b) limx→∞ f(x) = ∞ and limx→∞ g(x) = ∞,

and suppose that limx→∞
f′(x)
g′(x) = s0 ∈ R. Then limx→∞

f(x)
g(x) = s0.

(v) Suppose that I is unbounded on the left and suppose that either
(a) limx→−∞ f(x) = 0 and limx→−∞ g(x) = 0 or
(b) limx→−∞ f(x) = ∞ and limx→−∞ g(x) = ∞,

and suppose that limx→−∞
f′(x)
g′(x) = s0 ∈ R. Then limx→−∞

f(x)
g(x) = s0.

Proof (i) First suppose that limx↑x0 f (x) = 0 and limx↑x0 g(x) = 0 and that s0 ∈ R. We
may then extend f and g to be defined at x0 by taking their values at x0 to be zero,
and the resulting function will be continuous by Theorem 3.1.3. We may now apply
Cauchy’s Mean Value Theorem to assert that for x ∈ I there exists cx ∈ (x, x0) such that

f ′(cx)
g′(cx)

=
f (x0) − f (x)
g(x0) − g(x)

=
f (x)
g(x)

.

Now let ε ∈ R>0 and choose δ ∈ R>0 such that
∣∣∣ f ′(x)

g′(x) − s0
∣∣∣ < ε for x ∈ B(δ, x0) ∩ I. Then,

for x ∈ B(δ, x0) ∩ I we have ∣∣∣∣ f (x)
g(x)
− s0

∣∣∣∣ =
∣∣∣∣ f ′(cx)
g′(cx)

− s0

∣∣∣∣ < ε
7Guillaume François Antoine Marquis de L’Hôpital (1661–1704) was one of the early developers

of calculus.
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since cx ∈ B(δ, x0) ∩ I. This shows that limx↑x0

f (x)
g(x) = s0, as claimed.

Now suppose that limx↑x0 f (x) = ∞ and limx↑x0 g(x) = ∞ and that s0 ∈ R. Let
ε ∈ R>0 and choose δ1 ∈ R>0 such that

∣∣∣ f ′(x)
g′(x) − s0

∣∣∣ < ε
2(1+|s0|)

for x ∈ B(δ1, x0) ∩ I. For
x ∈ B(δ1, x0) ∩ I, by Cauchy’s Mean Value Theorem there exists cx ∈ B(δ1, x0) ∩ I such
that

f ′(cx)
g′(cx)

=
f (x) − f (x − δ1)
g(x) − g(x − δ1)

.

Therefore, ∣∣∣∣ f (x) − f (x − δ1)
g(x) − g(x − δ1)

− s0

∣∣∣∣ < ε
2(1 + |s0|)

for x ∈ B(δ, x0) ∩ I. Now define

h(x) =
1 − f (x−δ1)

f (x)

1 − g(x−δ1)
g(x)

and note that
f (x) − f (x − δ1)
g(x) − g(x − δ1)

= h(x)
f (x)
g(x)

.

Therefore we have ∣∣∣∣h(x)
f (x)
g(x)
− s0

∣∣∣∣ < ε
2(1 + |s0|)

for x ∈ B(δ1, x0) ∩ I. Note also that limx↑x0 h(x) = 1. Thus we can choose δ2 ∈ R>0 such
that |h(x) − 1| < ε

2(1+|s0|)
and h(x) > 1

2 for x ∈ B(δ2, x0) ∩ I. Then define δ = min{δ1, δ2}.
For x ∈ B(δ, x0) ∩ I we then have∣∣∣∣h(x)

( f (x)
g(x)
− s0

)∣∣∣∣ =
∣∣∣∣h(x)

f (x)
g(x)
− h(x)s0

∣∣∣∣
≤

∣∣∣∣h(x)
f (x)
g(x)
− s0

∣∣∣∣ + |(1 − h(x))s0|

<
ε

2(1 + |s0|)
+

ε
2(1 + |s0|)

|s0| =
ε
2
.

Then, finally, ∣∣∣∣ f (x)
g(x)
− s0

∣∣∣∣ < ε
2h(x)

< ε,

for x ∈ B(δ, x0) ∩ I.
Now we consider the situation when s0 ∈ {−∞,∞}. We shall take only the case

of s0 = ∞ since the other follows in a similar manner. We first take the case where
limx↑x0 f (x) = 0 and limx↑x0 g(x) = 0. In this case, for x ∈ I, from the Cauchy Mean Value
Theorem we can find cx ∈ (x, x0) such that

f ′(cx)
g′(cx)

=
f (x)
g(x)

.

Now for M ∈ R>0 we choose δ ∈ R>0 such that for x ∈ B(δ, x0) ∩ I we have f ′(x)
g′(x) > M.

Then we immediately have
f (x)
g(x)

=
f ′(cx)
g′(cx)

> M
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for x ∈ B(δ, x0) ∩ I since cx ∈ B(δ, x0), which gives the desired conclusion.
The final case we consider in this part of the proof is that where s0 = ∞ and

limx↑x0 f (x) = ∞ and limx↑x0 g(x) = ∞. For M ∈ R>0 choose δ1 ∈ R>0 such that
f ′(x)
g′(x) > 2M provided that x ∈ B(δ1, x0) ∩ I. Then, using Cauchy’s Mean Value Theorem,
for x ∈ B(δ1, x0) ∩ I there exists cx ∈ B(δ1, x0) such that

f ′(cx)
g′(cx)

=
f (x) − f (x − δ1)
g(x) − g(x − δ1)

.

Therefore,
f (x) − f (x − δ1)
g(x) − g(x − δ1)

> 2M

for x ∈ B(δ, x0) ∩ I. As above, define

h(x) =
1 − f (x−δ1)

f (x)

1 − g(x−δ1)
g(x)

and note that
f (x) − f (x − δ1)
g(x) − g(x − δ1)

= h(x)
f (x)
g(x)

.

Therefore

h(x)
f (x)
g(x)

> 2M

for x ∈ B(δ1, x0). Now take δ2 ∈ R>0 such that, if x ∈ B(δ2, x0) ∩ I, then h(x) ∈ [ 1
2 , 2], this

being possible since limx↑x0 h(x) = 1. It then follows that

f (x)
g(x)

>
2M
h(x)

> M

for x ∈ B(δ, x0) ∩ I where δ = min{δ1, δ2}.
(ii) This follows in the same manner as part (i).
(iii) This follows from parts (i) and (ii).
(iv) Let us define φ : (0,∞) → (0,∞) by φ(x) = 1

x . Then define Ĩ = φ(I), noting that
Ĩ is an interval having 0 as an open left endpoint. Now define f̃ , g̃ : Ĩ → R by f̃ = f ◦φ
and g̃ = g ◦φ. Using the Chain Rule (Theorem 3.2.13 below) we compute

f̃ ′(x̃) = f ′(φ(x̃))φ′(x̃) = −
f ′( 1

x̃ )

x̃2

and similarly g̃′(x̃) = −
f ′( 1

x̃ )
x̃2 . Therefore, for x̃ ∈ Ĩ,

f ′( 1
x̃ )

g′( 1
x̃ )

=
f̃ ′(x̃)
g̃′(x̃)

.
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and so, using part (ii) (it is easy to see that the hypotheses are verified),

lim
x̃↓0

f ′( 1
x̃ )

g′( 1
x̃ )

= lim
x̃↓0

f̃ ′(x̃)
g̃′(x̃)

=⇒ lim
x→∞

f ′(x)
g′(x)

= lim
x̃↓0

f̃ (x̃)
g̃(x̃)

=⇒ lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

f (x)
g(x)

,

which is the desired conclusion.
(v) This follows in the same manner as part (iv). �

3.2.22 Examples (Uses of L’Hôpital’s Rule)
1. Let I = R and define f , g : I → R by f (x) = sin x and g(x) = x. Note that f

and g satisfy the hypotheses of Theorem 3.2.21 with x0 = 0. Therefore we may
compute

lim
x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g′(x)

=
cos 0

1
= 1.

2. Let I = [0, 1] and define f , g : I → R by f (x) = sin x and g(x) = x2. We can verify
that f and g satisfy the hypotheses of L’Hôpital’s Rule with x0 = 0. Therefore
we compute

lim
x↓0

f (x)
g(x)

= lim
x↓0

f ′(x)
g′(x)

= lim
x↓0

cos x
2x

= ∞.

3. Let I = R>0 and define f , g : I → R by f (x) = ex and g(x) = −x. Note that
limx→∞ f (x) = ∞ and that limx→∞ g(x) = −∞. Thus f and g do not quite satisfy
the hypotheses of part (iv) of Theorem 3.2.21 since limx→∞ g(x) , ∞. However,
the problem is a superficial one, as we now illustrate. Define g̃(x) = −g(x) = x.
Then f and g̃ do satisfy the hypotheses of Theorem 3.2.21(iv). Therefore,

lim
x→∞

f (x)
g̃(x)

= lim
x→∞

f ′(x)
g̃′(x)

= lim
x→∞

ex

1
= ∞,

and so

lim
x→∞

f (x)
g(x)

= lim
x→∞
−

f (x)
g̃(x)

= −∞.

4. Consider the function h : R→ R defined by h(x) = x
√

1+x2
. We wish to determine

limx→∞ h(x), if this limit indeed exists. We will try to use L’Hôpital’s Rule with
f (x) = x and g(x) =

√

1 + x2. First, one should check that f and g satisfy
the hypotheses of the theorem taking x0 = 0. One can check that f and g are
differentiable on I and that g′(x) is nonzero for x ∈ I\{x0}. Moreover, limx→0 f (x) =

0 and limx→0 g(x) = 0. Thus it only remains to check that limx→0
f ′(x)
g′(x) ∈ R. To this

end, one can easily compute that

f ′(x)
g′(x)

=
g(x)
f (x)

,
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which immediately implies that an application of L’Hôpital’s Rule is destined
to fail. However, the actual limit limx→∞ h(x) does exist, however, and is readily
computed, using the definition of limit, to be 1. Thus the converse of L’Hôpital’s
Rule does not hold. •

3.2.5 Monotonic functions and differentiability

In Section 3.1.5 we considered the notion of monotonicity, and its relationship
with continuity. In this section we see how monotonicity is related to differentia-
bility.

For functions that are differentiable, the matter of deciding on their monotonicity
properties is straightforward.

3.2.23 Proposition (Monotonicity for differentiable functions) For I ⊆ R an interval and
f : I→ R a differentiable function, the following statements hold:

(i) f is constant if and only if f′(x) = 0 for all x ∈ I;
(ii) f is monotonically increasing if and only f′(x) ≥ 0 for all x ∈ I;
(iii) f is strictly monotonically increasing if and only f′(x) > 0 for all x ∈ I;
(iv) f is monotonically decreasing if and only if f′(x) ≤ 0 for all x ∈ I.
(v) f is strictly monotonically decreasing if and only if f′(x) < 0 for all x ∈ I.

Proof In each case the “only if” assertions follow immediately from the definition of
the derivative. To prove the “if” assertions, let x1, x2 ∈ I with x1 < x2. By the Mean
Value Theorem there exists c ∈ [x1, x2] such that f (x1)− f (x2) = f ′(c)(x1−x2). The result
follows by considering the three cases of f ′(c) = 0, f ′(c) ≤ 0, f ′(c) > 0, f ′(c) ≤ 0, and
f ′(c) < 0, respectively. �

The previous result gives the relationship between the derivative and mono-
tonicity. Combining this with Theorem 3.1.30 which relates monotonicity with
invertibility, we obtain the following characterisations of the derivative of the in-
verse function.

3.2.24 Theorem (Inverse Function Theorem for R) Let I ⊆ J be an interval, let x0 ∈ I, and
let f : I→ J = image(f) be a continuous, strictly monotonically increasing function that is
differentiable at x0 and for which f′(x0) , 0. Then f−1 : J → I is differentiable at f(x0) and
the derivative is given by

(f−1)′(f(x0)) =
1

f′(x0)
.

Proof From Theorem 3.1.30 we know that f is invertible. Let y0 = f (x0), let y1 ∈ J,
and define x1 ∈ I by f (x1) = y1. Then, if x1 , x0,

f−1(y1) − f−1(y0)
y1 − y0

=
x1 − x0

f (x1) − f (x0)
.

Therefore,

( f−1)′(y0) = lim
y1→J y0

f−1(y1) − f−1(y0)
y1 − y0

= lim
x1→Ix0

x1 − x0

f (x1) − f (x0)
=

1
f ′(x0)

,

as desired. �
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3.2.25 Corollary (Alternate version of Inverse Function Theorem) Let I ⊆ R be an
interval, let x0 ∈ I, and let f : I → R be a function of class C1 such that f′(x0) , 0. Then
there exists a neighbourhood U of x0 in I and a neighbourhood V of f(x0) such that f|U is
invertible, and such that (f|U)−1 is differentiable, and the derivative is given by

((f|U)−1)′(y) =
1

f′(f−1(y))

for each y ∈ V.
Proof Since f ′ is continuous and is nonzero at x0, there exists a neighbourhood U of
x0 such that f ′(x) has the same sign as f ′(x0) for all x ∈ U. Thus, by Proposition 3.2.23,
f |U is either strictly monotonically increasing (if f ′(x0) > 0) or strictly monotonically
decreasing (if f ′(x0) < 0). The result now follows from Theorem 3.2.24. �

For general monotonic functions, Proposition 3.2.23 turns out to be “almost”
enough to characterise them. To understand this, we recall from Section 2.5.6 the
notion of a subset of R of measure zero. With this recollection having been made,
we have the following characterisation of general monotonic functions.

3.2.26 Theorem (Characterisation of monotonic functions II) If I ⊆ R is an interval and
if f : I → R is either monotonically increasing (resp. monotonically decreasing), then f is
differentiable almost everywhere, and f′(x) ≥ 0 (resp. f′(x) ≤ 0) at all points x ∈ I where f
is differentiable.

Proof We first prove a technical lemma.

1 Lemma If g: [a, b]→ R has the property that, for each x ∈ [a, b], the limits g(x+) and g(x−)
exist whenever they are defined as limits in [a, b]. If we define

S = {x ∈ [a, b] | there exists x′ > x such that g(x′) > max{g(x−),g(x),g(x+)}},

then S is a disjoint union of a countable collection {Iα | α ∈ A} of intervals that are open as
subsets of [a, b] (cf. the beginning of Section 3.1.1).

Proof Let x ∈ S. We have three cases.
1. There exists x′ > x such that g(x′) > g(x−), and g(x−) ≥ g(x) and g(x−) ≥ g(x+):

Define gx,−, gx,+ : [a, b]→ R by

gx,−(y) =

g(y), y , 1,
g(x−), y = x,

gx,+(y) =

g(y), y , 1,
g(x+), y = x.

Since the limit g(x−) exists, gx,−|[a, x] is continuous at x by Theorem 3.1.3. Since
g(x′) > gx,−(x), there exists ε1 ∈ R>0 such that g(x′) > gx,−(y) = g(y) for all y ∈
(x − ε1, x). Now note that g(x′) > g(x−) ≥ gx,+(x). Arguing similarly to what we
have done, there exists ε2 ∈ R>0 such that g(x′) > gx,+(y) = g(y) for all y ∈ (x, x+ε2).
Let ε = min{ε1, ε2}. Since g(x′) > g(x−) ≥ g(x), it follows that g(x′) > g(y) for all
y ∈ (x − ε, x + ε), so we can conclude that S is open.

2. There exists x′ > x such that g(x′) > g(x), and g(x) ≥ g(x−) and g(x) ≥ g(x+): Define
gx,− and gx,+ as above. Then, since g(x′) > g(x) ≥ g(x−) and g(x′) > g(x) ≥ g(x+),
we can argue as in the previous case that there exists ε ∈ R>0 such that g(x′) > g(y)
for all y ∈ (x − ε, x + ε). Thus S is open.
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3. There exists x′ > x such that g(x′) > g(x+), and g(x+) ≥ g(x) and g(x+) ≥ g(x−):
Here we can argue in a manner entirely similar to the first case that S is open.

The preceding arguments show that S is open, and so by Proposition 2.5.6 it is a
countable union of open intervals. H

Now define

Λl(x) = lim sup
h↓0

f (x − h) − f (x)
−h

λl(x) = lim inf
h↓0

f (x − h) − f (x)
−h

Λr(x) = lim sup
h↓0

f (x + h) − f (x)
h

λr(x) = lim inf
h↓0

f (x + h) − f (x)
h

.

If f is differentiable at x then these four numbers will be finite and equal. We shall
show that

1. Λr(x) < ∞ and
2. Λr(x) ≤ λl(x)

for almost every x ∈ [a, b]. Since the relations

λl ≤ Λl ≤ λr ≤ Λr

hold due to monotonicity of f , the differentiability of f for almost all x will then follow.
For 1, if M ∈ R>0 denote

SM = {x ∈ [a, b] | Λr(x) > M}.

Thus, for x0 ∈ SM, there exists x > x0 such that

f (x) − f (x0)
x − x0

> M.

Defining gM(x) = f (x) −Mx this asserts that gM(x) > gM(x0). The function gM satisfies
the hypotheses of Lemma 1 by part (i). This means that SM is contained in a finite or
countable disjoint union of intervals {Iα | α ∈ A}, open in [a, b], for which

gM(aα) ≤ max{gM(bα−), gM(bα), gM(bα+)}, α ∈ A,

where aα and bα are the left and right endpoints, respectively, for Iα, α ∈ A. In particular,
gM(aα) ≤ gM(bα). A trivial manipulation then gives

M(bα − aα) ≤ f (bα) − f (aα), α ∈ A.

We have
M

∑
α∈A

|bα − aα| ≤
∑
α∈A

| f (bα) − f (aα)| ≤ f (b) − f (a)

since f is monotonically increasing. Since f is bounded, this shows that as M→∞ the
length of the open intervals {(aα, bα) | α ∈ A} covering SM must go to zero. This shows
that the set of points where 1 holds has zero measure.

Now we turn to 2. Let 0 < m < M, define gm(x) = − f (x)+mx and gM(x) = f (x)−Mx.
Also define

Sm = {x ∈ [a, b] | λl(x) < m}.



2016/11/26 3.2 Differentiable R-valued functions on R 186

For x0 ∈ Sm there exists x < x0 such that

f (x) − f (x0)
x − x0

< m,

which is equivalent to gm(x) > gm(x0). Therefore, by Lemma 1, note that Sm is contained
in a finite or countable disjoint union of intervals {Iα | α ∈ A}, open in [a, b]. Denote by
aα and bα the left and right endpoints, respectively, for Iα for α ∈ A. For α ∈ A denote

Sα,M = {x ∈ [aα, bα] | Λr(x) > M},

and arguing as we did in the proof that 1 holds almost everywhere, denote by {Iα,β | β ∈
Bα} the countable collection of subintervals, open in [a, b], of (aα, bα) that contain Sα,M.
Denote by aα,β and bα,β the left and right endpoints, respectively, of Iα,β for α ∈ A and
β ∈ Bα. Note that the relations

gm(aα) ≤ max{gm(bα−), gm(bα), gm(bα+)}, α ∈ A,
gM(aα,β) ≤ max{gM(bα,β−), gM(bα,β), gM(bα,β+)}, α ∈ A, β ∈ Bα

hold. We then may easily compute

f (bα) − f (aα) ≤ m(bα − aα), α ∈ A,
f (bα,β) − f (aα,β) ≥M(bα,β − bα,β), α ∈ A, β ∈ Aα.

Therefore, for each α ∈ A,

M
∑
β∈Aα

|bα,β − aα,β| ≤
∑
β∈Aα

| f (bα,β − aα,β)| ≤ f (bα) − f (aα) ≤ m(bα − aα).

This then gives
M

∑
α∈A

∑
β∈Aα

|bα,β − aα,β| ≤ m
∑
α∈A

|bα − aα|,

or Σ2 ≤
m
MΣ1, where

Σ1 =
∑
α∈A

∑
βα∈Kα

|bα,β − aα,β|, Σ2 =
∑
α∈A

|bα − aα|.

Now, this process can be repeated, defining

Sα,β,m = {x ∈ [aα,β, bα,β] | λl(x) < m},

and so on. We then generate a sequence of finite or countable disjoint intervals of total
length Σα and satisfying

Σ2α ≤
m
M

Σ2α−1 ≤
( m
M

)α
Σ1, α ∈ A.

It therefore follows that limα→∞ Σα = 0. Thus the set of points

SM,m = {x ∈ [a, b] | m < λl(x) and Λr(x) > M}
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is contained in a set of zero measure provided that m < M. Now note that

{x ∈ [a, b] | λl(x) ≥ Λr(x)} ⊆
⋃
{SM,m | m,M ∈ Q, m < M}.

The union on the left is a countable union of sets of zero measure, and so has zero
measure itself (by Exercise 2.5.9). This shows that f is differentiable on a set whose
complement has zero measure.

To show that f ′(x) ≥ 0 for all points x at which f is differentiable, suppose the
converse. Thus suppose that there exists x ∈ [a, b] such that f ′(x) < 0. This means that
for ε sufficiently small and positive,

f (x + ε) − f (x)
ε

< 0 =⇒ f (x + ε) − f (x) < 0,

which contradicts the fact that f is monotonically increasing. This completes the proof
of the theorem. �

Let us give two examples of functions that illustrate the surprisingly strange
behaviour that can arise from monotonic functions. These functions are admittedly
degenerate, and not something one is likely to encounter in applications. However,
they do show that one cannot strengthen the conclusions of Theorem 3.2.26.

Our first example is one of the standard “peculiar” monotonic functions, and its
construction relies on the middle-thirds Cantor set constructed in Example 2.5.39.

3.2.27 Example (A continuous increasing function with an almost everywhere zero
derivative) Let Ck, k ∈ Z>0, be the sets, comprised of collections of disjoint closed in-
tervals, used in the construction of the middle-thirds Cantor set of Example 2.5.39.
Note that, for x ∈ [0, 1], the set [0, x] ∩ Ck consists of a finite number of inter-
vals. Let gk : [0, 1] → [0, 1] be defined by asking that gC,k(x) be the sum of the
lengths of the intervals comprising [0, x] ∩ Ck. Then define fC,k : [0, 1] → [0, 1] by

fC,k(x) =
(

3
2

)k
gC,k(x). Thus fC,k is a function that is constant on the complement to the

closed intervals comprising Ck, and is linear on those same closed intervals, with
a slope determined in such a way that the function is continuous. We then define
fC : [0, 1] → [0, 1] by fC(x) = limk→∞ fC,k(x). In Figure 3.9 we depict fC. The reader
new to this function should take the requisite moment or two to understand our
definition of fC, perhaps by sketching a couple of the functions fC,k, k ∈ Z>0.

Let us record some properties of the function fC, which is called the Cantor
function or the Devil’s staircase.

1 Lemma fC is continuous.
Proof We prove this by showing that the sequence of functions ( fC,k)k∈Z>0 converges
uniformly, and then using Theorem 3.5.8 to conclude that the limit function is
continuous. Note that the functions fC,k and fC,k+1 differ only on the closed intervals
comprising Ck. Moreover, if Jk, j, k ∈ Z≥0, j ∈ {1, . . . , 2k

− 1}, denotes the set of open
intervals forming [0, 1] \ Ck, numbered from left to right, then the value of fC,k on
Jk, j is j2−k. Therefore,

sup{| fC,k+1(x) − fC,k(x)| | x ∈ [0, 1]} < 2−k, k ∈ Z≥0.
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Figure 3.9 A depiction of the Cantor function

This implies that ( fC,k)k∈Z>0 is uniformly convergent as in Definition 3.5.4. Thus
Theorem 3.5.8 gives continuity of fC, as desired. H

2 Lemma fC is differentiable at all points in [0, 1] \ C, and its derivative, where it exists, is
zero.

Proof Since C is constructed as an intersection of the closed sets Ck, and since such
intersections are themselves closed by Exercise 2.5.1, it follows that [0, 1] \ C is
open. Thus if x ∈ [0, 1] \ C, there exists ε ∈ R>0 such that B(ε, x) ⊆ [0, 1] \ C. Since
B(ε, x) contains no endpoints for intervals from the sets Ck, k ∈ Z>0, it follows that
fC,k|B(ε, x) is constant for sufficiently large k. Therefore fC|B(ε, x) is constant, and it
then follows that fC is differentiable at x, and that f ′C(x) = 0. H

In Example 2.5.39 we showed that C has measure zero. Thus we have a
continuous, monotonically increasing function from [0, 1] to [0, 1] whose derivative
is almost everywhere zero. It is perhaps not a priori obvious that such a function
can exist, since one’s first thought might be that zero derivative implies a constant
function. The reasons for the failure of this rule of thumb in this example will
not become perfectly clear until we examine the notion of absolute continuity in
Section 5.9.6. •

The second example of a “peculiar” monotonic function is not quite as standard
in the literature, but is nonetheless interesting since it exhibits somewhat different
oddities than the Cantor function.

3.2.28 Example (A strictly increasing function, discontinuous on the rationals, with
an almost everywhere zero derivative) We define a strictly monotonically in-
creasing function fQ : R → R as follows. Let (q j) j∈Z>0 be an enumeration of the
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rational numbers and for x ∈ R define

I(x) = { j ∈ Z>0 | q j < x}.

Now define
fQ(x) =

∑
j∈I(x)

1
2 j .

Let us record the properties of fQ in a series of lemmata.

1 Lemma limx→−∞ fQ(x) = 0 and limx→∞ fQ(x) = 1.

Proof Recall from Example 2.4.2–1 that
∑
∞

j=1
1
2 j = 1. Let ε ∈ R>0 and choose N ∈

Z>0 such that
∑
∞

j=N+1
1
2 j < ε. Now choose M ∈ R>0 such that {q1, . . . , qN} ⊆ [−M,M].

Then, for x < M we have

fQ(x) =
∑
j∈I(x)

1
2 j =

∞∑
j=1

1
2 j −

∑
j∈Z>0\I(x)

1
2 j ≤

∞∑
j=1

1
2 j −

N∑
j=1

1
2 j < ε.

Also, for x > M we have

fQ(x) =
∑
j∈I(x)

1
2 j ≥

N∑
j=1

1
2 j > 1 − ε.

Thus limx→−∞ fQ(x) = 0 and limx→∞ fQ(x) = 1. H

2 Lemma fQ is strictly monotonically increasing.

Proof Let x, y ∈ R with x < y. Then, by Corollary 2.2.16, there exists q ∈ Q such
that x < q < y. Let j0 ∈ Z>0 have the property that q = q j0 . Then

fQ(y) =
∑
j∈I(y)

1
2 j ≥

∑
j∈I(x)

1
2 j +

1
2 j0

> fQ(x),

as desired. H

3 Lemma fQ is discontinuous at each point in Q.

Proof Let q ∈ Q and let x > q. Let j0 ∈ Z>0 satisfy q = q j0 . Then

fQ(x) =
∑
j∈I(x)

1
2 j ≥

1
2 j0

+
∑
j∈I(q)

1
2 j =

1
2 j0

+
∑
j∈I(q)

1
2 j .

Therefore, limx↓q fQ(x) ≥ 1
2 j0

+ fQ(q), implying that fQ is discontinuous at q by
Theorem 3.1.3. H
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4 Lemma fQ is continuous at each point in R \Q.

Proof Let x ∈ R \ Q and let ε ∈ R>0. Take N ∈ Z>0 such that
∑
∞

j=N+1
1
2 j < ε and

define δ ∈ R>0 such that B(δ, x) ∩ {q1, . . . , qN} = ∅ (why is this possible?). Now let

I(δ, x) = { j ∈ Z>0 | q j ∈ B(δ, x)}

and note that, for y ∈ B(δ, x) with x < y, we have

fQ(y) − fQ(x) =
∑
j∈I(y)

1
2 j −

∑
j∈I(x)

1
2 j ≤

∑
j∈I(δ,x)

1
2 j =

∞∑
j=1

1
2 j −

∑
Z>0\I(δ,x)

1
2 j

≤

∞∑
j=1

1
2 j −

N∑
j=1

1
2 j =

∞∑
j=N+1

1
2 j < ε.

A similar argument holds for y < x giving fQ(x) − fQ(y) < ε in this case. Thus
| fQ(y) − fQ(x)| < ε for |y − x| < δ, thus showing continuity of f at x. H

5 Lemma The set {x ∈ R | f′
Q

(x) , 0} has measure zero.

Proof The proof relies on some concepts from Section 3.5. For k ∈ Z>0 define
fQ,k : R→ R by

fQ,k(x) =
∑

j∈I(x)∩{1,...,k}

1
2 j .

Note that ( fQ,k)k∈Z>0 is a sequence of monotonically increasing functions with the
following properties:

1. limk→∞ fQ,k(x) = fQ(x) for each x ∈ R;

2. the set {x ∈ R | f ′
Q,k(x) , 0} is finite for each k ∈ Q.

The result now follows from Theorem 3.5.25. H

Thus we have an example of a strictly monotonically increasing function whose
derivative is zero almost everywhere. Note that this function also has the feature
that in any neighbourhood of a point where it is differentiable, there lie points
where it is not differentiable. This is an altogether peculiar function. •

3.2.6 Convex functions and differentiability

Let us now return to our consideration of convex functions introduced in Sec-
tion 3.1.6. Here we discuss the differentiability properties of convex functions. The
following notation for a function f : I→ R will be convenient:

f ′(x+) = lim
ε↓0

f (x + ε) − f (x)
ε

, f ′(x−) = lim
ε↓0

f (x) − f (x − ε)
ε

,

provided that these limits exist.
With this notation, convex functions have the following properties.
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3.2.29 Proposition (Properties of convex functions II) For an interval I ⊆ R and for a
convex function f : I→ R, the following statements hold:

(i) if I is open then the limits f′(x+) and f′(x−) exist and f′(x−) ≤ f′(x+) for each x ∈ I;
(ii) if I is open then the functions

I 3 x 7→ f′(x+), I 3 x 7→ f′(x−)

are monotonically increasing, and strictly monotonically increasing if f is strictly
convex;

(iii) if I is open and if x1, x2 ∈ I satisfy x1 < x2, then f′(x1+) ≤ f′(x2−);
(iv) f is differentiable except at a countable number of points in I.

Proof (i) Since I is open there exists ε0 ∈ R>0 such that [x, x + ε0) ⊆ I. Let (ε j) j∈Z>0

be a sequence in (0, ε0) converging to 0 and such that ε j+1 < ε j for every j ∈ Z>0.
Then the sequence (s f (x, x + ε j)) j∈Z>0 is monotonically decreasing. This means that, by
Lemma 3.1.33,

f (x + ε j+1) − f (x)
ε j+1

≤
f (x + ε j) − f (x)

ε j

for each j ∈ Z>0. Moreover, if x′ ∈ I satisfies x′ < x then we have s f (x′, x) ≤ s f (x, x + ε j)
for each j ∈ Z>0. Thus the sequence (ε−1

j ( f (x + ε j) − f (x))) j∈Z>0 is decreasing and
bounded from below. Thus it must converge, cf. Theorem 2.3.8.

The proof for the existence of the other asserted limit follows that above, mutatis
mutandis.

To show that f ′(x−) ≤ f ′(x+), note that, for all ε sufficiently small,

f (x) − f (x − ε)
ε

= s f (x − ε, x) ≤ s f (x, x + ε) =
f (x + ε) − f (x)

ε
.

Taking limits as ε ↓ 0 gives the desired inequality.
(ii) For x1, x2 ∈ I with x1 < x2 we have

f ′(x1+) = lim
ε↓0

s f (x1, x1 + ε) ≤ lim
ε↓0

s f (x2, x2 + ε) = f ′(x2+),

using Lemma 3.1.33. A similar computation, mutatis mutandis, shows that the other
function in this part of the result is also monotonically increasing. Moreover, if f is
strictly convex that the inequalities above can be replaced with strict inequalities by
(3.2). From this we conclude that x 7→ f ′(x+) and x 7→ f ′(x−) are strictly monotonically
increasing.

(iii) For ε ∈ R>0 sufficiently small we have

x1 + ε < x2 − ε.

For all such sufficiently small ε we have

f (x1 + ε) − f (x1)
ε

= s f (x1, x1 + ε) ≤ s f (x2 − ε, x2) =
f (x2) − f (x2 − ε)

ε

by Lemma 3.1.33. Taking limits as ε ↓ 0 gives this part of the result.
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(iv) Let A f be the set of points in I where f is not differentiable. Note that

f (x) − f (x − ε)
ε

= s f (x − ε, x) ≤ s f (x, x + ε) =
f (x + ε) − f (x)

ε

by Lemma 3.1.33. Therefore, if x ∈ A f , then f ′(x−) < f ′(x+). We define a map
φ : A f → Q as follows. If x ∈ A f we use the Axiom of Choice and Corollary 2.2.16 to
select φ(x) ∈ Q such that f ′(x−) < φ(x) < f ′(x+). We claim that φ is injective. Indeed,
if x, y ∈ A f are distinct (say x < y) then, using parts (ii) and (iii),

f ′(x−) < φ(x) < f ′(x+) < f ′(y−) < φ(y) < f ′(y+).

Thus φ(x) < φ(y) and so φ is injective as desired. Thus A f must be countable. �

For functions that are sufficiently differentiable, it is possible to conclude con-
vexity from properties of the derivative.

3.2.30 Proposition (Convexity and derivatives) For an interval I ⊆ R and for a function
f : I→ R the following statements hold:

(i) for each x1, x2 ∈ I with x1 , x2 we have

f(x2) ≥ f(x1) + f′(x1+)(x2 − x1), f(x2) ≥ f(x1) + f′(x1−)(x2 − x1);

(ii) if f is differentiable, then f is convex if and only if f′ is monotonically increasing;
(iii) if f is differentiable, then f is strictly convex if and only if f′ is strictly monotonically

increasing;
(iv) if f is twice continuously differentiable, then it is convex if and only if f′′(x) ≥ 0 for

every x ∈ I;
(v) if f is twice continuously differentiable, then it is strictly convex if and only if

f′′(x) > 0 for every x ∈ I.
Proof (i) Suppose that x1 < x2. Then, for ε ∈ R>0 sufficiently small,

f (x1 + ε) − f (x1)
ε

≤
f (x2) − f (x1)

x2 − x1

by Lemma 3.1.33. Thus, taking limits as ε ↓ 0,

f ′(x1+) ≤
f (x2) − f (x1)

x2 − x1
,

and rearranging gives
f (x2) ≥ f (x1) + f ′(x1+)(x2 − x1).

Since we also have f ′(x1−) ≤ f ′(x1+) by Proposition 3.2.29(i), we have both of the
desired inequalities in this case.

Now suppose that x2 < x1. Again, for ε ∈ R>0 sufficiently small, we have

f (x1 + ε) − f (x1)
ε

≥
f (x1) − f (x2)

x1 − x2
,
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and taking the limit as ε ↓ 0 gives

f ′(x1+) ≥
f (x1) − f (x2)

x1 − x2
.

Rearranging gives
f (x2) ≥ f (x1) + f ′(x1+)(x2 − x1)

and since f ′(x1−) ≤ f ′(x1+) the desired inequalities follow in this case.
(ii) From Proposition 3.2.29(ii) we deduce that if f is convex and differentiable then

f ′ is monotonically increasing. Conversely, suppose that f is differentiable and that f ′

is monotonically increasing. Let x1, x2 ∈ I satisfy x1 < x2 and let s ∈ (0, 1). By the Mean
Value Theorem there exists c1, c2 ∈ I satisfying

x1 < c1 < (1 − s)x1 + sx2 < d1 < x2

such that

f ((1 − s)x1 + sx2) − f (x1)
(1 − s)x1 + sx2 − x1

= f ′(c1) ≤ f ′(c2) =
f (x2) − f ((1 − s)x1 + sx2)

x2 − ((1 − s)x1 + sx2)
. (3.9)

Rearranging, we get

f ((1 − s)x1 + sx2) − f (x1)
s(x2 − x1)

≤
f (x2) − f ((1 − s)x1 + sx2)

(1 − s)(x2 − x1)
,

and further rearranging gives

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2),

and so f is convex.
(iii) If f is strictly convex, then from Proposition 3.2.29 we conclude that f ′ is strictly

monotonically increasing. Next suppose that f ′ is strictly monotonically decreasing
and let x1, x2 ∈ I satisfy x1 < x2 and let s ∈ (0, 1). The proof that f is strictly convex
follows as in the preceding part of the proof, noting that, in (3.9), we have f ′(c1) < f ′(c2).
Carrying this strict inequality through the remaining computations shows that

f ((1 − s)x1 + sx2) ≤ (1 − s) f (x1) + s f (x2),

giving strict convexity of f .
(iv) If f ′′ is nonnegative, then f ′ is monotonically increasing by Proposition 3.2.23.

The result now follows from part (ii).
(iv) If f ′′ is positive, then f ′ is strictly monotonically increasing by Proposi-

tion 3.2.23. The result now follows from part (iii). �

Let us consider a few examples illustrating how convexity and differentiability
are related.
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3.2.31 Examples (Convex functions and differentiability)
1. The convex function nx0 : R → R defined by nx0(x) = |x − x0| is differentiable

everywhere except for x = x0. But at x = x0 the derivatives from the left and
right exist. Moreover, f ′(x) = −1 for x < x0 and f ′(x) = 1 for x > x0. Thus we
see that the derivative is monotonically increasing, although it is not defined
everywhere.

2. As we showed in Proposition 3.2.29(iv), a convex function is differentiable
except at a countable set of points. Let us show that this conclusion cannot be
improved. Let C ⊆ R be a countable set. We shall construct a convex function
f : R→ R whose derivative exists on R \C and does not exist on C. In case C is
finite, we write C = {x1, . . . , xk}. Then one verifies that the function f defined by

f (x) =

k∑
j=1

|x − x j|

is verified to be convex, being a finite sum of convex functions (see Proposi-
tion 3.1.39). It is clear that f is differentiable at points in R \ C and is not
differentiable at points in C. Now suppose that C is not finite. Let us write
C = {x j} j∈Z>0 , i.e., enumerate the points in C. Let us define c j = (2 j max{1, |x j|})−1,
j ∈ Z>0, and define f : R→ R by

f (x) =

∞∑
j=1

c j|x − x j|.

We shall prove that this function is well-defined, convex, differentiable at points
in R \ C, and not differentiable at points in C. In proving this, we shall make
reference to some results we have not yet proved.
First let us show that f is well-defined.

1 Lemma For every compact subset K ⊆ R, the series

∞∑
j=1

cj|x − xj|

converges uniformly on K (see Section 3.5.2 for uniform convergence).
Proof Let K ⊆ R and let R ∈ R>0 be large enough that K ⊆ [−R,R]. Then, for
x ∈ K we have

|c j|x − x j|| ≤ c j(|x| + |x j|) ≤
R + 1

2 j .

By the Weierstrass M-test (Theorem 3.5.15 below) and Example 2.4.2–1 the
lemma follows. H

It follows immediately from the lemma that the series defining f converges
pointwise, and so f is well-defined, and is moreover convex by Theorem 3.5.26.
Now we show that f is differentiable at points in R \ C.
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2 Lemma The function f is differentiable at every point in R \ C.

Proof Let us denote g j(x) = c j|x−x j|. Let x0 ∈ R\C and define, for each j ∈ Z>0,

h j,x0 =


g j(x)−g j(x0)

x−x0
, x , x0,

g′j(x0), x = x0,

noting that the functions g j, j ∈ Z>0, are differentiable at points in R \ C.
Let j ∈ Z. We claim that if x0 , x j then

|h j,x0(x)| ≤
3
2 j (3.10)

for all x ∈ R. We consider three cases.

(a) x = x0: Note that g j is differentiable at x = x0 and that |g′j(x0)| = c j ≤
1
2 j <

3
2 j .

Thus the estimate (3.10) holds when x = x0.
(b) x , x0 and (x − x j)(x0 − x j) > 0: We have

|h j,x0(x)| = c j

∣∣∣∣ (x − x j) − (x0 − x j)
x − x0

∣∣∣∣ = a j ≤
1
2 j <

3
2 j ,

giving (3.10) in this case.
(c) x , x0 and (x − x j)(x0 − x j) < 0: We have

|h j,x0(x)| = c j

∣∣∣∣ (x − x j) − (x j − x0)
x − x0

∣∣∣∣ = c j

∣∣∣∣1 +
2(x0 − x j)

x0 − x

∣∣∣∣ ≤ 1
2 j

∣∣∣∣1 +
2(x0 − x j)

x0 − x

∣∣∣∣.
Since (x−x j) and x0−x j have opposite sign, this implies that either (1) x < x j

and x0 > x j or (2) x > x j and x0 < x j. In either case, |x0 − x j| < |x0 − x|. This,
combined with our estimate above, gives (3.10) in this case.

Now, given (3.10), we can use the Weierstrass M-test (Theorem 3.5.15 below)
and Example 2.4.2–1 to conclude that

∑
∞

j=1 h j,x0 converges uniformly on R for
each x0 ∈ R \ C.
Now we prove that f is differentiable at x0 ∈ R \ C. If x , x0 then the definition
of the functions h j,x0 , j ∈ Z>0, gives

f (x) − f (x0)
x − x0

=

∞∑
j=1

h j,x0(x),

the latter sum making sense since we have shown that it converges uniformly.
Moreover, since the functions g j, j ∈ Z>0, are differentiable at x0, it follows that,
for each j ∈ Z>0,

lim
x→x0

h j,x0(x) = lim
x→x0

g j(x) − g j(x0)
x − x0

= g′j(x0) = h j,x0(x0).
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That is, h j,x0 is continuous at x0. It is clear that h j,x0 is continuous at all x , x0.
Thus, since

∑
∞

j=1 h j,x0 converges uniformly, the limit function is continuous by
Theorem 3.5.8. Thus we have

lim
x→x0

f (x) − f (x0)
x − x0

= lim
x→x0

∞∑
j=1

h j,x0(x) =

∞∑
j=1

h j,x0(x0) =

∞∑
j=1

g′j(x0).

This gives the desired differentiability since the last series converges. H

Finally, we show that f is not differentiable at points in C.

3 Lemma The function f is not differentiable at every point in C.

Proof For k ∈ Z>0, let us write

f (x) = gk(x) +
∑
j=1
j,k

g j(x)

︸   ︷︷   ︸
f j(x)

.

The arguments from the proof of the preceding lemma can be applied to show
that the function f j defined by the sum on the right is differentiable at xk. Since
gk is not differentiable at xk, we conclude that f cannot be differentiable at xk by
Proposition 3.2.10. H

This shows that the conclusions of Proposition 3.2.29(iv) cannot generally be
improved. •

3.2.7 Piecewise differentiable functions

In Section 3.1.7 we considered functions that were piecewise continuous. In this
section we consider a class of piecewise continuous functions that have additional
properties concerning their differentiability. We let I ⊆ R be an interval with
f : I → R a function. In Section 3.1.7 we defined the notation f (x−) and f (x+).
Here we also define

f ′(x−) = lim
ε↓0

f (x − ε) − f (x−)
−ε

, f ′(x+) = lim
ε↓0

f (x + ε) − f (x+)
ε

.

These limits, of course, may fail to exist, or even to make sense if x ∈ bd(I).
Now, recalling the notion of a partition from Definition 2.5.7, we make the

following definition.

3.2.32 Definition (Piecewise differentiable function) A function f : [a, b] → R is piece-
wise differentiable if there exists a partition P = (I1, . . . , Ik), with EP(P) =
(x0, x1, . . . , xk), of [a, b] with the following properties:

(i) f | int(I j) is differentiable for each j ∈ {1, . . . , k};
(ii) for j ∈ {1, . . . , k − 1}, the limits f (x j+), f (x j−), f ′(x j+), and f ′(x j−) exist;
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(iii) the limits f (a+), f (b−), f ′(a+), and f ′(b−) exist. •

It is evident that a piecewise differentiable function is piecewise continuous. It
is not surprising that the converse is not true, and a simple example of this will be
given in the following collection of examples.

3.2.33 Examples (Piecewise differentiable functions)
1. Let I = [−1, 1] and define f : I→ R by

f (x) =

1 + x, x ∈ [−1, 0],
1 − x, (0, 1].

One verifies that f is differentiable on (−1, 0) and (0, 1). Moreover, we compute
the limits

f (−1+) = 0, f ′(−1+) = 1, f (1−) = 0, f ′(1−) = −1,
f (0−) = 1, f (0+) = 1, f ′(0−) = 1, f ′(0+) = −1.

Thus f is piecewise differentiable. Note that f is also continuous.
2. Let I = [−1, 1] and define f : I → R by f (x) = sign(x). On (−1, 0) and (0, 1) we

note that f is differentiable. Moreover, we compute

f (−1+) = −1, f ′(−1+) = 0, f (1−) = 1, f ′(1−) = 0,
f (0−) = −1, f (0+) = 1, f ′(0−) = 0, f ′(0+) = 0.

Note that it is important here to not compute the limits f ′(0−) and f ′(0+) using
the formulae

lim
ε↓0

f (0 − ε) − f (0)
−ε

, lim
ε↓0

f (0 + ε) − f (0)
ε

.

Indeed, these limits do not exist, where as the limits f ′(0−) and f ′(0+) do exist.
In any event, f is piecewise differentiable, although it is not continuous.

3. Let I = [0, 1] and define f : I → R by f (x) =
√

x(1 − x). On (0, 1), f is differen-
tiable. Also, the limits f (0+) and f (1−) exist. However, the limits f ′(0+) and
f ′(1−) do not exist, as we saw in Example 3.2.3–3. Thus f is not piecewise
differentiable. However, it is continuous, and therefore piecewise continuous,
on [0, 1]. •

3.2.8 Notes

It was Weierstrass who first proved the existence of a continuous but nowhere
differentiable function. The example Weierstrass gave was

f̃ (x) =

∞∑
j=0

bn cos(anπx),

where b ∈ (0, 1) and a satisfies ab > 3
2π+ 1. It requires a little work to show that this

function is nowhere differentiable. The example we give as Example 3.2.9 is fairly
simple by comparison, and is taken from the paper of JM:53.

Example 3.2.31–2 if from [SS/EES:04]
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Exercises

3.2.1 Let I ⊆ R be an interval and let f , g : I → R be differentiable. Is it true that
the functions

I 3 x 7→ min{ f (x), g(x)} ∈ R, I 3 x 7→ max{ f (x), g(x)} ∈ R,

are differentiable? If it is true provide a proof, if it is not true, give a coun-
terexample.
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Section 3.3

R-valued functions of bounded variation

In this section we present a class of functions, functions of so-called bounded
variation, that are larger than the set of differentiable functions. However, they
are sufficiently friendly that they often play a distinguished rôle in certain parts
of signal theory, as evidenced by the theorems of Jordan concerning inversion
of Fourier transforms (see Theorems 12.2.31 and 13.2.24). It is often not obvious
after an initial reading on the topic of functions of bounded variation, just why such
functions are important. Historically, the class of functions of bounded variation
arose out of the desire to understand functions that are sums of functions that
are monotonically increasing (see Definition 3.1.27 for the definition). Indeed, as
we shall see in Theorem 3.3.3, functions of bounded variation and monotonically
increasing functions are inextricably linked. The question about the importance
of functions of bounded variation can thus be reduced to the question about the
importance of monotonically increasing functions. An intuitive reason why such
functions might be interesting is that many of the functions one encounters in
practice, while not themselves increasing or decreasing, have intervals on which
they are increasing or decreasing. Thus one hopes that, by understanding increasing
or decreasing functions, one can understand more general functions.

It is also worth mentioning here that the class of functions of bounded variation
arise in functional analysis as the topological dual to Banach spaces of continuous
functions. In this regard, we refer the reader to Theorem ??.missing stuff

Do I need to read this section? This section should be strongly considered for
omission on a first read, and then referred to when the concept of bounded variation
comes up in subsequent chapters, namely in Chapters 12 and 13. Such an omission
is suggested, not because the material is unimportant or uninteresting, but rather
because it constitutes a significant diversion that might be better left until it is
needed. •

3.3.1 Functions of bounded variation on compact intervals

In this section we define functions of bounded variation on intervals that are
compact. In the next section we shall extend these ideas to general intervals. For
a compact interval I, recall that Part(I) denotes the set of partitions of I, and that if
P ∈ Part(I) then EP(P) denotes the endpoints of the intervals comprising P (see the
discussion surrounding Definition 2.5.7).

3.3.1 Definition (Total variation, function of bounded variation) For I = [a, b] a com-
pact interval and f : I→ R a function on I, the total variation of f is given by

TV( f ) = sup
{ k∑

j=1

| f (x j) − f (x j−1)|
∣∣∣∣ (x0, x1, . . . , xk) = EP(P), P ∈ Part([a, b])

}
.
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If TV( f ) < ∞ then f has bounded variation. •

Let us characterise real functions of bounded variation on compact intervals.
The principal part of this characterisation is the decomposition of a function of
bounded variation into the difference of monotonically increasing functions. How-
ever, another interesting characterisation involves the following idea which relies
on the notion of the graph of a function, introduced following Definition 1.3.1.

3.3.2 Definition (Arclength of the graph of a function) Let [a, b] be a compact interval
and let f : [a, b]→ R be a function. The arclength of graph( f ) is defined to be

`(graph( f )) = sup
{ k∑

j=1

(
( f (x j) − f (x j−1))2 + (x j − x j−1)2

)1/2∣∣∣∣
(x0, x1, . . . , xk) = EP(P), P ∈ Part([a, b])

}
. •

We now have the following result which characterises functions of bounded
variation.

3.3.3 Theorem (Characterisation of functions of bounded variation) For a compact
interval I = [a, b] and a function f : I→ R, the following statements are equivalent:

(i) f has bounded variation;
(ii) there exists monotonically increasing functions f+, f− : I → R such that f = f+ − f−

(Jordan8 decomposition of a function of bounded variation);
(iii) the graph of f has finite arclength in R2.

Furthermore, each of the preceding three statements implies the following:
(iv) the following limits exist:

(a) f(a+);
(b) f(b−);
(c) f(x+) and f(x−) for all x ∈ int(I),

(v) f is continuous except at a countable number of points in I,
(vi) f possesses a derivative almost everywhere in I.

Proof (i) =⇒ (ii) Define V( f )(x) = TV( f |[a, x]) so that x 7→ V( f )(x) is a monotonic
function. Let us define

f+(x) = 1
2 (V( f )(x) + f (x)), f−(x) = 1

2 (V( f )(x) − f (x)). (3.11)

Since we obviously have f = f+ − f−, this part of the theorem will follow if f+ and f−
can be shown to be monotonic. Let ξ2 > ξ1 and let (x0, x1, . . . , xk) be the endpoints of

8 Marie Ennemond Camille Jordan (1838–1922) was a French mathematician who made signif-
icant contributions to the areas of algebra, analysis, complex analysis, and topology. He wrote a
three volume treatise on analysis entitled Cours d’analyse de l’École Polytechnique which was quite
influential.
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a partition of [a, ξ1]. Then (x0, x1, . . . , xk, xk+1 = ξ2) are the endpoints of a partition of
[a, ξ2]. We have the inequalities

V( f )(ξ2) ≥
k∑

j=1

| f (x j) − f (x j−1)| + | f (ξ2) − f (ξ1)|.

Since this is true for any partition of [a, ξ1] we have

V( f )(ξ2) ≥ V( f )(ξ1) + | f (ξ2) − f (ξ1)|.

We then have

2 f+(ξ2) = V( f )(ξ2) + f (ξ2)
≥ V( f )(ξ1) + f (ξ1) + | f (ξ2) − f (ξ1)| + f (ξ2) − f (ξ1)
≥ V( f )(ξ1) + f (ξ1) = 2 f+(ξ1)

and

2 f−(ξ2) = V( f )(ξ2) − f (ξ2)
≥ V( f )(ξ1) − f (ξ1) + | f (ξ2) − f (ξ1)| − f (ξ2) + f (ξ1)
≥ V( f )(ξ1) − f (ξ1) = 2 f+(ξ1),

giving this part of the theorem.
(ii) =⇒ (i) If f is monotonically increasing and if (x0, x1, . . . , xk) are the endpoints

for a partition of [a, b], then

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

( f (x j) − f (x j−1)) = f (b) − f (a).

Thus monotonically increasing functions, and similarly monotonically decreasing
functions, have bounded variation. Now consider two functions f and g, both of
bounded variation. By part (i) of Proposition 3.3.12, f + g is also of bounded variation.
In particular, the sum of a monotonically increasing and a monotonically decreasing
function will be a function of bounded variation.

(i)⇐⇒ (iii) First we note that, for any a, b ∈ R,

(|a| + |b|)2 = a2 + b2 + 2|a||b|,

from which we conclude that (a2 + b2)1/2
≤ |a| + |b|. Therefore, if (x0, x1, . . . , xk) are the

endpoints of a partition of [a, b], then

k∑
j=1

| f (x j) − f (x j−1)| ≤
k∑

j=1

(
( f (x j) − f (x j−1))2 + (x j − x j−1)2

)1/2

≤

k∑
j=1

(
| f (x j) − f (x j−1)| + |x j − x j−1|

)
=

k∑
j=1

| f (x j) − f (x j−1)| + b − a. (3.12)

This implies that
TV( f ) ≤ `(graph( f )) ≤ TV( f ) + b − a,
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from which this part of the result follows.
(iv) Let f+ and f− be monotonically increasing functions as per part (ii). By Theo-

rem 3.1.28 we know that the limits asserted in this part of the theorem hold for both
f+ and f−. This part of the theorem now follows from Propositions 2.3.23 and 2.3.29.

(v) This follows from Theorem 3.1.28 and Proposition 3.1.15, using the decompo-
sition f = f+ − f− from part (ii).

(vi) Again using the decomposition f = f+ − f− from part (ii), this part of the
theorem follows from Theorem 3.2.26 and Proposition 3.2.10. �

3.3.4 Remark We comment the converses of parts (iv), (v), and (vi) of Theorem 3.3.3 do
not generally hold. This is because, as we shall see in Example 3.3.5–4, continuous
functions are not necessarily of bounded variation. •

Let us give some examples of functions that have and do not have bounded
variation.

3.3.5 Examples (Functions of bounded variation on compact intervals)
1. On [0, 1] define f : [0, 1]→ R by f (x) = c, for c ∈ R. We easily see that TV( f ) = 0,

so f has bounded variation.
2. On [0, 1] consider the function f : [0, 1] → R defined by f (x) = x. We claim

that f has bounded variation. Indeed, if (x0, x1, . . . , xk) are the endpoints of a
partition of [0, 1], then we have

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

|x j − x j−1| = 1 − 0 = 1,

thus giving f as having bounded variation.
Note that f is itself a monotonically increasing function, so that for part (ii) of
Theorem 3.3.3 we may take f+ = f and f− to be the zero function. However,
we can also write f = g+ − g− where g+(x) = 2x and g−(x) = x. Thus the
decomposition of part (ii) of Theorem 3.3.3 is not unique.

3. On I = [0, 1] consider the function

f (x) =

1, x ∈ [0, 1
2 ]

−1, x ∈ ( 1
2 , 1].

We claim that TV( f ) = 1. Let (x0, x1, . . . , xk) be the endpoints of a partition of
[0, 1]. Let k̄ be the least element in {1, . . . , k} for which xk̄ >

1
2 . Then we have

k∑
j=1

| f (x j) − f (x j−1)| =
k̄−1∑
j=1

| f (x j) − f (x j−1)| +
k∑

j=k̄+1

| f (x j) − f (x j−1)|

+ | f (xk̄) − f (xk̄−1)| = 1.

This shows that TV( f ) = 1 and so f has bounded variation. Note that this
also shows that functions of bounded variation need not be continuous. This,
along with the next example, shows that the relationship between continuity
and bounded variation is not a straightforward one.
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4. Consider the function on I = [0, 1] defined by

f (x) =

x sin 1
x , x ∈ (0, 1],

0, x = 0.

We first claim that f is continuous. Clearly it is continuous at x provided that
x , 0. To show continuity at x = 0, let ε ∈ R>0 and note that, if x < ε, we have
| f (x)| < ε, thus showing continuity.
However, f does not have bounded variation. Indeed, for j ∈ Z>0 denote
ξ j = 1

( j+ 1
2 )π

. Then, for k ∈ Z>0, consider the partition with endpoints

(x0 = 0, x1 = ξk, . . . , xk+ = ξ1, xk+1 = 1).

Direct computation then gives

k+1∑
j=1

| f (x j) − f (x j−1)| ≥
2
π

k∑
j=1

∣∣∣∣ (−1) j

2 j + 1
−

(−1) j−1

2 j − 1

∣∣∣∣
=

2
π

k∑
j=1

∣∣∣∣ 1
2 j + 1

+
1

2 j − 1

∣∣∣∣ ≥ 2
π

k∑
j=1

∣∣∣∣ 2
2 j + 1

∣∣∣∣.
Thus

TV( f ) ≥
2
π

∞∑
j=1

∣∣∣∣ 2
2 j + 1

∣∣∣∣ = ∞,

showing that f has unbounded variation. •

3.3.2 Functions of bounded variation on general intervals

Now, with the definitions and properties of bounded variation for functions
defined on compact intervals, we can sensibly define notions of variation for general
intervals.

3.3.6 Definition (Bounded variation, locally bounded variation) Let I be an interval
with f : I→ R a function.

(i) If f |[a, b] is a function of bounded variation for every compact interval [a, b] ⊆
I, then f is a function of locally bounded variation.

(ii) If sup{TV( f |[a, b]) | [a, b] ⊆ I} < ∞, then f is a function of bounded variation. •

3.3.7 Remark (Properties of functions of locally bounded variation) We comment
that the characterisations of functions of bounded variation given in Theorem 3.3.3
carry over to functions of locally bounded variation in the sense that the following
statements are equivalent for a function f : I→ R defined on a general interval I:

1. f has locally bounded variation;
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2. there exists monotonically increasing functions f+, f− : I → R such that f =
f+ − f−.

Furthermore, each of the preceding two statements implies the following:

3. the following limits exist:

(a) f (a+);
(b) f (b−);
(c) f (x+) and f (x−) for all x ∈ int(I),

4. f is continuous except at a countable number of points in I,

5. f possesses a derivative almost everywhere in I.
These facts follow easily from the definition of locally bounded variation, along
with facts about countable sets, and sets of measure zero. We leave the details to
the reader as Exercise 3.3.4. •

3.3.8 Notation (“Locally bounded variation” versus “bounded variation”) These ex-
tended definitions agree with the previous ones in that, when I is compact, (1) the
new definition of a function of bounded variation agrees with that of Defini-
tion 3.3.1 and (2) the definition of a function of bounded variation agrees with
the definition of a function of locally bounded variation. The second point is par-
ticularly important to remember, because most of the results in the remainder of this
section will be stated for functions of locally bounded variation. Our observation
here is that these results automatically apply to functions of bounded variation,
as per Definition 3.3.1. For this reason, we will generally default from now on to
using “locally bounded variation” in place of “bounded variation,” reserving the
latter for when it is intended in its distinct place when the interval of definition of
a function is compact. •

Let us give some examples of functions that do and no not have locally bounded
variation.

3.3.9 Examples (Functions of locally bounded variation on general intervals)
1. Let I ⊆ R be an arbitrary interval, let c ∈ R, and consider the function f : I→ R

defined by f (x) = c. Applying the definition shows that TV( f |[a, b])(x) = 0 for
all compact intervals [a, b] ⊆ I, no matter the character of I. Thus constant
functions, unsurprisingly, have locally bounded variation.

2. Let us consider the function f : I → R on I = [0,∞) defined by f (x) = x. We
claim that f has locally bounded variation. Indeed, let [a, b] ⊆ I and consider a
partition of [a, b] with endpoints (x0, x1, . . . , xk). We have

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

(x j − x j−1) = b − a.

This shows that f has locally bounded variation. However, since b − a can be
arbitrarily large, f does not have bounded variation.
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3. On the interval I = (0, 1] consider the function f : I → R defined by f (x) = 1
x .

Note that, for [a, b] ⊆ (0, 1], the function f |[a, b] is monotonically decreasing,
and so has bounded variation. We can thus conclude that f is a function of
locally bounded variation. We claim that f does not have bounded variation.
To see this, note that if (x0, x1, . . . , xk) are the endpoints of a partition of [a, b] ⊆
(0, 1], then it is easy to see that, since f is strictly monotonically decreasing
and continuous that ( f (xk), . . . , f (x1), f (x0)) are the endpoints of a partition of
[ f (xk), f (x0)]. We thus have

k∑
j=1

| f (x j) − f (x j−1)| = f (x0) − f (xk).

Since f (x0) can be made arbitrarily large by choosing a small, it follows that f
cannot have bounded variation. •

We close this section by introducing the notion of the variation of a function,
and giving a useful property of this concept.

3.3.10 Definition (Variation of a function of bounded variation) Let I ⊆ Rbe an interval,
let a ∈ I, let f : I → R be a function of locally bounded variation, and define
Va( f ) : I→ R>0 by

Va( f )(x) =


TV( f |[x, a]), x < a,
0, x = a,
TV( f |[a, x]), x > a.

The function Va( f ) is the variation of f with reference point a. •

One can easily check that the choice of a in the definition of Va( f ) serves only
to shift the values of the function. Thus the essential features of the variation are
independent of the reference point.

When a function of bounded variation is continuous, so too is its variation.

3.3.11 Proposition (The variation of a continuous function is continuous and vice
versa) Let I ⊆ R be an interval, let a ∈ I, and let f : I→ R be a function of locally bounded
variation. Then f is continuous at x ∈ I if and only if Va(f) is continuous at x. Moreover,
if f is a continuous function of bounded variation, then f = f+ − f− where f+ and f− are
continuous monotonically increasing functions.

Proof The general result follows easily from the case where I = [a, b] is compact.
Furthermore, in this case it suffices to consider the variation of f with reference points
a or b. We shall consider only the reference point a, since the other case follows in much
the same manner.

Suppose that f is continuous at x0 ∈ I and let ε ∈ R>0. First suppose that x0 ∈ [a, b),
and let δ ∈ R>0 be chosen such that x ∈ B(δ, x0)∩ I implies that | f (x)− f (x0)| < ε

2 . Choose
a partition of [x0, b] with endpoints (x0, x1, . . . , xk) such that

TV( f |[x0, b]) − ε
2 ≤

k∑
j=1

| f (x j) − f (x j−1)|. (3.13)
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We may without loss of generality suppose that x1 − x0 < δ. Indeed, if this is not the
case, we may add a new endpoint to our partition, noting that the estimate (3.13) will
hold for the new partition. We then have

TV( f |[x0, b]) − ε
2 ≤ | f (x1) − f (x0)| +

k∑
j=2

| f (x j) − f (x j−1)|

≤
ε
2 +

k∑
j=2

| f (x j) − f (x j−1)| ≤ ε
2 + TV( f |[x1, b]).

This then gives

TV( f |[x0, b]) − TV( f |[x1, b]) = Va( f )(x1) − Va( f )(x0) < ε.

Since this holds for any partition for which x1− x0 < δ, it follows that limx↓x0 Va( f )(x) =
Va( f )(x0) for every x0 ∈ [a, b) at which f is continuous. One can similarly show that
limx↑x0 Va( f )(x) = Va( f )(x0) for every x0 ∈ (a, b] at which f is continuous. This gives the
result by Theorem 3.1.3.

Suppose that Va( f ) is continuous at x0 ∈ I and let ε ∈ R>0. Choose δ ∈ R>0 such
that |Va( f )(x) − Va( f )(x0)| < ε for x ∈ B(2δ, x0). Then, for x ∈ B(2δ, x0) with x > x0,

| f (x) − f (x0)| ≤ TV( f |[x0, x]) = Va( f )(x) − Va( f )(x0) < ε,

using the fact that (x0, x) are the endpoints of a partition of [x0, x]. In like manner, if
x ∈ B(2δ, x0) with x > x0, then

| f (x) − f (x0)| ≤ TV( f |[x, x0]) = Va( f )(x0) − Va( f )(x) < ε.

Thus | f (x) − f (x0)| < ε for every x ∈ B(2δ, x0), and so for every x ∈ B(δ, x0), giving
continuity of f at x0.

The final assertion follows from the definition of the Jordan decomposition given
in (3.11). �

3.3.3 Bounded variation and operations on functions

In this section we illustrate how functions of locally bounded variation interact
with the usual operations one performs on functions.

3.3.12 Proposition (Addition and multiplication, and locally bounded variation) Let
I ⊆ R be an interval and let f,g: I → R be functions of locally bounded variation. Then
the following statements hold:

(i) f + g is a function of locally bounded variation;
(ii) fg is a function of locally bounded variation;
(iii) if additionally there exists α ∈ R>0 such that |g(x)| ≥ α for all x ∈ I, then f

g is a
function of locally bounded variation.

Proof Without loss of generality we may suppose that I = [a, b] is a compact interval.



207 3 Functions of a real variable 2016/11/26

(i) Let (x0, x1, . . . , xk) be the endpoints for a partition of [a, b] and compute

k∑
j=1

| f (x j) + g(x j) − f (x j−1) − g(x j−1)| ≤
k∑

j=1

| f (x j) − f (x j−1)| +
k∑

j=1

|g(x j) − g(x j−1)|

using the triangle inequality. It then follows from Proposition 2.2.27 that TV( f + g) ≤
TV( f ) + TV(g), and so f + g has locally bounded variation.

(ii) Let

M f = sup{| f (x)| | x ∈ [a, b]}, Mg = sup{|g(x)| | x ∈ [a, b]}.

Then, for a partition of [a, b] with endpoints (x0, x1, . . . , xk), compute

k∑
j=1

| f (x j)g(x j) − f (x j−1)g(x j−1)| ≤
k∑

j=1

| f (x j)g(x j) − f (x j−1)g(x j)|

+

k∑
j=1

| f (x j−1)g(x j) − f (x j−1)g(x j−1)|

≤

k∑
j=1

Mg| f (x j) − f (x j−1)| +
k∑

j=1

M f |g(x j) − g(x j−1)|

≤Mg TV( f ) + M f TV(g),

giving the result.
(iii) Let (x0, x1, . . . , xk) be a partition of [a, b] and compute

k∑
j=1

∣∣∣∣ 1
g(x j)

−
1

g(x j−1)

∣∣∣∣ =

k∑
j=1

∣∣∣∣ g(x j−1) − g(x j)
g(x j)g(x j−1)

∣∣∣∣ ≤ k∑
j=1

∣∣∣∣ g(x j) − g(x j−1)

α2

∣∣∣∣ ≤ TV(g)
α2 .

Thus 1
g has locally bounded variation, and this part of the result follows from part (ii).�

Next we show that to determine whether a function has locally bounded varia-
tion, one can break up the interval of definition into subintervals.

3.3.13 Proposition (Locally bounded variation on disjoint subintervals) Let I ⊆ R be
an interval and let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and
the left endpoint of I2. Then f : I→ R has locally bounded variation if and only if f|I1 and
f|I2 have locally bounded variation.

Proof It suffices to consider the case where I = [a, b], I1 = [a, c], and I2 = [c, b]. First
let (x0, x1, . . . , xk) be the endpoints of a partition of [a, c] and let (y0, y1, . . . , yl) be the
endpoints of a partition of [c, b]. Then

k∑
j=1

| f (x j) − f (x j−1)| +
l∑

j=1

| f (y j) − f (y j−1)| ≤ TV( f ),

which shows that TV( f |[a, c]) + TV( f |[c, b]) ≤ TV( f ). Now let (x0, x1, . . . , xk) be the
endpoints of a partition of [a, b]. If c is not one of the endpoints, then let m ∈ {1, . . . , k−1}
satisfy xm−1 < c < xm, and define a new partition with endpoints

(y0 = x0, y1 = x1, . . . , ym − 1 = xm−1, ym = c, ym+1 = xm, . . . , yk+1 = xk).
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Then

k∑
j=1

| f (x j) − f (x j−1)| ≤
k+1∑
j=1

| f (y j) − f (y j−1)|

≤

m∑
j=1

| f (y j) − f (y j−1)| +
m+1∑
j=m

| f (y j) − f (y j−1)|

≤ TV([a, c]) + TV( f |[c, b]).

This shows that TV( f ) ≤ TV( f |[a, c]) + TV( f |[c, b]), which gives the result when com-
bined with our previous estimate TV( f |[a, c]) + TV( f |[c, b]) ≤ TV( f ). �

While Examples Example 3.3.5–3 and 4 illustrate that functions of locally
bounded variation need not be continuous, and that continuous functions need
not have locally bounded variation, the story for differentiability is more pleas-
ant.

3.3.14 Proposition (Differentiable functions have locally bounded variation) If I ⊆ R
is an interval and if the function f : I → R is differentiable with the derivative f′ being
locally bounded, then f has locally bounded variation. In particular, if f is of class C1, then
f is of locally bounded variation.

Proof The general result follows from the case where I = [a, b], so we suppose in the
proof that I is compact. Let (x0, x1, . . . , xk) be a partition of [a, b]. By the Mean Value
Theorem, for each j ∈ {1, . . . , k} there exists y j ∈ (x j−1, x j) such that

f (x j) − f (x j−1) = f ′(y j)(x j − x j−1).

Moreover, since f ′ is bounded, let M ∈ R>0 satisfy | f ′(x)| < M for each x ∈ [a, b]. Then

k∑
j=1

| f (x j) − f (x j−1)| =
k∑

j=1

| f ′(y j)||x j − x j−1| ≤

k∑
j=1

M|x j − x j−1| = M(b − a).

The final assertion follows since, if f is of class C1, then f ′ is continuous and so bounded
by Theorem 3.1.22. �

In the preceding result we asked that the derivative be locally bounded. This
condition is essential, as the following example shows.

3.3.15 Example (A differentiable function that does not have bounded variation) We
take f : [−1, 1]→ R defined by

f (x) =

x2 sin( 1
x2 ), x , 0,

0, x = 0.

We will show that this function is differentiable but does not have bounded varia-
tion. The differentiability of f at x , 0 follows from the product rule and the Chain
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Rule since the functions x 7→ x2, x 7→ 1
x2 , and sin are all differentiable away from

zero. Indeed, by the product and Chain Rule we have

f ′(x) = 2x sin( 1
x2 ) − 2

x cos( 1
x2 ).

For differentiability at x = 0 we compute

lim
h→0

f (0 + h) − f (0)
h

= lim
h→0

h2 sin( 1
h2 ) − 0

h
= lim

h→0
h sin( 1

h2 ) = 0,

giving the derivative at x = 0 to be zero.
To show that f does not have bounded variation, for j ∈ Z>0 define

ξ j =
1√

( j + 1
2 )π

.

For k ∈ Z>0 define a partition of [0, 1] by asking that it have endpoints (x0, x1 =
ξk, . . . , xk = ξ1, xk+1). Then

k+1∑
j=1

| f (x j) − f (x j−1)| ≥
k∑

j=1

| f (x j) − f (x j−1)| =
2
π

k∑
j=1

∣∣∣∣ (−1) j

2 j + 1
−

(−1) j−1

2 j − 1

∣∣∣∣
≥

2
π

k∑
j=1

∣∣∣∣ 1
2 j + 1

+
1

2 j − 1

∣∣∣∣ ≥ 2
π

k∑
j=1

∣∣∣∣ 2
2 j + 1

∣∣∣∣.
Thus

TV( f ) ≥
2
π

∞∑
j=1

∣∣∣∣ 2
2 j + 1

∣∣∣∣ = ∞,

giving our assertion that f does not have bounded variation.
Note that it follows from Proposition 3.3.14 that f ′ is not bounded. This can be

verified explicitly as well. •

While the composition of continuous functions is again a continuous function,
and the composition of differentiable functions is again a differentiable function,
the same assertion does not hold for functions of locally bounded variation.

3.3.16 Example (Compositions of functions of locally bounded variation need not
be functions of locally bounded variation) Let I = [−1, 1] and define f , g : I→ R
by f (x) = x1/3 and

g(x) =

x3(sin 1
x )3, x , 0,

0, x = 0.

We claim that f and g are functions of bounded variation. To show that f has
bounded variation, we note that f is monotonically increasing, and so necessarily
of bounded variation by Theorem 3.3.3(ii). To show that g is of bounded variation,
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we shall show that it is of class C1, and then use Proposition 3.3.14. Clearly g is
differentiable with continuous derivative on the intervals [−1, 0) and (0, 1]. Thus
we need to show that g is differentiable at 0 with continuous derivative there. To
see that g is differentiable at 0, we compute

lim
x→0

g(x) − g(0)
x − 0

= lim
x→0

x2(sin 1
x )1/3 = 0,

since
∣∣∣(sin 1

x )1/3
∣∣∣ ≤ 1. Thus g′(0) = 0. We also can readily compute that limx↓0 g′(x) =

limx↑0 g′(x) = 0. Thus g′ is also continuous at 0, so showing that g has bounded
variation.

However, note that

f ◦ g(x) =

x sin 1
x , x , 0,

0, x = 0,

and in Example 3.3.5–4 we showed that this function does not have bounded
variation on the interval [0, 1]. Therefore, it cannot have bounded variation on the
interval [−1, 1]. This gives our desired conclusion that f ◦ g is not a function of
bounded variation, even though both f and g are. •

3.3.4 Saltus functions

As we saw in part (v) of Theorem 3.3.3, a function of locally bounded variation
is discontinuous at at most a countable set of points. Moreover, part (iv) of the
same theorem indicates that all discontinuities are jump discontinuities. In the
next section we shall see that it is possible to separate out these discontinuities
into a single function which, when subtracted from a function of locally bounded
variation, leaves a continuous function of locally bounded variation.

First we give a general definition, unrelated specifically to functions of locally
bounded variation. For this definition we recall from Section 2.4.7 our discussion
of sums over arbitrary index sets.

3.3.17 Definition (Saltus function) Let I ⊆ R be an interval and let I′ be the interval
obtained by removing the right endpoint from I, if I indeed contains its right
endpoint; otherwise take I′ = I. A saltus function9 on I is a function j : I → R of
the form

j(x) =
∑

ξ∈(−∞,x)∩I

rξ +
∑

ξ∈(−∞,x]∩I

lξ,

where (rξ)ξ∈I′ and (lξ)ξ∈I are summable families of real numbers. •

This definition seems mildly ridiculous at a first read, in that there seems to be
no reason why such a function should be of any interest. However, as we shall see,
every function of locally bounded variation naturally gives rise to a saltus function.
Before we get to this, let us look at some properties of saltus function. It might be

9“Saltus” is a Latin word meaning “to leap.” Indeed, a saltus function is also frequently referred
to as a jump function.
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helpful to note that the function of Example 3.2.28 is a saltus function, as is easily
seen from its definition. Many of the general properties of saltus functions follow
in the same manner as they did for that example.

3.3.18 Proposition (Continuity of saltus functions) If I ⊆ R is an interval and if j : I→ R
is a saltus function given by

j(x) =
∑

ξ∈(−∞,x)∩I

rξ +
∑

ξ∈(−∞,x]∩I

lξ,

then for x ∈ I the following statements are equivalent:
(i) j is continuous at x;
(ii) rx = lx = 0.

Proof Let ε ∈ R>0 and note that, as can be deduced from our proof of Proposi-
tion 2.4.33, there exists a finite set Aε ⊆ I such that∑

x∈I′\Aε

|rx| +
∑

x∈I\Aε

|lx| ≤ ε,

where I′ = I \ {b} is I is an interval containing its right endpoint b, and I′ = I otherwise.
Now, for x ∈ I, let δ ∈ R>0 have the property that B(δ, x)∩Aε is either empty, or contains
only x. For y ∈ B(δ, x) ∩ I with y < x we have

| j(y) − j(x) − lx| =
∣∣∣∣ ∑
ξ∈[y,x)

rξ +
∑
ξ∈[y,x)

lξ
∣∣∣∣ ≤ ∑

ξ∈I′\Aε

|rξ| +
∑
ξ∈I\Aε

|lξ| < ε.

Also, for x < y we have

| j(y) − ( j(x) + rx)| =
∣∣∣∣ ∑
ξ∈(x,y)

rξ +
∑
ξ∈(x,y]

lξ
∣∣∣∣ ≤ ∑

ξ∈I′\Aε

|rξ| +
∑
ξ∈I\Aε

|lξ| < ε.

This gives j(x−) = j(x)−lx provided that x is not the left endpoint of I and j(x+) = j(x)+rx
provided that x is not the right endpoint of I. Thus j is continuous at x if and only if
rx = lx = 0. �

3.3.19 Proposition (Saltus functions are of locally bounded variation) If I is an interval
and if j : I→ R is a saltus function, then j is a function of locally bounded variation.

Proof We may without loss of generality suppose that I = [a, b]. Let us write

j(x) =
∑

ξ∈(−∞,x)∩I

rξ +
∑

ξ∈(−∞,x]∩I

lξ.

Let x, y ∈ [a, b] with x < y. Then

j(y) − j(x) = rx + ly +
∑
ξ∈(x,y)

(rξ + lξ).

Thus
| j(y) − j(x)| ≤

∑
ξ∈[x,y)

|rξ| +
∑
ξ∈(x,y]

|lξ|.



2016/11/26 3.3 R-valued functions of bounded variation 212

Now let (x0, x1, . . . , xm) be the endpoints of a partition of [a, b]. Then we compute

m∑
k=1

| j(xk) − j(xk−1)| ≤
m∑

k=1

( ∑
ξ∈[xk−1,xk)

|uξ| +
∑

ξ∈(xk−1,xk]

|lξ|
)
≤

∑
ξ∈[a,b)

|rξ| +
∑
ξ∈(a,b]

|lξ|,

which gives the result. �

Note then that we may now attribute to saltus functions all of the properties
associated to functions of locally bounded variation, as presented in Theorem 3.3.3.
In particular, a saltus function is differentiable almost everywhere. However, about
the derivative of a saltus function, more can be said.

3.3.20 Proposition (Saltus functions have a.e. zero derivative) If I ⊆ R is an interval
and if j : I→ R is a saltus function, then the set {x ∈ I | j′(x) , 0} has measure zero.

Proof Since j is of locally bounded variation, by Theorem 3.3.3(ii) we may write
j = j+ − j− for monotonically increasing functions j+ and j−. It then suffices to prove
the result for the case when j is monotonically increasing, since the derivative is linear
(Proposition 3.2.10) and since the union of two sets of measure zero is a set of measure
zero (Exercise 2.5.9). As we saw in the proof of Proposition 3.3.18, j(x−) = j(x)− lx and
j(x+) = j(x) + rx. Therefore, if j is monotonically increasing, then rx ≥ 0 for all x ∈ I′

and lx ≥ 0 for all x ∈ I.
By Proposition 2.4.33 we may write

{x ∈ I′ | rx , 0} = ∪a∈A{ξa}, {x ∈ I | lx , 0} = ∪b∈B{ηb},

where the sets A and B are countable. For x ∈ I define

A(x) = {a ∈ A | ξa < x}, B(x) = {b ∈ B | ηb ≤ x}.

Then we have ∑
ξ∈(−∞,x)∩I

rξ =
∑

a∈A(x)

rξa ,
∑

ξ∈(−∞,x]∩I

lξ =
∑

b∈B(x)

rηb .

Now let us suppose that the sets A and B are well ordered and for k ∈ Z>0 define

Ak = {a ∈ A | a ≤ k}, Bk = {b ∈ B | b ≤ k}

and
Ak(x) = {a ∈ Ak | ξa < x}, Bk(x) = {b ∈ Bk | ηb ≤ x}.

We then define jk : I→ R by

jk(x) =
∑

a∈Ak(x)

rξa +
∑

b∈Bk(x)

rηb .

Now we use some facts from Section 3.5. Note the following facts:
1. for each k ∈ Z>0, the functions jk are monotonically increasing since rx ≥ 0 for all

x ∈ I′ and lx ≥ 0 for each x ∈ I;
2. for each k ∈ Z>0, the set {x ∈ I | j′k(x) , 0} is finite;
3. limk→∞ jk(x) = j(x) for each x ∈ I.

Therefore, we may apply Theorem 3.5.25 below to conclude that j′(x) = 0 almost
everywhere. �
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3.3.21 Remark (Functions with a.e. zero derivative need not be saltus functions)
Note that the Cantor function of Example 3.2.27 is a function with a derivative
that is zero almost everywhere. However, since this function is continuous, it is
not a saltus function. More precisely, according to Proposition 3.3.18, the Cantor
function is a saltus function where the two families of summable numbers used
to define it are both identically zero. That is to say, it is not an interesting saltus
function. This observation will be important when we discuss the Lebesgue de-
composition of a function of bounded variation in missing stuff •

3.3.5 The saltus function for a function of locally bounded variation

Now that we have outlined the general definition and properties of saltus
functions, let us indicate how they arise from an attempt to generally characterise
functions of locally bounded variation. Since functions of locally bounded variation
are so tightly connected with monotonically increasing functions, we begin by
constructing a saltus function associated to a monotonically increasing function.

3.3.22 Proposition (Saltus function of a monotonically increasing function) Let I =
[a, b] be a compact interval and let f : I → R be monotonically increasing. Define two
families (rf,x)x∈I′ and (lf,x)x∈I of real numbers by

rf,x = f(x+) − f(x), x ∈ [a, b),
lf,a = 0, lf,x = f(x) − f(x−), x ∈ (a, b],

and let jf : I→ R be defined by

jf(x) =
∑

ξ∈(−∞,x)∩I

rf,ξ +
∑

ξ∈(−∞,x]∩I

lf,ξ.

Then jf is a monotonically increasing saltus function, and the function f− jf is a continuous
monotonically increasing function.

Proof Note that since f is monotonically increasing, r f ,x ≥ 0 for all x ∈ [a, b) and
l f ,x ≥ 0 for all x ∈ [a, b]. To show that j f is a saltus function, it suffices to show that
(r f ,x)x∈I′ and (l f ,x)x∈I are summable. Let (x1, . . . , xk) be a finite family of elements of [a, b]
(not necessarily the endpoints of a partition) and compute

k∑
j=1

(r f ,x j + l f ,x j) =

k∑
j=1

( f (x j+) − f (x j−)) ≤ f (b) − f (a).

Since this holds for every finite family (x1, . . . , xk), we can assert that both families
(r f ,x)x∈I′ and (l f ,x)x∈I are summable.

Now let x, y ∈ [a, b] with x < y. Take a partition of [x, y] with endpoints
(x0, x1, . . . , xk) and compute

f (x+) − f (x) +

k∑
j=1

( f (x j+) − f (x j−)) + f (y) − f (y−),

= f (y) − f (x) +

k+1∑
j=1

( f (x j−) − f (x j−1+)) ≤ f (y) − f (x).
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Taking the supremum over all partitions of [x, y] we have

f (x+) − f (x) +

k∑
ξ∈(x,y)

( f (x+) − f (x−)) + f (y) − f (y−) ≤ f (y) − f (x),

from which we deduce that

j f (y) − j f (x) = f (x+) − f (x) +

k∑
ξ∈(x,y)

( f (x+) − f (x−)) + f (y) − f (y−) ≤ f (y) − f (x).

This shows that j f (y) ≥ j f (x) and that f (y) − j f (y) ≥ f (x) − j f (x), showing that j f and
f − j f are monotonically increasing.

Now note that, as we saw in the proof of Proposition 3.3.18,

j f (x+) − j f (x) = r f ,x, x ∈ [a, b),

j f (x) − j f (x−) = l f ,x, x ∈ (a, b].

We also have j f (a) = 0. Thus, for x ∈ [a, b), we have

( f (x) − j f (x)) − ( f (x−) − j f (x−)) = f (x) − f (x−) − l f ,x = 0

and, for x ∈ (a, b], we have

( f (x+) − j f (x+)) − ( f (x) − j f (x)) = f (x+) − f (x) − r f ,x = 0.

Thus f − j f is continuous, as claimed. �

This gives the following corollary which follows more or less directly from
Theorem 3.3.3(ii).

3.3.23 Corollary (Saltus function of a function of bounded variation) Let I = [a, b] be
a compact interval and let f : I → R be of bounded variation. Define two families (rf,x)x∈I′

and (lf,x)x∈I of real numbers by

rf,x = f(x+) − f(x), x ∈ [a, b),
lf,a = 0, lf,x = f(x) − f(x−), x ∈ (a, b],

and let jf : I→ R be defined by

jf(x) =
∑

ξ∈(−∞,x)∩I

rf,ξ +
∑

ξ∈(−∞,x]∩I

lf,ξ.

Then jf is a function of bounded variation, and the function f − jf is a continuous function
of bounded variation.

Of course, the preceding two results carry over, with some notational compli-
cations at endpoints, to functions of locally bounded variation defined on general
intervals.

Note that Examples 3.2.27 and 3.2.28 illustrate some of the features of saltus
functions and functions of locally bounded variation. Indeed, the Cantor function
of Example 3.2.27 is a function of locally bounded variation for which the asso-
ciated saltus function is zero, while the function of Example 3.2.28 is “all” saltus
function. Perhaps it is also useful to give a more mundane example to illustrate
the decomposition of a function of locally bounded variation into its saltus and
continuous part.
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3.3.24 Example (Saltus function of a function of locally bounded variation) Let I =
[0, 1] and consider three functions f1, f2, f3 : I→ R defined by

f1(x) =

1, x ∈ [0, 1
2 ],

−1, x ∈ (1
2 , 1],

f2(x) =


1, x ∈ [0, 1

2 ],
0, x = 1

2 ,

−1, x ∈ (1
2 , 1],

f3(x) =

1, x ∈ [0, 1
2 ),

−1, x ∈ [1
2 , 1].

In Example 3.3.5–3 we explicitly showed that f1 is a function of locally bounded
variation, and a similar argument shows that f2 and f3 are also functions of locally
bounded variation. A direct application of the definition of Corollary 3.3.23 gives

j f1(x) =

0, x ∈ [0, 1
2 ],

−2, x ∈ ( 1
2 , 1],

j f2(x) =


0, x ∈ [0, 1

2 ),
−1, x = 1

2 ,

−2, x ∈ ( 1
2 , 1],

j f3(x) =

0, x ∈ [0, 1
2 ),

−2, x ∈ [ 1
2 , 1].

For k ∈ {1, 2, 3}we have fk(x) = j fk(x) = 1, x ∈ [0, 1]. •

One might think that this is all that can be done as far as goes the decomposition
of a function with locally bounded variation. However, this is not so. However, to
further refine our present decomposition requires the notion of the integral as we
consider it in Chapter 5. Thus we postpone a more detailed discussion of functions
of locally bounded variation until missing stuff .

Exercises

3.3.1 Show that if I ⊆ R is an interval and if f : I → R is continuous then the
following statements are equivalent:

1. f is injective;
2. f is either strictly monotonically increasing or strictly monotonically

decreasing.
3.3.2 On the interval I = [−1, 1] consider the function f : I→ R defined by

f (x) =

 1
2x + x2 sin 1

x , x , 0,
0, x = 0.
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(a) Show that f is differentiable at x = 0 and has a positive derivative there.
(b) Show that for every ε ∈ R>0 the restriction of f to [−ε, ε] is neither

monotonically decreasing (not surprisingly) nor monotonically increas-
ing (surprisingly).

(c) Why is this not in contradiction with Proposition 3.2.23?
3.3.3 Give an example of an interval I and a function f : I→ R that is continuous,

strictly monotonically increasing, but not differentiable.
3.3.4 Prove the assertions of Remark 3.3.7.
3.3.5 Let I be an interval and suppose that I = I1 ∪ I2 where I1 ∩ I2 = {x0} for some

x0 ∈ R. If f : I→ F then

V( f )(x) =

V( f |I1)(x), x ∈ I1,

V( f |I2)(x) + V( f |I1)(x0), x ∈ I2

if I1 is finite,

V( f )(x) =

V( f |I1)(x) − V( f |I2)(x0), x ∈ I1,

V( f |I2)(x), x ∈ I2

if I1 is infinite and x0 < 0, and

V( f )(x) =

V( f |I1)(x), x ∈ I1,

V( f |I2)(x) + V( f |I1)(x0), x ∈ I2

if I1 is infinite and x0 ≥ 0.
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Section 3.4

The Riemann integral

Opposite to the derivative, in a sense made precise by Theorem 3.4.30, is the
notion of integration. In this section we describe a “simple” theory of integration,
called Riemann integration,10 that typically works insofar as computations go. In
Chapter 5 we shall see that the Riemann integration suffers from a defect somewhat
like the defect possessed by rational numbers. That is to say, just like there are
sequences of rational numbers that seem like they should converge (i.e., are Cauchy)
but do not, there are sequences of functions possessing a Riemann integral which
do not converge to a function possessing a Riemann integral (see Example 5.1.11).
This has some deleterious consequences for developing a general theory based on
the Riemann integral, and the most widely used fix for this is the Lebesgue integral
of Chapter 5. However, for now let us stick to the more pedestrian, and more easily
understood, Riemann integral.

As we did with differentiation, we suppose that the reader has had the sort
of calculus course where they learn to compute integrals of common functions.
Indeed, while we do not emphasise the art of computing integrals, we do not
intend this to mean that this art should be ignored. The reader should know the
basic integrals and the basic tricks and techniques for computing them. missing
stuff

Do I need to read this section? The best way to think of this section is as a setup
for the general developments of Chapter 5. Indeed, we begin Chapter 5 with
essentially a deconstruction of what we do in this section. For this reason, this
chapter should be seen as preparatory to Chapter 5, and so can be skipped until
one wants to learn Lebesgue integration in a serious way. At that time, a reader
may wish to be prepared by understanding the slightly simpler Riemann integral. •

3.4.1 Step functions

Our discussion begins by our considering intervals that are compact. In Sec-
tion 3.4.4 we consider the case of noncompact intervals.

In a theme that will be repeated when we consider the Lebesgue integral in
Chapter 5, we first introduce a simple class of functions whose integral is “obvious.”
These functions are then used to approximate a more general class of functions
which are those that are considered “integrable.” For the Riemann integral, the
simple class of functions are defined as being constant on the intervals forming a
partition. We recall from Definition 2.5.7 the notion of a partition and from the

10After Georg Friedrich Bernhard Riemann, 1826–1866. Riemann made important and long
lasting contributions to real analysis, geometry, complex function theory, and number theory, to
name a few areas. The presently unsolved Riemann Hypothesis is one of the outstanding problems
in modern mathematics.
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discussion surrounding the definition the notion of the endpoints associated with
a partition.

3.4.1 Definition (Step function) Let I = [a, b] be a compact interval. A function f : I→ R
is a step function if there exists a partition P = (I1, . . . , Ik) of I such that

(i) f | int(I j) is a constant function for each j ∈ {1, . . . , k},
(ii) f (a+) = f (a) and f (b−) = f (b), and
(iii) for each x ∈ EP(P) \ {a, b}, either f (x−) = f (x) or f (x+) = f (x). •

In Figure 3.10 we depict a typical step function. Note that at discontinuities

[
a

]
bt1 t2 t3 t4 t5 t6

Figure 3.10 A step function

we allow the function to be continuous from either the right or the left. In the
development we undertake, it does not really matter which it is.

The idea of the integral of a function is that it measures the “area” below the
graph of a function. If the value of the function is negative, then the area is taken
to be negative. For step functions, this idea of the area under the graph is clear, so
we simply define this to be the integral of the function.

3.4.2 Definition (Riemann integral of a step function) Let I = [a, b] and let f : I→ R be
a step function defined using the partition P = (I1, . . . , Ik) with endpoints EP(P) =
(x0, x1, . . . , xk). Suppose that the value of f on int(I j) is c j for j ∈ {1, . . . , k}. The
Riemann integral of f is

A( f ) =

k∑
j=1

c j(x j − x j−1). •

The notation A( f ) is intended to suggest “area.”
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3.4.2 The Riemann integral on compact intervals

Next we define the Riemann integral of a function that is not necessarily a step
function. We do this by approximating a function by step functions.

3.4.3 Definition (Lower and upper step functions) Let I = [a, b] be a compact interval,
let f : I→ R be a bounded function, and let P = (I1, . . . , Ik) be a partition of I.

(i) The lower step function associated to f and P is the function s−( f ,P) : I → R
defined according to the following:

(a) if x ∈ I lies in the interior of an interval I j, j ∈ {1, . . . , k}, then s−( f ,P)(x) =
inf{ f (x) | x ∈ cl(I j)};

(b) s−( f ,P)(a) = s−( f ,P)(a+) and s−( f ,P)(b) = s−( f ,P)(b−);
(c) for x ∈ EP(P) \ {a, b}, s−( f ,P)(x) = s−( f ,P)(x+).

(ii) The upper step function associated to f and P is the function s+( f ,P) : I → R
defined according to the following:

(a) if x ∈ I lies in the interior of an interval I j, j ∈ {1, . . . , k}, then s+( f ,P)(x) =
sup{ f (x) | x ∈ cl(I j)};

(b) s+( f ,P)(a) = s+( f ,P)(a+) and s+( f ,P)(b) = s+( f ,P)(b−);
(c) for x ∈ EP(P) \ {a, b}, s+( f ,P)(x) = s+( f ,P)(x+). •

Note that both the lower and upper step functions are well-defined since f is
bounded. Note also that at the middle endpoints for the partition, we ask that the
lower and upper step functions be continuous from the right. This is an arbitrary
choice. Finally, note that for each x ∈ [a, b] we have

s−( f ,P)(x) ≤ f (x) ≤ s+( f ,P)(x).

That is to say, for any bounded function f , we have defined two step functions, one
bounding f from below and one bounding f from above.

Next we associate to the lower and upper step functions their integrals, which
we hope to use to define the integral of the function f .

3.4.4 Definition (Lower and upper Riemann sums) Let I = [a, b] be a compact interval,
let f : I→ R be a bounded function, and let P = (I1, . . . , Ik) be a partition of I.

(i) The lower Riemann sum associated to f and P is A−( f ,P) = A(s−( f ,P)).
(ii) The upper Riemann sum associated to f and P is A+( f ,P) = A(s+( f ,P)). •

Now we define the best approximations of the integral of f using the lower and
upper Riemann sums.

3.4.5 Definition (Lower and upper Riemann integral) Let I = [a, b] be a compact inter-
val and let f : I→ R be a bounded function.

(i) The lower Riemann integral of f is

I−( f ) = sup{A−( f ,P) | P ∈ Part(I)}.
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(ii) The upper Riemann integral of f is

I+( f ) = inf{A+( f ,P) | P ∈ Part(I)}. •

Note that since f is bounded, it follows that the sets

{A−( f ,P) | P ∈ Part(I)}, {A+( f ,P) | P ∈ Part(I)}

are bounded (why?). Therefore, the lower and upper Riemann integral always
exist. So far, then, we have made a some constructions that apply to any bounded
function. That is to say, for any bounded function, it is possible to define the lower
and upper Riemann integral. What is not clear is that these two things should be
equal. In fact, they are not generally equal, which leads to the following definition.

3.4.6 Definition (Riemann integrable function on a compact interval) A bounded
function f : [a, b]→ R on a compact interval is Riemann integrable if I−( f ) = I+( f ).
We denote ∫ b

a
f (x) dx = I−( f ) = I+( f ),

which is the Riemann integral of f . The function f is called the integrand. •

3.4.7 Notation (Swapping limits of integration) In the expression
∫ b

a
f (x) dx, “a” is the

lower limit of integration and “b” is the upper limit of integration. We have tacitly
assumed that a < b in our constructions to this point. However, we can consider
the case where b < a by adopting the convention that∫ a

b
f (x) dx = −

∫ b

a
f (x) dx. •

Let us provide an example which illustrates that, in principle, it is possible to
use the definition of the Riemann integral to perform computations, even though
this is normally tedious. A more common method for computing integrals is to use
the Fundamental Theorem of Calculus to “reverse engineer” the process.

3.4.8 Example (Computing a Riemann integral) Let I = [0, 1] and define f : I → R by
f (x) = x. Let P = (I1, . . . , Ik) be a partition with s−( f ,P) and s+( f ,P) the associated
lower and upper step functions, respectively. Let EP(P) = (x0, x1, . . . , xk) be the
endpoints of the intervals of the partition. One can then see that, for j ∈ {1, . . . , k},
s−( f ,P)| int(I j) = x j−1 and s+( f ,P)| int(I j) = x j. Therefore,

A−( f ,P) =

k∑
j=1

x j−1(x j − x j−1), A+( f ,P) =

k∑
j=1

x j(x j − x j−1).

We claim that I−( f ) ≥ 1
2 and that I+( f ) ≤ 1

2 , and note that, once we prove this, it
follows that f is Riemann integrable and that I−( f ) = I+( f ) = 1

2 (why?).
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For k ∈ Z>0 consider the partition Pk with endpoints EP(Pk) = {
j
k | j ∈

{0, 1, . . . , k}}. Then, using the formula
∑l

j=1 j = 1
2 l(l + 1), we compute

A−( f ,Pk) =

k∑
j=1

j − 1
k2 =

k(k − 1)
2k2 , A+( f ,Pk) =

k∑
j=1

j
k2 =

k(k + 1)
2k2 .

Therefore,
lim
k→∞

A−( f ,Pk) = 1
2 , lim

k→∞
A+( f ,Pk) = 1

2 .

This shows that I−( f ) ≥ 1
2 and that I+( f ) ≤ 1

2 , as desired. •

3.4.3 Characterisations of Riemann integrable functions on compact
intervals

In this section we provide some insightful characterisations of the notion of
Riemann integrability. First we provide four equivalent characterisations of the
Riemann integral. Each of these captures, in a slightly different manner, the notion
of the Riemann integral as a limit. It will be convenient to introduce the language
that a selection from a partition P = (I1, . . . , Ik) is a family ξ = (ξ1, . . . , ξk) of points
such that ξ j ∈ cl(I j), j ∈ {1, . . . , k}.

3.4.9 Theorem (Riemann, Darboux,11 and Cauchy characterisations of Riemann in-
tegrable functions) For a compact interval I = [a, b] and a bounded function f : I→ R,
the following statements are equivalent:

(i) f is Riemann integrable;
(ii) for every ε ∈ R>0, there exists a partition P such that A+(f,P) − A−(f,P) < ε

(Riemann’s condition);
(iii) there exists I(f) ∈ R such that, for every ε ∈ R>0 there exists δ ∈ R>0 such that, if

P = (I1, . . . , Ik) is a partition for which |P| < δ and if (ξ1, . . . , ξk) is a selection from
P, then ∣∣∣∣ k∑

j=1

f(ξj)(xj − xj−1) − I(f)
∣∣∣∣ < ε,

where EP(P) = (x0, x1, . . . , xk) (Darboux’ condition);
(iv) for each ε ∈ R>0 there exists δ ∈ R>0 such that, for any partitions P = (I1, . . . , Ik) and

P′ = (I′1, . . . , I
′

k′) with |P|, |P′| < δ and for any selections (ξ1, . . . , ξk) and (ξ′1, . . . , ξ
′

k′)
from P and P′, respectively, we have∣∣∣∣ k∑

j=1

f(ξj)(xj − xj−1) −
k′∑

j=1

f(ξ′j )(x
′

j − x′j−1)
∣∣∣∣ < ε,

where EP(P) = (x0, x1, . . . , xk) and EP(P′) = (x′0, x
′

1, . . . , x
′

k′) (Cauchy’s condition).
Proof First let us prove a simple lemma about lower and upper Riemann sums and
refinements of partitions.

11Jean Gaston Darboux (1842–1917) was a French mathematician. His made important contribu-
tions to analysis and differential geometry.
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1 Lemma Let I = [a, b], let f : I→ R be bounded, and let P1 and P2 be partitions of I with P2 a
refinement of P1. Then

A−(f,P2) ≥ A−(f,P1), A+(f,P2) ≤ A+(f,P1).

Proof Let x1, x2 ∈ EP(P1) and denote by y1, . . . , yl the elements of EP(P2) that satisfy

x1 ≤ y1 < · · · < yl ≤ x2.

Then

l∑
j=1

(y j − y j−1) inf{ f (y) | y ∈ [y j, y j−1]} ≥
l∑

j=1

(y j − y j−1) inf{ f (x) | x ∈ [x1, x2]}

= (x2 − x1) inf{ f (x) | x ∈ [x1, x2]}.

Now summing over all consecutive pairs of endpoints for P1 gives A−( f ,P2) ≥ A−( f ,P1).
A similar argument gives A+( f ,P2) ≤ A+( f ,P1). H

The following trivial lemma will also be useful.

2 Lemma I−(f) ≤ I+(f).

Proof Since, for any two partitions P1 and P2, we have

s−( f ,P1) ≤ f (x) ≤ s+( f ,P2),

it follows that

sup{A−( f ,P) | P ∈ Part(I)} ≤ inf{A+( f ,P) | P ∈ Part(I)},

which is the result. H

(i) =⇒ (ii) Suppose that f is Riemann integrable and let ε ∈ R>0. Then there exists
partitions P− and P+ such that

A−( f ,P−) > I−( f ) − ε
2 , A+( f ,P+) < I+( f ) + ε

2 .

Now let P be a partition that is a refinement of both P1 and P2 (obtained, for example,
by asking that EP(P) = EP(P1) ∪ EP(P2)). By Lemma 1 it follows that

A+( f ,P) − A−( f ,P) ≤ A+( f ,P+) − A−( f ,P−) < I+( f ) + ε
2 − I−( f ) + ε

2 = ε.

(ii) =⇒ (i) Now suppose that ε ∈ R>0 and let P be a partition such that A+( f ,P) −
A−( f ,P) < ε. Since we additionally have I−( f ) ≤ I+( f ) by Lemma 2, it follows that

A−( f ,P) ≤ I−( f ) ≤ I+( f ) ≤ A+( f ,P),

from which we deduce that
0 ≤ I+( f ) − I−( f ) < ε.

Since ε is arbitrary, we conclude that I−( f ) = I+( f ), as desired.
(i) =⇒ (iii) We first prove a lemma about partitions of compact intervals.
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3 Lemma If P = (I1, . . . , Ik) is a partition of [a, b] and if ε ∈ R>0, then there exists δ ∈ R>0
such that, if P′ = (I′1, . . . , I

′

k′) is a partition with |P′| < δ and if

{j′1, . . . , j
′

r} = {j
′
∈ {1, . . . ,k′} | cl(I′j′) 1 cl(Ij) for any j ∈ {1, . . . ,k}},

then
r∑

l=1

|xj′l
− xj′l−1| < ε,

where EP(P′) = (x0, x1, . . . , xk′).

Proof Let ε ∈ R>0 and take δ = ε
k+1 . Let P′ = (I′1, . . . , I

′

k′) be a partition with endpoints
(x0, x1, . . . , xk′) and satisfying |P′| < δ. Define

K1 = { j′ ∈ {1, . . . , k′} | cl(I′j′) 1 cl(I j) for any j ∈ {1, . . . , k}}.

If j′ ∈ K1 then I′j′ is not contained in any interval of P and so I′j′ must contain at least
one endpoint from P. Since P has k + 1 endpoints we obtain card(K1) ≤ k + 1. Since the
intervals I′j′ , j′ ∈ K1, have length at most δ we have∑

j′∈K1

(x j′ − x j′−1) ≤ (k + 1)δ ≤ ε,

as desired. H

Now let ε ∈ R>0 and define M = sup{| f (x)| | x ∈ I}. Denote by I( f ) the Riemann
integral of f . Choose partitions P− and P+ such that

I( f ) − A−( f ,P−) < ε
2 , A+( f ,P+) − I( f ) < ε

2 .

If P = (I1, . . . , Ik) is chosen such that EP(P) = EP(P−) ∪ EP(P+), then

I( f ) − A−( f ,P) < ε
2 , A+( f ,P) − I( f ) < ε

2 .

By Lemma 3 choose δ ∈ R>0 such that if P′ is any partition for which |P′| < δ then
the sum of the lengths of the intervals of P′ not contained in some interval of P does
not exceed ε

2M . Let P′ = (I′1, . . . , I
′

k′) be a partition with endpoints (x0, x1, . . . , xk′) and
satisfying |P′| < δ. Denote

K1 = { j′ ∈ {1, . . . , k′} | I′j′ 1 I j for some j ∈ {1, . . . , k}}

and K2 = {1, . . . , k′} \ K1. Let (ξ1, . . . , ξk′) be a selection of P′. Then we compute

k′∑
j=1

f (ξ j)(x j − x j−1) =
∑
j∈K1

f (ξ j)(x j − x j−1) +
∑
j∈K2

f (ξ j)(x j − x j−1)

≤ A+( f ,P) + M
ε

2M
< I( f ) + ε.

In like manner we show that

k′∑
j=1

f (ξ j)(x j − x j−1) > I( f ) − ε.
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This gives ∣∣∣∣ k′∑
j=1

f (ξ j)(x j − x j−1) − I( f )
∣∣∣∣ < ε,

as desired.
(iii) =⇒ (ii) Let ε ∈ R>0 and let P = (I1, . . . , Ik) be a partition for which∣∣∣∣ k∑

j=1

f (ξ j)(x j − x j−1) − I( f )
∣∣∣∣ < ε

4

for every selection (ξ1, . . . , ξk) from P. Now particularly choose a selection such that

| f (ξ j) − sup{ f (x) | x ∈ cl(I j)}| <
ε

4k(x j − x j−1)
.

Then

|A+( f ,P) − I( f )| ≤
∣∣∣∣A+( f ,P) −

k∑
j=1

f (ξ j)(x j − x j−1)
∣∣∣∣ +

∣∣∣∣ k∑
j=1

f (ξ j)(x j − x j−1) − I( f )
∣∣∣∣

<
k∑

j=1

ε
4k(x j − x j−1)

(x j − x j−1) +
ε
4
<
ε
2
.

In like manner one shows that |A−( f ,P) − I( f )| < ε
2 . Therefore,

|A+( f ,P) − A−( f ,P)| ≤ |A+( f ,P) − I( f )| + |I( f ) − A−( f ,P)| < ε,

as desired.
(iii) =⇒ (iv) Let ε ∈ R>0 and let δ ∈ R>0 have the property that, whenever P =

(I1, . . .k) is a partition satisfying |P| < δ and (ξ1, . . . , ξk) is a selection from P, it holds that∣∣∣∣ k∑
j=1

f (ξ j)(x j − x j−1) − I( f )
∣∣∣∣ < ε

2
.

Now let P = (I1, . . . , Ik) and P′ = (I′1, . . . , I
′

k′) be two partitions with |P|, |P′| < δ, and let
(ξ1, . . . , ξk) and (ξ′1, . . . , ξ

′

k′) selections from P and P′, respectively. Then we have

∣∣∣∣ k∑
j=1

f (ξ j)(x j − x j−1) −
k′∑

j=1

f (ξ′j)(x
′

j − x′j−1)
∣∣∣∣

≤

∣∣∣∣ k∑
j=1

f (ξ j)(x j − x j−1) − I( f )
∣∣∣∣ +

∣∣∣∣ k′∑
j=1

f (ξ′j)(x
′

j − x′j−1) − I( f )
∣∣∣∣ < ε,

which gives this part of the result.
(iv) =⇒ (iii) Let (P j = (I j,1, . . . , I j,k j)) j∈Z>0 be a sequence of partitions for which

lim j→∞|P j| = 0. Then, for each ε ∈ R>0, there exists N ∈ Z>0 such that

∣∣∣∣ kl∑
j=1

f (ξl, j)(xl, j − xl, j−1) −
km∑
j=1

f (ξm, j)(xm, j − xm, j−1)
∣∣∣∣ < ε,
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for l,m ≥ N, where ξ j = (ξ j,1, . . . , ξ j,k j), is a selection from P j, j ∈ Z>0, and where
EP(P j) = (x j,0, x j,1, . . . , x j,k j), j ∈ Z>0. If we define

A( f ,P j, ξ j) =

k j∑
r=1

f (ξr)(x j,r − x j,r−1),

then the sequence (A( f ,P j, ξ j)) j∈Z>0 is a Cauchy sequence inR for any choices of points
ξ j, j ∈ Z>0. Denote the resulting limit of this sequence by I( f ). We claim that I( f ) is the
Riemann integral of f . To see this, let ε ∈ R>0 and let δ ∈ R>0 be such that

∣∣∣∣ k∑
j=1

f (ξ j)(x j − x j−1) −
k′∑

j=1

f (ξ′j)(x
′

j − x′j−1)
∣∣∣∣ < ε

2

for any two partitions P and P′ satisfying |P|, |P′| < δ and for any selections ξ and ξ′

from P and P′, respectively. Now let N ∈ Z>0 satisfy |P j| < δ for every j ≥ N. Then, if
P is any partition with |P| < δ and if ξ is any selection from P, we have

|A( f ,P, ξ) − I( f )| ≤ |A( f ,P, ξ) − A( f ,PN, ξN)| + |A( f ,PN, ξN) − I( f )| < ε,

for any selection ξN of PN. This shows that I( f ) is indeed the Riemann integral of f ,
and so gives this part of the theorem. �

A consequence of the proof is that, of course, the quantity I( f ) in part (iii) of the
theorem is nothing other than the Riemann integral of f .

Many of the functions one encounters in practice are, in fact, Riemann inte-
grable. However, not all functions are Riemann integrable, as the following simple
examples shows.

3.4.10 Example (A function that is not Riemann integrable) Let I = [0, 1] and let f : I→
R be defined by

f (x) =

1, x ∈ Q ∩ I
0, x < Q ∩ I.

Thus f takes the value 1 at all rational points, and is zero elsewhere. Now let
s+, s− : I → R be any step functions satisfying s−(x) ≤ f (x) ≤ s+(x) for all x ∈ I.
Since any nonempty subinterval of I contains infinitely many irrational numbers,
it follows that s−(x) ≤ 0 for every x ∈ I. Since every nonempty subinterval of I
contains infinitely many rational numbers, it follows that s+(x) ≥ 1 for every x ∈ I.
Therefore, A(s+) − A(s−) ≥ 1. It follows from Theorem 3.4.9 that f is not Riemann
integrable. While this example may seem pointless and contrived, it will be used in
Examples ???? and 5.1.11 to exhibit undesirable features of the Riemann integral. •

The following result provides an interesting characterisation of Riemann in-
tegrable functions, illustrating precisely the sorts of functions whose Riemann
integrals may be computed.
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3.4.11 Theorem (Riemann integrable functions are continuous almost everywhere,
and vice versa) For a compact interval I = [a, b], a bounded function f : I → R is
Riemann integrable if and only if the set

Df = {x ∈ I | f is discontinuous at x}

has measure zero.
Proof Recall from Definition 3.1.10 the notion of the oscillation ω f for a function f ,
and that ω f (x) = 0 if and only if f is continuous at x. For k ∈ Z>0 define

D f ,k =
{
x ∈ I

∣∣∣ ω f (x) ≥ 1
k

}
.

Then Proposition 3.1.11 implies that D f = ∪k∈Z>0D f ,k. By Exercise 2.5.9 we can assert
that D f has measure zero if and only if each of the sets D f ,k has measure zero, k ∈ Z>0.

Now suppose that D f ,k does not have measure zero for some k ∈ Z>0. Then there
exists ε ∈ R>0 such that, if a family ((a j, b j)) j∈Z>0 of open intervals has the property that

D f ,k ⊆
⋃

j∈Z>0

(a j, b j),

then
∞∑
j=1

|b j − a j| ≥ ε.

Now let P be a partition of I and denote EP(P) = (x0, x1, . . . , xm). Now let { j1, . . . , jl} ⊆
{1, . . . ,m} be those indices for which jr ∈ { j1, . . . , jl} implies that D f ,k ∩ (x jr−1, x jr) , ∅.
Note that it follows that the set

⋃l
r=1(x jr−1, x jr) covers D f ,k with the possible exception

of a finite number of points. It then follows that one can enlarge the length of each of
the intervals (x jr−1, x jr), r ∈ {1, . . . , l}, by ε

2l , and the resulting intervals will cover D f ,k.
The enlarged intervals will have total length at least ε, which means that

l∑
r=1

|x jr − x jr−1| ≥
ε
2
.

Moreover, for each r ∈ {1, . . . , l},

sup{ f (x) | x ∈ [x jr−1, x jr]} − inf{ f (x) | x ∈ [x jr−1, x jr]} ≥
1
k

since D f ,k ∩ (x jr−1, x jr) , ∅ and by definition of D f ,k and ω f . It now follows that

A+( f ,P) − A−( f ,P) =

m∑
j=1

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

≥

l∑
r=1

(x jr − x jr−1)
(
sup{ f (x) | x ∈ [x jr−1, x jr]}

− inf{ f (x) | x ∈ [x jr−1, x jr]}
)

≥
ε
2k .
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Since this must hold for every partition, it follows that f is not Riemann integrable.
Now suppose that D f has measure zero. Since f is bounded, let M = sup{| f (x)| | x ∈

I}. Let ε ∈ R>0 and for brevity define ε′ = ε
b−a+2 . Choose a sequence ((a j, b j)) j∈Z>0 of

open intervals such that

D f ⊆
⋃

j∈Z>0

I j,
∞∑
j=1

|b j − a j| <
ε′

M .

Define δ : I→ R>0 such that the following properties hold:
1. if x < D f then δ(x) is taken such that, if y ∈ I ∩ B(δ(x), x), then | f (y) − f (x)| < ε′

2 ;
2. if x ∈ D f then δ(x) is taken such that B(δ(x), x) ⊆ I j for some j ∈ Z>0.

Now, by Proposition 2.5.10, let ((c1, I1), . . . , (ck, Ik)) be a δ-fine tagged partition with
P = (I1, . . . , Ik) the associated partition. Now partition the set {1, . . . , k} into two sets K1
and K2 such that j ∈ K1 if and only if c j < D f . Then we compute

A+( f ,P) − A−( f ,P) =

k∑
j=1

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

=
∑
j∈K1

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

+
∑
j∈K2

(x j − x j−1)
(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)

≤

∑
j∈K1

ε′(x j − x j−1) +
∑
j∈K2

2M(x j − x j−1)

≤ ε′(b − a) + 2M
∞∑
j=1

|b j − a j|

< ε′(b − a + 2) = ε.

This part of the result now follows by Theorem 3.4.9. �

The theorem indicates why the function of Example 3.4.10 is not Riemann
integrable. Indeed, the function in that example is discontinuous at all points in
[0, 1] (why?). The theorem also has the following obvious corollary which illustrates
why so many functions in practice are Riemann integrable.

3.4.12 Corollary (Continuous functions are Riemann integrable) If f : [a, b] → R is
continuous, then it is Riemann integrable.

By virtue of Theorem 3.3.3, we also have the following result, giving another
large class of Riemann integrable functions, distinct from those that are continu-
ous.
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3.4.13 Corollary (Functions of bounded variation are Riemann integrable) If
f : [a, b]→ R has bounded variation, then f is Riemann integrable.

3.4.4 The Riemann integral on noncompact intervals

Up to this point in this section we have only considered the Riemann integral
for bounded functions defined on compact intervals. In this section we extend the
notion of the Riemann integral to allow its definition for unbounded functions and
for general intervals. There are complications that arise in this situation that do
not arise in the case of a compact interval in that one has two possible notions of
what one might call a Riemann integrable function. In all cases, we use the existing
definition of the Riemann integral for compact intervals as our basis, and allow the
other cases as limits.

3.4.14 Definition (Positive Riemann integrable function on a general interval) Let
I ⊆ R be an interval and let f : I → R≥0 be a function whose restriction to every
compact subinterval of I is Riemann integrable.

(i) If I = [a, b] then the Riemann integral of f is as defined in the preceding
section.

(ii) If I = (a, b] then define ∫ b

a
f (x) dx = lim

ra↓a

∫ b

ra

f (x) dx.

(iii) If I = [a, b) then define ∫ b

a
f (x) dx = lim

rb↑b

∫ rb

a
f (x) dx.

(iv) If I = (a, b) then define∫ b

a
f (x) dx = lim

ra↓a

∫ c

ra

f (x) dx + lim
rb↑b

∫ rb

c
f (x) dx

for some c ∈ (a, b).
(v) If I = (−∞, b] then define∫ b

−∞

f (x) dx = lim
R→∞

∫ b

−R
f (x) dx.

(vi) If I = (−∞, b) then define∫ b

−∞

f (x) dx = lim
R→∞

∫ c

−R
f (x) dx + lim

rb↑b

∫ rb

c
f (x) dx

for some c ∈ (−∞, b).
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(vii) If I = [a,∞) then define∫
∞

a
f (x) dx = lim

R→∞

∫ R

a
f (x) dx.

(viii) If I = (a,∞) then define∫
∞

a
f (x) dx = lim

ra↓a

∫ c

ra

f (x) dx + lim
R→∞

∫ R

c
f (x) dx

for some c ∈ (a,∞).
(ix) If I = R then define∫

∞

−∞

f (x) dx = lim
R→∞

∫ c

−R
f (x) dx + lim

R→∞

∫ R

c
f (x) dx

for some c ∈ R.
If, for a given I and f , the appropriate of the above limits exists, then f is Riemann
integrable on I, and the Riemann integral is the value of the limit. Let us denote by∫

I
f (x) dx

the Riemann integral. •

One can easily show that where, in the above definitions, one must make a
choice of c, the definition is independent of this choice (cf. Proposition 3.4.26).

The above definition is intended for functions taking nonnegative values. For
more general functions we have the following definition.

3.4.15 Definition (Riemann integrable function on a general interval) Let I ⊆ R be an
interval and let f : I→ R be a function whose restriction to any compact subinterval
of I is Riemann integrable. Define f+, f− : I→ R≥0 by

f+(x) = max{0, f (x)}, f−(x) = −min{0, f (x)}

so that f = f+ − f−. The function f is Riemann integrable if both f+ and f− are
Riemann integrable, and the Riemann integral of f is∫

I
f (x) dx =

∫
I

f+(x) dx −
∫

I
f−(x) dx. •

At this point, if I is compact, we have potentially competing definitions for the
Riemann integral of a bounded function I : f → R. One definition is the direct one
of Definition 3.4.6. The other definition involves computing the Riemann integral,
as per Definition 3.4.6, of the positive and negative parts of f , and then take the
difference of these. Let us resolve the equivalence of these two notions.
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3.4.16 Proposition (Consistency of definition of Riemann integral on compact inter-
vals) Let I = [a, b], let f : [a, b] → R, and let f+, f− : [a, b] → R≥0 be the positive and
negative parts of f. Then the following two statements are equivalent:

(i) f is integrable as per Definition 3.4.6 with Riemann integral I(f);
(ii) f+ and f− are Riemann integrable as per Definition 3.4.6 with Riemann integrals

I(f+) and I(f−).
Moreover, if one, and therefore both, of parts (i) and (ii) hold, then I(f) = I(f+) − I(f−).

Proof We shall refer ahead to the results of Section 3.4.5.
(i) =⇒ (ii) Define continuous functions g+, g− : R→ R by

g+(x) = max{0, x}, g−(x) = −min{0, x}

so that f+ = g+ ◦ f and f− = g− ◦ f . By Proposition 3.4.23 (noting that the proof of that
result is valid for the Riemann integral as per Definition 3.4.6) it follows that f+ and
f− are Riemann integrable as per Definition 3.4.6.

(ii) =⇒ (i) Note that f = f+ − f−. Also note that the proof of Proposition 3.4.22
is valid for the Riemann integral as per Definition 3.4.6. Therefore, f is Riemann
integrable as per Definition 3.4.6.

Now we show that I( f ) = I( f+) − I( f−). This, however, follows immediately from
Proposition 3.4.22. �

It is not uncommon to see the general integral as we have defined it called the
improper Riemann integral.

The preceding definitions may appear at first to be excessively complicated. The
following examples illustrate the rationale behind the care taken in the definitions.

3.4.17 Examples (Riemann integral on a general interval)
1. Let I = (0, 1] and let f (x) = x−1. Then, if ra ∈ (0, 1), we compute the proper

Riemann integral ∫ 1

ra

f (x) dx = − log ra,

where log is the natural logarithm. Since limra↓ log ra = −∞ this function is not
Riemann integrable on (0, 1].

2. Let I = (0, 1] and let f (x) = x−1/2. Then, if ra ∈ (0, 1), we compute the proper
Riemann integral ∫ 1

ra

f (x) dx = 2 − 2
√

ra.

In this case the function is Riemann integrable on (0, 1] and the value of the
Riemann integral is 2.

3. Let I = R and define f (x) = (1 + x2)−1. In this case we have∫
∞

−∞

1
1 + x2 dx = lim

R→∞

∫ 0

−R

1
1 + x2 dx + lim

R→∞

∫ R

0

1
1 + x2 dx

= lim
R→∞

arctan R + lim
R→∞

arctan R = π.

Thus this function is Riemann integrable onR and has a Riemann integral of π.
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4. The next example we consider is I = R and f (x) = x(1 + x2)−1. In this case we
compute ∫

∞

−∞

x
1 + x2 dx = lim

R→∞

∫ 0

−R

x
1 + x2 dx + lim

R→∞

∫ R

0

x
1 + x2 dx

= lim
R→∞

1
2

log(1 + R2) − lim
R→∞

1
2

log(1 + R2).

Now, it is not permissible to say here that∞−∞ = 0. Therefore, we are forced
to conclude that f is not Riemann integrable on R.

5. To make the preceding example a little more dramatic, and to more convincingly
illustrate why we should not cancel the infinities, we take I = R and f (x) = x3.
Here we compute ∫

∞

−∞

x3 dx = lim
R→∞

1
4

R4
− lim

R→∞

1
4

R4.

In this case again we must conclude that f is not Riemann integrable on R.
Indeed, it seems unlikely that one would wish to conclude that such a function
was Riemann integrable since it is so badly behaved as |t| → ∞. However, if we
reject this function as being Riemann integrable, we must also reject the function
of Example 4, even though it is not as ill behaved as the function here. •

Note that the above constructions involved first separating a function into its
positive and negative parts, and then integrating these separately. However, there
is not a priori reason why we could not have defined the limits in Definition 3.4.14
directly, and not just for positive functions. One can do this in fact. However, as
we shall see, the two ensuing constructions of the integral are not equivalent.

3.4.18 Definition (Conditionally Riemann integrable functions on a general interval)
Let I ⊆ R be an interval and let f : I → R be a function whose restriction to any
compact subinterval of I is Riemann integrable. Then f is conditionally Riemann
integrable if the limit in the appropriate of the nine cases of Definition 3.4.14 exists.
This limit is called the conditional Riemann integral of f . If f is conditionally
integrable we write

C
∫

I
f (x) dx

as the conditional Riemann integral. •

missing stuff
Before we explain the differences between conditionally integrable and inte-

grable functions via examples, let us provide the relationship between the two
notions.

3.4.19 Proposition (Relationship between integrability and conditional integrability)
If I ⊆ R is an interval and if f : I→ R, then the following statements hold:

(i) if f is Riemann integrable then it is conditionally Riemann integrable;



2016/11/26 3.4 The Riemann integral 232

(ii) if I is additionally compact then, if f is conditionally Riemann integrable it is Riemann
integrable.

Proof In the proof it is convenient to make use of the results from Section 3.4.5.
(i) Let f+ and f− be the positive and negative parts of f . Since f is Riemann

integrable, then so are f+ and f− by Definition 3.4.15. Moreover, since Riemann inte-
grability and conditional Riemann integrability are clearly equivalent for nonnegative
functions, it follows that f+ and f− are conditionally Riemann integrable. Therefore,
by Proposition 3.4.22, it follows that f = f+ − f− is conditionally Riemann integrable.

(ii) This follows from Definition 3.4.15 and Proposition 3.4.16. �

Let us show that conditional Riemann integrability and Riemann integrability
are not equivalent.

3.4.20 Example (A conditionally Riemann integrable function that is not Riemann
integrable) Let I = [1,∞) and define f (x) = sin x

x . Let us first show that f is
conditionally Riemann integrable. We have, using integration by parts (Proposi-
tion 3.4.28),∫

∞

1

sin x
x

dx = lim
R→∞

∫ R

1

sin x
x

dx = lim
R→∞

(
−

cos x
x

∣∣∣∣R
1
−

∫ R

1

cos x
x2 dx

)
= cos 1 − lim

R→∞

∫ R

1

cos x
x2 dx.

We claim that the last limit exists. Indeed,∣∣∣∣∫ R

1

cos x
x2 dx

∣∣∣∣ ≤ ∫ R

1

|cos x|
x2 dx ≤

∫ R

1

1
x2 dx = 1 −

1
R
,

and the limit as R→∞ is then 1. This shows that the limit defining the conditional
integral is indeed finite, and so f is conditionally Riemann integrable on [1,∞).

Now let us show that this function is not Riemann integrable. By Proposi-
tion 3.4.25, f is Riemann integrable if and only if | f | is Riemann integrable. For
R > 0 let NR ∈ Z>0 satisfy R ∈ [NRπ, (NR + 1)π]. We then have∫ R

1

∣∣∣∣sin x
x

∣∣∣∣ dx ≥
∫ NRπ

π

∣∣∣∣sin x
x

∣∣∣∣ dx

≥

NR−1∑
j=1

1
jπ

∫ ( j+1)π

jπ
|sin x|dx =

2
π

NR−1∑
j=1

1
j
.

By Example 2.4.2–2, the last sum diverges to∞ as NR →∞, and consequently the
integral on the left diverges to∞ as R→∞, giving the assertion. •
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3.4.21 Remark (“Conditional Riemann integral” versus “Riemann integral”) The pre-
vious example illustrates that one needs to exercise some care when talking about
the Riemann integral. Adding to the possible confusion here is the fact that there is
no established convention concerning what is intended when one says “Riemann
integral.” Many authors use “Riemann integrability” where we use “conditional
Riemann integrability” and then use “absolute Riemann integrability” where we
use “Riemann integrability.” There is a good reason to do this.
1. One can think of integrals as being analogous to sums. When we talked about

convergence of sums in Section 2.4 we used “convergence” to talk about that
concept which, for the Riemann integral, is analogous to “conditional Riemann
integrability” in our terminology. We used the expression “absolute conver-
gence” for that concept which, for the Riemann integral, is analogous to “Rie-
mann integrability” in our terminology. Thus the alternative terminology of
“Riemann integrability” for “conditional Riemann integrability” and “absolute
Riemann integrability” for “Riemann integrability” is more in alignment with
the (more or less) standard terminology for sums.

However, there is also a good reason to use the terminology we use. However, the
reasons here have to do with terminology attached to the Lebesgue integral that
we discuss in Chapter 5. However, here is as good a place as any to discuss this.
2. For the Lebesgue integral, the most natural notion of integrability is analogous

to the notion of “Riemann integrability” in our terminology. That is, the termi-
nology “Lebesgue integrability” is a generalisation of “Riemann integrability.”
The notion of “conditional Riemann integrability” is not much discussed for the
Lebesgue integral, so there is not so much an established terminology for this.
However, if there were an established terminology it would be “conditional
Lebesgue integrability.”

In Table 3.1 we give a summary of the preceding discussion, noting that apart

Table 3.1 “Conditional” versus “absolute” terminology. In the
top row we give our terminology, in the second row we give
the alternative terminology for the Riemann integral, in the
third row we give the analogous terminology for sums, and
in the fourth row we give the terminology for the Lebesgue
integral.

Riemann integrable conditionally Riemann integrable

Alternative absolutely Riemann integrable Riemann integrable
Sums absolutely convergent convergent
Lebesgue integral Lebesgue integrable conditionally Lebesgue integrable

from overwriting some standard conventions, there is no optimal way to choose
what language to use. Our motivation for the convention we use is that it is best
that “Lebesgue integrability” should generalise “Riemann integrability.” But it is
necessary to understand what one is reading and what is intended in any case. •
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3.4.5 The Riemann integral and operations on functions

In this section we consider the interaction of integration with the usual algebraic
and other operations on functions. We will consider both Riemann integrability and
conditional Riemann integrability. If we wish to make a statement that we intend
to hold for both notions, we shall write “(conditionally) Riemann integrable” to
connote this. We will also write

(C)
∫

I
f (x) dx

to denote either the Riemann integral or the conditional Riemann integral in cases
where we wish for both to apply. The reader should also keep in mind that Riemann
integrability and conditional Riemann integrability agree for compact intervals.

3.4.22 Proposition (Algebraic operations and the Riemann integral) Let I ⊆ R be an
interval, let f,g: I → R be (conditionally) Riemann integrable functions, and let c ∈ R.
Then the following statements hold:

(i) f + g is (conditionally) Riemann integrable and

(C)
∫

I
(f + g)(x) dx = (C)

∫
I
f(x) dx + (C)

∫
I
g(x) dx;

(ii) cf is (conditionally) Riemann integrable and

(C)
∫

I
(cf)(x) dx = c(C)

∫
I
f(x) dx;

(iii) if I is additionally compact, then fg is Riemann integrable;
(iv) if I is additionally compact and if there exists α ∈ R>0 such that g(x) ≥ α for each

x ∈ I, then f
g is Riemann integrable.

Proof (i) We first suppose that I = [a, b] is a compact interval. Let ε ∈ R>0 and by
Theorem 3.4.9 we let P f and Pg be partitions of [a, b] such that

A+( f ,P f ) − A−( f ,P f ) < ε
2 , A+(g,Pg) − A−(g,Pg) < ε

2 ,

and let P be a partition for which (x0, x1, . . . , xk) = EP(P) = EP(P f )∪EP(Pg). Then, using
Proposition 2.2.27,

sup{ f (x) + g(x) | x ∈ [x j−1, x j]} = sup{ f (x) | x ∈ [x j−1, x j]} + sup{g(x) | x ∈ [x j−1, x j]}

and

inf{ f (x) + g(x) | x ∈ [x j−1, x j]} = inf{ f (x) | x ∈ [x j−1, x j]} + inf{g(x) | x ∈ [x j−1, x j]}

for each j ∈ {1, . . . , k}. Thus

A+( f + g,P) − A−( f + g,P) ≤ A+( f ,P) + A+(g,P) − A−( f ,P) − A−(g,P) < ε,
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using Lemma 1 from the proof of Theorem 3.4.9. This shows that f + g is Riemann
integrable by Theorem 3.4.9.

Now let P f and Pg be any two partitions and let P satisfy (x0, x1, . . . , xk) = EP(P) =
EP(P f ) ∪ EP(Pg). Then

A+( f ,P f ) + A+(g,Pg) ≥ A+( f ,P) + A+(g,P) ≥ A+( f + g,P) ≥ I+( f + g).

We then have

I+( f + g) ≤ A+( f ,P f ) + A+(g,Pg) =⇒ I+( f + g) ≤ I+( f ) + I+(g).

In like fashion we obtain the estimate

I−( f + g) ≥ I−( f ) + I−(g).

Combining this gives

I−( f ) + I−(g) ≤ I−( f + g) = I+( f + g) ≤ I+( f ) + I+(g),

which implies equality of these four terms since I−( f ) = I+( f ) and I−(g) = I+(g).
This gives this part of the result when I is compact. The result follows for general
intervals from the definition of the Riemann integral for such intervals, and by applying
Proposition 2.3.23.

(ii) As in part (i), the result will follow if we can prove it when I is compact. When
c = 0 the result is trivial, so suppose that c , 0. First consider the case c > 0. For ε ∈ R>0
let P be a partition for which A+( f ,P) − A−( f ,P) < ε

c . Since A−(c f ,P) = cA−( f ,P) and
A+(c f ,P) = cA+( f ,P) (as is easily checked), we have A+(c f ,P) − A−(c f ,P) < ε, showing
that c f is Riemann integrable. The equalities A−(c f ,P) = cA−( f ,P) and A+(c f ,P) =
cA+( f ,P) then directly imply that I−(c f ) = cI−( f ) and I+(c f ) = cI+( f ), giving the result
for c > 0. For c < 0 a similar argument holds, but asking that P be a partition for which
A+( f ,P) − A−( f ,P) < − εc .

(iii) First let us show that if I is compact then f 2 is Riemann integrable if f is Riemann
integrable. This, however, follows from Proposition 3.4.23 by taking g : I → R to be
g(x) = x2. To show that a general product f g of Riemann integrable functions on a
compact interval is Riemann integrable, we note that

f g = 1
2 (( f + g)2

− f 2
− g2).

By part (i) and using the fact that the square of a Riemann integrable function is
Riemann integrable, the function on the right is Riemann integrable, so giving the
result.

(iv) That 1
g is Riemann integrable follows from Proposition 3.4.23 by taking g : I→

R to be g(x) = 1
x . �

In parts (iii) and (iv) we asked that the interval be compact. It is simple to
find counterexamples which indicate that compactness of the interval is generally
necessary (see Exercise 3.4.3).

We now consider the relationship between composition and Riemann integra-
tion.
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3.4.23 Proposition (Function composition and the Riemann integral) If I = [a, b] is a
compact interval, if f : [a, b]→ R is a Riemann integrable function satisfying image(f) ⊆
[c,d], and if g: [c,d]→ R is continuous, then g ◦ f is Riemann integrable.

Proof Denote M = sup{|g(y)| | y ∈ [c, d]}. Let ε ∈ R>0 and write ε′ = ε
2M+d−c . Since g

is uniformly continuous by the Heine–Cantor Theorem, let δ ∈ R be chosen such that
0 < δ < ε′ and such that, |y1 − y2| < δ implies that |g(y1) − g(y2)| < ε′. Then choose a
partition P of [a, b] such that A+( f ,P)−A−( f ,P) < δ2. Let (x0, x1, . . . , xk) be the endpoints
of P and define

A = { j ∈ {1, . . . , k} | sup{ f (x) | x ∈ [x j−1, x j]} − inf{ f (x) | x ∈ [x j−1, x j]} < δ},
B = { j ∈ {1, . . . , k} | sup{ f (x) | x ∈ [x j−1, x j]} − inf{ f (x) | x ∈ [x j−1, x j]} ≥ δ}.

For j ∈ A we have | f (ξ1) − f (ξ2)| < δ for every ξ1, ξ2 ∈ [x j−1, x j] which implies that
|g ◦ f (ξ1) − g ◦ f (ξ2)| < ε′ for every ξ1, ξ2 ∈ [x j−1, x j]. For j ∈ B we have

δ
∑
j∈B

(x j − x j−1) ≤
∑
j∈B

(
sup{ f (x) | x ∈ [x j−1, x j]}

− inf{ f (x) | x ∈ [x j−1, x j]}
)
(x j − x j−1)

≤ A+( f ,P) − A−( f ,P) < δ2.

Therefore we conclude that ∑
j∈B

(x j − x j−1) ≤ ε′.

Thus

A+(g ◦ f ,P) − A−(g ◦ f ,P) =

k∑
j=1

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)
(x j − x j−1)

=
∑
j∈A

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)
(x j − x j−1)

+
∑
j∈B

(
sup{g ◦ f (x) | x ∈ [x j−1, x j]}

− inf{g ◦ f (x) | x ∈ [x j−1, x j]}
)
(x j − x j−1)

< ε′(d − c) + 2ε′M < ε,

giving the result by Theorem 3.4.9. �

The Riemann integral also has the expected properties relative to the partial
order and the absolute value function on R.

3.4.24 Proposition (Riemann integral and total order on R) Let I ⊆ R be an interval and
let f,g: I → R be (conditionally) Riemann integrable functions for which f(x) ≤ g(x) for
each x ∈ I. Then

(C)
∫

I
f(x) dx ≤ (C)

∫
I
g(x) dx.
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Proof Note that by part (i) of Proposition 3.4.22 it suffices to take f = 0 and then
show that

∫
I g(x) dx ≥ 0. In the case where I = [a, b] we have∫ b

a
g(x) dx ≥ (b − a) inf{g(x) | x ∈ [a, b]} ≥ 0,

which gives the result in this case. The result for general intervals follows from the
definition, and the fact the a limit of nonnegative numbers is nonnegative. �

3.4.25 Proposition (Riemann integral and absolute value on R) Let I be an interval, let
f : I→ R, and define |f| : I→ R by |f|(x) = |f(x)|. Then the following statements hold:

(i) if f is Riemann integrable then |f| is Riemann integrable;
(ii) if I is compact and if f is conditionally Riemann integrable then |f| is conditionally

Riemann integrable.
Moreover, if the hypotheses of either part hold then∣∣∣∣∫

I
f(x) dx

∣∣∣∣ ≤ ∫
I
|f|(x) dx.

Proof (i) If f is Riemann integrable then f+ and f− are Riemann integrable. Since
| f | = f+ + f− it follows from Proposition 3.4.22 that | f | is Riemann integrable.

(ii) When I is compact, the statement follows since conditional Riemann integra-
bility is equivalent to Riemann integrability.

The inequality in the statement of the proposition follows from Proposition 3.4.24
since f (x) ≤ | f (x)| for all x ∈ I. �

We comment that the preceding result is, in fact, not true if one removes the
condition that I be compact. We also comment that the converse of the result is false,
in that the Riemann integrability of | f | does not imply the Riemann integrability of
f . The reader is asked to sort this out in Exercise 3.4.4.

The Riemann integral also behaves well upon breaking an interval into two
intervals that are disjoint except for a common endpoint.

3.4.26 Proposition (Breaking the Riemann integral in two) Let I ⊆ R be an interval and
let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and the left endpoint
of I2. Then f : I → R is (conditionally) Riemann integrable if and only if f|I1 and f|I2 are
(conditionally) Riemann integrable. Furthermore, we have

(C)
∫

I
f(x) dx = (C)

∫
I1

f(x) dx + (C)
∫

I2

f(x) dx.

Proof We first consider the case where I1 = [a, c] and I2 = [c, b].
Let us suppose that f is Riemann integrable and let (x0, x1, . . . , xk) be endpoints of

a partition of [a, b] for which A+( f ,P) − A−( f ,P) < ε. If c ∈ (x0, x1, . . . , xk), say c = x j,
then we have

A−( f ,P) = A−( f |I1,P1) + A−( f |I2,P2), A+( f ,P) = A+( f |I1,P1) + A+( f |I2,P2),
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where EP(P1) = (x0, x1, . . . , x j) are the endpoints of a partition of [a, c] and EP(P2) =
(x j, . . . , xk) is a partition of [c, b]. From this we directly deduce that

A+( f |I1,P1) − A−( f |I1,P1) < ε, A+( f |I2,P2) − A−( f |I2,P2) < ε. (3.14)

If c is not an endpoint of P, then one can construct a new partition P′ of [a, b] with c
as an extra endpoint. By Lemma 1 of Theorem 3.4.9 we have A+( f ,P′) − A−( f ,P′) < ε.
The argument then proceeds as above to show that (3.14) holds. Thus f |I1 and f |I2 are
Riemann integrable by Theorem 3.4.9.

To prove the equality of the integrals in the statement of the proposition, we
proceed as follows. Let P1 and P2 be partitions of I1 and I2, respectively. From these
construct a partition P(P1,P2) of I by asking that EP(P(P1,P2)) = EP(P1)∪EP(P2). Then

A+( f |I1,P1) + A+( f |I2,P2) = A+( f ,P(P1,P2)).

Thus

inf{A+( f |I1,P1) | P1 ∈ Part(I1)} + inf{A+( f |I2,P2) | P2 ∈ Part(I2)}
≥ inf{A+( f ,P) | P ∈ Part(I)}. (3.15)

Now let P be a partition of I and construct partitions P1(P) and P2(P) of I1 and I2
respectively by adding defining, if necessary, a new partition P′ of I with c as the (say)
jth endpoint, and then defining P1(P) such that EP(P1(P)) are the first j + 1 endpoints
of P′ and then defining P2(P) such that EP(P2(P)) are the last k − j endpoints of P′. By
Lemma 1 of Theorem 3.4.9 we then have

A+( f ,P) ≥ A+( f ,P′) = A+( f |I1,P1(P)) + A+( f |I2,P2(P)).

This gives

inf{A+( f ,P) | P ∈ Part(I)}
≥ inf{A+( f |I1,P1) | P1 ∈ Part(I1)} + inf{A+( f |I2,P2) | P2 ∈ Part(I2)}.

Combining this with (3.15) gives

inf{A+( f ,P) | P ∈ Part(I)}
= inf{A+( f |I1,P1) | P1 ∈ Part(I1)} + inf{A+( f |I2,P2) | P2 ∈ Part(I2)},

which is exactly the desired result.
The result for a general interval follows from the general definition of the Riemann

integral, and from Proposition 2.3.23. �

The next result gives a useful tool for evaluating integrals, as well as a being a
result of some fundamental importance.

3.4.27 Proposition (Change of variables for the Riemann integral) Let [a, b] be a compact
interval and let u: [a, b]→ R be differentiable with u′ Riemann integrable. Suppose that
image(u) ⊆ [c,d] and that f : [c,d] → R is Riemann integrable and that f = F′ for some
differentiable function F: [c,d]→ R. Then∫ b

a
f ◦u(x)u′(x) dx =

∫ u(b)

u(a)
f(y) dy.
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Proof Let G : [a, b] → R be defined by G = F ◦u. Then G′ = ( f ◦u)u′ by the Chain
Rule. Moreover, G′ is Riemann integrable by Propositions 3.4.22 and 3.4.23. Thus,
twice using Theorem 3.4.30 below,∫ b

a
f ◦u(x)u′(x) dx = G(b) − G(a) = F ◦u(b) − F ◦u(a) =

∫ u(b)

u(a)
f (y) dy,

as desired. �

As a final result in this section, we prove the extremely valuable integration by
parts formula.

3.4.28 Proposition (Integration by parts for the Riemann integral) If [a, b] is a com-
pact interval and if f,g: [a, b] → R are differentiable functions with f′ and g′ Riemann
integrable, then∫ b

a
f(x)g′(x) dx +

∫ b

a
f′(x)g(x) dx = f(b)g(b) − f(a)g(a).

Proof By Proposition 3.2.10 it holds that f g is differentiable and that ( f g)′ = f ′g+ f g′.
Thus, by Proposition 3.4.22, f g is differentiable with Riemann integrable derivative.
Therefore, by Theorem 3.4.30 below,∫ b

a
( f g)(x) dx = f (b)g(b) − f (a)g(a),

and the result follows directly from the formula for the product rule. �

3.4.6 The Fundamental Theorem of Calculus and the Mean Value Theorems

In this section we begin to explore the sense in which differentiation and integra-
tion are inverses of one another. This is, in actuality, and somewhat in contrast to
the manner in which one considers this question in introductory calculus courses, a
quite complicated matter. Indeed, we will not fully answer this question until Sec-
tion 5.9.7, after we have some knowledge of the Lebesgue integral. Nevertheless,
in this section we give some simple results, and some examples which illustrate
the value and the limitations of these results. We also present the Mean Value
Theorems for integrals.

The following language is often used in conjunction with the Fundamental
Theorem of Calculus.

3.4.29 Definition (Primitive) If I ⊆ R is an interval and if f : I → R is a function, a
primitive for f is a function F : I→ R such that F′ = f . •

Note that primitives are not unique since if one adds a constant to a primitive,
the resulting function is again a primitive.

The basic result of this section is the following.
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3.4.30 Theorem (Fundamental Theorem of Calculus for Riemann integrals) For a com-
pact interval I = [a, b], the following statements hold:

(i) if f : I→ R is Riemann integrable with primitive F: I→ R, then∫ b

a
f(x) dx = F(b) − F(a);

(ii) if f : I→ R is Riemann integrable, and if F: I→ R is defined by

F(x) =

∫ x

a
f(ξ) dξ,

then

(a) F is continuous and
(b) at each point x ∈ I for which f is continuous, F is differentiable and F′(x) = f(x).

Proof (i) Let (P j) j∈Z>0 be a sequence of partitions for which lim j→∞|P j| = 0. Denote
by (x j,0, x j,1, . . . , x j,k j) the endpoints of P j, j ∈ Z>0. By the Mean Value Theorem, for
each j ∈ Z>0 and for each r ∈ {1, . . . , kr}, there exists ξ j,r ∈ [x j,r−1, x j,r] such that F(x j,r) −
F(x j,r−1) = f (ξ j,r)(x j,r − x j,r−1). Since f is Riemann integrable we have

∫ b

a
f (x) dx = lim

j→∞

k j∑
r=1

f (ξ j,r)(x j,r − x j,r−1)

= lim
j→∞

k j∑
r=1

(F(x j,r) − F(x j,r−1))

= lim
j→∞

(F(b) − F(a)) = F(b) − F(a),

as desired.
(ii) Let x ∈ (a, b) and note that, for h sufficiently small,

F(x + h) − F(x) =

∫ x+h

x
f (ξ) dξ,

using Proposition 3.4.26. By Proposition 3.4.24 it follows that

h inf{ f (y) | y ∈ [a, b]} ≤
∫ x+h

x
f (ξ) dξ ≤ h sup{ f (y) | y ∈ [a, b]},

provided that h > 0. This shows that

lim
h↓0

∫ x+h

x
f (ξ) dξ = 0.

A similar argument can be fashioned for the case when h < 0 to show also that

lim
h↑0

∫ x+h

x
f (ξ) dξ = 0,
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so showing that F is continuous at point in (a, b). A slight modification to this argument
shows that F is also continuous at a and b.

Now suppose that f is continuous at x. Let h > 0. Again using Proposition 3.4.24
we have

h inf{ f (y) | y ∈ [x, x + h]} ≤
∫ x+h

x
f (ξ) dξ ≤ h sup{ f (y) | y ∈ [x, x + h]}

=⇒ inf{ f (y) | y ∈ [x, x + h]} ≤
F(x + h) − F(x)

h
≤ sup{ f (y) | y ∈ [x, x + h]}.

Continuity of f at x gives

lim
h↓0

inf{ f (y) | y ∈ [x, x + h]} = f (x), lim
h↓0

sup{ f (y) | y ∈ [x, x + h]} = f (x).

Therefore,

lim
h↓0

F(x + h) − F(x)
h

= f (x).

A similar argument can be made for h < 0 to give

lim
h↑0

F(x + h) − F(x)
h

= f (x),

so proving this part of the theorem. �

Let us give some examples that illustrate what the Fundamental Theorem of
Calculus says and does not say.

3.4.31 Examples (Fundamental Theorem of Calculus)
1. Let I = [0, 1] and define f : I→ R by

f (x) =

x, x ∈ [0, 1
2 ],

1 − x, x ∈ (1
2 , 1].

Then

F(x) ,
∫ x

0
f (ξ) dξ =

1
2x2, x ∈ [0, 1

2 ],
−

1
2x2 + x − 1

8 , x ∈ (1
2 , 1].

Then, for any x ∈ [a, b], we see that∫ x

0
f (ξ) dξ = F(x) − F(0).

This is consistent with part (i) of Theorem 3.4.30, whose hypotheses apply since
f is continuous, and so Riemann integrable.

2. Let I = [0, 1] and define f : I→ R by

f (x) =

1, x ∈ [0, 1
2 ],

−1, x ∈ ( 1
2 , 1].
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Then

F(x) ,
∫ x

0
f (ξ) dξ =

x, x ∈ [0, 1
2 ],

1 − x, x ∈ ( 1
2 , 1].

Then, for any x ∈ [a, b], we see that∫ x

0
f (ξ) dξ = F(x) − F(0).

In this case, we have the conclusions of part (i) of Theorem 3.4.30, and indeed
the hypotheses hold, since f is Riemann integrable.

3. Let I and f be as in Example 1 above. Then f is Riemann integrable, and
we see that F is continuous, as per part (ii) of Theorem 3.4.30, and that F is
differentiable, also as per part (ii) of Theorem 3.4.30.

4. Let I and f be as in Example 2 above. Then f is Riemann integrable, and we
see that F is continuous, as per part (ii) of Theorem 3.4.30. However, f is not
continuous at x = 1

2 , and we see that, correspondingly, F is not differentiable at
x = 1

2 .
5. The next example we consider is one with which, at this point, we can only

be sketchy about the details. Consider the Cantor function fC : [0, 1] → R of
Example 3.2.27. Note that f ′C is defined and equal to zero, except at points in
the Cantor set C; thus except at points forming a set of measure zero. It will be
clear when we discuss the Lebesgue integral in Section 5.9 that this ensures that∫ x

0
f ′C(ξ) dξ = 0 for every x ∈ [0, 1], where the integral in this case is the Lebesgue

integral. (By defining f ′C arbitrarily on C, we can also use the Riemann integral
by virtue of Theorem 3.4.11.) This shows that the conclusions of part (i) of
Theorem 3.4.30 can fail to hold, even when the derivative of F is defined almost
everywhere.

6. The last example we give is the most significant, in some sense, and is also
the most complicated. The example we give is of a function F : [0, 1] → R
that is differentiable with bounded derivative, but whose derivative f = F′

is not Riemann integrable. Thus f possesses a primitive, but is not Riemann
integrable.
To define F, let G : R>0 → R be the function

G(x) =

x2 sin 1
x , x , 0,

0, x = 0.

For c > 0 let xc > 0 be defined by

xc = sup{x ∈ R>0 | G′(x) = 0, x ≤ c},

and define Gc : (0, c]→ R by

Gc(x) =

G(x), x ∈ (0, xc],
G(xc), x ∈ (xc, x].
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Now, for ε ∈ (0, 1
2 ), let Cε ⊆ [0, 1] be a fat Cantor set as constructed in Exam-

ple 2.5.42. Define F as follows. If x ∈ Cε we take F(x) = 0. If x < Cε, then, since
Cε is closed, by Proposition 2.5.6 x lies in some open interval, say (a, b). Then
take c = 1

2 (b − a) and define

F(x) =

Gc(x − a), x ∈ (a, 1
2 (a + b)),

Gc(b − x), x ∈ [ 1
2 (a + b), b).

Note that F|(a, b) is designed so that its derivative will oscillate wildly in the limit
as the endpoints of (a, b) are approached, but be nicely behaved at all points in
(a, b). This is, as we shall see, the key feature of F.
Let us record some properties of F in a sequence of lemmata.

1 Lemma If x ∈ Cε, then F is differentiable at x and F′(x) = 0.

Proof Let y ∈ [0, 1] \ {x}. If y ∈ Cε then

f (y) − f (x)
y − x

= 0.

If y < Cε, then y must lie in an open interval, say (a, b). Let d be the endpoint of
(a, b) nearest y and let c = 1

2 (b − a). Then∣∣∣∣ f (y) − f (x)
y − x

∣∣∣∣ =
f (y)

y − x
≤

f (y)
y − d

=
Gc(|y − d|)

y − d

≤
|y − d|2

y − d
= |y − d| ≤ |y − x|.

Thus

lim
y→x

f (y) − f (x)
y − x

= 0,

giving the lemma. H

2 Lemma If x < Cε, then F is differentiable at x and |F′(x)| ≤ 3.

Proof By definition of F for points not in Cε we have

|F′(x)| ≤
∣∣∣2y sin 1

y − cos 1
y

∣∣∣ ≤ 3,

for some y ∈ [0, 1]. H
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3 Lemma Cε ⊆ DF′ .

Proof By construction of Cε, if x ∈ Cε then there exists a sequence ((a j, b j)) j∈Z>0

of open intervals in [0, 1]\Cε having the property that lim j→∞ a j = lim j→∞ b j = x.
Note that lim supy↓0 g′(y) = 1. Therefore, by the definition of F on the open
intervals (a j, b j), j ∈ Z>0, it holds that lim supy↓a j

F′(y) = lim supy↑b j
F′(y) = 1.

Therefore, lim supy→x F′(y) = 1. Since F′(x) = 0, it follows that F′ is discontinu-
ous at x. H

Since F′ is discontinuous at all points in Cε, and since Cε does not have measure
zero, it follows from Theorem 3.4.11 that F′ is not Riemann integrable. There-
fore, the function f = F′ possesses a primitive, namely F, but is not Riemann
integrable. •

Finally we state two results that, like the Mean Value Theorem for differentiable
functions, relate the integral to the values of a function.

3.4.32 Proposition (First Mean Value Theorem for Riemann integrals) Let [a, b] be a
compact interval and let f,g: [a, b] → R be functions with f continuous and with g
nonnegative and Riemann integrable. Then there exists c ∈ [a, b] such that∫ b

a
f(x)g(x) dx = f(c)

∫ b

a
g(x) dx

Proof Let
m = inf{ f (x) | x ∈ [a, b]}, M = sup{ f (x) | x ∈ [a, b]}.

Since g is nonnegative we have

mg(x) ≤ f (x)g(x) ≤Mg(x), x ∈ [a, b],

from which we deduce that

m
∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤M

∫ b

a
g(x) dx.

Continuity of f and the Intermediate Value Theorem gives c ∈ [a, b] such that the result
holds. �

3.4.33 Proposition (Second Mean Value Theorem for Riemann integrals) Let [a, b] be
a compact interval and let f,g: [a, b]→ R be functions with

(i) g Riemann integrable and having the property that there exists G such that g = G′,
and

(ii) f differentiable with Riemann integrable, nonnegative derivative.
Then there exists c ∈ [a, b] so that∫ b

a
f(x)g(x) dx = f(a)

∫ c

a
g(x) dx + f(b)

∫ b

c
g(x) dx.
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Proof Without loss of generality we may suppose that

G(x) =

∫ x

a
g(ξ) dξ,

since all we require is that G′ = g. We then compute∫ b

a
f (x)g(x) dx =

∫ b

a
f (x)G′(x) dx = f (b)G(b) −

∫ b

a
f ′(x)G(x) dx

= f (b)G(b) − G(c)
∫ b

a
f ′(x) dx,

for some c ∈ [a, b], using integration by parts and Proposition 3.4.32. Now using
Theorem 3.4.30, ∫ b

a
f (x)g(x) dx = f (b)G(b) − G(c)( f (b) − f (a)),

which gives the desired result after using the definition of G and after some rearrange-
ment. �

3.4.7 The Cauchy principal value

In Example 3.4.17 we explored some of the nuances of the improper Riemann
integral. There we saw that for integrals that are defined using limits, one often
needs to make the definitions in a particular way. The principal value integral is
intended to relax this, and enable one to have a meaningful notion of the integral
in cases where otherwise one might not. To motivate our discussion we consider
an example.

3.4.34 Example Let I = [−1, 2] and consider the function f : I→ R defined by

f (x) =

1
x , x , 0
0, otherwise.

This function has a singularity at x = 0, and the integral
∫ 2

−1
f (x) dx is actually

divergent. However, for ε ∈ R>0 note that∫
−ε

−1

1
x

dx +

∫ 2

ε

1
x

dx = − log x|1ε + log x|2ε = log 2.

Thus we can devise a way around the singularity in this case, the reason being that
the singular behaviour of the function on either side of the function “cancels” that
on the other side. •

With this as motivation, we give a definition.
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3.4.35 Definition (Cauchy principal value) Let I ⊆ R be an interval and let f : I → R be
a function. Denote a = inf I and b = sup I, allowing that a = −∞ and b = ∞.

(i) If, for x0 ∈ int(I), there exists ε0 ∈ R>0 such that the functions f |(a, x0 − ε] and
f |[x0 +ε, b) are Riemann integrable for all ε ∈ (0, ε0], then the Cauchy principal
value for f is defined by

pv
∫

I
f (x) dx = lim

ε→0

(∫ x0−ε

a
f (x) dx +

∫ b

x0+ε

f (x) dx
)
.

(ii) If a = −∞ and b = ∞ and if for each R ∈ R>0 the function f |[−R,R] is Riemann
integrable, then the Cauchy principal value for f is defined by

pv
∫
∞

−∞

f (x) dx = lim
R→∞

∫ R

−R
f (x) dx. •

3.4.36 Remarks
1. If f is Riemann integrable on I then the Cauchy principal value is equal to the

Riemann integral.

2. The Cauchy principal value is allowed to be infinite by the preceding defini-
tion, as the following examples will show.

3. It is not standard to define the Cauchy principal value in part (ii) of the
definition. In many texts where the Cauchy principal value is spoken of, it is
part (i) that is being used. However, we will find the definition from part (ii)
useful. •

3.4.37 Examples (Cauchy principal value)
1. For the example of Example 3.4.34 we have

pv
∫ 2

−1

1
x

dx = log 2.

2. For I = R and f (x) = x(1 + x2)−1 we have

pv
∫
∞

−∞

x
1 + x2 dx = lim

R→∞

∫ R

−R

x
1 + x2 dx = lim

R→∞

(1
2

log(1 + R2) −
1
2

log(1 + R2)
)

= 0.

Note that in Example 3.4.17–4 we showed that this function was not Riemann
integrable.

3. Next we consider I = R and f (x) = |x|(1 + x2). In this case we compute

pv
∫
∞

−∞

|x|
1 + x2 dx = lim

R→∞

∫ R

−R

|x|
1 + x2 dx = lim

R→∞

(1
2

log(1 + R2) +
1
2

log(1 + R2)
)

= ∞.

We see then that there is no reason why the Cauchy principal value may not be
infinite. •
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3.4.8 Notes

The definition we give for the Riemann integral is actually that used by Darboux,
and the condition given in part (iii) of Theorem 3.4.9 is the original definition of
Riemann. What Darboux showed was that the two definitions are equivalent. It
is not uncommon to instead use the Darboux definition as the standard definition
because, unlike the definition of Riemann, it does not rely on an arbitrary selection
of a point from each of the intervals forming a partition.

Exercises

3.4.1 Let I ⊆ R be an interval and let f : I → R be a function that is Riemann
integrable and satisfies f (x) ≥ 0 for all x ∈ I. Show that

∫
I

f (x) dx ≥ 0.
3.4.2 Let I ⊆ R be an interval, let f , g : I → R be functions, and define D f ,g = {x ∈

I | f (x) , g(x)}.
(a) Show that, if D f ,g is finite and f is Riemann integrable, then g is Riemann

integrable and
∫

I
f (x) dx =

∫
I
g(x) dx.

(b) Is it true that, if D f ,g is countable and f is Riemann integrable, then g is
Riemann integrable and

∫
I

f (x) dx =
∫

I
g(x) dx? If it is true, give a proof;

if it is not true, give a counterexample.
3.4.3 Do the following:

(a) find an interval I and functions f , g : I → R such that f and g are both
Riemann integrable, but f g is not Riemann integrable;

(b) find an interval I and functions f , g : I → R such that f and g are both
Riemann integrable, but g ◦ f is not Riemann integrable.

3.4.4 Do the following:
(a) find an interval I and a conditionally Riemann integrable function f : I→

R such that | f | is not Riemann integrable;
(b) find a function f : [0, 1]→ R such that | f | is Riemann integrable, but f is

not Riemann integrable.
3.4.5 Show that, if f : [a, b]→ R is continuous, then there exists c ∈ [a, b] such that∫ b

a
f (x) dx = f (c)(b − a).
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Section 3.5

Sequences and series of R-valued functions

In this section we present for the first time the important topic of sequences
and series of functions and their convergence. One of the reasons why conver-
gence of sequences of functions is important is that is allows us to classify sets of
functions. The idea of classifying sets of functions according to their possessing
certain properties leads to the general idea of a “function space.” Function spaces
are important to understand when developing any systematic theory dealing with
functions, since sets of general functions are simply too unstructured to allow
much useful to be said. On the other hand, if one restricts the set of functions in the
wrong way (e.g., by asking that they all be continuous), then one can end of with a
framework with unpleasant properties. But this is getting a little ahead of the issue
directly at hand, which is to consider convergence of sequences of functions.

Do I need to read this section? The material in this section is basic, particularly
the concepts of pointwise convergence and uniform convergence and the distinc-
tion between them. However, it is possible to avoid reading this section until the
material becomes necessary, as it will in Chapters 10, 11, 12, and 13, for example. •

3.5.1 Pointwise convergent sequences

The first type of convergence we deal with is probably what a typical first-
year student, at least the rare one who understood convergence for summations of
numbers, would proffer as a good candidate for convergence. As we shall see, it
often leaves something to be desired.

In the discussion of pointwise convergence, one needs no assumptions on the
character of the functions, as one is essentially talking about convergence of num-
bers.

3.5.1 Definition (Pointwise convergence of sequences) Let I ⊆ R be an interval and
let ( f j) j∈Z>0 be a sequence of R-valued functions on I.

(i) The sequence ( f j) j∈Z>0 converges pointwise to a function f : I→ R if, for each
x ∈ I and for each ε ∈ R>0, there exists N ∈ Z>0 such that | f (x) − f j(x)| < ε
provided that j ≥ N.

(ii) The function f in the preceding part of the definition is the limit function for
the sequence.

(iii) The sequence ( f j) j∈Z>0 is pointwise Cauchy if, for each x ∈ I and for each
ε ∈ R>0, there exists N ∈ Z>0 such that | f j(x)− fk(x)| < ε provided that j, k ≥ N.

•

Let us immediately establish the equivalence of pointwise convergent and point-
wise Cauchy sequences. As is clear in the proof of the following result, the key fact
is completeness of R.
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3.5.2 Theorem (Pointwise convergent equals pointwise Cauchy) If I ⊆ R is an interval
and if (fj)j∈Z>0 is a sequence of R-valued functions on I then the following statements are
equivalent:

(i) there exists a function f : I→ R such that (fj)j∈Z>0 converges pointwise to f;
(ii) (fj)j∈Z>0 is pointwise Cauchy.

Proof This merely follows from the following facts.
1. If the sequence ( f j(x)) j∈Z>0 converges to f (x) then the sequence is Cauchy by Propo-

sition 2.3.3.
2. If the sequence ( f j(x)) j∈Z>0 is Cauchy then there exists a number f (x) ∈ R such that

lim j→∞ f j(x) = f (x) by Theorem 2.3.5. �

Based on the preceding theorem we shall switch freely between the notions of
pointwise convergent and pointwise Cauchy sequences of functions.

Pointwise convergence is essentially the most natural form of convergence for
a sequence of functions in that it depends in a trivial way on the basic notion of
convergence of sequences in R. However, as we shall see later in this section, and
in Chapters 6 and ??, other forms of convergence of often more useful.

3.5.3 Example (Pointwise convergence) Consider the sequence ( f j) j∈Z>0 of R-valued
functions defined on [0, 1] by

f j(x) =

1, x ∈ [0, 1
j ],

0, x ∈ ( 1
j , 1].

Note that f j(0) = 1 for every j ∈ Z>0, so that the sequence ( f j(0)) j∈Z>0 converges,
trivially, to 1. For any x0 ∈ (0, 1], provided that j > x−1

0 , then f j(x0) = 0. Thus
( f j(x0)) j∈Z>0 converges, as a sequence of real numbers, to 0 for each x0 ∈ (0, 1]. Thus
this sequence converges pointwise, and the limit function is

f (x) =

1, x = 0,
0, x ∈ (0, 1].

If N is the smallest natural number with the property that N > x−1
0 , then we observe,

trivially, that this number does indeed depend on x0. As x0 gets closer and closer
to 0 we have to wait longer and longer in the sequence ( f j(x0)) j∈Z>0 for the arrival
of zero. •

3.5.2 Uniformly convergent sequences

Let us first say what we mean by uniform convergence.

3.5.4 Definition (Uniform convergence of sequences) Let I ⊆ R be an interval and let
( f j) j∈Z>0 be a sequence of R-valued functions on I.

(i) The sequence ( f j) j∈Z>0 converges uniformly to a function f : I→ R if, for each
ε ∈ R>0, there exists N ∈ Z>0 such that | f (x) − f j(x)| < ε for all x ∈ I, provided
that j ≥ N.
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(ii) The sequence ( f j) j∈Z>0 is uniformly Cauchy if, for each ε ∈ R>0, there exists
N ∈ Z>0 such that | f j(x) − fk(x)| < ε for all x ∈ I, provided that j, k ≥ N. •

Let us immediately give the equivalence of the preceding notions of conver-
gence.

3.5.5 Theorem (Uniformly convergent equals uniformly Cauchy) For an interval I ⊆ R
and a sequence of R-valued functions (fj)j∈Z>0 on I the following statements are equivalent:

(i) there exists a function f : I→ R such that (fj)j∈Z>0 converges uniformly to f;
(ii) (fj)j∈Z>0 is uniformly Cauchy.

Proof First suppose that ( f j) j∈Z>0 is uniformly Cauchy. Then, for each x ∈ I the
sequence ( f j(x)) j∈Z>0 is Cauchy and so by Theorem 2.3.5 converges to a number that
we denote by f (x). This defines the function f : I → R to which the sequence ( f j) j∈Z>0

converges pointwise. Let ε ∈ R>0 and let N1 ∈ Z>0 have the property that | f j(x)− fk(x)| <
ε
2 for j, k ≥ N1 and for each x ∈ I. Now let x ∈ I and let N2 ∈ Z>0 have the property that
| fk(x) − f (x)| < ε

2 for k ≥ N2. Then, for j ≥ N1, we compute

| f j(x) − f (x)| ≤ | f j(x) − fk(x)| + | fk(x) − f (x)| < ε,

where k ≥ max{N1,N2}, giving the first implication.
Now suppose that, for ε ∈ R>0, there exists N ∈ Z>0 such that | f j(x) − f (x)| < ε for

all j ≥ N and for all x ∈ I. Then, for ε ∈ R>0 let N ∈ Z>0 satisfy | f j(x) − f (x)| < ε
2 for

j ≥ N and x ∈ I. Then, for j, k ≥ N and for x ∈ I, we have

| f j(x) − fk(x)| ≤ | f j(x) − f (x)| + | fk(x) − f (x)| < ε,

giving the sequence as uniformly Cauchy. �

Compare this definition to that for pointwise convergence. They sound similar,
but there is a fundamental difference. For pointwise convergence, the sequence
( f j(x)) j∈Z>0 is examined separately for convergence at each value of x. As a con-
sequence of this, the value of N might depend on both ε and x. For uniform
convergence, however, we ask that for a given ε, the convergence is tested over all
of I. In Figure 3.11 we depict the idea behind uniform convergence. The distinction
between uniform and pointwise convergence is subtle on a first encounter, and it
is sometimes difficult to believe that pointwise convergence is possible without
uniform convergence. However, this is indeed the case, and an example illustrates
this readily.

3.5.6 Example (Uniform convergence) On [0, 1] we consider the sequence of R-valued
functions defined by

f j(x) =


2 jx, x ∈ [0, 1

2 j ],

−2 jx + 2, x ∈ ( 1
2 j ,

1
j ],

0, x ∈ ( 1
j , 1].

In Figure 3.12 we graph f j for j ∈ {1, 3, 10, 50}. The astute reader will see the point,
but let’s go through it just to make sure we see how this works.
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f

fj

fk

2ǫ

Figure 3.11 The idea behind uniform convergence

Figure 3.12 A sequence of functions converging pointwise, but
not uniformly

First of all, we claim that the sequence converges pointwise to the limit function
f (x) = 0, x ∈ [0, 1]. Since f j(0) = 0 for all j ∈ Z>0, obviously the sequence converges
to 0 at x = 0. For x ∈ (0, 1], if N ∈ Z>0 satisfies 1

N < x then we have f j(x) = 0 for
j ≥ N. Thus we do indeed have pointwise convergence.

We also claim that the sequence does not converge uniformly. Indeed, for any
positive ε < 1, we see that f j( 1

2 j ) = 1 > ε for every j ∈ Z>0. This prohibits our
asserting the existence of N ∈ Z>0 such that | f j(x) − fk(x)| < ε for every x ∈ [0, 1],
provided that j, k ≥ N. Thus convergence is indeed not uniform. •

As we say, this is perhaps subtle, at least until one comes to grips with, after
which point it makes perfect sense. You should not stop thinking about this until
it makes perfect sense. If you overlook this distinction between pointwise and
uniform convergence, you will be missing one of the most important topics in the
theory of frequency representations of signals.
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3.5.7 Remark (On “uniformly” again) In Remark 3.1.6 we made some comments on
the notion of what is meant by “uniformly.” Let us reinforce this here. In Defini-
tion 3.1.5 we introduced the notion of uniform continuity, which meant that the
“δ” could be chosen so as to be valid on the entire domain. Here, with uniform
convergence, the idea is that “N” can be chosen to be valid on the entire domain.
Similar uses will occasionally be made of the word “uniformly” throughout the
text, and it is hoped that the meaning should be clear from the context. •

Now we prove an important result concerning uniform convergence. The
significance of this result is perhaps best recognised in a more general setting,
such as that of Theorem ??, where the idea of completeness is clear. However, even
in the simple setting of our present discussion, the result is important enough.

3.5.8 Theorem (The uniform limit of bounded, continuous functions is bounded
and continuous) Let I ⊆ R be an interval with (fj)j∈Z>0 a sequence of continuous bounded
functions on I that converge uniformly. Then the limit function is continuous and bounded.
In particular, a uniformly convergent sequence of continuous functions defined on a compact
interval converges to a continuous limit function.

Proof Let x ∈ I define f (x) = lim j→∞ f j(x). This pointwise limit exists since ( f j(x)) j∈Z>0

is a Cauchy sequence in R (why?). We first claim that f is bounded. To see this, for
ε ∈ R>0, let N ∈ Z>0 have the property that | f (x) − fN(x)| < ε for every x ∈ I. Then

| f (x)| ≤ | f (x) − fN(x)| + | fN(x)| ≤ ε + sup{ fN(x) | x ∈ I}.

Since the expression on the right is independent of x, this gives the desired boundedness
of f .

Now we prove that the limit function f is continuous. Since ( f j) j∈Z>0 is uniformly
convergent, for any ε ∈ R>0 there exists N ∈ Z>0 such that | f j(x) − f (x)| < ε

3 for all x ∈ I
and j ≥ N. Now fix x0 ∈ I, and consider the N ∈ Z>0 just defined. By continuity of
fN, there exists δ ∈ R>0 such that, if x ∈ I satisfies |x − x0| < δ, then | fN(x) − fN(x0)| < ε

3 .
Then, for x ∈ I satisfying |x − x0| < δ, we have

| f (x) − f (x0)| = |( f (x) − fN(x)) + ( fN(x) − fN(x0)) + ( fN(x0) − f (x0))|
≤ | f (x) − fN(x)| + | fN(x) − fN(x0)| + | fN(x0) − f (x0)|
< ε

3 + ε
3 + ε

3 = ε,

where we have again used the triangle inequality. Since this argument is valid for any
x0 ∈ I, it follows that f is continuous. �

Note that the hypothesis that the functions be bounded is essential for the
conclusions to hold. As we shall see, the contrapositive of this result is often
helpful. That is, it is useful to remember that if a sequence of continuous functions
defined on a closed bounded interval converges to a discontinuous limit function,
then the convergence is not uniform.

3.5.3 Dominated and bounded convergent sequences

Bounded convergence is a notion that is particularly useful when discussing
convergence of function sequences on noncompact intervals.



253 3 Functions of a real variable 2016/11/26

3.5.9 Definition (Dominated and bounded convergence of sequences) Let I ⊆ R be
an interval and let ( f j) j∈Z>0 be a sequence ofR-valued functions on I. For a function
g : I→ R>0, the sequence ( f j) j∈Z>0 converges dominated by g if

(i) f j(x) ≤ g(x) for every j ∈ Z>0 and for every x ∈ I and
(ii) if, for each x ∈ I and for each ε ∈ R>0, there exists N ∈ Z>0 such that
| f j(x) − fk(x)| < ε for j, k ≥ N.

If, moreover, g is a constant function, then a sequence ( f j) j∈Z>0 that converges
dominated by g converges boundedly. •

It is clear that dominated convergence implies pointwise convergence. Indeed,
bounded convergence is merely pointwise convergence with the extra hypothesis
that all functions be bounded by the same positive function.

Let us give some examples that distinguish between the notions of convergence
we have.

3.5.10 Examples (Pointwise, bounded, and uniform convergence)
1. The sequence of functions in Example 3.5.3 converges pointwise, boundedly,

but not uniformly.
2. The sequence of functions in Example 3.5.6 converges pointwise, boundedly,

but not uniformly.
3. Consider now a new sequence ( f j) j∈Z>0 defined on I = [0, 1] by

f j(x) =


2 j2x, x ∈ [0, 1

2 j ],

−2 j2x + 2 j, x ∈ ( 1
2 j ,

1
j ],

0, otherwise.

A few members of the sequence are shown in Figure 3.13. This sequence

Figure 3.13 A sequence converging pointwise but not boundedly
(shown are f j, j ∈ {1, 5, 10, 20})
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converges pointwise to the zero function. Moreover, one can easily check that
the convergence is dominated by the function g : [0, 1]→ R defined by

g(x) =

 1
x , x ∈ (0, 1],
1, x = 0.

The sequence converges neither boundedly nor uniformly.
4. On I = R consider the sequence ( f j) j∈Z>0 defined by f j(x) = x2 + 1

j . This sequence
clearly converges uniformly to f : x 7→ x2. However, it does not converge
boundedly. Of course, the reason is simply that f is itself not bounded. We
shall see that uniform convergence to a bounded function implies bounded
convergence, in a certain sense. •

We have the following relationship between uniform and bounded conver-
gence.

3.5.11 Proposition (Relationship between uniform and bounded convergence) If a
sequence (fj)j∈Z>0 defined on an interval I converges uniformly to a bounded function f, then
there exists N ∈ Z>0 such that the sequence (fN+j)j∈Z>0 converges boundedly to f.

Proof Let M ∈ R>0 have the property that | f (x)| < M
2 for each x ∈ I. Since ( f j) j∈Z>0

converges uniformly to f there exists N ∈ Z>0 such that | f (x) − f j(x)| < M
2 for all x ∈ I

and for j > N. It then follows that

| f j(x)| ≤ | f (x) − f j(x)| + | f (x)| < M

provided that j > N. From this the result follows since pointwise convergence of
( f j) j∈Z>0 to f implies pointwise convergence of ( fN+ j) j∈Z>0 to f . �

3.5.4 Series of R-valued functions

In the previous sections we considered the general matter of sequences of func-
tions. Of course, this discussion carries over to series of functions, by which we
mean expressions of the form S(x) =

∑
∞

j=1 f j(x). This is done in the usual manner
by considering the partial sums. Let us do this formally.

3.5.12 Definition (Convergence of series) Let I ⊆ R be an interval and let ( f j) j∈Z>0 be a
sequence of R-valued functions on I. Let F(x) =

∑
∞

j=1 f j(x) be a series. The corre-
sponding sequence of partial sums is the sequence (Fk)k∈Z>0 of R-valued functions
on I defined by

Sk(x) =

k∑
j=1

f j(x).

Let g : I→ R>0. The series:
(i) converges pointwise if the sequence of partial sums converges pointwise;
(ii) converges uniformly if the sequence of partial sums converges uniformly;
(iii) converges dominated by g if the sequence of partial sums converges domi-

nated by g;
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(iv) converges boundedly if the sequence of partial sums converges boundedly. •

A fairly simple extension of pointwise convergence of series is the following
notion which is unique to series (as opposed to sequences).

3.5.13 Definition (Absolute convergence of series) Let I ⊆ R be an interval and let
( f j) j∈Z>0 be a sequence of R-valued functions on I. The sequence ( f j) j∈Z>0 converges
absolutely if, for each x ∈ I and for each ε ∈ R>0, there exists N ∈ Z>0 such that
|| f j(x)| − | fk(x)|| < ε provided that j, k ≥ N. •

Thus an absolutely convergent sequence is one where, for each x ∈ I, the
sequence (| f j(x)|) j∈Z>0 is Cauchy, and hence convergent. In other words, for each
x ∈ I, the sequence ( f j(x)) j∈Z>0 is absolutely convergent. It is clear, then, that
an absolutely convergent sequence of functions is pointwise convergent. Let us
give some examples that illustrate the difference between pointwise and absolute
convergence.

3.5.14 Examples (Absolute convergence)
1. The sequence of functions of Example 3.5.3 converges absolutely since the

functions all take positive values.

2. For j ∈ Z>0, define f j : [0, 1] → R by f j(x) = (−1) j+1x
j . Then, by Example 2.4.2–3,

the series S(x) =
∑
∞

j=1 f j(x) is absolutely convergent if and only x = 0. But in
Example 2.4.2–3 we showed that the series is pointwise convergent. •

3.5.5 Some results on uniform convergence of series

At various times in our development, we will find it advantageous to be able to
refer to various standard results on uniform convergence, and we state these here.

Let us first recall the Weierstrass M-test.

3.5.15 Theorem (Weierstrass M-test) If (fj)j∈Z>0 is a sequence of R-valued functions defined
on an interval I ⊆ R and if there exists a sequence of positive constants (Mj)j∈Z>0 such that

(i) |fj(x)| ≤Mj for all x ∈ I and for all j ∈ Z>0 and
(ii)

∑
∞

j=1 Mj < ∞,
then the series

∑
∞

j=1 fj converges uniformly and absolutely.
Proof For ε ∈ R>0, there exists N ∈ Z>0 such that, if l ≥ N, we have

|Ml + · · · + Ml+k| < ε

for every k ∈ Z>0. Therefore, by the triangle inequality,∣∣∣∣ l+k∑
j=l

f j(x)
∣∣∣∣ ≤ l+k∑

j=l

| f j(x)| ≤
l+k∑
j=l

M j.

This shows that, for every ε ∈ R>0, the tail of the series
∑
∞

j=1 f j can be made smaller
than ε, and uniformly in x. This implies uniform and absolute convergence. �

Next we present Abel’s test.
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3.5.16 Theorem (Abel’s test) Let (gj)j∈Z>0 be a sequence of R-valued functions on an interval
I ⊆ R for which gj+1(x) ≤ gj(x) for all j ∈ Z>0 and x ∈ I. Also suppose that there exists
M ∈ R>0 such that gj(x) ≤M for all x ∈ I and j ∈ Z>0. Then, if the series

∑
∞

j=1 fj converges
uniformly on I, then so too does the series

∑
∞

j=1 gjfj.
Proof Denote

Fk(x) =

k∑
j=1

f j(x), Gk(x) =

k∑
j=1

g j(x) f j(x)

as the partial sums. Using Abel’s partial summation formula (Proposition 2.4.16), for
0 < k < l we write

Gl(x) − Gk(x) = (Fl(x) − Fk(x))G1(x) +

l∑
j=k+1

(Fl(x) − F j(x))(g j+1(x) − g j(x)).

An application of the triangle inequality gives

|Gl(x) − Gk(x)| =
∣∣∣(Fl(x) − Fk(x))

∣∣∣|G1(x)| +
l∑

j=k+1

∣∣∣(Fl(x) − F j(x))
∣∣∣(g j+1(x) − g j(x)),

since |g j+1(x) − g j(x)| = g j+1(x) − g j(x). Now, given ε ∈ R>0, let N ∈ Z>0 have the
property that ∣∣∣Fl(x) − Fk(x)

∣∣∣ ≤ ε
3M

for all k, l ≥ N. Then we have

|Gl(x) − Gk(x)| ≤
ε
3

+
ε

3M

l∑
j=k+1

(g j+1(x) − g j(x))

≤
ε
3

+
ε

3M
(gk+1(x) − gl+1(x))

≤
ε
3

+
ε

3M
(|gk+1(x)| + |gl+1(x)|) ≤ ε.

Thus the sequence (G j) j∈Z>0 is uniformly Cauchy, and hence uniformly convergent. �

The final result on general uniform convergence we present is the Dirichlet
test.12

3.5.17 Theorem (Dirichlet’s test) Let (fj)j∈Z>0 and (gj)j∈Z>0 be sequences of R-valued functions
on an interval I and satisfying the following conditions:

(i) there exists M ∈ R>0 such that the partial sums

Fk(x) =

k∑
j=1

fj(x)

satisfy |Fk(x)| ≤M for all k ∈ Z>0 and x ∈ I;
12Johann Peter Gustav Lejeune Dirichlet 1805–1859 was born in what is now Germany. His

mathematical work was primarily in the areas of analysis, number theory and mechanics. For
the purposes of these volumes, Dirichlet was gave the first rigorous convergence proof for the
trigonometric series of Fourier. These and related results are presented in Section 12.2.
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(ii) gj(x) ≥ 0 for all j ∈ Z>0 and x ∈ I;
(iii) gj+1(x) ≤ gj(x) for all j ∈ Z>0 and x ∈ I;
(iv) the sequence (gj)j∈Z>0 converges uniformly to the zero function.

Then the series
∑
∞

j=1 fjgj converges uniformly on I.
Proof We denote

Fk(x) =

k∑
j=1

f j(x), Gk(x) =

k∑
j=1

f j(x)g j(x).

We use again the Abel partial summation formula, Proposition 2.4.16, to writemissing
stuff

Gl(x) − Gk(x) = Fl(x)gl+1(x) − Fk(x)gk+1(x) −
l∑

j=k+1

F j(x)(gl+1(x) − gl(x)).

Now we compute

|Gl(x) − Gk(x)| ≤M(gl+1(x) + gk+1(x)) + M
l∑

j=k+1

(g j(x) − g j+1(x))

= 2Mgk+1(x).

Now, for ε ∈ R>0, if one chooses N ∈ Z>0 such that gk(x) ≤ ε
2M for all x ∈ I and k ≥ N,

then it follows that |Gl(x)−Gk(x)| ≤ ε for k, l ≥ N and for all x ∈ I. From this we deduce
that the sequence of partial sums (G j) j∈Z>0 is uniformly Cauchy, and hence uniformly
convergent. �

3.5.6 The Weierstrass Approximation Theorem

In this section we prove an important result in analysis. The theorem is one
on approximating continuous functions with a certain class of easily understood
functions. The idea, then, is that if one say something about the class of easily
understood functions, it may be readily also ascribed to continuous functions. Let
us first describe the class of functions we wish to use to approximate continuous
functions.

3.5.18 Definition (Polynomial functions) A function P : R→ R is a polynomial function
if

P(x) = akxk + · · · + a1x + a0

for some a0, a1, . . . , ak ∈ R. The degree of the polynomial function P is the largest
j ∈ {0, 1, . . . , k} for which a j , 0. •

We shall have a great deal to say about polynomials in an algebraic setting
in Section ??. Here we will only think about the most elementary features of
polynomials.

Our constructions are based on a special sort of polynomial. We recall the
notation (

m
k

)
,

m!
k!(m − k)!
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which are the binomial coefficients.

3.5.19 Definition (Bernstein polynomial, Bernstein approximation) For m ∈ Z≥0 and
k ∈ {0, 1, . . . ,m} the polynomial function

Pm
k (x) =

(
m
k

)
xk(1 − x)m−k

is a Bernstein polynomial. For a continuous function f : [a, b] → R the mth Bern-
stein approximation of f is the function B[a,b]

m f : [a, b]→ R defined by

B[a,b]
m f (x) =

m∑
k=0

f (a + k
m (b − a))Pm

k (x−a
b−a ). •

In Figure 3.14 we depict some of the Bernstein polynomials. The way to imagine

Figure 3.14 The Bernstein polynomials P1
0 and P1

1 (left), P2
0, P2

1,
and P2

2 (middle), and P3
0, P3

1, P3
2, and P3

3 (right)
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the point of these functions is as follows. The polynomial Pm
k on the interval [0, 1]

has a single maximum at k
m . By letting m vary over Z≥0 and letting k ∈ {0, 1, . . . ,m},

the points of the form k
m will get arbitrarily close to any point in [0, 1]. The function

f ( k
m )Pm

k thus has a maximum at k
m and the behaviour of f away from k

m is thus
(sort of) attenuated. In fact, for large m the behaviour of the function Pm

k becomes
increasingly “focussed” at k

m . Thus, as m gets large, the function f ( k
m )Pm

k starts
looking like the function taking the value f ( k

m ) at k
m and zero elsewhere. Now,

using the identity
m∑

k=0

(
m
k

)
xk(1 − x)m = 1 (3.16)

which can be derived using the Binomial Theorem (see Exercise 2.2.1), this means
that for large m, B[0,1]

m f ( k
m ) approaches the value f ( k

m ). This is the idea of the Bernstein
approximation.

That being said, let us prove some basic facts about Bernstein approximations.

3.5.20 Lemma (Properties of Bernstein approximations) For continuous functions
f,g: [a, b]→ R, for α ∈ R, and for m ∈ Z≥0, the following statements hold:

(i) B[a,b]
m (f + g) = B[a,b]

m f + B[a,b]
m g;

(ii) B[a,b]
m (αf) = αB[a,b]

m f;
(iii) B[a,b]

m f(x) ≥ 0 for all x ∈ [a, b] if f(x) ≥ 0 for all x ∈ [a, b];

(iv) B[a,b]
m f(x) ≤ B[a,b]

m g(x) for all x ∈ [a, b] if f(x) ≤ g(x) for all x ∈ [a, b];

(v) |B[a,b]
m f(x)| ≤ B[a,b]

m g(x) for all x ∈ [a, b] if |f(x)| ≤ g(x) for all x ∈ [a, b];
(vi) for k,m ∈ Z≥0 we have

(B[a,b]
m+k)(k)(x) =

(m + k)!
m!

1
(b − a)k

m∑
j=0

∆k
hf(a +

j
k+m (b − a))Pm

j ( x−a
b−a ),

where h = 1
k+m and where ∆k

hf : [a, b]→ R is defined by

∆k
hf(x) =

k∑
j=0

(−1)k−j

(
k
j

)
f(x + jh)

(vii)
(viii) if we define f0, f1, f2 : [0, 1]→ R by

f0(x) = 1, f1(x) = x, f2(x) = x2, x ∈ [0, 1],

then
B[0,1]

m f0(x) = 1, B[0,1]
m f1(x) = x, B[0,1]

m f2(x) = x2 + 1
m (x − x2)

for x ∈ [0, 1] and m ∈ Z≥0.
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Proof Let f̂ : [0, 1]→ R be defined by f̂ (y) = f (a +
y
( b − a)). One can verify that if the

lemma holds for f̂ then it immediately follows for f , and so without loss of generality
we suppose that [a, b] = [0, 1]. We also abbreviate B[0,1]

m = Bm.
(i)–(iv) These assertions follow directly from the definition of the Bernstein approx-

imations.
(v) If | f (x)| ≤ g(x) for all x ∈ [0, 1] then

− f (x) ≤ g(x) ≤ f (x), x ∈ [0, 1]
=⇒ − Bm f (x) ≤ Bmg(x) ≤ Bm f (x), x ∈ [0, 1],

using the fourth assertion.
(vi) Note that

Bm+k(x) =

m+k∑
j=0

f ( j
m+k )

(
m + k

j

)
x j(1 − x)m+k− j.

Let g j(x) = x j and h j(x) = (1 − x)m+k− j and compute

g(r)
j (x) =

 j!
( j−r)! x

j−r, j − r ≥ 0,

0, j − r < 0

and

h(k−r)
j (x) =

(−1)k−r (m+k− j)!
(m+r− j)! (1 − x)m+r− j, j − r ≤ m,

0, j − r > m.

By Proposition 3.2.11,

(g jh j)(k)(x) =

k∑
r=0

(
k
r

)
g(r)

j (x)h(k−r)
j (x).

Also note that(
m + k

j

)
j!

( j − r)!
(m + k − j)!
(m + r − j)!

=
(m + k)!

j!(m + k − j)!
j!

( j − r)!
(m + k − j)!
(m + r − j)!

=
(m + k)!

m!
m!

(m − ( j − r))!( j − r)!
=

(m + k)!
m!

(
m

j − r

)
.

Putting this all together we have

B(k)
m+k(x) =

m+k∑
j=0

k∑
r=0

f ( j
m+k )

(
m + k

j

)(
k
r

)
g(r)

j (x)h(k−r)
j (x)

=

k∑
r=0

m+k−r∑
l=−r

f ( l+r
m+k )

(
m + k
l + r

)(
k
r

)
g(r)

l+r(x)h(k−r)
l+r (x)

=

k∑
r=0

m∑
l=0

(−1)k−r
(
k
r

)
f ( l+r

m+k )
(
m
l

)
xl(1 − x)n−l,
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where we make the change of index (l, r) = ( j− r, r) in the second step and note that the
derivatives of gl+r and hl+r vanish when l < 0 and l > m. Let h = 1

m+k . Since

∆k
h f ( j

m+k ) =

k∑
r=0

(−1)k−r
(
k
r

)
f ( j+r

m+k )

this part of the result follows.
(vii)
(viii) It follows from (3.16) that Bm f0(x) = 1 for every x ∈ [0, 1]. We also compute

Bm f0(x) =

m∑
k=0

k
m

m!
m!(m − k)!

xk(1 − x)m−k

= x
m−1∑
k=0

(m − 1)!
(k − 1)!((m − 1) − (k − 1))!

xk(1 − x)m−1−k

= x(x + (1 − x))m−1 = x,

where we use the Binomial Theorem. To compute Bm f2 we first compute

k2

m2
m!

k!(m − k)!
=

(k − 1) + 1
m

(m − 1)!
(k − 1)!(m − k)!

=
(k − 1)(n − 1)

n(n − 1)
(m − 1)!

(k − 1)!(m − k)!
+

1
m

(m − 1)!
(k − 1)!(m − k)!

=
m − 1

m

(
n − 2
k − 2

)
+

1
m

(
n − 1
k − 1

)
,

where we adopt the convention that
(

j
l

)
= 0 if either j or l are zero. We now compute

Bm f2(x) =

m∑
k=0

k2

m2

(
m
k

)
xk(1 − x)m−k

=
m − 1

m

m∑
k=2

(
m − 2
k − 2

)
xk(1 − x)m−k +

1
m

m∑
k=1

(
m − 1
k − 1

)
xk(1 − x)m−k

=
m − 1

m
x2(x + (1 − x))m−2 +

1
m

x(x + (1 − x))m−1 =
m − 1

m
x2 +

1
m

x,

as desired. �

Now, heuristics aside, we state the main result in this section, a consequence of
which is that every continuously function on a compact interval can be approxi-
mated arbitrarily well (in the sense that the maximum difference can be made as
small as desired) by a polynomial function.

3.5.21 Theorem (Weierstrass Approximation Theorem) Consider a compact interval
[a, b] ⊆ R and let f : [a, b] → R be continuous. Then the sequence (B[a,b]

m f)m∈Z>0 con-
verges uniformly to f on [a, b].
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Proof It is evident (why?) that we can take [a, b] = [0, 1] and then let us denote
Bm f = B[0,1]

m f for simplicity.
Let ε ∈ R>0. Since f is uniformly continuous by Theorem 3.1.24 there exists

δ ∈ R>0 such that | f (x) − f (y)| ≤ ε
2 whenever |x − y| ≤ δ. Let

M = sup{| f (x)| | x ∈ [0, 1]},

noting that M < ∞ by Theorem 3.1.23. Note then that if |x − y| ≤ δ then

| f (x) − f (y)| ≤ ε
2 ≤

ε
2 + 2M

δ2 (x − y)2.

If |x − y| > δ then

| f (x) − f (y)| ≤ 2M ≤ 2M
( x−y
δ

)2
≤

ε
2 + 2M

δ2 (x − y)2.

That is to say, for every x, y ∈ [0, 1],

| f (x) − f (y)| ≤ ε
2 + 2M

δ2 (x − y)2. (3.17)

Now, fix x0 ∈ [0, 1] and compute, using the lemma above (along with the notation
f0, f1, and f2 introduced in the lemma) and (3.17),

|Bm f (x) − f (x0)| = |Bm( f − f (x0) f0)(x)| ≤ Bm
(
ε
2 f0 + 2M

δ2 ( f1 − x0 f0)2
)
(x)

= ε
2 + 2M

δ2 (x2 + 1
m (x − x2) − 2x0x + x2

0)

= ε
2 + 2M

δ2 (x − x0)2 + 2M
mδ2 (x − x2),

this holding for every m ∈ Z≥0. Now evaluate at x = x0 to get

|Bm f (x0) − f (x0)| ≤ ε
2 + 2M

mδ2 (x0 − x2
0) ≤ ε

2 + M
2mδ2 ,

using the fact that x0 − x2
0 ≤

1
4 for x0 ∈ [0, 1]. Therefore, if N ∈ Z>0 is sufficiently large

that M
2mδ2 <

ε
2 for m ≥ N we have

|Bm f (x0) − f (x0)| < ε,

and this holds for every x0 ∈ [0, 1], giving us the desired uniform convergence. �

For fun, let us illustrate the Bernstein approximations in an example.

3.5.22 Example (Bernstein approximation) Let us consider f : [0, 1]→ R defined by

f (x) =

x, x ∈ [0, 1
2 ],

1 − x, x ∈ ( 1
2 , 1].

In Figure 3.15 we show some Bernstein approximations to f . Note that the con-
vergence is rather poor. One might wish to contrast the 100th approximation in
Figure 3.15 with the 10 approximation of the same function using Fourier series
depicted in Figure 12.11. (If you have no clue what a Fourier series is, that is fine.
We will get there in time.) •

We shall revisit the Weierstrass Approximation Theorem in Sections ?? and
missing stuff .
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Figure 3.15 Bernstein approximations for m ∈ {2, 50, 100}

3.5.7 Swapping limits with other operations

In this section we give some basic result concerning the swapping of various
function operations with limits. The first result we consider pertains to integration.
When we consider Lebesgue integration in Chapter 5 we shall see that there are
more powerful limit theorems available. Indeed, the raison d’etre for the Lebesgue
integral is just these limit theorems, as these are not true for the Riemann integral.
However, for the moment these theorems have value in that they apply in at least
some cases, and indicate what is true for the Riemann integral.

3.5.23 Theorem (Uniform limits commute with Riemann integration) Let I = [a, b] be a
compact interval and let (fj)j∈Z>0 be a sequence of continuous R-valued functions defined
on [a, b] that converge uniformly to f. Then

lim
j→∞

∫ b

a
fj(x) dx =

∫ b

a
f(x) dx.

Proof As the functions ( f j) j∈Z>0 are continuous and the convergence to f is uniform, f
must be continuous by Theorem 3.5.8. Since the interval [a, b] is compact, the functions
f and f j, j ∈ Z>0, are also bounded. Therefore, by part Proposition 3.4.25,missing stuff

∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ ≤M(b − a)

where M = sup{| f (x)| | x ∈ [a, b]}. Let ε ∈ R>0 and select N ∈ Z>0 such that | f j(x)− f (x)| <
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ε
b−a for all x ∈ [a, b], provided that j ≥ N. Then∣∣∣∣∫ b

a
f j(x) dx −

∫ b

a
f (x) dx

∣∣∣∣ =
∣∣∣∣∫ b

a
( f j(x) − f (x)) dx

∣∣∣∣
≤

ε
b − a

(b − a) = ε.

This is the desired result. �

Next we state a result that tells us when we may switch limits and differentia-
tion.

3.5.24 Theorem (Uniform limits commute with differentiation) Let I = [a, b] be a compact
interval and let (fj)j∈Z>0 be a sequence continuously differentiable R-valued functions on
[a, b], and suppose that the sequence converges pointwise to f. Also suppose that the
sequence (f′j )j∈Z>0 of derivatives converges uniformly to g. Then f is differentiable and
f′ = g.

Proof Our hypotheses ensure that we may write, for each j ∈ Z>0,

f j(x) = f j(a) +

∫ x

a
f ′j (ξ) dξ.

for each x ∈ [a, b]. By Theorem 3.5.23, we may interchange the limit as j→∞with the
integral, and so we get

f (t) = f (a) +

∫ x

a
g(ξ) dξ.

Since g is continuous, being the uniform limit of continuous functions (by Theo-
rem 3.5.8), the Fundamental Theorem of Calculus ensures that f ′ = g. �

The next result in this section has a somewhat different character than the
rest. It actually says that it is possible to differentiate a sequence of monotonically
increasing functions term-by-term, except on a set of measure zero. The interesting
thing here is that only pointwise convergence is needed.

3.5.25 Theorem (Termwise differentiation of sequences of monotonic functions is
a.e. valid) Let I = [a, b] be a compact interval, let (fj)j∈Z>0 be a sequence of monotonically
increasing functions such that the series S =

∑
∞

j=1 fj(x) converges pointwise to a function f.
Then there exists a set Z ⊆ I such that

(i) Z has measure zero and
(ii) f′(x) =

∑
∞

j=1 f′j (x) for all x ∈ I \ Z.

Proof Note that the limit function f is monotonically increasing. Denote by Z1 ⊆ [a, b]
the set of points for which all of the functions f and f j, j ∈ Z>0, do not possess
derivatives. Note that by Theorem 3.2.26 it follows that Z1 is a countable union of sets
of measure zero. Therefore, by Exercise 2.5.9, Z1 has measure zero. Now let x ∈ I \ Z1
and let ε ∈ R>0 be sufficiently small that x + ε ∈ [a, b]. Then

f (x + ε) − f (x)
ε

=

∞∑
j=1

f j(x + ε) − f j(x)
ε

.
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Since f j(x + ε) − f j(x) ≥ 0, for any k ∈ Z>0 we have

f (x + ε) − f (x)
ε

≥

k∑
j=1

f j(x + ε) − f j(x)
ε

,

which then gives

f ′(x) ≥
k∑

j=1

f ′j (x).

The sequence of partial sums for the series
∑
∞

j=1 f ′j (x) is therefore bounded above.
Moreover, by Theorem 3.2.26, it is increasing. Therefore, by Theorem 2.3.8 the series∑
∞

j=1 f ′j (x) converges for every x ∈ I \ Z1.
Let us now suppose that f (a) = 0 and f j(a) = 0, j ∈ Z>0. This can be done without

loss of generality by replacing f with f − f (a) and f j with f j − f j(a), j ∈ Z>0. With this
assumption, for each x ∈ [a, b] and k ∈ Z>0, we have f (x) − Sk(x) ≥ 0 where (Sk)k∈Z>0

is the sequence of partial sums for S. Choose a subsequence (Skl)l∈Z>0 of (Sk)k∈Z>0

having the property that 0 ≤ f (b) − Skl(b) ≤ 2−l, this being possible since the sequence
(Sk(b))k∈Z>0 converges to f (b). Note that

f (x) − Skl(x) =

∞∑
j=kl+1

f j(x),

meaning that f−Skl is a monotonically increasing function. Therefore, 0 ≤ f (x)−Skl(x) ≤
2−l for all x ∈ [a, b]. This shows that the series

∑
∞

l=1( f (x)−Skl(x)) is a pointwise convergent
sequence of monotonically increasing functions. Let g denote the limit function, and
let Z2 ⊆ [a, b] be the set of points where all of the functions g and f − Skl , l ∈ Z>0, do
not possess derivatives, noting that this set is, in the same manner as was Z1, a set of
measure zero. The argument above applies again to show that, for x ∈ I \Z2, the series∑
∞

l=1( f ′(x)−S′kl
(x)) converges. Thus, for x ∈ I\Z2, it follows that liml→∞( f ′(x)−S′kl

(x)) = 0.
Now, for x ∈ I \ Z1, we know that (S′k(x))k∈Z>0 is a monotonically increasing sequence.
Therefore, for x ∈ I \ (Z1 ∪ Z2), the sequence ( f ′(x) − S′k(x))k∈Z>0 must converge to zero.
This gives the result by taking Z = Z1 ∪ Z2. �

As a final result, we indicate how convexity interacts with pointwise limits.

3.5.26 Theorem (The pointwise limit of convex functions is convex) If I ⊆ R is convex
and if (fj)j∈Z>0 is a sequence of convex functions converging pointwise to f : I→ R, then f
is convex.

Proof Let x1, x2 ∈ I and let s ∈ [0, 1]. Then

f ((1 − s)x1 + sx2) = lim
j→∞

f j((1 − s)x1 + sx2) ≤ lim
j→∞

((1 − s) f j(x1) + s f j(x2))

= (1 − s) lim
j→∞

f j(x1) + s lim
j→∞

f j(x2)

= (1 − s) f (x1) + s f (x2),

where we have used Proposition 2.3.23. �
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3.5.8 Notes

There are many proofs available of the Weierstrass Approximation Theorem,
and the rather explicit proof we give is due to SNB:12.

Exercises

3.5.1 Consider the sequence of functions { f j} j∈Z>0 defined on the interval [0, 1] by
f j(x) = x1/2 j . Thus

f1(x) =
√

x, f2(x) =
√

f1(x) =

√
√

x, . . . , f j(x) =
√

f j−1(x) = x1/2 j
, . . .

(a) Sketch the graph of f j for j ∈ {1, 2, 3}.
(b) Does the sequence of functions ( f j) j∈Z>0 converge pointwise? If so, what

is the limit function?
(c) Is the convergence of the sequence of functions ( f j) j∈Z>0 uniform?
(d) Is it true that

lim
j→∞

∫ 1

0
f j(x) dx =

∫ 1

0
lim
j→∞

f j(x) dx?

3.5.2 In each of the following exercises, you will be given a sequence of functions
defined on the interval [0, 1]. In each case, answer the following questions.

1. Sketch the first few functions in the sequence.
2. Does the sequence converge pointwise? If so, what is the limit function?
3. Does the sequence converge uniformly?

The sequences are as follows:
(a) ( f j(x) = (x − 1

j2 )2) j∈Z>0 ;

(b) ( f j(x) = x − x j) j∈Z>0 .
3.5.3 Let I ⊆ R be an interval and let ( f j) j∈Z>0 be a sequence of locally bounded

functions on I converging pointwise to f : I → R. Show that there exists a
function g : I→ R such that ( f j) j∈Z>0 converges dominated by g.
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Section 3.6

Some R-valued functions of interest

In this section we present, in a formal way, some of the special functions that
will, and indeed already have, come up in these volumes.

Do I need to read this section? It is much more than likely the case that the
reader has already encountered the functions we discuss in this section. How-
ever, it may be the case that the formal definitions and rigorous presentation of
their properties will be new. This section, therefore, fits into the “read for pleasure”
category. •

3.6.1 The exponential function

One of the most important functions in mathematics, particularly in applied
mathematics, is the exponential function. This importance is nowhere to be found
in the following definition, but hopefully at the end of their reading these volumes,
the reader will have some appreciation for the exponential function.

3.6.1 Definition (Exponential function) The exponential function, denoted by
exp: R→ R, is given by

exp(x) =

∞∑
j=0

x j

j!
. •

In Figure 3.16 we show the graphs of exp and its inverse log that we will be

Figure 3.16 The function exp (left) and its inverse log (right)

discussing in the next section.
One can use Theorem ??, along with Proposition 2.4.15, to easily show that the

power series for exp has an infinite radius of convergence, and so indeed defines a
function on R. Let us record some of the more immediate and useful properties of
exp.
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3.6.2 Proposition (Properties of the exponential function) The exponential function
enjoys the following properties:

(i) exp is infinitely differentiable;
(ii) exp is strictly monotonically increasing;
(iii) exp(x) > 0 for all x ∈ R;
(iv) limx→∞ exp(x) = ∞;
(v) limx→−∞ exp(x) = 0;
(vi) exp(x + y) = exp(x) exp(y) for all x,y ∈ R;
(vii) exp′ = exp;
(viii) limx→∞ xk exp(−x) = 0 for all k ∈ Z>0.

Proof (i) This follows from Corollary ??, along with the fact that the radius of conver-
gence of the power series for exp is infinite.

(vi) Using the Binomial Theorem and Proposition 2.4.30(iv) we compute

exp(x) exp(y) =
( ∞∑

j=0

x j

j!

)( ∞∑
j=0

xk

k!

)
=

∞∑
k=0

k∑
j=0

x j

j!
yk− j

(k − j)!

=

∞∑
k=0

1
k!

k∑
j=0

(
k
j

)
x jyk− j =

∞∑
k=0

(x + y)k

k!
.

(viii) We have exp(−x) = 1
exp(x) by part (vi), and so we compute

lim
x→∞

xk exp(−x) = lim
x→∞

xk∑
∞

j=0
x j

j!

≤ lim
x→∞

(k + 1)!xk

xk+1
= 0.

(ii) From parts (i) and (viii) we know that exp has an everywhere positive derivative.
Thus, from Proposition 3.2.23 we know that exp is strictly monotonically increasing.

(iii) Clearly exp(x) > 0 for all x ∈ R≥0. From part (vi) we have

exp(x) exp(−x) = exp(0) = 1.

Therefore, for x ∈ R<0 we have exp(x) = 1
exp(−x) > 0.

(iv) We have

lim
x→∞

exp(x) = lim
x→∞

∞∑
j=0

x j

j!
≥ lim

x→∞
x = ∞.

(v) By parts (vi) and (iv) we have

lim
x→−∞

exp(x) = lim
x→∞

1
exp(−x)

= 0.

(vii) Using part (vi) and the power series representation for exp we compute

exp′(x) = lim
h→0

exp(x + h) − exp(x)
h

= lim
h→0

exp(x)(exp(h) − 1)
h

= exp(x). �
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One of the reasons for the importance of the function exp in applications can be
directly seen from property (vii). From this one can see that exp is the solution to
the “initial value problem”

y′(x) = y(x), y(0) = 1. (3.18)

Most readers will recognise this as the differential equation governing a scalar
process which exhibits “exponential growth.” It turns out that many physical
processes can be modelled, or approximately modelled, by such an equation, or by
a suitable generalisation of such an equation. Indeed, one could use the solution
of (3.18) as the definition of the function exp. However, to be rigorous, one would
then be required to show that this equation has a unique solution; this is not
altogether difficult, but does take one off topic a little. Such are the constraints
imposed by rigour.

In Section 2.4.3 we defined the constant e by

e =

∞∑
j=0

1
j!
.

From this we see immediately that e = exp(1). To explore the relationship between
the exponential function exp and the constant e, we first prove the following result,
which recalls from Proposition 2.2.3 and the discussion immediately following it,
the definition of xq for x ∈ R>0 and q ∈ Q.

3.6.3 Proposition (exp(x) = ex) exp(x) = sup{eq
| q ∈ Q, q < x}.

Proof First let us take the case where x = q ∈ Q. Write q =
j
k for j ∈ Z and k ∈ Z>0.

Then, by repeated application of part (vi) of Proposition 3.6.2 we have

exp(q)k = exp(kq) = exp( j) = exp( j · 1) = exp(1) j(e1) j = e j.

By Proposition 2.2.3 this gives, by definition, exp(q) = eq.
Now let x ∈ R and let (q j) j∈Z>0 be a monotonically increasing sequence in Q such

that lim j→∞ q j = x. By Theorem 3.1.3 we have exp(x) = lim j→∞ exp(q j). By part (ii)
of Proposition 3.6.2 the sequence (exp(q j)) j∈Z>0 is strictly monotonically increasing.
Therefore, by Theorem 2.3.8,

lim
j→∞

exp(q j) = lim
j→∞

eq j = sup{eq
| q < x},

as desired. �

We shall from now on alternately use the notation ex for exp(x), when this is
more convenient.

3.6.2 The natural logarithmic function

From Proposition 3.6.2 we know that exp is a strictly monotonically increasing,
continuous function. Therefore, by Theorem 3.1.30 we know that exp is an invert-
ible function fromR to image(exp). From parts (iii), (iv), and (v) of Proposition 3.6.2,
as well as from Theorem 3.1.30 again, we know that image(exp) = R>0. This then
leads to the following definition.
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3.6.4 Definition (Natural logarithmic function) The natural logarithmic function, de-
noted by log: R>0 → R, is the inverse of exp. •

We refer to Figure 3.16 for a depiction of the graph of log.

3.6.5 Notation (log versus ln) It is not uncommon to see the function that we denote by
“log” written instead as “ln.” In such cases, log is often used to refer to the base 10
logarithm (see Definition 3.6.13), since this convention actually sees much use in
applications. However, we shall refer to the base 10 logarithm as log10. •

Now let us record the properties of log that follow immediately from its defini-
tion.

3.6.6 Proposition (Properties of the natural logarithmic function) The natural loga-
rithmic function enjoys the following properties:

(i) log is infinitely differentiable;
(ii) log is strictly monotonically increasing;

(iii) log(x) =
∫ x

1
1
ξ dξ for all x ∈ R>0;

(iv) limx→∞ log(x) = ∞;
(v) limx↓0 log(x) = −∞;
(vi) log(xy) = log(x) + log(y) for all x,y ∈ R>0;
(vii) limx→∞ x−k log(x) = 0 for all k ∈ Z>0.

Proof (iii) From the Chain Rule and using the fact that log ◦ exp(x) = x for all x ∈ R
we have

log′(exp(x)) =
1

exp(x)
=⇒ log′(y) =

1
y

for all y ∈ R>0. Using the fact that log(1) = 0 (which follows since exp(0) = 1), we then
apply the Fundamental Theorem of Calculus, this being valid since y 7→ 1

y is Riemann

integrable on any compact interval in R>0, we obtain log(x) =
∫ y

1
1
η dη, as desired.

(i) This follows from part (iii) using the fact that the function x 7→ 1
x is infinitely

differentiable on R>0.
(ii) This follows from Theorem 3.1.30.
(iv) We have

lim
x→∞

log(x) = lim
y→∞

log(exp(y)) = lim
y→∞

y = ∞.

(v) We have
lim
x↓0

log x = lim
y→−∞

log(exp(y)) = lim
y→−∞

y = −∞.

(vi) For x, y ∈ R>0 write x = exp(a) and y = exp(b). Then

log(xy) = log(exp(a) exp(b)) = log(exp(a + b)) = a + b = log(x) + log(y).

(vii) We compute

lim
x→∞

log x
xk

= lim
y→∞

log exp(y)
exp(y)k

= lim
y→∞

y
exp(y)k

≤ lim
y→∞

y

(1 + y + 1
2 y2)k

= 0. �
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3.6.3 Power functions and general logarithmic functions

For x ∈ R>0 and q ∈ Q we had defined, in and immediately following Propo-
sition 2.2.3, xq by (x1/k) j if q =

j
k for j ∈ Z and k ∈ Z>0. In this section we wish to

extend this definition to xy for y ∈ R, and to explore the properties of the resulting
function of both x and y.

3.6.7 Definition (Power function) If a ∈ R>0 then the function Pa : R → R is defined
by Pa(x) = exp(x log(a)). If a ∈ R then the function Pa : R>0 → R is defined by
Pa(x) = exp(a log(x)). •

Let us immediately connect this (when seen for the first time rather nonintuitive)
definition to what we already know.

3.6.8 Proposition (Pa(x) = ax) Pa(x) = sup{aq
| q ∈ Q, q < x}.

Proof Let us first take x = q ∈ Q and write q =
j
k for j ∈ Z and k ∈ Z>0. We have

exp(q log(a))k = exp
( j

k log(a)
)k

= exp( j log(a)) = exp(log(a)) j = a j.

Therefore, by Proposition 2.2.3 we have

exp(q log(a)) = aq.

Now let x ∈ R and let (q j) j∈Z>0 be a strictly monotonically increasing sequence in Q
converging to x. Since exp and log are continuous, by Theorem 3.1.3 we have

lim
j→∞

exp(q j log(a)) = exp(x log(a)).

As we shall see in Proposition 3.6.10, the function x 7→ Pa(x) is strictly monotoni-
cally increasing. Therefore the sequence (exp(q j log(a))) j∈Z>0 is strictly monotonically
increasing. Thus

lim
j→∞

exp(q j log(a)) = sup{Pa(q) | q ∈ Q, q < x},

as desired. �

Clearly we also have the following result.

3.6.9 Corollary (Pa(x) = xa) Pa(x) = sup{xq
| q ∈ Q, q < a}.

As with the exponential function, we will use the notation ax for Pa(x) and xa

for Pa(x) when it is convenient to do so.
Let us now record some of the properties of the functions Pa and Pa that follow

from their definition. When possible, we state the result using both the notation
Pa(x) and ax (or Pa and xa).
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3.6.10 Proposition (Properties of Pa) For a ∈ R>0, the function Pa enjoys the following
properties:

(i) Pa is infinitely differentiable;
(ii) Pa is strictly monotonically increasing when a > 1, is strictly monotonically decreas-

ing when a < 1, and is constant when a = 1;
(iii) Pa(x) = ax > 0 for all x ∈ R;

(iv) lim
x→∞

Pa(x) = lim
x→∞

ax =


∞, a > 1,
0, a < 1,
1, a = 1;

(v) lim
x→−∞

Pa(x) == lim
x→−∞

ax =


0, a > 1,
∞, a < 1,
1, a = 1;

(vi) Pa(x + y) = ax+y = axay = Pa(x)Pa(y);
(vii) P′a(x) = log(a)Pa(x);
(viii) if a > 1 then limx→∞ xkPa(−x) = limx→∞ xka−x = 0 for all k ∈ Z>0;
(ix) if a < 1 then limx→∞ xkPa(x) = limx→∞ xkax = 0 for all k ∈ Z>0.

Proof (i) Define f , g : R → R and f (x) = x log(a) and g(x) = exp(x). Then Pa = g ◦ f ,
and so is the composition of infinitely differentiable functions. This part of the result
follows from Theorem 3.2.13.

(ii) Let x1 < x2. If a > 1 then log(a) > 0 and so

x1 log(a) < x2 log(a) =⇒ exp(x1 log(a)) < exp(x2 log(a))

since exp is strictly monotonically increasing. If a < 1 then log(a) < 0 and so

x1 log(a) > x2 log(a) =⇒ exp(x1 log(a)) > exp(x2 log(a)),

again since exp is strictly monotonically increasing. For a = 1 we have log(a) = 0 so
Pa(x) = 1 for all x ∈ R.

(iii) This follows since image(exp) ⊆ R>0.
(iv) For a > 1 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(x log(a)) = lim
y→∞

exp(y) = ∞,

and for a < 1 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(x log(a)) = lim
y→−∞

exp(y) = 0.

For a = 1 the result is clear since P1(x) = 1 for all x ∈ R.
(v) For a > 1 we have

lim
x→−∞

Pa(x) = lim
x→−∞

exp(x log(a)) = lim
y→−∞

exp(y) = 0,

and for a < 1 we have

lim
x→−∞

Pa(x) = lim
x→−∞

exp(x log(a)) = lim
y→∞

exp(y) = ∞.
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Again, for a = 1 the result is obvious.
(vi) We have

Pa(x + y) = exp((x + y) log(a)) = exp(x log(a)) exp(y log(a)) = Pa(x)Pa(y).

(vii) With f and g as in part (i), and using Theorem 3.2.13, we compute

P′a(x) = g′( f (x)) f ′(x) = exp(x log(a)) log(a) = log(a)Pa(x).

(viii) We compute

lim
x→∞

xkPa(−x) = lim
x→∞

xk exp(−x log(a)) = lim
y→∞

( y
log(a)

)k
exp(−y) = 0,

using part (viii) of Proposition 3.6.2.
(ix) We have

lim
x→∞

xkPa(x) = lim
x→∞

xk exp((−x)(− log(a))) = 0

since log(a) < 0. �

3.6.11 Proposition (Properties of Pa) For a ∈ R, the function Pa enjoys the following prop-
erties:

(i) Pa is infinitely differentiable;
(ii) Pa is strictly monotonically increasing;
(iii) Pa(x) = xa > 0 for all x ∈ R>0;

(iv) limx→∞ Pa(x) = limx→∞ xa =


∞, a > 0,
0, a < 0,
1, a = 0;

(v) limx↓0 Pa(x) = limx↓0 xa =


0, a > 0,
∞, a < 0,
1, a = 0;

(vi) Pa(xy) = (xy)a = xaya = Pa(x)Pa(y);
(vii) (Pa)′(x) = aPa−1(x).

Proof (i) Define f : R>0 → R, g : R → R, and h : R → R by f (x) = log(x), g(x) = ax,
and h(x) = exp(x). Then Pa = h ◦ g ◦ f . Since each of f , g, and h is infinitely differentiable,
then so too is Pa by Theorem 3.2.13.

(ii) Let x1, x2 ∈ R>0 satisfy x1 < x2. Then

Pa(x1) = exp(a log(x1)) < exp(a log(x2)) = Pa(x2)

using the fact that both log and exp are strictly monotonically increasing.
(iii) This follows since image(exp) ⊆ R>0.
(iv) For a > 0 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(a log(x)) = lim
y→∞

exp(y) = ∞,
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and for a < 0 we have

lim
x→∞

Pa(x) = lim
x→∞

exp(a log(x)) = lim
y→−∞

exp(y) = 0.

For a = 0 we have Pa(x) = 1 for all x ∈ R>0.
(v) For a > 0 we have

lim
x↓0

Pa(x) = lim
x↓0

exp(a log(x)) = lim
y→−∞

exp(y) = 0,

and for a < 0 we have

lim
x↓0

Pa(x) = lim
x↓0

exp(a log(x)) = lim
y→∞

exp(y) = ∞.

For a = 1, the result is trivial again.
(vi) We have

Pa(xy) = exp(a log(xy)) = exp(a(log(x)+log(y))) = exp(a log(x)) exp(a log(y)) = Pa(x)Pa(y).

(vii) With f , g, and h as in part (i), and using the Chain Rule, we have

(Pa)′(x) = h′(g( f (x)))g′( f (x)) f ′(x) = a exp(a log(x)) 1
x

= a exp(a log(x)) exp(−1 log(x)) = a exp((a − 1) log(x)) = aPa−1(x),

as desired, using part (vi) of Proposition 3.6.10. �

The following result is also sometimes useful.

3.6.12 Proposition (Property of Px(x−1)) limx→∞ Px(x−1) = limx→∞ x1/x = 1.
Proof We have

lim
x→∞

Px(x−1) = lim
x→∞

exp(x−1 log(x)) = lim
y→0

exp(y) = 1,

using part (vii) of Proposition 3.6.6. �

Now we turn to the process of inverting the power function. For the exponential
function we required that log(ex) = x. Thus, if our inverse of Pa is denoted (for the
moment) by fa, then we expect that fa(ax) = x. This definition clearly has difficulties
when a = 1, reflecting the fact that P1 is not invertible. In all other case, since Pa is
continuous, and either strictly monotonically increasing or strictly monotonically
decreasing, we have the following definition, using Theorem 3.1.30.

3.6.13 Definition (Arbitrary base logarithm) For a ∈ R>0\{1}, the function loga : R>0 → R,
called the base a logarithmic function, is the inverse of Pa. When a = 10 we simply
write log10 = log. •

The following result relates the logarithmic function for an arbitrary base to the
natural logarithmic function.
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3.6.14 Proposition (Characterisation of loga) loga(x) =
log(x)
log(a)

.

Proof Let x ∈ R>0 and write x = ay for some y ∈ R. First suppose that y , 0. Then
we have log(x) = y log(a) and loga(x) = y, and the result follows by eliminating y from
these two expressions. When y = 0 we have x = a = a1. Therefore, loga(x) = 1 =

log(x)
log(a) .�

With this result we immediately have the following generalisation of Proposi-
tion 3.6.6. We leave the trivial checking of the details to the reader.

3.6.15 Proposition (Properties of loga) For a ∈ R>0 \ {1}, the function loga enjoys the
following properties:

(i) loga is infinitely differentiable;
(ii) loga is strictly monotonically increasing when a > 1 and is strictly monotonically

decreasing when a < 1;
(iii) loga(x) = 1

log(a)

∫ x

1
1
ξ dξ for all x ∈ R>0;

(iv) limx→∞ loga(x) =

∞, a > 1,
−∞, a < 1;

(v) limx↓0 loga(x) =

−∞, a > 1,
∞, a < 1;

(vi) loga(xy) = loga(x) + loga(y) for all x,y ∈ R>0;
(vii) limx→∞ x−k loga(x) = 0 for all k ∈ Z>0.

3.6.4 Trigonometric functions

Next we turn to describing the standard trigonometric functions. These func-
tions are perhaps most intuitively introduced in terms of the concept of “angle”
in plane geometry. However, to really do this properly would, at this juncture,
require a significant expenditure of effort. Therefore, we define the trigonometric
functions by their power series expansion, and then proceed to show that they
have the expected properties. In the course of our treatment we will also see that
the constant π introduced in Section 2.4.3 has the anticipated relationships to the
trigonometric functions. Convenience in this section forces us to make a fairly
serious logical jump in the presentation. While all constructions and theorems
are stated in terms of real numbers, in the proofs we use complex numbers rather
heavily.

3.6.16 Definition (sin and cos) The sine function, denoted by sin : R→ R, and the cosine
function, denoted by cos : R→ R, are defined by

sin(x) =

∞∑
j=1

(−1) j+1x2 j−1

(2 j − 1)!
, cos(x) =

∞∑
j=0

(−1) jx2 j

(2 j)!
,

respectively. •

In Figure 3.17 we show the graphs of the functions sin and cos.
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Figure 3.17 The functions sin (left) and cos (right)

3.6.17 Notation Following normal conventions, we shall frequently write sin x and cos x
rather than the more correct sin(x) and cos(x). •

An application of Proposition 2.4.15 and Theorem ?? shows that the power
series expansions for sin and cos are, in fact, convergent for all x, and so the
functions are indeed defined with domain R.

First we prove the existence of a number having the property that we know π to
possess. In fact, we construct the number π

2 , where π is as given in Section 2.4.3.

3.6.18 Theorem (Construction of π) There exists a positive real number p0 such that

p0 = inf{x ∈ R>0 | cos(x) = 0}.

Moreover, p0 = π
2 .

Proof First we record the derivative properties for sin and cos.

1 Lemma The functions sin and cos are infinitely differentiable and satisfy sin′ = cos and
cos′ = − sin.

Proof This follows directly from Proposition ?? where it is shown that convergent
power series can be differentiated term-by-term. H

Let us now perform some computations using complex variables that will be
essential to many of the proofs in this section. We suppose the reader to be acquainted
with the necessary elementary facts about complex numbers. The next observation is
the most essential along these lines. We denote SC1 = {z ∈ C | |z| = 1}, and recall that all
points in z ∈ S1

C
can be written as z = eix for some x ∈ R, and that, conversely, for any

x ∈ R we have eix
∈ S1

C
.

2 Lemma eix = cos(x) + i sin(x).

Proof This follows immediately from the C-power series for the complex exponential
function:

ez =

∞∑
j=0

x j

j!
.

Substituting z = ix, using the fact that i2 j = (−1) j for all j ∈ Z>0, and using Proposi-
tion 2.4.30, we get the desired result. H
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From the preceding lemma we then know that cos(x) = Re(eix) and that sin(x) =
Im(eix). Therefore, since eix

∈ S1
C

, we have

cos(x)2 + sin(x)2 = 1. (3.19)

Let us show that the set {x ∈ R>0 | cos(x) = 0} is nonempty. Suppose that it is
empty. Since cos(0) = 1 and since cos is continuous, it must therefore be the case
(by the Intermediate Value Theorem) that cos(x) > 0 for all x ∈ R. Therefore, by
Lemma 1, sin′(x) > 0 for all x ∈ R, and so sin is strictly monotonically increasing by
Proposition 3.2.23. Therefore, since sin(0) = 0, sin(x) > 0 for x > 0. Therefore, for
x1, x2 ∈ R>0 satisfying x1 < x2, we have

sin(x1)(x2 − x1) <
∫ x2

x1

sin(x) dx = cos(x2) − cos(x1) ≤ 2,

where we have used the fact that sin is strictly monotonically increasing, Lemma 1, the
Fundamental Theorem of Calculus, and (3.19). We thus have arrive at the contradiction
that lim supx2→∞

sin(x1)(x2 − x1) ≤ 2.
Since cos is continuous, the set {x ∈ R>0 | cos(x) = 0} is closed. Therefore,

inf{x ∈ R>0 | cos(x) = 0} is contained in this set, and this gives the existence of p0.
Note that, by (3.19), sin(p0) ∈ {−1, 1}. Since sin(0) = 0 and since sin(x) = cos(x) > 0 for
x ∈ [0, p0), we must have sin(p0) = 1.

The following property of p0 will also be important.

3 Lemma cos( p0
2 ) = sin( p0

2 ) = 1
√

2
.

Proof Let x0 = cos( p0
2 ), y0 = sin( p0

2 ), and z0 = x0 + iy0. Then, using Proposition ??,

(ei
p0
2 )2 = eip0 = i

since cos(p0) = 0 and sin(p0) = 1. Thus

(ei
p0
2 )4 = i2 = −1,

again using Proposition ??. Using the definition of complex multiplication we also
have

(ei
p0
2 )4 = (x0 + iy0)4 = x4

0 − 6x2
0y2

0 + y4
0 + 4ix0y0(x2

0 − y2
0).

Thus, in particular, x2
0−y2

0 = 0. Combining this with x2
0+y2

0 = 1 we get x2
0 = y2

0 = 1
2 . Since

both x0 and y0 are positive by virtue of p0
2 lying in (0, p0), we must have x0 = y0 = 1

√
2
,

as claimed. H

Now we show, through a sequence of seemingly irrelevant computations, that
p0 = π

2 . Define the function tan: (−p0, p0) → R by tan(x) =
sin(x)
cos(x) , noting that tan is

well-defined since cos(−x) = cos(x) and since cos(x) > 0 for x ∈ [0, p0). We claim that
tan is continuous and strictly monotonically increasing. We have, using the quotient
rule,

tan′(x) =
cos(x)2 + sin(x)2

cos(x)2 =
1

cos(x)2 .
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Thus tan′(x) > 0 for all x ∈ (−p0, p0), and so tan is strictly monotonically increasing by
Proposition 3.2.23. Since sin(p0) = 1 and (since sin(−x) = − sin(x)) since sin(−p0) = −1,
we have

lim
x↑p0

tan(x) = ∞, lim
x↓p0

tan(x) = −∞.

This shows that tan is an invertible and differentiable mapping from (−p0, p0) to R.
Moreover, since tan′ is nowhere zero, the inverse, denoted by tan−1 : R → (−p0, p0), is
also differentiable and the derivative of its inverse is given by

(tan−1)′(x) =
1

tan′(tan−1(x))
,

as per Theorem 3.2.24. We further claim that

(tan−1)′(x) =
1

1 + x2 .

Indeed, our above arguments show that (tan−1)′(x) = (cos(tan−1(x)))2. If y = tan−1(x)
then

sin(y)
cos(y)

= x.

Since sin(y) > 0 for y ∈ (0, p0), we have sin(y) =
√

1 − cos(y) by (3.19). Therefore,

1 − cos(y)2

cos(y)2 = x2 =⇒ cos(y)2 =
1

1 + x2

as desired.
By the Fundamental Theorem of Calculus we then have∫ 1

0

1
1 + x2 dx = tan−1(1) − tan−1(0).

Since tan−1(1) =
p0
2 by Lemma 3 above and since tan−1(0) = 0 (and using part (v) of

Proposition 3.6.19 below), we have∫ 1

0

1
1 + x2 dx =

p0

2
. (3.20)

Now recall from Example ??–?? that we have

1
1 + x2 =

∞∑
j=0

(−1) jx2 j,

with the series converging uniformly on any compact subinterval of (−1, 1). Therefore,
by Proposition ??, for ε ∈ (0, 1) we have∫ 1−ε

0

1
1 + x2 dx =

∫ 1−ε

0

∞∑
j=0

(−1) jx2 j dx

=

∞∑
j=0

(−1) j
∫ 1−ε

0
x2 j dx

=

∞∑
j=0

(−1) j (1 − ε)2 j+1

2 j + 1
.

The following technical lemma will allow us to conclude the proof.
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4 Lemma lim
ε↓0

∞∑
j=0

(−1)j (1 − ε)
2j+1

2j + 1
=

∑
j=0

(−1)j

2j + 1
.

Proof By the Alternating Test, the series
∑
∞

j=0(−1) j (1−ε)2 j+1

2 j+1 converges for ε ∈ [0, 2].
Define f : [0, 2]→ R by

f (x) =

∞∑
j=0

(−1) j+1 (x − 1)2 j+1

2 j + 1

and define g : [−1, 1]→ R by

g(x) =

∞∑
j=0

(−1) j+1 x2 j+1

2 j + 1

so that f (x) = g(x−1). Since g is defined by aR-convergent power series, by Corollary ??
g is continuous. In particular,

g(−1) = lim
x↓−1

∞∑
j=0

(−1) j+1 x2 j+1

2 j + 1
.

From this it follows that

f (0) = lim
x↓0

∞∑
j=0

(−1) j+1 (x − 1)2 j+1

2 j + 1
,

which is the result. H

Combining this with (3.20) we have

p0

2
= lim

ε↓0

∫ 1−ε

0

1
1 + x2 dx = lim

ε↓0

∞∑
j=0

(−1) j (1 − ε)2 j+1

2 j + 1
=

∑
j=0

(−1) j

2 j + 1
=
π
4
,

using the definition of π in Definition 2.4.20. �

Now that we have on hand a reasonable characterisation of π, we can proceed
to state the familiar properties of sin and cos.

3.6.19 Proposition (Properties of sin and cos) The functions sin and cos enjoy the following
properties:

(i) sin and cos are infinitely differentiable, and furthermore satisfy sin′ = cos and
cos′ = − sin;

(ii) sin(−x) = sin(x) and cos(−x) = cos(x) for all x ∈ R;
(iii) sin(x)2 + cos(x)2 = 1 for all x ∈ R;
(iv) sin(x + 2π) = sin(x) and cos(x + 2π) = cos(x) for all x ∈ R;
(v) the map

[0, 2π) 3 x 7→ (cos(x), sin(x)) ∈ {(x,y) ∈ R2
| x2 + y2 = 1}

is a bijection.
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Proof (i) This was proved as Lemma 1 in the proof of Theorem 3.6.18.
(ii) This follows immediately from the R-power series for sin and cos.
(iii) This was proved as (3.19) in the course of the proof of Theorem 3.6.18.
(iv) Since ei π2 = i by Theorem 3.6.18, we use Proposition ?? to deduce

e2πi = (ei π2 )4 = i4 = 1.

Again using Proposition ?? we then have

ez+2πi = eze2πi = ez

for all z ∈ C. Therefore, for x ∈ R, we have

cos(x + 2π) + i sin(x + 2π) = ei(x+2π) = eix = cos(x) + i sin(x),

which gives the result.
(v) Denote S1 = {(x, y) ∈ R2

| x2 + y2 = 1}, and note that, if we make the standard
identification of C with R2 (as we do), then S1

C
(see the proof of Theorem 3.6.18)

becomes identified with S1, with the identification explicitly being x+ iy 7→ (x, y). Thus
the result we are proving is equivalent to the assertion that the map

f : [0, 2π) 3 x 7→ eix
∈ S1

C

is a bijection. This is what we will prove. By part (iii), this map is well-defined in the
sense that it actually does take values in S1

C
. Suppose that eix1 = eix2 for distinct points

x1, x2 ∈ [0, 2π), and suppose for concreteness that x1 < x2. Then x2 − x1 ∈ (0, 2π), and
1
4 (x2 − x1) ∈ (0, π2 ). We then have

eix1 = eix2 =⇒ ei(x2−x1) = 1 =⇒ (ei 1
4 (x2−x1))4 = 1.

Let ei 1
4 (x2−x1) = ξ+ iη. Since 1

4 (x2 − x1) ∈ (0, π2 ), we saw during the course of the proof of
Theorem 3.6.18 that ξ, η ∈ (0, 1). We then use the definition of complex multiplication
to compute

(ei 1
4 (x2−x1))4 = ξ4

− 6ξ2η2 + η4 + 4iξη(ξ2
− η2).

Since (ei 1
4 (x2−x1))4 = 1 is real, we conclude that ξ2

− η2 = 0. Combining this with
ξ2 + η2 = 1 gives ξ2 = η2 = 1

2 . Since both ξ and η are positive we have ξ = η = 1
√

2
.

Substituting this into the above expression for (ei 1
4 (x2−x1))4 gives (ei 1

4 (x2−x1))4 = −1. Thus
we arrive at a contradiction, and it cannot be the case that eix1 = eix2 for distinct
x1, x2 ∈ [0, 2π). Thus f is injective.

To show that f is surjective, we let z = x + iy ∈ S1
C

, and consider four cases.
1. x, y ≥ 0: Since cos is monotonically decreasing from 1 to 0 on [0, π2 ], there exists

θ ∈ [0, π2 ] such that cos(θ) = x. Since sin(θ)2 = 1 − cos(θ)2 = 1 − x2 = y2, and since
sin(θ) ≥ 0 for θ ∈ [0, π2 ], we conclude that sin(θ) = y. Thus z = eiθ.

2. x ≥ 0 and y ≤ 0: Let ξ = x and η = −y so that ξ, η ≥ 0. From the preceding case
we deduce the existence of φ ∈ [0, π2 ] such that eiφ = ξ + iη. Thus cos(φ) = x and
sin(φ) = −y. By part (ii) we then have cos(−φ) = x and sin(−φ) = y, and we note
that −φ ∈ [−π2 , 0]. Define

θ =

2π − φ, φ ∈ (0, π2 ],
0, φ = 0.
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By part (iv) we then have cos(θ) = x and sin(θ) = y, and that θ ∈ [ 3π
2 , 2π) if

φ ∈ (0, π2 ].
3. x ≤ 0 and y ≥ 0: Let ξ = −x and η = y si that ξ, η ≥ 0. As in the first case we

have φ ∈ [0, π2 ] such that cos(φ) = ξ and sin(φ) = η. We then have − cos(φ) = x and
sin(φ) = y. Next define θ = π − φ and note that

eiθ = eiπe−iφ = −(cos(φ) − i sin(φ)) = − cos(φ) + i sin(φ) = x + iy,

as desired.
4. x ≤ 0 and y ≤ 0: Take ξ = −x and η = −y so that ξ, η ≥ 0. As in the first case,

we have φ ∈ [0, π2 ] such that cos(φ) = ξ = −x and sin(φ) = η = −y. Then, taking
θ = π + φ, we have

eiθ = eiπeiφ = −(cos(φ) + i sin(φ)) = x + iy,

as desired. �

From the basic construction of sin and cos that we give, and the properties
that follow directly from this construction, there is of course a great deal that
one can proceed to do; the resulting subject is broadly called “trigonometry.”
Rigorous proofs of many of the facts of basic trigonometry follow easily from our
constructions here, particularly since we give the necessary properties, along with
a rigorous definition, of π. We do assume that the reader has an acquaintance with
trigonometry, as we shall use certain of these facts without much ado.

The reciprocals of sin and cos are sometimes used. Thus we define csc : (0, 2π)→
R and sec : (−π, π)→ R by csc(x) = 1

sin(x) and sec(x) = 1
cos(x) . These are the cosecant

and secant functions, respectively. One can verify that the restrictions of csc and
sec to (0, π2 ) are bijective. In Figure 3.18

One useful and not perfectly standard construction is the following. Define
tan: (−π2 ,

π
2 ) → R by tan(x) = sin(x)

cos(x) , noting that the definition makes sense since
cos(x) > 0 for x ∈ (−π2 ,

π
2 ). In Figure 3.19 we depict the graph of tan and its

inverse tan−1. During the course of the proof of Theorem 3.6.18 we showed that
the function tan had the following properties.

3.6.20 Proposition (Properties of tan) The function tan enjoys the following properties:
(i) tan is infinitely differentiable;
(ii) tan is strictly monotonically increasing;
(iii) the inverse of tan, denoted by tan−1 : R→ (−π2 ,

π
2 ) is infinitely differentiable.

It turns out to be useful to extend the definition of tan−1 to (−π, π] by defining
the function atan: R2

\ {(0, 0)} → (−π, π] by

atan(x, y) =


tan−1( y

x ), x > 0,
π − tan−1( y

x ), x < 0,
π
2 , x = 0, y > 0,
−
π
2 , x = 0, y < 0.
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Figure 3.18 Cosecant and its inverse (top) and secant and its in-
verse (bottom) on (0, π2 )

Figure 3.19 The function tan (left) and its inverse tan−1 (right)

As we shall see in missing stuff when we discuss the geometry of the complex
plane, this function returns that angle of a point (x, y) measured from the positive
x-axis.

3.6.5 Hyperbolic trigonometric functions

In this section we shall quickly introduce the hyperbolic trigonometric functions.
Just why these functions are called “trigonometric” is only best seen in the setting
of C-valued functions in missing stuff .
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3.6.21 Definition (sinh and cosh) The hyperbolic sine function, denoted by sinh: R→ R,
and the hyperbolic cosine functionm denoted by cosh: R→ R, are defined by

sinh(x) =

∞∑
j=1

x2 j−1

(2 j − 1)!
, cosh(x) =

∞∑
j=0

x2 j

(2 j)!
,

respectively. •

In Figure 3.20 we depict the graphs of sinh and cosh.

Figure 3.20 The functions sinh (left) and cosh (right)

As with sin and cos, an application of Proposition 2.4.15 and Theorem ?? shows
that the power series expansions for sinh and cosh are convergent for all x.

The following result gives some of the easily determined properties of sinh and
cosh.

3.6.22 Proposition (Properties of sinh and cosh) The functions sinh and cosh enjoy the
following properties:

(i) sinh(x) = 1
2 (ex
− e−x) and cosh(x) = 1

2 (ex + e−x);
(ii) sinh and cosh are infinitely differentiable, and furthermore satisfy sinh′ = cosh and

cosh′ = sinh;
(iii) sinh(−x) = sinh(x) and cosh(−x) = cosh(x) for all x ∈ R;
(iv) cosh(x)2

− sinh(x)2 = 1 for all x ∈ R.
Proof (i) These follows directly from theR-power series definitions for exp, sinh, and
cosh.

(ii) This follows from Corollary ?? and the fact that R-convergent power series can
be differentiated term-by-term.

(iii) These follow directly from the R-power series for sinh and cosh.
(iv) This can be proved directly using part (i). �

Also sometimes useful is the hyperbolic tangent function tanh: R→ R defined
by tanh(x) = sinh(x)

cosh(x) .
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Exercises

3.6.1 For representative values of a ∈ R>0, give the graph of Pa, showing the
features outlined in Proposition 3.6.10.

3.6.2 For representative values of a ∈ R, give the graph of Pa, showing the features
outlined in Proposition 3.6.11.

3.6.3 Prove the following trigonometric identities:
(a) cos a cos b = 1

2 (cos(a + b) + cos(a − b));
(b) cos a sin b = 1

2 (sin(a + b) − sin(a − b));
(c) sin a sin b = 1

2 (cos(a − b) − cos(a + b)).
3.6.4 Prove the following trigonometric identities:

(a)
3.6.5 Show that tanh is injective.
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Chapter 4

Algebraic structures

During the course of these volumes, we shall occasionally, sometimes in essen-
tial ways, make use of certain ideas from abstract algebra, particular abstract linear
algebra. In this chapter we provide the necessary background in abstract algebra,
saving the subject of linear algebra for Chapter ??. Our idea is to provide sufficient
detail to give some context to the instances when we make use of algebra.

Do I need to read this chapter? Provided that the reader is comfortable with the
very basic arithmetic ideas concerning integers, real numbers, complex numbers,
and polynomials, the material in Sections 4.1–?? can probably be skipped until it
is needed in the course of the text. When it is needed, however, a reader with
little exposure to abstract algebra can expect to expend some effort even for the
basic material we present here. The material in Section 4.3 appears immediately
in Chapter 8 in our initial consideration of the concept of spaces of signals. For
this reason, the material should be considered essential. However, it is possible
that certain parts of the chapter can be skimmed at a first reading, since the most
essential concept is that of a vector space as defined and discussed in Section 4.3.
The preparatory material of Sections 4.1–?? in not essential for understanding what
a vector space is, particularly if one is comfortable with the algebraic structure of
the set R of real numbers and the set C of complex numbers. Section ?? will not be
important for significant portions of the text, so can easily be skipped until needed
or wanted. •
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Section 4.1

Groups

One of the basic structures in mathematics is that of a group. A group structure
often forms the building block for more particular algebraic structures.

Do I need to read this section? Since the material in this section is not difficult,
although it is abstract, it may be useful reading for those who feel as if they need
to get some familiarity with simple abstract constructions and proofs. The content
of the section itself is necessary reading for those who want to understand the
material in Sections ??–??. •

4.1.1 Definitions and basic properties

There are a few structures possessing less structure than a group, so we first
define these. Many of our definitions of algebraic structure involve the notion of a
“binary operation,” so let us make this precise.

4.1.1 Definition (Binary operation) A binary operation on a set S is a map B : S×S→ S.
A pair (S,B) where B is a binary operation on S is a magma. •

We begin with one of the most basic of algebraic structures, even more basic
than a group.

4.1.2 Definition (Semigroup) A semigroup is a nonempty set S with a binary operation
on S, denoted by (s1, s2) 7→ s1 · s2, having the property that

(i) (s1 · s2) · s3 = s1 · (s2 · s3) for all s1, s2, s3 ∈ S (associativity). •

Slightly more structured than a semigroup is the idea of a monoid.

4.1.3 Definition (Monoid) A monoid is a nonempty set M with a binary operation on M,
denoted by (m1,m2) 7→ m1 ·m2, having the following properties:

(i) m1 · (m2 ·m3) = (m1 ·m2) ·m3 for all m1,m2,m3 ∈ M (associativity);
(ii) there exists e ∈ M such that m · e = e ·m = m for all m ∈ M (identity element). •

Now we define what we mean by a group.

4.1.4 Definition (Group) A group is a nonempty set G endowed with a binary operation,
denoted by (g1, g2) 7→ g1 · g2, having the following properties:

(i) g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G (associativity);
(ii) there exists e ∈ G such that g · e = e · g = g for all g ∈ G (identity element);
(iii) for each g ∈ G there exists g−1

∈ G such that g · g−1 = g−1
· g = e (inverse

element).
A group is Abelian if g1 · g2 = g2 · g1 for all g1, g2 ∈ G. •
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As we did when we defined the operation of multiplication in R, we will often
omit the symbol “·” for the binary operation in a group (or semigroup or monoid),
and simply write g1g2 in place of g1 · g2. When talking simultaneously about more
than one group, it is sometimes advantageous to denote the identity element of a
group G by eG.

Clearly the following inclusions hold:

Semigroups ⊆ Monoids ⊆ Groups.

Throughout these volumes, we shall encounter many examples of groups. For
the moment, let us give some very simple examples that illustrate the difference
between the ideas of a semigroup, monoid, and group.

4.1.5 Examples (Semigroups, monoids, and groups)
1. A singleton {x}with the (only possible) binary operation x ·x = x is a group with

identity element x and with inverse element defined by x−1 = x.
2. The set Z>0 with the binary operation of addition is a semigroup. However, it

is not a monoid since it has no identity element, and it is not a group, because
it has no identity element and so there are also no inverse elements.

3. The setZ>0 with the binary operation of multiplication is a monoid with identity
element e = 1. It is not a group.

4. The set Z≥0 with the binary operation of addition is a monoid with identity
element 0, but not a group.

5. The setZ≥0 with the binary operation of multiplication is a monoid with identity
element 1. It is not a group.

6. The setZwith the binary operation of addition is a group with identity element
0, and with inverse defined by k−1 = −k.

7. The set Z with the binary operation of multiplication is a monoid with identity
1, but it is not a group.

8. The setsQ andRwith the binary operations of addition are groups with identity
element 0 and with inverse defined by x−1 = −x.

9. The setsQ andRwith the binary operations of multiplication are monoids with
identity element 1. They are not groups.

10. The setsQ∗ , Q\{0} andR∗ , R\{0}with the binary operation of multiplication
are groups with identity element 1 and with inverse given by x−1 = 1

x .
11. Let Sk, k ∈ Z>0, denote the set of bijections of the set {1, . . . , k}, and equip Sk

with the binary operation (σ1, σ2) 7→ σ1 ◦σ2. One can easily verify that Sk is
a group with identity given by the identity map, and with inverse given by
the inverse map. This group is called the permutation group or the symmetric
group on k symbols. It is conventional to represent a permutation σ ∈ Sk using
the following matrix-type representation:(

1 2 · · · k
σ(1) σ(2) · · · σ(k)

)
.
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Thus the first row contains the elements {1, . . . , k} in order, and the second row
contains the images of these elements under σ.
We claim that Sk is Abelian when k ∈ {1, 2}, and otherwise is not Abelian. We
leave it to the reader to check directly that S1 and S2 are Abelian. Let us show
that S3 is not Abelian. Define σ1, σ2 ∈ S3 by

σ1(1) = 2, σ1(2) = 1, σ1(3) = 3,
σ2(1) = 1, σ2(2) = 3, σ2(3) = 2.

One can then verify that

σ1 ◦σ2(1) = 2, σ1 ◦σ2(2) = 3, σ1 ◦σ2(3) = 1,
σ2 ◦σ1(1) = 3, σ2 ◦σ1(2) = 1, σ2 ◦σ1(3) = 2.

Thus S3 in indeed not Abelian.
ThatSk is not Abelian for k > 3 follows since in Example 4.1.12–7 we will show
thatS3 is a isomorphic to a subgroup ofSk (asking the readers forgiveness that
the terms “isomorphic” and “subgroup” have yet to be defined; they will be
shortly).
We shall have more to say about the symmetric group in Section 4.1.5.

All groups in the above list may be verified to be Abelian, with the exception of the
permutation group on k symbols for k ≥ 2. •

Having introduced the notions of a semigroup and monoid, we shall not make
much use of them. They are, however, useful in illustrating what a group is and is
not.

The following properties of groups are more or less easily verified, and we leave
the verifications to the reader as Exercise 4.1.1.

4.1.6 Proposition (Elementary properties of groups) If G is a group, then the following
statements hold:

(i) there is exactly one element e ∈ G that satisfies g · e = e ·g = g for all g ∈ G, i.e., the
identity element in a group is unique;

(ii) for g ∈ G, there exists exactly one element g′ ∈ G such that g′ · g = g · g′ =
e, i.e., inverse elements are unique;

(iii) for g ∈ G, (g−1)−1 = g;
(iv) for g1,g2 ∈ G, (g1 · g2)−1 = g−1

2 · g
−1
1 ;

(v) if g1,g2,h ∈ G satisfy h · g1 = h · g2, then g1 = g2;
(vi) if g1,g2,h ∈ G satisfy g1 · h = g2 · h, then g1 = g2;
(vii) if g1,g2 ∈ G, then there exists a unique h ∈ G such that g1 · h = g2;
(viii) if g1,g2 ∈ G, then there exists a unique h ∈ G such that h · g1 = g2.

There is some useful notation associated with iterated group multiplication.
Namely, if G is a semigroup, if g ∈ G, and if k ∈ Z>0, then we define gk

∈ G
iteratively by g1 = g and gk = g · gk−1. The following result records the fact that this
notation behaves as we expect.
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4.1.7 Proposition (Properties of gk) If G is a semigroup, if g ∈ G, and if k1,k2 ∈ Z>0, then
the following statements hold:

(i) gk1 · gk2 = gk1+k2 ;
(ii) (gk1)k2 = gk1k2 .

Proof (i) Let g ∈ G and k1 ∈ Z>0. If k2 = 1 then, by definition,

gk1 · gk2 = gk1 · g = gk1+1 = gk1+k2 ,

so the result holds for k2 = 1. Now suppose that the result holds for k2 ∈ {1, . . . , k}.
Then, if k2 = k + 1,

gk1 gk2 = gk1 · gk+1 = gk1 · gk
· g = gk1+k

· g = gk1+k+1 = gk1+k2 ,

giving the result by induction on k2.
(ii) Let g ∈ G and k1 ∈ Z>0. If k2 = 1 then clearly (gk1)k2 = gk1k2 . Now suppose that

the result holds for k2 ∈ {1, . . . , k}, and for k2 = k + 1 compute

(gk1)k2 = (gk1)k+1 = (gk1)k
· gk1 = gk1k

· gk1 = gk1k+k1 = gk1(k+1) = gk1k2 ,

giving the result by induction on k2. �

4.1.8 Notation (gk for Abelian groups) When a group is Abelian, then the group oper-
ation is sometimes thought of as addition, since it shares the property of commu-
tativity possessed by addition. In such cases, one often write “kg” in place of “gk”
to reflect the idea that the group operation is “additive.” •

4.1.2 Subgroups

It is often useful to consider subsets of groups that respect the group operation.

4.1.9 Definition (Subgroup) A nonempty subset H of a group G is a subgroup if
(i) h1 · h2 ∈ H for all h1, h2 ∈ H and
(ii) h−1

∈ H for all h ∈ H. •

The following property of subgroups are easily verified, as the reader can see
by doing Exercise 4.1.5.

4.1.10 Proposition (A subgroup is a group) A nonempty subset H ⊆ G of a group G is a
subgroup if and only if H is a group using the binary operation of multiplication in G,
restricted to H.

4.1.11 Remark (On sub“objects”) Mathematics can be perhaps thought of as the study
of sets having some prescribed structure. It is frequent that one is interested in
subsets which inherit this structure from the superset. Such subsets are almost
always named with the prefix “sub.” The above notion of a subgroup is our first
encounter with this idea, although it will come up frequently in these volumes. •

Let us give some examples of subgroups.
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4.1.12 Examples (Subgroups)
1. For any group G, {e} is a subgroup, often called the trivial subgroup.
2. Let k ∈ Z>0. The subset kZ of Z defined by

kZ = {kj | j ∈ Z}

(i.e., kZ consists of multiples of k) is a subgroup of Z if Z possesses the binary
operation of addition.

3. Z and Q are subgroups of R if R possesses the binary operation of addition.
4. Q∗ is a subgroup of R∗ if R possesses the binary operation of multiplication.
5. Z is not a subgroup of Q if Q possesses the binary operation of multiplication.
6. Neither Z>0 nor Z≥0 are subgroups of Z if Z possesses the binary operation of

addition.
7. Let l, k ∈ Z>0 with l < k. Let Sl,k be the subset of Sk defined by

Sl,k = {σ ∈ Sk | σ( j) = j, j > l}.

We claim thatSl,k is a subgroup ofSk. It is clear by definition that, if σ1, σ2 ∈ Sl,k,
then h1 ◦h2 ∈ Sl,k. If σ ∈ Sl,k then let us write ψ( j) = σ( j) for j ∈ {1, . . . , l}. This
then defines ψ ∈ Sl. One can then directly verify that σ−1 is defined by

σ−1( j) =

ψ−1( j), j ∈ {1, . . . , l},
j, j > l.

Thus σ−1
∈ Sl,k, as desired.

Note that our above computations show that essentially Sl,k consists of a copy
of Sl sitting inside Sk. In the language we are about to introduce in Defini-
tion 4.1.20, Sl,k is isomorphic to Sl (see Example 4.1.23–2). •

An important idea in many algebraic settings is that of the smallest subobject
containing some subset. For groups this construction rests on the following result.

4.1.13 Proposition (Existence of subgroup generated by a subset) Let G be a group
and let S ⊆ G. Then there exists a subgroup HS ⊆ G such that

(i) S ⊆ HS and
(ii) if H ⊆ G is a subgroup for which S ⊆ H then HS ⊆ H.

Moreover,
HS = {g1 · · · gk | k ∈ Z>0, gj ∈ S or g−1

j ∈ S, j ∈ {1, . . . ,k}}

is the unique subgroup having the above two properties.
Proof Let

HS = {H ⊆ G | H is a subgroup with S ⊆ H}.

Since G ∈ HS it follows that HS is nonempty. We claim that HS , ∩H∈HSH has the
required properties. First let g ∈ S. Then g ∈ H for every H ∈ HS. Thus g ∈ HS and
so S ⊆ HS. Now let g1, g2 ∈ HS. Then g1, g2 ∈ H for every H ∈ HS and so g1 · g2 ∈ H
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for every H ∈ HS. Similarly, if g ∈ H for every H ∈ HS then g−1
∈ H for every H ∈ HS.

Thus HS is a subgroup containing S. Furthermore, if H is a subgroup containing S and
if g ∈ HS then clearly g ∈ H since H ∈HS. Thus HS ⊆ H. We, moreover, claim that there
is only one subgroup having the two stated properties. Indeed, suppose that H′S ⊆ G
is a subgroup containing S and if H′S is contained in any subgroup containing S. Then
H′S ⊆ HS. Moreover, since H′S ∈HS we have HS ⊆ H′S. Thus H′S = HS.

To prove the final assertion it now suffices to show that

H′S = {g1 · · · gk | k ∈ Z>0, g j ∈ S or g−1
j ∈ S, j ∈ {1, . . . , k}}

is a subgroup containing S and has the property that H′S ⊆ H for any subgroup H
containing S. Clearly S ⊆ H′S. Now let

g1 · · · gk, g′1, . . . , g
′

k′ ∈ H′S.

Then clearly
g1 · · · gk · g′1, . . . , g

′

k′ ∈ H′S.

Moreover,
(g1 · · · gk)−1 = g−1

k · · · g
−1
1 ∈ H′S

and so H′S is a subgroup. Now let H be a subgroup containing S. Then g1 · g2 ∈ H and
g−1
∈ H for every g, g1, g2 ∈ S. This means that g1 · · · gk ∈ H for every g1, . . . , gk ∈ G

such that either g j or g−1
j are in S, j ∈ {1, . . . , k}. Thus H′S ⊆ H and so we conclude that

H′S = HS. �

4.1.14 Definition (Subgroup generated by a subset) If G is a group and if S ⊆ G, the
subgroup HS of Proposition 4.1.13 is the subgroup generated by S. •

4.1.3 Quotients

Let us now turn to some important ideas connected with subgroups.

4.1.15 Definition (Left and right cosets) Let G be a group with H a subgroup.
(i) The left coset of H through g ∈ G is the set gH = {gh | h ∈ H}.
(ii) The right coset of H through g ∈ G is the set Hg = {hg | h ∈ H}.

The set of left (resp. right) cosets is denoted by G/H (resp. H\G), and the map
assigning to g ∈ G the coset gH ∈ G/H (resp. Hg ∈ H\G) is denoted by πH (resp. Hπ),
and is called the canonical projection. •

Of course, if G is Abelian, then gH = Hg for each g ∈ G, and, as a consequence,
the sets G/H and H\G are the same. It is common to refer to G/H or H\G as the
quotient of G by H.

An alternative description of cosets is given by the following result.
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4.1.16 Proposition (Cosets as equivalence classes) The set G/H (resp. H\G) is the same
as the set of equivalence classes in G associated to the equivalence relation g1 ∼ g2 if
g−1

2 g1 ∈ H (resp. g2g−1
1 ∈ H).

Proof We prove the proposition only for left cosets, and the proof for right cosets
follows, mutatis mutandis. First let us prove that the relation defined by g1 ∼ g2 if
g−1

2 g1 ∈ H is an equivalence relation.

1. Note that g−1g = e ∈ H, so the relation is reflexive.
2. If g1 ∼ g2 then g−1

2 g1 ∈ H, which implies that (g−1
2 g1)−1

∈ H since H is a subgroup.
By Proposition 4.1.6 this means that g−1

1 g2 ∈ H; i.e., that g2 ∼ g1. Thus the relation
is symmetric.

3. If g1 ∼ g2 and g2 ∼ g3, or equivalently that g2 ∼ g1 and g3 ∼ g2, then g−1
1 g2, g−1

2 g3 ∈

H. Then, since H is a subgroup,

(g−1
1 g2)(g−1

2 g3) ∈ H =⇒ g−1
1 g3 ∈ H.

Thus g3 ∼ g1, or g1 ∼ g3, and the relation is transitive.
Now let g ∈ G and let g′ ∈ gH. Then g′ = gh for some h ∈ H, so g−1g′ ∈ H, so g′ ∼ g.
Conversely, suppose that g′ ∼ g so that g−1g′ = h for some h ∈ H. Then g′ = gh, so
g′ ∈ gH. This gives the result. �

Let us give some examples of cosets and collections of cosets.

4.1.17 Examples (Cosets)
1. Let k ∈ Z>0. Consider the group Z with the binary operation of addition, and

also consider the subgroup kZ consisting of multiples of k. We claim thatZ/kZ
is a set with k elements. Using the Theorem ?? below, we see that every element
of Z lies in the coset of exactly one of the elements from the set {0, 1, . . . , k − 1},
which gives our claim. For reasons which will become clear in Example ??–??
it is convenient to denote the coset through j ∈ Z by j + kZ. We will frequently
encounter the group Z/kZ, and so give it the shorthand Zk.

2. Consider the group R equipped with the binary operation of addition, and
consider the subgroup Q. We claim that the set R/Q is uncountable. Indeed,
if it were not, then this would imply that R is the countable union of cosets,
and each coset itself must be countable. That is to say, if R/Q is countable, then
R is a countable union of countable sets. But, by Proposition ??, this means
that R is countable. However, in Exercise 2.1.4 the reader is asked to show R
is actually not countable. The contradiction proves that R/Q is uncountable.
Further investigation of R/Q takes one into the topic of field extensions, which
we consider very briefly in Section 4.2.3, and then into Galois theory, which is
somewhat beyond our focus here.

3. Consider the permutation group S3 in 3 symbols and consider the subgroup
S2,3, which is isomorphic to S2 as we showed in Example 4.1.23–2. Let us
describe the cosets of S3/S2,3. Suppose that σ1, σ2 ∈ S3 lie in the same coset of
S2,3. Then it must hold that σ1 ◦σ−1

2 (3) = 3, or equivalently that σ−1
1 (3) = σ−1

2 (3).
Thus cosets are identified by their having in common the fact that the same
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elements in {1, 2, 3} are images of the element 3. The cosets are then easily seen
to be

(a)
{(1 2 3

1 2 3

)
,

(
1 2 3
2 1 3

)}
,

(b)
{(1 2 3

2 3 1

)
,

(
1 2 3
3 2 1

)}
, and

(c)
{(1 2 3

3 1 2

)
,

(
1 2 3
1 3 2

)}
. •

Next we discuss a particular sort of subgroup that, as we shall see, is distin-
guished by the structure of its set of cosets.

4.1.18 Definition (Normal subgroup) A subgroup H of a group G is a normal subgroup
if gH = Hg for all g ∈ G. •

The following result explains why normal subgroups are interesting.

4.1.19 Proposition (Quotients by normal subgroups are groups) Let N be a normal
subgroup of G and define a binary operation on G/N by

(g1N,g2N) 7→ (g1g2)N.

Then this binary operation satisfies the conditions for group multiplication.
Proof First let us show that this binary operation is well-defined. Let g1, g2, h1, h2 ∈ G
satisfy g1N = h1N and g2N = h2N. Then we must have g−1

1 h1 = n1 and g−1
2 h2 = n2 for

n1,n2 ∈ N, and then we compute

(h1h2N) = {h1h2n | n ∈ N} = {g1n1g2n2n | n ∈ N}
= {g1g2n3n2n | n ∈ N} = {g1g2n | n ∈ N} = (g1g2)N,

where n3 ∈ N is defined so that n1g2 = g2n3, this being possible by Exercise 4.1.8 since
N is normal.

To then verify that the (now) well-defined binary operation satisfies the conditions
for group multiplication is trivial. �

4.1.4 Group homomorphisms

Another important concept for groups, and for many other structures in math-
ematics, is that of a map that preserves the structure.

4.1.20 Definition (Group homomorphism, epimorphism, monomorphism, and iso-
morphism) For semigroups (resp. monoids, groups) G and H, a map φ : G→ H is
a:

(i) semigroup (resp. monoid, group) homomorphism, or simply a homomor-
phism, if φ(g1 · g2) = φ(g1) · φ(g2) for all g1, g2 ∈ G;

(ii) epimorphism if it is a surjective homomorphism;
(iii) monomorphism if it is an injective homomorphism;
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(iv) isomorphism if it a bijective homomorphism. •

We shall mainly be concerned with group homomorphisms, although homo-
morphisms of semigroups and monoids will arise at times.

4.1.21 Remark (On morphisms of various sorts) As with the idea of a sub“object” as
discussed in Remark 4.1.11, the idea of a map between sets that preserves the
structure of those sets, e.g., the group structure in the case of a group homomor-
phism, is of fundamental importance. The expression “morphosis” comes from
Greek for “form,” whereas the prefixes “homo,” “epi,” “mono,” and “isos” are
from the Greek for roughly “alike,” “on,” “one,” and “equal,” respectively. •

The following result gives a couple of basic properties of homomorphisms.

4.1.22 Proposition (Properties of group homomorphisms) If G and H are monoids and
if φ : G→ H is a monoid homomorphism, then

(i) φ(eG) = eH, and
(ii) if G and H are additionally groups, then φ(g−1) = (φ(g))−1.

Proof (i) Let g ∈ G and note that

φ(eGg) = φ(geG) = φ(eG)φ(g) = φ(g)φ(eG) = φ(g).

In particular, φ(g)φ(eG) = φ(g)eH, and the result follows by multiplication by φ(g)−1.
(ii) Now, if g ∈ G then φ(g)φ(g−1) = φ(gg−1) = φ(eG) = eH, which shows that

φ(g−1) = (φ(g))−1. �

4.1.23 Examples (Group homomorphisms)
1. If G and H are groups with identity elements eG and eH, respectively, then

the map φ : G → H defined by φ(g) = eH for all g ∈ G is readily verified
to be a homomorphism. It is an epimorphism if and only if H = {eH} and a
monomorphism if and only if G = {eG}.

2. Let l, k ∈ Z>0 with l < k. The map φ : Sl → Sk defined by

φ(σ)( j) =

σ( j), j ∈ {1, . . . , l},
j, j > l

is verified to be a monomorphism. In fact, it is easily verified to be an isomor-
phism from Sl to Sl,k ⊆ Sk. •

Associated to every homomorphism of groups are two important subsets, one
of the domain and one of the codomain of the homomorphism.

4.1.24 Definition (Image and kernel of group homomorphism) Let G and H be groups
and let φ : G→ H be a homomorphism.

(i) The image of φ is image(φ) = {φ(g) | g ∈ G}.
(ii) The kernel of φ is ker(φ) = {g ∈ G | φ(g) = eH}. •

The image and the kernel have useful properties relative to the group structure.
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4.1.25 Proposition (Image and kernel are subgroups) If G and H are groups and if
φ : G→ H is a homomorphism, then

(i) image(φ) is a subgroup of H and
(ii) ker(φ) is a normal subgroup of G.

Proof (i) If g1, g2 ∈ G then φ(g1)φ(g2) = φ(g1g2) ∈ image(φ). From part (ii) of Propo-
sition 4.1.22 we have (φ(g))−1

∈ image(φ) for every g ∈ G.
(ii) Let g1, g2 ∈ ker(φ). Then φ(g1g2) = φ(g1)φ(g2) = eH so that g1g2 ∈ ker(φ). If

g ∈ ker(φ) then
eH = φ(eG) = φ(gg−1) = φ(g)φ(g−1) = φ(g−1).

Thus g−1
∈ ker(φ), and so ker(φ) is a subgroup. To show that ker(φ) is normal, let

g ∈ G and let h ∈ ker(φ). Then

φ(ghg−1) = φ(g)φ(h)φ(g−1) = φ(g)φ(g−1) = eH.

Thus ghg−1
∈ ker(φ) for every g ∈ G and h ∈ ker(φ). The result now follows by

Exercise 4.1.8. �

The following result characterising group monomorphisms is simple, but is one
that we use continually, so it is worth recording.

4.1.26 Proposition (Characterisation of monomorphisms) A group homomorphism
φ : G→ H is a monomorphism if and only if ker(φ) = eG.

Proof Suppose that ker(φ) = {eG} and that φ(g1) = φ(g2). Then

eH = φ(g1)(φ(g2))−1 = φ(g1)φ(g−1
2 ) = φ(g1g−1

2 ),

implying that g1g−1
2 ∈ ker(φ) whence g1 = g2, and so φ is injective.

Conversely, suppose φ is a monomorphism and let g ∈ ker(φ). Thus φ(g) = eH.
However, since φ is a monomorphism and since φ(eG) = eH, we must have g = eG. �

4.1.5 The symmetric group

In Example 4.1.5–11 we introduced the symmetric group. We shall have occa-
sion to use some of the structure of the symmetric group, and in this section we
collect the pertinent facts.

First of all let us define a simple collection of elements of the symmetric group
and some notions associated with them.

4.1.27 Definition (Cycle, transposition, even permutation, odd permutation) Let k ∈
Z>0.

(i) An element σ ∈ Sk is a cycle if there exists distinct j1, . . . , jm ∈ {1, . . . , k} such
that

σ( j1) = j2, σ( j2) = j3, · · · , σ( jm−1) = jm, σ( jm) = j1,

and such that σ( j) = j for j < { j1, . . . , jm}. The number m is the length of the
cycle. We denote the above cycle by ( j1 j2 · · · jm).

(ii) An element σ ∈ Sk is a transposition if it is a cycle of length 2. Thus σ = ( j1 j2)
for distinct j1, j2 ∈ {1, . . . , k}.
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(iii) An element σ ∈ Sk is even (resp. odd) if it is a finite product of an even
(resp. odd) number of transpositions. •

Let us illustrate the notion of a cycle with an elementary example.

4.1.28 Example (Cycle) The permutation(
1 2 3 4 5
1 5 3 2 4

)
is a cycle using the elements 2, 4, and 5, and is written as (2 5 4), representing the
fact that σ(2) = 5, σ(5) = 4, and σ(4) = 2. It is clear that one could also write the
cycle as (5 4 2) or (4 2 5), and, therefore, the notation we use to represent a cycle is
not unique. •

It turns out that every permutation is a product of cycles. If we ask that the
cycles have an additional property, then the product is unique. This property is the
following.

4.1.29 Definition (Disjoint permutations) Let k ∈ Z>0. Permutations σ1, σ2 ∈ Sk are
disjoint if, for every j ∈ {1, . . . , k}, σ1( j) , j implies that σ2( j) = j and σ2( j) , j
implies that σ1( j) = j. •

The idea is that the set of elements of {1, . . . , k} not fixed by disjoint permuta-
tions are distinct. It is easy to show that disjoint permutations commute; this is
Exercise 4.1.12.

We now have the following important structural result describing a typical
permutation.

4.1.30 Theorem (Permutations are products of cycles) Let k ∈ Z>0. If σ ∈ Sk then there
exist disjoint cycles σ1, . . . , σr ∈ Sk such that σ = σ1 ◦ · · · ◦σr. Moreover, if σ′1, . . . , σ

′

r′ ∈

Sk are disjoint permutations such that σ′1 ◦ · · · ◦σ
′

r′ , then r = r′ and there exists a bijection
φ : {1, . . . , r} → {1, . . . , r} such that σ′j = σφ(j), j ∈ {1, . . . , r}.

Proof For σ ∈ Sk and j ∈ {1, . . . , k} let us denote

O(σ, j) = {σm( j) | m ∈ Z≥0}

and suppose that card(O(σ, j)) = Nσ, j.

1 Lemma With the above notation the following statements hold:
(i) j, σ(j), . . . , σNσ,j−1(j) are distinct;
(ii) σNσ,j(j′) = j′ for each j′ ∈ O(σ, j);
(iii) O(σ, j) = {j, σ(j), . . . , σNσ,j−1(j)};
(iv) O(σ, j′) = O(σ, j) for every j′ ∈ O(σ, j).

Proof (i) Suppose that σm1( j) = σm2( j) for distinct m1,m2 ∈ {0, 1, . . . ,Nσ, j − 1}. Suppose
that m2 > m1 so that σm2−m1( j) = j with m2 − m1 ∈ {1, . . . ,Nσ, j − 1}. For m ∈ Z>0
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let us use the division algorithm for Z (Theorem ??) to write m = q(m2 − m1) + r for
r ∈ {0, 1, . . . ,m2 −m1 − 1}. Then σm( j) = σr( j) and so it follows that

O(σ, j) ⊆ { j, σ( j), . . . , σm2−m1−1( j)}.

This, however, contradicts the definition of Nσ, j since m2 −m1 < Nσ, j.
(ii) Since card(O(σ, j)) = Nσ, j and by the previous part of the lemma we must

have σNσ, j( j) = σm( j) for some m ∈ {0, 1, . . . ,Nσ, j − 1}. Thus σNσ, j−m( j) = j and so, by
the previous part of the lemma we must have m = 0. Thus σNσ, j( j) = j. Now, if
m ∈ {1, . . . ,Nσ, j − 1}, then

σNσ, j ◦σm( j) = σm
◦σNσ, j( j) = σm( j),

giving this part of the lemma.
(iii) Clearly

{ j, σ( j), . . . , σNσ, j−1( j)} ⊆ O(σ, j).

By definition of Nσ, j and by part (i) equality follows.
(iv) Let m′ ∈ {1, . . . ,Nσ, j − 1} and let j′ = σm′( j).

O(σ, j′) = {σm( j′) | m ∈ Z≥0} = {σ
m+m′( j) | m ∈ Z≥0} ⊆ O(σ, j).

On the other hand, if m ∈ Z>0 we can write m −m′ = qNσ, j + r for r ∈ {0, 1, . . . ,Nσ, j − 1}
using the division algorithm. Then

σm( j) = σm−m′
◦σm′( j) = σr

◦σm′( j) = σr( j′),

and so O(σ, j) ⊆ O(σ, j′). H

From the lemma and since the set {1, . . . , k} is finite it follows that there exist
j1, . . . , jr ∈ {1, . . . , k} such that

1. {1, . . . , k} = ∪r
l=1O(σ, jl) and

2. O(σ, jl) ∩O(σ, jm) = ∅ for l , m.
Let Nl = card(O(σ, jl)) for l ∈ {1, . . . , r}. For l ∈ {1, . . . , r} define σl ∈ Sk by

σl( j) =

σ( j), j ∈ O(σ, jl),
j, otherwise.

By the lemma we have σl = ( jl σ( jl) · · · σNl−1( jl)). Moreover, for distinct l,m ∈ {1, . . . , r}
the permutations σl and σm are clearly disjoint. Therefore, by Exercise 4.1.12, the
permutations σ1, . . . , σl commute with one another. We claim that σ = σ1 ◦ · · · ◦σr.
Indeed, let j ∈ {1, . . . , k} and let l j ∈ {1, . . . , r} satisfy j ∈ O(σ, l j). Then, by construction,
σl( j) = j for l , l j. We thus have

σ1 ◦ · · · ◦σl j
◦ · · · ◦σr( j) = σl j

◦σ1 ◦ · · · ◦σl j−1 ◦σl j+1 ◦ · · · ◦σr( j) = σl j( j) = σ( j),

giving the theorem. �

It is not clear that a permutation cannot be both even and odd, so let us establish
this in an illuminating way. In the statement of the result we consider the set {−1, 1}
to be a group with the product being multiplication in the usual way.
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4.1.31 Theorem (The sign homomorphism from the symmetric group) Let k ∈ Z>0.
If σ ∈ Sk then σ is the product of a finite number of transpositions. Moreover, the map
sign: Sk → {−1, 1} given by

sign(σ) =

1, σ is a product of an even number of transpositions,
−1, σ is a product of an odd number of transpositions

is a well-defined group homomorphism.
Proof By Theorem 4.1.30 it suffices to show that a cycle is a finite product of adjacent
transpositions. However, for a cycle ( j1 · · · jm) we can write

( j1 · · · jm) = ( j1 j2) · ( j1 j3) · · · · · ( j1 jm),

which can be verified directly.
Now we prove that sign is well-defined. Let σ ∈ Sk. By Theorem 4.1.30 there exist

unique (up to order) disjoint cycles σ1, . . . , σr such that σ = σ1 ◦ · · · ◦σr. Let us define
C(σ) = r. In the following lemma we recall the notation O(σ, j) introduced in the proof
of Theorem 4.1.30.

1 Lemma Let σ ∈ Sk and let τ = (j1, j2). Then
(i) C(σ ◦τ) = C(σ) + 1 if O(σ, j1) = O(σ, j2) and
(ii) C(σ ◦τ) = C(σ) − 1 if O(σ, j1) , O(σ, j2).

Proof Suppose that O(σ, j1) = O(σ, j2) and, using the lemma from the proof of Theo-
rem 4.1.30, write

O(σ, j1) = {l1 = j1, . . . , ls = j2, . . . , lm}

with lp = σp(l1) for p ∈ {1, . . . ,m}. Let σ′ = (l1 · · · lp). Then we can directly verify that

σ′ ◦τ = (l1 · · · lp) · (l1 ls) = (l1 · · · ls−1) · (ls · · · lp),

giving σ′ ◦τ as a product of two cycles. Now note that if j has the property that
O(σ, j) , O(σ, j1) then, using the lemma from the proof of Theorem 4.1.30, σ ◦τ( j) = σ( j).
Thus O(σ ◦τ, j) = O(σ, j) if j < O(σ, j1). For j ∈ O(σ, j1) we have σ( j) = σ′( j) and also
σ ◦τ( j) = σ′ ◦τ( j) since τ( j) ∈ O(σ, j1). Thus

O(σ, j1) = O(σ ◦τ, j1) ∪O(σ ◦τ, j2),

giving C(σ ◦τ) = C(σ) + 1.
Now suppose that O(σ, j1) , O(σ, j2). Let us write

O(σ, j1) = { j1, σ( j1), . . . , σp1−1( j1)}, O(σ, j2) = { j2, σ( j2), . . . , σp2−1( j2)}.

Let us also define

σ′1 = ( j1 σ( j1) · · · σp1−1( j1)), σ′2 = ( j2 σ( j2) · · · σp2−1( j2)).

One can then directly see that

σ′1 ◦σ
′

2 ◦τ = ( j1 σ( j1) · · · σp1−1( j1)) · ( j2 σ( j2) · · · σp2−1( j2)) · ( j1, j2)

= ( j1 σ( j1) · · · σp1−1( j1) j2 σ( j2) · · · σp2−1( j2)).
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Now note that if j ∈ O(σ, j1)∪O(σ, j2) then σ( j) = σ′1 ◦σ
′

2( j) whence σ ◦τ( j) = σ′1 ◦σ
′

2
◦τ( j)

since τ( j) ∈ O(σ, j1) ∪ O(σ, j2). Therefore, O(σ, j1) ∪ O(σ, j2) = O(σ ◦τ, j1). Moreover, if
j < O(σ, j1)∪O(σ, j2) then obviously σ( j) = σ ◦τ( j). Therefore, O(σ ◦τ, j) = O(σ, j) in this
case. Summarising, C(σ ◦τ) = C(σ) − 1. H

Let π2 : Z → Z/2Z be the canonical projection. Since π2(m + 1) = π2(m − 1),
the lemma shows that π2(C(σ)) = π2(C(σ ◦τ) + 1) for every σ ∈ Sk and for every
transposition τ.

To complete the proof note that C(e) = k if e denotes the identity element of Sk.
Now write σ ∈ Sk as a finite product of transpositions: σ = τ1 ◦ · · · ◦τp. Thus

π2(C(σ)) = π2(C(τ1 ◦ · · · ◦τp)) = π2(C(e) + p) = π2(k + p).

Note that π2(C(σ)) is defined independently of the choice of transpositions τ1, . . . , τp.
Thus, if σ = τ′1 ◦ · · · ◦τ

′

p′ for transpositions τ′1, . . . , τ
′

p′ then we must have π2(k + p) =

π2(k + p′) meaning that π2(p) = π2(p′). But this means exactly that p and p′ are either
both even or both odd.

That sign is a homomorphism is a consequence of the obvious fact that the product
of even permutations is even, the product of two odd permutations is even, and the
product of an even and an odd permutation is odd. �

Let us give some additional properties of the symmetric group that will be
useful to us in our discussions of multilinear maps in Section ??, derivatives of
such maps in Section ?? and Theorem ??.

Let k1, . . . , km ∈ Z≥0 be such that
∑m

j=1 km = k. Let Sk1|···|km be the subgroup of Sk

with the property that elements σ of Sk1|···|km take the form(
1 · · · k1 · · · k1 + · · · + km−1 + 1 · · · k1 + · · · + km

σ1(1) · · · σ1(k1) · · · k1 + · · · + km−1 + σm(1) · · · k1 + · · · + km−1 + σm(km)

)
,

where σ j ∈ Sk j , j ∈ {1, . . . ,m}. The assignment (σ1, . . . , σm) 7→ σ with σ as above is
an isomorphism ofSk1 × · · · ×Skmmissing stuff withSk1|···|km . Also denote bySk1,...,km

the subset of Sk having the property that σ ∈ Sk1,...,km satisfies

σ(k1 + · · · + k j + 1) < · · · < σ(k1 + · · · + k j + k j+1), j ∈ {0, 1, . . . ,m − 1}.

Now we have the following result.

4.1.32 Proposition (Decompositions of the symmetric group) With the above notation,
the map (σ1, · · · σm) 7→ σ1 ◦ · · · ◦σm from Sk1,...,km ×Sk1|···|km to Sk is a bijection.

Proof Let P be the set of partitions (S1, . . . ,Sm) of {1, . . . , k} (i.e., {1, . . . , k} =
◦

∪
m
j=1 S j)

such that card(S j) = k j, j ∈ {1, . . . ,m}. Note that Sk acts in a natural way on P. That
is, if (S1, . . . ,Sm) ∈ P and if σ ∈ Sk then we can define σ(S1, . . . ,Sm) to be the partition
(S′1, . . . ,S

′
m) ∈ P for which σ(S j) = S′j for each j ∈ {1, . . . ,m}. Now specifically choose

S = (S1, . . . ,Sm) ∈ P by

S j = {k0 + · · · + k j−1 + 1, . . . , k1 + · · · + k j}, j ∈ {1, . . . ,m},

taking k0 = 0. Note that σ ∈ Sk has the property that σ(S) = S if and only if σ ∈ Sk1|···|km .
For a general T = (T1, . . . ,Tm) ∈ P let SS→T be the set of σ ∈ Sk that map S to T. Note
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that for a given T ∈ P there exists a unique element of Sk1,...,km ∩SS→T (why?). Let us
denote this unique permutation by σT ∈ Sk1,...,km ∩SS→T. We claim that

SS→T = {σT ◦σ
′
| σ′ ∈ Sk1|···|km}.

Indeed, if σ ∈ SS→T then σ−1
T
◦σ(S) = S and so σ−1

T
◦σ = σ′ for some σ′Sk1|···|km . Thus

σ = σT ◦σ′ and so
SS→T ⊆ {σT ◦σ

′
| σ′ ∈ Sk1|···|km}.

Conversely, if σ′ ∈ Sk1|···|km then σT ◦σ′ ∈ SS→T since σ′(S) = S. This gives SS→T =
σTSk1|···|km . Since σT is the unique element of Sk1,...,km for which this holds, it follows
that if σ ∈ SS→T for some T ∈ P we have σ = σ1 ◦σ2 for unique σ1 ∈ Sk1,...,km and
σ2 ∈ Sk1|···|km . Now, if σ ∈ Sk then σ ∈ SS→T for T = σ−1(S), and so the result holds. �

Exercises

4.1.1 Do the following;
(a) prove Proposition 4.1.6;
(b) state which of the statements in Proposition 4.1.6 holds for semigroups;
(c) state which of the statements in Proposition 4.1.6 holds for monoids.

4.1.2 Let M be a monoid for which ab = ba for all a, b ∈ M, and let m1, . . . ,mk ∈ M be
elements for which there exists no inverse. Show that there is also no inverse
for m1 · · ·mk.

4.1.3 Let G be a group and let a, b, c ∈ G.
(a) Show that if ab = ac then b = c.
(b) Show that if ac = bc then a = b.

4.1.4 Let G and H be groups. Show that, if φ : G→ H is an isomorphism, then φ−1

is a homomorphism, and so also an isomorphism.
4.1.5 Prove Proposition 4.1.10.
4.1.6 Show that the following sets are subgroups ofRwith the group operation of

addition:
(a) Z;
(b) Z(∆) = { jδ | j ∈ Z};
(c) Q.
The next two parts of this problem suppose that you know something about
polynomials; we consider these in detail in Section ??. In any case, you
should also show that the following sets are subgroups of R with the group
operation of addition.
(d) the set Q̄ ∩R of real algebraic numbers (recall that z ∈ C is an algebraic

number if there exists a polynomial P ∈ Z[ξ] (i.e., one with integer
coefficients) for which P(z) = 0, and we denote the set of algebraic
numbers by Q̄);

(e) the set K ∩ R of real algebraic integers (recall that z ∈ C is an algebraic
integer if there exists a monic polynomial P ∈ Z[ξ] (i.e., one with integer
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coefficients, and with the highest degree coefficient being 1) for which
P(z) = 0, and we denote the set of algebraic integers by K̄).

4.1.7 Show that the subsets
(a) x0 +Q = {x0 + q | q ∈ Q} for x0 ∈ R and
(b) Z(x0,∆) = {x0 + k∆ | k ∈ Z} for x0 ∈ R

of R are semigroups with the binary operation

(x0 + y1) + (x0 + y2) = x0 + y1 + y2.

Answer the following questions.
(c) Show that x0 + Q = Q if and only if x0 ∈ Q and that Z(x0,∆) = Z(∆) if

and only if x0 ∈ Z(∆).
(d) Suppose that the binary operations on the semigroups x0+Q andZ(x0,∆)

are as defined above. Show that the semigroup is a subgroup ofR if and
only if x0 = 0.

4.1.8 Show that N is a normal subgroup of G if and only if gng−1
∈ N for all g ∈ G

and n ∈ N.
4.1.9 Let G and H be groups and let φ : G → H be an epimorphism. Show that

the map φ0 : G/ker(φ)→ H defined by φ0(g ker(φ)) = φ(g) is a well-defined
isomorphism.

In the following exercise you will use the definition that a transposition σ ∈ Sk is
adjacent if it has the form σ = ( j, j + 1) for some j ∈ {1, . . . , k − 1}. •

4.1.10 Show that any permutation σ ∈ Sk is a finite product of adjacent transposi-
tions.

4.1.11 Show that the only permutation that is a cycle of length 1 is the identity
map.

4.1.12 Show that if σ1, σ2 ∈ Sk are disjoint then σ1 ◦σ2 = σ2 ◦σ1.
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Section 4.2

Fields

In this section we consider a special sort of ring, one whose nonzero elements
are units. These special rings, called fields, are important to us because they form
the backdrop for linear algebra, and as such are distinguished in the set of rings.

Do I need to read this section? Readers who are familiar with the basic arith-
metic properties of real and numbers can probably omit reading this section. Cer-
tain of the ideas we discuss here will be important in our discussion of polynomials
in Section ??, and so a reader wishing to learn about polynomials might benefit
from first understanding fields in the degree of generality we present them in this
section. •

4.2.1 Definitions and basic properties

The definition of a field proceeds easily once one has on hand the notion of a
ring. However, in our definition we repeat the basic axiomatic structure so a reader
will not have to refer back to Definition ??.

4.2.1 Definition A division ring is a unit ring in which every nonzero element is a unit,
and a field is a commutative division ring. Thus a field is a set F with two binary
operations, (a1, a2) 7→ a1+a2 and (a1, a2) 7→ a1 ·a2, called addition and multiplication,
respectively, and which together satisfy the following rules:

(i) (a1 + a2) + a3 = a1 + (a2 + a3), a1, a2, a3 ∈ F (associativity of addition);
(ii) a1 + a2 = a2 + a1, a1, a2 ∈ F (commutativity of addition);
(iii) there exists 0F ∈ F such that a + 0F = a, a ∈ F (additive identity);
(iv) for a ∈ F, there exists −a ∈ F such that a + (−a) = 0F (additive inverse);
(v) (a1 · a2) · a3 = a1 · (a2 · a3), a1, a2, a3 ∈ F (associativity of multiplication);
(vi) a1 · a2 = a2 · a1, a1, a2 ∈ F (commutativity of multiplication);
(vii) a1 · (a2 + a3) = (a1 · a2) + (a1 · a3), a1, a2, a3 ∈ F (left distributivity);
(viii) there exists 1F ∈ F such that 1F · a = a, a ∈ F (multiplicative identity);
(ix) for a ∈ F, there exists a−1

∈ F such that a−1
· a = 1F (multiplicative inverse);

(x) (a1 + a2) · a3 = (a1 · a3) + (a2 · a3), a1, a2, a3 ∈ F (right distributivity). •

The following result gives some properties of fields that follow from the defini-
tions or which follow from general properties of rings.

4.2.2 Proposition (Basic properties of fields) Let F be a field and denote F∗ = F \ {0F}.
Then the following statements hold:

(i) F∗, equipped with the binary operation of multiplication, is a group;
(ii) F is an integral domain;
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(iii) F is a Euclidean domain;
(iv) F is a principal ideal domain;
(v) F is a unique factorisation domain.

4.2.3 Remark (Fields as unique factorisation domains) It is worth commenting on
the nature of fields as unique factorisation domains. The definition of a unique fac-
torisation domain requires that one be able to factor nonzero nonunits as products
of irreducibles. However, in fields there are neither any nonzero nonunits, nor any
irreducibles. Therefore, fields are vacuous unique factorisation domains. •

Let us give some examples of fields.

4.2.4 Examples (Fields)
1. Z is not a field since the only units are −1 and 1.
2. Q is a field.
3. R is a field.
4. The ring Zk is a field if and only if k is prime. This follows from our discussion

in Example ??–?? of the units in Zk. However, let us repeat the argument here,
using Bézout’s Identity in a coherent manner. We rely on the fact that Z is a
Euclidean domain (Theorem ??), and so a principal ideal domain (Theorem ??),
and so a unique factorisation domain (Theorem ??).
Suppose that k is prime and let j ∈ {1, . . . , k − 1}. Then 1 is a greatest common
divisor for { j, k}, and by Corollary ?? this means that there exists l,m ∈ Z such
that l j + mk = 1. Therefore, ( j + kZ)(l + kZ) = l j + kZ = 1 + kZ, and so j + kZ is
a unit.
Now suppose that Zk is a field and let j ∈ {1, . . . , k − 1}. Then there exists
l ∈ {1, . . . , k−1} such that ( j+kZ)(l+kZ) = 1+kZ. Therefore, jl+mk = 1 for some
m ∈ Z, and by Corollary ?? we can conclude that j and k are relatively prime.
Since this must hold for every j ∈ {1, . . . , k − 1}, it follows from Proposition ??
that k is prime. •

4.2.2 Fraction fields

Corresponding to a commutative unit ring is a natural field given by “fractions”
in R. The construction here strongly resembles the construction of the rational
numbers from the integers, so readers may wish to review Section 2.1.1.

4.2.5 Definition (Fraction field) Let R be an integral domain and define an equivalence
relation ∼ in R × (R \ {0R}) by

(r, s) ∼ (r′, s′) ⇐⇒ rs′ − r′s = 0R

(the reader may verify in Exercise 4.2.1 that ∼ is indeed an equivalence relation).
The set of equivalence classes under this equivalence relation is the fraction field
of R, and is denoted by FR. The equivalence class of (r, s) is denoted by r

s . •

Let us show that the name fraction field is justified.



305 4 Algebraic structures 2016/11/26

4.2.6 Theorem (The fraction field is a field) If R is an integral domain, then FR is a field
when equipped with the binary operations of addition and multiplication defined by

r1

s2
+

r2

s2
=

r1s2 + r2s1

s1s1
,

r1

s1
·

r1 · r2

s1 · s2
.

Moreover, the map r 7→ r
1R

is a ring monomorphism from R to FR.
Proof If one defines the zero element in the field to be 0R

1R
, the unity element to be 1R

1R
,

the additive inverse of r
s to be −r

s , and the multiplicative inverse of r
s to be s

r , then it is a
matter of tediously checking the conditions of Definition 4.2.1 to see that FR is a field.
The final assertion is also easily checked. We leave the details of this to the reader as
Exercise 4.2.2. �

The only interesting example of a fraction field that we have encountered thus
is the field Q which is obviously the fraction field of Z. In Section ?? we will
encounter the field of rational functions that is associated with a polynomial ring.

4.2.3 Subfields, field homomorphisms, and characteristic

All of the ideas in this section have been discussed in the more general setting
of rings in Section ??. Therefore, we restrict ourselves to making the (obvious)
definitions and pointing out the special features arising when one restricts attention
to fields.

Since fields are also rings, the following definition is the obvious one.

4.2.7 Definition (Subfield) A nonempty subset K of a field F is a subfield if K is a subring
of the ring F that (1) contains 1F and (2) contains a−1 for every a ∈ K \ {0F}. •

Of course, just as in Definition ??, a subset K ⊆ F is a subfield if and only
if (1) a1 + a2 ∈ K for all a1, a2 ∈ K, (2) a1 · a2 ∈ K for all a1, a2 ∈ K, (3) −a ∈ K for all
a ∈ K, (4) 1F ∈ K, and (4) a−1

∈ K for all nonzero a ∈ K. Note that we do require that
1F be an element of a subfield so as to ensure that subfields are actually fields (see
Exercises 4.2.3 and 4.2.4).

Note that we have not made special mention of ideals which were so important
to our characterisations of rings. The reason for this is that ideals for fields are
simply not very interesting, as the following result suggests.

4.2.8 Proposition (Ideals of fields) If R is a commutative unit ring with more than one
element, then the following statements are equivalent:

(i) R is a field;
(ii) {0R} is a maximal ideal of R;
(iii) if I is an ideal of R, then either I = {0R} or I = R.

Proof (i) =⇒ (ii) Suppose that I is an ideal of R for which {0R} ⊆ I. If {0R} , I then let
a ∈ I \ {0R}. For any r ∈ R we then have r = (ra−1)a, meaning that r ∈ I. Thus I = R, and
so {0R} is maximal.

(ii) =⇒ (iii) This follows immediately by the definition of maximal ideal.
(iii) =⇒ (i) Let r ∈ R \ {0R} and consider the ideal (r). Since (r) , {0R}we must have

(r) = R. In particular, 1F = rs for some s ∈ R, and so r is a unit. �
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The interesting relationship between fields and ideals, then, does not come from
considering ideals of fields. However, there is an interesting connection of fields
to ideals. This connection, besides being of interest to us in Section ??, gives some
additional insight to the notion of maximal ideals. The result mirrors that for prime
ideals given as Theorem ??.

4.2.9 Theorem (Quotients by maximal ideals are fields, and vice versa) If R is a
commutative unit ring with more than one element and if I ⊆ R is an ideal, then the
following two statements are equivalent:

(i) I is a maximal ideal;
(ii) R/I is a field.

Proof Denote by πI : R → R/I the canonical projection. Suppose that I is a maximal
ideal and let J ⊆ R/I be an ideal. We claim that

J̃ = {r ∈ R | πI(r) ∈ J}

is an ideal in R. Indeed, let r1, r2 ∈ J̃ and note that πI(r1 − r2) = πI(r1) − πI(r2) ∈ J since
πI is a ring homomorphism and since J is an ideal. Thus r1 − r2 ∈ J̃. Now let r ∈ J̃ and
s ∈ R and note that πI(sr) = πI(s)πI(r) ∈ J, again since πI is a ring homomorphism and
since J is an ideal. Thus J̃ is an ideal. Clearly I ⊆ J̃ so that either J̃ = I or J̃ = R. In the
first case J = {0R + I} and in the second case J = R/I. Thus the only ideals of R/I are
{0R + I} and R/I. That R/I is a field follows from Proposition 4.2.8.

Now suppose that R/I is a field and let J be an ideal of R for which I ⊆ J. We
claim that πI(J) is an ideal of R/I. Indeed, let r1 + I, r2 + I ∈ πI(J). Then r1, r2 ∈ J and so
r1 − r2 ∈ J, giving (r1 − r2) + I ∈ πI(J). If r + I ∈ πI(J) and if s + I ∈ R/I, then r ∈ J and so
sr ∈ J. Then sr+ I ∈ πI(J), thus showing that πI(J) is indeed an ideal. Since R/I is a field,
by Proposition 4.2.8 we may conclude that either πI(J) = {0R + I} or that πI(J) = R/I.
In the first case we have J ⊆ I and hence J = I, and in the second case we have J = R.
Thus I is maximal. �

The definition of a homomorphism of fields follows from the corresponding
definition for rings.

4.2.10 Definition (Field homomorphism, epimorphism, monomorphism, and iso-
morphism) For fields F and K, a mapφ : F→ K is a field homomorphism (resp. epi-
morphism, monomorphism, isomorphism) if it is a homomorphism (resp. epimor-
phism, monomorphism, isomorphism) of rings. If there exists an isomorphism
from F to K, then F and K are isomorphic. •

The definitions of kernel and image for field homomorphisms are then special
cases of the corresponding definitions for rings, and the corresponding properties
also follow, just as for rings.

For fields one adopts the notion of characteristic from rings. Thus a field has
characteristic k if it has characteristic k as a ring. The next result gives the analogue
of Proposition ?? for fields.
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4.2.11 Proposition (Property of fields with given characteristic) If F is a field then the
following statements hold:

(i) if F has characteristic zero then there exists a subfield K of F that is isomorphic toQ;
(ii) if F has characteristic k ∈ Z>0 then k is prime and there exists a subfield K of F that

is isomorphic to Zk.
Proof First suppose that F has characteristic zero. As in the proof of Proposition ??,
let φ : Z→ R be the map φ( j) = j1F, and recall that this map is a monomorphism, and
so an isomorphism fromZ to image(φ). For j1F ∈ image(φ)\{0F}, since F is a field there
exists ( j1F)−1

∈ F such that ( j1F) · ( j1F)−1 = 1F. We map then define a map φ̄ : Q → F
by φ̄( j

k ) = ( j1F)(k1F)−1. First let us show that this map is well defined. Suppose that
j1
k1

=
j2
k2

, or equivalently that j1k2 = j2k1. Then, using Proposition ??,

( j11F)(k21F) = 1F( j1(k21F)) = ( j1k2)1F = ( j2k1)1F = 1F( j2(k11F)) = ( j21F)(k11F).

Thus ( j11F)(k11F)−1 = ( j21F)(k21F)−1, and so φ̄( j1
k1

) = φ̄( j2
k2

). Now let us show that
φ̄ is a monomorphism. Suppose that ( j11F)(k11F)−1 = ( j21F)(k21F)−1 so that, using
Proposition ??, ( j1k2− j2k1)1F = 0F. Then it follows that j1

k1
=

j2
k2

since F has characteristic
zero. Next we show that φ̄ is a homomorphism. We compute, after an application of
Proposition ??,

φ̄( j1
k1

+
j2
k2

) = (( j1k2 + j2k1)1F)(k1k21F)−1 = ( j1k21F)(k1k21F)−1 + ( j2k11F)(k1k21F)−1.

Another application of Proposition ?? gives

(k11F)(k21F)φ̄( j1
k1

+
j2
k2

) = ( j1k21F) + ( j2k11F),

which in turn gives

φ̄( j1
k1

+
j2
k2

) = (k11F)−1(k21F)(( j1k21F) + ( j2k11F)) = ( j11F)(k11F)−1 + ( j21F)(k21F)−1,

or φ̄( j1
k1

+
j2
k2

) = φ̄( j1
k1

) + φ̄( j2
k2

). We also have

φ̄( j1
k1

j2
k2

) = ( j1 j21F)(k1k21F)−1,

which gives, in turn,
(k11F)(k21F)φ̄( j1

k1

j2
k2

) = ( j11F)( j21F)

and
φ̄( j1

k1

j2
k2

) = ( j11F)(k11F)−1( j21F)(k21F)−1,

or φ̄( j1
k1

j2
k2

) = φ̄( j1
k1

)φ̄( j2
k2

). Thus image(φ̄) is a subfield of F isomorphic to Q by the
isomorphism φ̄.

For the second part of the result, suppose that k = k1k2 for k1, k2 ∈ {2, . . . , k − 1}.
Then, if F has characteristic k we have

0 = k1F = (k1k2)1F = (k11F)(k21F).

Since F is an integral domain this means, by Exercise ??, that either k11F = 0 or k21F = 0.
This contradicts the fact that F has characteristic k, and so it must not be possible to
factor k as a product of positive integers in {2, . . . , k − 1}. Thus k is prime. That F
contains a subfield that is isomorphic to Zk follows from Proposition ??. �
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We note that the construction in the proof of a subfield K isomorphic to Q or
Zk is explicit, and is by construction the smallest subfield of F. This subfield has a
name.

4.2.12 Definition (Prime field) For a field F, the smallest subfield of F is the prime field
of F and is denoted by F0. •

Exercises

4.2.1 Show that the relation ∼ of Definition 4.2.5 is an equivalence relation.
4.2.2 Prove Theorem 4.2.6.
4.2.3 Give a subring of R that is not a subfield.
4.2.4 Show that, if K is a subfield of F, then K is a field using the binary operations

of addition and multiplication of F, restricted to K.
4.2.5 Let F be a field with K ⊆ F. Show that K is a subfield if and only if

1. 1F ∈ K,
2. a − b ∈ K for each a, b ∈ K, and
3. ab−1

∈ K for each a, b ∈ K with b , 0F.
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Section 4.3

Vector spaces

One of the more important structures that we will use at a fairly high degree of
generality is that of a vector space. As with almost everything we have encountered
in this chapter, a vector space is a set equipped with certain operations. In the case
of vector spaces, one of these operations melds the vector space together with
another algebraic structure, in this case a field. A typical first encounter with
vector spaces deals primarily with the so-called finite-dimensional case. In this
case, a great deal, indeed, pretty much everything, can be said about the structure
of these vector spaces. However, in these volumes we shall also encounter so-called
infinite-dimensional vector spaces. A study of the structure of these gets rather
more detailed than the finite-dimensional case. In this section we deal only with
algebraic matters. Important additional structure in the form of a topology is the
topic of Chapter ??.

Do I need to read this section? If you are not already familiar with the idea of
an abstract vector space, then you need to read this section. If you are, then it
can be bypassed, and perhaps referred to as needed. Parts of this section are also
good ones for readers looking for simple proofs that illustrate certain techniques
for proving things. These ceases to become true when we discuss bases, since we
take an abstract approach motivated by the fact that many of the vector spaces we
deal with in these volumes are infinite-dimensional. •

4.3.1 Definitions and basic properties

Throughout this section we let F be a general field, unless otherwise stated.
The fields of most interest to us will be R (see Section 2.1) and C (see Section ??).
However, most constructions done with vector spaces are done just as conveniently
for general fields as for specific ones.

4.3.1 Definition (Vector space) Let F be a field. A vector space over F, or an F-vector
space, is a nonempty set V with two operations: (1) vector addition, denoted
by V × V 3 (v1, v2) 7→ v1 + v2 ∈ V, and (2) scalar multiplication, denoted by
F × V(a, v) 7→ av ∈ V. Vector addition and scalar multiplication must satisfy the
following rules:

(i) v1 + v2 = v2 + v1, v1, v2 ∈ V (commutativity);
(ii) v1 + (v2 + v3) = (v1 + v2) + v3, v1, v2, v3 ∈ V (associativity);
(iii) there exists an vector 0V ∈ V with the property that v + 0V = v for every v ∈ V

(zero vector);
(iv) for every v ∈ V there exists a vector −v ∈ V such that v + (−v) = 0V (negative

vector);
(v) a(bv) = (ab)v, a, b ∈ F, v ∈ V (associativity);
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(vi) 1Fv = v, v ∈ V;
(vii) a(v1 + v2) = av1 + av2, a ∈ F, v1, v2 ∈ V (distributivity);
(viii) (a1 + a2)v = a1v + a2v, a1, a2 ∈ F, v ∈ V (distributivity again).
A vector in a vector space V is an element of V. •

We have already encountered some examples of vector spaces. Let us indicate
what some of these are, as well as introduce some important new examples of
vector spaces. The verifications that the stated sets are vector spaces is routine, and
we leave this to the reader in the exercises.

4.3.2 Examples (Vector spaces)
1. Consider a set 0V = {v} with one element. There are no choices for the F-vector

space structure in this case. We must have v + v = v, av = v for every a ∈ F,
−v = v, and 0V = v. One can then verify that {v} is then indeed an F-vector
space. This vector space is called the trivial vector space, and is sometimes
denoted by {0}, reflecting the fact that the only vector in the vector space is the
zero vector.

2. Let Fn denote the n-fold Cartesian product of F with itself. Let us denote a
typical element of Fn by (v1, . . . , vn). We define vector addition in Fn by

(u1, . . . ,un) + (v1, . . . , vn) = (u1 + v1, . . . ,un + vn)

and we define scalar multiplication in Fn by

a(v1, . . . , vn) = (av1, . . . , avn).

The vector spaces Rn and Cn, over R and C, respectively, will be of particular
importance to us. The reader who has no previous knowledge of vector spaces
would be well served by spending some time understanding the geometry of
vector addition and scalar multiplication in, say, R2.

3. Let us denote by F∞ the set of sequences in F. Thus an element of F∞ is a
sequence (a j) j∈Z>0 with a j ∈ F, j ∈ Z>0. We define vector addition and scalar
multiplication by

(a j) j∈Z>0 + (b j) j∈Z>0 = (a j + b j) j∈Z>0 , a(a j) j∈Z>0 = (aa j) j∈Z>0 ,

respectively. This can be verified to make F∞ into an F-vector space. It is
tempting to think of things like F∞ = limn→∞ Fn, but one must exercise care,
since the limit needs definition. This is the realm of Chapter ??.

4. Let us denote by F∞0 the subset of F∞ consisting of sequences for which all but
a finite number of terms is zero. Vector addition and scalar multiplication are
defined for F∞0 are defined just as for F∞. It is just as straightforward to verify
that these operations make F∞0 an F-vector space.

5. If K is a field extension of F (see Definition ??) and if V is a K-vector space, then
V is also an F-vector space with the operation of vector addition being exactly
that of V as a K-vector space, and with scalar multiplication simply being the
restriction of scalar multiplication by K to F.
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6. The set F[ξ] of polynomials over F is an F-vector space. Vector addition is
addition in the usual sense of polynomials, and scalar multiplication is multi-
plication of polynomials, using the fact that F is a subring of F[ξ] consisting of
the constant polynomials.

7. Denote by Fk[ξ] the polynomials over F of degree at most k. Using the same
definitions of vector addition and scalar multiplication as were used for the
F-vector space F[ξ] in the preceding example, Fk[ξ] is an F-vector space.

8. Let S be a set and, as in Definition 1.3.1, let FS be the set of maps from S to F.
Let us define vector addition and scalar multiplication in FS by

( f + g)(x) = f (x) + g(x), (a f )(x) = a( f (x))

for f , g ∈ FS and a ∈ F. One may directly verify that these operations indeed
satisfy the conditions to make FS into an F-vector space.

9. Let I ⊆ R be an interval and let C0(I;R) denote the set of continuous R-valued
functions on I. Following the preceding example, define vector addition and
scalar multiplication in C0(I;R) by

( f + g)(x) = f (x) + g(x), (a f )(x) = a( f (x)), f , g ∈ C0(I;R), a ∈ R,

respectively. With these operations, one can verify that C0(I;R) is a R-vector
space. •

Let us now prove some elementary facts about vector spaces.

4.3.3 Proposition (Properties of vector spaces) Let F be a field and let V be an F-vector
space. The following statements hold:

(i) there exists exactly one vector 0V ∈ V such that v + 0V = v for all v ∈ V;
(ii) for each v ∈ V there exists exactly one vector −v ∈ V such that v + (−v) = 0V;
(iii) a0V = 0V for all a ∈ F;
(iv) 0Fv = 0V for each v ∈ V;
(v) a(−v) = (−a)v = −(av) for all a ∈ F and v ∈ V;
(vi) if av = 0V, then either a = 0F or v = 0V.

Proof Parts (i) and (ii) follow in the same manner as part (i) of Proposition 4.1.6.
(iii) For some v ∈ V we compute

av = a(v + 0V) = av + a0V.

Therefore,

av + (−(av)) = av + (−(av)) + a0V =⇒ 0V = 0V + a0V = a0V,

which gives the result.
(iv) For some a ∈ F we compute

av = (a + 0F)v = av + 0Fv.
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Therefore,

av + (−(av)) = av + (−(av)) + 0Fv =⇒ 0V = 0V + 0Fv = 0Fv,

giving the result.
(v) We have

0V = a0V = a(v + (−v)) = av + a(−v).

Therefore, a(−v) = −(av). Similarly,

0V = 0Fv = (a − a)v = av + (−a)v.

Therefore (−a)v = −(av).
(vi) Suppose that av = 0V. If a = 0F then there is nothing to prove. If a , 0F then

we have
0V = a−10V = a−1(av) = (a−1a)v = 1Fv = v,

which gives the result. �

In this section it will be convenient to have on hand the notion of a homomor-
phism of vector spaces. This is a topic about which we will have much to say in
Chapter ??, but here we simply give the definition.

4.3.4 Definition (Linear map) Let F be a field and let U and V be F-vector spaces. An
F-homomorphism of U and V, or equivalently an F-linear map between U and V,
is a map L : U→ V having the properties that

(i) L(u1 + u2) = L(u1) + L(u2) for every u1,u2 ∈ U and
(ii) L(au) = aL(u) for every a ∈ F and u ∈ U.

An F-homomorphism L is an F-monomorphism (resp. F-epimorphism, F-
isomorphism) if L is injective (resp. surjective, bijective). If there exists an iso-
morphism between F-vector spaces U and V, then U and V are F-isomorphic. An
F-homomorphism from V to itself is called an F-endomorphismmissing stuff of V.
The set of F-homomorphisms from U to V is denoted by HomF(U; V), and the set of
F-endomorphisms of V is denoted by EndF(V). •

We shall frequently simply call an “F-homomorphism” or an “F-linear map “
a “homomorphism” or a “linear map” when F is understood. We postpone to
Section ?? an exposition of the properties of linear maps, as well as a collection of
illustrative examples. In this section we shall principally encounter a few examples
of isomorphisms.

4.3.2 Subspaces

As with most algebraic objects, with vector spaces it is interesting to talk about
subsets that respect the structure.

4.3.5 Definition Let F be a field. A nonempty subset U of an F-vector space V is a vector
subspace, or simply a subspace, if u1 + u2 ∈ U for all u1,u2 ∈ U and if au ∈ U for all
a ∈ F and all u ∈ U. •

As we saw with subgroups and subrings, subspaces are themselves vector
spaces.
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4.3.6 Proposition (A vector subspace is a vector space) Let F be a field. A nonempty
subset U ⊆ V of an F-vector space V is a subspace if and only if U is a vector space using
the operations of vector addition and scalar multiplication in V, restricted to U.

Proof This is Exercise 4.3.11. �

Let us give some examples of subspaces. We leave the straightforward verifi-
cations of our claims as exercises.

4.3.7 Examples (Subspaces)
1. For each n ∈ Z>0, Fn can be regarded as a subspace of F∞0 by tacking on zeros to

the n-tuple in Fn to get a sequence indexed by Z>0.
2. The subset F∞0 of F∞ is a subspace.
3. For each k ∈ Z≥0, Fk[ξ] is a subspace of F[ξ]. However, the set of polynomials

of degree k is not a subspace of F[ξ]. Why?
4. In Exercise 4.3.10 the reader can verify that, for r ∈ Z>0, the set Cr(I;R) of

r-times continuously differentiable R-valued functions defined on an interval I
is a R-vector space. In fact, it is a subspace of C0(I;R). •

Analogously with homomorphisms of groups and rings, there are two natural
subspaces associated with a homomorphism of vector spaces.

4.3.8 Definition (Kernel and image of linear map) Let F be a vector space, let U and V
be F-vector spaces, and let L ∈ HomF(U; V).

(i) The image of L is image(L) = {L(u) | u ∈ U}.
(ii) The kernel of L is ker(L) = {u ∈ U | L(u) = 0V}. •

It is straightforward to verify that the image and kernel are subspaces.

4.3.9 Proposition (Kernel and image are subspaces) Let F be a field, let U and V be
F-vector spaces, and let L ∈ HomF(U; V). Then image(L) and ker(L) are subspaces of V
and U, respectively.

Proof This is Exercise 4.3.16. �

An important sort of subspace arises from taking sums of vectors with arbitrary
coefficients in the field over which the vector space is defined. To make this more
formal, we have the following definition.

4.3.10 Definition (Linear combination) Let F be a field and let V be an F-vector space. If
S ⊆ V is nonempty, a linear combination from S is an element of V of the form

c1v1 + · · · + ckvk,

where c1, . . . , ck ∈ F and v1, . . . , vk ∈ S. We call c1, . . . , ck the coefficients in the linear
combination. •

The important feature of the set of linear combinations from a subset of a vector
space is that they form a subspace.
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4.3.11 Proposition (The set of linear combinations is a subspace) If F is a field, if V is
an F-vector space, and if S ⊆ V is nonempty, then the set of linear combinations from S is
a subspace of V. Moreover, this subspace is the smallest subspace of V containing S.

Proof Let
B = b1u1 + · · · + blvl, C = c1v1 + · · · + ckvk

be linear combinations from S and let a ∈ F. Then

B + C = b1u1 + · · · + blul + c1v1 + · · · + ckvk

is immediately a linear combination from S with vectors u1, . . . ,ul, v1, . . . , vk and coef-
ficients b1, . . . , bl, c1, . . . , ck. Also

aC = (ac1)v1 + · · · + (ack)vk

is a linear combination from S with vectors v1, . . . , vk and coefficients ac1, . . . , ack. Thus
B + C and aC are linear combinations from S.

Now let U be a subspace of V containing S. If c1v1 + · · ·+ckvk is a linear combination
from S then, since S ⊆ U and since U is a subspace, c1v1 + · · · + ckvk ∈ U. Therefore, U
contains the set of linear combinations from S, and hence follows the second assertion
of the proposition. �

Based on the preceding result we have the following definition. Note that the
definition is “geometric,” whereas the proposition gives a more concrete version
in that the explicit form of elements of the subspace are given.

4.3.12 Definition (Subspace generated by a set) If F is a field, if V is an F-vector space,
and if S ⊆ V is nonempty, then the subspace generated by S is the smallest subspace
of V containing S. This subspace is denoted by spanF(S). •

We close this section with a definition of a “shifted subspace” which will come
up in our discussion in Sections ?? and ??.

4.3.13 Definition (Affine subspace) Let F be a field and let V be an F-vector space. A
subset A ⊆ V is an affine subspace if there exists v0 ∈ V and a subspace U of V such
that

A = {v0 + u | u ∈ U}.

The subspace U is the linear part of A. •

Intuitively, an affine subspace is a subspace U shifted by the vector v0. Let us
give some simple examples of affine subspaces.

4.3.14 Examples (Affine subspaces)
1. Every subspace is also an affine subspace “shifted” by the zero vector.
2. If U is a subspace of a vector space V and if u0 ∈ U, then the affine subspace

{u0 + u | u ∈ U}

is simply the subspace U. That is to say, if we shift a subspace by an element of
itself, the affine subspace is simply a subspace.
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3. Let V = R2. The vertical line

{(1, 0) + (0, y) | y ∈ R}

through the point (1, 0) is an affine subspace. •

4.3.3 Linear independence

The notion of linear independence lies at the heart of understanding much of
the theory of vector spaces, and the associated topic of linear algebra which we
treat in detail in Chapter ??. The precise definition we give for linear independence
is one that can be difficult to understand on a first encounter. However, it is
important to understand that this definition has, in actuality, been carefully crafted
to be maximally useful; the definition in its precise form is used again and again in
proofs in this section and in Chapter ??.

4.3.15 Definition (Linearly independent) Let F be a field and let V be an F-vector space.
(i) A finite family (v1, . . . , vk) of vectors in V is linearly independent if the equality

c1v1 + · · · + ckvk = 0V, c1, . . . , ck ∈ F,

is satisfied only if c1 = · · · = ck = 0F.
(ii) A finite set S = {x j | j ∈ {1, . . . , k}} is linearly independent if the finite family

corresponding to the set is linearly independent.
(iii) An nonempty family (va)a∈A of vectors in V is linearly independent if every

finite subfamily of (va)a∈A is linearly independent.
(iv) A nonempty subset S ⊆ V is linearly independent if every nonempty finite

subset of S is linearly independent.
(v) A nonempty family (va)a∈A if vectors in V is linearly dependent if it is not

linearly independent.
(vi) A nonempty subset S ⊆ V is linearly dependent if it is not linearly indepen-

dent. •

The definition we give is not quite the usual one since we define linear inde-
pendence and linear dependence for both sets of vectors and families of vectors.
Corresponding to any set S ⊆ V of vectors is a family of vectors in a natural
way: (v)v∈S. Thus one can, in actuality, get away with only defining linear in-
dependence and linear dependence for families of vectors. However, since most
references will consider sets of vectors, we give both flavours of the definition.
Let us see with a simple example that only dealing with sets of vectors may not
suffice.

4.3.16 Example (Sets of vectors versus families of vectors) Let F be a field and let
V = F2. Define v1 = (1F, 0F) and v2 = (1F, 0F). Then the family (v1, v2) is linearly
dependent since 1Fv1 − 1Fv2 = 0V. However, since {v1, v2} = {(1F, 0F}, this set is, in
fact, linearly independent. •
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As can easily be gleaned from this example, the distinction between linearly
independent sets and linearly independent families only arises when the family
contains the same vector in two places. We shall frequently talk about sets rather
than families, accepting that in doing so we disallow the possibility of considering
that two vectors in the set might be the same.

There is a potential inconsistency with the above definition of a general linearly
independent set. Specifically, if S = (v1, . . . , vk) is a finite family of vectors, then
Definition 4.3.15 proposes two definitions of linear independence, one from part (i)
and one from part (iv). To resolve this we prove the following result.

4.3.17 Proposition (Subsets of finite linearly independent sets are linearly indepen-
dent) Let F be a field, let V be an F-vector space, and let (v1, . . . ,vk) be linearly independent
according to part (i) of Definition 4.3.15. Then any nonempty subfamily of (v1, . . . ,vk) is
linearly independent.

Proof Let (v j1 , . . . , v jl) be a nonempty subfamily of (v1, . . . , vk) and suppose that

c1v j1 + · · · + clv jl = 0V.

Let { jl+1, . . . , jk} be a distinct set of indices for which {1, . . . , k} = { j1, . . . , jl, jl+1, jk}. Then

c1v j1 + · · · + clv jl + 0Fv jl+1 + · · · + 0Fv jk = 0V.

Since the set (v1, . . . , vk) is linearly independent, it follows that c1 = · · · = cl = 0F, giving
the result. �

Let us give some examples of linearly independent and linearly dependent sets
to illustrate the ideas.

4.3.18 Examples (Linear independence)
1. In the F-vector space Fn consider the n vectors e1, . . . , en defined by

e j = (0, . . . , 0, 1F︸︷︷︸
jth position

, 0, . . . , 0).

We claim that these vectors are linearly independent. Indeed, suppose that

c1e1 + · · · + cnen = 0Fn

for c1, . . . , cn ∈ F. Using the definition of vector addition and scalar multiplica-
tion in Fn this means that

(c1, . . . , cn) = (0, . . . , 0),

which immediately gives c1 = · · · = cn = 0F. This gives linear independence, as
desired.

2. In the F-vector space F∞0 define vectors e j, j ∈ Z>0, by asking that e j be the
sequence consisting of zeros except for the jth term in the sequence, which is 1F.
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We claim that the family (e j) j∈Z>0 is linearly independent. Indeed. let e j1 , . . . , e jk
be a finite subset of (e j) j∈Z>0 . Then suppose that

c1e j1 + · · · + cke jk = 0F∞0

for c1, . . . , ck ∈ F. Using the definition of vector addition and scalar multipli-
cation in F∞0 , the linear combination c1e j1 + · · · + cke jk is equal to the sequence
(al) j∈Z>0 in F given by

al =

cr, l = jr for some r ∈ {1, . . . , k},
0F, otherwise.

Clearly this sequence is equal to zero if and only if c1 = · · · = ck = 0F, thus
showing that (e j) j∈Z>0 is linearly independent.

3. Since F∞0 is a subspace of F∞, it follows easily that the family (e j) j∈Z>0 is linearly
independent in F∞.missing stuff

4. In the F-vector space Fk[ξ] of polynomials of degree at most k the family
(1, ξ, . . . , ξk) is linearly independent. Indeed, suppose that

c0 + c1ξ + · · · + ckξ
k = 0F[ξ] (4.1)

for c0, c1, . . . , ck ∈ F. One should now recall the definition of F[ξ] as sequences
in F for which a finite number of elements in the sequence are nonzero. The
elements in the sequence, recall, are simply the coefficients of the polynomial.
Therefore, a polynomial is the zero polynomial if and only if all of its coefficients
are zero. In particular, (4.1) holds if and only if c0 = c1 = · · · = ck = 0F.

5. In the vector space F[ξ] we claim that the set (ξ j) j∈Z≥0 is linearly independent. To
see why this is so, choose a finite subfamily (ξ j1 , . . . , ξ jk) from the family (ξ j) j∈Z≥0

and suppose that
c1ξ

j1 + · · · + ckξ
jk = 0F[ξ] (4.2)

for some c1, . . . , ck ∈ F. As we argued in the previous example, a polynomial is
zero if and only if all of its coefficients is zero. Therefore, (4.2) holds if and only
if c1 = · · · = ck = 0F, thus showing linear independence of the family (ξ j) j∈Z≥0 .

6. In the R-vector space C0([0, π];R) define vectors (i.e., functions) cos j : I → R,
j ∈ Z≥0, and sin j : I→ R, j ∈ Z>0, by

cos j = cos( jx), sin j(x) = sin( jx).

We claim that the family (cos j) j∈Z≥0 ∪ (sin j) j∈Z>0 is linearly independent. To see
this, suppose that a finite linear combination of these vectors vanishes:

a1 cos j1 + · · · + al cos jl +b1 sink1 + · · · + bm sinkm = 0C0([0,2π];R), (4.3)
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for a1, . . . , al, b1, . . . , bm ∈ R. Now multiply (4.3) by the function cos jr for some
r ∈ {1, . . . , l} and integrate both sides of the equation over the interval [0, 2π]:

a1

∫ 2π

0
cos j1(x) cos jr(x) dx + · · · + al

∫ 2π

0
cos jl(x) cos jr(x) dx

+ b1

∫ 2π

0
sink1(x) cos jr(x) dx + · · · + bm

∫ 2π

0
sinkm(x) cos jr(x) dx = 0. (4.4)

Now we recall the following trigonometric identities

cos(a) cos(b) = 1
2 (cos(a − b) + cos(a + b)), cos(a) sin(b) = 1

2 (sin(a + b) − sin(a − b)),

sin(a) sin(b) = 1
2 (cos(a − b) − cos(a + b)),

cos2(a) = 1
2 (1 + cos(2a)), sin2(a) = 1

2 (1 − cos(2a),

for a, b ∈ R. The above identities are easily proved using Euler’s formula
eix = cos(x)+ i sin(x) and properties of the exponential function. We recommend
that the reader learn these derivations and then overwrite that portion of their
memory used for storing trigonometric identities with something useful like,
say, sports statistics or lines from their favourite movies. The above trigonomet-
ric identities can now be used, along with the derivative (and hence integral,
by the Fundamental Theorem of Calculus) rules for trigonometric functions to
derive the following identities for j, k ∈ Z>0:∫ 2π

0
cos( jx) cos(kx) dx =

0, j , k,
π, j = k,∫ 2π

0
cos( jx) sin(kx) dx = 0,∫ 2π

0
sin( jx) sin(kx) dx =

0, j , k,
π, j = k,∫ 2π

0
cos(0x) cos(0x) dx = 2π,∫ 2π

0
cos(0x) cos(kx) dx = 0,∫ 2π

0
cos(0x) sin(kx) dx = 0.

Applying these identities to (4.4) gives πar = 0 if jr , 0 and gives 2πar = 0
if jr = 0. In either case we deduce that ar = 0, r ∈ {1, . . . , l}. In like manner,
multiplying (4.3) by sinks , s ∈ {1, . . . ,m}, and integrating over the interval [0, 2π]
gives bs = 0, s ∈ {1, . . . ,m}. This shows that the coefficients in the linear combi-
nation (4.3) are zero, and, therefore, that the set (cos j) j∈Z≥0 ∪ (sin j) j∈Z>0 is indeed
linearly independent. •
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The reader will hopefully have noticed strong similarities between Examples 1
and 4 and between Examples 2 and 5. This is not an accident, but is due to the fact
that the vector spaces Fk+1 and Fk[ξ] are isomorphic and that the vector spaces F∞0
and F[ξ] are isomorphic. The reader is asked to explicitly write isomorphisms of
these vector spaces in Exercise 4.3.21.

Let us now prove some facts about linearly independent and linearly dependent
sets.

4.3.19 Proposition (Properties of linearly (in)dependent sets) Let F be a field, let V be an
F-vector space, and let S ⊆ V be nonempty. Then the following statements hold:

(i) if S = {v} for some v ∈ V, then S is linearly independent if and only if v , 0V;
(ii) if 0V ∈ S then S is linearly dependent;
(iii) if S is linearly independent and if T ⊆ S is nonempty, then T is linearly independent;
(iv) if S is linearly dependent and if T ⊆ V, then S ∪ T is linearly dependent;
(v) if S is linearly independent, if {v1, . . . ,vk} ⊆ S, and if

a1v1 + · · · + akvk = b1v1 + · · · + bkvk

for a1, . . . , ak, b1, . . . , bk ∈ F, then aj = bj, j ∈ {1, . . . ,k};
(vi) if S is linearly independent and if v < spanF(S), then S∪{v} is linearly independent.

Proof (i) Note that c0V = 0V if and only if c = 0F by Proposition 4.3.3(vi). This is
exactly equivalent to what we are trying to prove.

(ii) If 0V ∈ S then the finite subset {0V} is linearly dependent by part (i).
(iii) Let {v1, . . . , vk} ⊆ T ⊆ S and suppose that

c1v1 + . . . ckvk = 0V

for c1, . . . , ck ∈ F. Since {v1, . . . , vk} ⊆ S and since S is linearly independent, it follows
that c1 = · · · = ck = 0F.

(iv) Since S is linearly dependent there exists vectors {v1, . . . , vk} ⊆ S and c1, . . . , ck ∈

F not all zero such that
c1v1 + · · · + ckvk = 0V.

Since {v1, . . . , vk} ⊆ S ∪ T, it follows that S ∪ T is linearly dependent.
(v) If

a1v1 + · · · + akvk = b1v1 + · · · + akvk,

then
(a1 − b1)v1 + · · · + (ak − bk)vk = 0V.

Since the set {v1, . . . , vk} is linearly independent, it follows that a j − b j = 0F for j ∈
{1, . . . , k}, which gives the result.

(vi) Let {v1, . . . , vk} ⊆ S ∪ {v}. If {v1, . . . , vk} ⊆ S then the set is immediately linearly
independent. If {v1, . . . , vk} 1 S, then we may without loss of generality suppose that
vk = v. Suppose that

c1v1 + · · · + ck−1vk−1 + ckvk = 0V.

First suppose that ck , 0F. Then

vk = −c−1
k c1v1 + · · · + c−1

k ck−1vk−1,
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which contradicts the fact that vk < spanF(S). Thus we must have ck = 0F. However,
since S is linearly independent, it immediately follows that c1 = · · · = ck−1 = 0F. Thus
S ∪ {v} is linearly independent. �

4.3.4 Basis and dimension

The notion of the dimension of a vector space, which is derived from the con-
cept of a basis, is an important one. Of particular importance is the dichotomy
between vector spaces whose dimension is finite and those whose dimension is
infinite. Essentially, finite-dimensional vector spaces, particularly those defined
over R, behave in a manner which often correspond somehow to our intuition.
In infinite dimensions, however, our intuition can often lead us astray. And in
these volumes we will be often interested in infinite-dimensional vector spaces.
This infinite-dimensional case is complicated, and any sort of understanding will
require understanding much of Chapter ??.

For now, we get the ball rolling by introducing the idea of a basis.

4.3.20 Definition (Basis for a vector space) Let F be a field and let V be a vector space
over F. A basis for V is a subset B of V with the properties that

(i) B is linearly independent and
(ii) spanF(B) = V. •

4.3.21 Remark (Hamel1 basis) Readers who have had a first course in linear algebra
should be sure to note that we do not require a basis to be a finite set. Nonetheless,
the definition we give is probably exactly the same as the one encountered in a
typical first course. What is different is that we have defined the notion of linear
independence and the notion associated with the symbol “spanF(·)” in a general
way. Sometimes the word “basis” is reserved for finite sets of vectors, with the
notion we give being called a Hamel basis. •

Let us first prove that every vector space possesses a basis in the sense that we
have defined the notion.

4.3.22 Theorem (Every vector space possesses a basis) If F is a field and if V is an
F-vector space, then there exists a basis for V.

Proof Let C be the collection of subsets of V that are linearly independent. Such
collections exist since, for example, {v} ∈ C if v ∈ V is nonzero. Place a partial order
� on C by asking that S1 � S2 if S1 ⊆ S2. Let S ⊆ C be a totally ordered subset.
Note that ∪S∈S S is an element of C . Indeed, let {v1, . . . , vk} ⊆ ∪S∈S S. Then v j ∈ S j
for some S j ∈ S . Let j0 ∈ {1, . . . , k} be chosen such that S j0 is the largest of the
sets S1, . . . ,Sk according to the partial order �, this being possible since S is totally
ordered. Then {v1, . . . , vk} ⊆ S j0 and so {v1, . . . , vk} is linearly independent since S j0 is
linearly independent. It is also evident that ∪S∈S S is an upper bound for S . Thus
every totally ordered subset of C possesses an upper bound, and so by Zorn’s Lemma

1Georg Karl Wilhelm Hamel (1877–1954) was a German mathematician whose contributions to
mathematics were in the areas of function theory, mechanics, and the foundations of mathematics
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possesses a maximal element. Let B be such a maximal element. By construction
B is linearly independent. Let v ∈ V and suppose that v < spanF(B). Then by
Proposition 4.3.19(vi), B ∪ {v} is linearly independent and B ⊆ B{v}. This contradicts
the fact that B is maximal, and so it must hold that if v ∈ V, then v ∈ spanF(B). That
is to say, spanF(B) = V. �

One of the important properties of a basis is the following result.

4.3.23 Proposition (Unique representation of vectors in bases) If F is a field, if V is an
F-vector space, and if B is a basis for V, then, for v ∈ V there exists a unique finite subset
{v1, . . . ,vk} ⊆ B and unique nonzero coefficients c1, . . . , ck ∈ F such that

v = c1v1 + · · · + ckvk.

Proof Let v ∈ V. Since spanF(B) = V, there exists {u1, . . . ,ul} ⊆ B and a1, . . . , al ∈ F
such that

v = a1u1 + · · · + alul. (4.5)

Moreover, given the vectors {u1, . . . ,ul}, the coefficients a1, . . . , al in (4.5) are unique.
Let {v1, . . . , vk} ⊆ {u1, . . . ,ul} be these vectors for which the corresponding coefficient
in (4.5) is nonzero. Denote by c1, . . . , ck the coefficients in (4.5) corresponding to the
vectors {v1, . . . , vk}. This gives the existence part of the result.

Suppose that {v′1, . . . , v
′

k′} ⊆ B and c′1, . . . , c
′

k′ ∈ F∗ satisfy

v = c′1v′1 + · · · + c′k′v
′

k′ .

Now take {w1, . . . ,wm} to be a set of vectors such that {w1, . . . ,wm} = {v1, . . . , vk} ∪

{v′1, . . . , v
′

k′}. Note that

{v1, . . . , vk}, {v′1, . . . , v
′

k′} ⊆ {w1, . . . ,wm}.

Since {w1, . . . ,wm} ⊆ B it is linearly independent. Therefore, by Proposition 4.3.19(v),
there exists unique coefficients b1, . . . , bm ∈ F such that

v = b1w1 + · · · + bmwm.

But we also have
v = c1v1 + · · · + ckvk = c′1v′1 + · · · + c′k′v

′

k′ .

Therefore, it must hold that {v1, . . . , vk} = {v′1, . . . , v
′

k′} = {w1, . . . ,wm}, and from this the
result follows. �

One of the more useful characterisations of bases is the following result.

4.3.24 Theorem (Linear maps are uniquely determined by their values on a basis)
Let F be a field, let V be an F-vector space, and let B ⊆ V be a basis. Then, for any F-vector
space W and any map φ : B → W there exists a unique linear map Lφ ∈ HomF(V; W)
such that the diagram

B
φ //

��

W

V
Lφ

>>

commutes, where the vertical arrow is the inclusion.
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Proof Denote B = {ei}i∈I. If v ∈ V we have v =
∑

i∈I viei for vi ∈ F, i ∈ I, all but finitely
many of which are zero. Then define

Lφ(v) =
∑
i∈I

viφ(ei).

This map is linear since

Lφ(u + v) =
∑
i∈I

(ui + vi)φ(ei) =
∑
i∈I

uiφ(ei) +
∑
i∈I

viφ(ei) = Lφ(u) + Lφ(v)

and
Lφ(av) =

∑
i∈I

aviφ(ei) = a
∑
i∈I

viφ(ei) = aLφ(v),

where all manipulations make sense by virtue of the sums being finite. This gives the
existence part of the theorem.

Suppose that L ∈ HomF(V; W) is another linear map for which the diagram in
the theorem statement commutes. This implies that L(ei) = Lφ(ei) for i ∈ I. Now, if
v =

∑
i∈I viei is a finite linear combination of basis elements, then

L
(∑

i∈I

viei

)
=

∑
i∈I

viL(ei) =
∑
i∈I

viLφ(ei) = Lφ
(∑

i∈I

viei

)
,

giving L = Lφ. �

The theorem is very useful, and indeed often used, since it tells us that to define
a linear map one need only define it on each vector of a basis.

As we shall shortly see, the notion of the dimension of a vector space relies
completely on a certain property of any two bases for a vector space, namely that
they have the same cardinality.

4.3.25 Theorem (Different bases have the same size) If F is a field, if V is an F-vector
space, and if B1 and B2 are two bases for V, then card(B1) = card(B2).

Proof The proof is broken into two parts, the first for the case when one of B1 and
B2 is finite, and the second the case when both B1 and B2 are infinite.

Let us first prove the following lemma.

1 Lemma If {v1, . . . ,vn} is a basis for V then any set of n + 1 vectors in V is linearly dependent.

Proof We prove the lemma by induction on n. In the case when n = 1 we have
V = spanF(v1). Let u1,u2 ∈ V so that u1 = a1v1 and u2 = a2v1 for some a1, a2 ∈ F.
If either u1 or u2 is zero then the set {u1,u2} is immediately linearly dependent by
Proposition 4.3.19(ii). Thus we can assume that a1 and a2 are both nonzero. In this
case we have

a2u1 − a1u2 = a2(a1v1) − a1(a2v1) = 0V,

so that {u1,u2} is not linearly independent. Now suppose that the lemma holds for
n ∈ {1, . . . , k} and let {v1, . . . , vk+1} be a basis for V. Consider a set {u1, . . . ,uk+2} and write

us =

k+1∑
r=1

arsvr, s ∈ {1, . . . , k + 2}.
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First suppose that a1s = 0F for all s ∈ {1, . . . , k + 2}. It then holds that {u1, . . . ,uk+2} ⊆

spanF(v2, . . . , vk+1). By the induction hypothesis, since spanF(v2, . . . , vk+1) has basis
{v2, . . . , vk+1}, it follows that {u1, . . . ,uk+1} is linearly dependent, and so {u1, . . . ,uk+2} is
also linearly dependent by Proposition 4.3.19(iv). Thus we suppose that not all of the
coefficients a1s, s ∈ {1, . . . , k+2} is zero. For convenience, and without loss of generality,
suppose that a11 , 0F. Then

a−1
11 u1 = v1 + a−1

11 a21v2 + · · · + a−1
11 ak+1,1vk+1.

We then have

us − a−1
11 a1su1 =

k+1∑
r=2

(ars + a1sa−1
11 ar1)vr, s ∈ {2, . . . , k + 2}.

meaning that us − a−1
11 a1su1 ∈ spanF(v2, . . . , vk+1) for s ∈ {2, . . . , k + 2}. By the induction

hypothesis it follows that the set {u2 − a−1
11 a12u1, . . . ,uk+2 − a−1

11 a1,k+2u1} is linearly depen-
dent. We claim that this implies that {u1,u2, . . . ,uk+2} is linearly dependent. Indeed, let
c2, . . . , ck+2 ∈ F be not all zero and such that

c2(u2 − a−1
11 a12u1) + · · · + ck+2(uk+2 − a−1

11 a1,k+2u1) = 0V.

Then
(−c2a−1

11 a12 − · · · − ck+2a−1
11 a1,k+2)u1 + c2u2 + · · · + ck+2uk+2 = 0V.

Since not all of the coefficients c2, . . . , ck+2 are zero, it follows that {u1,u2, . . . ,uk+2} is
linearly dependent. This completes the proof. H

Now consider the case when either B1 or B2 is finite. Thus, without loss of
generality suppose that B1 = {v1, . . . , vn}. It follows that B2 can have at most n
elements. Thus B2 = {u1, . . . ,um} for m ≤ n. But, since B2 is a basis, it also holds that B1
must have at most m elements. Thus n ≤ m, and so m = n and thus card(B1) = card(B2).

Now let us turn to the general case when either or both of B1 and B2 are infinite.
For u ∈ B1 let B2(u) be the unique finite subset {v1, . . . , vk} of B2 such that

u = c1v1 + · · · + ckvk

for some c1, . . . , ck ∈ F∗. We now prove a lemma.

2 Lemma If v ∈ B2 then there exists u ∈ B1 such that v ∈ B2(u).

Proof Suppose otherwise. Thus suppose that there exists v ∈ B2 such that, for every
u ∈ B1, v < B2(u). We claim that B1 ∪ {v} is then linearly independent. Indeed, let
{v1, . . . , vk} ⊆ B1 ∪ {v}. If {v1, . . . , vk} ⊆ B1 then we immediately have that {v1, . . . , vk} is
linearly independent. So suppose that {v1, . . . , vk} 1 B1, and suppose without loss of
generality that vk = v. Let c1, . . . , ck ∈ F satisfy

c1v1 + · · · + ckvk = 0V.

If ck , 0F then
v = −c−1

k c1v1 + · · · − c−1
k ck−1vk−1,
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implying that v ∈ spanF(v1, . . . , vk−1). We can thus write v as a linear combination of
vectors from the finite subsets B2(v j), j ∈ {1, . . . , k − 1}. Let {w1, . . . ,wm} be a set of
distinct vectors with the property that

{w1, . . . ,wm} = ∪
k−1
j=1B2(v j).

Thus B2(v j) ⊆ {w1, . . . ,wm} for j ∈ {1, . . . , k − 1}. It then follows that v ∈
spanF(w1, . . . ,wm). However, since v < {w1, . . . ,wm} by our assumption that v < B2(u)
for every u ∈ B1, it follows that {v,w1, . . . ,wm} is linearly independent, which is a
contradiction. Therefore, ck = 0F.

On the other hand, if ck = 0F then it immediately follows that c1 = · · · = ck−1 = 0F
since {v1, . . . , vk−1} ⊆ B1 and since B1 is linearly independent. Therefore, B1 ∪ {v} is
indeed linearly independent. In particular, v < spanF(B1), contradicting the fact that
B1 is a basis. H

From the lemma we know that B2 = ∪u∈B1B2(u). By the definition of multiplica-
tion of cardinal numbers, and using the fact that card(Z>0) exceeds every finite cardinal
number, we have

card(B2) ≤ card(B1) card(Z>0).

By Corollary ?? it follows that card(B2) ≤ card(B1). By interchanging the rôles of B1
and B2 we can also show that card(B1) ≤ card(B2). By the Cantor–Schröder–Bernstein
Theorem, card(B1) = card(B2). �

Let us give some other useful constructions concerning bases. The proofs we
give are valid for arbitrary bases. We invite the reader to give proofs in the case of
finite bases in Exercise 4.3.18.

4.3.26 Theorem (Bases and linear independence) Let F be a field and let V be an F-vector
space. For a subset S ⊆ V, the following statements hold:

(i) if S is linearly independent, then there exists a basis B for V such that S ⊆ B;
(ii) if spanF(S) = V, then there exists a basis B for V such that B ⊆ S.

Proof (i) Let C (S) be the collection of linearly independent subsets of V which contain
S. Since S ∈ C (S), C (S) , ∅. The set C (S) can be partially ordered by inclusion. Thus
S1 � S2 if S1 ⊆ S2. Just as in the proof of Theorem 4.3.22, every totally ordered subset
of C (S) has an upper bound, and so C (S) possesses a maximal element B by Zorn’s
Lemma. This set may then be shown to be a basis just as in the proof of Theorem 4.3.22.

(ii) Let D(S) be the collection of linearly independent subsets of S, and partially
order D(S) by inclusion, just as we partially ordered C (S) in part (i). JUst as in the
proof of Theorem 4.3.22, every totally ordered subset of D(S) has an upper bound, and
so D(S) possesses a maximal element B. We claim that every element of S is a linear
combination of elements of B. Indeed, if this were not the case, then there exists v ∈ S
such that v < spanF(B). Then B ∪ {v} is linear independent by Proposition 4.3.19(vi),
and is also contained in S. This contradicts the maximality of B, and so we indeed
have S ⊆ spanF(B). Therefore,

spanF(B) = spanF(S) = V,

giving the theorem. �

Now it makes sense to talk about the dimension of a vector space.
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4.3.27 Definition (Dimension, finite-dimensional, infinite-dimensional) Let F be a
field, let V be an F-vector space, and let B be a basis for V. The dimension of
the vector space V, denoted by dimF(V), is the cardinal number card(B). If B is
finite then V is finite-dimensional, and otherwise V is infinite-dimensional. We will
slightly abuse notation and write dimF(V) = ∞whenever V is infinite-dimensional.

•

Let us give some examples of vector spaces of various dimensions.

4.3.28 Examples (Basis and dimension)
1. The trivial vector space V = {0V} consisting of the zero vector has ∅ as a basis.
2. The F-vector space Fn has as a basis the set B = {e1, . . . , en} defined in

Example 4.3.18–1. In that example, B was shown to be linearly independent.
Also, since

(v1, . . . , vn) = v1e1 + · · · + vnen,

it follows that spanF(B) = Fn. Thus dimF(Fn) = n. The basis {e1, . . . , en} is called
the standard basis.

3. The subspace F∞0 of F∞ has a basis which is easily described. Indeed, it is
easy to verify that {e j} j∈Z>0 is a basis for F∞0 . We adopt the notation from the
finite-dimensional case and call this the standard basis.

4. We next consider the F-vector space F∞. Since F∞0 ⊆ F∞, and since the standard
basis {e j} j∈Z>0 is linearly independent in F∞, we know by Theorem 4.3.26 that we
can extend the standard basis for F∞0 to a basis for F∞. This extension is nontrivial
since, for example, the sequence {1F} j∈Z>0 in F cannot be written as a finite
linear combination of standard basis vectors. Thus the set {e j} j∈Z>0 ∪ {{1F} j∈Z>0}

is linearly independent. This linearly set shares with the standard basis the
property of being countable. It turns out, in fact, that any basis for F∞ has the
cardinality of R, and so the process of tacking on linearly independent vectors
to the standard basis for F∞0 will take a long time to produce a basis for F∞. We
will not understand this properly until Section ??, where we will see that F∞ is
the algebraic dual of F∞0 , and so thereby derive by general means the dimension
of F∞. For the moment we merely say that F∞ is a much larger vector space
than is F∞0 .

5. In Fk[ξ], it is easy to verify that {1, ξ, . . . , ξk
} is a basis. Indeed, we have already

shown that the set is linearly independent. It follows from the definition of
Fk[ξ] that the set also generates Fk[ξ].

6. The set {ξ j
} j∈Z≥0 forms a basis for F[ξ]. Again, we have shown linear indepen-

dence, and that this set generates F[ξ] follows by definition. •

4.3.29 Remark (Nonuniqueness of bases) Generally, it will not be the case that a vector
spaces possesses a “natural” basis, although one might argue that the bases of
Example 4.3.28 are fairly natural. But, even in cases where one might have a
basis that is somehow distinguished, it is useful to keep in mind that other bases
are possible, and that one should be careful not to rely overly on the comfort
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offered by a specific basis representation. In particular, if one is in the business of
proving theorems using bases, one should make sure that what is being proved
is independent of basis, if this is in fact what is intended. At this point in our
presentation we do not have enough machinery at hand to explore this idea fully.
However, we shall revisit this idea of basis independence in missing stuff . Also, in
missing stuff we shall discuss the matter of changing bases. •

Finally, let us prove the more or less obvious fact that dimension is preserved
by isomorphism.

4.3.30 Proposition (Dimension characterises a vector space) If F is a field and if V1 and
V2 are F-vector spaces, then the following statements are equivalent:

(i) V1 and V2 are isomorphic;
(ii) dimF(V1) = dimF(V2).

Proof (i) =⇒ (ii) Let L : V1 → V2 be an isomorphism and let B1 be a basis for V1. We
claim that B2 = L(B1) is a basis for V2. Let us first show that B2 is linearly independent.
Let v1 = L(u1), . . . , vk = L(uk) ∈ B2 be distinct and suppose that

c1v1 + · · · = ckvk = 0V2

for c1, . . . , ck ∈ F. Since L is linear we have

L(c1u1 + · · · + ckuk) = 0V2 .

Since L is injective, by Exercise 4.3.23 we have

c1u1 + · · · + ckuk = 0V1 ,

showing that c1 = · · · = ck = 0F. Thus B2 is linearly independent. Moreover, for v ∈ V2
let u = L−1(v) and then let u1, . . . ,uk ∈ B1 and c1, . . . , ck ∈ F satisfy u = c1u1 + · · · + ckuk.
Then

L(u) = c1L(u1) + · · · + ckL(uk)

since L is linear. Therefore v ∈ spanF(B2), and so B2 is indeed a basis. Since L|B1 is a
bijection onto B2 we have card(B2) = card(B1), and this is the desired result.

(ii) =⇒ (i) Suppose that B1 and B2 are bases for V1 and V2, respectively, with the
same cardinality. Thus there exists a bijection φ : B1 → B2. Now, by Theorem 4.3.24,
define L ∈ HomF(V1; V2) by asking that L|B1 = φ. We claim that L is an isomorphism.
To verify injectivity, suppose that L(u) = 0V2 for u ∈ V1. Write

u = c1u1 + · · · + ckuk

for c1, . . . , ck ∈ F and u1, . . . ,uk ∈ B1. Then

0V2 = c1L(u1) + · · · + ckL(uk),

giving c j = 0F, j ∈ {1, . . . , k}, since L(u1), . . . ,L(uk) are distinct elements of B2, and so
linearly independent. Thus L is injective by Exercise 4.3.23. For surjectivity, let v ∈ V2
and write

v = c1v1 + · · · + ckvk

for c1, . . . , ck ∈ F and v1, . . . , vk ∈ B2. Then, if we define

u = c1φ
−1(v1) + · · · + ckφ

−1(vk) ∈ V2

we readily verify that L(u) = v. �
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4.3.5 Intersections, sums, and products

In this section we investigate means of manipulating multiple subspaces and
vector spaces. We begin by defining some constructions associated to subspaces of
a vector space.

4.3.31 Definition (Sum and intersection) Let F be a field, let V be an F-vector space, and
let (U j) j∈J be a family of subspaces of V indexed by a set J.

(i) The sum of (U j) j∈J is the subspace generated by ∪ j∈JU j, and is denoted by∑
j∈J U j.

(ii) The intersection of (U j) j∈J is the set∩ j∈JU j (i.e., the set theoretic intersection). •

4.3.32 Notation (Finite sums of subspaces) If U1, . . . ,Uk are a finite number of subspaces
of an F-vector space V, then we will sometimes write

k∑
j=1

U j = U1 + · · · + Uk. •

4.3.33 Notation (Sum of subsets) We will also find it occasionally useful to be able to
talk about sums of subsets that are not subspaces. Thus, if (Ai)i∈I is a family of
subsets of an F-vector space V we denote by∑

i∈I

Ai = {vi1 + · · · + vik | i1, . . . , ik ∈ I distinct, vi j ∈ Ai j , j ∈ {1, . . . , k}, k ∈ Z>0}.

Thus
∑

i∈I Ai consists of finite sums of vectors from the subsets Ai, i ∈ I. Following
our notation above, if I = {1, . . . , k} then we write∑

i∈I

Ai = A1 + · · · + Ak. •

The sum and intersection are the subspace analogues of the set theoretic union
and intersection, with the analogue being exact in the case of intersection. Note
that the union of subspaces need not be a subspace (see Exercise 4.3.17). It is true
that the intersection of subspaces is a subspace.

4.3.34 Proposition (Intersections of subspaces are subspaces) If F is a field, if V is an
F-vector space, and if (Uj)j∈J is a family of subspaces, then ∩j∈JUj is a subspace.

Proof If v ∈ ∩ j∈JUa and if a ∈ F then av ∈ U j for each j ∈ J. Thus av ∈ ∩ j∈JU j. If
v1, v2 ∈ ∩ j∈JU j then v1 + v2 ∈ U j for each j ∈ J. Thus v1 + v2 ∈ ∩ j∈JU j. �

Note that, by definition, if (U j) j∈J is a family of subspaces of an F-vector space
V, and if v ∈

∑
j∈J U j, then there exists a finite set j1, . . . , jk ∈ J of indices and vectors

u jl ∈ U jl , l ∈ {1, . . . , k}, such that v = u j1 + · · ·+ u jk . In taking sums of subspaces, there
is an important special instance when this decomposition is unique.
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4.3.35 Definition (Internal direct sum of subspaces) Let F be a field, let V be an F-vector
space, and let (U j) j∈J be a collection of subspaces of V. The vector space V is the
internal direct sum of the subspaces (U j) j∈J, and we write V =

⊕
j∈J U j, if, for any

v ∈ V \ {0V}, there exists unique indices { j1, . . . , jk} ⊆ J and unique nonzero vectors
u jl ∈ U jl , l ∈ {1, . . . , k}, such that v = u j1 + · · · + u jk . Each of the subspaces U j, j ∈ J, is
a summand in the internal direct sum. •

The following property of internal direct sums is useful.

4.3.36 Proposition (Representation of the zero vector in an internal direct sum of
subspaces) Let F be a field, let V be an F-vector space, and suppose that V is the internal
direct sum of the subspaces (Uj)j∈J. If j1, . . . , jk ∈ J are distinct and if ujl ∈ Ujl , l ∈ {1, . . . ,k},
satisfy

uj1 + · · · + ujk = 0V,

then ujl = 0V, l ∈ {1, . . . ,k}.
Proof Suppose that not all of the vectors u j1 , . . . ,u jk are zero. Without loss of gener-
ality, then, suppose that u j1 , 0V. Then

u j1 , and u j1 + u j1 + u j2 + · · · + u jm + u jm+1

are both representations of u j1 as finite sums of vectors from the subspaces (U j) j∈J. By
the definition of internal direct sum it follows that u j1 = 2u j1 and u j2 = · · · = u jk = 0V.
Thus u j1 = 0V, which is a contradiction. �

The following alternative characterisation of the internal direct sum is some-
times useful.

4.3.37 Proposition (Characterisation of internal direct sum for vector spaces) Let F
be a field, let V be an F-vector space, and let (Uj)j∈J be a collection of subspaces of V. Then
V =

⊕
j∈J Uj if and only if

(i) V =
∑

j∈J Uj and,

(ii) for any j0 ∈ J, we have Uj0 ∩
(∑

j∈J\{j0}Uj

)
= {0V}.

Proof Suppose that V =
⊕

j∈J U j. By definition we have V =
∑

j∈J U j. Let j0 ∈ J

and suppose that v ∈ U j0 ∩
(∑

j∈J\{ j0}U j

)
. Define V j0 =

∑
j∈J\{ j0}U j and note that V j0 =⊕

j∈J\{ j0}
U j. If v , 0V then there exists unique indices j1, . . . , jk ∈ J \ { j0} and unique

nonzero vectors u jl ∈ U jl , l ∈ {1, . . . , k}, such that v = u j1 +· · ·+u jl . However, since we also
have v = v, this contradicts the fact that there exists a unique collection j′1, . . . , j′k′ ∈ J of
indices and unique nonzero vectors u j′l

∈ U j′l
, l′ ∈ {1, . . . , k′}, such that v = u j′1

+ · · ·+ u j′k
.

Thus we must have v = 0V.
Now suppose that (i) and (ii) hold. Let v ∈ V \ {0V}. It is then clear from (i) that

there exists indices j1, . . . , jk ∈ J and nonzero vectors u jl ∈ U jl , l ∈ {1, . . . , k}, such that
v = u j1 + · · ·+ u jk . Suppose that j′1, . . . , j′k′ and u′j′1

, . . . ,u′j′k′
is another collection of indices

and nonzero vectors such that v = u′j′1
+ · · · + u′j′k′

. Then

0V = u j1 + · · · + u jk − (u′j′1
+ · · · + u′j′k′

).
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By Proposition 4.3.36 it follows that if l ∈ {1, . . . , k} and l′ ∈ {1, . . . , k′} satisfy jl = j′l′ ,
then u jl = u′j′l′

. If for l ∈ {1, . . . , k} there exists no l′ ∈ {1, . . . , k′} such that jl = j′l′ , then

we must have u jl = 0V. Also, if for l′ ∈ {1, . . . , k′} there exists no l ∈ {1, . . . , k} such that
j′l′ = jl, then we must have u′j′l′

= 0V. From this we conclude that V =
⊕

j∈J U j. �

The notion of internal direct sum has the following important relationship with
the notion of a basis.

4.3.38 Theorem (Bases and internal direct sums for vector spaces) Let F be a field, let
V be an F-vector space, and let B be a basis for V, and define a family (Uu)u∈B of subspaces
by Uu = spanF(u). Then V =

⊕
u∈B Uu.

Proof Let v ∈ V. Since V = spanF(B), there exists v1, . . . , vk ∈ B and unique c1, . . . , ck ∈

F∗ such that v = c1v1+· · ·+ckvk. Therefore, u j = c jv j ∈ U j for j ∈ {1, . . . , k}. Thus u1, . . . ,uk
are the unique nonzero elements of the subspaces (Uu)u∈B such that v = u1 + · · ·+ uk.�

Let us give some examples to illustrate these manipulations involving sub-
spaces.

4.3.39 Examples (Sums and intersections)
1. We consider a field F and the F-vector space F3.

(a) Let U1 = spanF((1, 0, 0), (0, 0, 1)) and U2 = spanF((0, 1, 0)). We claim that
F3 = U1 ⊕ U2. To see this, let (v1, v2, v3) ∈ F3. Then

(v1, v2, v3) = v1(1, 0, 0) + v3(0, 0, 1)︸                    ︷︷                    ︸
∈U1

+ v2(0, 1, 0)︸    ︷︷    ︸
∈U2

,

showing that F3 = U1 + U2. Moreover, if (v1, v2, v3) ∈ U1 ∩ U2, then v2 = 0F

since (v1, v2, v3) ∈ U1 and v1 = v3 = 0F since (v1, v2, v3) ∈ F3.

missing stuff

Up to this point we have considered only operations on subspaces of a given
vector space. Next we consider ways of combining vector spaces that are not
necessarily subspaces of a certain vector space. The reader will at this point wish
to recall the notion of a general Cartesian product as given in Section 1.4.2. Much
of what will be needed in these volumes relies only on finite Cartesian products,
so readers not wishing to wrap their minds around the infinite case can happily
consider the following constructions only for finite collections of vector spaces.

4.3.40 Definition (Direct product and direct sum of vector spaces) Let F be a field and
let (V j) j∈J be a family of F-vector spaces.

(i) The direct product of the family (V j) j∈J is the F-vector space
∏

j∈J V j with vector
addition and scalar multiplication defined by

( f1 + f2)( j) = f1( j) + f2( j), (a f )( j) = a( f ( j))

for f , f1, f2 ∈
∏

j∈J V j and for a ∈ F.
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(ii) The direct sum of the family (V j) j∈J is the subspace
⊕

j∈J V j of
∏

j∈J V j consisting
of those elements f : J → ∪ j∈JV j for which the set { j ∈ J | f ( j) , 0V j} is finite.
Each of the vector spaces V j, j ∈ J, is a summand in the direct sum. •

4.3.41 Notation (Finite direct products and sums) In the case when the index set J is
finite, say J = {1, . . . , k}, we clearly have

∏k
j=1 V j =

⊕k
j=1 V j. We on occasion adopt

the convention of writing V1 ⊕ · · · ⊕ Vk for the resulting vector space in this case.
This version of the direct sum (or equivalently direct product) is the one that we
will most frequently encounter. •

Let us connect the notion of a direct sum with the notion of an internal direct
sum as encountered in Definition 4.3.35. This also helps to rectify the potential
inconsistency of multiple uses of the symbol

⊕
. The reader will want to be sure

they understand infinite Cartesian products in reading this result.

4.3.42 Proposition (Internal direct sum and direct sum of vector spaces) Let F be a
field, let V be an F-vector space, and let (Uj)j∈J be a family of subspaces of V such that V is
the internal direct sum of these subspaces. Let iUj : Uj → V be the inclusion. Then the map
from the direct sum

⊕
j∈J Uj to V defined by

f 7→
∑
j∈J

iUjf(j)

(noting that the sum is finite) is an isomorphism.
Proof Let us denote the map in the statement of the proposition by L. For f , f1, f2 ∈⊕

j∈J U j and for a ∈ F we have

L( f1 + f2) =
∑
j∈J

( f1 + f2)( j) =
∑
j∈J

( f1( j) + f2( j)) =
∑
j∈J

f1( j) +
∑
j∈J

f2( j) = L( f1) + L( f2)

and
L(a f ) =

∑
j∈J

(a f )( j) =
∑
j∈J

a( f ( j)) = a
∑
j∈J

f ( j) = aL( f ),

using the fact that all sums are finite. This proves linearity of aL.
Next suppose that L( f ) = 0V. By Proposition 4.3.36 it follows that f ( j) = 0V for

each j ∈ J. This gives injectivity of L by Exercise 4.3.23. If v ∈ V, we can write
v = u j1 + · · ·+ u jk for j1, . . . , jk ∈ J and for u jl ∈ U jl , l ∈ {1, . . . , k}. If we define f ∈

⊕
j∈J U j

by f ( jl) = u jl , l ∈ {1, . . . , k} and f ( j) = 0V for j < { j1, . . . , jk}, then L( f ) = v, showing that
L is surjective. �

4.3.43 Notation (“Internal direct sum” versus “direct sum”) In the setup of the propo-
sition, the direct sum

⊕
j∈J U j is sometimes called the external direct sum of the

subspaces (U j) j∈J. The proposition says that the external direct sum is isomorphic
to the internal direct sum. We shall often simply say “direct sum” rather than
explicitly indicating the nature of the sum. •

Let us give an important example of a direct sum.
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4.3.44 Example (The direct sum of copies of F) Let J be an arbitrary index set and let⊕
j∈J F be the direct sum of “J copies” of the field F. In the case when J = {1, . . . ,n}

we have
⊕

j∈J F = Fn and in the case when J = Z>0 we have
⊕

j∈J F = F∞0 . Thus this
example generalises two examples we have already encountered. For j ∈ J define
e j : J→ F by

e j( j′) =

1F, j′ = j,
0F, j′ , j.

(Recall the definition of the Cartesian product to remind yourself that e j ∈
⊕

j∈J F.)
We claim that {e j} j∈J is a basis for

⊕
j∈J F. First let us show that the set is linearly

independent. Let j1, . . . , jk ∈ J be distinct and suppose that, for every j′ ∈ J,

c1e j1( j′) + · · · + cke jk( j′) = 0F

for some c1, . . . , ck ∈ F. Then, taking j′ = jl for l ∈ {1, . . . , k} we obtain cl = 0F. This
gives linear independence. It is clear by definition of the direct sum that

spanF({e j} j∈J) =
⊕

j∈J

F.

We call {e j} j∈J the standard basis for
⊕

j∈J F. •

4.3.45 Notation (Alternative notation for direct sums and direct products of copies
of F) There will be times when it is convenient to use notation that is less trans-
parent, but more compact, than the notation

∏
j∈J F and

⊕
j∈J F. The notation we

adopt, motivated by Examples 4.3.2–3 and 4 is∏
j∈J

F = FJ,
⊕

j∈J

F = FJ
0.

For the direct product, this notation is in fact perfect, since, as sets,
∏

j∈J F and FJ

are identical. •

The importance of the direct sum is now determined by the following theorem.

4.3.46 Theorem (Vector spaces are isomorphic to direct sums of one-dimensional
subspaces) Let F be a field, let V be an F-vector space, and let B ⊆ V be a basis.
Let {eu}u∈B be the standard basis for

⊕
u∈B F and define a map ιB : {eu}u∈B → B by

ιB(eu) = u. Then there exists a unique F-isomorphism ιV :
⊕

u∈B F → V such that the
following diagram commutes:

{eu}u∈B

��

ιB //B

��⊕
u∈B F ιV

// V

where the vertical arrows represent the inclusion maps.
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Proof First we define the map ιV. Denote a typical element of
⊕

u∈B F by

c1eu1 + · · · + ckeuk

for c1, . . . , ck ∈ F and distinct u1, . . . ,uk ∈ B. We define

ιV(c1eu1 + · · · + ckeuk) = c1u1 + · · · + ckuk.

It is then a simple matter to check that ιV is a linear map. We also claim that it is an
isomorphism. To see that it is injective suppose that

ιV(c1eu1 + · · · + ckeuk) = 0V.

Then, by Proposition 4.3.36 and by the definition of ιV, we have c1 = · · · = ck = 0F.
Thus the only vector mapping to zero is the zero vector, and this gives injectivity by
Exercise 4.3.23. The proof of surjectivity is similarly straightforward. If v ∈ V then we
can write v = c1u1 + · · ·+ ckuk for some c1, . . . , ck ∈ F and u1, . . . ,uk ∈ B. Then the vector
c1eu1 + · · · + ckeuk ∈

⊕
u∈B F maps to v under ιV. The commutativity of the diagram in

the theorem is checked directly. �

4.3.47 Remark (Direct sums versus direct products) Note that the theorem immedi-
ately tells us that, when considering vector spaces, one can without loss of gener-
ality suppose that the vector space is a direct sum of copies of the field F. Thus
direct sums are, actually, the most general form of vector space. Thinking along
these lines, it becomes natural to wonder what is the value of considering direct
products. First of all, Theorem 4.3.46 tells us that the direct product can be written
as a direct sum, although not using the standard basis, cf. Example 4.3.28–4. The
importance of the direct product will not become apparent until Section ?? when
we discuss algebraic duals. •

Theorem 4.3.46 has the following corollary which tells us the relationship be-
tween the dimension of a vector space and its cardinality.

4.3.48 Corollary (The cardinality of a vector space) If F is a field and if V is an F-vector
space then

(i) card(V) = card(F)dimF(V) if both dimF(V) and card(F) are finite and
(ii) card(V) = max{card(F),dimF(V)} if either dimF(V) or card(F) is infinite.

Proof By Theorem 4.3.46, and since the dimension and cardinality of isomorphic
vector spaces obviously agree (the former by Proposition 4.3.30), we can without loss
of generality take the case when V =

⊕
j∈J F. We let {e j} j∈J be the standard basis. If J is

finite then card(V) = card(F)card(J) by definition of cardinal multiplication. If card(F) is
finite then the result follows immediately. If card(F) is infinite then

card(F)card(J) = card(F) = max{card(F), card(J)}

by Theorem ??. This gives the result when dimF(V) is finite.
For the case when card(J) is infinite, we use the following lemma.
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1 Lemma If F is a field and if V is an infinite-dimensional F-vector space, then card(V) =
card(F) · dimF(V).

Proof As in the proof of the theorem, we suppose that V =
⊕

j∈J F. We use the fact
that every vector in V is a finite linear combination of standard basis vectors. Thus

V = {0V} ∪
(
∪k∈Z>0{c1e j1 + · · · + cke jk | c1, . . . , ck ∈ F∗, j1, . . . , jk ∈ J distinct}

)
. (4.6)

Note that

card({c1e j1 + · · · + cke jk | c1, . . . , ck ∈ F∗, j1, . . . , jk ∈ J distinct})

= ((card(F) − 1) card(J))k.

Thus, noting that the union in (4.6) is disjoint,

card(V) =

∞∑
k=0

((card(F) − 1) card(J))k.

By Theorem ?? we have

card(V) = card(J)
∞∑

k=0

(card(F) − 1).

If card(F) is finite then card(F) ≥ 2 (since F contains a unit and a zero), and so, in this
case,

∑
∞

k=0(card(F)−1) = card(Z>0). If card(F) is infinite then
∑
∞

k=0(card(F)−1) = card(F)
by Theorem ??. In either case we have card(V) = card(F) · card(J). H

We now have two cases.
1. J is infinite and F is finite: In this case we have

card(J) · card(F) ≤ card(J) · card(J) = card(J)

by Theorem ??, and we clearly have card(J) · card(F) ≥ card(J). Thus card(J) ·
card(F) = card(J).

2. J and F are both infinite: In this case, by Theorem ??, we have

card(J) · card(F) = max{card(J), card(F)},

and the result follows. �

We also have the following corollary to Theorem 4.3.46, along with Proposi-
tion 4.3.30, which gives an essential classification of vector spaces.

4.3.49 Corollary (Characterisation of isomorphic vector spaces) If F is a field, F-vector
spaces V1 and V2 are F-isomorphic if and only if dimF(V1) = dimF(V2).

Let us make Theorem 4.3.46 concrete in a simple case, just to bring things down
to earth for a moment. The reader should try to draw the parallels between the
relatively simple example and the more abstract proof of Theorem 4.3.46.



2016/11/26 4.3 Vector spaces 334

4.3.50 Example (Direct sum representations of finite-dimensional vector spaces)
Let V be an n-dimensional vector space. By Theorem 4.3.46 we know that V is
isomorphic to Fn. Moreover, the theorem explicitly indicates how an isomorphism
is assigned by a basis. Thus let {e1, . . . , en} be a basis for V and let {e1, . . . , en} be the
standard basis for Fn. Then we define the map

ιB : {e1, . . . , en} → {e1, . . . , en}

by ιB(e j) = e j, j ∈ {1, . . . ,n}. The associated isomorphism ιV : Fn
→ V is then given

by
ιV(v1, . . . , vn) = v1e1 + · · · + vnen.

The idea is simply that linear combinations of the standard basis are mapped to
linear combinations of the basis for V with the coefficients preserved. •

Let us conclude our discussions in this section by understanding the relationship
between direct sums and dimension. Note that, given Proposition 4.3.42, the result
applies to both internal direct sums and direct sums, although it is only stated for
internal direct sums.

4.3.51 Proposition (Dimension and direct sum) Let F be a field, let V be an F-vector space,
let (Uj)j∈J be a family of F-vector spaces such that V =

⊕
j∈J Uj, and let (Bj)j∈J be such that

Bj is a basis for Uj. Then ∪j∈JBj is a basis for V. In particular,

dimF(V) = dimF(U1) + · · · + dimF(Uk).

Proof Let v ∈ V. Then there exists unique j1, . . . , jk ∈ J and nonzero u jl ∈ U jl ,
j ∈ {1, . . . , k}, such that v = u j1 + · · · + u jk . For each l ∈ {1, . . . , k} there exists unique
cl

1, . . . , c
l
k ∈ F∗ and unique ul

1, . . . ,u
l
kl
∈ B jl such that

u jl = cl
1ul

1 + · · · + cl
kl

ul
kl
.

Then we have

v =

k∑
l=1

kl∑
r=1

cl
ru

l
r

as a representation of v as a finite linear combination of elements of∪ j∈JB j with nonzero
coefficients. Moreover, this is the unique such representation since, at each step in the
construction, the representations were unique. �

4.3.6 Complements and quotients

We next consider another means of construction vector spaces from subspaces.
We first address the question of when, given a subspace, there exists another
subspace which gives a direct sum representation of V.

4.3.52 Definition (Complement of a subspace) If F is a field, if V is an F-vector space,
and if U is a subspace of V, a complement of U in V is a subspace W of V such that
V = U ⊕W. •

Complements of subspaces always exist.
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4.3.53 Theorem (Subspaces possess complements) If F is a field, if V is an F-vector
space, and if U is a subspace of V, then there exists a complement of U.

Proof Let B′ be a basis for U. By Theorem 4.3.26 there exists a basis B for V such
that B′ ⊆ B. Let B′′ = B \ B′ and define W = spanF(B′′). We claim that W is a
complement of U in V. First let v ∈ V. Then, since B is a basis for V, there exists
c′1, . . . , c

′

k′ , c
′′

1 , . . . , c
′′

k′′ ∈ F, u′1, . . . ,u
′

k′ ∈ B′, and u′′1 , . . . ,u
′′

k′′ ∈ B′′ such that

v = c′1u′1 + · · · + c′k′u
′

k′︸               ︷︷               ︸
∈U

+ c′′1 u′′1 + · · · + c′′k′′u
′′

k′′︸                  ︷︷                  ︸
∈W

.

Thus V = U+W. Next let v ∈ U∩W. If v , 0algV then there exists unique u′1, . . . ,u
′

k′ ∈ B′

and u′′1 , . . . ,u
′′

k′′ ∈ B′′ and unique c′1, . . . , c
′

k′ , c
′′

1 , . . . , c
′′

k′′ ∈ F such that

v = c′1u′1 + · · · + c′k′u
′

k′ = c′′1 u′′1 + · · · + c′′k′′u
′′

k′′ .

This, however, contradicts the uniqueness of the representation of v as a finite linear
combination of elements of B with nonzero coefficients. Thus v = 0V. Therefore,
V = U ⊕W by Proposition 4.3.37. �

For the same reason that a vector space possesses multiple bases, it is also
the case that a strict subspace i.e., one not equal to the entire vector space, will
generally possess multiple complements. Thus, while complements exist, there is
not normally a natural such choice, except in the presence of additional structure
(the most common such structure being an inner product, something not discussed
until missing stuff ). However, there is a unique way in which one can associate a
new vector space to a subspace in such a way that this new vector space has some
properties of a complement.

4.3.54 Definition (Quotient by a subspace) Let F be a field, let V be an F-vector space,
and let U be a subspace of V. The quotient of V by U is the set of equivalence classes
in V under the equivalence relation

v1 ∼ v2 ⇐⇒ v1 − v2 ∈ U.

We denote by V/U the quotient of V by U, and we denote by πV/U : V → V/U the
map, called the canonical projection, assigning to v ∈ V its equivalence class. •

Thinking of V as an Abelian group with product defined by vector addition, the
quotient V/U is simply the set of cosets of the subgroup U; see Definition 4.1.15.
We shall adapt the notation for groups to denote a typical element in V/U by

v + U = {v + u | u ∈ U}.

Since V is Abelian, by Proposition 4.1.19 it follows that V/U possesses a natural
Abelian group structure. It also possesses a natural vector space structure, as the
following result indicates.
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4.3.55 Proposition (The quotient by a subspace is a vector space) Let F be a field, let
V be an F-vector space, and let U be a subspace of V. The operations of vector addition and
scalar multiplication in V/U defined by

(v1 + U) + (v2 + U) = (v1 + v2) + U, a(v + U) = (av) + U, v,v1,v2 ∈ V, a ∈ F,

respectively, satisfy the axioms for an F-vector space.
Proof We define the zero vector in V/U by 0V/U = 0V + U and we define the negative
of a vector v + U by (−v) + U. It is then a straightforward matter to check the axioms of
Definition 4.3.1, a matter which we leave to the interested reader. �

The following “universal” property of quotients is useful.

4.3.56 Proposition (A “universal” property of quotient spaces) Let F be a field, let V be
an F-vector space, and let U be a subspace of V. If W is another F-vector space and if
L ∈ HomF(V; W) has the property that ker(L) ⊆ U, then there exists L ∈ HomF(V/U; W)
such that the diagram

V L //

πV/U

��

W

V/U
L

==

commutes. Moreover, if L′ ∈ HomF(V/U; W) is such that the preceding diagram com-
mutes, then L′ = L.

Proof We define L(v + U) = L(v). This map is well-defined since, if v′+ U = v + U then
v′ = v + u for u ∈ U, whence

L(v′ + U) = L(v′) = L(v + u) = L(v) = L(v + U).

One verifies directly that

L((v1 + U) + (v2 + U)) = L(v1 + U) + L(v2 + U), L(a(v + U)) = aL(v + U),

giving linearity of L. For the final assertion of the proposition, the commuting of the
diagram exactly says that L

′

(v + U) = L(v), as desired. �

Next we consider the relationship between complements and quotient spaces.

4.3.57 Theorem (Relationship between complements and quotients) Let F be a field,
let V be an F-vector space, and let U be a subspace of V with a complement W. Then the
map ιU,W : W→ V/U defined by

ιU,W(w) = w + U

is an isomorphism. In particular, dimF(W) = dimF(V/U) for any complement W of U in
V.
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Proof The map ιU,W is readily checked to be linear, and we leave this verification to
the reader. Suppose that w + U = 0V + U for w ∈ W. This implies that w ∈ U, which
gives w = 0V by Proposition 4.3.37; thus ιU,W is injective by Exercise 4.3.23. Now let
v + U ∈ V/U. Since V = U ⊕W we can write v = u + w for u ∈ U and w ∈ W. Since
v − w ∈ U we have v + U = w + U. Thus ιU,W is also surjective.

The final assertion follows from Propositions 4.3.30 and 4.3.51. �

The preceding result gives the dimension of the quotient, and the next result
reinforces this by giving an explicit basis for the quotient.

4.3.58 Proposition (Basis for quotient) Let F be a field, let V be an F-vector space, and let U
be a subspace of V. If B is a basis for V with the property that there exists a subset B′

⊆ B
with the property that B′ is a basis for U, then

{v + U | v ∈ B \B′
}

is a basis for V/U.
Proof Let B′′ be such that B = B′∪B′′ and B′∪B′′ = ∅. If v ∈ V then we can write

v = c1u1 + · · · + ckuk + d1v1 + · · · + dlvl

for c1, . . . , ck, d1, . . . , dl ∈ F, for u1, . . . ,uk ∈ B′, and for v1, . . . , vl ∈ B′′. Then

v + U = (c1u1 + · · · + ckuk + d1v1 + · · · + dlvl) + U
= (d1v1 + · · · + dlvl) + U = (d1v1 + U) + · · · + (dlvl + U),

showing that {v + U | v ∈ B′′} generates V/U. To show linear independence, suppose
that

(d1v1 + U) + · · · + (dlvl + U) = 0V + U

for v1, . . . , vl ∈ B′′ and d1, . . . , dl ∈ F. Then d1v1+· · ·+dlvl ∈ U, and so d1v1+· · ·+dlvl = 0V
by Proposition 4.3.37. Since B′′ is linearly independent by Proposition 4.3.19(iii), it
follows that d1 = · · · = dl = 0F, and so {v + U | v ∈ B′′} is linearly independent. �

The preceding theorem motivates the following definition.

4.3.59 Definition (Codimension of a subspace) Let F be a field, let V be an F-vector
space, and let U be a subspace of V. The codimension of U, denoted by codimF(U),
is dimF(V/U). •

Combining Proposition 4.3.51 and Theorem 4.3.57 immediately gives the fol-
lowing result.

4.3.60 Corollary (Dimension and codimension of a subspace) If F is a field, if V is an
F-vector space, and if U is a subspace of V, then dimF(V) = dimF(U) + codimF(U).

4.3.7 Complexification of R-vector spaces

It will often be useful to regard a vector space defined over R as being defined
over C. This is fairly straightforward to do.
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4.3.61 Definition (Complexification of a R-vector space) If V is a R-vector space, the
complexification of V is the C-vector space VC defined by

(i) VC = V × V,
and with the operations of vector addition and scalar multiplication defined by

(ii) (u1,u2) + (v1, v2) = (u1 + v1,u2 + v2), u1,u2, v1, v2 ∈ V, and
(iii) (a + ib)(u, v) = (au − bv, av + bu) for a, b ∈ R and u, v ∈ V. •

We recall from Example 4.3.2–5 that anyC-vector space is also aR-vector space
by simply restricting scalar multiplication to R. It will be convenient to regard V
as a subspace of the R-vector space VC. There are many ways one might do this.
For example, we can identify V with the either of the two subspaces

{(u, v) ∈ VC | v = 0V}, {(u, v) ∈ VC | u = 0V},

and there are many other possible choices. However, the subspace on the left is
the most natural one for reasons that will be clear shortly. We thus define the
monomorphism ιV : V → VC of R-vector spaces by ι(v) = (v, 0V), and we note that
image(ιV) is a subspace of VC that is isomorphic to V.

The following result records that VC has the desired properties.

4.3.62 Proposition (Properties of complexification) If V is a R-vector space then the
complexification VC has the following properties:

(i) VC is a C-vector space and dimC(VC) = dimR(V);
(ii) VC is a R-vector space and dimR(VC) = 2 dimR(V);
(iii) every element of VC can be uniquely expressed as ιV(u) + i ιV(v) for some u,v ∈ V.

Proof (i) The verification of the axioms for VC to be aC-vector space is straightforward
and relatively unilluminating, so we leave the reader to fill in the details. Let us verify
that dimC(V) = dimR(V). Let B be a basis for V and define

BC = {(u, 0V) | u ∈ B}.

We claim that BC is a basis for VC as a C-vector space. To show linear independence
of BC, suppose that

(a1 + ib1)(u1, 0V) + · · · + (ak + ibk)(uk, 0V) = (0V, 0V)

for a1, . . . , ak, b1, . . . , bk ∈ R. Using the definition of scalar multiplication this implies
that

(a1u1, b1u1) + · · · + (akuk, bkuk) = (0V, 0V).

Linear independence of B then implies that a j = b j = 0 for j ∈ {1, . . . , k}, so giving
linear independence of BC. Now let (u, v) ∈ VC. There then exists u1, . . . ,uk ∈ B and
a1, . . . , ak, b1, . . . , bk ∈ R such that

u = a1u1 + · · · + akuk, v = b1u1 + · · · + bkuk.

We then have

(u, v) = (a1u1 + · · · + akuk, b1u1 + · · · + bkuk) = (a1u1, b1u1) + · · · + (akuk, bkuk).
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Using the rules for scalar multiplication in VC this gives

(u, v) = (a1 + ib1)(u1, 0V) + · · · + (ak + ibk)(uk, 0V).

Thus BC spans VC, and so is a basis for VC.
(ii) That VC is a R-vector space follows from Example 4.3.2–5. Note that scalar

multiplication in the R-vector space VC, i.e., restriction of C scalar multiplication to R,
is defined by a(u, v) = (au, av). Thus VC as a R-vector space is none other than V ⊕ V.
That dimR(VC) = 2 dimR(V) then follows from Proposition 4.3.51.

(iii) Using the definition of C scalar multiplication we have

iιV(v) = i(v, 0V) = (0V, v).

Thus we clearly have
(u, v) = ιV(u) + i ιV(v),

giving the existence of the stated representation. Now, if

ιV(u1) + i ιV(v1) = ιV(u2) + i ιV(v2),

then (u1, v1) = (u2, v2), and so u1 = u2 and v1 = v2, giving uniqueness of the represen-
tation. �

The final assertion in the proposition says that we can think of (u, v) ∈ VC as
(u, 0V) + i(v, 0V). With this as motivation, we shall use the notation (u, v) = u + iv
when it is convenient. This then leads to the following definitions which adapt
those for complex numbers to the complexification of a R-vector space.

4.3.63 Definition (Real part, imaginary part, complex conjugation) Let V be aR-vector
space with VC its complexification.

(i) The real part of (u, v) ∈ VC is Re(u, v) = u.
(ii) The imaginary part of (u, v) ∈ VC is Im(u, v) = v.
(iii) The representation u + iv of (u, v) ∈ VC is the canonical representation.
(iv) Complex conjugation is the map σV : VC → VC defined by σV(u, v) = (u,−v). •

Using the canonical representation of elements in the complexification,C-scalar
multiplication in VC can be thought of as applying the usual rules for C multipli-
cation to the expression (a + ib)(u + iv):

(a + ib)(u + iv) = (au − bv) + i(bu + av).

This is a helpful mnemonic for remembering the scalar multiplication rule for VC.
It is easy to show that σV ∈ EndR(VC), but that σV < EndC(VC) (see Exer-

cise 4.3.25). Moreover, complex conjugation has the following easily verified
properties.

The following example should be thought of, at least in the finite-dimensional
case, as the typical one.

4.3.64 Example (Rn
C

= Cn) We take the R-vector space Rn and consider its complexifica-
tion Rn

C
. The main point to be made here is the following lemma.
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1 Lemma The map (x1, . . . , xn)+ i(y1, . . . ,yn) 7→ (x1 + iy1, . . . , xn + iyn) is aC-isomorphism
of Rn

C
with Cn.

Proof This follows by the definition of vector addition andC-scalar multiplication
in Rn

C
. H

Let us look at some of the constructions associated with complexification in
order to better understand them. First note that Rn

C
has the structure of both a R-

and C-vector space. One can check that a basis for Rn
C

as a R-vector space is given
by the set

{e1 + i0, . . . , en + i0, 0 + ie1, . . . , 0 + ien},

and a basis for Rn
C

as a C-vector space is given by the set

{e1 + i0, . . . , en + i0},

where {e1, . . . , en} is the standard basis for Rn. It is also clear that

Re(x + iy) = x, Im(x + iy) = y, σRn(x + iy) = x − iy.

The idea in this example is, essentially, that one can regard the complexification
of Rn as the vector space obtained by “replacing” the real entries in a vector with
complex entries. •

4.3.8 Extending the scalars for a vector space

In Section 4.3.7 we saw how one can naturally regard a R-vector space as a
C-vector space. In this section we generalise this idea to general field extensions,
as it will be useful in studying endomorphisms of finite-dimensional vector spaces
in Section ??. This development relies on the tensor product which itself is a part of
multilinear algebra. Thus a reader will need to make a diversion ahead to Section ??
in order to understand the material in this section.

While we have not yet discussed field extensions (we do so formally and in
detail in Section ??), the notion is a simple one. A field K that contains a field F as a
subfield is an extension of F. As we will show in Proposition ??, and is easily seen
in any case, K is an F-vector space. We shall make essential use of this fact in this
section. Indeed, the key idea in complexification comes from understanding the
R-vector space structure of C. Here we generalise this idea.

We may now define the extension of an F-vector space to an extension K of F.
This definition will seem odd at first glance, relying as it does on the tensor product.
It is only after we explore it a little that it will (hopefully) seem “correct.”

4.3.65 Definition (Extension of scalars for a vector space) Let F be a field, let K be an
extension of F, and let V be an F-vector space. The extension of V to K is

VK = K ⊗ V. •

At this point, we certainly understand all the symbols in the definition. How-
ever, it is not so clear what VK really is. To begin to understand it, let us first show
that it has the structure of a vector space over K; it is this structure that is of most
interest to us.
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4.3.66 Proposition (VK is an K-vector space) Let K be an extension of a field F and let V be an
F-vector space. Using vector addition and scalar multiplication defined by vector addition
in K ⊗ V (as an F-vector space) and b(a ⊗ v) = (ab) ⊗ v, a, b ∈ K, v ∈ V, respectively,
K ⊗ V is a vector space over K.

Proof First let us show that the definition of scalar multiplication in K is well-defined.
We note that for b ∈ K the mapφb : K×V→ K⊗V defined byφb(a, v) = (ba)⊗v is bilinear.
Thus there exists a unique linear map Lφb : K⊗V→ K⊗V satisfying Lφb(a⊗v) = (ba)⊗v.
Now, if

a1 ⊗ v1 + · · · + ak ⊗ vk

is an arbitrary element of K ⊗ V, it follows that

Lφb(a1 ⊗ v1 + · · · + ak ⊗ vk) = (ba1) ⊗ v1 + · · · + (bak) ⊗ vk

since Lφb is linear. Thus scalar multiplication is well-defined on all of K ⊗ V. To show
that vector addition and scalar multiplication satisfy the usual axioms for a vector
space is now straightforward, and we leave the details of this to the reader. �

Let us show that this complicated notion of scalar extension agrees with com-
plexification.

4.3.67 Example (VC = C⊗ V) We let V be a R-vector space with complexification VC. Let
us show that “VC = VC;” i.e., that complexification as in Section 4.3.7 agrees with
extension of scalars as in Definition 4.3.65. To see this we define an isomorphism
ιC from VC (the complexification as in Section 4.3.7) to C ⊗ V by

ιC(u, v) = 1 ⊗ u + i ⊗ v.

Let us show that this is an isomorphism of C-vector spaces. First we note that

ιC((u1, v1) + (u2, v2)) = ιC(u1 + u2, v1 + v2) = 1 ⊗ (u1 + u2) + i(v1 + v2)
= (1 ⊗ u1 + iv1) + (1 ⊗ u2 + i ⊗ v2) = ιC(u1, v1) + ιC(u2, v2)

and

ιC((a + ib)(u, v)) = ιC(au − bv, av + bu) = 1 ⊗ (au − bv) + i(av + bu)
= 1 ⊗ (au) + 1 ⊗ (−bv) + i ⊗ (av) + i ⊗ (bu)
= a ⊗ u + (−b) ⊗ v + (ia) ⊗ v + (ib) ⊗ u
= a(1 ⊗ u + i ⊗ v) + ib(1 ⊗ u + i ⊗ v)
= (a + ib)(1 ⊗ u + i ⊗ v) = (a + ib)ιC(u, v),

so showing that ιC is a C-linear. To show that ιC is injective, suppose that ιC(u, v) =
0C⊗V. Thus

1 ⊗ u + i ⊗ v = 1 ⊗ 0V + i ⊗ 0V,

and so u = v = 0V. Thus ιC is injective by Exercise 4.3.23. To show that ιC is
surjective, it suffices (why?) to show that (a + ib) ⊗ v ∈ image(ιC) for each a, b ∈ R
and v ∈ V. This follows since

ιC(av, bv) = 1 ⊗ (av) + i ⊗ (bv) = a ⊗ v + (ib) ⊗ v = (a + ib) ⊗ v.
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Note that 1⊗ u + i⊗ v is the corresponding decomposition of (u, v) ∈ VC into its real
and imaginary parts. If one keeps this in mind, and uses the usual rules for manip-
ulating tensor products, it is easy to see why C⊗V is, indeed, the complexification
of V. •

4.3.9 Notes

Exercises

4.3.1 Verify the vector space axioms for Example 4.3.2–1.
4.3.2 Verify the vector space axioms for Example 4.3.2–2.
4.3.3 Verify the vector space axioms for Example 4.3.2–3.
4.3.4 Verify the vector space axioms for Example 4.3.2–4.
4.3.5 Verify the vector space axioms for Example 4.3.2–5.
4.3.6 Verify the vector space axioms for Example 4.3.2–6.
4.3.7 Verify the vector space axioms for Example 4.3.2–7.
4.3.8 Verify the vector space axioms for Example 4.3.2–8.
4.3.9 Verify the vector space axioms for Example 4.3.2–9.
4.3.10 Let I ⊆ R, let r ∈ Z>0, and denote by Cr(I;R) the set of R-valued functions

on I that are r-times continuously differentiable. Define vector addition and
scalar multiplication in such a way that Cr(I;R) is a R-vector space.

4.3.11 Prove Proposition 4.3.6.
4.3.12 Verify the claim of Example 4.3.7–1.
4.3.13 Verify the claim of Example 4.3.7–2.
4.3.14 Verify the claim of Example 4.3.7–3.
4.3.15 Verify the claim of Example 4.3.7–4.
4.3.16 Prove Proposition 4.3.9.
4.3.17 Do the following.

(a) Give an example of a vector space V and two subspaces U1 and U2 of V
such that U1 ∪ U2 is not a subspace.

(b) If V is an F-vector space and if U1, . . . ,Uk are subspaces of V, show that
∪

k
j=1U j is a subspace if and only if there exists j0 ∈ {1, . . . , k} such that

U j ⊆ U j0 for j ∈ {1, . . . , k}.
(c) If V is an F-vector space and if (U j) j∈J is an arbitrary family of subspaces,

give conditions, analogous to those of part (b), that ensure that ∪ j∈JU j is
a subspace.

4.3.18 Prove Theorem 4.3.26 in the case when dimF(V) < ∞.
4.3.19 Let F be a field, let Vand W be F-vector spaces, let B ⊆ V be a basis, let

φ : B → W be a map, and let Lφ ∈ HomF(V; W) be the unique linear map
determined as in Theorem 4.3.24.
(a) Show that Lφ is injective if and only if the family (φ(v))v∈B is linearly

independent.
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(b) Show that Lφ is surjective if and only if spanF(φ(B)) = W.
4.3.20 Let F be a field and let V be an F-vector space. If U is a subspace of V and if

v1, v2 ∈ V, show that the affine subspaces

{v1 + u | u ∈ U}, {v2 + u | u ∈ U}

agree if and only if v1 − v2 ∈ U.
4.3.21 Construct explicit isomorphisms between the following pairs of F-vector

spaces:
(a) Fk+1 and Fk[ξ];
(b) F∞0 and F[ξ].

4.3.22 Construct an explicit R-isomorphism between R∞ and the set R[[ξ]] of
R-formal power series.

4.3.23 Let F be a field, let U and V be F-vector spaces, and let L ∈ HomF(U; V).
Show that L is injective if and only if ker(L) = {0U}.

4.3.24 Let F be a field and let V be an F-vector space with U a strict subspace of V.
(a) Show that, if dimF(V) < ∞, then dimF(U) < dimF(V).
(b) Give examples of F, V, and U as above such that dimF(U) = dimF(V).

4.3.25 Let V be a R-vector space with VC its complexification. Show that the
complex conjugation σV is a R-linear map of VC, but not a C-linear map.



Chapter 5

Measure theory and integration

The theory of measure and integration we present in this chapter represents one
of the most important achievements of mathematics in the twentieth century. To a
newcomer to the subject or to someone coming at the material from an “applied”
perspective, it can be difficult to understand why abstract integration provides
anything of value. This is the more so if one comes equipped with the knowledge
of Riemann integration as we have developed in Sections 3.4 and ??. This theory
of integration appears to be entirely satisfactory. There are certainly functions that
are easily described, but not Riemann integrable (see Example 3.4.10). However,
these functions typically fall into the class of functions that one will not encounter
in practice, so it is not clear that they represent a serious obstacle to the viability
of Riemann integration. Indeed, if one’s objective is only to compute integrals,
then the Riemann integral is all that is needed. The multiple volumes of tables of
integrals, many of them several hundred pages in length, are all compiled using
good ol’ Riemann integration. But this is not the problem that is being addressed by
modern integration theory! The theory of measure and integration we present in
this chapter is intended to provide a theory whereby spaces of integrable functions
have satisfactory properties. This confusion concerning the objectives of modern
integration theory is widespread. For example, an often encountered statement is
that of Richard W. Hamming (1915–1998):

Does anyone believe that the difference between the Lebesgue and Rie-
mann integrals can have physical significance, and that whether say, an
airplane would or would not fly could depend on this difference? If
such were claimed, I should not care to fly in that plane.

We are uncertain what Hamming was actually saying when he made this statement.
However, it is certainly the case that this statement gets pulled out by many folks
as justification for the statement that the modern theory of integration is simply
not worth learning. Our view on this is that it may well be the case that this is
true. If all you want to be able to do is integrate functions, then there is no need to
learn the modern theory of integration. However, if you find yourself talking about
spaces of integrable functions (as we shall do constantly in Volume ??missing stuff
in our discussion of signal theory), then you will find yourself needing a theory of
integration that is better that Riemann integration.

With the above as backdrop, in Section 5.1 we discuss in detail some of the
limitations of the Riemann integral. After doing this we launch into a treatment of



345 5 Measure theory and integration 2016/11/26

measure theory and integration. While there is no question that the special case
of Lebesgue measure and integration is of paramount importance for us, we take
the approach that measure theory and integration is actually easier to understand
starting from a general point of view. Thus we start with general measure theory
and the corresponding general integration theory. We then specialise to Lebesgue
measure and integration.

Do I need to read this chapter? The reader ought to be able to decide based on
the discussion above whether they want to read this chapter. If they elect to bypass
it, then they will be directed back to it at appropriate points in the sequel.

That being said, it is worth attempting to disavow a common perception about
the use of measure theory and integration. There appears to be a common feeling
that the theory is difficult, weird, and overly abstract. Part of this may stem from
the fact that many already have a comfort level with integration via the Riemann
integral, and so do not feel compelled to relearn integration theory. But the fact
is that measure theory is no more difficult to learn than anything else about real
analysis. •
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Section 5.1

Some motivation for abstract measure theory and integration

In this section we illustrate the problems with the Riemann integral when it
comes to dealing with spaces of integrable functions. We do this by first deriving
a “measure theory,” the Jordan measure, for Riemann integration, although this is
not a theory of measure that satisfies the criterion we impose in our subsequent
development of measure theory. What we shall see is that the difficulty arises from
the fact that the Jordan measure only behaves well when one uses finite unions and
intersections of sets. This leads to problems with sequential operations where there
is an inherent need to be able to handle countable set theoretic unions and inter-
sections. This is illustrated clearly in Example 5.1.10. We then illustrate why this
phenomenon has repercussions for the Riemann integral. The problem, as we shall
see, is that limits and Riemann integration do not commute; see Example 5.1.11.

Do I need to read this section? If you have already decided to read this chapter,
and you do not already understand why it is necessary to move beyond the Rie-
mann integral, then you should read this section. •

5.1.1 The Jordan measure and its limitations

We begin our discussion of the deficiencies of the Riemann integral by consid-
ering carefully the Jordan measure, which was touched lightly upon in Section ??.
Here we develop the Jordan measure in detail before finally tearing it down.

In Section ?? we introduced the idea of a Jordan measurable set as a set A whose
characteristic function χA is Riemann integrable. In Theorem 5.1.5 we showed
that a bounded set A is Jordan measurable if and only if bd(A) has zero volume if
and only if bd(A) has zero measure. In this section we shall consider the Jordan
measure in more detail and see that it has certain clear limitations.

First let us give a characterisation of Jordan measurable sets that will echo some
of the constructions that will follow in our development of general measure theory.
The basic building blocks for the Jordan measure are so-called elementary sets.

5.1.1 Definition (Elementary set) A subset E ⊆ Rn is elementary if E = ∪k
j=1C j for

bounded rectangles C1, . . . ,Ck. •

Note that, given a elementary set E, the expression of E as a union of bounded
rectangles is not unique. Moreover, since there is no restriction that the rectangles
do not overlap, the following result is of interest.

5.1.2 Proposition (Elementary sets are finite unions of disjoint rectangles) If E is a
elementary set then there exists disjoint rectangles C1, . . . ,Ck such that E = ∪k

j=1Cj.

Proof By definition we can write an elementary set as E = ∪k̃
j=1C̃ j for rectangles

C̃1, . . . , C̃k̃. We shall prove the proposition by induction on k̃. The result is clearly true
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for k̃ = 1. Suppose that the result is true for k̃ ∈ {1, . . . , m̃} and suppose that E = ∪m̃+1
j=1 C̃ j

and write
E =

(
∪

m̃
j=1(C̃ j ∩ C̃m+1)

)
∪

(
C̃m+1 \ (∪m̃

j=1C̃ j))
)
.

By the induction hypothesis there exists disjoint rectangles C1, . . . ,Cl such that

∪
m̃
j=1C̃ j = ∪l

j=1C j.

Thus
E =

(
∪

l
j=1(C j ∩ C̃m+1)

)
∪

(
∪

l
j=1(C̃m+1 − C j)

)
.

Thus the result boils down to the following lemma.

1 Lemma If C and C′ are bounded rectangles then C∩C′ is a bounded rectangle if it is nonempty
and C − C′ is a finite union of disjoint bounded rectangles if it is nonempty.
Proof Suppose that

C = I1 × · · · × In, C′ = I′1 × · · · × I′n
for bounded intervals I1, . . . , In and I′1, . . . , I

′
n. Note that x ∈ C∩C′ if and only if x j ∈ I j∩I′j,

j ∈ {1, . . . ,n}. That is,
C ∩ C′ = (I1 ∩ I′1) × · · · × (In ∩ I′n).

Since (I j ∩ I′j), j ∈ {1, . . . ,n}, are bounded intervals if they are nonempty, it follows that
C ∩ C′ is a bounded rectangle if it is nonempty.

Note that C−C′ = C\(C∩C′). We may as well suppose that each of the intersections
I j∩ I′j, j ∈ {1, . . . ,n}, is a nonempty bounded interval. Then write I j = J j∪ (I j∩ I′j) where
J j ∩ (I j ∩ I′j) = ∅. This defines a partition of C where the interval I j is partitioned as
(J j, I j ∩ I′j), j ∈ {1, . . . ,n}. Thus this gives C as a finite disjoint union of rectangles, the
subrectangles of the partition. Moreover, C∩C′ corresponds exactly to the subrectangle

(I1 ∩ I′1) ∩ · · · ∩ (In ∩ I′n)

of this partition. By removing this subrectangle, we have C − C′ as a finite union of
disjoint bounded rectangles, as desired. H

This completes the proof. �

The previous result makes plausible the following definition.

5.1.3 Definition (Jordan measure of an elementary set) If E ⊆ Rn is an elementary
set and if E = ∪k

j=1C j for disjoint bounded rectangles C1, . . . ,Ck, then the Jordan
measure of E is

ρ(E) =

k∑
j=1

vol(C j). •

This definition has the possible ambiguity that it depends on writing E as
a finite union of disjoint bounded rectangles, and such a union is not uniquely
defined. However, one can refer to Proposition ?? to see that the definition is, in
fact independent of how this union is made.

With the Jordan measure of elementary sets, we can introduce the following
concepts which we shall see arise again when we are doing “serious” measure
theory.
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5.1.4 Definition (Inner and outer Jordan measure) If A ⊆ Rn is a bounded set then
(i) the Jordan outer measure of A is

ρ∗(A) = inf{ρ(E) | E an elementary set containing A}

and
(ii) the Jordan inner measure of A is

ρ∗(A) = sup{ρ(E) | E an elementary set contained in A} •

Note that the Jordan outer and inner measures of a bounded set always exist,
provided that, for the inner measure, we allow that the empty set be thought of as
an elementary set, and that we adopt the (reasonable) convention that ρ(∅) = 0.

The following result gives a characterisation of bounded Jordan measurable sets,
including some of the characterisations we have already proved in Section ??.

5.1.5 Theorem (Characterisations of bounded Jordan measurable sets) For a
bounded subset A ⊆ Rn the following statements are equivalent:

(i) A is Jordan measurable;
(ii) vol(bd(A)) = 0;
(iii) χA is Riemann integrable;
(iv) ρ∗(A) = ρ∗(A).

Proof The equivalent of the first three statements is the content of Theorems 5.1.5
and ??. Thus we only prove the equivalence of the last statement with the other three.

Let C be a fat compact rectangle containing A.
First suppose that A is Jordan measurable and let ε ∈ R>0. Since χA is Riemann

integrable there exists a partition P of C such that

A+(χA,P) − A−(χA,P) < ε.

Let the subrectangles of P be divided into three sorts: (1) the first sort are those sub-
rectangles that lie within A; (2) the second sort are those that intersect A; (3) the third
sort are rectangles that do not intersect A. From the definition of χA, A+(χA,P) is the
total volume of the rectangles of the third sort and A−(χA,P) is the total volume of the
rectangles of the first sort. Moreover, by the definitions of these rectangles,

ρ∗(A) ≤ A+(χA,P), ρ∗(A) ≥ A−(χA,P).

Thus ρ∗(A) − ρ∗(A) < ε, giving ρ∗(A) = ρ∗(A) since ε ∈ R>0 is arbitrary.
Now suppose that ρ∗(A) = ρ∗(A), let ε ∈ R>0, and let Eε and Eε be elementary

subsets of Rn such that ρ(Eε) − ρ(Eε) < ε. Since Eε is a disjoint union of finitely
many bounded rectangles there exists a partition Pε of C such that Eε is a union of
subrectangles from Pε. Similarly, there exists a partition Pε such that Eε is a union of
subrectangles of Pε. Now let Pε be a partition that refines both Pε and Pε. Then we
have

A+(χA,Pε) ≤ ρ∗(Eε), A−(χA,Pε ≥ ρ∗(Eε),

which gives
A+(χA,Pε) − A−(χA,Pε) < ε,

as desired. �
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Note that it is only the basic definition of a Jordan measurable set, i.e., that its
boundary have measure zero, that is applicable to unbounded sets. However, we
can still use the characterisation of bounded Jordan measurable sets to give the
measure of possibly unbounded sets. For the following definition we denote by

CR = [−R,R] × · · · × [−R,R]

the rectangle centred at 0 whose sides have length 2R for R ∈ R>0.

5.1.6 Definition (Jordan measure1) Let J (Rn) denote the collection of Jordan measur-
able sets of Rn and define ρ : J (R)→ R≥0 by

ρ(A) = lim
R→∞

ρ∗(A ∩ CR),

noting that A ∩ CR is a bounded Jordan measurable set for each R ∈ R>0. For
A ∈J (Rn), ρ(A) is the Jordan measure of A. •

Of course, by Theorem 5.1.5 we could as well have defined

ρ(A) = lim
R→∞

ρ∗(A ∩ CR).

Let us look at some examples that flesh out the definition.

5.1.7 Examples (Jordan measurable sets)
1. Rn is itself Jordan measurable and ρ(Rn) = ∞.
2. Let us consider the set

A = {(x1, x2) ∈ R2
| |x2| ≤ e−|x1|}

An application of Fubini’s Theorem gives∫
A

dx =

∫
∞

−∞

(∫ e−|x1 |

−e−|x1 |
dx2

)
dx1 = 4.

By the definition of the Riemann integral for unbounded domains (see Defini-
tion ??) this means that ρ(A) = 4. Thus unbounded domains can have finite
Jordan measure. •

The following property of Jordan measures—or more precisely the fact that only
the following result applies—is crucial to why they are actually not so useful.

1The Jordan measure is not a measure as we shall define the notion in Section 5.3. However, it
is convenient to write as if it is to get prepared for the more general and abstract development to
follow.
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5.1.8 Proposition (Jordan measurable sets are closed under finite intersections
and unions) If A1, . . . ,Ak ∈ J (Rn) are Jordan measurable then ∩k

j=1Aj,∪k
j=1Aj ∈

J (Rn).
Proof This is straightforward and we leave the details to the reader as Exercise 5.1.1.

�

Having now built up the Jordan measure and given some of its useful properties,
let us now proceed to show that it has some very undesirable properties. This
destruction of the Jordan measure is tightly connected with our bringing down of
the Riemann integral in the next section. Sometimes, in order to understand why
something is useful (in this case, the Lebesgue measure), it helps to first understand
why the alternatives are not useful. It is with this in mind that the reader should
undertake to read the remainder of this section.

The most salient question about the Jordan measure is, “What are the Jordan
measurable sets?” The first thing we shall note is that there are “nice” open sets
that are not Jordan measurable. This is not good, since open sets form the building
blocks of the topology of Rn.

5.1.9 Example (A regularly open non-Jordan measurable set) We shall construct a
subset A ⊆ [0, 1] with the following properties:

1. A is open;

2. A = int(cl(A)) (an open set with this property is called regularly open);

3. A is not Jordan measurable.

The construction is involved, and will be presented with the aid of a series of
lemmata. If you are prepared to take the existence of a set A as stated on faith, you
can skip the details. Let us denote I = [0, 1].

Any x ∈ I can be written in the form

∞∑
j=1

a j

3 j

for a j ∈ {0, 1, 2}. This is called a ternary decimal expansion of x, and we refer the
reader to Exercise 2.4.8 for details of this construction in base 10. There is a possible
nonuniqueness in such decimal expansions that arises in the following manner. If
a1, . . . , ak ∈ {0, 1, 2} then the numbers

k∑
j=1

a j

3 j +

∞∑
j=k+1

2
3 j and

k−1∑
j=1

a j

3 j +
(ak + 1) mod 3

3k
+

∞∑
j=k+1

0
3k

are the same, where

(ak + 1) mod 3 =

ak + 1, ak ∈ {0, 1},
0, ak = 2.
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Now, for k ∈ Z>0, define Bk to be the subset of I for which, if x ∈ Bk is written as

x =

∞∑
j=1

a j

3 j ,

then a j = 1 for j ∈ {2k−1 + 1, 2k−1 + 2, . . . , 2k
}. For numbers with nonunique ternary

decimal expansions, we ask that both representations satisfy the condition.

1 Lemma For k ∈ Z>0, Bk is a disjoint union of 32k−1 open intervals each of length 1
32k .

Proof For a = (a1, . . . , a2k−1) ∈ {0, 1, 2} define Ia to be the open interval whose left
endpoint is

2k−1∑
j=1

a j

3 j +

2k∑
j=2k−1+1

1
3 j

and whose right endpoint is

2k−1∑
j=1

a j

3 j +

2k∑
j=2k−1+1

1
3 j +

∞∑
j=2k+1

2
3 j .

There are obviously 32k−1 such intervals and each such interval has length 32k . One
can directly verify that Bk is the union of all of these intervals. H

Now define B = ∪∞k=1Bk which is, therefore, open. The sets Bk, k ∈ Z>0, satisfy
the following.

2 Lemma If l,k ∈ Z>0 satisfy l < k then bd(Bl) ∩ Bk = ∅.
Proof Let x ∈ bd(Bl). Then

x =

∞∑
j=1

a j

3 j

where either a j = 0 for all j ≥ 2l or a j = 2 for all j ≥ 2l. Thus a2k , 1 and so x < Bk. H

Now, for k ∈ Z>0, we define

Ak = Bk −
(
cl(Bk+1) ∪

(
∪

k−1
j=1B j

))
.

These sets have the following property.

3 Lemma Ak = Bk∩ (I\cl(Bk+1))∩k−1
j=1 (I\cl(Bj)). In particular, Ak is open for each k ∈ Z>0.

Proof By DeMorgan’s Laws we have

Ak = Bk ∩ (I \ cl(Bk+1)) ∩k−1
j=1 (I \ B j).

By Lemma 2 we have
Bk ∩ (I \ B j) = Bk ∩ (I \ cl(B j))

for each j ∈ {1, . . . , k − 1}, and the stated formula for Ak follows from this. That Ak

is open follows since finite intersections of open sets are open. H
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Thus the set A = ∪∞k=1Ak is open, being a union of open sets, and is contained in
B since Ak ⊆ Bk for each k ∈ Z>0.

Now, for k ∈ Z>0, define

Ck = (Bk ∩ Bk+1) \
(
∪

k−1
j=1B j

)
.

By the same argument as employed in the proof of Lemma 3, Lemma 2 implies
that

Ck = Bk ∩ Bk+1 ∩
k−1
j=1 (I \ cl(B j))

and so Ck, k ∈ Z>0, is open, being a finite intersection of open sets. Then define
the open set C = ∪∞k=1Ck. The relationship between the sets Al, l ∈ Z>0, and Ck,
k ∈ Z>0.

4 Lemma For each l,k ∈ Z>0, Al ∩ Ck = ∅.

Proof First suppose that l = k. By definition we have

Ak ⊆ I ∩ cl(Bk+1), Ck ⊆ Bk+1

which immediately gives Ak ∩Ck = ∅. Now suppose that l < k. Again by definition
we have

Al ⊆ Bl, Ck ⊆ I \ cl(Bl),

giving Al ∩ Ck = ∅. Finally, for l > k we have

Al ⊆ I \ cl(Bk), Ck ⊆ Bk,

giving Al ∩ Ck = ∅. H

The following lemma then gives a relationship between A and C.

5 Lemma cl(A) = I \ C.

Proof By Lemma 4 we have A ∩ C = ∅. That is, A ⊆ I \ C. Since I \ C is closed it
follows that cl(A) ⊆ I \ C. The difficult bit if the converse inclusion. Let x ∈ I \ C.
We consider three cases.
1. x ∈ ∪∞k=1 bd(Ak): In this case, since bd(Ak) ⊆ cl(Ak) ⊆ cl(A) for each k ∈ Z>0 it

immediately follows that x ∈ cl(A).
2. x < B: In this case we can write

x =

∞∑
j=1

a j

3 j .

Since x < B, for every k ∈ Z>0 there exists j ∈ {2k−1 + 1, . . . , 2k
} such that a j , 1.

Now define a sequence (yk)k∈Z>0 by asking that yk =
∑
∞

j=1
b j

3 j with

b j =

1, j ∈ {2k−1 + 1, . . . , 2k
},

a j, otherwise.
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We then have |x − yk| ≤
1

32k (cf. the proof of Lemma 1) and so the sequence
(yk)k∈Z>0 converges to x. Moreover, by construction,

yk ∈ Bk, yk < B1 ∪ · · · ∪ Bk−1, yk < cl(Bk+1).

(Only the last of these statements is potentially not obvious. It, however, follows
from the characterisation of Bk+1, and by implication the characterisation of
cl(Bk+1), obtained in Lemma 1.) That is, by definition of Ak, yk ∈ Ak ⊆ A. Thus
x ∈ cl(A) by Proposition 2.5.18.

3. x < ∪∞k=1 bd(Ak) and x ∈ B: Let k ∈ Z>0 be the least index for which x ∈ Bk. Since
x < C it follows that x < Ck and so x < Bk+1 and x < B j for j ∈ {1, . . . , k − 1}. We
also have x < bd(Ak+1). We claim that bd(Bk+1) ⊆ bd(Ak+1). Indeed, for each
m ∈ Z>0, by construction of the set Am, bd(Am) consists of those ternary decimal
expansions

∑
∞

j=1
a j

3 j having the following three properties:

(a) for l < m there exists j ∈ {2l−1 + 1, . . . , 2l
} such that a j , 1;

(b) a j = 1 for each j ∈ {2m−1 + 1, . . . , 2m
};

(c) there exists j ∈ {2m + 1, . . . , 2m+1
} such that a j , 1.

Using this characterisation, and by referring to the description of Bm in Lemma 1,
we then see that, indeed, bd(Bk+1) ⊆ bd(Ak+1). Thus we conclude that x <
bd(Bk+1). Then, by definition of Ak, x ∈ Ak ⊆ A ⊆ cl(A), as desired. H

We also then have

int(cl(A)) ⊆ int(I \ C) = I \ cl(C).

That is, int(cl(A)) ∩ cl(C) = ∅.
Now we can prove that A has one of the properties we set out for it to have.

6 Lemma A = int(cl(A)).

Proof Since A ⊆ cl(A) we have A = int(A) ⊆ int(cl(A)). It is thus the converse
inclusion we must prove.

We first claim that int(cl(A)) ⊆ B. Suppose that x < B. Let us write

x =

∞∑
j=1

a j

3 j .

Since x < B, for every k ∈ Z>0 there exists j ∈ {2k−1 + 1, . . . , 2k
} such that a j , 1. Now,

for k ∈ Z>0, define

yk =

∞∑
j=1

c j

3 j

where

c j =

a j, j ≤ 2k−1,

1, j > 2k−1.
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Then one can directly verify that

yk ∈ Bk, yk ∈ Bk+1, yk < B1 ∪ · · · ∪ Bk−1.

Thus, by definition of Ck, y ∈ Ck. Moreover, |x − yk| ≤
1

32k−1 and so the sequence
(yk)k∈Z>0 converges to x. Therefore, since yk ∈ C for each k ∈ Z>0, x ∈ cl(C) by
Proposition 2.5.18. Thus x < int(cl(A)) by our computation just preceding the
statement of the lemma.

Now, if x ∈ int(cl(A)) then x ∈ B and we let k ∈ Z>0 be the least integer for which
x ∈ Bk. We claim that x < cl(Bk+1). We suppose that x ∈ cl(Bk+1) and arrive at a
contradiction. There are two possibilities.
1. x ∈ bd(Bk+1): First of all, using the characterisation of the sets Bl, l ∈ Z>0,

from Lemma 1 and using the definition of the sets Cl, l ∈ Z>0, we deduce
that bd(Bl) ⊆ bd(Cl) for each l ∈ Z>0. Therefore, if x ∈ bd(Bk+1) then x ∈
bd(Ck+1) ⊆ cl(Ck+1) ⊆ cl(C). This contradicts the fact that x ∈ int(cl(A)) and that
int(cl(A)) ∩ cl(C) = ∅.

2. x ∈ Bk+1: In this case x ∈ Bk ∩ Bk+1 ⊆ Ck ⊆ cl(C), and we arrive at a contradiction,
just as in the previous case.

Thus we have shown that x < cl(Bk+1). But, by definition, this implies that x ∈ Ak ⊆

A, since x < ∪k−1
j=1B j by definition of k. H

Finally, to complete the example, we need only show that A is not Jordan mea-
surable. To do this, we shall show that bd(A) does not have measure zero. In fact,
we shall show that bd(A) has positive measure, but this relies on actually know-
ing what “measure” means; it means Lebesgue measure. We shall subsequently
carefully define Lebesgue measure, but all we need to know here is that (1) the
Lebesgue measure of a countable collection of intervals is less than or equal to the
sum of the lengths of the intervals and (2) the Lebesgue measure of two disjoint
sets is the sum of their measures. Let us denote by λ(S) the Lebesgue measure of a
set S. We note that, by Lemma 1,

λ(Bk) = 32k−1 1
32k =

1
32k−1 .

Thus

λ(B) ≤
∞∑

k=1

1
32k−1 <

∞∑
j=1

1
3 j =

1
2

(how would you compute this sum?). Since A ⊆ B we also haveλ(A) < 1
2 . Therefore,

since cl(A) = I \ C and since C ⊆ B,

λ(A) + λ(bd(A)) = λ(cl(A)) ≥ λ(I \ B) = 1 − λ(B) > 1
2 > λ(A),

which gives λ(bd(A)) ∈ R>0, so A is not Jordan measurable. •

This is a rather complicated example. However, it says something important.
It says that not all open sets are Jordan measurable, not even “nice” open sets (and
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regularly open sets are thought of as being pretty darn nice). Open subsets of R
are pretty easy to describe. Indeed, by Proposition 2.5.6 such sets are countable
unions of open intervals. If one has an open subset of [0, 1], such as the one just
constructed, this means that the total lengths of these intervals should sum to a
finite number of value at most one. This should, if the world is right, be the
“measure” of this open set. However, the example indicates that this is just not so
if “measure” means “Jordan measure.” We shall see that it is so for the Lebesgue
measure.

In Proposition 5.1.8 we stated that finite unions and intersections of Jordan
measurable sets are Jordan measurable. This no longer holds if one replaces “finite”
with “countable.”

5.1.10 Examples (Jordan measurable sets are not closed under countable intersec-
tions and unions)
1. Let (q j) j∈Z>0 be an enumeration of the rational numbers in the interval [0, 1]. For

each j ∈ Z>0 the set {q j} is Jordan measurable with Jordan measure 0. Thus,
by Proposition 5.1.8 any finite union of these sets is also Jordan measurable
with Jordan measure 0. However, the set ∪∞j=1{q j} is not Jordan measurable by
Example 3.4.10.

2. Let (q j) j∈Z>0 be as above and define A j = [0, 1]\{q j}. Then A j is Jordan measurable
and has Jordan measure 1. Moreover, any finite intersection of these sets is
Jordan measurable with Jordan measure 1. However, ∩∞j=1A j is equal to the set
of irrational numbers in the interval [0, 1] and is not Jordan measurable in exactly
the same manner as the set∪∞j=1{q j} is not Jordan measurable, cf. Example 3.4.10.

•

A good question is, “Who cares if the Jordan measure is not closed under count-
able intersections and unions?” This is not obvious, but it certainly underlies, for
example, the failure of the set in Example 5.1.9 to be Jordan measurable. Somewhat
more precisely, this failure of the Jordan measure to not be closed under countable
set theoretic operations is the reason why the Riemann integral does not have nice
properties with respect to sequences, as we now explain explicitly.

5.1.2 Some limitations of the Riemann integral

In this section we simply give an example that illustrates a fundamental defect
with the theory of Riemann integration. The problem we illustrate is the lack of
commutativity of limits and Riemann integration. The reader may wish to refer to
the discussion in Section ?? concerning the Monotone and Dominated Convergence
Theorems for the Riemann integral to get more insight into this.

5.1.11 Example (Limits do not commute with Riemann integration) First recall from
Example 3.4.10 that the function f : [0, 1]→ R defined as taking value 1 on rational
numbers, and value 0 on irrational numbers is not Riemann integrable. It is
legitimate to inquire why one should care if such a degenerate function should be
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integrable. The reason is that the function f arises as the limit of a sequence of
integrable functions. We explain this in the following example.

By Exercise 2.1.3, the set of rational numbers in [0, 1] is countable. Thus it is
possible to write the set of rational numbers as (q j) j∈Z>0 . For each j ∈ Z>0 define
f j : [0, 1]→ R by

f j(x) =

1, x = q j,

0, otherwise.

One may readily verify that f j is Riemann integrable for each j ∈ Z>0, and that
the value of the Riemann integral is zero. By Proposition 3.4.22 it follows that for
k ∈ Z>0, the function

gk =

k∑
j=1

f j

is Riemann integrable, and that the value of the Riemann integral is zero. Thus we
have

lim
k→∞

gk(x) = f (x), lim
k→∞

∫ b

a
gk(x) dx = 0,

the left limit holding for each x ∈ [0, 1] (i.e., the sequence (gk)k∈Z>0 converges point-
wise to f ). It now follows that

lim
k→∞

∫ b

a
gk(x) dx ,

∫ b

a
lim
k→∞

gn(x) dx.

Indeed, the expression on the right hand side is not even defined! •

It is perhaps not evident immediately why this lack of commutativity of limits
and integrals is in any way debilitating, particularly given the inherent silliness
of the functions in the preceding example. We shall not really understand the
reasons for this in any depth until we consider in detail convergence theorems in
Section 5.7.3.

Let us illustrate some additional “features” of the Riemann integral, the exact
context for which we will only consider in detail in Chapter 6 (see, in particular,
Sections 6.7.7 and 6.7.8). We shall freely use the language and notation from that
chapter. Let us define

R(1)([0, 1];R) = { f : [0, 1]→ R | f is Riemann integrable},

and recall from Propositions 3.4.22 and 3.4.25 that R(1)([0, 1];R) is aR-vector space.
Now let us define a seminorm ‖·‖1 on R(1)([0, 1];R) by

‖ f ‖1 =

∫ 1

0
| f (x)|dx.

This fails to be a norm because there exist nonzero Riemann integrable functions f
on [0, 1] for which ‖ f ‖1 = 0 (for example, take f to be a function that has a nonzero
value at a single point in [0, 1]). To produce a normed vector space we denote

Z([0, 1];R) = { f ∈ R(1)([0, 1];R) | ‖ f ‖1 = 0},
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and by Theorem 6.1.8 note that

R1([0, 1];R) , R(1)([0, 1];R)/Z([0, 1];R)

is a normed vector space when equipped with the norm

‖ f + Z([0, 1];R)‖1 , ‖ f ‖1,

where we use the abuse of notation of using the same symbol ‖·‖1 for the norm.
Note that R1([0, 1];R) is a vector space, not of functions, but of equivalence classes
of functions under the equivalence relation that two Riemann integrable functions
are equivalent when the absolute value of their difference has zero integral.

The crux of the matter is now the following result, the proof of which makes
free use of concepts in this chapter that we have not yet introduced.

5.1.12 Proposition (The normed vector space of Riemann integrable functions is
not complete) The R-normed vector space (R1([0, 1];R), ‖·‖1) is not complete.

Proof Let (q j) j∈Z>0 be an enumeration of the rational numbers in [0, 1]. Let ` ∈ (0, 1)
and for j ∈ Z>0 define

I j = [0, 1] ∩ (q j −
`

2 j+1 , q j + `
2 j+1 )

to be the interval of length `
2 j centred at q j. Then define Ak = ∪k

j=1I j, k ∈ Z>0, and
A = ∪ j∈Z>0A j. Also define fk = χAk , k ∈ Z>0, and f = χA be the characteristic functions
of Ak and A, respectively. Note that Ak is a union of a finite number of intervals
and so fk is Riemann integrable for each k ∈ Z>0. However, we claim that f is not
Riemann integrable. Indeed, the characteristic function of a set is Riemann integrable
if and only the boundary of the set has measure zero; this is a direct consequence of
Lebesgue’s theorem stating that a function is Riemann integrable if and only if its set of
discontinuities has measure zero (Theorem 3.4.11). Note that since cl(Q∩[0, 1]) = [0, 1]
we have

[0, 1] = cl(A) = A ∪ bd(A).

Thus
λ([0, 1]) ≤ λ(A) + λ(bd(A)).

Since

λ(A) ≤
∞∑
j=1

λ(I j) ≤ `,

it follows that λ(bd(A)) ≥ 1 − ` ∈ R>0. Thus f is not Riemann integrable, as claimed.
Next we show that if g : [0, 1] → R satisfies [g] = [ f ], then g is not Riemann

integrable. To show this, it suffices to show that g is discontinuous on a set of positive
measure. We shall show that g is discontinuous on the set g−1(0) ∩ bd(A). Indeed, let
x ∈ g−1(0)∩ bd(A). Then, for any ε ∈ R>0 we have (x− ε, x + ε)∩A , ∅ since x ∈ bd(A).
Since (x− ε, x + ε)∩A is a nonempty open set, it has positive measure. Therefore, since
f and g agree almost everywhere, there exists y ∈ (x − ε, x + ε) ∩ A such that g(y) = 1.
Since this holds for every ε ∈ R>0 and since g(x) = 0, it follows that g is discontinuous at
x. Finally, it suffices to show that g−1(0)∩ bd(A) has positive measure. But this follows
since bd(A) = f−1(0) has positive measure and since f and g agree almost everywhere.
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We claim that the sequence ([ fk])k∈Z>0 is Cauchy in R1([0, 1];R). Let ε ∈ R>0. Note
that

∑
∞

j=1 λ(I j) ≤ `. This implies that there exists N ∈ Z>0 such that
∑m

j=k+1 λ(I j) < ε for
all k,m ≥ N. Now note that for k,m ∈ Z>0 with m > k, the functions fk and fm agree
except on a subset of Ik+1 ∪ · · · ∪ Im. On this subset, fm has value 1 and fk has value 0.
Thus ∫ 1

0
| fm(x) − fk(x)|dx ≤ λ(Ik+1 ∪ · · · ∪ Im) ≤

m∑
j=k+1

λ(I j).

Thus we can choose N ∈ Z>0 sufficiently large that ‖ fm − fk‖1 < ε for k,m ≥ N. Thus
the sequence ([ fk])k∈Z>0 is Cauchy, as claimed.

We next show that the sequence ([ fk])k∈Z>0 converges to [ f ] in L1([0, 1];R) (see
Section 6.7.7). Since the sequence ([ f − fk])k∈Z>0 is in the subset

{[ f ] ∈ L1([0, 1];R) | | f (x)| ≤ 1 for almost every x ∈ [0, 1]},

by the Dominated Convergence Theorem, Theorem 5.7.28, it follows that

lim
k→∞
‖ f − fk‖1 =

∫
I

lim
k→∞
| f − fk|dλ = 0.

This gives us the desired convergence of ([ fk])k∈Z>0 to [ f ] in L1([0, 1];R). However,
above we showed that [ f ] < R1([0, 1];R). Thus the Cauchy sequence ([ fk])k∈Z>0 in
R1([0, 1];R) is not convergent in R1([0, 1];R), giving the desired incompleteness of
(R1([0, 1];R), ‖·‖1). �

It should be emphasised that all of the above “problems” are not so much one
with using the Riemann integral to compute the integral of a given function, as to
use the notion of a Riemann integrable function in stating theorems, particularly
those where limits are involved. This problem is taken care of by the Lebesgue
integral, to which we turn our attention in Section 5.7.1 in a general setting for
integration.

5.1.3 An heuristic introduction to the Lebesgue integral

Before we get to the powerful general theory, we provide in this section an
alternate way of thinking about the integral of a function defined on a compact
interval. The idea is an essentially simple one. One defines the Riemann integral
by taking increasingly finer partitions of the independent variable axis, where on
each subinterval of the partition the approximation is constant. For the Lebesgue
integral, it turns out that what one should do instead is partition the dependent
variable axis.

The reader should not treat the following discussion as the definition of the
Lebesgue integral. This definition will be provided precisely in the general frame-
work of Section 5.7.1. But let us be a little precise about the idea. We let
I = [a, b] and let f : I → R be a positive bounded function. This means that
f (I) ⊂ [0,M] for some M ∈ R>0. We then let P be a partition of [0,M] with endpoints
(y0 = 0, y1, . . . , yn−1, yn = M). Corresponding to this partition let us define sets

A j = {x ∈ I | f (x) ∈ [y j−1, y j)},
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and then define

fP =

n∑
j=1

y jχA j .

The function fP is called a simple function, as we shall see in Section 5.7, and
approximates f from below as depicted in Figure 5.1. The integral of one of these

a b [
a

]
b

Figure 5.1 The idea behind the Riemann integral (left) and the
Lebesgue integral (right)

approximations is then ∫ b

a
fP(x) dx =

n∑
j=1

y jλ(A j),

where µ(A j) is the “size” of the set A j. If A j is a union on intervals, then µ(A j) is the
sum of the lengths of these intervals. More generally, we shall define

λ(A) = inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ A ⊆
⋃

j∈Z>0

(a j, b j)
}

for a very general class of subsets of R. To define the integral of f we take

“
∫ b

a
f (x) dx” = sup

{ ∫ b

a
fP(x) dx

∣∣∣∣ P a partition of [0,M]
}
.

The idea is that by taking successively finer partitions of the image of f one can
better approximate f .

For the elementary function we are depicting in Figure 5.1, the two approaches
appear to be much the same. However, the power of the Lebesgue integral rests in
its use of the “size” of the sets A j on which the approximating function is constant.
For step functions, these sets are always intervals, and it is there that the problems
arise. By allowing the sets A j to be quite general, the Lebesgue integral becomes a
very powerful tool. However, it does need some buildup, and the first thing to do
is remove the quotes from “size.”
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5.1.4 Notes

Example 5.1.9 comes from [RB:99]. OF:33 connects the Riemann integral and
the Jordan measure.

[PRH:74, DLC:13]

Exercises

5.1.1 Prove Proposition 5.1.8.
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Section 5.2

Measurable sets

The construction of the integral we provide in this chapter proceeds along
different lines than does the usual construction of the Riemann integral. In Riemann
integration one typically jumps right in with a function and starts constructing step
function approximations, etc. However, one could also define the Riemann integral
by first defining the Jordan measure as in Section 5.1.1, and then using this as the
basis for defining the integral. But the idea is still that one uses step functions
as approximations. In the theory for integration that we develop here, a crucial
difference is the sort of functions we use to approximate the functions we wish
to integrate. The construction of these approximating functions, in turn, rests on
some purely set theoretic constructions that play the rôle of the Jordan measure
(which, we remind the reader, is not a measure in the general sense we define in
this chapter) in Riemann integration. In this section we provide the set theoretic
constructions needed to begin this abstract form of integration theory.

Do I need to read this section? If you are reading this chapter, then this is where
the technical material begins. If you are only interested in learning about Lebesgue
measure, you can get away with knowing the definition of “measurable space”
and then proceeding directly to Section 5.4. However, in Section 5.4 we will freely
refer to things proved in this section, so as you read Section 5.4 you will eventually
end up reading many things in this section anyway. •

5.2.1 Algebras and σ-algebras

The idea we develop in this section and the next is that of a means of measuring
the size of a set in a general way. What one first must do is provide a suitable
collection of sets whose size one wishes to measure. One’s first reaction to this
programme might be, “Why not measure the size of all subsets?” The answer to
this question is not immediately obvious, and we shall say some things about this
as we go along. For the moment, the reader should simply trust that the definitions
we give have been thought over pretty carefully by lots of pretty smart people, and
so are possibly “correct.”2

5.2.1 Definition (Algebra, σ-algebra, measurable space) For a set X, a subset of sub-
sets A ⊆ 2X is an algebra3 if

(i) X ∈ A ,
(ii) A ∈ A implies X \ A ∈ A , and
(iii) ∪k

j=1A j ∈ A for any finite family (A1, . . . ,Ak) of subsets,

2That being said, never stop being a skeptic!
3Also sometimes called a field.
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and a σ-algebra4 on X if
(iv) X ∈ A ,
(v) A ∈ A implies X \ A ∈ A , and
(vi) ∪ j∈Z>0A j ∈ A for any countable family (A j) j∈Z>0 of subsets.

A pair (X,A ) is called a measurable space if A is a σ-algebra on X and elements of
A are called A -measurable. •

We shall mainly be concerned with σ-algebras, although the notion of an algebra
is occasionally useful even if one is working with σ-algebras.

5.2.2 Remark (Why are the axioms for a measurable space as they are?) In Re-
mark ?? we attempted to justify why the axioms for a topological space are as
they are. For topological spaces this justification is facilitated by the fact that most
readers will already know about open subsets of Euclidean space. For readers new
to measure theory, it is less easy to justify the axioms of a measurable space. In
particular, why is it that we require countable unions of measurable subsets to be
measurable? Why not finite unions (as with algebras) or arbitrary unions? Why
not intersections instead of unions? The reason for this, at its core, is that we wish
for the theory we develop to have useful properties with respect to sequential limit
operations, and such limit operations have an intrinsic countability in them due to
sequences being countable sets. It may be difficult to see just why this is important
at this point, but this is the justification. •

Let us give some simple examples of σ-algebras.

5.2.3 Examples (Algebras, σ-algebras)
1. It is clear that the power set 2X of a set X is a σ-algebra.
2. For a set X, the collection of subsets {∅,X} is a σ-algebra.
3. For a set X the collection of subsets

A = {A ⊆ X | A or X \ A is countable}

is a σ-algebra.
4. The collection J (Rn) of Jordan measurable subsets of Rn (see Definition ??) is

an algebra by Proposition 5.1.8 and not a σ-algebra by virtue of Example 5.1.10.
•

The following result records some useful properties of σ-algebras.

5.2.4 Proposition (Properties of σ-algebras) Let A be a σ-algebra on X. The following
statements hold:

(i) ∅ ∈ A ;
(ii) if A1, . . . ,Ak ∈ A then ∪k

j=1Aj ∈ A ;

(iii) ∩j∈Z>0Aj ∈ A for any countable collection (Aj)j∈Z>0 of subsets;

4Also sometimes called a σ-field.
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(iv) if A1, . . . ,Ak ∈ A then ∩k
j=1Aj ∈ A .

Moreover, condition (vi) in Definition 5.2.1 can be equivalently replaced with condition (iii)
above.

Proof (i) Since X ∈ A we must have X \ X = ∅ ∈ A .
(ii) We define a countable collection (B j) j∈Z>0 of subsets in A by

B j =

A j, j ∈ {1, . . . , k},
∅, j > k,

and the assertion now follows since

∪
k
j=1A j = ∪ j∈Z>0B j ∈ A .

(iii) This follows from De Morgan’s Laws (Proposition 1.1.5):⋂
j∈Z>0

A j = X \
( ⋃

j∈Z>0

(X \ A j)
)
.

Since X \ A j ∈ A it follows that ∪ j∈Z>0(X \ A j) ∈ A since A is a σ-algebra. Therefore
X \

(
∪ j∈Z>0(X \ A j)

)
∈ A and so this part of the result follows.

(iv) This follows again from De Morgans’s Laws, along with part (ii).
The final assertion of the proposition follows from De Morgans’s Laws, as can

be gleaned from the arguments used in the proof of part (iii), along with a similar
argument, swapping the rôles of union and intersection. �

The following corollary is now obvious.

5.2.5 Corollary (σ-algebras are algebras) A σ-algebra A on a set X is also an algebra on X.

Another construction that is sometimes useful is the restriction of a measurable
space (X,A ) to a subset A ⊆ X. If A is measurable, then there is a natural σ-algebra
induced on A.

5.2.6 Proposition (Restriction of a σ-algebra to a measurable subset) Let (X,A ) be a
measurable space, let A ∈ A , and define AA ⊆ 2A by

AA = {B ∩A | B ∈ A }.

Then (A,AA) is a measurable space.
Proof We need to show that AA is a σ-algebra on A. Clearly A ∈ AA since A = X ∩ A
and X ∈ A . Also, since A \ (B ∩ A) = (X \ B) ∩ A by Proposition 1.1.5, it follows that
A \ (B ∩ A) ∈ AA for B ∩ A ∈ AA. Suppose that (B j ∩ A) j∈Z>0 is a countable family of
sets in AA. Since ∪ j∈Z>0(B j ∩ A) = (∪ j∈Z>0B j) ∩ A by Proposition 1.1.7 it follows that
∪ j∈Z>0(B j ∩ A) ∈ AA. �

5.2.2 Algebras and σ-algebras generated by families of subsets

It is often useful to be able to indirectly define algebras and σ-algebras by
knowing that they contain a certain family of subsets. This is entirely analogous to
the manner in which one defines a topology by a basis or subbasis; see Section ??.

Let us begin with the construction of a σ-algebra containing a family of subsets.
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5.2.7 Proposition (σ-algebras generated by subsets) If X is a set and if S ⊆ 2X then
there exists a unique σ-algebra σ(S ) with the following properties:

(i) S ⊆ σ(S );
(ii) if A is any σ-algebra for which S ⊆ A then σ(S ) ⊆ A .

Proof We let PS be the collection of all σ-algebras with the property that if A ∈PS

then S ⊆ A . Note that PS is nonempty since 2X
⊆PS . We then define

σ(S ) =
⋂
{A | A ∈PS }.

If σ(S ) is a σ-algebra then clearly it satisfies the conditions of the statement of the
result. Let us then show that σ(S ) is a σ-algebra. Since each element of PS is a
σ-algebra we have X ∈ A whenever A ∈ PS . Therefore X ∈ σ(S ). If A ∈ σ(S ) it
follows that A ∈ A whenever A ∈ PS . Therefore X \ A ∈ A whenever A ∈ PS ,
showing that X \ A ∈ σ(S ). Finally, if (A j) j∈Z>0 ⊆ σ(S ) then (A j) j∈Z>0 ⊆ A whenever
A ∈PS . Therefore, ∪ j∈Z>0A j ∈ A whenever A ∈PS . Therefore, ∪ j∈Z>0A j ∈ σ(S ).�

The previous proof applies equally well to algebras. Moreover, it is possible
to give a more or less explicit characterisation of the smallest algebra containing
a given collection of subsets. This is not possible for σ-algebras, cf. the proof of
Theorem 5.2.14.

5.2.8 Proposition (Algebras generated by subsets) If X is a set and if S ⊆ 2X then there
exists a unique algebra σ0(S ) with the following properties:

(i) S ⊆ σ0(S );
(ii) if A is any algebra for which S ⊆ A then σ0(S ) ⊆ A .

Moreover, σ0(S ) is the set of finite unions of sets of the form S1 ∩ · · · ∩ Sk, where each of
the sets S1, . . . , Sk is either in S or its complement is in S .

Proof The existence of σ0(S ) can be argued just as in the proof of Proposition 5.2.7.
To see that σ0(S ) admits the explicit stated form, let S be the collection sets of the
stated form. We first claim that S is an algebra. To see that X ∈ S , let S ∈ S and note
that X \ S ∈ S . Thus X = S ∪ (X \ S) ∈ S . If T ∈ S then we show that X \ T ∈ S as
follows. Note that T = T1 ∪ · · · ∪ Tk where, for each j ∈ {1, . . . , k},

T j =

m j⋂
l j=1

S jl j , S jl j ∈ S or X \ S jl j ∈ S , l j ∈ {1, . . . ,m j}.

Let us for brevity denote A = {1, . . . ,m1} × · · · × {1, . . . ,mk}. Then, using De Morgan’s
Laws and Proposition 1.1.7,

X \ T = X \
( k⋃

j=1

( m j⋂
l j=1

S jl j

))
=

k⋂
j=1

(
X \

( m j⋂
l j=1

S jl j

))
=

k⋂
j=1

( m j⋃
l j=1

X \ S jl j

)
=

⋃
(l1,...,lk)∈A

( k⋃
j=1

X \ S jl j

)
,
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which then gives X \ T ∈ S . It is obvious that finite unions of sets from S are in S ,
which shows that S is an algebra, as desired. Moreover, it is clear that S ⊆ S .

Now suppose that A is an algebra for which S ⊆ A . Since A is an algebra this
implies that X \S ∈ A for S ∈ S and, by Exercise 5.2.1, that S1 ∩ · · · ∩Sk ∈ A for every
collection S1, . . . ,Sk for which either S j ∈ S or X \ S j ∈ S for each j ∈ {1, . . . , k}. Thus
S ⊆ A and so S = σ0(S ), as desired. �

This gives the following result as a special case.

5.2.9 Corollary (The algebra generated by a finite collection of sets) Let X be a set
and let S1, . . . , Sk ⊆ X be a finite family of subsets. Then σ0(S1, . . . , Sk) is the collection
of finite unions of sets of the form T1 ∩ · · · ∩ Tm where, for each j ∈ {1, . . . ,m}, either
Tj ∈ {S1, . . . , Sk} or X \ Tj ∈ {S1, . . . , Sk}.

The point is that you can specify any collection of subsets and define an algebra
or σ-algebra associated with this collection in a natural way, i.e., by demanding
that the conditions of an algebra or a σ-algebra hold. The preceding results makes
sense of the next definition.

5.2.10 Definition (Algebras and σ-algebras generated by subsets) If X is a set and
S ⊆ 2X, the algebra σ0(S ) (resp. σ-algebra σ(S )) of Proposition 5.2.8 (resp. Propo-
sition 5.2.7) is the algebra generated by S (resp. σ-algebra generated by S ). •

We now provide an alternative description of the σ-algebra generated by a
collection of subsets. This description relies on the following concept.

5.2.11 Definition (Monotone class) For a set X, a monotone class on X is a collection
M ⊆ 2X of subsets of X with the following properties:

(i) ∪ j∈ZA j ∈M for every family (A j) j∈Z>0 of subsets from M such that A j ⊆ A j+1

for every j ∈ Z>0;
(ii) ∩ j∈Z>0A j ∈M for every family (A j) j∈Z>0 of subsets from M such that A j ⊇ A j+1

for every j ∈ Z>0. •

Let us illustrate how the conditions of a monotone class can be used to relate
algebras and σ-algebras.

5.2.12 Proposition (Algebras that are σ-algebras) Let X be a set and let A be an algebra.
If either

(i) ∪j∈Z>0Aj ∈ A for every family (Aj)j∈Z>0 of subsets from A for which Aj ⊆ Aj+1,
j ∈ Z>0, or

(ii) ∩j∈Z>0Aj ∈ A for every family (Aj)j∈Z>0 of subsets from A for which Aj ⊇ Aj+1,
j ∈ Z>0,

then A is a σ-algebra.
Proof We clearly have X ∈ A and X \ A ∈ A for A ∈ A .

Now suppose that the first of the two conditions in the proposition holds and let
(A j) j∈Z>0 be a countable collection of subsets from A . For k ∈ Z>0 define Bk ∈ ∪

k
j=1A j.

Since A is an algebra, Bk ∈ A for k ∈ Z>0. Moreover, we clearly have Bk ⊆ Bk+1 for
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each k ∈ Z>0 and ∪ j∈Z>0A j = ∪k∈Z>0Bk. Therefore, by assumption, ∪ j∈Z>0A j ∈ A , and
so A is a σ-algebra.

Finally suppose that the second of the two conditions in the proposition holds and
let (A j) j∈Z>0 be a countable collection of subsets from A . Define Bk = X \ ∪k

j=1A j. Since
A is an algebra we have Bk ∈ A for k ∈ Z>0. We also have Bk ⊇ Bk+1 for each k ∈ Z>0
and ∩∞k=1 = X \ ∪ j∈Z>0A j. Thus X \ ∪ j∈Z>0A j ∈ A , and so ∪ j∈Z>0A j ∈ A since A is an
algebra. Thus A is a σ-algebra. �

Next we state our alternative characterisation of the σ-algebra generated by an
algebra of subsets. It is perhaps not immediately apparent why the result is useful,
but we shall use it in our discussion of product measures in Section 5.8.1.

5.2.13 Theorem (Monotone Class Theorem) Let X be a set and let S ⊆ 2X. Then there
exists a unique monotone class m(S ) on X such that

(i) S ⊆ m(S ) and
(ii) if M is any monotone class on X for which S ⊆M then m(S ) ⊆M .

Moreover, if S is an algebra then m(S ) = σ(S ).
Proof We let PS be the collection of monotone classes with the property that if
M ∈PS then S ⊆M . Since X ∈PS it follows that PS is not empty. We define

m(S ) =
⋂
{M | M ∈PS }.

It is clear that S ⊆ m(S ). Moreover, it is also clear that if M is a monotone class
containing S then m(S ) ⊆ M . It remains to show that m(S ) is a monotone class.
Let (A j) j∈Z>0 be a family of subsets from m(S ) such that A j ⊆ A j+1 for j ∈ Z>0. Since
A j ∈M for each j ∈ Z>0 and M ∈PS it follows that∪ j∈Z>0A j ∈M for every M ∈PS .
Thus ∪ j∈Z>0A j ∈ m(S ). Similarly, let (A j) j∈Z>0 be a family of subsets from m(S ) for
which A j ⊇ A j+1 for j ∈ Z>0. Since A j ∈M for every j ∈ Z>0 and M ∈ PS it follows
that ∩ j∈Z>0A j ∈M for every M ∈ PS . Thus ∩ j∈Z>0A j ∈ m(S ), showing that m(S ) is
indeed a monotone class.

Now let us prove the final assertion of the theorem, supposing that S is an algebra.
We claim that m(S ) is an algebra. Indeed, let S ∈ S and define

MS = {A ∈ m(S ) | S ∩ A,S ∩ (X \ A), (X \ S) ∩ A ∈ m(S )}.

We claim that MS is a monotone class. Indeed, let (A j) j∈Z>0 be a family of subsets from
MS such that A j ⊆ A j+1 for j ∈ Z>0. Thus

S ∩ A j,S ∩ (X \ A j), (X \ S) ∩ A j ∈ m(S ), j ∈ Z>0.

Then, using Propositions 1.1.5 and 1.1.7,

S ∩
(
∪ j∈Z>0A j

)
= ∪ j∈Z>0(S ∩ A j),

S ∩
(
X \

(
∪ j∈Z>0A j

))
= S ∩

(
∩ j∈Z>0X \ A j

)
= ∩ j∈Z>0S ∩ (X \ A j),

(X \ S) ∩
(
∪ j∈Z>0A j

)
= ∪ j∈Z>0(X \ S) ∩ A j.

Since

S ∩ A j ⊆ S ∩ A j+1, S ∩ (X \ A j) ⊇ S ∩ (X \ A j+1), (X \ S) ∩ A j ⊆ (X \ S) ∩ A j+1,
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for j ∈ Z>0, we conclude that

S ∩
(
∪ j∈Z>0A j

)
,S ∩

(
X \

(
∪ j∈Z>0A j

))
, (X \ S) ∩

(
∪ j∈Z>0A j

)
∈ m(S ),

and so ∪ j∈Z>0A j ∈MS. A similarly styled argument gives ∩ j∈Z>0 ∈MS for a countable
family (A j) j∈Z>0 of subsets from MS satisfying A j ⊇ A j+1, j ∈ Z>0. Thus MS is indeed a
monotone class.

We claim that MS = m(S ). To see this we first claim that S ⊆ MS. Indeed, if
A ∈ S then

S ∩ A,S ∩ (X \ A), (X \ S) ∩ A ∈ S ⊆ m(S )

since S is a field. Thus MS is a monotone class containing S and so m(S ) ⊆ MS.
Since MS ⊆ m(S ) by definition, we conclude that MS = m(S ). Note that S ∈ S is
arbitrary in this construction.

Next we claim that MS, and so m(S ), is an algebra. First of all, since X ∈ S by
virtue of S being an algebra, we have

X ∈ S ⊆ m(S ) = MS.

Also, if A ∈MS we have

A ∈MS =⇒ A ∈MX =⇒ X ∩ (X \ A) ∈ m(S ) =⇒ X \ A ∈ m(S ) = MS.

Also, let A,B ∈MS. Then

A,B ∈MS =⇒ A,B ∈MA =⇒ B ∩ A ∈ m(S ) = MS.

Thus the intersection of sets from MS lies in MS. This means that if A,B ∈MS then

X \ A,X \ B ∈MS =⇒ (X \ A) ∩ (X \ B) = X \ (A ∪ B) ∈MS,

implying that A ∪ B ∈ MS. Thus pairwise unions of sets from MX are in MS. An
elementary induction then gives ∩k

j=1A j ∈ MS for every family of subsets (A1, . . . ,A j)
from MS. This shows that MS = m(S ) is an algebra.

Since MS is a monotone class it is a σ-algebra by Proposition 5.2.12. Thus σ(S ) ⊆
MS = m(S ). Moreover, σ(S ) is a monotone class by the properties of a σ-algebra
and by Proposition 5.2.4. Since S ⊆ σ(S ) we conclude from Proposition 5.2.12 that
m(S ) ⊆ σ(S ), giving m(S ) = σ(S ), as desired. �

The following “fun fact” about the σ-algebra generated by a collection of sub-
sets is useful to understand how big this σ-algebra is. We will use this result in
Proposition 5.4.13 to compare the cardinalities of Borel and Lebesgue measurable
sets. Recall that ℵ0 = card(Z≥0).

5.2.14 Theorem (Cardinality of the σ-algebra generated by a collection of subsets)
Let X be a set and let S ⊆ 2X be such that ∅ ∈ S and that card(S ) ≥ 2. Then
card(σ(S )) ≤ card(S )ℵ0 .

Proof Let ℵ1 be the smallest uncountable cardinal number (the cardinal number that
the Continuum Hypothesis asserts is equal to card(R)). Define S0 = S . For a cardinal
number c < ℵ1 we shall use Transfinite Induction (Theorem ??) to define Sc as follows.
Suppose that Sc′ has been defined for a cardinal number c′ such that 0 < c′ < c. Then
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define Sc to be the collection of sets of the form ∪ j∈Z>0A j where either A j or X \ A j is
an element of the family ∪0≤c′<cSc′ of subsets of X. We claim that ∪0≤c<ℵ1Sc = σ(S ).

We first prove by Transfinite Induction that∪0≤c<ℵ1Sc ⊆ σ(S ). Clearly S0 ⊆ σ(S ).
Suppose that Sc′ ⊆ σ(S ) for 0 ≤ c′ < c < ℵ1. Then let ∪ j∈Z>0A j ∈ Sc for set A j such
that either A j or X \ A j are in the family ∪0≤c′<cSc′ of subsets of X. It follows from the
induction hypothesis that A j,X \ A j ∈ σ(S ). Thus ∪ j∈Z>0A j ∈ σ(S ) since a σ-algebra
is closed under countable unions. Therefore, Sc ∈ σ(S ) and so we conclude from
Transfinite Induction that ∪0≤c<ℵ1Sc ⊆ σ(S ).

To prove that ∪0≤c<ℵ1Sc = σ(S ) it now suffices to show that ∪0≤c<ℵ1Sc is a σ-
algebra since it contains S and since σ(S ) is the smallest σ-algebra containing S .
Since ∅ ∈ S we have

X = (X \ ∅) ∪ ∅ ∪ ∅ · · · ∈ S1,

and so X ∈ ∪0≤c<ℵ1Sc. Now suppose that A ∈ ∪0≤c<ℵ1Sc so that A ∈ Sc0 for some c0
satisfying 0 ≤ c0 ≤ ℵ1. For c1 > c0 it then holds that

X \ A = (X \ A) ∪ (X \ A) ∪ · · · ∈ Sc1 ,

and so (X \ A) ∈ ∪0≤c<ℵ1Sc. Finally, let (A j) j∈Z>0 be a countable family of subsets
from ∪0≤c<ℵ1Sc. For j ∈ Z>0 let c j be a cardinal number satisfying 0 ≤ c j < ℵ1 and
A j ∈ Sc j . Since ℵ1 is uncountable it cannot be a countable union of countable sets (by
Proposition ??) and since each of the cardinal numbers c j, j ∈ Z>0, are countable, it
follows that there exists a cardinal number c∞ such that 0 ≤ c∞ < ℵ1 and such that c j <
c∞. Then ∪ j∈Z>0A j ∈ Sc∞ ⊆ ∪0≤c<ℵ1Sc, completing the proof that ∪0≤c<ℵ1Sc = σ(S ).

We now prove by Transfinite Induction that card(Sc) ≤ card(S )ℵ0 for every cardi-
nal number c satisfying 0 ≤ c ≤ ℵ1. Certainly card(S0) ≤ card(S )ℵ0 . Now suppose that
c is a cardinal number satisfying 0 ≤ c < ℵ1 and suppose that card(Sc′) ≤ card(S )ℵ0

for cardinals c′ satisfying 0 ≤ c′ < c. Since c is countable it follows that

card(∪0≤c′<cSc′) ≤ ℵ0 card(S )ℵ0 = card(S )ℵ0

by Theorem ??, Exercises ?? and ??, and since card(S ) ≥ 2. Now, considering the
definition of Sc we see that

card(Sc) = 2 card(∪0≤c′<cSc′) ≤ card(S )ℵ0 ,

as claimed.
From this we deduce that

card(σ(S )) = card(∪0≤c<ℵ1Sc) ≤ card(S )ℵ0ℵ1 = card(S )ℵ0 ,

using Theorem ?? and the fact that card(S )ℵ0 ≥ ℵ1 since card(S ) ≥ 2 and using
Exercises ?? and ??. �

5.2.3 Products of measurable spaces

The development of measure theory on products is a little more challenging
than, say, the development of topology on products. In this section we introduce
the basic tool for studying measure theory for products by considering the products
of sets equipped with algebras or σ-algebras of subsets.

We begin by considering products of sets equipped with algebras of subsets.
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5.2.15 Definition (Measurable rectangles) For sets X1, . . . ,Xk with algebras A j ⊆ 2X j ,
j ∈ {1, . . . , k}, a measurable rectangle is a subset

A1 × · · · × Ak ⊆ X1 × · · · × Xk

where A j ∈ A j, j ∈ {1, . . . , k}. The set of measurable rectangles is denoted by
A1 × · · · ×Ak. •

By Corollary 5.2.5 the preceding definition can be applied to the case when
each of the collections of subsets A1, . . . ,Ak is a σ-algebra.

The following property of the set of measurable rectangles is then useful.

5.2.16 Proposition (Finite unions of measurable rectangles form an algebra) For sets
X1, . . . ,Xk with algebras Aj ⊆ 2Xj , j ∈ {1, . . . ,k}, the set of finite unions of sets from
A1×· · ·×Ak is an algebra on X1×· · ·×Xk, and is necessarily the algebra σ0(A1×· · ·×Ak).

Proof Clearly X1×· · ·×Xk is a measurable rectangle. Next, for measurable rectangles
A1 × · · · × Ak and B1 × · · · × Bk we have

(A1 × · · · × Ak) ∩ (B1 × · · · × Bk) = (A1 ∩ B1) × · · · × (Ak ∩ Bk).

This shows that the intersection of two measurable rectangles is a measurable rectangle.
From Proposition 1.1.4 we can then conclude that the intersection of two finite unions
of measurable rectangles is a finite union of measurable rectangles. Next let A1×· · ·×Ak
be a measurable rectangle and note that

(X1 × · · · × Xk) \ (A1 × · · · × Ak)

is the union of sets of the form B1 × · · · × Bk where B j ∈ {A j,X j \ A j} and where
at least one of the sets B j is not equal to A j. That is to say, the complement of a
measurable rectangle is a finite union of measurable rectangles. By De Morgan’s Laws
we then conclude that the complement of a finite union of measurable rectangles is
a finite union of measurable rectangles. By Exercise 5.2.1 this proves that the set of
finite unions of measurable rectangles is an algebra. Moreover, if A is any σ-algebra
containing A1 × · · · ×Ak then A must necessarily contain finite unions of measurable
rectangles. Thus A is contained in the set of finite unions of measurable rectangles. By
Proposition 5.2.8 this means that the algebra of finite unions of measurable rectangles
is the algebra generated by A1 × · · · ×Ak. �

The principal object of interest to us will be the σ-algebra generated by the
measurable rectangles. The following result gives a characterisation of this σ-
algebra.

5.2.17 Proposition (The σ-algebra generated by the algebra of measurable rectan-
gles) For sets X1, . . . ,Xk with algebras Aj ⊆ 2Xj , j ∈ {1, . . . ,k}, we have

σ(A1 × · · · ×Ak) = σ(σ(A1) × · · · × σ(Ak)).

Proof Clearly we have

σ(A1 × · · · ×Ak) ⊆ σ(σ(A1) × · · · × σ(Ak)).
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To prove the opposite inclusion it suffices to show that

σ(A1) × · · · × σ(Ak) ⊆ σ(A1 × · · · ×Ak)

since this will imply that the σ-algebra of the left-hand side is contained in the right-
hand side. We prove the preceding inclusion by induction on k. For k = 1 the assertion
is trivial. So suppose that for k = m we have

σ(A1) × · · · × σ(Am) ⊆ σ(A1 × · · · ×Am),

and suppose that we have a set Xm+1 with an algebra Am+1. Fix A j ∈ σ(A j), j ∈ {1, . . . ,m},
and define

σ′(Am+1) = {A ∈ σ(Am+1) | A1 × · · · × Am × A ∈ σ(A1 × · · · ×Am+1)}.

We claim that σ′(Am+1) is a σ-algebra on Xm+1. Certainly Xm+1 ∈ σ′(Am+1) since

A1 × · · · × Am × Xm+1 ∈ A1 × · · · ×Am ×Am+1 ⊆ σ(A1 × · · · ×Am+1).

Let A ∈ σ′(Am+1). Then we note that

A1 × · · · × Am × (Xm+1 \ A) = (A1 × · · · × Am × Xm+1) \ (A1 × · · · × Am × A).

By assumption,
A1 × · · · × Am × A ∈ σ(A1 × · · · ×Am ×Am+1)

from which we conclude that

(A1 × · · · × Am × Xm+1) \ (A1 × · · · × Am × A) ∈ σ(A1 × · · · ×Am ×Am+1).

Thus Xm+1 \ A ∈ σ′(sAm+1). Finally, if (B j) j∈Z>0 is a countable family of subsets from
σ′(Am+1) we have

A1 × · · · × Am ×
( ⋃

j∈Z>0

B j

)
=

⋃
j∈Z>0

A1 × · · · × Am × B j ∈ σ(A1 × · · · ×Am ×Am+1).

Thus ∪ j∈Z>0B j ∈ σ′(Am+1), showing that σ′(Am+1) is indeed a σ-algebra. Since Ak+1 ⊆

σ′(Am+1) and since σ′(Am+1) ⊆ σ(Am+1), we conclude that σ(Am+1) = σ(Am+1). This
shows that

σ(A1) × · · · × σ(Am) × σ(Am+1) ⊆ σ(A1 × · · · ×Am ×Am+1),

as desired. �

The following property of the product of σ-algebras is useful.
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5.2.18 Proposition (Intersections of measurable sets with factors in products are
measurable) Let (Xj,Aj), j ∈ {1, . . . ,k}, be measurable spaces. For A ∈ σ(A1 × · · · ×Ak),
for j ∈ {1, . . . ,k}, and for xj ∈ Xj define

Axj = {(x1, . . . , xj−1, xj+1, . . . , xk) ∈ X1 × · · · × Xj−1 × Xj+1 × · · · × Xk|

(x1, . . . , xj−1, xj, xj+1, . . . , xk) ∈ A}.

Then Axj ∈ σ(A1 × · · · ×Aj−1 ×Aj+1 × · · · ×Ak).
Proof Let Fx j be the subsets A ⊆ X1×· · ·×Xk with the property that Ax j ∈ σ(A1×· · ·×

A j−1 ×A j+1 × · · · ×Ak). We claim that if B j ∈ X j, j ∈ {1, . . . , k}, then B1 × · · · × Bk ∈ Fx j .
Indeed, we have Ax j = B1 × · · · × B j−1 × B j+1 × · · · × Bk if x j ∈ B j and Ax j = ∅ otherwise.
We also claim that Fx j is a σ-algebra. We have just shown that X1 × · · · × Xk ∈ Fx j . If
A ∈ Fx j and Al ∈ Fx j , l ∈ Z>0, then we have the easily verified identities

((X1 × · · · × Xk) \ A)x j = (X1 × · · · × Xk) \ Ax j

and (
∪l∈Z>0Al

)
x j

= ∪ j∈Z>0(Al)x j ,

which shows that Fx j is indeed a σ-algebra. Since it contains the measurable rectangles
we must have

σ(A1 × · · · ×Ak) ⊆ Fx j .

It, therefore, immediately follows that Ax j ∈ σ(A1×· · ·×A j−1×A j+1×· · ·×Ak) whenever
A ∈ σ(A1 × · · · ×Ak, as desired. �

Exercises

5.2.1 Let X be a set and let A be an algebra on X.
(a) Prove the following:

(i) ∅ ∈ A ;
(ii) if A1, . . . ,Ak ∈ A then ∩k

j=1A j ∈ A .

(b) Show that condition (iii) in Definition 5.2.1 can be equivalently replaced
with condition (ii) above.

5.2.2 Let X be an infinite set. Indicate which of the following collections of subsets
are algebras, σ-algebras, or neither:
(a) the collection of finite subsets X;
(b) the collection of subsets A for which X \ A is finite;
(c) the collection of countable subsets X;
(d) the collection of subsets A for which X \ A is countable.

5.2.3 Answer the following questions.
(a) Is the collection of open subsets of R an algebra or a σ-algebra?
(b) Is the collection of closed subsets of R an algebra or a σ-algebra?
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5.2.4 Let X be a set and let S ⊆ 2X. Show that if

S ′ =
{ ⋃

j∈Z>0

A j

∣∣∣∣ A j ∈ S , j ∈ Z>0

}
then the σ-algebras σ(S ) and σ(S ′) are generated by S and S ′ agree.

5.2.5 Let X and Y be disjoint sets and let A and B be σ-algebras on X and Y,
respectively. Let

A ∪B = {A ∪ B ∈ 2X∪Y
| A ∈ A , B ∈ B}.

Show that A ∪B is a σ-algebra on X ∪ Y.
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Section 5.3

Measures

The nomenclature “measurable space” from the preceding section makes one
think that one ought to be able to measure things in it. This is done with the
concept of a measure that we now introduce, and which serves to provide a general
framework for talking about the “size” of a subset. The notion of what we shall
below call an “outer measure” is perhaps the most intuitive notion of size one
can utilise. It has the great advantage of being able to be applied to measure the
size of all subsets. However, and surprisingly, outer measure has an important
defect, namely that it does not have the seemingly natural property of “countable-
additivity.” The way one gets around this is by restricting outer measure to a
collection of subsets where this property of countable-additivity does hold. This
leads to a natural σ-algebra. At the high level of abstraction in this section, it is not
easy to see the justification for the definitions of outer measure and measure. This
justification will only become clear in Section 5.4 where there is a fairly intuitive
definition of outer measure on R, but that natural outer measure is actually not a
measure.

Do I need to read this section? In order to appreciate the framework in which
the Lebesgue measure is developed in Sections 5.4 and 5.5, one should understand
the notions of measure and outer measure. •

5.3.1 Functions on families of subsets

Before getting to the more specific definitions that we shall mainly use, it is
useful to provide some terminology that helps to organise these definitions.

5.3.1 Definition (Properties of functions on subsets) For a set X and a collection
S ⊆ 2X of subsets of X, a map µ : S → R≥0 is:

(i) monotonic if µ(S) ≤ µ(T) for subsets S,T ∈ S such that S ⊆ T;

(ii) finitely-subadditive if µ
( k⋃

j=1

S j

)
≤

k∑
j=1

µ(S j) for every finite family (S1, . . . ,Sk)

of sets from S whose union is also in S ;

(iii) countably-subadditive if µ
( ⋃

j∈Z>0

S j

)
≤

∞∑
j=1

µ(S j) for every countable family

(S j) j∈Z>0 of sets from S whose union is also in S ;
(iv) monotonically increasing if, for every countable family of subsets (S j) j∈Z>0

from S for which S j ⊆ S j+1, j ∈ Z>0, and whose union is in S , µ
( ⋃

j∈Z>0

S j

)
=

lim
j→∞

µ(S j);
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(v) monotonically decreasing if, for every countable family of subsets (S j) j∈Z>0

from S for which S j ⊇ S j+1, j ∈ Z>0, for which µ(Sk) < ∞ for some k ∈ Z>0,
and whose intersection is in S , µ

( ⋂
j∈Z>0

S j

)
= lim

j→∞
µ(S j).

If µ is R-valued then µ is:
(iii) finite if X ∈ S and if µ takes values in R;
(iv) σ-finite if there exists subsets (S j) j∈Z>0 from S such that |µ(S j)| < ∞ for j ∈ Z>0

and such that X = ∪ j∈Z>0S j.

(v) finitely-additive if µ
( k⋃

j=1

S j

)
=

k∑
j=1

µ(S j) for every finite family (S1, . . . ,Sk) of

pairwise disjoint sets from S whose union is also in S ;

(vi) countably-additive ifµ
( ⋃

j∈Z>0

S j

)
=

∞∑
j=1

µ(S j) for every countable family (S j) j∈Z>0

of pairwise disjoint sets from S whose union is also in S .
(vii) consistent if at most one of∞ and −∞ is in image(µ). •

Initially, we shall only use the preceding definitions in the case where µ takes
values in R≥0. However, in Sections 5.3.7 and 5.3.8 we shall need to consider the
case where µ takes values in R.

The following result records some obvious relationships between the preceding
concepts.

5.3.2 Proposition (Relationships between properties of functions on subsets) If X
is a set, if S ⊆ 2X, and if µ : S → R≥0, then the following statements hold:

(i) if µ(∅) = 0 and if µ is countably-subadditive then it is finitely-subadditive;
(ii) if µ(∅) = 0 and if µ is finitely-additive then it is finitely-subadditive;
(iii) if µ(∅) = 0 and if µ is countably-additive then it is countably-subadditive;
(iv) if µ is countably-additive then it is monotonically increasing;
(v) if µ is countably-additive then it is monotonically decreasing;
(vi) if µ is finitely-additive then it is monotonic and, moreover, µ(T \ S) = µ(T)− µ(S) if

µ(S) < ∞.

If µ takes values in R then the following statement holds:
(vii) if µ(∅) = 0 and if µ is countably-additive then it is finitely-additive.

If µ takes values in R and if S has the property that S ∈ S implies that X \ S ∈ S , then
the following statement holds:
(viii) if µ is finitely additive then it is consistent.

Proof (i) Let (S1, . . . ,Sk) be a finite family of subsets from S . Define (T j) j∈Z>0 by

T j =

S j, j ∈ {1, . . . , k},
∅, j > k.
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Then

µ
( k⋃

j=1

S j

)
= µ

( ⋃
j∈Z>0

T j

)
≤

∞∑
j=1

µ(T j) =

k∑
j=1

µ(S j),

since µ(∅) = 0.
The following lemma will be useful in the next two parts of the proof, as well as

in various other arguments in this chapter.

1 Lemma Let X be a set, let either J = {1, . . . ,m} for some m ∈ Z>0 or J = Z>0, and let (Sj)j∈J
be a finite or countable family of subsets of X. Then there exists a family (Tj)j∈J of subsets of X
such that

(i) Tj1 ∩ Tj2 = ∅ for j1 , j2;
(ii) Tj ⊆ Sj, j ∈ J;
(iii) ∪j∈JTj = ∪j∈JSj.

Moreover, if Sj ∈ A , j ∈ Z>0, for an algebra A on X, then the sets (Tj)j∈Z>0 can also be chosen
to be in A .

Proof Let j0 ∈ J and define

T′j0 =
⋃
j< j0

(S j0 ∩ S j), T j0 = S j0 \ T′j0 .

Thus T′j0 is the set of points in S j0 that are already contained in at least one of the
“previous” subsets {S j} j< j0 , and T j0 is the set of points in S j0 not in one of the sets
{S j} j< j0 . Thus we immediately have T j0 ⊆ S j0 for each j0 ∈ J. Let j1, j2 ∈ J be distinct
and suppose, without loss of generality, that j1 < j2. Then, by construction, T j2
contains no points from S j1 and since T j1 ⊆ S j1 our claim follows. Finally, we show that
∪ j∈JT j = ∪ j∈JS j. This is clear since T j0 is defined to contain those points from S j0 not
already in S1, . . . ,S j0−1.

The last assertion of the lemma follows since the sets T j, j ∈ Z>0, are of the form
(X\A)∩B where A ∈ A and where B is a union of sets of the form B1∩B2 for B1,B2 ∈ A .
Thus B ∈ A by Exercise 5.2.1 and so (X \ A) ∩ B ∈ A , also by Exercise 5.2.1. H

(ii) By the lemma above let (T1, . . . ,Tm) be pairwise disjoint, such that T j ⊆ S j for
j ∈ {1, . . . ,m}, and such that ∪m

j=1T j = ∪m
j=1S j. Then, by finite-additivity,

µ
( m⋃

k=1

Sk

)
=

m∑
k=1

µ(Tk).

But, for each k ∈ {1, . . . ,m}, Sk = S′k ∪ Tk and the union is disjoint. Monotonicity of µ
gives µ(S j) ≥ µ(T j) for j ∈ {1, . . . ,m}which then gives

µ
( m⋃

k=1

Sk

)
=

m∑
k=1

µ(Tk) ≤
m∑

k=1

µ(Sk),

as desired.
(iii) This follows from Lemma 1 just as does part (ii), with only trivial modifications

to replace finite-additivity with countable-additivity.
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(iv) Let (S j) j∈Z>0 be a countable family of subsets from S for which S j ⊆ S j+1,
j ∈ Z>0. For j ∈ Z>0 define

T j =

S1, j = 1,
S j \ S j−1, j > 1.

Note that the sets {T j} j∈Z>0 are pairwise disjoint by construction and that⋃
j∈Z>0

S j =
⋃

j∈Z>0

T j.

Therefore, by countable-additivity,

µ
( ⋃

j∈Z>0

S j

)
=

∞∑
j=1

µ(T j).

But, since ∪k
j=1T j = Sk,

∞∑
j=1

µ(T j) = lim
k→∞

k∑
j=1

µ(T j) = lim
k→∞

µ
( k⋃

j=1

T j

)
= lim

k→∞
µ(Sk),

which gives
µ
( ⋃

j∈Z>0

S j

)
= lim

k→∞
µ(Sk),

as desired.
(v) Let (S j) j∈Z>0 be a countable family of sets from S such that S j ⊇ S j+1, j ∈ Z>0,

and such that µ(Sk) for some k ∈ Z>0. Define (T j) j∈Z>0 by T j = S j+k so that⋂
j∈Z>0

S j =
⋂

j∈Z>0

T j.

Now define (U j) j∈Z>0 by U j = T1 \ T j so that U j ⊆ U j+1 for each j ∈ Z>0. We also have⋃
j∈Z>0

U j = T1 \
( ⋂

j∈Z>0

T j

)
.

By parts (vi) (since µ(T1) < ∞) and (iv) we then have

µ(T1) − µ
( ⋂

j∈Z>0

S j

)
= µ

(
T1 \

( ⋂
j∈Z>0

S j

))
= µ

(
T1 \

( ⋂
j∈Z>0

T j

))
= µ

( ⋃
j∈Z>0

U j

)
= µ

( ⋃
j∈Z>0

U j

)
= lim

j→∞
µ(U j)

= lim
j→∞

µ(T1 \ T j) = µ(T1) − lim
j→∞

µ(T j)

= µ(T1) − lim
j→∞

µ(S j),

from which we deduce
µ
( ⋂

j∈Z>0

S j

)
= lim

j→∞
µ(S j)
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since µ(T1) < ∞.
(vi) Let S,T ∈ S be such that S ⊆ T. Then, by finite-additivity,

µ(S) ≤ µ(S) + µ(T − S) = µ(T),

as desired. The formula µ(T \ S) = µ(T) − µ(S) if µ(S) = ∞ follows immediately from
finite-additivity.

(vii) Let (S1, . . . ,Sk) be a finite family of subsets from S . Define (T j) j∈Z>0 by

T j =

S j, j ∈ {1, . . . , k},
∅, j > k,

noting that the family (T j) j∈Z>0 is pairwise disjoint. Then

µ
( k⋃

j=1

S j

)
= µ

( ⋃
j∈Z>0

T j

)
=

∞∑
j=1

µ(T j) =

k∑
j=1

µ(S j),

since µ(∅) = 0.
(viii) Suppose that there exists sets S+,S− ∈ S such that µ(S+) = ∞ and µ(S−) = −∞.

Then, finite-additivity and the assumption that sets from S have complements in S
implies that

µ(X) = µ(S+) + µ(X \ S+) = µ(A−) + µ(X \ S−).

Since µ(S+) = ∞ and since µ(S−) = −∞ and since the addition∞+ (−∞) is not defined,
we must have

µ(X \ S+) ∈ R \ {−∞}, µ(X \ S−) ∈ R \ {∞}.

Therefore,
µ(X) = ∞, µ(X) = −∞,

giving a contradiction. �

The following relationships between finite-additivity, countable-additivity, and
monotonicity are also useful.

5.3.3 Proposition (Additivity and monotonicity) Let X be a set with A ⊆ 2X an algebra
on A , and let µ0 : A → R be consistent, finitely-additive, and have the property that
µ0(∅) = 0. The following three statements are equivalent:

(i) µ0 is countably-additive;
(ii) for every sequence (Aj)j∈Z>0 of subsets from A for which Aj ⊆ Aj+1, j ∈ Z>0, and for

which ∪j∈Z>0Aj ∈ A , it holds that

µ0

(⋃
j∈Z>0

Aj

)
= lim

j→∞
µ0(Aj);

(iii) for every sequence (Aj)j∈Z>0 of subsets from A for which Aj ⊇ Aj+1, j ∈ Z>0, for
which ∩j∈Z>0Aj = ∅, it holds that limj→∞ µ0(Aj) = 0.
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Proof (i) =⇒ (ii) Let (A j) j∈Z>0 be a sequence of subsets from A for which A j ⊆ A j+1,
j ∈ Z>0, and for which ∪ j∈Z>0A j ∈ A . Let us denote A = ∪ j∈Z>0A j. Define B1 = A1
and for j ≥ 2 define B j = A j \ A j−1. Then the family (B j) j∈Z>0 is pairwise disjoint and
satisfies ∪ j∈Z>0B j = A. The assumed consistency and countable-additivity of µ0 then
gives

µ0(A) =

∞∑
j=1

µ0(B j).

Moreover, since Ak = ∪k
j=1B j we have

µ0(Ak) =

k∑
j=1

µ0(B j) =⇒ lim
k→∞

µ0(Ak) =

∞∑
j=1

µ0(B j) = µ0(A),

as desired.
(ii) =⇒ (iii) Let us define B j = Ak+ j−1 for j ∈ Z>0. Then µ0(B1) < ∞ and∩ j∈Z>0B j = ∅.

Also define C j = B1 \ B j+1 for j ∈ Z>0. Then the family of subsets (C j) j∈Z>0 is in A and
satisfies C j ⊆ C j+1 for each j ∈ Z>0. Moreover,⋃

j∈Z>0

C j =
⋃

j∈Z>0

B1 \ B j+1 = B1 \
⋂

j∈Z>0

B j+1 = B1,

using De Morgan’s Laws. By assumption we then have

lim
j→∞

µ0(C j) = µ0(B1).

Therefore,

lim
j→∞

µ0(C j) = lim
j→∞

µ0(B1 \ B j+1) = lim
j→∞

(µ0(B1) − µ0(B j+1)) = µ0(B1),

allowing us to conclude that

lim
j→∞

µ0(A j) = lim
j→∞

µ0(B j) = 0,

as desired.
(iii) =⇒ (i) Let (A j) j∈Z>0 be a family of pairwise disjoint sets and denote A =

∪ j∈Z>0A j, supposing that A ∈ A . For k ∈ Z>0 define Bk = A \ ∪k
j=1A j. Then Bk ⊇ Bk+1

and ∩k∈Z>0Bk = ∅. By assumption we then have limk→∞ µ0(Bk) = 0. We have A =
Bk ∪ (∪k

j=1A j) with the union being disjoint. Finite-additivity of µ0 gives

µ0(A) = µ0(Bk) +

k∑
j=1

µ0(A j),

which gives

µ0(A) = lim
k→∞

µ0(Bk) +

∞∑
j=1

µ0(A j) =

∞∑
j=1

µ0(A j),

as desired. �

5.3.2 Outer measures, measures, and their relationship

With the general properties of functions on subsets from the preceding section,
we now introduce our first notion of “size” of a subset.
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5.3.4 Definition (Outer measure) Let X be a set. An outer measure on X is a map
µ∗ : 2X

→ R≥0 with the following properties:
(i) µ∗(∅) = 0;
(ii) µ∗ is monotonic;
(iii) µ∗ is countably-subadditive. •

5.3.5 Remark (Why are the axioms for an outer measure as they are?) The notion of
outer measure is intuitive, in the sense that its properties are included in those that
we anticipate a reasonable notion of “size” to possess. What is not immediately
clear is that these are the only properties that one might demand of our notion of
size. This latter matter is difficult to address a priori, and indeed is only really
addressed by knowing that these are indeed the properties that one uses in the
development of the general theory. •

Let us consider some simple examples of outer measures. We shall postpone to
Sections 5.4 and 5.5 the presentation of more interesting examples.

5.3.6 Examples (Outer measures)
1. For a set X, the map µ∗ : 2X

→ R≥0 defined by µ∗(A) = 0 is an outer measure. We
call this the zero outer measure.

2. Let us consider a set X with µ∗ : 2X
→ R≥0 defined by

µ∗(A) =

0, A = ∅,

∞, A , ∅.

It is then easy to see that µ∗ is an outer measure.

3. For a set X define µ∗ : 2X
→ R≥0 by

µ∗(A) =

card(A), card(A) < ∞,
∞, otherwise.

It is easy to verify that µ∗ is an outer measure.

4. For a set X define δ∗x : 2X
→ R≥0 by

δ∗x(A) =

1, x ∈ A,
0, x < A.

One can easily see that δ∗x is indeed an outer measure. •

The notion of outer measure is a nice one in that it allows the measurement of
size for any subset of the set X. However, it turns out that some outer measures lack
an important property. Namely, there are outer measures µ∗ (namely, the Lebesgue
outer measure of Definition 5.4.1) that lack the property that, if S,T ⊆ X are disjoint,
then µ∗(S ∪ T) = µ∗(S) + µ∗(T). Upon reflection, we hope the reader can see that
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this is indeed a property one would like any notion of size to possess. In order to
ensure that this property is satisfied, it turns out that one needs to restrict oneself
to measuring a subset of the collection of all sets. It is here where the notions of
algebras and σ-algebras come into play.

5.3.7 Definition (Measure, measure space) Let X be a set and let S ⊆ 2X. A finitely-
additive measure on S is a map µ : S → R≥0 with the following properties:

(i) µ(∅) = 0;
(ii) µ is finitely-additive.

A countably-additive measure, or simply a measure, on S is a map µ : S → R≥0

with the following properties:
(iii) µ(∅) = 0;
(iv) µ is countably-additive.

A triple (X,A , µ) is called a measure space is A is a σ-algebra on X and if µ is a
countably-additive measure on A . •

Just as we are primarily interested in σ-algebras in preference to algebras, we are
also primarily interested in countably-additive measures in preference to finitely-
additive measures. However, finitely-additive measures will come up, usually in
the course of a construction of a countably-additive measure.

5.3.8 Remark (Why are the axioms for a measure as they are?) Again, it is not
perfectly evident why a measure has the stated properties. In particular, the con-
ditions that (1) a measure space involves a σ-algebra and that (2) a measure be
countably-additive seem like they ought to admit many viable alternatives. Why
not allow a measure space to be defined using any collection of subsets? Why not
finite-additivity? finite-subadditivity? countable-subadditivity? The reasons to
restrict to a σ-algebra (possibly) smaller than the collection of all subsets will be
made clear shortly. As concerns countable-additivity, the reasons for this are much
like they are for the countability conditions for σ-algebras; countability is what
we want here since we are after nice behaviour of our constructions with sequen-
tial operations. The requirement of disjointness in the definition is not so easy to
understand. Indeed, in our definition of an outer measure in Definition 5.3.4 we
relaxed this, and possibly the definition of an outer measure seems like the one that
we should really be interested in. However, it is not, although the reasons for this
will only be made clear as we go along. •

Let us give some simple examples of measures.

5.3.9 Examples (Measures)
1. For a measurable space (X,A ), the map µ : A → R≥0 defined by µ∗(A) = 0 is a

measure. We call this the outer measure.
2. For a measurable space (X,A ) define µ : A → R≥0 by

µ(A) =

0, A = ∅,

∞, A , ∅.
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This defines a measure on (X,A ).
3. If (X,A ) is a measurable space then define µΣ : A → R≥0 by

µΣ(A) =

card(A), card(A) < ∞,
∞, otherwise.

One may verify that this defines a measure for the measurable space (X,A )
called the counting measure.

4. If (X,A ) is a measurable space and if x ∈ X we define δx : A → R≥0 by

δx(A) =

1, x ∈ A,
0, x < A.

One may verify that this defines a measure and is called the point mass con-
centrated at x.

5. On the algebra J (Rn) of Jordan measurable subsets ofRn the map ρ : J (Rn)→
R≥0 of Definition 5.1.6 is a finitely-additive measure. This follows from Propo-
sition 5.1.8. •

Let us give some properties of measures that follow more or less directly from
the definitions.

5.3.10 Proposition (Properties of measures) For a set X, a collection of subsets S ⊆ 2X,
and a measure µ on S , the following statements hold:

(i) µ is finitely-additive;
(ii) µ is monotonic and µ(T \ S) = µ(T) − µ(S) if µ(S) < ∞;
(iii) µ is countably-subadditive;
(iv) µ is monotonically increasing;
(v) µ is monotonically decreasing.

Proof (i) This follows immediately from Proposition 5.3.2(vii).
(ii) This follows from Proposition 5.3.2(vi) and part (i).
(iii) This follows from Proposition 5.3.2(iii).
(iv) This follows from Proposition 5.3.2(iv).
(v) This follows from Proposition 5.3.2(v). �

Now let us examine the relationships between outer measure and measure. Let
us begin with something elementary, given what we already know.

5.3.11 Proposition (When are measures outer measures?) If (X,A , µ) is a measure
space then µ is an outer measure if and only if A = 2X.

Proof This follows immediately from Proposition 5.3.10. �

Since the outer measures in the examples are all actually measures, this leads
one to the following line of questioning.

1. Are all outer measures measures?
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2. Given a measure space (X,A , µ) does there exist an outer measure µ∗ on X
for which µ = µ∗|A ?

We shall see in Corollary 5.3.29 that the answer to the second question is, “Yes.”
The answer to the first question is, “No,” but we will have to wait until Section 5.4
(in particular, Example 5.4.3) to see an example of an outer measure that is not a
measure. The key issue concerning whether an outer measure is a measure hinges
on the following characterisation of a distinguished class of subsets of a set with
an outer measure.

5.3.12 Definition (Measurable subsets for an outer measure) If µ∗ is an outer measure
on a set X, a subset A ⊆ X is µ∗-measurable if

µ∗(S) = µ∗(S ∩ A) + µ∗(S ∩ (X \ A))

for all S ⊆ X. The set of µ∗-measurable subsets is denoted by M (X, µ∗). •

Note that an outer measure is finitely-subadditive by Proposition 5.3.2(i). Thus
we always have

µ∗(S) ≤ µ∗(S ∩ A) + µ∗(S ∩ (X \ A)).

Therefore, a set A is not µ∗-measurable then we have

µ∗(S) > µ∗(S ∩ A) + µ∗(S ∩ (X \ A)).

The definition of µ∗-measurability looks like it provides a “reasonable” property of
a subset A: that the outer measure of a set S should be the outer measure of the
points in S that are in A plus the outer measure of the points in S that are not in
A. In Figure 5.2 we attempt to depict what is going on. What is not so obvious

X

S A

µ∗(S ∩ (X \A))

µ∗(S ∩A)

Figure 5.2 The notion of a µ∗-measurable set

is that not all subsets need be µ∗-measurable. In the examples of outer measures
in Example 5.3.6 above, they all turn out to be measures. It is only when we get
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to the more sophisticated construction of the Lebesgue measure in Section 5.4 that
we see that nonmeasurable sets exist. Indeed, it is precisely in the constructions of
Section 5.4 that the general ideas we are presently discussing were developed.

For the purposes of our present development, the following theorem is impor-
tant in that it gives a natural passage from an outer measure to a measure space.

5.3.13 Theorem (Outer measures give measure spaces) If µ∗ is an outer measure on a
set X then (X,M (X, µ∗), µ∗|M (X, µ∗)) is a measure space.

Proof Let us first show that X ∈M (X, µ∗). Let S ∈ 2X and note that

µ∗(S ∩ X) + µ∗(S ∩ (X \ X)) = µ∗(S)

since µ∗(∅) = 0.
Now let us show that if A ∈M (X, µ∗) then X \ A ∈M (X, µ∗). This follows since

µ∗(S ∩ (X \ A)) + µ∗(S ∩ (X \ (X \ A))) = µ∗(S ∩ A) + µ∗(S ∩ (X \ A)) = µ∗(S).

Next we show that if A1, . . . ,An ∈ M (X, µ∗) then ∪n
j=1A j ∈ M (X, µ∗). This will

follow by a trivial induction if we can prove it for n = 2. Thus we let A1,A2 ∈M (X, µ∗),
S ⊆ X, and compute

µ∗(S ∩ (A1 ∪ A2)) + µ∗(S ∩ (X \ (A1 ∪ A2)))
= µ∗((S ∩ (A1 ∪ A2)) ∩ A1) + µ∗((S ∩ (A1 ∪ A2)) ∩ (X \ A1)) + µ∗(S ∩ (X \ (A1 ∪ A2)))
= µ∗(S ∩ A1) + µ∗(S ∩ (X \ A1) ∩ A2) + µ∗(S ∩ (X \ A1) ∩ (X \ A2))
= µ∗(S ∩ A1) + µ∗(S ∩ (X \ A1)) = µ∗(S).

In going from the first line to the second line we have used the fact that A1 ∈M (X, µ∗).
In going from the second line to the third line we have used some set theoretic identities
for union and intersection that can be easily verified, e.g., by using Propositions 1.1.4
and 1.1.5. In going from the third line to the fourth line we have used the fact that
A2 ∈M (X, µ∗).

Next we show that property (vi) of Definition 5.2.1 holds. Thus we let (A j) j∈Z>0 ⊆

M (X, µ∗). To show that∪ j∈Z>0A j ∈M (X, µ∗) we may without loss of generality suppose
that the sets (A j) j∈Z>0 are disjoint. Indeed, if they are not then we may replace their
union with the union of the sets

Ã1 = A1

Ã2 = A2 ∩ (X \ A1)
...

Ã j = A j ∩ (X \ A1) ∩ · · · ∩ (X \ A j−1)
...

where the collection (Ã j) j∈Z>0 is disjoint. First we claim that under this assumption
that (A j) j∈Z>0 ⊆M (X, µ∗) is disjoint we have

µ∗(S) =

n∑
j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

( n⋂
j=1

(X \ A j)
))
. (5.1)
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We prove this by induction. For n = 1 the claim follows since A1 ∈ M (X, µ∗). Now
suppose the claim true for n = k and compute

µ∗
(
S ∩

( k⋂
j=1

(X \ A j)
))

= µ∗
(
S ∩

( k⋂
j=1

(X \ A j)
)
∩ Ak+1

)
+ µ∗

(
S ∩

( k⋂
j=1

(X \ A j)
)
∩ (X \ Ak+1)

)
= µ∗(S ∩ Ak+1) + µ∗

(
S ∩

(k+1⋂
j=1

(X \ A j)
))
,

so establishing (5.1) after an application of the induction hypothesis. In the first line
we use the fact that Ak+1 ∈M (X, µ∗) and in the second line we have used the fact that
the set (A j) j∈Z>0 are disjoint.

By monotonicity of outer measures we have

µ∗(S) ≥
n∑

j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

( ∞⋂
j=1

(X \ A j)
))

=⇒ µ∗(S) ≥
n∑

j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

(
X \

∞⋃
j=1

A j

))
=⇒ µ∗(S) ≥

∞∑
j=1

µ∗(S ∩ A j) + µ∗
(
S ∩

(
X \

∞⋃
j=1

A j

))
(5.2)

=⇒ µ∗(S) ≥ µ∗
(
S ∩

( ∞⋃
j=1

A j

))
+ µ∗

(
S ∩

(
X \

∞⋃
j=1

A j

))
.

In the first line we have used (5.1) along with monotonicity of outer measures. In the
second line we have used a simple set theoretic identity. In the third line we have
simply taken the limit of a bounded monotonically increasing sequence of numbers.
In the fourth line we have used countable-subadditivity of outer measures. This then
gives

µ∗(S) ≥ µ∗
(
S ∩

( ∞⋃
j=1

A j

))
+ µ∗

(
S ∩

(
X \

∞⋃
j=1

A j

))
≥ µ∗(S),

by another application countable-subadditivity of outer measures. It therefore follows
that ∪ j∈Z>0A j ∈M (X, µ∗), as was to be shown.

The next thing we show is that µ , µ∗|M (X, µ∗) is a measure on (X,M (X, µ∗)). Since

µ∗(S) = µ∗(S ∩ ∅) + µ∗(S ∩ X) = µ∗(∅) + µ∗(S),

for every S ∈ 2X it follows that µ(∅) = µ∗(∅) = 0. Now let (A j) j∈Z>0 be a collection of
disjoint sets in M (X, µ∗). We have

µ
( ∞⋃

j=1

A j

)
= µ∗

( ∞⋃
j=1

A j

)
≥

∞∑
j=1

µ∗(A j) + 0,
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using (5.2) with S = ∪∞j=1A j. By monotonicity of outer measures we also have

µ
( ∞⋃

j=1

A j

)
≤

∞∑
j=1

µ∗(A j),

and so µ is countably-additive. �

The theorem immediately has the following corollary which helps to clarify the
relationship between measures and outer measures.

5.3.14 Corollary (An outer measure is a measure if and only if all subsets are mea-
surable) If µ∗ is an outer measure on X then (X, 2X, µ∗) is a measure space if and only if
every subset of X is µ∗-measurable.

Proof From Theorem 5.3.13 it follows that (X, 2X, µ∗) is a measure space if M (X, µ∗) =
2X. For the converse, suppose that A ⊆ X is not µ∗-measurable. Then there exists a set
S ⊆ X such that

µ∗(S) , µ∗(S ∩ A) + µ∗(S ∩ (X \ A)).

However, since S = (S∩A)∪ (S∩ (X \A)) this prohibits µ∗ from being a measure since,
if it were a measure, we would have

µ∗(S) = µ∗(S ∩ A) + µ∗(S ∩ (X \ A)). �

Thus the existence of nonmeasurable sets is exactly the obstruction to an outer
measure being a measure. Said otherwise, if we wish for an outer measure to
behave like a measure— i.e., have the property that

µ∗
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ∗(A j)

for a family (A j) j∈Z>0 of disjoint sets—then the sacrifice we have to make is that we
possibly restrict the sets which we apply the outer measure to.

The following notions are also sometimes useful.

5.3.15 Definition (Continuous measure, discrete measure) Let (X,A , µ) be a measure
space for which {x} ∈ A for every x ∈ X. The measure µ is

(i) continuous if µ({x}) = 0 for every x ∈ X and
(ii) discrete if there exists a countable subset D ∈ A such that µ(X \D) = 0. •

Let us consider how these various properties show up in our simple examples
of measure spaces.

5.3.16 Examples (Properties of measures)
1. We consider the measure space (X,A , µ) where µ(∅) = 0 and µ(A) = ∞ for all

nonempty measurable sets. This measure space is σ-finite if and only if X = ∅,
is continuous if and only if X = ∅, and is discrete if and only if X is countable.
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2. Let us consider a measurable space (X,A ) and for simplicity assume that {x} ∈ A
for every x ∈ X. The counting measure is σ-finite if and only if X is countable,
is not continuous, and is discrete if and only if X is countable.

3. For a measurable space (X,A ) the point mass measure δx is σ-finite if and only
if X is a countable union of measurable sets, is not continuous, and is discrete if
and only if there exists a countable set D ∈ A such that x < D. •

Let us close this section by introducing an important piece of lingo.

5.3.17 Notation (Almost everywhere, a.e.) Let (X,A , µ) be a measure space. A property
P of the set X holds µ-almost everywhere (µ-a.e.) if there exists a set A ⊆ X for
which µ(A) = 0, and such that P holds for all x ∈ X \ A. If µ is understood, then
we may simply write almost everywhere (a.e.). Some authors use “p.p.” after the
French “presque partout.” Lebesgue, after all, was French. •

Let us finally show that the restriction of a measure to a subset makes sense if
the subset is measurable.

5.3.18 Proposition (Restriction of measure to measurable subsets) Let (X,A , µ) be a
measure space, let A ∈ A , let (A,AA) be the measurable space of Proposition 5.2.6, and
define µA : AA → R≥0 by µA(A ∩ B) = µ(A ∩ B). Then (A,AA, µA) is a measure space.

Proof It is clear that µA(∅) = 0. Also let (B j ∩A) j∈Z>0 be a countable family of disjoint
sets in AA. Since B j ∩ A ∈ A for j ∈ Z>0 this immediately implies that

µA

( ⋃
j∈Z>0

B j ∩ A
)

=

∞∑
j=1

µA(B j ∩ A),

thus showing that µA is a measure on (A,AA). �

5.3.3 Complete measures and completions of measures

In this section we consider a rather technical property of measure spaces, but one
that does arise on occasion. It is a property that is at the same time (occasionally)
essential and (occasionally) bothersome. This is especially true of the Lebesgue
measure we consider in Sections 5.4 and 5.5. We shall point out instances of both
of these attributes as we go along.

First we give the definition.

5.3.19 Definition (Complete measure) A measure space (X,A , µ) is complete if for every
pair of sets A and B with the properties that A ⊆ B, B ∈ A , and µ(B) = 0, we have
A ∈ A . •

Note that completeness has the interpretation that every subset of a set of
measure zero should itself be in the set of measurable subsets, and have measure
zero. This seems like a reasonable restriction, but it is one that is not met in certain
common examples (see missing stuff ). In cases where we have a measure space
that is not complete one can simply add some sets to the collection of measurable
sets that make the resulting measure space complete. This is done as follows.
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5.3.20 Definition (Completion of a measure space) For a measure space (X,A , µ) the
completion A under µ is the collection Aµ of subsets A ⊆ X for which there
exists L,U ∈ A such that L ⊆ A ⊆ U and µ(U \ L) = 0. Define µ : Aµ → R≥0

by µ(A) = µ(U) = µ(L) where U and L are any sets satisfying L ⊆ A ⊆ U and
µ(U \ L) = 0. The triple (X,Aµ, µ) is the completion of (X,A , µ). •

The completion of a measure space is a complete measure space, as we now
show.

5.3.21 Proposition (The completion of a measure space is complete) If (X,Aµ, µ) is
the completion of (X,A , µ) then (X,Aµ, µ) is a complete measure space for which A ⊆ Aµ.

Proof If A ∈ A then A ⊆ A ⊆ A so that A ∈ Aµ. In particular, X ∈ Aµ. Note
that L ⊆ A ⊆ U and µ(U \ L) = 0 implies that (X \ U) ⊆ (X \ A) ⊆ (X \ L) and that
µ((X \ L) \ (X \U)) = 0, thus showing that X \ A ∈ Aµ. Now let (A j) j∈Z>0 ⊆ Aµ and let
(L j) j∈Z>0 and (U j) j∈Z>0 satisfy

L j ⊆ A j ⊆ U j, µ(U j \ L j) = 0, j ∈ Z>0. (5.3)

A direct computation shows that⋃
j∈Z>0

L j ⊆
⋃

j∈Z>0

A j ⊆
⋃

j∈Z>0

U j, µ
(( ⋃

j∈Z>0

U j

)
\

( ⋃
j∈Z>0

L j

))
≤

∞∑
j=1

µ(U j \ L j) = 0.

This shows that Aµ is a σ-algebra.
Note that µ(∅) = 0. Also let (A j) j∈Z>0 be a collection of disjoint subsets in Aµ and

take (L j) j∈Z>0 and (U j) j∈Z>0 to satisfy (5.3). Note that the sets (L j) j∈Z>0 are disjoint. From
the definition of µ it then follows that µ is countably-additive. It remains to show that
(X,Aµ, µ) is complete. If A ∈ Aµ and B ⊆ X satisfy B ⊆ A and µ(A) = 0 then, since
A ∈ Aµ, we have U ∈ A so that A ⊆ U and µ(U) = 0. Taking L = ∅ we have L ⊆ B ⊆ U
and µ(U \ L) = 0, showing that B ∈ Aµ, as desired. �

It turns out that the construction in Theorem 5.3.13 of a measure space from an
outer measure yields a complete measure space.

5.3.22 Proposition (Completeness of measure space constructed from outer mea-
sures) If µ∗ is an outer measure on a set X then (X,M (X, µ∗), µ∗|M (X, µ∗)) is a complete
measure space.

Proof From Theorem 5.3.13 we need only prove completeness. We let µ =
µ∗|M (X, µ∗). Let B ∈M (X, µ∗) and let A ⊆ B. For S ∈ 2X we then have

µ∗(S ∩ A) + µ∗(S ∩ (X \ A)) ≤ µ∗(S ∩ B) + µ∗(S ∩ (X \ A))
= 0 + µ∗(S ∩ (X \ A)) ≤ µ∗(S),

using the fact that µ∗(S ∩ B) ≤ µ∗(B) = 0 and monotonicity of outer measures. By
countable-subadditivity of µ∗ we have

µ∗(S) ≤ µ∗(S ∩ A) + µ∗(S ∩ (X \ A)),

and so it follows that A ∈M (X, µ∗). �

Let us finally show that completeness is preserved by restriction.
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5.3.23 Proposition (The restriction of a complete measure is complete) If (X,A , µ)
is a complete measure space then the measure space (A,AA, µA) of Proposition 5.3.18 is
complete.

Proof If B ∩ A ∈ AA satisfies µA(B ∩ A) = 0 then µ(B ∩ A) = 0. Therefore, by
completeness of µ, if C ⊆ (B ∩ A) it follows that µA(C) = 0. �

5.3.4 Outer and inner measures associated to a measure

In this section we continue our exploration of the relationship between outer
measure and measure, now going from a measure to an outer measure. We begin
with a discussion of ways in which one may generate an outer measure from other
data.

5.3.24 Proposition (Outer measure generated by a collection of subsets) Let X be a
set, let S ⊆ 2X have the property that ∅ ∈ S , and let µ0 : S → R≥0 have the property that

inf{µ0(S) | S ∈ S } = 0.

If we define µ∗ : 2X
→ R≥0 by

µ∗(A) = inf
{ ∞∑

j=1

µ0(Sj)
∣∣∣∣ A ⊆

⋃
j∈Z>0

Sj, Sj ∈ S , j ∈ Z>0

}
,

then µ∗ is an outer measure on X. Moreover, if S is an algebra on X and if µ0 is a
countably-additive measure, then µ∗(S) = µ0(S) for every S ∈ S .

Proof First let us show that µ∗(∅) = 0. Let ε ∈ R>0. By hypothesis there exists S ∈ S
such that µ0(S) ≤ ε, and since ∅ ⊆ S we have

µ∗(∅) ≤ µ0(S) ≤ ε.

As this holds for every ε ∈ R>0 it follows that µ∗(∅) = 0. That µ∗(A) ≤ µ∗(B) if A ⊆ B is
clear. Now let (A j) j∈Z>0 be a countable family of subsets of X. If

∑
∞

j=1 µ
∗(A j) = ∞ then

the property of countable-subadditivity holds for the family (A j) j∈Z>0 . Thus suppose
that

∑
∞

j=1 µ
∗(A j) < ∞ and let ε ∈ R>0. For each j ∈ Z>0 let (S jk)k∈Z>0 be a family of

subsets from S with the properties that A j ⊆ ∪k∈Z>0S jk and

∞∑
k=1

µ0(S jk) < µ∗(A j) +
ε

2 j ,

this being possible by definition of µ∗. Then⋃
j∈Z>0

A j ⊆
⋃

j,k∈Z>0

S jk =⇒ µ∗
( ⋃

j∈Z>0

A j

)
≤ µ∗

( ⋃
j,k∈Z>0

S jk

)
.

Also ⋃
j,k∈Z>0

S jk ⊆
⋃

j,k∈Z>0

S jk =⇒ µ∗
( ⋃

j,k∈Z>0

S jk

)
≤

∞∑
j,k=1

µ0(S jk) <
∞∑
j=1

µ∗(A j) + ε,
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using the fact that
∑
∞

j=1
1
2 j = 1 (see Example 2.4.2–??). From this we conclude that

µ∗
( ⋃

j∈Z>0

A j

)
≤

∞∑
j=1

µ∗(A j)

since ε ∈ R>0 is arbitrary in the above development. Thus shows that µ∗ is indeed an
outer measure.

Now we prove the final assertion. Let S ∈ S . Since S ⊆ S we have µ∗(S) ≤ µ0(S).
Now let (S j) j∈Z>0 be a family of subsets such that S ⊆ ∪ j∈Z>0S j. Then we define

S̃1 = S1

S̃2 = S2 ∩ (X \ S1)
...

S̃ j = S j ∩ (X \ S1) ∩ · · · ∩ (X \ S j−1)
...

noting that the family of sets (S̃ j) j∈Z>0 is in S since S is an algebra. Moreover, by
construction, the sets (S̃ j) j∈Z>0 are pairwise disjoint and satisfy⋃

j∈Z>0

S j =
⋃

j∈Z>0

S̃ j.

Since S̃ j ⊆ S j we have
∞∑
j=1

µ0(S̃ j) ≤
∞∑
j=1

µ0(S j).

Now, for each j ∈ Z>0, define T j = S ∩ S̃ j, noting that T j ∈ S since S is an algebra.
Note that S = ∪ j∈Z>0T j. Moreover, by construction the family of sets (T j) j∈Z>0 is disjoint.
Since µ0 is a measure we have

µ0(S) = µ0

( ⋃
j∈Z>0

T̃ j

)
=

∞∑
j=1

µ0(T̃ j).

Since T j ⊆ S̃ j we have
∞∑
j=1

µ0(T j) ≤
∞∑
j=1

µ0(S̃ j),

giving
∞∑
j=1

µ0(S j) ≥ µ0(S).

This allows us to conclude that µ∗(S) ≥ µ0(S), and so µ∗(S) = µ0(S), as desired. �

The outer measure of the preceding proposition has a name.



391 5 Measure theory and integration 2016/11/26

5.3.25 Definition (Outer measure generated by a collection of sets and a function
on those sets) Let X be a set, let S ⊆ 2X have the property that ∅ ∈ S , and let
µ0 : S → R≥0 have the property that

inf{µ0(S) | S ∈ S } = 0.

The outer measure µ∗ : 2X
→ R≥0 defined in Proposition 5.3.24 is the outer measure

generated by the pair (S , µ0). •

Let us give an application of the preceding constructions. A common con-
struction with measures is the extension of aR≥0-valued function on a collection of
subsets to a measure on the σ-algebra generated by the subsets. There are a number
of such statements, but the one that we will use is the following.

5.3.26 Theorem (Hahn–Kolmogorov5 Extension Theorem) Let X be a set, let A be an
algebra on X, and let µ0 : A → R≥0 be a σ-finite measure on A . Then there exists a unique
measure µ on σ(S ) such that µ(A) = µ0(A) for every A ∈ A .

Proof First let us assume that µ0(X) < ∞. Let µ∗ : 2X
→ R≥0 be the outer measure

generated by A and µ0 as in Proposition 5.3.24. Then Proposition 5.3.24 ensures that
µ∗(A) = µ0(A) for every A ∈ A .

We wish to show thatµ∗|σ(A ) is a measure. To do this we define dµ∗ : 2X
×2X

→ R≥0
by

dµ∗(S,T) = µ∗(S4T),

recalling from Section 1.1.2 the definition of the symmetric complement 4. We clearly
have dµ∗(S,T) = dµ∗(T,S) for every S,T ⊆ X. Since µ∗ is an outer measure we have

dµ∗(S,U) = µ∗(S4U) ≤ µ∗((S4T) ∪ (T4U))
≤ µ∗(S4T) + µ∗(T4U) = dµ∗(S,T) + dµ∗(T,U)

for every S,T,U ⊆ X, using Exercise 1.1.2. Thus dµ∗ is a semimetric on 2X. Moreover,
dµ∗(S,T) = 0 if and only if µ∗(S − T) = 0 and µ∗(T − S) = 0. Thus the implication

dµ∗(S,T) = 0 =⇒ S = T

holds only if (µ∗)−1(0) = ∅. That is, dµ∗ is a metric if and only if the only set ofµ∗-measure
zero is the empty set. We claim that µ∗ : 2X

→ R≥0 is continuous with respect to the
semimetric topologymissing stuff defined by dµ∗ . To see this, let ε ∈ R>0 and take δ = ε.
Then, if S,T satisfy dµ∗(S,T) < δ, we have

|µ∗(S) − µ∗(T)| = |µ∗(S4∅) − µ∗(T4∅)|
= |dµ∗(S, ∅) − dµ∗(T, ∅)| ≤ dµ∗(S,T) = ε,

5Hans Hahn (1879–1934) was an Austrian mathematician whose contributions to mathematics
were primarily in the areas of set theory and functional analysis. Andrey Nikolaevich Kolmogorov
(1903–1987) is an important Russian mathematician. He made essential contributions to analysis,
algebra, and dynamical systems. He also established the axiomatic foundations of probability
theory.
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using Exercise 1.1.2 and Proposition ?? (noting that this holds for semimetrics, as well
as for metrics).missing stuff

Now define cl(A ) to be the closure of A ⊆ 2X using the semimetric dµ∗ . Thus
B ∈ cl(A ) if there exists a sequence (A j) j∈Z>0 in A such that lim j→∞ dµ∗(B,A j) = 0. We
claim that cl(A ) is a σ-algebra. Certainly ∅ ∈ cl(A ). Let B ∈ cl(A ). Then there exists a
sequence (A j) j∈Z>0 in A such that lim j→∞ dµ∗(B,A j) = 0. Using Exercise 1.1.2 we have

dµ∗(X \ B,X \ A j) = dµ∗(B,A j), j ∈ Z>0.

Thus
lim
j→∞

dµ∗(X \ B,X \ A j) = 0

and so X \ B ∈ cl(A ). Now let B,C ∈ cl(A ) and let (S j) j∈Z>0 and (T j) j∈Z>0 be sequences
in A such that

lim
j→∞

dµ∗(B,S j) = 0, lim
j→∞

dµ∗(C,T j) = 0.

Then

lim
j→∞

dµ∗(B ∪ C,S j ∪ T j) = lim
j→∞

µ∗((B ∪ C)4(S j ∪ T j))

≤ lim
j→∞

µ∗((B4S j) ∪ (C4T j))

≤ lim
j→∞

µ∗(B4S j) + lim
j→∞

µ∗(C4T j) = 0,

using Exercise 1.1.2. Thus B ∪ C ∈ cl(A ). This shows that cl(A ) is an algebra. Now
let (B j) j∈Z>0 be a countable family of subsets from cl(A ). Define Ck = ∪k

j=1B j so that
Ck ∈ cl(A ), k ∈ Z>0. Then

lim
k→∞

dµ∗(∪ j∈Z>0B j,Ck) = lim
k→∞

µ∗((∪ j∈Z>0B j)4(∪k
j=1B j))

≤ lim
k→∞

µ∗(∪∞j=k+1B j).

Since µ∗(X) < ∞ by assumption, the sequence (µ∗(∪k
j=1B j))k∈Z>0 is a bounded monoton-

ically increasing sequence, and so converges. This implies that

lim
k→∞

dµ∗(∪ j∈Z>0B j,Ck) = lim
k→∞

µ∗(∪∞j=k+1B j) = 0.

Thus ∪ j∈Z>0B j ∈ cl(A ) since cl(A ) is closed missing stuff and since Ck ∈ cl(A ) for each
k ∈ Z>0. This shows that cl(A ) is a σ-algebra, as desired.

We will now show that µ∗| cl(A ) is a measure. We certainly have µ∗(∅) = 0. We
next claim that µ∗| cl(A ) is finitely-additive. To see this, let B,C ∈ cl(A ) be disjoint and
let (S j) j∈Z>0 and (T j) j∈Z>0 be sequences in A such that

lim
j→∞

dµ∗(B,S j) = 0, lim
j→∞

dµ∗(C,T j) = 0.

We then have, using continuity of µ∗ and additivity of µ∗|A = µ0,

µ∗(B ∪ C) = lim
j→∞

µ∗(S j ∪ T j) = lim
j→∞

µ∗(S j) + lim
j→∞

µ∗(T j − S j) = µ∗(B) + µ∗(C).
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A simple induction then gives finite-additivity. Finally, let (B j) j∈Z>0 be a countable
collection of disjoint sets from cl(A ). Because µ∗ is an outer measure we have

µ∗
( ⋃

j∈Z>0

B j) ≤
∞∑
j=1

µ∗(B j).

Since µ∗| cl(A ) is finitely-additive we have

µ∗
( ⋃

j∈Z>0

B j) ≥ µ∗
( k⋃

j=1

B j) =

k∑
j=1

µ∗(B j)

for every k ∈ Z>0. Thus

µ∗
( ⋃

j∈Z>0

B j

)
≥

∞∑
j=1

µ∗(B j),

which allows us to conclude countable-additivity of µ∗| cl(A ).
Since A ⊆ cl(A ) it follows from Proposition 5.2.7 that σ(A ) ⊆ cl(A ). Since

µ∗| cl(A ) is a measure, it is surely also true that µ , µ∗|σ(A ) is a measure. This proves
the existence assertion of the theorem under the assumption that µ0(X) < ∞.

For uniqueness, let µ̃ : cl(A )→ R≥0 be a measure having the property that µ̃|A =
µ0. Let B ∈ σ(A ) and let (A j) j∈Z>0 be a family of subsets such that B ⊆ ∪ j∈Z>0A j. Since
µ̃|A = µ0 we have

µ̃(B) ≤
∞∑
j=1

µ̃(A j) =

∞∑
j=1

µ0(A j),

using Proposition 5.3.10. From this we infer that

µ̃(B) ≤ inf
{ ∞∑

j=1

µ0(A j)
∣∣∣∣ B ⊆

⋃
j∈Z>0

A j, A j ∈ A , j ∈ Z>0

}
= µ(B).

In like manner we have that µ̃(X \ B) ≤ µ(X \ B). Thus

µ̃(B) = µ̃(X) − µ̃(X \ B) ≥ µ(X) − µ(X \ B) = µ(B).

Thus µ̃(B) = µ(B), as desired.
Finally, we prove the theorem, removing the assumption that µ0(X) < ∞. Since the

hypotheses of the theorem include µ0 being σ-finite, there exists a countable collection
(Y j) j∈Z>0 of subsets from A such that µ0(Y j) < ∞, j ∈ Z>0, and such that X = ∪ j∈Z>0Y j.
Then define

X1 = Y1

X2 = Y2 ∩ (X \ Y1)
...

X j = Y j ∩ (X \ Y1) ∩ · · · ∩ (X \ Y j−1)
...
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noting that the family of sets (X j) j∈Z>0 is in A since A is an algebra. Moreover, by
construction the sets (X j) j∈Z>0 are pairwise disjoint, have the property that µ(X j) < ∞,
j ∈ Z>0, and satisfy X = ∪ j∈Z>0X j. Denote

A j = {X j ∩ A | A ∈ A }, σ(A ) j = {X j ∩ B | B ∈ σ(A )}, µ0, j = µ0|A j.

We claim that σ(A ) j = σ(A j). To show this one must show that σ(A ) j is a σ-algebra
on X j containing A j and that any σ-algebra containing on X j containing A j contains
σ(A ) j. It is a straightforward exercise manipulating sets to show that σ(A ) j is a σ-
algebra containing A j, and we leave this to a sufficiently bored reader. So let A ′

j be a
σ-algebra on X j containing A j. Let

A ′ = {A ∪ B | A ∈ A ′

j ,B = (X \ X j) ∩ B′, B′ ∈ σ(A )}.

By Exercise 5.2.5 we conclude that A ′ is a σ-algebra on X = X j ∪ (X \ X j). Moreover,
A ⊆ A ′ and so σ(A ) ⊆ A ′. But this means that if X j ∩ B ∈ σ(A ) j then X j ∩ B ∈ A ′

j ,
giving our claim.

Now note that, for each j ∈ Z>0, the data X j, A j, and µ0, j satisfy the hypotheses
used in the first part of the proof. Therefore, there exists a measure µ j on σ(A j) = σ(A ) j

agreeing with µ0, j on A j. Now define µ : σ(A )→ R≥0 by

µ(B) =

∞∑
j=1

µ j(X j ∩ B).

That µ is a measure is easily verified using the fact that µ j, j ∈ Z>0 is a measure and that
the family of sets (X j) j∈Z>0 is pairwise disjoint. We leave the straightforward working
out of this to the, again sufficiently bored, reader. It is also clear that µ|A = µ0. This
gives the existence part of the proof. For uniqueness, suppose that µ̃ : σ(A )→ R≥0 is a
measure such that µ̃|A = µ0 and let B ∈ σ(A ). By uniqueness from the first part of the
proof we have µ̃(X j ∩ B) = µ(X j ∩ B). Therefore, by countable-additivity of µ̃,

µ̃(B) =

∞∑
j=1

µ̃(X j ∩ B) =

∞∑
j=1

µ(X j ∩ B) = µ(B),

as desired. �

The proof of the preceding theorem introduced an important construction. As
we shall not make use of this in any subsequent part of the text, let us expound a
little on this here.

5.3.27 Remark (Semimetrics and measures) A key ingredient in our proof of the
Hahn–Kolmogorov Extension Theorem was a semimetric associated with a mea-
sure. This construction can be generalised somewhat. Let X be a set, let S ⊆ 2X,
and let µ : S → R≥0 be a finite-valued finitely-subadditive measure, i.e.,

µ
(
∪

k
j=1A j

)
≤

k∑
j=1

µ(A j), A1, . . . ,Ak ∈ A .
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Then we define dµ : S ×S → R≥0 by dµ(S,T) = µ(S4T), recalling from Section 1.1.2
the definition of the symmetric complement4. As in the above proof, we can verify
that dµ is a semimetric, and is a metric if and only if the only set of measure zero is
the empty set. If µ is not finite-valued, then we can instead use

d′µ(S,T) = max{1, µ(S4T)},

with the same conclusions.
In the proof we used this semimetric to define, in a topological sense, the closure

cl(A ) of the algebra A , and we showed that σ(A ) ⊆ cl(A ). In fact, although we did
not need this in the proof above, cl(A ) is the completion of σ(A ). This gives a neat
loop-closing for the use of the word “completion” in this context, since it gives this
a standard topological meaning. The Hahn–Kolmogorov Extension Theorem, then,
becomes sort of a result about the extension of uniformly continuous functions to
the completion, a la Theorem ??. When one digs more deeply into measure theory
per se, these sorts of matters become more important. •

Now let us both specialise and extend our discussion of outer measures gener-
ated by a collection of subsets. We consider in detail the situation where we begin
with a measure space.

5.3.28 Definition (Inner and outer measure of a measure) Let (X,A , µ) be a measure
space.

(i) The outer measure associated to µ is the map µ∗ : 2X
→ R≥0 defined by

µ∗(S) = inf{µ(A) | A ∈ A , S ⊆ A}.

(ii) The inner measure associated to µ is the map µ∗ : 2X
→ R≥0 defined by

µ∗(S) = sup{µ(A) | A ∈ A , A ⊆ S}. •

The following corollary to Proposition 5.3.24 answers one of the basic questions
we raised upon defining the concept of an outer measure.

5.3.29 Corollary (The outer measure of a measure is an outer measure) If (X,A , µ)
be a measure space then the outer measure µ∗ associated to µ is an outer measure as per
Definition 5.3.4.

Proof Since a σ-algebra is an algebra and since countable unions of measurable sets
are measurable, this follows directly from Proposition 5.3.24. �

One way to interpret the preceding result is that it provides a natural way of
extending a measure, possibly only defined on a strict subset of the collection of
all subsets, to a means of measuring “size” for all subsets, and that this extension
is, in fact, an outer measure. This provides, then, a nice characterisation how
a measure approximates sets “from above.” What about the rôle of the inner
measure that approximates sets “from below”? The following result clarifies this
rôle, and illustrates one place where completeness is important.
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5.3.30 Proposition (Sets for which inner and outer measure agree are in the com-
pletion) Let (X,A , µ) be a measure space and let A ⊆ X be such that µ∗(A) < ∞. Then
µ∗(A) = µ∗(A) if and only if A ∈ Aµ.

Proof Suppose that A ∈ Aµ and let L,U ∈ A satisfy L ⊆ A ⊆ U and µ(U \L) = 0. Then

µ(L) ≤ µ∗(A) ≤ µ∗(A) ≤ µ(U),

giving µ∗(A) = µ∗(A) since µ(L) = µ(U).
Conversely, suppose that µ∗(A) = µ∗(A). Let k ∈ Z>0. Then there exists sets

Mk,Vk ∈ A such that Mk ⊆ A ⊆ Vk and such that

µ∗(A) < µ(Mk) + 1
k , µ(Vk) < µ∗(A) + 1

k .

Then, for k ∈ Z>0 define

Lk = ∪k
j=1M j ∈ A , Uk = ∩k

j=1V j ∈ A ,

noting that Mk ⊆ Lk ⊆ A, A ⊆ Uk ⊆ Vk, Lk ⊆ Lk+1, and Uk+1 ⊆ Uk for k ∈ Z>0. We then
have

µ∗(A) − 1
k < µ(Mk) ≤ µ(Lk) ≤ µ(Uk) ≤ µ(Vk) < µ∗(A) + 1

k .

Taking the limit as k→∞ gives

lim
k→∞

µ(Lk) = lim
k→∞

µ(Lk).

If we define L = ∪k∈Z>0Lk ∈ A and U = ∩k∈Z>0Uk ∈ A then we have L ⊆ A ⊆ U and, by
Proposition 5.3.10, µ(L) = µ(U). Thus A ⊆ Aµ. �

5.3.5 Probability measures

In this section we introduce the notion of a probability measure. As the name
suggests, probability measures arise naturally in the study of probability theory,
but this is something we will not take up here, postponing a general study of this
for missing stuff .

Let us first define what we mean by a probability measure.

5.3.31 Definition (Probability space, probability measure) A probability space is a
measure space (X,A , µ) for which µ(X) = 1. The set X is called the sample space,
the σ-algebra A is called the set of events, and the measure µ is called a probability
measure. •

Let us give some examples.

5.3.32 Examples (Probability spaces)
1. Let us consider the classical example of a problem in so-called “discrete prob-

ability.” We suppose that we have a coin which, when we flip it, has two
outcomes, denoted “H” for “heads” and “T” for “tails.” Let us suppose that we
know that the coin is biased in a known way, so that the likelihood of seeing
a head on any flip is p ∈ [0, 1]. Then the likelihood of seeing a tail on any flip
is 1 − p. We shall flip this coin once, and the record the outcome. Thus the
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sample space is X = {H,T}. The σ-algebra of events we take to be A = 2X. Thus
there are four events: (a) ∅ (corresponding to an outcome of neither “heads” nor
“tails”); (b) {H} (corresponding to an outcome of “heads”); (c) {T} (correspond-
ing to an outcome of “tails”); (d) {H,T} (corresponding to an outcome of either
“heads” or “tails”). The probability measure is defined by

µ({H}) = p, µ({T}) = (1 − p).

The probability measure for the events ∅ and {H,T} must be 0 (because the
measure of the empty set is always zero) and 1 (by countable additivity of the
measure), respectively. Thus µ is a probability measure.

2. We have a biased coin as above. But now we perform an trial where we flip
the coin n times and record the outcome each time. An element of the sample
space X is an outcome of a single trial. Thus an element of the sample space
is an element of X = {H,T}{1,...,n}, the set of maps from {1, . . . ,n} to {H,T}. Note
that card(X) = 2n. If φ ∈ X then the outcome of this trial is represented by the
sequence

(φ(1), . . . , φ(n)) ∈ {H,T}n.

The σ-algebra defining the set of events is the set of subsets of all trials: A = 2X.
Now let us define a meaningful probability measure. For a trial φ ∈ X let nH(φ)
be the number of heads appearing in the trial and let nT(φ) be the number of
tails appearing in the trial. Obviously, nH(φ) + nT(φ) = n for every φ ∈ X. We
then define

µ(φ) = pnH(φ)(1 − p)nT(φ).

This then defines µ on 2X by countable additivity. We should check that this is
a probability measure, i.e., that µ(X) = 1. For fixed k ∈ {1, . . . , k}, the number of
trials in which k heads appears is(

n
k

)
,

n!
k!(n − k)!

,

i.e., the binomial coefficient Bn,k from Exercise 2.2.1. Note that, according to
Exercise 2.2.1,

n∑
k=0

(
n
k

)
pk(1 − p)n−k = (p + (1 − p))n = 1.

Since the expression on the left is the sum over the trials with any possible
number of heads, it is the sum over all possible trials.

3. Consider the problem of “randomly” choosing a number in the interval [0, 1].
Thus X = [0, 1]. We wish to use the Lebesgue measure as a probability measure.
Note that, according to our constructions of Section 5.4, to do this pretty much
necessitates taking A = L ([0, 1]) as the set of events.

4. Let x0 ∈ R and let σ ∈ R>0. Let us consider the sample space X = R, the set of
events A = L (R), and the measure γx0,σ : L (R)→ R defined by

γx0,σ(A) =
1
√

2πσ

∫
R

χA(x) exp(− 1
2σ2 (x − x0)2) dx.
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We claim that γx0,σ is a probability measure, i.e., that γx0,σ(R) = 1. The following
lemma is useful in verifying this.

1 Lemma
∫
R

e−ξ
2
dξ =

√
π.

Proof By Fubini’s Theorem we write(∫
R

e−ξ
2
dξ

)2
=

(∫
R

e−x2
dx

)(∫
R

e−y2
dy

)
=

∫
R2

e−x2
−y2

dxdy.

By Example ??–?? we have(∫
R

e−ξ
2
dξ

)2
=

∫
R>0×[−π,π]

re−r2
drdθ = 2π

∫
R>0

re−r2
dr.

Now we make another change of variable ρ = r2 to obtain(∫
R

e−ξ
2
dξ

)2
= π

∫
R>0

e−ρ dρ = π,

and so we get the result. H

By making the change of variable ξ = 1
√

2σ
(x − x0), we can then directly verify

that γx0,σ(R) = 1. This probability measure is called the Gaussian measure with
mean x0 and variance σ. •

5.3.6 Product measures

In Section 5.2.3 we showed how algebras on the factors of a product give
algebras and σ-algebras on the product. In this section we investigate how to define
measures on products given measures on each of the factors. The procedure for
this is surprisingly technical; we use the Hahn–Kolmogorov Extension Theorem. It
is also possible to define measures on products using the integral, after the integral
has been defined. We refer to Section 5.8.1 for this construction.

For now, let us state and prove the basic result concerning the construction of
measures on products of measure spaces.

5.3.33 Theorem (Measures on products of measure spaces) If (Xj,Aj, µj), j ∈ {1, . . . ,k},
are σ-finite measure spaces then there exists a unique measure

µ1 × · · · × µk : σ(A1 × · · · ×Ak)→ R≥0

such that
µ1 × · · · × µk(A1 × · · · ×Ak) = µ1(A1) · · ·µk(Ak)

for every A1 × · · · ×Ak ∈ A1 × · · · ×Ak.
Proof We use a couple of technical lemmata.
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1 Lemma Let X be a set and let S0 ⊆ 2X be a family of subsets for which
(i) S1 ∩ S2 ∈ S0 for every S1, S2 ∈ S0 and
(ii) if S ∈ S0 then X \ S = S1 ∪ · · · ∪ Sk for some pairwise disjoint S1, . . . , Sk ∈ S0.

Then σ0(S0) is equal to the collection of finite unions of sets from S0 and, if µ0 : S0 → R≥0 is
finitely-additive, then there exists a unique finitely-additive function µ0 : σ0(S )→ R≥0 such
that µ|S0 = µ0.

Proof First we claim that the set of finite unions of sets from S0, let us denote this
collection of subsets by S 0, is an algebra. To see that X ∈ S 0, let S ∈ S0 and write, by
hypothesis,

X = S ∪ (X \ S) = S ∪ (S1 · · · ∪ Sk)

for some S1, . . . ,Sk ∈ S0. Thus X ∈ S 0. Now let S ∈ S 0 and write S = S1 ∪ · · · ∪ Sk for
S1, . . . ,Sk ∈ S0. Then, by De Morgan’s Laws,

X \ S = (X \ S1) ∩ · · · ∩ (X \ Sk).

Thus X \S is, by assumption, a finite intersection of finite unions of sets from S0. Since
intersections of finitely many sets from S0 are in S0, it then follows that X \ S ∈ S 0.
Thus, by Exercise 5.2.1, S 0 is an algebra. Moreover, if A is any algebra containing S0

then A must necessarily contain the finite unions of sets from S0. Thus S 0 ⊆ A . By
Proposition 5.2.8 this shows that S 0 = σ0(S0), as desired.

Now let A ∈ σ0(S0) so that A = A1∪· · ·∪Ak for some A1, . . . ,Ak ∈ S0. By Lemma 1
in the proof of Proposition 5.3.2, there are then disjoint sets T1, . . . ,Tm ∈ S0 such that
A = T1 ∪ · · · ∪ Tm. We then define

µ(A) = µ0(T1) + · · · + µ0(Tm).

We must show that this definition is independent of the particular way in which one
writes A as a disjoint union of sets from S0. Suppose that A = T′1 ∪ · · · ∪ T′n for disjoint
T′1, . . . ,T

′
n ∈ S0. Then

A = ∪m
j=1T j = ∪n

l=1T′l = ∪m
j=1 ∪

n
l=1 T j ∩ T′l ,

as may be easily verified. It then follows that

µ
(
∪

m
j=1T j

)
=

m∑
j=1

µ0(T j) =

m∑
j=1

n∑
l=1

µ0(T j ∩ T′l ) =

n∑
l=1

m∑
j=1

µ0(T′l ∩ T j) =

n∑
l=1

µ0(T′l ),

giving the well-definedness of µ, and so the existence assertion of the lemma. Unique-
ness follows immediately from finite-additivity of µ. H

2 Lemma For sets X1, . . . ,Xk with algebras Aj ⊆ 2Xj , j ∈ {1, . . . ,k}, let µj : Aj → R≥0,
j ∈ {1, . . . ,k}, be finitely-additive. Then there exists a unique finitely-additive

µ : σ0(A1 × · · · ×Ak)→ R≥0

such that
µ(A1 × · · · ×Ak) = µ1(A1) · · ·µk(Ak) (5.4)

for every Aj ∈ Aj, j ∈ {1, . . . ,k}.
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Proof Let us abbreviate A = σ0(A1 × · · · ×Ak). By Proposition 5.2.16, if A ∈ A then
we can write

A = R1 ∪ · · · ∪ Rm

for disjoint measurable rectangles R1, . . . ,Rm. We then define

µ(A) = µ(R1) + · · · + µ(Rm), (5.5)

where µ(R j), j ∈ {1, . . . ,m}, is defined as in (5.4). We must show that this definition
of µ is independent of the way in which one expresses A as a finite disjoint union of
measurable rectangles. First let us suppose that

A = A1 × · · · × Ak ∈ A1 × · · · ×Ak.

We shall prove by induction on k that if A is written as a finite disjoint union of
measurable rectangles, A = R1 ∪ · · · ∪Rm, that (5.5) holds. This assertion is vacuous for
k = 1, so assume it holds for k = n − 1 and let

A1 × · · · × An = ∪m
j=1B′j × B j

where B′j ∈ A1 × · · · × An−1 and B j ∈ An for each j ∈ {1, . . . ,m}. By the induction
hypothesis and by our knowing the volumes of measurable rectangles, there exists a
finitely-additive function µ′ : σ0(A1 × · · · ×An−1)→ R≥0 such that

µ′(A′1 × · · · × A′n−1) = µ1(A′1) · · ·µn−1(A′n−1)

for every A′1 × · · · × A′n−1 ∈ A1 × · · · ×An−1. We are charged with showing that

µ(A1 × · · · × An) = µ1(A1) · · ·µn−1(An−1)µn(An)

= µ′(A1 × · · · × An−1)µn(An) =

m∑
j=1

µ′(B′j)µn(B j),

the last equality being the only that is not obvious.
From Lemma 1 in the proof of Proposition 5.3.2, there exists pairwise disjoint sets

C1, . . . ,Cr ⊆ An such that each of the sets B1, . . . ,Bk is a finite union of the sets C1, . . . ,Cr.
Thus, for each j ∈ {1, . . . , k}, there exists pairwise disjoint sets S j1, . . . ,S jm j ⊆ An, taken
from the collection of sets C1, . . . ,Cr, for which B j = S j1 ∪ · · · ∪ S jm j . Thus

A1 × · · · × An = ∪m
j=1B′j ×

(
∪

m j

l j=1S jl j

)
= ∪m

j=1 ∪
m j

l j=1 B′j × S jl j .

Now, for each s ∈ {1, . . . , r}, let Js ⊆ {1, . . . , k} be defined so that j ∈ Js if and only if there
exists l j ∈ {1, . . . ,m j} (necessarily unique) such that S jl j = Cs. Then define B′′s = ∪ j∈JsB

′

j.
Since the measurable rectangles B′j × B j, j ∈ {1, . . . , k}, are pairwise disjoint, it follows
that the measurable rectangles B′j, j ∈ Js, are pairwise disjoint. Also note that we then
have

A1 × · · · × An = ∪r
s=1B′′s × Cs,

noting that C1, . . . ,Cs are pairwise disjoint. This implies that ∪r
s=1Cs = An. This, in

turn, forces us to conclude that B′′s = A1 × · · · × An−1 for each s ∈ {1, . . . , r}.
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Now let us use the above facts, along with the induction hypothesis. Finite-
additivity of µn gives

µn(B j) =

m j∑
l j=1

µn(S jl j), j ∈ {1, . . . , k},

and
r∑

s=1

µn(Cs) = µn(An).

Also, finite-additivity of µ′ gives

µ′(A1 × · · · × An−1) = µ′(∪ j∈JsB
′

j) =
∑
j∈Js

µ′(B j).

Putting this all together gives

k∑
j=1

µ′(B′j)µn(B j) =

k∑
j=1

µ′(Bn)
m j∑

l j=1

µn(S jl j) =

r∑
s=1

∑
j∈Js

µ′(B′j)µn(Cs)

= µ′(A1 × · · · × An−1)µn(An).

This proves that the definition of volume of measurable rectangles is independent
of how these rectangles are decomposed into finite disjoint unions of measurable
rectangles.

The existence part of the lemma now follows from Lemma 1, along with Proposi-
tion 5.2.16. Uniqueness immediately follows from Proposition 5.2.16, along with the
uniqueness assertion from Lemma 1. H

We complete the proof by induction on k, the assertion being clear when k = 1. So
suppose that the conclusions of the theorem hold for k = 1, . . . ,m − 1 for some m ≥ 2,
and let (X j,A j, µ j), j ∈ {1, . . . ,m}, be measure spaces satisfying the hypotheses of the
theorem. Let us denote Y = X1 × · · · × Xm−1 and Z = Xm, B = σ(A1 × · · · ×Am−1) and
C = Am, and ν = µ1× · · ·×µm−1 and λ = µm. We use the induction hypothesis to define
ν : B → R≥0. We now wish to show that there exists a unique map ν×λ : B×C → R≥0
such that

ν × λ(B × C) = ν(B)λ(C)

for every B × C ∈ B × C . Note that by Proposition 5.2.16 and Lemma 2, and since
a countably-additive measure is also finitely-additive, there exists a unique finitely-
additive measure ν0 : σ0(B × C )→ R≥0 such that

ν0(B × C) = ν(B)λ(C)

for every B × C ∈ B × C . By the Hahn–Kolmogorov Extension Theorem we need only
show that ν0 is countably-additive.

Let us first suppose that ν and λ are finite. Then, by Proposition 5.3.3, it suffices to
show that if (A j) j∈Z>0 is a sequence of subsets from σ0(B × C ) such that A j ⊇ A j+1 and
such that ∩ j∈Z>0A j = ∅, then lim j→∞ ν0(A j) = 0. By Proposition 5.2.16, for each j ∈ Z>0
we have

A j = ∪
m j

k=1B jk × C jk
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for nonempty sets B j1, . . . ,B1m j ∈ B and C j1, . . . ,C jm j ∈ C . Moreover, as we argued
in the proof of Lemma 2, we may suppose without loss of generality that the sets
B j1, . . . ,B jm j are pairwise disjoint. Now define f j : Y→ R≥0 by

f j(y) =

λ(C jk), y ∈ B jk,

0, y < ∪
m j

k=1B jk.

For y ∈ Y and j ∈ Z>0 there exists a unique k( j, y) ∈ {1, . . . ,m j} such that y ∈ B jk( j,y).
Moreover, if j1 < j2 we have

C j1k( j1,y) = {z ∈ Z | (y, z) ∈ A j1} ⊆ {z ∈ Z | (y, z) ∈ A j2} = C j2k( j2,y)

Therefore, the sequence ( f j(y)) j∈Z>0 is monotonically decreasing for each y ∈ Y. More-
over, lim j→∞ f j(y) = 0 since

∩ j∈Z>0C jk( j,y) ⊆ ∩ j∈Z>0{z ∈ Z | (y, z) ∈ A j} = ∅.

Now let ε ∈ R>0 and j ∈ Z>0 and define

B j,ε = {y ∈ Y | f j(y) > ε}.

We can easily see that B j,ε ⊆ ∪
m j

k=1B jk, that B j,ε ⊇ B j+1,ε for j ∈ Z>0, and that∩ j∈Z>0B j,ε = ∅.
We therefore compute

ν0(A j) =

m j∑
k=1

ν(B jk)λ(C jk) ≤ ν(B j,ε)λ(Z) + ν(Y)ε.

Since lim j→∞ ν(B j,ε) = 0 by Proposition 5.3.3, it follows that

lim
j→∞

ν0(A j) ≤ εν(Y),

giving lim j→∞ ν0(A j) = 0 since ε ∈ R>0 is arbitrary. This shows that ν0 is a measure on
σ0(B × C ).

Next suppose that ν and λ are not finite, but are σ-finite. Then let (Sk)k∈Z>0 and
(Tk)k∈Z>0 be subsets of Y and Z, respectively, such that ν(Sk) < ∞ and λ(Tk) < ∞ for
k ∈ Z>0, and such that Y = ∪k∈Z>0Sk and Z = ∪k∈Z>0Tk. We may without loss of
generality suppose that Sk ⊆ Sk+1 and Tk ⊆ Tk+1 for k ∈ Z>0. Let us denote

Bk = {B ∩ Sk | B ∈ B}, Ck = {C ∩ Tk | C ∈ C }

and νk = ν0|sBk × Ck, noting from what we have already proved that νk is a measure.
Then, for disjoint sets (A j) j∈Z>0 in B × C we have

∞∑
j=1

ν0(A j) =

∞∑
j=1

lim
k→∞

ν0(A j ∩ (Sk × Tk)) = lim
k→∞

∞∑
j=1

νk(A j ∩ (Sk × Tk))

= lim
k→∞

νk(∪ j∈Z>0A j ∩ (Sk × Tk)) = ν0(∪ j∈Z>0A j).

This shows that ν0 is a measure on B × C .
Finally, to complete the proof by induction, one needs only to reinstate the defi-

nitions Y = X1 × · · · × Xm−1 and Z = Xm, B = σ(A1 × · · · × Am−1) and C = Am, and
ν = µ1 × · · · × µm−1 and λ = µm, and then apply the induction hypothesis. �

Let us name the measure from the preceding theorem.
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5.3.34 Definition (Product measure) If (X j,A j, µ j), j ∈ {1, . . . , k}, are σ-finite measure
spaces then the measure µ1 × · · · × µk is the product measure. •

Let us give simple examples of product measures.

5.3.35 Examples (Product measures)
1. Let X and Y be sets with A and B σ-algebras on X and Y, respectively. Define

µ : A → R≥0 and ν : B → R≥0 by

µ(A) =

0, A = ∅,

∞, A , ∅,
ν(B) =

0, B = ∅,

∞, B , ∅.

Then the map µ × ν : σ(A ×B)→ R≥0 defined by

µ × ν(S) =

0, S = ∅,

∞, S , ∅,

is a measure and satisfies µ × ν(A × B) = µ(A)ν(B). Note, however, that since µ
and ν are not σ-finite, we cannot use Theorem 5.3.33 to assert the existence of
this measure except in the trivial case when X = Y = ∅.

2. Let X and Y be sets with A and B σ-algebras on X and Y, respectively. Define
µ : A → R≥0 and ν : B → R≥0 by

µ(A) =

card(A), card(A) < ∞,
∞, otherwise,

ν(B) =

card(B), card(B) < ∞,
∞, otherwise.

Then the map µ × ν : σ(A ×B)→ R≥0 defined by

µ × ν(S) =

card(S), card(S) < ∞,
∞, otherwise,

satisfies µ× ν(A× B) = µ(A)ν(B). By Theorem 5.3.33 we can infer that µ× ν is a
measure and is the unique measure with this property. •

5.3.36 Remark (Completeness of product measures) The product measure of complete
measure spaces may be incomplete. We shall see a concrete instance of this in
Section 5.5.4, but it is revealing to see how this can arise in a general way. Suppose
that we have complete measure spaces (X,A , µ) and (Y,B, ν). Let A ⊆ X be a
nonempty set such that µ(A) = 0 (thus A is measurable since (X,A , µ) is complete)
and let B ⊆ Y be a nonmeasurable set. (Note that it might happen that there are
no sets A and B with these properties.) Note that A × B ⊆ A × Y and that A × Y is
measurable, being a product of measurable rectangles. Moreover, µ × ν(A × Y) =
µ(A)ν(Y) = 0 and so A × B is a subset of a set of measure zero. However, we claim
that A × B is not σ(A ×B)-measurable. Indeed, by Proposition 5.2.18, were A × B
to be σ(A × B)-measurable, it would follow that B is B-measurable, which we
suppose not to be the case. •



2016/11/26 5.3 Measures 404

5.3.7 Signed measures

In this section until now, a measure has been thought of as measuring the “size”
of a measurable set, and so is an intrinsically nonnegative quantity. However,
sometimes one wishes to use measures in ways more subtle than simply to mea-
sure “size,” and in this case one wishes to allow for the measure of a set to be
negative. In this section we carry out the steps needed to make such a definition,
and we give a few basic properties of the sorts of measures we produce. The most
interesting examples arise through integration; see Proposition 5.7.65. However,
in Theorem 5.3.42 we will characterise signed measures to the degree that it is easy
to see exactly what they “are.”

We can begin with the definition.

5.3.37 Definition (Signed measure) For a measurable space (X,A ), a signed measure on
A is a map µ : A → R such that

(i) µ(∅) = 0 and
(ii) µ is countably-additive.

A signed measure space is a triple (X,A , µ) where (X,A ) is a measurable space and
µ is a signed measure on A . •

Note that, by Proposition 5.3.2(viii), a signed measure is consistent, and so a
signed measure cannot take both values∞ and−∞. If, for emphasis, we wish to dif-
ferentiate between a signed measure and a measure in the sense of Definition 5.3.7,
we shall sometimes call the latter a positive measure. However, whenever we say
“measure,” we always mean a measure in the sense of Definition 5.3.7.

Let us provide some simple examples of signed measures.

5.3.38 Examples (Signed measures)
1. Let X be a set and let x1, x2 ∈ X be distinct points. Let us take A = 2X and define

µ : 2X
→ R by

µ(A) =


m1, x1 ∈ A, x2 < A,
−m2, x2 ∈ A, x1 < A,
m1 −m2, x1, x2 ∈ A,
0, x1, x2 < A,

for m1,m2 ∈ R. Intuitively, µ has a positive mass m1 at x1 and a negative mass
−m2 and x2.

2. Let X = Z be a set and take A = 2X. Suppose that the sequences (p j) j∈Z≥0 and
(n j) j∈Z>0 of positive numbers are such that

∞∑
j=0

p j < ∞,
∞∑
j=1

n j < ∞.

For A ⊆ Z define
µ(A) =

∑
j∈A∩Z≥0

p j −

∑
j∈A∩Z<0

n− j,
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which can easily be verified to define a signed measure. •

Let us now indicate some of the essential features of signed measures.

5.3.39 Definition (Positive and negative sets, Hahn decomposition) For a signed mea-
sure space (X,A , µ), a set A ∈ A is positive (resp. negative) if, for every B ⊆ A such
that B ∈ A , it holds that µ(B) ∈ R≥0 (resp. µ(B) ∈ R≤0). A Hahn decomposition for
(X,A , µ) is a pair (P,N) with the following properties:

(i) P,N ∈ A ;
(ii) X = P ∪N and P ∩N = ∅;
(iii) P is a positive set and N is a negative set. •

It is clear that if A is a positive (resp. negative) set, every measurable subset of
A is also positive (resp. negative).

We can prove that Hahn decompositions exist.

5.3.40 Theorem (Hahn Decomposition Theorem) Every signed measure space possesses a
Hahn decomposition. Moreover, if (P1,N1) and (P2,N2) are Hahn decompositions for a
signed measure space (X,A , µ), then P1 ∩N2 and P2 ∩N1 both have measure zero.

Proof Since µ is consistent, we assume without loss of generality that µ cannot take
the value −∞. Let us define

L = inf{µ(A) | A is a negative set}.

Note that there are negative sets since ∅ is negative. Also, L > −∞. Indeed, if L = −∞
this would imply that for each j ∈ Z>0 there exists a negative set A j for whichµ(A j) < − j.
Let Bk = ∪k

j=1Ak so that Bk ⊆ Bk+1. Note that µ(Bk) < −k. Countable-additivity of µ and
Proposition 5.3.3 imply that

µ
( ⋃

k∈Z>0

Bk

)
= lim

k→∞
µ(Bk) = −∞,

and so indeed we must have L > −∞ if µ cannot take the value −∞. Now let (A j) j∈Z>0

be a sequence of sets from A for which lim j→∞ µ(A j) = L and define N = ∪ j∈Z>0A j.
We claim that N is a negative set. Certainly N ∈ A , N being a countable union of sets
from A . By Lemma 1 from the proof of Proposition 5.3.2 we can write N = ∪ j∈∞N j for
a pairwise disjoint family of negative sets (N j) j∈Z>0 . Now, if A ⊆ N is A -measurable
then A = ∪ j∈Z>0A ∩ N j. Since A ∩ N j ⊆ N j it follows that µ(A ∩ N j) ∈ R≤0. Thus, by
countable-additivity of µ,

µ(A) =

∞∑
j=1

µ(A ∩N j) ≤ 0,

so showing that N is a negative set.
Now define P = X \N. To prove that P is a positive set, we need a lemma.
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1 Lemma If (X,A , µ) is a signed measure space and if A ∈ A satisfies µ(A) ∈ R<0, then there
exists a negative set B ⊆ A such that µ(B) ≤ µ(A).

Proof We define a sequence (m j) j∈Z>0 of nonnegative real numbers and a sequence
(A j) j∈Z>0 of pairwise disjoint A -measurable subsets of A with nonnegative measure as
follows. Let

m1 = sup{µ(B) | B ∈ A , B ⊆ A}.

Note that m1 ∈ R≥0 since ∅ ∈ A and ∅ ⊆ A. Now let A1 ∈ A be a subset of A
that satisfies µ(A1) ≥ min{m1

2 , 1}, this being possible by the definition of m1. Note
that µ(A1) ∈ R≥0. Now suppose that we have defined m1, . . . ,mk ∈ R≥0 and pairwise
disjoint A -measurable sets A1, . . . ,Ak ⊆ A such that µ(A j) ∈ R≥0, j ∈ {1, . . . , k}. Then let

mk+1 = sup{µ(B) | B ∈ A , B ⊆ A \ ∪k
j=1A j}

and let Ak+1 ⊆ A \ ∪k
j=1A j have the property that µ(Ak+1) ≥ min{mk+1

2 , 1}. As we argued
above for m1 and A1, mk+1, µ(Ak+1) ∈ R≥0. It is clear that Ak+1 ∩ A j = ∅, j ∈ {1, . . . , k}.
Thus (A1, . . . ,Ak+1) are pairwise disjoint.

Let us take B = A \ ∪ j∈Z>0A j. Note that

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j)

since the sets (A j) j∈Z>0 are pairwise disjoint. Therefore,

µ(A) = µ(B) + µ
( ⋃

j∈Z>0

A j

)
≥ µ(B).

Now we show that B is a negative set. Note that

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) < ∞.

since |µ(A)| < ∞. Thus the sum in the middle converges, and by Proposition 2.4.7
it follows that lim j→∞ µ(A j) = 0. Therefore, lim j→∞m j = 0. Now let E ⊆ B be A -
measurable. Thus E ⊆ A \ ∪k

j=1A j for every k ∈ Z>0. Therefore, by definition of mk1 ,
µ(E) ≤ mk+1 for every k ∈ Z≥0. Therefore, it must be the case that µ(E) ∈ R≤0 since
lim j→∞m j = 0. H

Now suppose that there exists a set A ⊆ P such that µ(A) ∈ R<0. Then, by the
lemma, there exists a negative set B ⊆ A such that µ(B) ≤ µ(A). Now N∪B is a negative
set such that

µ(N ∪ B) = µ(N) + µ(B) ≤ µ(N) + µ(A) < µ(N) = L,

which contradicts the definition of L. Thus P is indeed positive.
To prove the final assertion of the theorem, note that both P1 ∩N2 and P2 ∩N1 are

both positive and negative sets. It must, therefore, be the case that both have measure
zero. �

The Hahn decomposition can be illustrated for our examples above of signed
measures.
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5.3.41 Examples (Hahn decomposition)
1. We consider Example 5.3.38–1. A Hahn decomposition in this case consists of

any subsets P and N such that

(a) P ∩N = ∅,
(b) P ∪N = X, and
(c) x1 ∈ P and x2 ∈ N.

Note that there will generally be many possible Hahn decompositions in this
case, since there are possible many sets of measure zero.

2. For Example 5.3.38–2, a Hahn decomposition is given by P = Z≥0 and N = Z<0.
If none of the numbers p j, j ∈ Z≥0, and n j, j ∈ Z>0, are zero (as was assumed),
then this is the only Hahn decomposition. •

As a direct consequence of the Hahn Decomposition Theorem we have the
following decomposition of µ.

5.3.42 Theorem (Jordan Decomposition Theorem) For a measurable space (X,A ) the
following statement hold:

(i) if ν+ and ν− are two positive measures on A , at least one of which is finite, then the
map ν : A → R defined by ν(A) = ν+(A) − ν−(A) is a signed measure on A ;

(ii) if µ is a signed measure on A then there exist unique positive measures µ+ and µ−
on A such that
(a) at least one of µ+ and µ− is finite,
(b) µ(A) = µ+(A) − µ−(A) for every A ∈ A , and
(c) µ+(A) = µ(A) for every positive set A and µ−(B) = −µ(B) for every negative

set B;
(iii) if ν+ and ν− are positive measures on A , at least one of which is finite, such that

µ(A) = ν+(A) − ν−(A) for every A ∈ A and if µ+ and µ− are as in part (ii), then
ν+(A) ≥ µ+(A) and ν−(A) ≥ µ−(A) for every A ∈ A .

Proof (i) This is a straightforward verification that ν as defined in the statement of
the theorem is countably-additive and satisfies µ(∅) = 0.

(ii) Let (P,N) be a Hahn decomposition for (X,A , µ). Note that at most one of the
relations µ(P) = ∞ and µ(N) = −∞ can hold by consistency of µ. Define µ+, µ− : A →

R≥0 by
µ+(A) = µ(P ∩ A), µ−(A) = −µ(N ∩ A).

Clearly µ+(∅) = µ−(∅) = 0. Also, for a pairwise disjoint family (A j) j∈Z>0 of A -
measurable sets, we have

µ+

( ⋃
j∈Z>0

A j

)
= µ

(
P ∩

⋃
j∈Z>0

A j

)
= µ

( ⋃
j∈Z>0

P ∩ A j

)
=

∞∑
j=1

µ(P ∩ A j) =

∞∑
j=1

µ+(A j),

giving countable-additivity of µ+. One similarly shows countable-additivity of µ−.
Also, if A ∈ A , we have

µ(A) = µ(P ∩ A) + µ(N ∩ A) = µ+(A) − µ−(A).
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This gives the existence assertion of this part of the theorem.
We make an observation before we begin the proof of the uniqueness assertion of

this part of the theorem. We continue with the notation from the proof of existence
above, with µ+ and µ− as defined in that part of the proof, relative to the Hahn
decomposition (P,N) for (X,A , µ). Let (P′,N′) be another Hahn decomposition. We
can then write

P = (P′ ∩ P) ∪ (N′ ∩ P),

where, by Theorem 5.3.40, µ(N′ ∩ P) = 0. Now note that, for every A ∈ A ,

µ(P ∩ A) = µ(((P′ ∩ P) ∪ (N′ ∩ P)) ∩ A)
= µ(((P′ ∩ P) ∩ A) ∪ ((N′ ∩ P) ∩ A)) = µ(((P′ ∩ P) ∩ A)).

Now we have
P′ = (P′ ∩ P) ∪ (P′ ∩N),

where µ(P′ ∩N) = 0 by Theorem 5.3.40. Therefore,

µ(P′ ∩ A) = µ((P′ ∩ P) ∩ A),

from which we deduce that µ(P ∩ A) = µ(P′ ∩ A). Similarly, we show that µ(N ∩ A) =
µ(N′ ∩ A).

Let µ′+ and µ′
−

be positive measures satisfying

µ(A) = µ′+(A) − µ′−(A), A ∈ A ,

and suppose that µ′+(A) = µ(A) for every positive set A and that µ′
−

(B) = µ(B) for every
negative set B. Let A ∈ A be a positive set and let B ∈ A be a negative set. Then, for
the Hahn decomposition (P,N), we write

A = (P ∩ A) ∪ (N ∩ A).

Since A is a positive set, we must have µ(N ∩ A) = 0. Define P′ = P ∪ (N ∩ A) and
N′ = X \P′. Obviously P′ is a positive set, being the union of a positive set with a set of
measure zero. Since N′ = N \ (N ∩A), it follows that N′ is a negative set. Thus (P′,N′)
is a Hahn decomposition. Moreover, P′ ∩ A = A, and so

µ′+(A) = µ(P′ ∩ A) = µ(P ∩ A) = µ+(A),

the second equality following from the remarks beginning this part of the proof. Simi-
larly one shows that µ′

−
(B) = µ−(B). Thus any positive measures µ′+ and µ′

−
having the

three stated properties must agree with the measures µ+ and µ− explicitly constructed
in part (ii).

(iii) For a positive set A we have

µ(A) = µ+(A) = ν+(A) − ν−(A)

and so ν+(A) ≥ µ+(A) for every positive set A. For a negative set B we have µ+(B) = 0
and so we immediately have ν+(B) ≥ µ+(B). Therefore, for A ∈ A we have

A = (P ∩ A) ∪ (N ∩ A)
=⇒ ν+(A) = ν+(P ∩ A) + ν+(N ∩ A) ≥ µ+(P ∩ A) + µ+(N ∩ A) = µ+(A).

By the same arguments, mutatis mutandis, one shows that ν−(A) ≥ µ−(A) for every
A ∈ A . �
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Note that, without all of the assumptions from part (ii) of the theorem, unique-
ness of µ+ and µ− cannot be guaranteed. Indeed, if µ is a positive measure then we
can write

µ(A) = µ+(A) − µ−(A) = ν+(A) − ν−(B)

where µ+ = µ, µ− is the zero measure, ν+ = 2µ, and ν− = µ. Note that ν+(A) ≥ µ+(A)
and ν−(A) ≥ µ−(A), as asserted in part (iii).

Thus we make the following definition.

5.3.43 Definition (Jordan decomposition) If (X,A , µ) is a signed measure space, the
positive part and the negative part of µ are the positive measures µ+ and µ−,
respectively, having the following properties:

(i) µ(A) = µ+(A) − µ−(A) for every A ∈ A ;
(ii) µ′+(A) = µ(A) for every positive set A;
(iii) µ′

−
(B) = −µ(B) for every negative set B.

The Jordan decomposition of µ is given by the representation µ = µ+ − µ− which
signifies the first of the above properties of µ+ and µ−. •

5.3.44 Remark (Connections to functions with bounded variation) In Theorem 3.3.3
we considered the Jordan decomposition for a function of bounded variation. This
decomposition, like the one in Theorem 5.3.42, gives an additive decomposition
with a (sort of) positive component and a (sort of) negative component. There is, as
one might hope, a concrete relationship between the two Jordan decompositions.
However, this will not be realised until missing stuff . •

For our ongoing examples we can illustrate the Jordan decomposition.

5.3.45 Examples (Jordan decomposition)
1. For the signed measure of Example 5.3.38–1, the positive and negative parts of

the signed measure µ are defined by

µ+(A) =

m1, x1 ∈ A,
0, x1 < A,

µ−(A) =

m2, x2 ∈ A,
0, x2 < A.

2. For the signed measure of Example 5.3.38–2, the positive and negative parts of
the signed measure µ are defined by

µ+(A) =


∑

j∈A∩Z≥0
p j, A ∩Z≥0 , ∅,

0, A ∩Z≥0 = ∅,
µ−(A) =


∑

j∈A∩Z<0
n− j, A ∩Z<0 , ∅,

0, A ∩Z<0 = ∅.
•

Now that we have at hand the decompositions which we use to characterise
signed measures, we can use these to provide a new measure associated with a
signed measure. The value of this construction may not be immediately apparent,
but will be made clear in missing stuff .
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5.3.46 Definition (Variation and total variation of a signed measure) For a signed
measure space (X,A , µ), the variation of µ is the positive measure |µ| : A → R≥0

defined by
|µ|(A) = µ+(A) + µ−(A),

where µ+ and µ− are the positive and negative parts, respectively, µ. The total
variation of µ is ‖µ‖ = |µ|(X) •

It is a simple verification to check that |µ| is indeed a positive measure. The
following result characterises it among all positive measures which relate to µ in a
prescribed manner.

5.3.47 Proposition (Property of the variation of a signed measure) For (X,A , µ) a
signed measure space, |µ(A)| ≤ |µ|(A) for all A ∈ A . Moreover, if ν : A → R≥0 is a
positive measure such that |µ(A)| ≤ ν(A) for every A ∈ A , then |µ|(A) ≤ ν(A) for every
A ∈ A .

Proof The first assertion of the result is clear, for if A ∈ A then

|µ(A)| = |µ+(A) − µ−(A)| ≤ µ+(A) + µ−(A) = |µ|(A).

For the second assertion, suppose that ν is a positive measure with the property that
|µ(A)| ≤ ν(A) for every A ∈ A . If (P,N) is a Hahn decomposition for (X,A , µ) then, for
any A ∈ A ,

µ+(P ∩ A) = |µ(P ∩ A)| ≤ ν(P ∩ A)

and
µ−(N ∩ A) = |µ(N ∩ A)| ≤ ν(N ∩ A).

Therefore, using the definition of µ+ and µ−,

|µ|(A) = µ+(A) + µ−(A) = µ+(P ∩ A) + µ−(N ∩ A) ≤ ν(P ∩ A) + ν(N ∩ A) = ν(A),

as desired. �

The following property of the variation of a signed measure is also useful.

5.3.48 Proposition (Characterisation of the variation of a signed measure) For a signed
measure space (X,A , µ) and for A ∈ A ,

|µ|(A) = sup
{ k∑

j=1

|µ(Aj)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of A

}
.

Proof Let A ∈ A . For a partition (A1, . . . ,Ak) of A we have

|µ|(A) =

k∑
j=1

|µ|(A j) ≥
k∑

j=1

|µ(A j)|.

by Proposition 5.3.47 and using countable-additivity (and hence finite-additivity) of
|µ|. Taking the supremum of the expression on the right over all partitions gives

|µ|(A) ≥ sup
{ k∑

j=1

|µ(B j)|
∣∣∣∣ (B1, . . . ,Bk) is a partition of A

}
.
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We also have, for a Hahn decomposition (P,N) for (X,A , µ) and a partition (A1, . . . ,Ak)
for A,

µ+(P ∩ A) = |µ(P ∩ A)| =
∣∣∣∣ k∑

j=1

µ(P ∩ A j)
∣∣∣∣ ≤ k∑

j=1

|µ(P ∩ A j)|

and similarly

µ−(N ∩ A) ≤
k∑

j=1

|µ(N ∩ A j)|.

Therefore, using the definition of µ+ and µ−,

|µ|(A) = µ+(P ∩ A) + µ−(N ∩ A) ≤
k∑

j=1

|µ(P ∩ A j)| +
k∑

j=1

|µ(N ∩ A j)|.

Since (P ∩ A1, . . . ,P ∩ Ak,N ∩ A1, . . . ,N ∩ Ak) is a partition of A we have

|µ|(A) ≤ sup
{ k∑

j=1

|µ(B j)|
∣∣∣∣ (B1, . . . ,Bk) is a partition of A

}
,

which gives the result. �

The total variation is, in fact, an interesting quantity; it is a norm on the set of
finite signed measures. This point of view will be taken up in Section 6.7.9.

As with measures, we can restrict signed measures to measurable subsets.

5.3.49 Proposition (Restriction of a signed measure) If (X,A , µ) is a signed measure
space and if A ∈ A , then (A,AA, µ|AA) is a signed measure space. (See Proposition 5.2.6
for the definition of AA.)

Proof This follows very much along the lines of Proposition 5.3.18. �

5.3.8 Complex measures

Next we consider measures taking not just general real values, but complex
values. As with signed measures, we shall not be able to see interesting examples
of complex measures until we talk about integration; see Proposition 5.7.65.

We begin with the definition.

5.3.50 Definition (Complex measure) For a measurable space (X,A ), a signed measure
on A is a map µ : A → C such that

(i) µ(∅) = 0 and

(ii) µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) for every family (A j) j∈Z>0 of pairwise disjoint sets from

A (countable-additivity).
A complex measure space is a triple (X,A , µ) where (X,A ) is a measurable space
and µ is a complex measure on A . •
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Note that a complex measure is intrinsically finite since it must take values inC.
This makes complex measures a little different and more restrictive in scope than
positive or signed measures.

For a complex measure space (X,A , µ), we can define finite signed measures
Re(µ), Im(µ) : A → R by

Re(µ)(A) = Re(µ(A)), Im(µ)(A) = Im(µ(A)), A ∈ A .

We obviously call Re(µ) the real part of µ and Im(µ) the imaginary part of µ. It
is trivial to verify that Re(µ) and Im(µ) are indeed finite signed measures, and the
reader can do this as Exercise 5.3.5. We can then write

µ(A) = Re(µ)(A) + i Im(µ)(A),

or µ = Re(µ) + i Im(µ) for short. Since Re(µ) and Im(µ) are signed measures, they
have Jordan decompositions

Re(µ) = Re(µ)+ − Re(µ)−, Im(µ) = Im(µ)+ − Im(µ)−.

We can then write

µ = Re(µ)+ − Re(µ)− + i(Im(µ)+ − Im(µ)−),

to which we refer as the Jordan decomposition of the complex measure µ. It is
clear that a finite signed measure can be thought of as a complex measure whose
imaginary part is the zero measure.

Now let us turn to the variation of a complex measure.

5.3.51 Definition (Variation and total variation of a complex measure) Let (X,A , µ) be
a complex measure space. The variation of µ is the map |µ| : A → R≥0 defined by

|µ|(A) = sup
{ k∑

j=1

|µ(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of A

}
.

The total variation of µ is ‖µ‖ = |µ|(X). •

Different from the case of a signed measure, it is not immediately clear that the
variation is a measure. Thus we verify this.

5.3.52 Proposition (Variation is a positive finite measure) If (X,A , µ) is a complex mea-
sure space then |µ| is a finite positive measure that satisfies |µ(A)| ≤ |µ|(A) for every A ∈ A .
Moreover, if ν : A → R≥0 is a positive measure satisfying |µ(A)| ≤ ν(A) for every A ∈ A ,
then |µ|(A) ≤ ν(A) for every A ∈ A .

Proof It is evident that |µ|(∅) = 0. To verify countable-additivity of |µ|, we first verify
finite-additivity. Let A1,A2 ∈ A be disjoint and let (B1, . . . ,Bk) be a partition of A1∪A2.



413 5 Measure theory and integration 2016/11/26

We then have
k∑

j=1

|µ(B j)| =
k∑

j=1

|µ(A1 ∩ B j) + µ(A2 ∩ B j)|

≤

k∑
j=1

(|µ(A1 ∩ B j)| + |µ(A2 ∩ B j)|) ≤ |µ|(A1) + |µ|(A2),

the last inequality by definition of |µ|. Since

|µ|(A1 ∪ A2) = sup
{ k∑

j=1

|µ(B j)|
∣∣∣∣ (B1, . . . ,Bk) is a partition of A1 ∪ A2

}
,

we have
|µ|(A1 ∪ A2) ≤ |µ|(A1) + |µ|(A2).

Now let (B1,1, . . . ,B1,k1) be a partition of A1 and let (B2,1, . . . ,B2,k2) be a partition of A2.
Since

(B1,1, . . . ,B1,k1) ∪ (B2,1, . . . ,B2,k2)

is a partition of A1 ∪ A2 we have

k1∑
j1=1

|µ(B1, j1)| +
k2∑

j2=1

|µ(B2, j2)| ≤ |µ|(A1 ∪ A2).

Since

|µ|(A1) = sup
{ k1∑

j1=1

|µ(B1, j1)|
∣∣∣∣ (B1,1, . . . ,B1,k1) is a partition of A1

}
,

|µ|(A2) = sup
{ k2∑

j2=1

|µ(B2, j2)|
∣∣∣∣ (B2,1, . . . ,B2,k2) is a partition of A2

}
we have

|µ|(A1) + |µ|(A2) ≤ |µ|(A1 ∪ A2).

Thus |µ|(A1 ∪ A2) = |µ|(A1) + |µ|(A2), whence follows the finite additivity of |µ|.
Now note that for A ∈ A we have

|µ(A)| ≤ |Re(µ)(A)| + |Im(µ)(A)| (5.6)

by missing stuff . Therefore, for A ∈ A and for a finite partition (A1, . . . ,Ak) for A, we
have

k∑
j=1

|µ(A j)| ≤
k∑

j=1

(|Re(µ)(A j)| + |Im(µ)(A j)|)

≤

k∑
j=1

(Re(µ)+(A j) + Re(µ)−(A j) + Im(µ)+(A j) + Im(µ)−(A j))

=

k∑
j=1

Re(µ)+(A) + Re(µ)−(A) + Im(µ)+(A) + Im(µ)−(A).
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Taking the supremum of the leftmost expression over all partitions we have

|µ|(A) ≤ Re(µ)+(A) + Re(µ)−(A) + Im(µ)+(A) + Im(µ)−(A). (5.7)

Therefore, if (A j) j∈Z>0 is a sequence of sets from A having the properties that A j ⊇ A j+1,
j ∈ Z>0, and that ∩ j∈Z>0A j = ∅, we have

lim
j→∞
|µ|(A j) ≤ lim

j→∞
(Re(µ)+(A j) + Re(µ)−(A j) + Im(µ)+(A j) + Im(µ)−(A j)) = 0.

Countable-additivity of |µ| now follows from Proposition 5.3.3.
The finiteness of |µ| follows immediately from (5.7), noting that the four positive

measures on the right are finite.
For A ∈ A and for a partition (A1, . . . ,Ak) of A we have

|µ(A)| ≤
k∑

j=1

|µ(A j)| ≤ |µ|(A),

which gives the stated property of |µ|.
Now suppose that ν is a positive measure on A for which |µ(A)| ≤ ν(A) for every

A ∈ A . Therefore, for A ∈ A and for a partition (A1, . . . ,Ak) of A, we have

k∑
j=1

|µ(A j)| ≤
k∑

j=1

ν(A j) = ν(A).

Taking the supremum of the left-hand side over all partitions then gives |µ|(A) ≤ ν(A),
as desired. �

Note that Proposition 5.3.48 ensures that if a finite signed measureµ is regarded
as a complex measure with zero imaginary part, the definition of |µ| agrees when
defined thinking of µ as a signed measure and when defined thinking of µ as a
complex measure.

As with signed measures, the total variation for a complex measure is interest-
ing, and will be studied in Section 6.7.9.

5.3.9 Vector measures

The development of vector measures follows rather like that for complex mea-
sures in the preceding section. While it is possible to consider measures taking
values in general vector spaces, in this section we restrict ourselves to Rn-valued
measures.

5.3.53 Definition (Vector measure) For a measurable space (X,A ), a vector measure on
A is a map µ : A → Rn such that

(i) µ(∅) = 0 and

(ii) µ
(⋃

j∈Z

A j

)
=

∞∑
j=1

µ(A j) for every family (A j) j∈Z>0 of pairwise disjoint sets from

A (countable-additivity).
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A vector measure space is a triple (X,A ,µ) where (X,A ) is a measurable space and
µ is a vector measure on A . •

For a vector measure space (X,A ,µ) with µ taking values in Rn and for j ∈
{1, . . . ,n} we can define a finite signed measure µ j by µ j(A) = pr j(µ(A)), where
pr j : R

n
→ R is the projection onto the jth component. We can write

µ(A) = µ j(A)e1 + · · · + µn(A)en, A ∈ A ,

where {e1, . . . , en} is the standard basis for Rn. Of course, we can also decompose
each of the signed measures µ1, . . . , µn into its positive and negative parts, and so
arrive at the Jordan decomposition of µ:

µ = µ1,+ − µ1,− + · · · + µn,+ − µn,−.

The definition of the variation for vector measures mirrors that for complex
measures.

5.3.54 Definition (Variation and total variation of a vector measure) Let (X,A ,µ) be a
vector measure space with µ taking values in Rn. The variation of µ is the map
‖µ‖Rn : A → R≥0 defined by

‖µ‖Rn(A) = sup
{ k∑

j=1

‖µ(A j)‖Rn

∣∣∣∣ (A1, . . . ,Ak) is a partition of A
}
.

The total variation of µ is |||µ|||Rn = ‖µ‖Rn(X). •

As with complex measures, one can verify that the variation of a vector measure
defines a positive measure.

5.3.55 Proposition (Variation is a positive finite measure) If (X,A ,µ) is a vector measure
space with µ taking values in Rn, then ‖µ‖Rn is a finite positive measure that satisfies
‖µ(A)‖Rn ≤ ‖µ‖Rn(A) for every A ∈ A . Moreover, if ν : A → R≥0 is a positive measure
satisfying ‖µ(A)‖Rn ≤ ν(A) for every A ∈ A , then ‖µ‖Rn(A) ≤ ν(A) for every A ∈ A .

Proof The proof is very similar to the corresponding Proposition 5.3.52 for complex
measures, so we skip the details of the computations, only pointing out the important
differences with the previous proof.

It is still clear that ‖µ‖Rn(∅) = 0. The proof of finite-additivity of ‖µ‖Rn follows
in exactly the same manner as the complex case, but with the complex modulus |·|
being replaced by the Euclidean norm ‖·‖Rn . In the proof of countable-additivity, the
relation (5.6) in the complex case is replaced with the relation

‖µ(A)‖Rn ≤

n∑
j=1

|µ j(A)|,

following Proposition ??. This results in the relation (5.7) in the complex case being
replaced with the relation

‖µ(A)‖Rn ≤

n∑
j=1

(µ j,+(A) + µ j,−(A)) =

n∑
j=1

|µ j|(A). (5.8)
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Then the proof of countable additivity, using Proposition 5.3.3, follows just as in the
complex case, as does finiteness of ‖µ‖Rn .

The property for ‖µ‖Rn in the proposition is proved just as in the complex case: for
A ∈ A and for a partition (A1, . . . ,Ak) for A, we have

‖µ(A)‖Rn ≤

k∑
j=1

‖µ(A j)‖Rn ≤ ‖µ‖Rn(A).

If ν is a positive measure such that ‖µ(A)‖Rn ≤ ν(A) for every A ∈ A , we have, just
as in the complex case, for a partition (A1, . . . ,Ak) of A:

k∑
j=1

‖µ(A j)‖Rn ≤

k∑
j=1

ν(A j) = ν(A),

and taking the supremum of the left-hand side over all partitions gives ‖µ‖Rn(A) ≤ ν(A).
�

5.3.10 Spaces of positive, signed, complex, and vector measures

In this section we briefly consider the various spaces of measures on a measur-
able space (X,A ). Further structural properties of these spaces will be explored in
Section 6.7.9.

5.3.56 Definition (Spaces of positive, signed, complex, and vector measures) For a
measurable space (X,A ), we use the following notation:

(i) M((X,A );R≥0) is the set of positive measures on A ;

(ii) M((X,A );R) is the set of signed measures on A ;
(iii) M((X,A );R) is the set of finite signed measures on A ;
(iv) M((X,A );C) is the set of complex measures on A ;
(v) M((X,A );Rn) is the set of vector measures on A taking values in Rn.

For brevity, we may use M(X;R≥0), . . . ,M(X;Rn) if the σ-algebra A is understood. •

Let us first explore the algebraic structure of these spaces of measures.

5.3.57 Proposition (The vector space structure of spaces of measures) For a measur-
able space (X,A ), the following statements hold:

(i) the set M((X,A );R) has a R-vector space structure with vector addition and scalar
multiplication, respectively, defined by

(µ1 + µ2)(A) = µ1(A) + µ2(A), (aµ)(A) = a(µ(A))

for measures µ, µ1, and µ2 in M((X,A );R), and for a ∈ R;
(ii) the set M((X,A );Rn) has a R-vector space structure with vector addition and scalar

multiplication, respectively, defined by

(µ1 + µ2)(A) = µ1(A) + µ2(A), (aµ)(A) = a(µ(A))

for measures µ,µ1,µ2 ∈ M((X,A );Rn) and for a ∈ R;
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(iii) the set M((X,A );C) has a C-vector space structure with vector addition and scalar
multiplication, respectively, defined by

(µ1 + µ2)(A) = µ1(A) + µ2(A), (aµ)(A) = a(µ(A))

for measures µ, µ1, µ2 ∈ M((X,A );C) and for a ∈ C.
Proof To check that µ1 + µ2 and aµ (or µ1 + µ2 and aµ) have the properties of a
measure is straightforward. The remainder of the proof is just a matter of verifying the
vector space axioms. The reader who believes this verification might be interesting is
welcomed to perform it. �

5.3.58 Remark (Vector space structures for infinite-valued measures) The reader will
have noticed the absence from the above list the vector space structures for the set of
positive measures and the set of signed measures. This absence is deserved since,
using the natural vector space operations from the statement of the proposition,
these sets of measures do not have vector space structures. Let us be sure we
understand why in each case.

1. M((X,A );R≥0) is not aR-vector space. The problem here is not just the fact that
we allow infinite values for the measures. Even if we restrict to finite positive
measures, we do not have a natural vector space structure for which vector
addition is given by

(µ1 + µ2)(A) = µ1(A) + µ2(A).

To see this, let µ be a finite positive measure on A . In order for the operation
above to be vector space addition, there must exist a finite positive measure −µ
on A such that µ+ (−µ) is the zero measure. Thus, for example, we would have
to have µ(X) + (−µ(X)) = 0 and so −µ(X) ∈ R<0 if µ(X) ∈ R>0. In particular, −µ
cannot be a positive measure.

2. M((X,A );R) is not a R-vector space. Indeed, if (X,A , µ1) and (X,A , µ2) are
signed measure spaces for which µ1 takes the value ∞ and µ2 takes the value
−∞, then (cf. the proof of Proposition 5.3.2(viii)) it follows that µ1(X) = ∞ and
µ2(X) = −∞. Therefore, (µ1 + µ2)(X) cannot be defined in the natural way. •

Despite the fact that M((X,A );R≥0) is not a R-vector space, we would like for it
to have some structure since it comprises the set of positive measures on A , and
as such is an interesting object. The following result says that this set is, in fact, a
convex cone.

5.3.59 Proposition (The set of positive measures is a convex cone) Let (X,A ) be
a measurable space, let µ, µ1, µ2 ∈ M((X,A );R≥0), and let a ∈ R≥0. Then the maps
aµ, µ1 + µ2 : A → R≥0 defined by

(aµ)(A) = a(µ(A)), (µ1 + µ2)(A) = µ1(A) + µ2(A)

are positive measures on A . Moreover, for every µ, µ1, µ2, µ3 ∈ M((X,A );R≥0) and for
every a, a1, a2 ∈ R≥0, the following statements hold:
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(i) µ1 + µ2 = µ2 + µ1;
(ii) µ1 + (µ2 + µ3) = (µ1 + µ2) + µ3;
(iii) a1(a2µ) = (a1a2)µ;
(iv) a(µ1 + µ2) = aµ1 + aµ2;
(v) (a1 + a2)µ = a1µ + a2µ.

Proof As with the proof of Proposition 5.3.57, the verification of the statements are
simple matters of checking the properties. �

5.3.11 Notes

Exercises

5.3.1 Let X be a set and let A ⊆ 2X be an algebra. Let µ : A → R≥0 have the
property that µ(∅) = 0. Show that µ is countably-additive if and only if it is
finitely-additive and countably-subadditive.

5.3.2 Let X be a countable set, let A be the algebra A = 2X, and defineµ : 2X
→ R≥0

by

µ(A) =

0, card(A) < ∞,
∞, card(A) = ∞.

Answer the following questions.
(a) Show that µ is a σ-finite, finitely-additive measure.
(b) Show that if (A j) j∈Z>0 if a sequence of subsets from A for which A j ⊇ A j+1,

j ∈ Z>0, for which ∩ j∈Z>0A j = ∅, and for which µ(Ak) < ∞ for some
k ∈ Z>0, it holds that lim j→∞ µ(A j) = 0.

(c) Show that µ is not countably-additive.
5.3.3 Let X be a set and consider the collection S of subsets of X defined by

S = {∅}. Define µ0 : S → R≥0 by µ0(∅) = 0. Compute the outer measure
generated by (S , µ0).

5.3.4 For a measure space (X,A , µ) do the following.
(a) Show that if (A j) j∈Z>0 is a countable collection of sets of measure zero

then
µ
( ⋃

j∈Z>0

A j

)
= 0.

(b) When will there exist an uncountable collection of sets of measure zero
whose union has positive measure.

5.3.5 For a complex measure space (X,A , µ), show that Re(µ) and Im(µ) are finite
signed measures on A .

5.3.6 Let (X,A ,µ) be a vector measure space with µ taking values in Rn. Show
that for A ∈ A we have

n∑
l=1

|µl|(A) ≤
√

n‖µ‖Rn(A).

Hint: Use Proposition ??.
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Section 5.4

Lebesgue measure on R

In this section we specialise the general constructions of the preceding section to
a special measure on the setR. Our construction proceeds by first defining an outer
measure, then using Theorem 5.3.13 to infer from this a complete measure space.
The idea of measure that we use in this section is to be thought of as a generalisation
of “length,” and we shall point out as we go along that it does indeed share the
features of “length” where the latter makes sense. However, the measure we define
can be applied to sets for which it is perhaps not clear that a naı̈ve definition of
length is possible.

We shall see as we progress through this section that the σ-algebra we define
is (1) not the collection of all subsets of R and (2) contains any reasonable set one
could desire, and many more that one may not desire.

Do I need to read this section? If you are in the business of learning about the
Lebesgue measure, this is where you go about it. •

5.4.1 The Lebesgue outer measure and the Lebesgue measure on R

Our construction of the Lebesgue measure is carried out as per the idea in
Section 5.3.2. That is to say, we construct an outer measure on R and take the
measurable sets for this outer measure as the σ-algebra for the Lebesgue measure.

We first define the outer measure we use.

5.4.1 Definition (Lebesgue outer measure on R) The Lebesgue outer measure on R is
defined by

λ∗(S) = inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ S ⊆
⋃

j∈Z>0

(a j, b j)
}
. •

Thus the Lebesgue outer measure of S ⊆ R is the smallest sum of the lengths
of open intervals that are needed to cover S. Let us define the length of a general
interval I by

`(I) =

b − a, cl(I) = [a, b],
∞, I is unbounded.

We next verify that the Lebesgue outer measure is indeed an outer measure,
and we give its value on intervals.

5.4.2 Theorem (Lebesgue outer measure is an outer measure) The Lebesgue outer
measure is an outer measure on R. Furthermore, if I is an interval then λ∗(I) is the length
of I.

Proof First we show that λ∗(∅) = 0. Indeed, let (ε j) j∈Z>0 be a sequence converging to
zero in R>0 and note that ∅ ⊆ (−ε j, ε j), j ∈ Z>0. Since lim j→∞|ε j + ε j| = 0, our assertion
follows.
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Next we show that λ∗ is monotonic. This is clear since if A ⊆ B ⊆ R and if
a collection of intervals ((a j, b j)) j∈Z>0 covers B, then the same collection of intervals
covers A.

For countable-subadditivity, let (A j) j∈Z>0 be a collection of subsets of R. If∑
∞

j=1 λ
∗(A j) = ∞ then countable-subadditivity follows trivially in this case, so we

may as well suppose that
∑
∞

j=1 λ
∗(A j) < ∞. For j ∈ Z>0 and ε ∈ R>0 let ((a j,k, b j,k))k∈Z>0

be a collection of open sets covering A j and for which

∞∑
k=1

|b j,k − a j,k| < λ
∗(A j) +

ε

2 j .

By Proposition ??, Z>0 × Z>0 is countable. Therefore we may arrange the intervals
((a j,k, b j,k)) j,k∈Z>0 into a single sequence ((an, bn))n∈Z>0 so that

1. ∪ j∈Z>0A j ⊆ ∪n∈Z>0(an, bn) and

2.
∞∑

n=1

|bn − an| <
∞∑

n=1

(
λ∗(An) +

ε
2n

)
=

∞∑
n=1

λ∗(An) + ε.

This shows that

λ∗
( ⋃

j∈Z>0

A j

)
≤

∞∑
n=1

λ∗(An),

giving countable-subadditivity.
We finally show that λ∗(I) = `(I) for any interval I. We first take I = [a, b]. We may

cover [a, b] by {(a − ε
4 , b + ε

4 )} ∪ ((0, ε
2 j+1 )) j∈Z>0 . Therefore,

λ∗([a, b]) ≤ (b + ε
4 − a + ε

4 ) +

∞∑
j=1

ε

2 j+1
= b − a + ε,

where we use Example 2.4.2–??. Since ε can be made arbitrarily small we have
λ∗([a, b]) ≤ b − a. Also, suppose that ((a j, b j)) j∈Z>0 covers [a, b]. By Theorem 2.5.27
there exists n ∈ Z>0 such that [a, b] ⊆ ∪n

j=1(a j, b j). Among the intervals ((a j, b j))n
j=1 we

can pick a subset ((a jk , b jk))
m
k=1 with the properties that a ∈ (a j1 , b j1), b ∈ (a jm , b jm), and

b jk ∈ (a jk+1 , b jk+1). (Do this by choosing (a j1 , b j1) such that a is in this interval. Then choose
(a j2 , b j2) such that b j1 is in this interval. Since there are only finitely many intervals cov-
ering [a, b], this can be continued and will stop by finding an interval containing b.)
These intervals then clearly cover [a, b] and also clearly satisfy

∑m
k=1|b jk − a jk | ≥ b − a

since they overlap. Thus we have

b − a ≤
m∑

k=1

|b jk − a jk | ≤

∞∑
j=1

|b j − a j|.

Thus b − a is a lower bound for the set{ ∞∑
j=1

|b j − a j|

∣∣∣∣ [a, b] ⊆
⋃

j∈Z>0

(a j, b j)
}
.

Sinceλ∗([a, b]) is the greatest lower bound we haveλ∗([a, b]) ≥ b−a. Thusλ∗([a, b]) = b−a.
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Now let I be a bounded interval and denote cl(I) = [a, b]. Since I ⊆ [a, b] we have
λ∗(I) ≤ b− a using monotonicity of λ∗. If ε ∈ R>0 we may find a closed interval J ⊆ I for
which the length of I exceeds that of J by at most ε. Since λ∗(J) ≤ λ∗(I) by monotonicity
of λ∗, it follows that λ∗(I) differs from the length of I by at most ε. Thus

λ∗(I) ≥ λ∗(J) = b − a − ε.

Since ε ∈ R>0 is arbitrary λ∗(I) ≥ b − a, showing that λ∗(I) = b − a, as desired.
Finally, if I is unbounded then for any M ∈ R>0 we may find a closed interval

J ⊆ I for which λ∗(J) > M. Since λ∗(I) ≥ λ∗(J) by monotonicity of λ∗, this means that
λ∗(I) = ∞. �

Now, having an outer measure onR one can ask, “Is λ∗ a measure?” As we saw
in Corollary 5.3.14 this amounts to asking, “Are all subsets of R λ∗-measurable?”
Let us answer this question in the negative.

5.4.3 Example (A set that is not λ∗-measurable) Define an equivalence relation ∼ on
R by

x ∼ y ⇐⇒ x − y ∈ Q.

By Proposition 1.2.9 it follows thatR is the disjoint union of the equivalence classes
for this equivalence relation. Moreover, each equivalence class has an element in
the interval (0, 1) since, for any x ∈ R, the set

{x + q | q ∈ Q}

intersects (0, 1). By the Axiom of Choice, let A ⊆ (0, 1) be defined by asking that
A contain exactly one element from each equivalence class. We claim that A is not
λ∗-measurable.

Let {q j} j∈Z>0 be an enumeration of the set of rational numbers in (−1, 1) and for
j ∈ Z>0 define

A j = {a + q j | a ∈ A}.

Note that ∪ j∈Z>0A j ⊆ (−1, 2).
We claim that A j∩Ak , ∅ if and only if j = k. Indeed, suppose that A j∩Ak = {x}.

Then
x = a j + q j = ak + qk, a j, ak ∈ A.

Therefore, a j ∼ ak and, by construction of A, this implies that a j = ak. Thus q j = qk

and so j = k.
We also claim that (0, 1) ⊆ ∪ j∈Z>0A j. Indeed, if x ∈ (0, 1) then there exists a ∈ A

such that x ∼ a. Note that x − a ∈ Q ∩ (−1, 1) and so x = a + q j for some j ∈ Z>0.
Thus x ∈ A j.

Now suppose that A isλ∗-measurable. As we shall see in Theorem 5.4.23 below,
this implies that A j is λ∗-measurable for each j ∈ Z>0 and that λ∗(A j) = λ∗(A). We
consider two cases.
1. λ∗(A) = 0: In this case, since the sets A j, j ∈ Z>0, are disjoint, by properties of

the measure we have

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) = 0.
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But this contradicts the fact that (0, 1) ⊆ ∪ j∈Z>0A j.
2. λ∗(A) ∈ R>0: In this case we have

µ
( ⋃

j∈Z>0

A j

)
=

∞∑
j=1

µ(A j) = ∞.

But this contradicts the fact that ∪ j∈Z>0A j ⊆ (−1, 2).
The contradiction that arises for both possibilities forces us to conclude that A is
not measurable. •

Thus, making the following definition is not a vacuous procedure, and gives a
strict subset of 2R of λ∗-measurable sets.

5.4.4 Definition (Lebesgue measurable subset of R, Lebesgue measure on R) Let
λ∗ be the Lebesgue outer measure onR and denote by L (R) the set ofλ∗-measurable
subsets of R. The sets in L (R) are called Lebesgue measurable, or merely mea-
surable, and the complete measure λ : L (R) → R≥0 induced by λ∗ is called the
Lebesgue measure on R. •

The fairly concrete Example 5.4.3 can actually be sharpened considerably.

5.4.5 Theorem (The wealth of nonmeasurable subsets) If A ∈ L (R) satisfies λ(A) ∈
R>0 then there exists S ⊆ A that is not in L (R).

Proof We have A = ∪k∈Z>0[−k, k] ∩ A giving

0 < λ(A) ≤
∞∑

k=1

λ([−k, k] ∩ A).

Thus there exists N ∈ Z>0 such that λ([−N,N] ∩ A > 0. Therefore, without loss of
generality we may suppose that A ⊆ [−N,N] for some N ∈ Z>0. Let C ⊆ A be a
countable subset of A and denote by HC the subgroup of (R,+) generated by C (see
Definition 4.1.14). Therefore, by Proposition 4.1.13 it follows that

HC =
{ k∑

j=1

n jx j

∣∣∣∣ k ∈ Z>0, n1, . . . ,nk ∈ Z>0, x1, . . . , xk ∈ C
}
.

Note that HC is then a countable union of countable sets and so is countable by Propo-
sition ??. Now note that the cosets of HC form a partition of R. Let S′ ⊆ R be chosen
(using the Axiom of Choice) such that S′ contains exactly one representative from each
coset of HC. Then define

S = {x ∈ A | x ∈ (x′ + HC) ∩ A, x′ ∈ S′}.

We will show that S < L (R).
For subsets X,Y ⊆ R let us denote

X + Y = {x + y | x ∈ X, y ∈ Y}, X − Y = {x − y | x ∈ X, y ∈ Y}.
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Let B = HC ∩ (A−A). Since C−C ⊆ B we conclude that B is countable. We claim that if
(x1 + S)∩ (x2 + S) , ∅ for x1, x2 ∈ B then x1 = x2. Indeed, let x ∈ (x1 + S)∩ (x2 + S) so that

x = x1 + y1 = x2 + y2, y1, y2 ∈ S.

Since x1, x2 ∈ HC this implies that y2 − y1 ∈ HC ∩ S and so y1 = y2 by construction of
S. Thus (x + S)x∈B is a family of pairwise disjoint sets. Moreover, x + S ⊆ [−3N, 3N] for
every x ∈ B since B,S ⊆ [−N,N]. We further claim that A ⊆ B + S. Indeed, if x ∈ A
then x is in some coset of HC: x = y′ + HC for y′ ∈ S′. Then, since x ∈ A, there exists
y ∈ S such that y + HC = y′ + HC. Thus x = y + h for y ∈ S and h ∈ HC. Therefore,
h = x − z ∈ A − A and so h ∈ B. Thus x ∈ B + S as desired.

Now suppose that S ∈ L (R). There are two possibilities.
1. λ(S) = 0: In this case we have

λ(B + S) =
∑
x∈B

λ(x + S) =
∑
x∈B

λ(S) = 0,

where we have used the translation-invariance of the Lebesgue measure which
we shall prove as Theorem 5.4.23 below. Since A ⊆ B + S and λ(A) ∈ R>0 this is
impossible.

2. λ(S) ∈ R>0: In this case we have

λ(B + S) =
∑
x∈B

λ(x + S) =
∑
x∈B

λ(S) = ∞.

Again, this is impossible, this time because B + S ⊆ [−3N, 3N].
The impossibility of the two possible choices if S is Lebesgue measurable forces us to
conclude that S is not Lebesgue measurable. �

The reader might benefit by comparing the proof of the preceding theorem with
the more concrete construction of Example 5.4.3.

We will very often wish to consider the Lebesgue measure not on all of R, but
on subsets of R. Generally the subsets we consider will be intervals, but let us
indicate how to restrict the Lebesgue measure to quite general subsets.

5.4.6 Proposition (Restriction of Lebesgue measure to measurable subsets) Let
A ∈ L (R) and denote

(i) L (A) = {B ∩A | B ∈ L (R)} and
(ii) λA : L (A)→ R≥0 given by λA(B ∩A) = λ(B ∩A).

Then (A,L (A), λA) is a complete measure space.
Proof This follows from Propositions 5.2.6, 5.3.18, and 5.3.23. �

5.4.2 Borel sets in R as examples of Lebesgue measurable sets

As we saw in Example 5.4.3, there are subsets of R that are not Lebesgue mea-
surable. This then forces us to ask, “Which subsets ofR are Lebesgue measurable?”
To completely answer this question is rather difficult. What we shall do instead
is provide a large collection of subsets that (1) are Lebesgue measurable, (2) are
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somewhat easy to understand (or at least convince ourselves that we understand),
and (3) in an appropriate sense approximately characterise the Lebesgue measur-
able sets.

The sets we describe are given in the following definition. Denote by O(R) ⊆ 2R

be the collection of open subsets of R.

5.4.7 Definition (Borel subsets of R) The collection of Borel sets in R is the σ-algebra
generated by O(R) (see Proposition 5.2.7). We denote by B(R) the Borel sets in R.
If A ∈ B(R) then we denote

B(A) = {A ∩ B | B ∈ B(R)} •

It is not so easy to provide a characterisation of the general Borel set, but
certainly Borel sets can account for many sorts of sets. Borel sets are a large class
of sets, and we shall pretty much only encounter Borel sets except when we are in
the process of trying to be pathological. Furthermore, as we shall shortly see, Borel
sets are Lebesgue measurable, and so serve to generate a large class of fairly easily
described Lebesgue measurable sets.

Let us give some simple classes of Borel sets.

5.4.8 Examples (Borel sets)
1. All open sets are Borel sets, obviously.
2. All closed sets are Borel sets since closed sets are complements of open sets, and

since σ-algebras are closed under complementation.
3. All intervals are Borel sets; Exercise 5.4.3.
4. The set Q of rational numbers is a Borel set; Exercise 5.4.4.
5. A subset A ⊆ R is a Gδ if A = ∩ j∈Z>0O j for a family (O j) j∈Z>0 of open sets. A Gδ

is a Borel set; Exercise 5.4.5.
6. A subset A ⊆ R is an Fσ if A = ∪ j∈Z>0C j for a family (C j) j∈Z>0 of closed sets. An

Fσ is a Borel set; Exercise 5.4.5.

The practice of calling a set “a Gδ” or “an Fσ” is one of the unfortunate tra-
ditions involving poor notation in mathematics, notwithstanding that “G” stands
for “Gebiet” (“open” in German), “F” stands for “fermé” (“closed” in French), “δ”
stands for “Durchschnitt” (“intersection” in German), and “σ” stands for “Summe”
(“sum” in German).

Let us first prove a result which gives interesting and sometimes useful alter-
native characterisations of Borel sets.

5.4.9 Proposition (Alternative characterisations of Borel sets) B(R) is equal to the
following collections of sets:

(i) the σ-algebra B1 generated by the closed subsets;
(ii) the σ-algebra B2 generated by intervals of the form (−∞, b], b ∈ R;
(iii) the σ-algebra B3 generated by intervals of the form (a, b], a, b ∈ R, a < b.
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Proof First note that B(R) contains the σ-algebra B1 generated by all closed sets,
since the complements of all open sets, i.e., all closed sets, are contained in B(R). Note
that the sets of the form (−∞, b] are closed, so the σ-algebra B2 generated by these
subsets is contained in B1. Since (a, b] = (−∞, b] ∩ (R \ (−∞, a]) it follows that the
σ-algebra B3 generated by subsets of the form (a, b] is contained in B2. Finally, note
that

(a, b) = ∪∞n=1(a, b − 1
n ].

Thus, by Proposition 2.5.6, it follows that every open set is a countable union of sets,
each of which is a countable intersection of generators of B3. Thus B(R) ⊆ B3. Putting
this all together gives

B(R) ⊆ B3 ⊆ B2 ⊆ B1 ⊆ B(R).

Thus we must conclude that B1 = B2 = B3 = B(R). �

We can then assert that all Borel sets are Lebesgue measurable.

5.4.10 Theorem (Borel sets are Lebesgue measurable) B(R) ⊆ L (R).
Proof The theorem will follow from Proposition 5.4.9 if we can show that any set of
the form (−∞, b] is Lebesgue measurable. Let A be such an interval and note that since

λ∗(S) ≤ λ∗(S ∩ A) + λ∗(S ∩ (R \ A))

we need only show the opposite inequality to show that A is Lebesgue measurable.
If λ∗(S) = ∞ this is clearly true, so we may as well suppose that λ∗(S) < ∞. Let
((a j, b j)) j∈Z>0 cover S so that

∞∑
j=1

|b j − a j| < λ
∗(S) + ε.

For j ∈ Z>0 choose intervals (c j, d j) and (e j, f j), possibly empty, for which

(a j, b j) ∩ A ⊆ (c j, d j),
(a j, b j) ∩ (R \ A) ⊆ (e j, f j),

(d j − c j) + ( f j − e j) ≤ (b j − a j) +
ε

2 j .

Note that the intervals ((c j, d j)) j∈Z>0 cover S∩A and that the intervals ((e j, f j)) j∈Z>0 cover
R \ A so that

λ∗(S ∩ A) ≤
∞∑
j=1

|d j − c j|, λ∗(S ∩ (R \ A)) ≤
∞∑
j=1

| f j − e j|.

From this we have

λ∗(S ∩ A) + λ∗(S ∩ (R \ A)) ≤
∞∑
j=1

|b j − a j| + ε < λ
∗(S) + 2ε,

using the fact that
∑
∞

j=1
1
2 j = 1 by Example 2.4.2–??. Since ε can be taken arbitrarily

small, the inequality
λ∗(S) ≥ λ∗(S ∩ A) + λ∗(S ∩ (R \ A))

follows, and so too does the result. �

The next result sharpens the preceding assertion considerably.
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5.4.11 Theorem (Lebesgue measurable sets are the completion of the Borel sets)
(R,L (R), λ) is the completion of (R,B(R), λ|B(R)).

Proof First, given A ∈ L (R), we find L,U ∈ B(R) such that L ⊆ A ⊆ U and such
that λ(U \ L) = 0. We first suppose that λ(A) < ∞. Using Theorem 5.4.19 below, let
(U j) j∈Z>0 be a sequence of open sets containing A and for which λ(U j) ≤ λ(A) + 1

j and

let (L j) j∈Z>0 be a sequence of compact subsets of A for which λ(L j) ≥ λ(A) − 1
j . If we

take L = ∪ j∈Z>0L j and U = ∩ j∈Z>0U j then we have L ⊆ A ⊆ U. We also have

λ(U \ L) ≤ λ(U j \ L j) = λ(U j \ A) + λ(A \ L j) ≤ 1
2 j .

Since this holds for every j ∈ Z>0, this gives our claim when A has finite measure, since
L and U are Borel sets. If λ(A) = ∞ then we can write A = ∪ j∈Z>0A j with A j = (− j, j)∩A.
For each j ∈ Z>0 we may find L j,U j ∈ B(R) such that L j ⊆ A j ⊆ U j and λ(U j \ L j).
Taking L = ∪ j∈Z>0L j and U = ∪ j∈Z>0 gives L ⊆ A ⊆ U and λ(U \ L) = 0.

The above shows that L (R) ⊆ Bλ(R). Now let B ∈ Bλ(R) and take Borel sets L
and U for which L ⊆ B ⊆ U and λ(U \ L) = 0. Note that (B \ L) ⊆ (U \ L). Note also
that since U \ L ∈ B(R) we have U \ L ∈ L (R) and λ(U \ L) = 0. By completeness of
the Lebesgue measure this implies that B \ L ∈ L (R). Since B = (B \ L)∪ L this implies
that B ∈ L (R). �

The following corollary indicates that Borel sets closely approximate Lebesgue
measurable sets.

5.4.12 Corollary (Borel approximations to Lebesgue measurable sets) If A ∈ L (R)
then there exists a Borel set B and a set Z of measure zero such that A = B ∪ Z.

Proof This follows directly from Theorem 5.4.11 and the definition of the completion.
�

The preceding result looks like good news in that, except for seemingly irrel-
evant sets of measure zero, Lebesgue measurable sets agree with Borel sets. The
problem is that there are lots of sets of measure zero. The following result indicates
that this is reflected by a big difference in the number of Lebesgue measurable sets
versus the number of Borel sets.

5.4.13 Proposition (The cardinalities of Borel and Lebesgue measurable sets) We
have card(B(R)) = card(R) and card(L (R)) = card(2R).

Proof Since {x} ∈ B(R) for every x ∈ R is follows that card(B(R)) ≥ card(R). Let
OQ be the collection of open intervals with rational (or infinite) endpoints. The set
OQ is a countable union of countable sets and so is countable by Proposition ??. Since
every open set is a countable union of sets from OQ (cf. Proposition 2.5.6 and see
Proposition ??) it that if we take S = OQ then, in the notation of Theorem 5.2.14,
S1 includes the collection of open sets. Then it follows that B(R) is the σ-algebra
generated by the countable family OQ of subsets of R. By Theorem 5.2.14 it follows
that card(B(R)) ≤ ℵℵ0

0 = card(R), using the computation

2ℵ0 ≤ ℵ
ℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 ,

which holds since 2 ≤ ℵ0 ≤ 2ℵ0 by Example ??–?? and Exercise ??.
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To show that card(L (R)) = card(2R) first note that card(L (R)) ≤ card(2R). For
the opposite inequality, recall from Example 2.5.39 that the middle-thirds Cantor set
C ⊆ [0, 1] has the properties (1) λ(C) = 0 and (2) card(C) = card([0, 1]) = card(R). Since
the Lebesgue measure is complete, every subset of C is Lebesgue measurable and has
Lebesgue measure zero. This shows that card(2C) = card(2R) ≤ card(L (R)). �

While the preceding result is interesting in that it tells us that there are many
more Lebesgue measurable sets than Borel sets, Corollary 5.4.12 notwithstanding,
it does not tell us what a non-Borel Lebesgue measurable set might look like. The
following is a concrete example of such a set. Our construction uses some facts
about measurable functions that we will not introduce until Section 5.6.

5.4.14 Example (A non-Borel Lebesgue measurable set) Recall from Example 3.2.27
the construction of the Cantor function fC : [0, 1] → [0, 1], and recall that fC is
continuous, monotonically increasing, and satisfies fC(0) = 0 and fC(1) = 1. Thus,
by the Intermediate Value Theorem, for each y ∈ [0, 1] there exists x ∈ [0, 1] such
that fC(x) = y. We use this fact to define gC : [0, 1]→ [0, 1] by

gC(y) = inf{x ∈ [0, 1] | fC(x) = y}.

Let us prove some facts about gC.

1 Lemma We have fC ◦gC(y) = y and so gC is injective.

Proof Let (x j) j∈Z>0 be a sequence in [0, 1] for which lim j→∞ fC(x j) = y. This sequence
contains a convergent subsequence (x jk)k∈Z>0 by the Bolzano–Weierstrass Theorem;
let x = limk→∞ x jk . Then, by continuity of fC, y = fC(x). We also have gC(y) = x by
definition, and so this gives fC ◦ gC(y) = y, as desired. Injectivity of gC follows from
Proposition 1.3.9. H

2 Lemma The function gC is monotonically increasing.

Proof Let y1, y2 ∈ [0, 1] satisfy y1 < y2 and suppose that gC(y1) > gC(y2). Then
fC ◦ gC(y1) ≥ fC ◦ gC(y2) since fC is monotonically increasing. From the previous
lemma this implies that y1 ≥ y2 which is a contradiction. Thus we must have
gC(y1) ≤ gC(y2). H

3 Lemma image(gC) ⊆ C.

Proof For y ∈ R the set
{x ∈ [0, 1] | fC(x) = y}

is an interval, possibly with empty interior, on which fC is constant. The endpoints
of the interval are points in C. In particular, gC(y) ∈ C. H

Now let A ⊆ [0, 1] be the non-Lebesgue measurable subset of Example 5.4.3
and take B = gC(A). Then B ⊆ C and so is a subset of a set of measure zero
by Example 2.5.39. Since the Lebesgue measure is complete it follows that B is
Lebesgue measurable. However, were B to be a Borel set, then monotonicity of gC
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and missing stuff implies that g−1
C (B) is a Borel set. However, injectivity of gC gives

g−1
C (B) = A, and A is not Lebesgue measurable, and so certainly not Borel. Thus B

is not a Borel set. •

When we come to talk about functions defined on measurable spaces in Sec-
tion 5.6 we will consider functions taking values in R. It will then be occasionally
useful to have a notion of a Borel subset of R. Let us, therefore, define what these
subsets are.

5.4.15 Definition (Borel subsets of R) The collection of Borel sets in R is the σ-algebra
generated by the subsets of R having the following form:

U, U ∪ [−∞, b), U ∪ (a,∞], U ∪ [−∞, b) ∪ (a,∞], U ∈ O(R), a, b ∈ R.

We denote by B(R) the Borel sets in R. •

The idea of the preceding definition is that B(R) is the σ-algebra generated by
open subsets of R, where open subsets of R are those used in the definition. That
these open subsets are indeed the open subsets for a topology on R is argued in
Example ??–??.

The following characterisation of B(R) is useful.

5.4.16 Proposition (Characterisation of B(R)) The σ-algebra B(R) is generated by B(R)∪
{−∞} ∪ {∞}.

Proof Clearly B(R) ⊆ B(R). Since

{∞} = ∩k∈Z(k,∞], {−∞} = ∩k∈Z[−∞,−k),

and since (k,∞], [−∞,−k) ∈ B(R) for each k ∈ Z>0, it follows that {−∞}, {∞} ∈ B(R).
Therefore, the σ-algebra generated by B(R) ∪ {−∞} ∪ {∞} is contained in B(R).

Next we note that U ∈ B(R) if U ∈ O(R). Also, for b ∈ R,

U ∪ [−∞, b) = U ∪ {−∞} ∪ (−∞, b)

and so U ∪ [−∞, b) is a union of sets from B(R) ∪ {−∞} ∪ {∞}. In similar fashion sets
of the form

U ∪ (a,∞], U ∪ [−∞, b) ∪ (a,∞]

for a, b ∈ R are unions of sets from B(R)∪ {−∞}∪ {∞}. This implies that the generators
for the σ-algebra B(R) are contained in the σ-algebra generated by B(R)∪ {−∞}∪ {∞}.
Thus B(R) is contained in the σ-algebra generated by B(R) ∪ {−∞} ∪ {∞}. �

5.4.3 Further properties of the Lebesgue measure on R

In this section we give some additional properties of the Lebesgue measure
that (1) illustrate a sort of friendliness of this measure and (2) justify its being in
some way natural.

Let us illustrate first an important property of the Lebesgue measure. Let us do
this by giving a general definition that creates a little context for this property of
Lebesgue measure.
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5.4.17 Definition (Regular measure on R) Let A be a σ-algebra on R that contains the
Borel σ-algebra B(R). A measure µ : A → R≥0 is regular if

(i) µ(K) < ∞ for each compact subset K ⊆ R,
(ii) if A ∈ A then µ(A) = inf{µ(U) | U open and A ⊆ U}, and
(iii) if U ⊆ R is open then µ(U) = sup{µ(K) | K open and K ⊆ U}. •

Before we prove that the Lebesgue measure is regular, let us give some examples
that show that irregular measures are possible.

5.4.18 Examples (Regular and irregular measures)
1. For x ∈ R the point mass measure δx : B(R)→ R≥0 defined by

δ(B) =

1, x ∈ B,
0, x < B

is regular, as may be readily verified; see Exercise 5.4.6.

2. One can check that the counting measure µ : B(R)→ R≥0 defined by

µ(B) =

card(B), card(B) < ∞,
∞, otherwise

is not regular; see Exercise 5.4.7. •

We begin with a theorem that characterises the Lebesgue measure of measurable
sets.

5.4.19 Theorem (Regularity of the Lebesgue measure) The Lebesgue measure
λ : L (R) → R≥0 is σ-finite and regular. Moreover, for A ∈ L (R) we have λ(A) =
sup{λ(K) | K compact and K ⊆ A}.

Proof To see that λ is σ-finite note that R = ∪k∈Z>0[−k, k] with λ([−k, k]) < ∞.
Next we show that if A ∈ L (R) then

λ(A) = inf{λ(U) | U open and A ⊆ U}.

Assume that λ(A) < ∞ since the result is obvious otherwise. Let ε ∈ R>0 and let
((a j, b j)) j∈Z>0 be a sequence of open intervals for which A ⊆ ∪ j∈Z>0(a j, b j) and for which

∞∑
j=1

|b j − a j| = λ(A) + ε.

Now let U = ∪ j∈Z>0(a j, b j), noting that U is open and that A ⊆ U. By
Proposition 5.3.10(iii) and the fact that the measure of an interval is its length we
have

λ(U) ≤
∞∑
j=1

|b j − a j| = λ(A) + ε.
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Since ε ∈ R>0 is arbitrary this shows that

λ(A) ≥ inf{λ(U) | U open and A ⊆ U}.

Since the other inequality is obvious by the basic properties of a measure, this part of
the result follows.

Note that to show that λ is regular it suffices to prove the final assertion of the
theorem since open sets are Lebesgue measurable; thus we prove the final assertion
of the theorem. First suppose that A ∈ L (R) is bounded. Then let K̃ be a compact
set containing A. For ε ∈ R>0 choose U open and containing K̃ \ A and for which
λ(U) ≤ λ(K̃ \ A) + ε, this being possible from by the first part of the proof. Note that
K = K̃ \U is then a compact set contained in A and that the basic properties of measure
then give

λ(U) ≤ λ(K̃ \ A) + ε and λ(K̃) ≤ λ(K) − λ(A) =⇒ λ(K) > λ(A) − ε.

Since ε can be made as small as desired, this gives the second part of the proposition
when A is bounded. Define

A j = (− j, j) ∩ A,

and note that (A j) j∈Z>0 is an increasing sequence of sets and that A = ∪ j∈Z>0A j. There-
fore, by Proposition 5.3.10(iv),λ(A) = lim j→∞ λ(A j). Then for any M < λ(A) there exists
N ∈ Z>0 such that λ(AN) > M. We may now find a compact K such that λ(K) > M by
the fact that we have proved our assertion for bounded sets (as is AN). Note that K ⊆ A
and that M < λ(A) is arbitrary, and so the result follows. �

This result has the following obvious corollary.

5.4.20 Corollary (Approximation of Lebesgue measurable sets by open and com-
pact sets) If A ∈ L (R) satisfies λ(A) < ∞ and if ε ∈ R>0 then there exists an open set
U ⊆ R and a compact set K ⊆ R such that

λ(U \A) < ε, λ(A \ K) < ε.

Let us next show that the Lebesgue measure is, in some way, natural. We do
this by considering a particular property of the Lebesgue measure, namely that
it is “translation-invariant.” In order to define what it means for a measure to
be translation-invariant, we first need to say what it means for a σ-algebra to be
translation-invariant.

5.4.21 Definition (Translation-invariant σ-algebra and measure onR) Aσ-algebra A ⊆
2R is translation-invariant if, for every A ∈ A and every x ∈ R,

x + A , {x + y | y ∈ A} ∈ A .

A translation-invariant measure on a translation-invariant σ-algebra A is a map
µ : A → R≥0 for which µ(x + A) = µ(A) for every A ∈ A and x ∈ R. •

The two σ-algebras we are considering in this section are translation-invariant.
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5.4.22 Proposition (Translation-invariance of Borel and Lebesgue measurable sets)
Both B(R) and L (R) are translation-invariant.

Proof Let us denote

B′(R) = {B | x + B ∈ B(R) for every x ∈ R}.

We claim that B′(R) is a σ-algebra containing the open subsets of R. First of all, if
U ⊆ R is open then x + U is open for every x ∈ R (why?) and so U ∈ B′(R). To see that
B′(R) is a σ-algebra, first note that R = x +R for every x ∈ R and so R ∈ B′(R). Next,
let B ∈ B′(R) and let x ∈ R. Then

x + (R \ B) = {x + z | z < B} = {y | y − x < B} = {y | y , x + z, z ∈ B}
= {y | y < (x + B)} = R \ (x + B) ∈ B(R).

Thus x + (R \ B) ∈ B(R) for every x ∈ R and so R \ B ∈ B′(R). Finally, let (B j) jZ>0 be a
countable collection of subsets from B′(R). Then, for x ∈ R we have

x + ∪ j∈Z>0B j = ∪ j∈Z>0(x + B j) ∈ B(R)

and so ∪ j∈Z>0B j ∈ B′(R). Thus B′(R) is indeed a σ-algebra containing the open sets
and so we conclude that B(R) ⊆ B′(R) since B(R) is the σ-algebra generated by the
open sets. This shows that B(R) is translation-invariant.

Next let us show that L (R) is translation-invariant. To do this we first show that
if S ⊆ R and if x ∈ R then λ∗(x + S) = λ∗(S). Indeed,

λ∗(x + S) = inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ x + S ⊆
⋃

j∈Z>0

(a j, b j)
}

= inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ x + S ⊆
⋃

j∈Z>0

(x + a j, x + b j)
}

= inf
{ ∞∑

j=1

|b j − a j|

∣∣∣∣ S ⊆
⋃

j∈Z>0

(a j, b j)
}

= λ∗(S).

Now let A ∈ L (R) so that, for every subset S ⊆ R,

λ∗(S) = λ∗(S ∩ A) + λ∗(S ∩ (R \ A)).

Then, for x ∈ R and S ⊆ R,

λ∗(S ∩ (x + A)) = λ∗((x + (−x + S)) ∩ (x + A)) = λ∗((−x + S) ∩ A)

and, similarly,

λ∗(S ∩ (R \ (x + A))) = λ∗((x + (−x + S)) ∩ (x +R \ A)) = λ∗((−x + S) ∩ (R \ A)).

Since λ∗(−x + S) = λ∗(S) this immediately gives

λ∗(S) = λ∗(S ∩ (x + A)) + λ∗(S ∩ (R \ (x + A))),

showing that x + A ∈ L (R). �

Now that the σ-algebras are known to be translation-invariant, we can make
the following characterisation of the Lebesgue measure.
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5.4.23 Theorem (Translation invariance of the Lebesgue measure) If µ : B(R)→ R≥0

is a nonzero translation-invariant measure for which µ(B) < ∞ for every bounded B ∈
B(R), then there exists c ∈ R>0 such that µ(B) = cλ(B) for every B ∈ B(R). Moreover,
the Lebesgue measure λ : L (R)→ R≥0 is translation-invariant.

Proof That λ is translation-invariant follows from the proof of Proposition 5.4.22
where we showed that λ∗(x + S) = λ∗(S) for every S ⊆ R and x ∈ R. To show that λ
is, up to a positive scalar, the only translation-invariant measure we first prove two
lemmata.

1 Lemma If U ⊆ R is a nonempty open set, then there exists a countable collection of disjoint
half-open intervals (Ij)j∈Z>0 such that U = ∪j∈Z>0Ij.

Proof For k ∈ Z≥0 define

Ck = {[ j2−k, ( j + 1)2−k) | j ∈ Z}.

Note that, for each k ∈ Z≥0, the sets from Ck form a countable partition of R. Also note
that for k < l, every interval in Cl is also an interval in Ck. Now let U ⊆ R be open. Let
D0 = ∅. Let

D1 = {I ∈ C1 | I ⊆ U},
D2 = {I ∈ C2 | I ⊆ U, I < D1},

...

Dk = {I ∈ Ck | I ⊆ U, I < D1 ∪ · · · ∪Dk−1}

...

The result will follow if we can show that each point x ∈ U is contained in some Dk,
k ∈ Z>0. However, this follows since U is open, and so, for each x ∈ U, one can find a
smallest k ∈ Z≥0 with the property that there exists I ∈ Ck with x ∈ I and I ⊆ U. H

2 Lemma The Lebesgue measure is the unique measure on (R,B(R)) for which the measure of
an interval is its length.

Proof From Theorem 5.4.2 we know that λ(I) = `(I) for every interval I. Now suppose
that µ : B(R)→ R≥0 is a measure with the property that µ(I) = `(I) for every interval I.

First let U ⊆ R be open. By Lemma 1 we can write U = ∪ j∈Z>0I j for a countable
family (I j) j∈Z>0 of disjoint intervals. Therefore, since µ is a measure,

µ(U) = µ
( ⋃

j∈Z>0

I j

)
=

∞∑
j=1

µ(I j) =

∞∑
j=1

λ(I j) = λ(U).

Now let B be a bounded Borel set and let U be an open set for which B ⊆ U. Then

µ(B) ≤ µ(U) = λ(U).

Therefore,
µ(B) ≤ inf{λ(U) | U open and B ⊆ U} = λ(B)
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by regularity of λ. Therefore, if U is a bounded open set containing B we have

µ(U) = µ(B) + µ(U \ B) ≤ λ(B) + λ(U \ B) = λ(U).

Since µ(U) = λ(U) it follows that µ(B) = λ(B) and µ(U \ B) = λ(U \ B).
Finally let B be an unbounded Borel set. We can then write B = ∪ j∈ZB j where

(B j) j∈Z>0 is the countable family of disjoint Borel sets B j = B ∩ [ j, j + 1), j ∈ Z. Then

µ(B) =
∑
j∈Z

µ(B j) =
∑
j∈Z

λ(B j) = λ(B),

as desired. H

To proceed with the proof, let µ : B(R) → R≥0 be a translation-invariant measure
and let c = µ([0, 1)). By assumption c ∈ R>0 since, were c = 0,

µ(R) =

∞∑
j=1

µ([ j, j + 1)) = 0

by translation-invariance of µ. Now let µ′ : B(R) → R≥0 be the measure defined by
µ′(B) = c−1µ(B). Now, for k ∈ Z≥0 let

Ck = {[ j2−k, ( j + 1)2−k) | j ∈ Z}

as in the proof of Lemma 1. Let I ∈ Ck. We can write [0, 1) as a disjoint union of 2k

intervals of the form x j + I. Therefore, by translation-invariance of µ′,

µ′([0, 1)) = 2kµ′(I), λ([0, 1)) = 2kλ(I).

Since µ′([0, 1)) = λ([0, 1)) it follows that µ′(I) = λ(I). Since every interval is a disjoint
union of intervals from the sets Ck, k ∈ Z≥0, by Lemma 1 it follows that µ′(I) = λ(I) for
every interval I. Thus µ′ = λ by Lemma 2 above and so µ = cλ, as desired. �

It is then natural question to ask, “Are there larger σ-algebras than B(R) which
admit a translation-invariant measure?” Obviously one such is the collection L (R)
of Lebesgue measurable sets. But are there larger ones? The following result gives
a partial answer, and indicates that the “best possible” construction is impossible.

5.4.24 Theorem (There are no translation-invariant, length-preserving measures on
all subsets of R) There exists no measure space (R,A , µ) having the joint properties
that

(i) A = 2R,
(ii) µ((0, 1)) = 1, and
(iii) µ is translation-invariant.

Proof Were such a measure to exist, then the non-Lebesgue measurable set A ⊆ (0, 1)
of Example 5.4.3 would be measurable. But during the course of Example 5.4.3 we
showed that (0, 1) is a countable disjoint union of translates of A. The dichotomy
illustrated in Example 5.4.3 then applies. That is, if µ(A) = 0 then we get µ((0, 1)) = 0
and if µ(A) ∈ R>0 then µ((0, 1)) = ∞, both of which conclusions are false. �
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Decide to measure size
of subsets of R

measure of intervals = length

Lebesgue
outer measure

Decide on countable
additivity

Lebesgue
measurable sets

Lebesgue measure

Decide a measure is
the right thing to use

Need to measure the
size of open sets

Borel sets

Translation-invariance
+ measure of intervals = length

unique

Lebesgue measure
on Borel sets

Completeness

Figure 5.3 Lines of reasoning for arriving at Lebesgue measure.
Dashed arrows represent choices that can be made and solid
arrows represent conclusions that follow from the preceding
decisions

It is now possible to provide a summary of the “reasonableness” of the Lebesgue
measure by providing a natural line of reasoning, the natural terminus of which is
the Lebesgue measure. In Figure 5.3 we show a “flow chart” for how one might
justify the Lebesgue measure as being the process of some rational line of thought.
Note that we are not saying that this actually described the historical development
of the Lebesgue measure, but just that, after the fact, it indicates that the Lebesgue
measure is not a strange thing to arrive at. It is rare that scientific discovery actually
proceeds along the lines that make it most understandable in hindsight.



435 5 Measure theory and integration 2016/11/26

5.4.4 Notes

The construction of the non-Lebesgue measurable subset of Example 5.4.3 is
due to Vitali.

Exercises

5.4.1 Using the definition of the Lebesgue measure show that the measure of a
singleton is zero.

5.4.2 Let A ⊆ R be Lebesgue measurable and for ρ ∈ R>0 define

ρA = {ρx | x ∈ A}.

Show that λ(ρA) = ρλ(A).
5.4.3 For the following subsets of R, verify that they are Borel subsets (and there-

fore measurable sets), and determine their Lebesgue measure:
(a) the bounded, open interval (a, b);
(b) the bounded, open-closed interval (a, b];
(c) the bounded, closed-open interval [a, b);
(d) the singleton {x} for any x ∈ R;
(e) the unbounded closed interval [a,∞);
(f) the unbounded open interval (a,∞).

5.4.4 Show that the set Q of rational numbers is a Borel set.
5.4.5 Show that Gδ’s and Fσ’s are Borel sets.
5.4.6 Show that for x ∈ R, the point mass δx : B(R)→ R≥0 is regular.

5.4.7 Show that the counting measure µ : B(R)→ R≥0 is not regular.
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Section 5.5

Lebesgue measure on Rn

Although we will make most use of the Lebesgue measure on R, we shall
certainly have occasion to refer to the Lebesgue measure in higher dimensions, and
so in this section we present this. The discussion here mirrors, for the most part,
that in Section 5.4, so we will on occasion be a little sparse in our discussion.

Do I need to read this section? The material in this section can be bypassed until
it is needed. •

5.5.1 The Lebesgue outer measure and the Lebesgue measure on Rn

As with the Lebesgue measure onR, we construct the Lebesgue measure onRn

by first defining an outer measure. It is convenient to first define the volume of a
rectangle. If R = I1 × · · · × In is a rectangle in Rn we define its volume to be

ν(R) =


∏n

j=1 `(I j), `(I j) < ∞, j ∈ {1, . . . ,n},
∞, otherwise.

With this notation we have the following definition.

5.5.1 Definition (Lebesgue outer measure on Rn) The Lebesgue outer measure on Rn

is defined by

λ∗n(S) = inf
{ ∞∑

j=1

ν(R j)
∣∣∣∣ S ⊆

⋃
j∈Z>0

R j, R j an open bounded rectangle, j ∈ Z>0

}
. •

The Lebesgue outer measure on Rn has the same sort of naturality property
with respect to volumes of rectangles that the Lebesgue outer measure on R has
with respect to lengths of intervals.

5.5.2 Theorem (Lebesgue outer measure is an outer measure) The Lebesgue outer
measure on Rn is an outer measure. Furthermore, if R = I1 × · · · × In is a rectangle then
λ∗n(Λ) = ν(Λ).

Proof First we show that λ∗n(∅) = 0. Indeed, let (ε j) j∈Z>0 be a sequence converging to
zero inR>0 and note that ∅ ⊆ (−ε j, ε j)n, j ∈ Z>0. Since lim j→∞|ε j +ε j|

n = 0, our assertion
follows.

Next we show monotonicity of λ∗n. This is clear since if A ⊆ B ⊆ Rn and if a
collection of bounded open rectangles (R j) j∈Z>0 covers B, then the same collection of
intervals covers A.

For countable-subadditivity of λ∗n, let (A j) j∈Z>0 be a collection of subsets of Rn. If∑
∞

j=1 λ
∗
n(A j) = ∞ then countable-subadditivity follows trivially in this case, so we may
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as well suppose that
∑
∞

j=1 λ
∗
n(A j) < ∞. For j ∈ Z>0 and ε ∈ R>0 let (R j,k)k∈Z>0 be a

collection of bounded open rectangles covering A j and for which

∞∑
k=1

ν(R j,k) < λ∗n(A j) +
ε

2 j .

By Proposition ??, Z>0 ×Z>0 is countable. Therefore, we may arrange the rectangles
(R j,k) j,k∈Z>0 into a single sequence (Rl)l∈Z>0 so that

1. ∪ j∈Z>0A j ⊆ ∪l∈Z>0Rl and

2.
∞∑

l=1

ν(Rl) <
∞∑

l=1

(
λ∗n(Al) +

ε

2l

)
=

∞∑
l=1

λ∗n(A j) + ε.

This shows that

λ∗n
( ⋃

j∈Z>0

A j

)
≤

∞∑
j=1

λ∗n(A j),

giving countable-subadditivity of λ∗n.
We finally show thatλ∗(R) = ν(R) for any rectangle R. We first take R to be compact.

Let Rε be an open rectangle containing R and for which ν(Rε) = ν(R) + ε. Then

R ⊆ Rε ∪
(
∪
∞

j=2R j

)
,

where R j = ∅, j ≥ 2. Thus we have λ∗n(R) < ν(R) + ε, and since this holds for every
ε ∈ R>0 it follows that ν(R) ≤ λ∗n(R). Now suppose that (R j) j∈Z>0 is a family of bounded
open rectangles for which R ⊆ ∪ j∈Z>0R j. Since R is compact, there is a finite subset of
these rectangles, let us abuse notation slightly and denote them by (R1, . . . ,Rk), such
that R ⊆ ∪k

j=1R j. Now let P be a partition of R such that each of the subrectangles of
P is contained in one of the rectangles R1, . . . ,Rn. This is possible since there are only
finitely many of the rectangles R1, . . . ,Rn. By definition of the volume of a rectangle
we have

ν(R) =
∑
R′∈P

ν(R′) ≤
k∑

j=1

ν(R j) =

k∑
j=1

λ∗n(R j).

This gives ν(R) = λ∗n(R), as desired.
Now let R be a bounded rectangle. Since R ⊆ cl(R) we have λ∗n(R) ≤ ν(cl(R)) = ν(R)

using monotonicity of λ∗n. If ε ∈ R>0 we may find a compact rectangle Rε ⊆ R for which
ν(R) ≤ ν(Rε) + ε. Since λ∗n(Rε) ≤ λ∗n(R) by monotonicity, it follows that

λ∗(R) ≥ λ∗(Rε) = ν(Rε) ≥ ν(R) − ε.

Since ε ∈ R>0 is arbitrary λ∗n(R) ≥ ν(R), showing that λ∗n(R) = ν(R), as desired.
Finally, if R is unbounded then for any M ∈ R>0 we may find a compact rectangle

R′ ⊆ R for which λ∗n(R′) > M. Since λ∗n(R) ≥ λ∗n(R′) by monotonicity this means that
λ∗n(R) = ∞. �

As with the Lebesgue outer measure on R, there are subsets of Rn that are not
Lebesgue measurable.
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5.5.3 Example (A set that is not λ∗n-measurable) Let A ⊆ (0, 1) be the subset of R
constructed in Example 5.4.3 that is not λ∗-measurable. Then define An = A ×
(0, 1) × · · · × (0, 1) ⊆ Rn. Then recall from Example 5.4.3 that (0, 1) is a countable
union of translates of A. Thus (0, 1)n is a countable union of translates of An. Since
λ∗n is translation-invariant as we shall show in Theorem 5.5.22, it follows that, if An

is λ∗n-measurable, then we have the same dichotomy for An as we had for A:
1. if λ∗n(An) = 0 then λ∗n((0, 1)n) = 0;
2. if λ∗n(An) ∈ R>0 then λ∗n((0, 1)n) = ∞.
Since both of these conclusions are false, it must be the case that An is not λ∗n-
measurable. •

This then leads to the following definition.

5.5.4 Definition (Lebesgue measurable subsets of Rn, Lebesgue measure on Rn)
Let λ∗n be the Lebesgue outer measure on Rn and denote by L (Rn) the set of λ∗n-
measurable subsets of Rn. The sets in L (Rn) are called Lebesgue measurable, or
merely measurable, and the complete measure λn : L (Rn)→ R≥0 induced by λ∗n is
called the Lebesgue measure on Rn. •

As with the Lebesgue measure on R, the Lebesgue measure on Rn can be
restricted to measurable sets.

5.5.5 Proposition (Restriction of Lebesgue measure to measurable sets) Let A ∈
L (Rn) and denote

(i) L (A) = {B ∩A | B ∈ L (Rn)} and
(ii) λA : L (A)→ R≥0 given by λA(B ∩A) = λ(B ∩A).

Then (A,L (A), λA) is a complete measure space.
Proof This follows from Propositions 5.2.6, 5.3.18, and 5.3.23. �

5.5.2 Borel sets in Rn as examples of Lebesgue measurable sets

Next we turn to the Borel sets in Rn which provide a large and somewhat
comprehensible collection of Lebesgue measurable sets. We denote by O(Rn) the
open subsets of Rn.

5.5.6 Definition (Borel subsets of Rn) The collection of Borel sets inRn is the σ-algebra
generated by O(Rn) (see Proposition 5.2.7). We denote by B(Rn) the Borel sets in
Rn. If A ∈ B(Rn) then we denote

B(A) = {A ∩ B | B ∈ B(Rn)} •

While it is not so easy to come up with a satisfactory description of all Borel
sets, it is the case that we will only encounter non-Borel sets as examples of things
that are peculiar. Thus one can frequently get away with only thinking of Borel sets
when one thinks about Lebesgue measurable sets. We shall be a little more precise
about just what this means later.
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For the moment, let us give a few examples of Borel sets. The following result
gives us a ready made and very large class of Borel sets. In the following result we
make the natural identification of Rn1 ×Rn2 with Rn1+n2 .

5.5.7 Proposition (Products of Borel sets) Let σ(B(Rn1) ×B(Rn2)) denote the σ-algebra
on Rn1 × Rn2 generated by subsets of the form B1 × B2, where B1 ∈ B(Rn1) and B(Rn2).
Then B(Rn1+n2) = σ(B(Rn1) ×B(Rn2)).

Proof By missing stuff it follows that the open sets inRn1 ×Rn2 are countable unions
of sets of the form U1 ×U2 where U1 ⊆ R

n1 and U2 ⊆ Rn2 are open. By Exercise 5.2.4 it
follows that B(Rn1+n2) is generated by subsets from the σ-algebra σ(B(Rn1)×B(Rn2)).
Thus B(Rn1+n2) ⊆ σ(B(Rn1) ×B(Rn2)).

For the converse inclusion, note that the projections pr1 : Rn1+n2 → Rn1 and
pr2 : Rn1+n2 → Rn2 are continuous. From this one can easily show (and this will
be shown in Example 5.5.10–3) that π−1

1 (B1),pr−1
2 (B2) ∈ B(Rn1+n2) for B1 ∈ B(Rn1) and

B2 ∈ B(Rn2). Therefore,

B1 ∩ B2 = π−1
1 (B1) ∩ pr−1

2 (B2) ∈ B(Rn1+n2)

for B1 ∈ B(Rn1) and B2 ∈ B(Rn2). Thus σ(B(Rn1) × B(Rn2)) ⊆ B(Rn1+n2) since
σ(B(Rn1) ×B(Rn2)) is the smallest σ-algebra containing products of Borel sets. �

5.5.8 Remark (σ(L (Rn1) × L (Rn2)) , L (Rn1+n2)) The reader will notice that the result
analogous to the preceding one, but for Lebesgue measurable sets was not stated.
This is because it is actually not true, as will be seen missing stuff . This is an
instance that illustrates that the mantra “What seems like it should be true is true”
should always be verified explicitly. •

The following alternative characterisations of Borel sets are sometimes useful.

5.5.9 Proposition (Alternative characterisation of Borel sets) B(Rn) is equal to the
following collections of sets:

(i) the σ-algebra B1 generated by the closed subsets;
(ii) the σ-algebra B2 generated by rectangles of the form (−∞, b1] × · · · × (−∞, bn],

b1, . . . , bn ∈ R;
(iii) the σ-algebra B3 generated by intervals of the form (a1, b1]×· · ·× (an, bn], aj, bj ∈ R,

aj < bn ∈ R, j ∈ {1, . . . ,n}.
Proof First note that B(Rn) contains the σ-algebra B1 generated by all closed sets,
since the complements of all open sets, i.e., all closed sets, are contained in B(Rn).
Note that the sets of the form (−∞, b1] × · · · × (−∞, bn] are closed, so the σ-algebra B2
generated by these subsets is contained in B1. Since (a j, b j] = (−∞, b j] ∩ (R \ (−∞, a j]),
j ∈ {1, . . . ,n}, it follows that the σ-algebra B3 is contained in B2. Finally, note that

(a j, b j) = ∪∞k=1(a j, bk −
1
k ], j ∈ {1, . . . ,n}.

Thus, by missing stuff , each open subset of Rn is a countable union of sets, each of
which is a countable intersection of generators of sets of B3. Thus B(Rn) ⊆ B3. Putting
this all together gives

B(Rn) ⊆ B3 ⊆ B2 ⊆ B1 ⊆ B(Rn).

Thus we must conclude that B1 = B2 = B3 = B(Rn). �
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We can now give some examples of Borel sets in Rn.

5.5.10 Examples (Borel sets)
1. We claim that if B1, . . . ,Bn ∈ B(R) then B1 × · · · × Bn ∈ B(Rn); this follows

by a simple induction from Proposition 5.5.7. This provides us with a large
collection of Borel sets, provided we have Borel sets in R.

2. As for Borel sets in R, a set that is a countable intersection of open sets is called
a Gδ and a set that is a countable union of closed sets is called an Fσ.

3. If B ∈ B(Rn) and if f : Rn
→ Rm is continuous, then f−1(B) ∈ B(Rn). To see, by

Proposition 5.5.9 it suffices to show that

f−1((−∞, b1] × · · · × (−∞, bn])

is closed. If f (x) = ( f1(x, . . . , fm(x)) then

f−1((−∞, b1] × · · · × (−∞, bn]) = f −1
1 ((−∞, b1]) ∩ · · · ∩ f −1

n ((−∞, bn]).

Since each of the functions f1, . . . , fn are continuous it follows from Corollary ??
that f −1

j ((−∞, bn]) is closed for each j ∈ {1, . . . ,n}. Thus

f−1((−∞, b1] × · · · × (−∞, bn])

is closed, being a finite intersection of closed sets. This gives the desired con-
clusion.
This again gives us a wealth of Borel sets. •

Now that we understand a little of the character of Borel sets, let us provide
their relationship with the Lebesgue measurable sets. As with the relationship of
B(R) with L (R), the correspondence between Borel and Lebesgue measurable sets
in Rn has its nice points and its somewhat deficient aspects.

5.5.11 Theorem (Borel sets are Lebesgue measurable) B(Rn) ⊆ L (Rn).
Proof The theorem will follow from Proposition 5.5.9 if we can show that any set of
the form (−∞, b1]× · · · × (−∞, bn] is Lebesgue measurable. Let A be such a set and note
that since

λ∗n(S) ≤ λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A))

we need only show the opposite inequality to show that A is Lebesgue measurable. If
λ∗n(S) = ∞ this is clearly true, so we may as well suppose that λ∗n(S) < ∞. Let (R j) j∈Z>0

be bounded open rectangles that cover S and be such that

∞∑
j=1

ν(R j) < λ∗n(S) + ε.

For j ∈ Z>0 choose bounded open rectangles D j and E j, possibly empty, for which

R j ∩ A ⊆ D j,

R j ∩ (Rn
\ A) ⊆ E j,

ν(D j) + ν(E j) ≤ ν(R j) +
ε

2 j .
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Note that the bounded open rectangles (D j) j∈Z>0 cover S ∩ A and that the bounded
open rectangles (E j) j∈Z>0 cover Rn

\ A so that

λ∗n(S ∩ A) ≤
∞∑
j=1

ν(D j), λ∗n(S ∩ (Rn
\ A)) ≤

∞∑
j=1

ν(E j).

From this we have

λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A)) ≤

∞∑
j=1

ν(R j) + ε < λ∗n(S) + 2ε,

using the fact that
∑
∞

j=1
1
2 j = 1 by Example 2.4.2–??. Since ε can be taken arbitrarily

small, the inequality
λ∗n(S) ≥ λ∗n(S ∩ A) + λ∗n(S ∩ (R \ A))

follows, and so too does the result. �

While the preceding result is useful in that it tells us that the large class of
(sort of) easily understood Borel sets are Lebesgue measurable, the following result
says that much more is true. Namely, up to sets of measure zero, all Lebesgue
measurable sets are Borel sets.

5.5.12 Theorem (Lebesgue measurable sets are the completion of the Borel sets)
(Rn,L (Rn), λn) is the completion of (Rn,B(Rn), λn|B(Rn)).

Proof First, given A ∈ L (Rn), we find L,U ∈ B(Rn) such that L ⊆ A ⊆ U and such
that λn(U \ L) = 0. We first suppose that λn(A) < ∞. Using Theorem 5.5.18 below, let
(U j) j∈Z>0 be a sequence of open sets containing A and for which λn(U j) ≤ λn(A) + 1

j and

let (L j) j∈Z>0 be a sequence of compact subsets of A for which λn(L j) ≥ λn(A) − 1
j . If we

take L = ∪ j∈Z>0L j and U = ∩ j∈Z>0U j then we have L ⊆ A ⊆ U. We also have

λn(U \ L) ≤ λn(U j \ L j) = λn(U j \ A) + λn(A \ L j) ≤ 1
2 j .

Since this holds for every j ∈ Z>0, this gives our claim when A has finite measure,
since L and U are Borel sets. If λn(A) = ∞ then we can write A = ∪ j∈Z>0A j with
A j = (− j, j)n

∩ A. For each j ∈ Z>0 we may find L j,U j ∈ B(R) such that L j ⊆ A j ⊆ U j
and λn(U j \ L j. Taking L = ∪ j∈Z>0L j and U = ∪ j∈Z>0 gives L ⊆ A ⊆ U and λn(U \ L) = 0.

The above shows that L (Rn) ⊆ Bλn(Rn). Now let B ∈ Bλn(R) and take Borel sets
L and U for which L ⊆ B ⊆ U and λn(U \ L) = 0. Note that (B \ L) ⊆ (U \ L). Note also
that since U \ L ∈ B(R) we have U \ L ∈ L (R) and λn(U \ L) = 0. By completeness of
the Lebesgue measure this implies that B \ L ∈ L (R). Since B = (B \ L)∪ L this implies
that B ∈ L (R). �

The theorem has the following corollary which explicitly indicates what it means
to approximate a Lebesgue measurable set with a Borel set.

5.5.13 Corollary (Borel approximations to Lebesgue measurable sets) If A ∈ L (Rn)
then there exists a Borel set B and a set Z of measure zero such that A = B ∪ Z.

Proof This follows directly from Theorem 5.5.12 and the definition of the completion.
�

As is the case for B(R) and L (R), there are many more sets in L (Rn) than there
are in B(Rn), the preceding corollary notwithstanding.
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5.5.14 Proposition (The cardinalities of Borel and Lebesgue measurable sets) We
have card(B(Rn)) = card(R) and card(L (Rn)) = card(2R).

Proof Since {x} ∈ B(Rn) for every x ∈ Rn we obviously have card(B(Rn)) ≥
card(Rn) = card(R), the last equality holding by virtue of Theorem ??. For the op-
posite inequality, note that Proposition ?? it holds that every open set is a union of
open balls with rational radius and whose centres have rational coordinates in Rn.
There are countable many such balls by Proposition ??. Let S be the set of such balls
and note that, adopting the notation of Theorem 5.2.14, S1 therefore includes the open
subsets ofRn. Thus B(Rn) is the σ-algebra generated by S and so, by Theorem 5.2.14,
card(B(Rn)) ≤ ℵℵ0

0 . Since

2ℵ0 ≤ ℵ
ℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 ,

using the fact that 2 ≤ ℵ0 ≤ 2ℵ0 by Example ??–?? and Exercise ??, it follows that
card(B(Rn)) ≤ card(R), as desired.

Next, we obviously have

card(L (Rn)) ≤ card(2R
n
) = card(2R),

using the fact that card(Rn) = card(R) by Theorem ??. For the opposite inequality, we
note that the Cantor set C ⊆ [0, 1] has Lebesgue measure zero and has the cardinality of
[0, 1], and thus the cardinality of R. Thus the set Cn = C×Rn−1

⊆ Rn also has measure
zero (why?), and satisfies

card(Cn) = card(C) · card(Rn) = card(R)n = card(R),

using Theorem ??. Since L (Rn) is complete it follows that every subset of Cn is
Lebesgue measurable, and so

card(L (Rn)) ≥ card(2Cn) = card(2R).

Thus card(L (Rn)) = card(2R), as desired. �

Using the fact that this is possible when n = 1, it is possible to construct a
Lebesgue measurable subset of Rn that is not Borel.

5.5.15 Example (A non-Borel Lebesgue measurable set) Let B ⊆ [0, 1] be the subset
defined in Example 5.4.14, recalling that B is Lebesgue measurable but not Borel.
We claim that Bn = B × Rn−1

⊆ Rn is Lebesgue measurable but not Borel. It
is Lebesgue measurable since B is a subset of the Cantor set C which has zero
measure, and so Bn ⊆ C ×Rn−1 with C ×Rn−1 having zero measure. Completeness
of L (Rn) ensures that Bn is Lebesgue measurable. However, Bn cannot be a Borel
set. Indeed, let i1 : R→ Rn be the continuous map i1(x) = (x, 0, . . . , 0). Then one can
easily see that B = i−1

1 (Bn). Were Bn a Borel set, this would imply that B is a Borel
set by Example 5.5.10–3. •

5.5.3 Further properties of the Lebesgue measure on Rn

In this section we shall establish some important properties of the Lebesgue
measure. These are intended to show the extent to which the Lebesgue measure is
a natural and well-behaved construction.

We begin with an important attribute of measures in general.
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5.5.16 Definition (Regular measure on Rn) Let A be a σ-algebra onRn that contains the
Borel σ-algebra B(Rn). A measure µ : A → R≥0 is regular if

(i) µ(K) < ∞ for each compact subset K ⊆ Rn,
(ii) if A ∈ A then µ(A) = inf{µ(U) | U open and A ⊆ U}, and
(iii) if U ⊆ Rn is open then µ(U) = sup{µ(K) | K open and K ⊆ U}. •

Let us give some simple examples to illustrate what regular means.

5.5.17 Examples (Regular and irregular measures)
1. If x ∈ Rn, the point mass measure δx : B(Rn)→ R≥0 defined by

δ(B) =

1, x ∈ B,
0, x < B

is regular, as may be readily verified; see Exercise 5.5.2.

2. One can check that the counting measure µ : B(Rn)→ R≥0 defined by

µ(B) =

card(B), card(B) < ∞,
∞, otherwise

is not regular; see Exercise 5.5.3. •

5.5.18 Theorem (Regularity of the Lebesgue measure) The Lebesgue measure
λn : L (Rn) → R≥0 is σ-finite and regular. Moreover, for A ∈ L (Rn) we have
λn(A) = sup{λ + n(K) | K compact and K ⊆ A}.

Proof To see that λn is σ-finite note that Rn = ∪k∈Z>0[−k, k]n with λn([−k, k]n) < ∞.
Next we show that if A ∈ L (Rn) then

λn(A) = inf{λn(U) | U open and A ⊆ U}.

Assume that λn(A) < ∞ since the result is obvious otherwise. Let ε ∈ R>0 and let
(R j) j∈Z>0 be a sequence of bounded open rectangles for which A ⊆ ∪ j∈Z>0R j and for
which

∞∑
j=1

ν(R j) = λn(A) + ε.

Now let U = ∪ j∈Z>0R j, noting that U is open and that A ⊆ U. By Proposition 5.3.10(iii)
and the fact that the measure of a rectangle is its we have

λn(U) ≤
∞∑
j=1

ν(R j) = λn(A) + ε.

Since ε ∈ R>0 is arbitrary this shows that

λn(A) ≥ inf{λn(U) | U open and A ⊆ U}.
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Since the other inequality is obvious by the basic properties of a measure, this part of
the result follows.

Note that to show that λn is regular it suffices to prove the final assertion of the
theorem since open sets are Lebesgue measurable; thus we prove the final assertion
of the theorem. First suppose that A ∈ L (Rn) is bounded. Then let K̃ be a compact
set containing A. For ε ∈ R>0 choose U open and containing K̃ \ A and for which
λn(U) ≤ λn(K̃ \ A) + ε, this being possible from by the first part of the proof. Note that
K = K̃ \U is then a compact set contained in A and that the basic properties of measure
then give

λn(U) ≤ λn(K̃ \ A) + ε and λn(K̃) ≤ λn(K) − λn(A) =⇒ λn(K) > λn(A) − ε.

Since ε can be made as small as desired, this gives the second part of the proposition
when A is bounded. Define

A j = (− j, j)n
∩ A,

and note that (A j) j∈Z>0 is an increasing sequence of sets and that A = ∪ j∈Z>0A j. There-
fore, by Proposition 5.3.10(iv), λn(A) = lim j→∞ λn(A j). Then for any M < λn(A) there
exists N ∈ Z>0 such that λn(AN) > M. We may now find a compact K such that
λn(K) > M by the fact that we have proved our assertion for bounded sets (as is AN).
Note that K ⊆ A and that M < λn(A) is arbitrary, and so the result follows. �

The theorem has the following corollary.

5.5.19 Corollary (Approximation of Lebesgue measurable sets by open and com-
pact sets) If A ∈ L (Rn) satisfies λn(A) < ∞ and if ε ∈ R>0 then there exists an open
set U ⊆ Rn and a compact set K ⊆ Rn such that

λn(U \A) < ε, λn(A \ K) < ε.

Next we show that the Lebesgue measure has the quite natural property of
being translation-invariant. First we provide definitions for translation-invariant
σ-algebras and measures.

5.5.20 Definition (Translation-invariant σ-algebra and measure on Rn) A σ-algebra
A ⊆ 2R

n
is translation-invariant if, for every A ∈ A and every x ∈ Rn,

x + A , {x + y | y ∈ A} ∈ A .

A translation-invariant measure on a translation-invariant σ-algebra A is a map
µ : A → R≥0 for which µ(x + A) = µ(A) for every A ∈ A and x ∈ Rn. •

The Borel and Lebesgue measurable sets are translation-invariant.

5.5.21 Proposition (Translation-invariance of Borel and Lebesgue measurable sets)
Both B(Rn) and L (Rn) are translation-invariant.

Proof Let us denote

B′(Rn) = {B | x + B ∈ B(Rn) for every x ∈ Rn
}.
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We claim that B′(Rn) is a σ-algebra containing the open subsets of Rn. First of all, if
U ⊆ Rn is open then x + U is open for every x ∈ Rn (why?) and so U ∈ B′(Rn). To
see that B′(Rn) is a σ-algebra, first note that Rn = x + Rn for every x ∈ Rn and so
Rn
∈ B′(Rn). Next, let B ∈ B′(Rn) and let x ∈ Rn. Then

x + (Rn
\ B) = {x + z | z < B} = {y | y − x < B} = {y | y , x + z, z ∈ B}

= {y | y < (x + B)} = Rn
\ (x + B) ∈ B(Rn).

Thus x + (Rn
\ B) ∈ B(Rn) for every x ∈ Rn and so Rn

\ B ∈ B′(Rn). Finally, let (B j) jZ>0

be a countable collection of subsets from B′(Rn). Then, for x ∈ Rn we have

x + ∪ j∈Z>0B j = ∪ j∈Z>0(x + B j) ∈ B(Rn)

and so ∪ j∈Z>0B j ∈ B′(Rn). Thus B′(Rn) is indeed a σ-algebra containing the open sets
and so we conclude that B(Rn) ⊆ B′(Rn) since B(Rn) is the σ-algebra generated by
the open sets. This shows that B(Rn) is translation-invariant.

Next let us show that L (Rn) is translation-invariant. To do this we first show that
if S ⊆ Rn and if x ∈ Rn then λ∗n(x + S) = λ∗n(S). Indeed,

λ∗n(x + S) = inf
{ ∞∑

j=1

ν(R j)
∣∣∣∣ x + S ⊆

⋃
j∈Z>0

R j

}
= inf

{ ∞∑
j=1

ν(R′j)
∣∣∣∣ x + S ⊆

⋃
j∈Z>0

ν(x + R′j)
}

= inf
{ ∞∑

j=1

ν(R′j)
∣∣∣∣ S ⊆

⋃
j∈Z>0

R′j
}

= λ∗n(S),

using the fact that for a rectangle R we have ν(R) = ν(x + R). Now let A ∈ L (Rn) so
that, for every subset S ⊆ Rn,

λ∗n(S) = λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A)).

Then, for x ∈ Rn and S ⊆ Rn,

λ∗n(S ∩ (x + A)) = λ∗n((x + (−x + S)) ∩ (x + A)) = λ∗n((−x + S) ∩ A)

and, similarly,

λ∗n(S ∩ (Rn
\ (x + A))) = λ∗n((x + (−x + S)) ∩ (x +Rn

\ A)) = λ∗n((−x + S) ∩ (Rn
\ A)).

Since λ∗n(−x + S) = λ∗n(S) this immediately gives

λ∗n(S) = λ∗n(S ∩ (x + A)) + λ∗n(S ∩ (Rn
\ (x + A))),

showing that x + A ∈ L (Rn). �

We may also show that the Lebesgue measure is translation-invariant, and is,
moreover, in some sense unique.
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5.5.22 Theorem (Translation invariance of the Lebesgue measure) If µ : B(Rn) →
R≥0 is a nonzero translation-invariant measure for which µ(B) < ∞ for every bounded
B ∈ B(Rn), then there exists c ∈ R>0 such that µ(B) = cλn(B) for every B ∈ B(Rn).
Moreover, the Lebesgue measure λn : L (Rn)→ R≥0 is translation-invariant.

Proof That λn is translation-invariant follows from the proof of Proposition 5.4.22
where we showed that λ∗n(x + S) = λ∗n(S) for every S ⊆ Rn and x ∈ Rn. To show that
λn is, up to a positive scalar, the only translation-invariant measure we first prove two
lemmata.

1 Lemma If U ⊆ Rn is a nonempty open set, then there exists a countable collection of disjoint
rectangles (Rj)j∈Z>0 of the form

Rj = [aj,1, bj,1) × · · · × [aj,n, bj,n)

such that U = ∪j∈Z>0Rj.

Proof For k ∈ Z≥0 define

Ck = {[ j12−k, ( j1 + 1)2−k) × · · · × [ jn2−k, ( jn + 1)2−k) | j1, . . . , jn ∈ Z}.

Note that, for each k ∈ Z≥0, the sets from Ck form a countable partition of Rn. Also
note that for k < l, every cube in Cl is also a cube in Ck. Now let U ⊆ Rn be open. Let
D0 = ∅. Let

D1 = {C ∈ C1 | C ⊆ U},
D2 = {C ∈ C2 | C ⊆ U, C < D1},

...

Dk = {C ∈ Ck | C ⊆ U, C < D1 ∪ · · · ∪Dk−1}

...

The result will follow if we can show that each point x ∈ U is contained in some Dk,
k ∈ Z>0. However, this follows since U is open, and so, for each x ∈ U, one can find a
smallest k ∈ Z≥0 with the property that there exists C ∈ Ck with x ∈ C and C ⊆ U. H

2 Lemma The Lebesgue measure is the unique measure on (Rn,B(Rn)) for which the measure
of a rectangle is its volume.

Proof From Theorem 5.4.2 we know that λn(R) = ν(R) for every rectangle R. Now
suppose that µ : B(Rn) → R≥0 is a measure with the property that µ(R) = ν(R) for
every rectangle R.

First let U ⊆ Rn be open. By Lemma 1 we can write U = ∪ j∈Z>0C j for a countable
family (C j) j∈Z>0 of disjoint bounded cubes. Therefore, since µ is a measure,

µ(U) = µ
( ⋃

j∈Z>0

C j

)
=

∞∑
j=1

µ(C j) =

∞∑
j=1

λn(C j) = λn(U).

Now let B be a bounded Borel set and let U be an open set for which B ⊆ U. Then

µ(B) ≤ µ(U) = λn(U).
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Therefore,
µ(B) ≤ inf{λ)n(U) | U open and B ⊆ U} = λn(B)

by regularity of λn. Therefore, if U is a bounded open set containing B we have

µ(U) = µ(B) + µ(U \ B) ≤ λn(B) + λn(U \ B) = λn(U).

Since µ(U) = λn(U) it follows that µ(B) = λn(B) and µ(U \ B) = λn(U \ B).
Finally let B be an unbounded Borel set. We can then write B = ∪ j1,..., jn∈ZB j1··· jn

where (B j1··· jn) j1,..., jn∈Z is the (countable by Proposition ??) family of disjoint Borel sets

B j1··· jn = B ∩ ([ j1, j1 + 1) × · · · × [ j1, j1 + 1)), j1, . . . , jn ∈ Z.

Then
µ(B) =

∑
j1,..., jn∈Z

µ(B j) =
∑

j1,..., jn∈Z

λn(B j) = λn(B),

as desired. H

To proceed with the proof, let µ : B(Rn)→ R≥0 be a translation-invariant measure
and let c = µ([0, 1)n). By

µ(Rn) =
∑

j1,..., jn∈Z

ν([ j1, j1 + 1) × · · · × [ jn, jn + 1)) = 0

by translation-invariance of µ. Now let µ′ : B(Rn) → R≥0 be the measure defined by
µ′(B) = c−1µ(B). Now, for k ∈ Z≥0 let Ck be as in the proof of Lemma 1. Let C ∈ Ck.
We can write [0, 1)n as a disjoint union of 2nk intervals of the form x j + C. Therefore, by
translation-invariance of µ′,

µ′([0, 1)n) = 2nkµ′(C), λn([0, 1)n) = 2nkλn(C).

Since µ′([0, 1)n) = λn([0, 1)n) it follows that µ′(C) = λn(C). Since every interval is
a disjoint union of intervals from the sets Ck, k ∈ Z≥0, by Lemma 1 it follows that
µ′(C) = λn(C) for every cube C. Thus µ′ = λn by Lemma 2 above and so µ = cλn, as
desired. �

5.5.23 Theorem (There are no translation-invariant, length-preserving measures on
all subsets of Rn) There exists no measure space (Rn,A , µ) having the joint properties
that

(i) A = 2R
n
,

(ii) µ((0, 1)n) = 1, and
(iii) µ is translation-invariant.

Proof Were such a measure to exist, then the non-Lebesgue measurable set An ⊆ (0, 1)n

of Example 5.5.3 would be measurable. But during the course of Example 5.5.3 we saw
that (0, 1)n is a countable disjoint union of translates of An. The dichotomy illustrated
in Example 5.5.3 then applies. That is, if µ(An) = 0 then we get µ((0, 1)n) = 0 and if
µ(An) ∈ R>0 then µ((0, 1)n) = ∞, both of which conclusions are false. �

Finally in this section, let us record another useful property of the Lebesgue
measure, related to its being translation-invariant. From Definition ?? the notion
of an orthogonal matrix, and the notation O(n) to denote the set of n×n orthogonal
matrices.missing stuff
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5.5.24 Definition (Rotation-invariant σ-algebra and measure on Rn) A σ-algebra A ⊆
2R

n
is rotation-invariant if, for every A ∈ A and every R ∈ O(n), R(A) ∈ A . A

rotation-invariant measure on a rotation-invariant σ-algebra A is a map µ : A →

R≥0 for which µ(R(A)) = µ(A) for every A ∈ A and R ∈ O(n). •

We can then repeat the translation-invariant programme above for rotation-
invariance. This begins with the following result.

5.5.25 Proposition (Rotation-invariance of the Borel and Lebesgue measurable
sets) Both B(Rn) and L (Rn) are rotation-invariant σ-algebras, and, moreover, λn is
rotation invariant.

Proof Let us denote

B′(Rn) = {B | R(B) ∈ B(Rn) for every R ∈ O(n)}.

We claim that B′(Rn) is a σ-algebra containing the open subsets of Rn. First of all, if
U ⊆ Rn is open then R(U) is open for every R ∈ O(n) since R is a homeomorphism of
Rn. Thus U ∈ B′(Rn). To see that B′(Rn) is a σ-algebra, first note that Rn = R(Rn) for
every R ∈ O(n) and so Rn

∈ B′(Rn). Next, let B ∈ B′(Rn) and let R ∈ O(n). Then

R(Rn
\ B) = {R(z) | z < B} = {y | R−1(y) < B} = {y | y , R(z), z ∈ B}

= {y | y < R(B)} = Rn
\ (R(B)) ∈ B(Rn).

Thus R(Rn
\ B) ∈ B(Rn) for every R ∈ O(n) and so Rn

\ B ∈ B′(Rn). Finally, let (B j) jZ>0

be a countable collection of subsets from B′(Rn). Then, for R ∈ O(n) we have

R(∪ j∈Z>0B j) = ∪ j∈Z>0R(B j) ∈ B(Rn)

and so ∪ j∈Z>0B j ∈ B′(Rn). Thus B′(Rn) is indeed a σ-algebra containing the open sets
and so we conclude that B(Rn) ⊆ B′(Rn) since B(Rn) is the σ-algebra generated by
the open sets. This shows that B(Rn) is rotation-invariant.

Next let us show that L (Rn) is rotation-invariant. To do this we first show that
if S ⊆ Rn and if R ∈ O(n) then λ∗n(R(S)) = λ∗n(S). First note by Theorem ?? that
ν(R(R)) = ν(R) since det R ∈ {−1, 1} (see Exercise ??). Then we compute

λ∗n(R(S)) = inf
{ ∞∑

j=1

ν(R j)
∣∣∣∣ R(S) ⊆

⋃
j∈Z>0

R j

}
= inf

{ ∞∑
j=1

ν(R′j)
∣∣∣∣ R(S) ⊆

⋃
j∈Z>0

ν(R(R′j))
}

= inf
{ ∞∑

j=1

ν(R′j)
∣∣∣∣ S ⊆

⋃
j∈Z>0

R′j
}

= λ∗n(S).

Now let A ∈ L (Rn) so that, for every subset S ⊆ Rn,

λ∗n(S) = λ∗n(S ∩ A) + λ∗n(S ∩ (Rn
\ A)).

Then, for R ∈ O(n) and S ⊆ Rn,

λ∗n(S ∩ (R(A))) = λ∗n((RR−1(S)) ∩ (R(A))) = λ∗n((R−1(S)) ∩ A)
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and, similarly,

λ∗n(S ∩ (Rn
\ (R(A)))) = λ∗n((RR−1(S)) ∩ (R(Rn

\ A))) = λ∗n((R−1(S)) ∩ (Rn
\ A)).

Since λ∗n(R−1(S)) = λ∗n(S) this immediately gives

λ∗n(S) = λ∗n(S ∩ (R(A))) + λ∗n(S ∩ (Rn
\ (R(A)))),

showing that R(A) ∈ L (Rn).
The final assertion in the statement of the result, that λn is rotation-invariant,

follows from the fact, proved above, that λ∗n(S) = λ∗n(R(S)) for every S ⊆ Rn. �

The following generalisation of the preceding result is also useful.

5.5.26 Proposition (Lebesgue measure and linear maps) If L ∈ L(Rn;Rm) then
matL(B) ∈ B(Rm) if B ∈ B(Rn) and L(A) ∈ L (Rm) if A ∈ L (Rn). Moreover, if
A ∈ L (Rn) then λm(L(A)) = det Lλn(A).

Proof �

5.5.4 Lebesgue measure on Rn as a product measure

The Lebesgue measure on Rn is not the product of the Lebesgue measures on
the factors of Rn = R × · · · ×R. The problem, as we shall see, is that the product of
the Lebesgue measures is not complete. Fortunately, while the Principle of Desired
Commutativity does not apply in its simplest form, it is not too far off since the
Lebesgue measure on Rn is the completion of the product measure.

First we consider the relationship between the measure spaces (Rn, σ(L (R) ×
· · ·×L (R)), λ×· · ·×λ) and (Rn,L (Rn), λn). The first observation is the following.

5.5.27 Proposition (σ(L (R) × · · · × L (R)) ⊆ L (Rn)) We have σ(L (R) × · · · × L (R)) ⊆
L (Rn).

Proof By definition, σ(L (R)×· · ·×L (R)) is theσ-algebra generated by the measurable
rectangles in Rn. It, therefore, suffices to show that measurable rectangles are λn-
measurable. Thus let A1 × · · · ×An be a measurable rectangle and, by Corollary 5.4.12,
write A j = B j ∪ Z j for B j ∈ B(R) and Z j ⊆ R having measure zero. Then A1 × · · · × An
is a union of measurable rectangles of the form S1 × · · · × Sn where S j ∈ {B j,Z j},
j ∈ {1, . . . ,n}. We claim that if S j = Z j for some j ∈ {1, . . . ,n} then the corresponding
measurable rectangle has Lebesgue measure zero, and so in particular is Lebesgue
measurable. To see this, consider a measurable rectangle of the form

S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn.

Let k ∈ Z>0 and let Ck = [−k, k]. Let ε ∈ R>0. Since Z j has measure zero, there exists
intervals (al, bl), l ∈ Z>0, such that Z j ⊆ ∪l∈Z>0(al, bl) and

∞∑
l=1

(bl − al) <
ε

(2k)n−1
.
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Therefore,

λn(Ck ∩ (S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn)) < (2k)n−1 ε

(2k)n−1
= ε.

Thus
λn(Ck ∩ (S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn)) = 0

and, since

S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn

= ∪k∈Z>0(Ck ∩ (S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn)),

it follows from Proposition 5.3.3 that

λn(S1 × · · · × S j−1 × Z j × S j+1 × · · · × Sn) = 0,

as desired. Thus the only measurable rectangle comprising A1×· · ·×An that is possibly
not of measure zero is B1× · · ·×Bn. By Proposition 5.5.7 (and its natural generalisation
to more than two factors using a trivial induction) it follows that this set will be Borel
measurable, and so Lebesgue measurable. Thus A1 × · · · × An is a finite union of
Lebesgue measurable sets and so is Lebesgue measurable. �

An example illustrates that the inclusion from the preceding proposition is
strict.

5.5.28 Example (σ(L (R) × · · · ×L (R)) ⊂ L (Rn)) Let

A = R × {0n−1} ⊆ R
n

and note that by Theorem 5.3.33 we have λ × · · · × λ(A) = 0. Now let E ⊆ R
be a non-Lebesgue measurable set and note that S , E × {0n−1} ⊆ A is thus a
subset of measure zero, and thus an element of L (Rn) by completeness of the n-
dimensional Lebesgue measure. We claim that S < σ(L (R) × · · · ×L (R)). Indeed,
by Proposition 5.2.18 it follows that if S is measurable then E must be measurable,
which it is not. •

Thus the Lebesgue measure on Rn is not the product of the Lebesgue measures
on its R factors. However, all is not lost, as the following result suggests.

5.5.29 Proposition (The Lebesgue measure is the completion of the product mea-
sure) The measure space (Rn,L (Rn), λn) is the completion of the measure space
(Rn, σ(L (R) × · · · ×L (R)), λ × · · · × λ).

Proof Note that open rectangles are in L (R) × · · · ×L (R). Thus, since B(Rn) is the
σ-algebra generated by open rectangles, B(Rn) ⊆ σ(L (R)× · · · ×L (R)). Moreover, for
an open rectangle we have U1 × · · · ×Un we have

λ × · · · × λ(U1 × · · · ×Un) = λn(U1 × · · · ×Un).

By Lemma 2 of Theorem 5.5.22 we then have

λ × · · · × λ|B(Rn) = λn|B(Rn).
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Now, by Proposition 5.5.27, we have

B(Rn) ⊆ σ(L (R) × · · · ×L (R)) ⊆ L (Rn)

with λ× · · · ×λ and λn agreeing on the left and right sets. By Theorem 5.5.12 the result
follows. �

5.5.5 Coverings of subsets of Rn

It is useful to sometimes be able to cover subsets of Rn with certain types of
sets—say, open balls—and such that the covering has certain desired properties.
In this section we give a few such results that are useful and some of which are
related to the Lebesgue measure. Various versions of the results here are known as
the Vitali6 Covering Lemma.

The most basic such result, and the starting point for other results, is the fol-
lowing.

5.5.30 Lemma (Properties of coverings by balls) Let J be an index set and let (Bn(rj, xj))j∈Z>0

be a family of balls such that
sup{rj | j ∈ J} < ∞.

Then there exists a subset J′ ⊆ J with the following properties:
(i) J′ is finite or countable;

(ii) the balls (Bn(rj′ , xj′))j′∈J′ are pairwise disjoint;

(iii) ∪j∈JBn(rj, xj) ⊆ ∪j′∈J′Bn(5rj′ , xj′).

Proof Let us first suppose that ∪ j∈JBn(r j, x j) is bounded. We inductively construct a
subset J′ of J as follows. Let ρ1 = sup{r j | j ∈ J} and let j1 ∈ J be chosen so that r j ≥

1
2ρ1.

Now suppose that j1, . . . , jk have been defined and let

ρk+1 = sup{r j | j satisfies Bn(r j, x j) ∩ ∪k
s=1Bn(r js , x js) = ∅}.

If ρk+1 = 0 then take J′ = { j1, . . . , jk}. Otherwise define jk+1 ∈ J \ { j1, . . . , jk} such that
r jk+1 ≥

1
2ρk+1. In the case where this inductive procedure does not terminate in finitely

many steps, take J′ = { jk | k ∈ Z>0}.
The family (Bn(r j′ , x j′)) j′∈J′ so constructed is clearly pairwise disjoint. Moreover, if

x ∈ Bn(r j, x j) for some j ∈ J we have two possibilities.

1. j ∈ J′: In this case we immediately have x ∈ ∪ j′∈J′Bn(r j′ , x j′).

2. j < J′: Here we claim that there exists j′ ∈ J such that x ∈ Bn(r j′ , x j′). Suppose
otherwise. Note that since we are assuming that ∪ j∈JBn(r j, x j) is bounded and
since (Bn(r j′ , x j′)) j′∈J′ is pairwise disjoint, for every ε ∈ R>0 we have limk→∞ r jk = 0.
Therefore, there must exist k ∈ Z>0 such that 2r jk < r j. This, however, contradicts
the definition of rk, and so we must have x ∈ Bn(r j′ , x j′) for some j′ ∈ J′.

To complete the proof in this case we prove a simple geometrical lemma.

6Giuseppe Vitali (1875–1932) was an Italian Mathematician who made important contributions
to analysis.
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1 Sublemma Let x1, x2 ∈ Rn, let r1, r2 ∈ R>0 satisfy r1 ≥
1
2 r2, and suppose that Bn(r1, x1) ∩

Bn(r2, x2) , ∅. Then Bn(r2, x2) ⊆ Bn(5r1, x1).

Proof Let x ∈ Bn(r2, x2) and let y ∈ Bn(r1, x1) ∩ Bn(r2, x2). Multiple applications of the
triangle inequality gives

‖x − x1‖Rn ≤ ‖x − x2‖Rn + ‖y − x2‖Rn + ‖y − x1‖Rn ≤ 5r1,

as desired. H

From the sublemma and since we have shown that, for each j ∈ J, Bn(r j, x j) inter-
sects at least one of the balls Bn(r j′ , x j′), j′ ∈ J′, it follows that

∪ j∈JBn(r j, x j) ⊆ ∪ j′∈J′Bn(r j′ , x j′),

as claimed.
Next we consider the case where ∪ j∈JBn(r j, x j) is not bounded. Let ρ = sup{r j | j ∈

J}. We inductively define J′k, k ∈ Z>0, of J as follows. Define

J1 = { j ∈ J | Bn(r j, x j) ∩ Bn(4ρ, 0n) , ∅}

and note that ∪ j∈J1B
n(r j, x j) is bounded since ρ is finite. Let J′′1 ⊆ J1 be defined by the

applying the procedure from the first part of the proof to the set J1. Then denote

J′1 = { j ∈ J′′1 | Bn(r j, x j) ∩ Bn(ρ, 0n) , ∅}.

Note that
1. (Bn(r j′ , x j′)) j′∈J′1

are pairwise disjoint and that

2. ∪{Bn(r j, x j) | Bn(r j, x j) ∩ Bn(ρ, 0n)} ⊆ ∪ j′∈J′1
Bn(5r j′ , x j′).

Next define

J2 = J1 ∪ { j ∈ J | Bn(r j, x j) ∩ (Bn(5ρ, 0n) \ Bn(4ρ, 0n)) , ∅}.

Also take J′′2 ⊆ J2 to be the subset constructed as in the first part of the proof. Then
define

J′2 = { j ∈ J′′2 | Bn(r j, x j) ∩ Bn(2ρ, 0n) , ∅}.

Note that since the only balls added to J1 in forming J2 do not intersect Bn(ρ, 0n), it
follows that J′′1 ⊆ J′′2 , and thus that J′1 ⊆ J′2. Moreover, note that

1. (Bn(r j′ , x j′)) j′∈J′2
are pairwise disjoint and that

2. ∪{Bn(r j, x j) | Bn(r j, x j) ∩ Bn(2ρ, 0n)} ⊆ ∪ j′∈J′2
Bn(5r j′ , x j′).

Proceeding in this way we define J′1 ⊆ · · · ⊆ J′k ⊆ · · · . Then take J′ = ∪k∈Z>0 J′k. By
Proposition ?? it follows that J′ is countable. If j′1, j′2 ∈ J′ then, by construction, there
exists k ∈ Z>0 such that j′1, j′2 ∈ J′k. It thus follows that Bn(r j′1

, x j′1
) and Bn(r j′2

, x j′2
) are

disjoint. If x ∈ ∪ j∈JBn(r j, x j) we have x ∈ Bn(r j0 , x j0) where Bn(r j0 , x j0) ∩ Bn(kρ, 0m) , ∅
for some k ∈ Z>0. Then x ∈ ∪ j′∈J′k

Bn(5r j′ , x j′). This gives the lemma. �
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5.5.31 Remark (The Vitali Covering Lemma for finite coverings) If the index set J is
finite in the preceding result, then one can strengthen the conclusions to assert that

∪ j∈JBn(r j, x j) ⊆ ∪ j′∈J′Bn(3r j′ , x j′).

This is achieved merely by noting that one can choose the numbers j1, . . . , jk so that
rs = ρs for s ∈ {1, . . . , k}. In this case, the factor of 1

2 in the sublemma can be removed
with the resulting change of the factor 5 to 3. •

There is a similar such result for, not balls, but cubes. Recall from Section ??
that a cube in Rn is a rectangle, all of whose sides have the same length. We shall
denote by

C(r, x) = [x1 − r, x1 + r] × · · · × [xn − r, xn + r]

the cube centred at x ∈ Rn and with sides of length 2r.

5.5.32 Lemma (Properties of coverings by cubes) Let J ∈ {{1, . . . ,m},Z>0} and let
(C(rj, xj))j∈Z>0 be a finite or countable family of cubes. Then there exists a subset J′ ⊆ J with
the following properties:

(i) the cubes (C(rj′ , xj′))j′∈J′ are pairwise disjoint;

(ii) ∪j∈JC(rj, xj) ⊆ ∪j′∈J′C(5rj′ , xj′).
Proof The result follows easily after making some observations about cubes, relying
on the general notion of a norm that we will introduce and discuss in Section 6.1. If
we define

‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|},

then we note from Example 6.1.3–4 that this defines a norm onRn. Moreover, the balls
in this norm are cubes, as can be easily verified. A review of the proof of Lemma 5.5.30
shows that it is the norm properties of ‖·‖Rn that are used, along with the fact that
the balls in the norm ‖·‖Rn are the balls in the usual sense. Thus the entire proof of
Lemma 5.5.30 carries over, replacing Bn(r, x) with C(r, x) and ‖·‖Rn with ‖·‖∞. �

The importance of the preceding results is not so readily seen at a first glance.
To illustrate the essence of the result, consider the following observation. Using the
notation of Lemma 5.5.30, suppose that ∪ j∈JBn(r j, x j) is bounded. The preceding
result says that there is a countable disjoint subset these balls that covers at least
1
5n of the volume of region covered by the complete collection of balls. The main
point is that the volume fraction covered by the disjoint balls is bounded below by
a quantity, 1

5n , that is independent of the covering. It is this property that will make
these preceding lemmata useful in the subsequent discussion.

First we give a definition for a sort of covering which we shall show has useful
properties. In the following definition, let us call the number 2r the diameter of
a ball Bn(r, x) or a cube C(r, x). We denote the diameter of a ball or cube B by
diam(B).
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5.5.33 Definition (Vitali covering) Let J be an index set, let A ⊆ Rn, and let (B j) j∈J be a
family of either closed balls or closed cubes, i.e., either (1) B j is a closed ball for
every j ∈ J or (2) B j is a closed cube for every j ∈ J. Suppose that int(B j) , ∅ for
each j ∈ J. This family of balls or cubes is a Vitali covering of A if, for every ε ∈ R>0

and for every x ∈ A there exists j ∈ J such that x ∈ B j and such that diam(B j) < ε. •

Before giving the essential theorem about Vitali coverings, let us give an example
of a Vitali covering.

5.5.34 Example (Vitali covering) If A ⊆ Rn, define

CA = {Bn(r, x) ⊆ Rn
| r ∈ R>0, A ∩ Bn(r, x) , ∅}.

If ε ∈ R>0 and x ∈ A then Bn(ε, x) contains x and is in CA. This implies that CA is a
Vitali covering. •

As the definition implies and the above example illustrates, one might expect
that a Vitali covering of a set will involve a plentiful, rather than a barely sufficient,
collection of balls or cubes.

The following theorem will be useful for us in a few different places in the text.

5.5.35 Theorem (Property of Vitali coverings) Let A ⊆ Rn be nonempty and let (Bj)j∈J be a
Vitali covering of A by cubes or balls. Then there exists a countable or finite subset J′ ⊆ J
such that

(i) the sets (Bj′)j′∈J′ are pairwise disjoint and
(ii) λ∗n(A − ∪j′∈JBj′) = 0.

Proof First we suppose that A is bounded and let U be a bounded open set such that
A ⊆ U and define

J′′ = { j ∈ J | B j ⊆ U}

and note that (B j) j∈J′′ is a Vitali cover of A (why?). We now apply the construction of
either of Lemma 5.5.30 or 5.5.32 as appropriate to arrive at a finite or countable subset
J′ ⊆ J′′. For the remainder of the proof, for concreteness let us suppose that J′ is infinite
and write J′ = { jk}k∈Z>0 . We also recall from the proof of Lemma 5.5.30 the sequence
(ρk)k∈Z>0 of positive numbers.

Now let N ∈ Z>0 and let x ∈ A − ∪N
k=1B jk . Since the set ∪N

k=1B jk is closed by
Proposition ?? and since (B j) j∈J′′ is a Vitali covering of A, there exists j ∈ J′′ such
that x ∈ B j and B j ∩ (∪N

k=1B jk) = ∅. Suppose m ∈ Z>0 is such that B j ∩ (∪m
k=1B jk = ∅.

Then diam(B j) ≤ ρk+1 by definition of ρk+1. Since limk→∞ ρk = 0 (see the proof of
Lemma 5.5.30) it must therefore be the case that there exists m0 ∈ Z>0 such that
B j ∩ (∪m

k=1B jk) , ∅ for all m ≥ m0. Thus diam(B j) ≤ ρm0 and so diam(B j) ≤ 2diam(Bm0)
since diam(Bm0) ≥ 1

2ρm0 . Since B j ∩ (∪m0−1
k=1 B jk) = ∅ we must have B j ∩ Cm0 , ∅.

For j ∈ J let B′j be the ball or cube whose centre agrees with that of B j but for which
diam(B′j) = 5diam(B j). The lemma from the proof of Lemma 5.5.30 then gives B j ⊆ B′m0

.

Since m0 ≥ N + 1 by virtue of the fact that B j ∩ (∪N
k=1B jk) = ∅, we then have

x ∈ B j ⊆ B′m0
⊆ ∪k=N+1B′jk .
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This shows that
A − ∪N

k=1B jk ⊆ ∪k=N+1B′jk .

Now note that
∑
∞

k=1 λn(B jk) < ∞, as was shown during the proof of Lemma 5.5.30.
An application of Exercise 5.5.1 then gives

∑
∞

k=1 λn(B′jk) < ∞. Let ε ∈ R>0. By Proposi-
tion 2.4.7 it follows that there exists N ∈ Z>0 sufficiently large that

∑
∞

k=N+1 λn(B′jk) < ε.
Therefore,

λ∗n
(
A − ∪N

k=1B jk

)
≤ λ∗n

(
∪k=N+1B′jk

)
=

∞∑
k=N+1

λ∗n(B′jk) < ε,

using monotonicity and subadditivity of the Lebesgue outer measure. Monotonicity
of the Lebesgue outer measure shows that

λ∗n
(
A − ∪∞k=1B jk

)
≤ λ∗n

(
A − ∪N

k=1B jk

)
< ε,

which completes the proof in the case that A is bounded.
If A is unbounded, proceed as follows. Let (Uk)k∈Z>0 be a countable collection of

pairwise disjoint bounded open sets for which

λn(Rn
\ ∪
∞

k=1Uk) = 0.

Let Ak = Uk ∩ A. For every k ∈ Z>0 for which Ak , ∅ the first part of the proof yields
a finite or countable subset J′k ⊆ J such that the family (B j′k

) j′k∈J′K
is pairwise disjoint and

such that
λ∗n

(
Ak − ∪ j′k∈J′k

B j′k

)
= 0.

Let us define J′ = ∪∞k=1J′k and note that, by virtue of the constructions in the first part of
the proof, (B j′) j′∈J′ is pairwise disjoint. Moreover,

A = ∪∞k=1Ak ∪ (A ∩ (Rn
\ ∪
∞

l=1Ul))

from which we conclude that

A − ∪ j′∈J′B j′ = (∪∞k=1Ak − ∪
∞

jk=1B j′k
).

Note that J′ is countable by Proposition ??. Thus A − ∪ j′∈J′B j′ is a countable union of
sets of measure zero, and so is a set of measure zero. �

5.5.6 The Banach–Tarski Paradox

In this section we give an “elementary” proof of an (in)famous result regarding
the strangeness of sets that are not Lebesgue measurable. Let us state the result
first and then provide some discussion. After this we will devote the remainder of
the section to the proof of the theorem.

To state the result we first introduce some language to organise the statement.
We recall from Definition ?? the definition of an isometry and from Theorem ??
the characterisation of characterisation of isometries. The group of isometries is
denoted in Definition ?? by E(n).
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5.5.36 Definition (Piecewise congruent) Subsets X,Y ⊆ Rn are piecewise congruent if
there exists

(i) N ∈ Z>0,
(ii) a partition (X1, . . . ,XN) of X, and
(iii) ρ1, . . . ,ρN ∈ E(n)

such that (ρ1(X1), . . . ,ρN(XN)) is a partition of Y. •

Piecewise congruence should be viewed as follows. The set X is chopped up into
N bits, and these bits are rearranged without distortion to give Y. An illustration
of this in a simple case is given in Figure 5.4. The idea seems innocuous enough,

Figure 5.4 Piecewise congruent sets

but the Banach–Tarski Paradox tells us that some unexpected sets can be piecewise
congruent.

5.5.37 Theorem (Banach–Tarski Paradox) If X,Y ⊆ R3 are bounded sets with nonempty
interiors then they are piecewise congruent.

For example, the result says that one can cut up a set the size a pea into a finite
number of disjoint components and reassemble these into a set the size of Jupiter.
A common first reaction to this is that it is obviously false. But one should take
care to understand that the theorem does not say this is true in the physical world,
only in the mathematical world. In the mathematical world, or at least the one
with the Axiom of Choice, there are sets whose volume does not behave as one
normally expects volume to behave. It is this sort of set into which the set X is
being partitioned in the theorem. For example, one should consider the set A of
Example 5.4.3 that is not Lebesgue measurable. The main idea in showing that
A is not Lebesgue measurable consists of showing that (0, 1) can be written as a
countable disjoint union of translates of A. This led us directly to contradictory
conclusions that, if the volume of A is well-behaved, then (0, 1) has either zero or
infinite volume. Well, the subsets into which the sets of the Banach–Tarski Paradox
are partitioned are non-Lebesgue measurable too. Thus we should not expect that
the volumes of these sets behave in a decent way.
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Let us now prove the Banach–Tarski Paradox. The proof is involved, but ele-
mentary. In the proof we denote by S2 the boundary of B3(1, 0), i.e., S2 is the sphere
of radius 1 in R3.

Our proof begins with some algebraic constructions. Define A,B ∈ O(3) by

A =

− cosθ 0 sinθ
0 −1 0

sinθ 0 cosθ

 , B =


−

1
2 −

√
3

2 0
√

3
2 −

1
2 0

0 0 1

 .
The value of θ ∈ R will be chosen shortly. One verifies directly that

B2 =


−

1
2

√
3

2 0
−

√
3

2 −
1
2 0

0 0 1

 , B3 = A2 = I3.

Thus A−1 = A and B−1 = B2. It then follows that if we define

G = {R1 · · ·Rk | k ∈ Z>0, R j ∈ {A,B}, j ∈ {1, . . . , k}} ∪ {I3},

then G is a subgroup of O(3). Note that it is possible that

R1 · · ·Rk = R′1, . . . ,R
′

k′ ,

i.e., that different products will actually agree. We wish to eliminate this ambiguity.
First of all, note that the relations A3 = B2 = I3 ensure that if R1, . . . ,Rk ∈ {A,B} then
we can write

R1 · · ·Rk = R′1 · · ·R
′

k′

for R′j ∈ {A,B,B
2
}, j ∈ {1, . . . , k′}. Next we claim that if R1, . . . ,Rk ∈ {A,B,B2

} for
k ≥ 2 then

R , R1 · · ·Rk = R′1 · · ·R
′

k

where R′j ∈ {BA,B2A}. This, however, follows from the fact that the relations
A3 = B2 = I3 ensure that at least one of the following four possibilities hold:

1. R = Br1ABr2A · · ·BrmA;

2. R = ABr1ABr2 · · ·ABrm ;

3. R = Br1ABr2A · · ·Brm−1ABrm ;

4. R = ABr1ABr2 · · ·ABrmA.

where r1, . . . , rm ∈ {1, 2}. This gives the desired conclusion. We shall call any one
of these four representations a reduced representation. It is still possible, after
reduction to a product in {BA,B2A}, that the representation as such a product will
not be unique. For example, of θ = π then we have BA = AB2. The following result
gives a condition under which this lack of uniqueness cannot happen.
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5.5.38 Lemma If cosθ is transcendental, i.e., it is not a root of any polynomial with rational
coefficients, then for R ∈ G \ {I3} there exists a unique reduced representation

R = R1 · · ·Rk

for k ∈ Z>0 and Rj ∈ {A,B,B2
}, j ∈ {1, . . . ,k}.

Proof The existence of the representation follows from the fact that A−1 = A and
B−1 = B2. Thus we need only show uniqueness. It suffices to show that it is not
possible to write

I3 = R1 · · ·Rk

for k ∈ Z>0 and R j ∈ {A,B,B2
}, j ∈ {1, . . . , k}. Indeed, if we have

R1 · · ·Rk = R′1 · · ·R
′

k′

with the factors in the products not being identical on the left and right, then

I3 = R−1
k · · ·R

−1
1 R′1 · · ·R

′

k′ ,

giving I3 as a product in the factors {A,B,B2
}.

It is clear that A,B,B2 , I3.
Now let R be one of the first of the four reduced representations given preceding

the statement of the lemma. Thus R = R1 · · ·Rk with R j ∈ {BA,B2A}, j ∈ {1, . . . , k}. By
an elementary inductive computation on k one can check that the third component of
the vector Re3 is a polynomial in cosθ whose coefficients are rational. Since cosθ is
transcendental is cannot hold that Re3 = e3 and so R , I3.

If R has the second of the four reduced representations then R′ = ARA has the first
of the four forms, and so cannot be equal to I3. Therefore, R , I3 since, if it did, we
would have R′ = A2 = I3.

Next let R be of the third of the reduced representations, assuming that m has been
chosen to be the smallest positive integer for which the representation is possible; note
that we must have m > 1. Suppose that R = I3. Note that

I3 = B−r1RBr1 = ABr2 · · ·ABr1+rm .

If r1 = rm then Br1+rm ∈ {B2,B4 = B} and so this gives I3 as a reduced representation in
the second of the four forms. This cannot be, so we cannot have r1 = rm. Therefore, the
only other possibility is r1 + rm = 3. In this case, if m > 3 we have

I3 = ABrmRBr1A = Br2A · · ·ABrm−1 ,

contradicting our assumption that m is the smallest positive integer giving the reduced
representation. Thus we must have m ∈ {2, 3}. For m = 2 we then have

I3 = Br2RBr1 = B

and if m = 3 we then have
I3 = ABr3RBr1A = Br2 .

Both of these conclusions are not possible, and so we cannot have R = I3.
Finally, we consider R to have the fourth of the four reduced representations. In

this case, if R = I3 then I3 = ARA has the third reduced representation, giving a
contradiction. �
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We now fix θ such that cosθ is transcendental; this is possible since only a
countable subset of numbers are not transcendental and since image(cos) = [−1, 1].
If R ∈ G, by the preceding lemma we can write

R = R1 · · ·Rk

for R1, . . . ,Rk ∈ {A,B,B2
}with this representation being unique when it is reduced.

In this case we call k the length of R which we denote by `(R). The following lemma
now uses the preceding lemma to give an essential decomposition of G.

5.5.39 Lemma The group G has a partition (G1,G2,G3) into three nonempty subsets such that
(i) R ∈ G1 if and only if AR ∈ G2 ∪G3;
(ii) R ∈ G1 if and only if BR ∈ G2;
(iii) R ∈ G1 if and only if B2R ∈ G3.

Proof We define the partitions inductively by the length of their elements. For `(R) =
1 we assign

I3 ∈ G1, A ∈ G2, B ∈ G2, B2
∈ G3. (5.9)

Now suppose that all elements R ∈ G for which `(R) = m have been assigned to G1,
G2, or G3. If `(R) = m+1 then write the reduced representation of R as R = R1 · · ·Rm+1.
Let R′ = R2 · · ·Rm+1 so that `(R′) = m. We then assign R to either G1, G2, or G3 as
follows:

R1 = A, R2 ∈ {B,B2
}, R′ ∈ G1 =⇒ R ∈ G2,

R1 = A, R2 ∈ {B,B2
}, R′ ∈ G2 ∪G3 =⇒ R ∈ G1, (5.10)

R1 = B, R2 = A, R′ ∈ G j, =⇒ R ∈ G j+1, (5.11)

R1 = B2, R2 = A, R′ ∈ G j, =⇒ R ∈ G j+2, (5.12)

where we adopt the notational convention that G4 = G1 and G5 = G2. Doing this for
each m gives subsets G1, G2, and G3 of G whose union equals G. Moreover, one can
check that our inductive construction is unambiguous and so assigns each R ∈ G to a
unique component G1, G2, or G3. It remains to show that the partition defined has the
desired properties (i)–(iii).

We do this by induction on the length of the elements of G. It is obviously true for
elements of length 1, using the rules prescribed above for forming the partitions. Now
suppose that if R ∈ G has length less than m ∈ Z>0 we have verified properties (i)–(iii).
We then let R ∈ G with R = R1 · · ·Rm the unique reduced representation. We denote
R′ = R2 · · ·Rm. We consider various cases.
1. R1 = A: We have AR = R′. Thus `(AR) = m − 1 and so the induction hypothesis

can be applied to AR. Doing so yields

R < G1 ⇐⇒ A2R < G1 ⇐⇒ A(AR) ∈ G2 ∪G3

⇐⇒ AR ∈ G1 ⇐⇒ AR < G2 ∪G3.

Thus R ∈ G1 if and only if AR ∈ G2∪G3 and so (i) holds. Moreover, (5.11) and (5.12)
give

BR ∈ G2 ⇐⇒ R ∈ G1, B2R ∈ G3 ⇐⇒ R ∈ G1,

which gives properties (ii) and (iii).
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2. R1 = B: In this case, (5.10) immediately gives

AR ∈ G2 ∪G3 ⇐⇒ R ∈ G1,

which gives condition (i). We also have BR = B2R′ with `(R′) = m − 1 and with
R2 = A. Thus we can apply (5.11) and (5.12) to get

BR ∈ G2 ⇐⇒ B2R′ ∈ G2 ⇐⇒ B2R′ ∈ G5

⇐⇒ R′ ∈ G3, ⇐⇒ BR′ ∈ G4

⇐⇒ BR′ ∈ G1 ⇐⇒ R ∈ G1

which gives condition (ii). We also immediately have, borrowing an implication
from the preceding line,

B2R ∈ G3 ⇐⇒ R′ ∈ G3 ⇐⇒ R ∈ G1

giving condition (iii).
3. R1 = B2: From (5.10) we have

AR ∈ G2 ∪G3 ⇐⇒ R ∈ G1,

which gives condition (i). We have BR = R′ with `(R′) = m − 1 and with R2 = A.
We then have, using (5.11) and (5.12),

BR ∈ G2 ⇐⇒ R′ ∈ G2 ⇐⇒ B2R′ ∈ G4

⇐⇒ B2R′ ∈ G1 ⇐⇒ R ∈ G1

which gives condition (ii). Finally, we have

B2R ∈ G3 ⇐⇒ BR′ ∈ G3 ⇐⇒ R′ ∈ G2 ⇐⇒ R ∈ G1,

borrowing an implication from the preceding line. Thus we also have condition (iii).
�

Now we state the result on which the entire proof hinges. It relates the algebraic
constructions thus far seen in the proof to conclusions about subsets of S2. It is here
that we employ the Axiom of Choice in an essential way.

5.5.40 Lemma There exists a partition (P, S1, S2, S3) of S2 for which
(i) P is countable,
(ii) A(S1) = S2 ∪ S3,
(iii) B(S1) = S2, and
(iv) B2(S2) = S3.

Proof Define
P = {x ∈ S2

| R(x) = x, R ∈ G \ {I3}}.

Since G is countable and since R(x) = x for two point x ∈ S2 by Exercise ??, it follows
that P is countable. If x ∈ S2

\ P denote

Gx = {R(x) | R ∈ G}.
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We claim that Gx ⊆ S2
\ P. Indeed, suppose otherwise. Then there exists R ∈ G such

that R(x) ∈ P. Then SR(x) = R(x) for S ∈ G \ {I3}. Then R−1SR(x) = x with R−1SR , I3,
contradicting the assumption that x < P. If x, y ∈ P, we claim that either Gx = Gy or
Gx∩Gy = ∅. Indeed, suppose that z ∈ Gx∩Gy so that z = Rx = Sy for R,S ∈ G. Then
let z ∈ Gx with z = Tx. Then z = TR−1Sy and so z ∈ Gy. Thus

{Gx | x ∈ S2
\ P} (5.13)

is a partition of S2
\ P. Let C ⊆ S2

\ P be chosen so that it contains exactly one element
of each component of this partition, using the Axiom of Choice. Now define

S j = {Rx | x ∈ C, R ∈ G j}, j ∈ {1, 2, 3}.

We claim that S2
\ P = S1 ∪ S2 ∪ S3. Indeed, let x ∈ S2

\ P. Then x = R(x′) for some
x′ ∈ C and for some R ∈ G. Since G = G1 ∪ G2 ∪ G3 it follows that x ∈ S j for some
j ∈ {1, 2, 3}. We also claim that S j ∩ Sk = ∅ for j , k. Indeed, suppose that x ∈ S j ∩ Sk.
Then x = R j(x j) = Rk(xk) for some R j ∈ G j, Rk ∈ Gk, x j, xk ∈ C. Since C contains exactly
one element from each component in the partition (5.13), it follows from the fact that
x j = R−1

j Rkxk that x j and xk are in the same component of the partition and so are equal.

Since C ⊆ S2
\ P it follows that R−1

j Rk = I3 and so R j = Rk. Thus j = k. This shows that
(P,S1,S2,S3) is indeed a partition of S2.

Moreover, we compute

A(S1) = {AR(x) | R ∈ G1, x ∈ C} = {Tx | T ∈ G2 ∪G3, x ∈ C} = S2 ∪ S3,

B(S1) = {BR(x) | R ∈ G1, x ∈ C} = {Tx | T ∈ G2, x ∈ C} = S2,

B2(S2) = {B2R(x) | R ∈ G1, x ∈ C} = {Tx | T ∈ G3, x ∈ C} = S3,

giving conditions (ii)–(iv). �

The following rather technical lemma will be crucial to our proof.

5.5.41 Lemma If P ⊆ S2 is countable then there exists Q ⊆ S2 countable and T ∈ O(3) such that
P ⊆ Q and such that T(Q) = Q − P.

Proof Let v = (v1, v2, 0) ∈ S1 be such that v,−v < P; since P is countable this is possible.
Define

T0 =


v1 v2 0
−v2 v1 0

0 0 1

 ,
and note that T0 ∈ O(3) since v2

1 + v2
2 = 1. Note that T0(v) = e1 and that e1,−e1 < T0(P).

For t ∈ R define the orthogonal matrix

Ut =


1 0 0
0 cos t − sin t
0 sin t cos t

 .
Note that

Uk
t =


1 0 0
0 cos(kt) − sin(kt)
0 sin(kt) cos(kt)

 , k ∈ Z>0.
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For x, y ∈ P and for k ∈ Z>0 consider the equation Uk
t (x) = y. In components this

equation reads

x1 = y1, cos(kt)x2 − sin(kt)x3 = y2, sin(kt)x2 + cos(kt)x3 = y3.

If y1 , x1 then these equations have no solution in t. If y1 = x1 then there are infinitely
many solutions in t, all satisfying cos(kt) = 1 and sin(kt) = 0. In particular, in [0, 2π)
there are exactly k solutions if y1 = x1. Therefore, since the set P× P×Z>0 is countable
by Proposition ??, it follows that the complement to the set{

t ∈ R
∣∣∣∣ T0(P) ∩

(
∪k∈Z>0Uk

t (T0(P))
)

= ∅
}

(5.14)

is countable. Thus choose a t in the set (5.14) and denote U = Ut. Then define
T = T−1

0 UT0 and
Q = P ∪

(
∪k∈Z>0Tk(P)

)
.

One can directly check that UkT0 = T0Tk for k ∈ Z>0. Thus, using the fact that U is
defined by t satisfying (5.14), we have

T0(P ∩ T(Q)) = T0

(
P ∩

(
∪k∈Z>0Tk(P)

))
= ∅.

We then conclude that P ∩ T(Q) = ∅, and since Q = P ∪ T(Q), as follows from the
definition of Q, it follows that T(Q) = Q − P. �

Using the previous lemma, we now make a decomposition of S2.

5.5.42 Lemma There exists a partition (Tj)1≤j≤10 of S2 and isometries σ1, . . . ,σ10 ∈ E(n) such that
(σj(Tj))1≤j≤6 and (σj(Tj))7≤j≤10 are both partitions of S2.

Proof We use the partition (P,S1,S2,S3) from Lemma 5.5.40. We define

U1 = A(S2), U2 = BA(S2), U3 = B2A(S2),

V1 = A(S3), U2 = BA(S3), U3 = B2A(S3).

By Lemma 5.5.40 we see that (U j,V j) is a partition of S j for each j ∈ {1, 2, 3}. Now
define

T7 = U1, T8 = U2, T9 = U3, T10 = P,

σ7 = B2A, σ8 = AB2, ρ9 = BAB, ρ10 = I3.

We can then check that σ10(T10) = P and σ j(T j) = S j−6 for j ∈ {7, 8, 9}. Thus (σ j(T j))7≤ j≤10
is a partition of S2. Next note that

S2
\ (T7 ∪ T8 ∪ T9 ∪ T10) = V1 ∪ V2 ∪ V3.

Let Q ⊆ S2 and T ∈ O(3) be as in Lemma 5.5.41 and define

T1 = σ8(S1 ∩Q), T2 = σ9(S2 ∩Q), T3 = σ7(S3 ∩Q),
T1 = σ8(S1 \Q), T2 = σ9(S2 \Q), T3 = σ7(S3 \Q).
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Then (T1,T4) partitions ρ8(S1) = V1, (T2,T5) partitions ρ9(S2) = V2, and (T3,T6) parti-
tions ρ7(S3) = V3. Therefore, (T j)1≤ j≤10 is a partition of S2. Finally, define

σ4 = σ−1
8 , σ5 = σ−1

9 , σ6 = σ−1
7 , σ j = Rσ j+3, j ∈ {1, 2, 3}.

One can then directly check that σ j+3(T j+3) = S j \Q, j ∈ {1, 2, 3} so that

∪
3
j=1σ j+3(T j+3) = S2

\Q

by virtue of the fact that P ⊆ Q. Moreover,

σ j(T j) = R−1σ j+3(T j) = R−1(S j ∩Q), j ∈ {1, 2, 3},

which shows that σ j(T j) ∩ σk(Tk) = ∅ if j , k. This also shows that

∪
3
j=1σ j(T j) = R−1(Q − P) = Q.

Thus (σ j(T j))1≤ j≤6 is a partition of S2, completing the proof. �

5.5.43 Lemma For r ∈ R>0 and x0 ∈ R3 there exists a partition (Bj)1≤j≤40 of B3(r, x0) and
isometries ρ1, . . . ,ρ40 ∈ E(n) such that (ρj(Bj))1≤j≤24 and (ρj(Bj))25≤j≤40 are both partitions

of B3(r, x0).
Proof Let us first prove the result when r = 1 and x0 = 0 in which case bd(B3(1, 0)) =
S2. For S ⊆ S2 let us denote

Ŝ = {λx | λ ∈ (0, 1], x ∈ S}.

Thus, for example, Ŝ2 = B3(1, 0) \ {0}.
Let P = {e1} and, by Lemma 5.5.41, let Q ⊆ S2 and R0 ∈ O(3) be such that Q is

countable, P ⊆ Q, and R0(Q) = Q \ P. Define

N1 =
{

1
2 (x − e1)

∣∣∣ x ∈ Q
}

and define ρ0 ∈ E(3) by
ρ0(x) = R0(x + 1

2 e1) − 1
2 e1;

thus ρ0 is a rotation about 1
2 e1. Note that 0 ∈ N1 and that ρ0(N1) = N1 \ {0}. Denote

N2 = B3(1, 0) \N1, f 1 = ρ0, f 2 = I3, Mk = f k(Nk), j ∈ {1, 2}.

Then we have (N1,N2) as a partition of B3(1, 0) and (M1,M2) as a partition of Ŝ2. Let
(T j)1≤ j≤10 and (σ j)1≤ j≤10 be as in Lemma 5.5.42, noting that (T̂ j)1≤ j≤10 is a partition of
Ŝ2.

Note that
(Mk ∩ T̂ j ∩ σ j(Ml) | k, l ∈ {1, 2}, j ∈ {1, . . . , 10})

is a partition of Ŝ2 into forty components. Moreover, if we define

Bkl j = f−1
k (Mk ∩ T̂ j ∩ σ

−1
j (Ml)), k, l ∈ {1, 2}, j ∈ {1, . . . , 10},



2016/11/26 5.5 Lebesgue measure on Rn 464

then these sets partition B3(1, 0). Moreover, for fixed j ∈ {1, . . . , 10}, the sets

σ j ◦ f k(Bkl j) = Ml ∩ σ j(Mk ∩ T̂ j), k, l ∈ {1, 2},

partition σ j(T̂ j). By Lemma 5.5.42 we have that

(σ j ◦ f k(Bkl j) | k, l ∈ {1, 2}, j ∈ {1, . . . , 6}),

(σ j ◦ f k(Bkl j) | k, l ∈ {1, 2}, j ∈ {7, . . . , 10})

each partition Ŝ2. Therefore, if we define ρkl j = f−1
l ◦σ j ◦ f k we see that

(ρkl j(Bkl j) | k, l ∈ {1, 2}, j ∈ {1, . . . , 6}),

(ρkl j(Bkl j) | k, l ∈ {1, 2}, j ∈ {7, . . . , 10})

each partition B3(1, 0). This proves the lemma for r = 1 and x0 = 0.
In general, we define B′kl j ⊆ B3(r, x0) and ρ′kl j ∈ E(3), k, l ∈ {1, 2}, j ∈ {1, . . . , 10}, by

B′kl j = {rx + x0 | x ∈ Bkl j}

and
ρ′kl j(x) = rρkl j(r

−1(x − x0)) + x0

and then directly verify that

(ρ′kl j(B
′

kl j) | k, l ∈ {1, 2}, j ∈ {1, . . . , 6}),

(ρ′kl j(B
′

kl j) | k, l ∈ {1, 2}, j ∈ {7, . . . , 10})

each partition B3(r, x0). �

Now let us introduce some notation that will be convenient in the remainder of
the proof. If set X,Y ⊆ Rn are piecewise congruent then we write X ∼ Y. If X is
piecewise congruent to a subset of Y then we write X - Y. The following lemma
records some useful facts about these relations.

5.5.44 Lemma For X,Y,Z ⊆ Rn the following statements hold:
(i) X ∼ X;
(ii) if X ∼ Y then Y ∼ X;
(iii) if X ∼ Y and Y ∼ Z then X ∼ Z;
(iv) if X ∼ Y then X - Y;
(v) if X - Y and Y - Z then X - Z;
(vi) if X ⊆ Y then X - Y;
(vii) if X - Y and Y - X then X ∼ Y.

Proof (i) This is obvious.
(ii) This follows since if ρ is an isometry then it is invertible and ρ−1 is an isometry.
(iii) Let (X1, . . . ,XN) and (Y1, . . . ,YM) be partitions of X and Y, respectively, with

ρ1, . . . ,ρN ∈ E(n) and σ1, . . . , σM ∈ E(n) such that (ρ j(X j)) j∈{1,...,N} and (σk(Yk))k∈{1,...,M} are
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partitions of Y and Z, respectively. Then, for j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}, define
A jk = X j∩ρ−1

j (Yk), noting that the sets A jk, j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a partition
of X. Thus the sets ρ j(A jk) = Yk ∩ ρ j(X j), j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a partition
of Y and the sets σk ◦ρ j(Ai j), j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a partition of Z. Since
σk ◦ρ j ∈ E(n) for each j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}, it follows that X ∼ Z, as desired.

(iv) This follows because Y ⊆ Y.
(v) Let (X1, . . . ,XN) and (Y1, . . . ,YM) be partitions of X and Y, respectively, with

ρ1, . . . ,ρN ∈ E(n) and σ1, . . . , σM ∈ E(n) such that (ρ j(X j)) j∈{1,...,N} and (σk(Yk))k∈{1,...,M} are
partitions of Y′ ⊆ Y and Z′ ⊆ Z, respectively. Then, for j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M},
define A jk = X j ∩ ρ−1

j (Yk), noting that the sets A jk, j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, form a
partition of X. Thus, for fixed k ∈ {1, . . . ,M}, the sets ρ j(A jk) = Yk∩ρ j(X j), j ∈ {1, . . . ,N},
form a partition of Yk ∩ Y′ and the sets σk ◦ρ j(Ai j), j ∈ {1, . . . ,N}, k ∈ {1, . . . ,M}, then
form a partition for some subset Z′′ ⊆ Z. Since σk ◦ρ j ∈ E(n) for each j ∈ {1, . . . ,N} and
k ∈ {1, . . . ,M}, it follows that X - Z, as desired.

(vi) This is obvious.
(vii) Suppose that X ∼ Y′ and Y ∼ X′ for X′ ⊆ X and Y′ ⊆ Y. Let (X1, . . . ,XN)

and (Y1, . . . ,YM) be partitions of X and Y, respectively, with ρ1, . . . ,ρN ∈ E(n) and
σ1, . . . , σM ∈ E(n) such that (ρ j(X j)) j∈{1,...,N} and (σk(Yk))k∈{1,...,M} are partitions of Y′ ⊆ Y
and X′ ⊆ X, respectively. Define bijections ρ : X → Y′ and σ : Y → X′ by asking that
ρ|X j = ρ j and that σ|Yk = σk for j ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}. If A ⊆ X denote

Ã = X \ σ(Y \ ρ(A)).

It is easy to verify that of A ⊆ B ⊆ X that Ã ⊆ B̃. Now define S = {A ⊆ X | A ⊆ Ã}.
Since ∅ ∈ S , S is not empty. Let S = ∪S . If A ∈ S then A ⊆ S and so Ã ⊆ S̃.
Therefore, S ⊆ S̃ and so S̃ ⊆ ˜̃S. Thus S̃ ∈ S and so S̃ ⊆ S. Therefore, S = S̃. Therefore,
by definition of ·̃,

S = X \ σ(Y \ ρ(S)) =⇒ X \ S = σ(Y \ ρ(S)).

This implies that X \ S ∈ X′. Now let l ∈ {1, . . . ,N + M} and define

Al =

S ∩ Xl, l ∈ {1, . . . ,N},
σl−N(Yl−N \ ρ(S)), l ∈ {N + 1, . . . ,N + M}

and

τl =

ρl, l ∈ {1, . . . ,N},
σ−1

l−N, l ∈ {N + 1, . . . ,N + M}.

One then verifies that (A1, . . . ,AN) partitions S, (AN+1, . . . ,AN+M) partitions X \ S,
(τ1(A1), . . . , τN(AN)) partitions ρ(S), and (τN+1(AN+1), . . . , τN+M(AN+M)) partitions Y \
ρ(S). This gives X ∼ Y. �

Next we state a lemma about piecewise congruence of identical balls with finite
unions of the same sized balls.
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5.5.45 Lemma If r ∈ R>0 and x0, x1, . . . , xk ∈ Rn then B3(r, x0) ∼ ∪k
j=1B

3(r, xj).
Proof We first prove the lemma in the case of k = 2, assuming that ‖x1 − x2‖R3 >

2ε, i.e., assuming that B3(r, x1) and B3(r, x2) do not intersect. Let (B j)1≤ j≤40 be the
partition of B3(r, x0) and let (ρ j)1≤ j≤40 be the isometries given by Lemma 5.5.43. Then
define σ j ∈ E(n), j ∈ {1, . . . , 40}, by

σ j(x) =

ρ j(x) − x0 + x1, j ∈ {1, . . . , 24},

ρ j(x) − x0 + x2, j ∈ {25, . . . , 40}.

Then (σ j(B j))1≤ j≤24 is a partition of B3(r, x1) and (σ j(B j))25≤ j≤40 is a partition of B3(r, x2)
by Lemma 5.5.43. Thus we have B3(r, x0) ∼ B3(r, x1) ∪ B3(r, x2) under the stated
hypotheses.

Now we prove the lemma by induction on k. The result is clear for k = 1: one need
only translate B3(r, x0) to B3(r, x1) by the isometry x 7→ x − x0 + x1. Suppose the result
holds for k = m− 1 and consider x1, . . . , xm ∈ Rn. Choose an arbitrary x′0 ∈ R

n such that
‖x0 − x′0‖R3 > 2ε. By the induction hypothesis we have B3(r, x0) ∼ ∪m−1

j=1 B3(r, x j). Note
that

B3(r, xm) \
(
∪

m−1
j=1 B3(r, x j)

)
⊆ B3(r, xm) ∼ B3(r, x′0),

and so
B3(r, xm) \

(
∪

m−1
j=1 B3(r, x j)

)
- B3(r, x′0).

From this we conclude that

B3(r, x0) - ∪m
j=1B3(r, x j) - B3(r, x0) ∪ B3(r, x′0) - B3(r, x0)

from the first part of the proof. From part (vii) of Lemma 5.5.44 we deduce that
B3(r, x0) ∼ ∪m

j=1B3(r, x j) as desired. �

Now we may conclude the proof of the Banach–Tarski Paradox. Let X and Y
be as in the statement of the theorem and let x ∈ int(X) and y ∈ int(Y). Choose
ε ∈ R>0 such that B3(ε, x) ⊆ int(X) and B3(ε, y) ⊆ int(Y). Boundedness of X ensures
that there exists x1, . . . , xk ∈ R3 such that X ⊆ ∪k

j=1B
3(ε, x j). By Lemma 5.5.45 and

part (vi) of Lemma 5.5.44 we have

B3(ε, 0) - X ⊆ ∪k
j=1B

3(ε, x j) - B3(ε, 0).

By part (vii) of Lemma 5.5.44 it follows that X ∼ A. Similarly we show that Y ∼ A.
By part (iii) of Lemma 5.5.44 it follows that X ∼ Y, which is the result.

5.5.7 Notes

The Banach–Tarski Paradox is due to none other than SB/AT:24. The proof
we give follows that of KS:79. The number 40 used in Lemma 5.5.43 is not
optimal. Indeed, TJD/JdG:56 show that one can decompose a ball into five disjoint
components which can then be rearranged into two balls of the same size.
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Exercises

5.5.1 Let A ⊆ Rn be Lebesgue measurable and for ρ ∈ R>0 define

ρA = {ρx | x ∈ A}.

Show that λn(ρA) = ρnλn(A).

5.5.2 Show that for x ∈ Rn, the point mass δx : B(Rn)→ R≥0 is regular.

5.5.3 Show that the counting measure µ : B(Rn)→ R≥0 is not regular.
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Section 5.6

Measurable functions

In order to define the Lebesgue integral, one first defines functions for which
it is possible to define the Lebesgue integral. What results is a quite general class
of functions, certainly general enough to capture any function one is likely to
encounter in that fantastic place called “The Real World.”

Our approach, as with basic measure theory, is to start with generalities, and
then proceed to particular aspects of Lebesgue measurable functions.

Do I need to read this section? If you are wanting to learn about integration in
general, and the Lebesgue integral in particular, then this section is essential to
this. •

5.6.1 General measurable maps and functions

We begin with a rather general definition of a measurable map between mea-
surable spaces. The reader will observe that this definition harkens one back to the
definition of continuity (cf. missing stuff ), and so can perhaps be seen as natural,
provided you are comfortable with the naturality of continuity as in missing stuff .

5.6.1 Definition (Measurable map) Let (X,A ) and (Y,B) be measurable spaces. A map
f : X → Y is (A ,B)-measurable if f −1(B) ∈ A for every B ∈ B. The set of (A ,B)-
measurable maps is denoted by L(0)((X,A ); (Y,B)), or simply by L(0)(X; Y), with the
understanding that the σ-algebras A and B are implicit. •

We shall not often consider maps between general measure spaces. However,
the above general definition is useful because it gives some context for the particular
definitions to follow.

It is often useful to be able to check measurability of a map by using generators
for the σ-algebra involved. The following result is helpful for doing this.

5.6.2 Proposition (Measurability of maps using generators for σ-algebras) Let X and
Y be sets, let S ⊆ 2X and T ⊆ 2Y, and let AS and AT be the σ-algebras generated by S
and T , respectively. If f : X→ Y is a map and if

T ⊆ {T ⊆ Y | f−1(T) ∈ S }

then f is (AS ,AT )-measurable.
Proof Let us denote

A ′ = {T ⊆ Y | f−1(T) ∈ AS }.

We claim that A ′ is a σ-algebra containing T . To see that it is a σ-algebra, first note
that f−1(Y) = X ∈ AS and so Y ∈ A ′. If T ∈ A ′ then

f−1(Y \ T) = X \ f−1(T)
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by Exercise 1.3.3. Since X \ f−1(T) ∈ AS by virtue of AS being a σ-algebra, it follows
that Y\T ∈ A ′. Finally, suppose that (T j) j∈Z>0 is a countable family of sets in A ′. Then,
by Proposition 1.3.5 we have

f−1
( ⋃

j∈Z>0

T j

)
=

⋃
j∈Z>0

f−1(T j) ∈ AS

since AS is a σ-algebra. We thus conclude that ∪ j∈Z>0T j ∈ A ′. This shows that A ′ is a
σ-algebra. By hypothesis, if

B ∈ T ⊆ {T ⊆ Y | f−1(T) ∈ S }

then f−1(B) ∈ S ⊆ AS . Thus T ⊆ A ′ and so AT ⊆ A ′ since AT is the smallest
σ-algebra containing T . It therefore follows that if B ∈ AT then f−1(B) ∈ AS , i.e., that
f is (AS ,AT )-measurable. �

We can give an application of the preceding result that gives an important class
of measurable maps.

5.6.3 Example (Continuous maps are Borel-measurable) We claim that if f : Rn
→ Rm

is continuous then it is (B(Rn),B(Rm))-measurable. Indeed, B(Rn) and B(Rm) are
the σ-algebras generated by the collections O(Rn) and O(Rm) of open subsets of Rn

and Rm. Since f is continuous it follows from Corollary ?? that

O(Rm) ⊆ {U ⊆ Rm
| f−1(U) ∈ O(Rn)}.

From Proposition 5.6.2 we conclude that f is (B(Rn),B(Rm))-measurable. •

What we are really interested in in this section are R-valued functions. It turns
out to be interesting to consider R-valued functions. The reason for this degree of
generality is not that we are interested in infinite-valued functions per se, but that
we are interested in sequences of R-valued functions that turn out to have infinite
limits. The reader will want to be familiar with the order relations on R defined in
Section 2.2.5.

In any case, we now turn our attention to functions f : X → R defined on a
measurable space (X,A ). For such functions we have the following equivalent
properties.

5.6.4 Proposition (Characterisations of measurable functions) For a measurable space
(X,A ) and a map f : X→ [−∞,∞], the following statements are equivalent:

(i) for each b ∈ R the set f−1([−∞, b]) = {x ∈ X | f(x) ≤ b} is measurable;
(ii) for each b ∈ R the set f−1([−∞, b)) = {x ∈ X | f(x) < b} is measurable;
(iii) for each a ∈ R the set f−1([a,∞]) = {x ∈ X | f(x) ≥ a} is measurable;
(iv) for each a ∈ R the set f−1((a,∞]) = {x ∈ X | f(x) > a} is measurable.

Proof (i) =⇒ (ii) We write

f−1([−∞, b)) = f−1(∪k∈Z>0 f−1([−∞, b − 1
k ]) = ∪k∈Z>0 f−1([−∞, b − 1

k ])
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by Proposition 1.3.5. Since f−1([−∞, b − 1
k ] ∈ A by assumption and since A is a

σ-algebra, we conclude that f−1([−∞, b)) ∈ A .
(ii) =⇒ (iii) Here we note that

f−1([a,∞]) = X \ f−1([−∞, a))

by Exercise 1.3.3. Since A is a σ-algebra and since f−1([−∞, a)) ∈ A by assumption, it
follows that f−1([a,∞]) ∈ A .

(iii) =⇒ (iv) Here we write

f−1((a,∞]) = ∪k∈Z>0 f−1([a + 1
k ,∞]) =

by Proposition 1.3.5. As in the first part of the proof we conclude that f−1((a,∞]) ∈ A .
(iv) =⇒ (i) Here we note that

f−1([−∞, b]) = X \ f−1((b,∞])

by Exercise 1.3.3 and then argue as in the second part of the proof that f−1([−∞, b]) ∈ A .
�

With this result at hand, the following definition makes sense.

5.6.5 Definition (Measurable function) For a measurable space (X,A ) a function
f : X→ R satisfying any one of the four equivalent conditions of Proposition 5.6.4
is an A -measurable function. We shall frequently just say that f is measurable
if A is understood. For any subset I ⊆ R (typically we will be concerned with
I ∈ {R,R≥0}) we denote the set of measurable I-valued maps by L(0)((X,A ); I), or by
L(0)(X; I), with the understanding that the σ-algebra A is implicit. •

The relationship of this notion of measurability with that of Definition 5.6.1 is
perhaps not immediately clear. So let us make this clear, recalling from Defini-
tion 5.4.15 the definition of the σ-algebra B(R) on R.

5.6.6 Proposition (Characterisation of measurable functions) For a measurable space
(X,A ) and a map f : X→ R, the following statements are equivalent:

(i) f ∈ L(0)((X,A );R);
(ii) the sets {x ∈ X | f(x) = −∞} and {x ∈ X | f(x) = ∞} are measurable and f−1(B) ∈ A

for every B ∈ B(R);

(iii) f is (A ,B(R))-measurable.
Proof (i) =⇒ (ii) We have

f−1(−∞) = f−1(∩k∈Z>0[−∞,−k]) = ∩k∈Z f−1([−∞,−k]),

f−1(∞) = f−1(∩k∈Z>0[k,∞]) = ∩k∈Z f−1([k,∞]),

by Proposition 1.3.5. Thus f−1(−∞) and f−1(∞) are countable intersections of measur-
able sets and so themselves measurable. We must also show that f−1(B) is measurable
for a Borel set B. To prove this, we denote

B′(R) = {S ⊆ R | f−1(S) ∈ A }.
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We claim that B′(R) is a σ-algebra containing B(R). Certainly R ∈ B′(R) since
f−1(R) = X ∈ A . If (S j) j∈Z>0 is a countable collection of subsets from B′(R) we have

f−1
( ⋃

j∈Z>0

S j

)
=

⋃
j∈Z>0

f−1(S j) ∈ A ,

where we have used Proposition 1.3.5. Thus∪ j∈Z>0S j ∈ B′(R). Also, by Exercise 1.3.3,
if S ∈ B′(R) then

f−1(R \ S) = X \ f−1(S) ∈ A

and soR\S ∈ B′(R). Thus B′(R) is aσ-algebra. By hypothesis we have (−∞, b] ∈ B′(R)
for every b ∈ R. Thus B′(R) contains the σ-algebra generated by sets of the form (−∞, b]
for b ∈ R. By Proposition 5.4.9 this means that B(R) ⊆ B′(R), as claimed. This proves
that f−1(B) ∈ A for B ∈ B(R).

(ii) =⇒ (iii) Let
B′(R) = {T ⊆ R | f−1(T) ∈ A },

and note that, by hypothesis, B(R) ∪ {−∞} ∪ {∞} ⊆ B′(R). By Proposition 5.4.16 it
follows that f is (A ,B(R))-measurable.

(iii) =⇒ (i) For a ∈ R we have

f−1((a,∞]) = f−1((a,∞) ∪ {∞}) = f−1((a,∞)) ∪ f−1({∞})

by Proposition 1.3.5. Since (a,∞) is open it is a Borel set and so in B(R) by Propo-
sition 5.4.16. Thus f−1((a,∞)) ∈ A by hypothesis. Also, {∞} ∈ B(R) by Proposi-
tion 5.4.16 and so f−1({∞}) ∈ A . Therefore, f−1((a,∞]) is a union of measurable sets
and so is measurable. Thus f is A -measurable. �

For functions that are R-valued this gives the following result.

5.6.7 Corollary (Measurability of R-valued functions) For a measurable space (X,A ), a
function f : X→ R is measurable if and only if it is (A ,B(R))-measurable.

It is often fairly easy to apply Definition 5.6.5 to ascertain whether a given
function is measurable (as opposed to employing the equivalent characterisation
of Proposition 5.6.6).

5.6.8 Examples (Measurable functions)
1. For a measurable space (X,A ) and forα ∈ R, we claim that the constant function

fα : x 7→ α is A -measurable. To see this we let b ∈ R and determine that

f −1
α ([−∞, b)) =

∅, b ≤ α,
X, b > α,

provided that α , −∞. If α = −∞ then f −1
α ([−∞, b)) = X for every b ∈ R. In any

case, f −1
α ([−∞, b)) ∈ A for all b ∈ R and so fα is A -measurable.
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2. Let (X,A ) be a measurable space and let A ∈ A . We claim that the characteristic
function χA : X→ R is A -measurable. Indeed,

χ−1
A ([a,∞]) =


X, a ≤ 0,
A, a ∈ (0, 1],
∅, a > 1.

Since X,A, ∅ ∈ A it follows that χA is indeed A -measurable.
Note that the same argument shows that, if A < A , thenχA is not A -measurable.

3. Let A ∈ L (Rn) and let f : A → R be continuous. We claim that f is L (Rn)-
measurable. Indeed, for a ∈ R the set f −1((a,∞)) is open in A by Corollary ??.
Thus there exists an open subset Ua ⊆ Rn such that f −1((a,∞)) = Ua ∩ A. Since
Ua ∈ L (Rn) (open sets are Borel sets and so are Lebesgue measurable) we have
f −1((a,∞)) ∈ L (Rn) and so is a measurable subset of A. •

Let (X,A ) be a measurable space. By Corollary 5.6.7, measurability of f : X→ R
is equivalent to (A ,B(R))-measurability of f . A natural question to ask is: “Why
use the σ-algebra of Borel sets on R to define measurability of a function? Why
not use the σ-algebra of Lebesgue measurable sets?” The answer to this question
perhaps cannot be divined immediately. The reason for using the Borel measurable
sets is answered by answering the question, “What is it we are trying to achieve
with our definition of a measurable function?” We shall not address this here, but
instead refer ahead to Section 5.6.5.missing stuff For now, let us simply illustrate
that (A ,B(R))-measurability and (A ,L (R))-measurability are not equivalent.

5.6.9 Example ((A ,B(R))- and (A ,L (R))-measurability are different) Since B(R) ⊆
L (R) it follows that f : X → R is (A ,B(R))-measurable if it is (A ,L (R))-
measurable. The converse implication is not generally true, however. We illustrate
this with an example. We take X = [0, 1] and A = L ([0, 1]). We define a func-
tion f : [0, 1] → R that is (L ([0, 1]),B(R))-measurable but not (L ([0, 1]),L (R))-
measurable. Our construction relies on the reader understanding the construction
of the sets Cε and C from Examples 2.5.42 and 2.5.39.

Let ε ∈ R>0 and let Cε ⊆ [0, 1] be the “fat” Cantor set of Example 2.5.42. Let
C ⊆ [0, 1] be the standard middle-thirds Cantor set of Example 2.5.39. Recall that
the inductive construction of these sets is the same in that they are defined by, at
step k, removing 2k open intervals from the set defined at step k − 1. This defines
countable collections (Iε,k)k∈Z>0 and (Ik)k∈Z>0 of disjoint open intervals such that

Cε = [0, 1] \ ∪ j∈Z>0Iε, j, C = [0, 1] \ ∪ j∈Z>0I j.

Moreover, since the constructions of Cε and C proceed in the same way, the intervals
(Iε, j) j∈Z>0 and (I j) j∈Z>0 can be enumerated consistently such Iε,1 and I1 are the intervals
removed in the first step in the inductive constructions of Cε and C, Iε,2 and Iε,3, and
I2 and I3 are the intervals, ordered from left to right, removed in the second step in
the inductive constructions of Cε and C, and so on. We then define f : [0, 1]→ R by
asking that f |Iε, j maps Iε, j linearly onto the interval I j, mapping the left (resp. right)
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endpoint of Iε, j to the left (resp. right) endpoint of I j. Note that since cl([0, 1] \Cε) =
[0, 1], it follows that this definition of f on [0, 1] \ Cε extends to a continuous
function f from [0, 1] toR. By Example 5.6.8–3 it follows that f is (L ([0, 1]),B(R))-
measurable. Moreover, f (Cε) = C since, by construction, the points in Cε and C are
the endpoints of intervals from (Iε, j) j∈Z>0 and (I j) j∈Z>0 . Moreover, we claim that f is
strictly monotonically increasing. It is obviously monotonically increasing. To see
that it is strictly monotonically increasing, suppose that x1, x2 ∈ [0, 1] satisfy x1 < x2

and f (x1) = f (x2). This means that f |[x1, x2] is constant which, by construction of f
implies that [x1, x2] ⊆ Cε, contradicting the fact that int(Cε) = ∅. Thus f is strictly
monotonically increasing and so injective by Theorem 3.1.30. By Theorem 5.4.5
there exists a subset S ⊆ Cε that is not Lebesgue measurable. Let T = f (S) ⊆ C so
that T ∈ L (R) since λ(C) = 0 and since L (R) is complete. Injectivity of f implies
that f −1(T) = S < L ([0, 1]). Thus f is not (L ([0, 1]),L (R))-measurable. •

It is often the case that one is able to draw conclusions about a function only
almost everywhere, not everywhere. In such cases, one would like to assert that this
almost everywhere knowledge of the function is enough to ensure its measurability.
It should not be surprising that completeness plays a rôle here. Note that this is
the first time we have used a measure in our discussion of measurable functions.
Up to now we have only used measurable spaces.

5.6.10 Proposition (Measurability of almost everywhere known functions) If (X,A , µ)
is a complete measure space, if f ∈ L(0)((X,A );R) is A -measurable, and if g: X → R
satisfies

µ({x ∈ X | f(x) , g(x)}) = 0,

then g ∈ L(0)((X,A );R).
Proof Let

A f ,g = {x ∈ A | f (x) = g(x)}

and let b ∈ R. Then

{x ∈ X | g(x) ≤ b} = ({x ∈ X | f (x) ≤ b} ∩ A f ,g) ∪ ({x ∈ X | g(x) ≤ b} ∩ (X \ A f ,g)).

The set X \ A f ,g has measure zero and so is measurable. Thus A f ,g is measurable and
so the set

{x ∈ X | f (x) ≤ b} ∩ A f ,g

is measurable. Since the set

{x ∈ X | g(x) ≤ b} ∩ (X \ A f ,g)

is a subset of the set A f ,g which has measure zero, completeness of (X,A , µ) ensures
that it has measure zero, and in particular is measurable. Thus

{x ∈ X | g(x) ≤ b}

is the intersection of measurable sets, and so is measurable. �
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5.6.2 Measurability and operations on functions

At this point we are still not clear on the significance of measurable functions,
and we will continue to postpone this until Section 5.6.5. All we really know at
the moment is that the set of measurable functions on (Rn,L (Rn)) contains the
continuous functions, and so there is a nice subset of measurable functions in this
case. It turns out that measurable functions also have nice properties with respect
to the natural operations one performs on functions and sequences of functions. In
this section we prove these properties.

We begin with the interaction of measurable functions with standard algebraic
operations. In order to do this, the reader will wish to recall from Section 2.2.5 the
“algebraic” operations on R. This is complicated a little for measurable functions
since these are R-valued. To properly state the result we need, it is, therefore,
convenient to introduce some notation to account for the fact that certain algebraic
operations are ill-defined on R. If X is a set, if f : X → R, and if α−, α+ ∈ R, then
we denote by fα−,α+ : X→ R the function given by

fα−,α+(x) =


f (x), f (x) ∈ R,
α−, f (x) = −∞,

α+, f (x) = ∞.

Similarly, for α−, α+, α0 ∈ R we denote by fα−,α+,α0 : X→ R the function given by

fα−,α+,α0(x) =


α−, f (x) = −∞,

α+, f (x) = ∞,

α0, f (x) = 0,
f (x), otherwise.

Next, for f , g ∈ L(0)((X,A );R) and for α ∈ R denote f +α g : X → R the function
defined by

( f +α g)(x) =

α, f (x) = ∞, g(x) = −∞ or f (x) = −∞, g(x) = ∞,

f (x) + g(x), otherwise.

With these tedious bits of notation out of the way, we can now state the desired
result.

5.6.11 Proposition (Algebraic operations on measurable functions) Let (X,A ) be a
measurable space, let f,g ∈ L(0)((X,A );R), let β ∈ R, let β−, β+, β0 ∈ R∗, let α, α−, α+ ∈ R,
let p ∈ R>0, and let k ∈ Z>0. Then the following functions are A -measurable:

(i) βf;
(ii) f +α g;
(iii) fg;

(iv)
f

gβ−,β+,β0

;

(v) (|f|p)α−,α+ ;
(vi) (fk)α−,α+ .
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Proof We shall freely make use of Proposition 5.6.13 below.
(i) Let φβ : R→ R be defined by φβ(y) = βy. Then β f = φβ ◦ f . Since

φ−1
β (U) = {βy | y ∈ U}

it follows that φ−1
β (U) is open for open set U. Also,

φ−1
β ([−∞, b)) =


[−∞, βb), β ∈ R>0,

{0}, β = 0,
(βb,∞], β ∈ R<0,

and so φ−1
β ([−∞, b)) ∈ B(R) for every β, b ∈ R. Similarly, φ−1

β ((a,∞]) ∈ B(R) for every
β, a ∈ R. From this we deduce, using Proposition 1.3.5, that the preimage by φβ of the
generators of the σ-algebra B(R) are in B(R). By Proposition 5.6.2 we conclude thatφβ
is B(R)-measurable. By Proposition 5.6.13 we then conclude that β f is A -measurable.

(ii) Here we use a pair of fairly simple lemmata.

1 Lemma For a measurable space (X,A ) and A -measurable functions f,g: X→ R, the follow-
ing sets are measurable:

(i) {x ∈ X | f(x) > g(x)};
(ii) {x ∈ X | f(x) ≥ g(x)};
(iii) {x ∈ X | f(x) = g(x)}.

Proof (i) We claim that

{x ∈ X | f (x) > g(x)} =
⋃
q∈Q

(
{x ∈ X | f (x) > q} ∩ {x ∈ X | g(x) < q}

)
.

Indeed, let x ∈ {x′ ∈ X | f (x′) > g(x′)}. If f (x) = ∞ then g(x) < ∞. Thus there exists
q ∈ Q such that f (x) > q and g(x) < q. If f (x) < ∞ then f (x) ∈ R since we cannot have
f (x) = −∞. Therefore, there exists q ∈ Q such that f (x) > q and g(x) < q. This shows
that

{x ∈ X | f (x) > g(x)} ⊆
⋃
q∈Q

(
{x ∈ X | f (x) > q} ∩ {x ∈ X | g(x) < q}

)
.

For the converse inclusion, suppose that x ∈ X has the property that there exists q ∈ Q
such that g(x) < q < f (x). Clearly x ∈ {x′ ∈ X | f (x′) > g(x′)}, giving our claim.

Now, since f and g are A -measurable, the sets

{x ∈ X | f (x) > q}, {x ∈ X | g(x) < q}, q ∈ Q,

are measurable, and so too then is their intersection. Thus {x ∈ X | f (x) > g(x)} is a
countable union of measurable sets, which is then measurable.

(ii) Note that

{x ∈ X | f (x) ≥ g(x)} = X \ {x ∈ X | g(x) > f (x)}.

Since {x ∈ X | g(x) > f (x)} is measurable by the first part of the lemma it follows that
{x ∈ X | f (x) ≥ g(x)} is also measurable.
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(iii) We have

{x ∈ X | f (x) = g(x)} = {x ∈ X | f (x) ≥ g(x)} ∩ {x ∈ X | g(x) ≥ f (x)}.

The right-hand side is the intersection of two measurable sets by the second part of the
lemma, and so is measurable. H

2 Lemma If (X,A ) is a measurable space, if f : X → R is A -measurable, and if β ∈ R, then
the function x 7→ f(x) + β is A -measurable.

Proof Define φβ : R → R by φβ(y) = y + β. By Proposition 5.4.22 it follows that
φ−1
β (B) ∈ B(R) for B ∈ B(R). It is clear that φ−1

β ({−∞}) = {−∞} and that φ−1
β ({∞}) = {∞}.

Therefore, by Propositions 5.4.16 and 5.6.2, it follows that φβ is B(R)-measurable.
Thus φβ ◦ f is A -measurable by Proposition 5.6.13. H

To proceed with the proof, let a ∈ R and let

Aa,α = ({x ∈ X | f (x) = ∞} ∩ {x ∈ X | g(x) = −∞})
∪ ({x ∈ X | f (x) = −∞} ∩ {x ∈ X | g(x) = ∞})

if a < α and let Aa,α = ∅ if a ≥ α. We then have

( f +α g)−1((a,∞]) = {x ∈ X | f (x) + g(x) > a} ∪ Aa,α

= {x ∈ X | f (x) > a − g(x)} ∪ Aa,α.

By the two lemmata above, the set {x ∈ X | f (x) > a − g(x)} is measurable. By
Proposition 5.6.6 each of the four sets comprising the definition of Aa,α when a < α is
measurable. Thus Aa,α is measurable and so ( f +α g)−1((a,∞]) is measurable, being a
union of measurable sets.

(iii) We denote

A f ,− = {x ∈ X | f (x) = −∞}, A f ,+ = {x ∈ X | f (x) = ∞},

Ag,− = {x ∈ X | g(x) = −∞}, Ag,+ = {x ∈ X | g(x) = ∞}.

By Proposition 5.6.4 these sets are measurable. For x < A f ,− ∪ A f ,+ ∪ Ag,− ∪ Ag,+ we
have

f (x)g(x) = 1
2 (( f (x) + g(x))2

− f (x)2
− g(x)2).

If x ∈ A f ,− ∩ Ag,+ or x ∈ A f ,+ ∩ Ag,− then f (x)g(x) = −∞ and if x ∈ A f ,− ∩ Ag,− or
x ∈ A f ,+ ∩ Ag,+ then f (x)g(x) = ∞. Then, for a ∈ R we have

( f g)−1((a,∞]) = {x ∈ X | f (x)g(x) > a}
= {x ∈ (A f ,− ∩ Ag,+) ∪ (A f ,+ ∩ Ag,−) | f (x)g(x) > a}

∪ {x ∈ (A f ,− ∩ Ag,−) ∪ (A f ,+ ∩ Ag,+) | f (x)g(x) > a}

∪ {x ∈ X \ (A f ,− ∪ A f ,+ ∪ Ag,− ∪ Ag,+) |
1
2 (( f (x) + g(x))2

− f (x)2
− g(x)2) > a}.

The set
{x ∈ (A f ,− ∩ Ag,+) ∪ (A f ,+ ∩ Ag,−) | f (x)g(x) > a}



477 5 Measure theory and integration 2016/11/26

is empty, the set

{x ∈ (A f ,− ∩ Ag,−) ∪ (A f ,+ ∩ Ag,+) | f (x)g(x) > a}

is measurable being a union of measurable sets, and the set

{x ∈ X \ (A f ,− ∪ A f ,+ ∪ Ag,− ∪ Ag,+) | 1
2 (( f (x) + g(x))2

− f (x)2
− g(x)2) > a}

is measurable by parts (ii) and (vi). Thus ( f g)−1((a,∞]) is a union of three measurable
sets and so measurable.

(iv) We first consider the case when f (x) = 1 for every x ∈ X. In this case let us
define φβ−,β+,β0 : R→ R by

φβ−,β+,β0(y) =



1
y , y ∈ R,
1
β0
, y = 0,

1
β−
, y = −∞,

1
β+
, y = ∞.

Note that y 7→ 1
y is (B(R),B(R))-measurable by Example 5.6.3. Therefore, by Propo-

sitions 5.4.16 and 5.6.2 it is easy to see that φβ−,β+,β0 is B(R)-measurable. Since
1

gβ− ,β+,β0
= φβ−,β+,β0

◦ g this part of the result follows from Proposition 5.6.13 in the case
that f = 1. For general f the result follows from the result for f = 1 and from part (iii).

(v) Here we define φα−,α+ : R→ R by

φα−,α+(y) =


|y|p, y ∈ R,
α−, y = −∞,

α+, y = ∞.

It is easy to verify by Propositions 5.4.16 and 5.6.2 that φα−,α+ is B(R)-measurable.
Since the function y 7→ |y|p is continuous and so (B(R),B(R))-measurable by Ex-
ample 5.6.3. Thus, since (| f |p)α−,α+ = φα−,α+

◦ f , this part of the result follows from
Proposition 5.6.13.

(vi) If we define φα−,α+ : R → R as in the proof of part (v), this part of the proof is
carried out exactly as that for part (v). �

We now consider the interaction of composition and measurability. First of all,
the most general result is false as the following example shows.

5.6.12 Example (Compositions of measurable functions may not be measurable)
We recall from Exercise 5.6.9 the construction of a map f : [0, 1] → [0, 1] that is
(L ([0, 1]),B(R))-measurable but not (L ([0, 1]),L (R))-measurable. Let S,T ⊆ [0, 1]
be the subsets constructed in Exercise 5.6.9 and let χT : [0, 1] → R be the charac-
teristic function. Since T is Lebesgue measurable, as we showed in Exercise 5.6.9,
it follows from Example 5.6.8–2 that χT is L ([0, 1])-measurable. However, by
construction of f , χT ◦ f = χS. Since S < L ([0, 1]) by construction, it follows from
Example 5.6.8–2 that χS is not L ([0, 1])-measurable. Thus the composition of mea-
surable functions need not be measurable. •
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The preceding counterexample notwithstanding, there is a useful result con-
cerning measurability of compositions. The result relies on the notion of the σ-
algebra B(R) on R as defined in Definition 5.4.15.

5.6.13 Proposition (Composition and measurable functions) Let (X,A ) be a measurable
space, let f ∈ L(0)((X,A );R), and let φ : R → R be B(R)-measurable. Then φ ◦ f ∈
L(0)((X,A );R).

Proof Let B ∈ B(R). By assumption and by Proposition 5.6.6 we haveφ−1(B) ∈ B(R).
Thus, using Exercise 1.3.2,

(φ ◦ f )−1(B) = f−1(φ−1(B)) ∈ A ,

and so φ ◦ f is A -measurable, as desired. �

5.6.14 Corollary (Composition by continuous functions and measurability) Let (X,A )
be a measurable space, let f ∈ L(0)((X,A );R), and let φ : R → R be continuous. Then
φ ◦ f ∈ L(0)((X,A );R).

Proof This follows from Proposition 5.6.13, along with Example 5.6.3. �

In the following result we consider measurability of functions restricted to
measurable sets. We recall from Proposition 5.2.6 the definition of the restriction
AA of a measurable space (X,A ) to a measurable subset A ∈ A .

5.6.15 Proposition (Measurability and restriction) Let (X,A ) be a measurable space, let
f : X→ R be A -measurable, and let A ∈ A . Then f|A is AA-measurable.

Moreover, if B = X \A and if we have AA- and AB-measurable functions fA : A→ R

and fB : B→ R, respectively, then the function f : X→ R defined by

f(x) =

fA(x), x ∈ A,
fB(x), x ∈ B

is A -measurable.
Proof Let E ∈ A so that A ∩ E ∈ AA. Then, by Proposition 1.3.5,

f−1(A ∩ E) = f−1(A) ∩ f−1(E),

and from this we deduce that f−1(A ∩ E) is the intersection of measurable sets, and so
measurable.

For the second assertion of the proposition, let E ∈ A and write E = (A∩E)∪(B∩E).
Then, again by Proposition 1.3.5,

f−1(E) = f−1(A ∩ E) ∪ f−1(B ∩ E) = f−1
A (A ∩ E) ∪ f−1

B (B ∩ E).

Since fA and fB are AA- and AB-measurable, f−1
A (A∩E) ∈ AA and f−1

B (B∩E) ∈ AB. Since
AA,AB ⊆ A , f−1(E) is the union of A -measurable sets, and so is A -measurable. �

Let us consider the rôle of measurability with respect to the operations of min
and max.
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5.6.16 Proposition (Measurability and max and min) If (X,A ) is a measure space and if
f,g ∈ L(0)((X,A );R), then the functions

X 3 x 7→ min{f(x),g(x)} ∈ R, X 3 x 7→ max{f(x),g(x)} ∈ R.

are A -measurable.
Proof Let a ∈ R and note that

{x ∈ X | min{ f (x), g(x)} ≤ a} = {x ∈ X | f (x) ≤ a} ∪ {x ∈ X | g(x) ≤ a}

and
{x ∈ X | max{ f (x), g(x)} ≤ a} = {x ∈ X | f (x) ≤ a} ∩ {x ∈ X | g(x) ≤ b}.

Thus {x ∈ X | min{ f (x), g(x)} ≤ a} and {x ∈ X | max{ f (x), g(x)} ≤ a} are measurable and
this gives the result. �

The previous result has the following obvious corollary that will be useful when
we define the integral.

5.6.17 Corollary (Measurability of positive and negative parts of a function) Let
(X,A ) be a measurable space and let f ∈ L(0)((X,A );R) be A -measurable. Then the
functions f−, f+ : X→ R defined by

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}

are A -measurable.
Proof By Example 5.6.8–1 the function x 7→ 0 is A -measurable. The corollary now
follows immediately from Proposition 5.6.16. �

5.6.3 Sequences of measurable functions

In Sections 3.5 and ??missing stuff we considered sequences of continuous
functions. We saw that notions of uniform convergence are important for the
preservation of continuity of the limit function. Measurable functions are far more
flexible in this regard, and so we are able to assert the measurability of a fairly
general collection of operations applied to sequences of measurable functions. First
let us define some notation to facilitate the statement of the result. We let (X,A ) be
a measurable space with S = ( f j) j∈Z>0 a sequence of A -measurable functions. We
then define functions inf S, sup S, lim inf S, lim sup S : X→ R by

inf S(x) = inf{ f j(x) | j ∈ Z>0}, sup S(x) = sup{ f j(x) | j ∈ Z>0},

lim inf S(x) = lim inf
j→∞

f j(x), lim sup S(x) = lim sup
j→∞

f j(x).

Note that these four functions are always defined, regardless of the sequence. Let
us also define

AS = {x ∈ X | lim inf S(x) = lim sup S(x)}

and define lim S : AS → R by lim S(x) = lim j→∞ f j(x), noting that this is also a
well-defined function. With this notation we have the following result.
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5.6.18 Proposition (Limit operations on measurable functions) Let (X,A ) be a mea-
surable space and let S = (fj)j∈Z>0 be a sequence in L(0)((X,A );R). Then the following
statements hold:

(i) inf S ∈ L(0)((X,A );R);
(ii) sup S ∈ L(0)((X,A );R);

(iii) lim inf S ∈ L(0)((X,A );R);
(iv) lim sup S ∈ L(0)((X,A );R);

(v) AS ∈ A and lim S ∈ L(0)((X,A );R).
Proof (i) For b ∈ R we have

{x ∈ X | inf S(x) < b} =
⋃

j∈Z>0

{x ∈ X | f j(x) < b}.

Since the sets of the right are measurable, so is their union.
(ii) For b ∈ R we have

{x ∈ X | sup S(x) ≤ b} =
⋂

j∈Z>0

{x ∈ X | f j(x) ≤ b}.

Since the sets on the right are measurable, so is their intersection.
(iii) Define a sequence of functions ( f

j
) j∈Z>0 by f

j
(x) = supk≥ j fk(x). These functions

are A -measurable by part (i). By Proposition 2.3.16 we have

lim inf
j→∞

f j(x) = sup
{

f
k
(x)

∣∣∣ k ∈ Z>0

}
,

and so this part of the result follows from part (i).
(iv) Define a sequence of functions ( f j) j∈Z>0 by f j(x) = supk≥ j fk(x). These functions

are A -measurable by part (ii). By Proposition 2.3.15 we have

lim sup
j→∞

f j(x) = inf
{

f k(x)
∣∣∣ k ∈ Z>0

}
,

and so this part of the result follows from part (ii).
(v) Measurability of AS follows from parts (iii) and (iv), along with Lemma 1 from

the proof of Proposition 5.6.11. Now let b ∈ R and note that

{x ∈ AS | lim f (x) ≤ b} = AS ∩ {x ∈ X | lim sup S(x) ≤ b}.

The set on the right is the intersection of measurable sets and so is measurable. This
then gives A -measurability of lim S by Proposition 5.2.6. �

The following corollary will come up often. Note that this result is unlike most
of the results thus far in this section in that it depends on a measure.
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5.6.19 Corollary (Measurability of almost everywhere convergent sequences) Let
(X,A , µ) be a complete measure space, let (fj)j∈Z>0 be a sequence in L(0)((X,A );R), and let
f : X→ R be such that

µ
(
X \

{
x ∈ X

∣∣∣∣ f(x) = lim
j→∞

fj(x)
})

= 0.

Then f is A -measurable.
Proof Let S = ( f j) j∈Z>0 and define

BS =
{
x ∈ X

∣∣∣∣ f (x) = lim
j→∞

f j(x)
}
.

From Proposition 5.6.18 the function lim inf S is A -measurable. Since f and lim inf S
agree except on the set BS which has measure zero, it follows from Proposition 5.6.10
that f is A -measurable since µ is complete. �

The preceding few results had to do with the measurability of various sorts of
limits of measurable functions. Let us now study systematically the various sorts
of convergence that may be experienced by sequences of measurable functions. In
missing stuff we described the notions of pointwise and uniform convergence in a
general way using topological ideas. These definitions carry over to sequences of
functions defined on measure spaces, but there are additional notions arising from
the measure theoretic setting, as the following definitions make clear.

5.6.20 Definition (Modes of convergence for sequences of measurable functions)
Let (X,A , µ) be a measure space, let ( f j) j∈Z>0 be a sequence in L(0)((X,A );R), and let
f ∈ L(0)((X,A );R). The sequence

(i) converges pointwise to f if lim j→∞ f j(x) = f (x) for every x ∈ X,
(ii) converges pointwise almost everywhere to f if

µ
(
X \

{
x ∈ X

∣∣∣∣ f (x) = lim
j→∞

f j(x)
})

= 0,

(iii) converges uniformly to f if, for every ε ∈ R>0, there exists N ∈ Z>0 such that
| f (x) − f j(x)| < ε for every x ∈ X and for every j ≥ N,

(iv) converges almost uniformly to f if, for every δ ∈ R>0, there exists a set Eδ ⊆ X
having the following properties:

(a) µ(Eδ) < δ;
(b) for every ε ∈ R>0 there exists N ∈ Z>0 such that | f (x)− f j(x)| < ε for every

x ∈ X \ Eδ and for every j ≥ N,

and
(v) converges in measure to f if, for every ε ∈ R>0,

lim
j→∞

µ
(
{x ∈ X | | f (x) − f j(x)| > ε}

)
= 0. •
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Some of the relationships between the various notions of convergence are obvi-
ous. For example, the implications

(iv)⇐= (iii) =⇒ (i) =⇒ (ii)

obviously hold. Moreover, the converse implications of some of the preceding
implications fairly obviously do not hold in general. For example, we know from
Section 3.5.2 that generally (i);(iii). It is also pretty evident that generally (ii);(i);
see Exercise 5.6.4. Let us now explore the possibility of other implications. The first
result shows that, perhaps a little surprisingly, (ii) implies (iv) when the functions in
the sequence and the limit function areR-valued, and when the measure is finite.

5.6.21 Theorem (Egorov’s7 Theorem) Let (X,A , µ) be a finite measure space and let fj, f ∈
L(0)((X,A );R), j ∈ Z>0, have the following properties:

(i) the sets {x ∈ X | fj(x) < R}, j ∈ Z>0, and {x ∈ X | f(x) < R} have measure zero;
(ii) (fj)j∈Z>0 converges pointwise almost everywhere to f.

Then (fj)j∈Z>0 converges almost uniformly to f.
Proof First let us suppose that f and f j, j ∈ Z>0, are R-valued. For k,m ∈ Z>0 define

Ekm =
{
x ∈ X

∣∣∣ | f (x) − fm(x)| < 1
k

}
.

Since ( f j) j∈Z>0 converges almost everywhere to f , there exists a set Z ⊆ X such that
1. µ(Z) = 0 and
2. for k ∈ Z>0 and x ∈ X \Z, there exists m ∈ Z>0 such that | f (x)− f j(x)| < 1

k for j ≥ m.
That is to say,

X \ Z ⊆
⋃

n∈Z>0

⋂
m≥n

Ekm =⇒ Z ⊆
⋂

n∈Z>0

⋃
m≥n

X \ Ekm

for every k ∈ Z>0, using De Morgan’s Laws. Denote Akn = ∪m≥nX \ Ekm. Note that
Akn ⊇ Ak(n+1) for every k,n ∈ Z>0, and that ∩n∈Z>0Akn ⊆ Z which implies that ∩n∈Z>0Akn
has zero measure, being a subset of a set with zero measure. Let Zk = ∩n∈Z>0Akn and
note that

lim
n→∞

µ(Akn) = lim
n→∞

µ(Akn \ Zk) = 0

using Proposition 5.3.3.
Let δ ∈ R>0. For k ∈ Z>0 let Nk ∈ Z>0 be such that µ(Akn) < δ

2k for n ≥ Nk. Define

Eδ =
⋃

k∈Z>0

AkNk .

Then

µ(Eδ) ≤
∞∑

k=1

µ(AkNk) <
∞∑

k=1

δ

2k
= δ

7Dimitri Fedorovich Egorov (1869–1931) Was a Russian mathematician whose main mathemat-
ical contributions were to differential geometry and analysis.
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by Example 2.4.2–??.
Now let ε ∈ R>0 and take K ∈ Z>0 such that 1

K < ε. If x ∈ X \ Eδ we have, by
definition of Eδ and De Morgan’s Laws,

x ∈
⋂

k∈Z>0

⋂
m≥Nk

Ekm,

which implies in particular that x ∈ EKm whenever m ≥ NK. That is to say, if j ≥ NK
then | f (x) − f j(x)| < ε for every x ∈ X \ Eδ, as desired.

To conclude the proof, let us relax the assumption made above that f and f j,
j ∈ Z>0, are R-valued. Define

N = {x ∈ X | f (x) < R}, N j = {x ∈ X | f j(x) < R}, j ∈ Z>0.

If Z = N ∪ (∪ j∈Z>0N j) then Z is a measurable set with zero measure, being a countable
union of sets with zero measure. The hypotheses from the first part of the proof hold
for X \ Z and for f and f j, j ∈ Z>0, restricted to X \ Z. That is to say, for every δ ∈ R>0
there exists a set E′δ ⊆ (X \Z) such that µ(E′δ) < δ and such that, for every ε ∈ R>0 there
exists N ∈ Z>0 such that | f (x)− f j(x)| < ε for every x ∈ X \ (Z∪ E′δ) and for every j ≥ N.
Now let δ ∈ R>0 and take Eδ = E′δ ∪ Z. Note that µ(Eδ) = µ(E′δ) < δ. Now, for ε ∈ R>0
let N be chosen as above, so that | f (x) − f j(x)| < ε for every x ∈ X \ Eδ and for every
j ≥ N. This gives almost uniform convergence of ( f j) j∈Z>0 to f , as desired. �

Note that the theorem allows us to immediately conclude that generally (iv);(iii)
from Definition 5.6.20. Indeed, suppose that ( f j) j∈Z>0 is a sequence of R-valued
functions on [0, 1] that converges pointwise, but not uniformly, to a function f .
Then the preceding theorem implies that the sequence converges almost uniformly
to f .

The next example shows that finiteness of the measure space in Egorov’s Theo-
rem is necessary.

5.6.22 Example (Egorov’s Theorem generally fails for measure spaces that are not
finite) We take X = R, A = L (R), and µ = λ. We consider the sequence ( f j) j∈Z>0 in
L(0)((R,L (R));R) defined by f j = χ[ j, j+1). We also define f ∈ L(0)((R,L (R));R) by
f (x) = 0 for all x ∈ R. We claim that ( f j) j∈Z>0 converges pointwise, and so pointwise
almost everywhere, to f , but does not converge almost uniformly to f . To verify
pointwise convergence, let x ∈ R and choose N ∈ Z>0 such that N + 1 > x, Then we
have f j(x) = 0 for all j ≥ N, so verifying pointwise convergence to f . To see that
the sequence does not converge almost uniformly, let δ, ε ∈ (0, 1) and suppose that
Eδ ⊆ R is such that there exists N ∈ Z>0 for which | f (x) − f j(x)| < ε for x ∈ R \ Eδ
and for j ≥ N. This means that | f j(x)| ≥ ε on a set A contained in Eδ for j ≥ N. But
this implies that [N,N + 1) ⊆ Eδ, implying that µ(Eδ) > δ. This precludes almost
uniform convergence. •

The preceding discussion concerning the relationships between modes of con-
vergence has not involved convergence in measure. Let us now investigate the rôle
of convergence in measure relative to the other modes of convergence. The first
result establishes that for finite measure spaces we have the implication (ii) =⇒ (v)
from Definition 5.6.20.
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5.6.23 Proposition (Almost everywhere pointwise convergence sometimes implies
convergence in measure) Let (X,A , µ) be a finite measure space. Consider a sequence
(fj)j∈Z>0 and a function f in L(0)((X,A );R) with the following properties:

(i) the sets {x ∈ X | f(x) < R} and {x ∈ X | fj(x) < R}, j ∈ Z>0, have measure zero;
(ii) (fj)j∈Z>0 converges pointwise almost everywhere to f.

Then (fj)j∈Z>0 converges in measure to f.
Proof First suppose that f and f j, j ∈ Z>0, are R-valued. Let ε ∈ R>0 and define

Aε, j = {x ∈ X | | f (x) − f j(x)| > ε}, j ∈ Z>0

and Bε,k = ∪k
j=1Aε, j, k ∈ Z>0. Then we have Bk+1 ⊇ Bk for k ∈ Z>0 and

∩k∈Z>0Bε,k ⊆ {x ∈ X | ( f j(x)) j∈Z>0 does not converge to f (x)}

Therefore, µ(∩k∈Z>0Bε,k) = 0 and so, by Proposition 5.3.3, limk→∞ Bε,k = 0. Therefore,
since Aε, j ⊆ Bε, j for j ∈ Z>0, we have lim j→∞Aε, j = 0. This is exactly the statement that
( f j) j∈Z>0 converges to f in measure.

To complete the proof, suppose that f j, j ∈ Z>0, are not necessarily R-valued. Let

N = {x ∈ X | f (x) < R}, N j = {x ∈ X | f j(x) < R}, j ∈ Z>0

so that Z = N ∪ (∪ j∈Z>0N j) is a measurable set with zero measure, it being a countable
union of sets with zero measure. The first part of the proof then applies for X \ Z and
for f and f j, j ∈ Z>0, restricted to X \ Z. Thus, for ε ∈ R>0 we have

lim
j→∞

µ({x ∈ X \ Z | | f (x) − f j(x)| > ε}) = 0.

Since

{x ∈ X | | f (x) − f j(x)| > ε} = {x ∈ X \ Z | | f (x) − f j(x)| > ε} ∪ {x ∈ Z | | f (x) − f j(x)| > ε}
⊆ {x ∈ X \ Z | | f (x) − f j(x)| > ε} ∪ Z,

we have
lim
j→∞

µ({x ∈ X | | f (x) − f j(x)| > ε}) = 0,

giving convergence in measure as desired. �

The condition that the measure space be finite is generally necessary in the
preceding result.

5.6.24 Example (Almost everywhere pointwise convergence does not always imply
convergence in measure) Here we take X = R, A = L (R), and µ = λ. We define
a sequence ( f j) j∈Z>0 and a function f in L(0)((R,L (R));R) by f j = χ[ j, j+1) and f (x) = 0
for x ∈ R. We saw in Example 5.6.22 that the sequence converges pointwise to f ,
and so converges pointwise almost everywhere to f . However, if ε ∈ (0, 1) then

λ({x ∈ R | | f (x) − f j(x)| > ε}) = 1

which clearly precludes the sequence from converging to f in measure. •

Now let us investigate the extent to which convergence in measure implies
almost everywhere pointwise convergence. The following example shows that the
general implication fails to hold, even for finite measure spaces.
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5.6.25 Example (Convergence in measure does not imply almost everywhere point-
wise convergence) We take X = [0, 1), A = L ([0, 1)), and µ = λ[0,1). We define
a sequence ( f j) j∈Z>0 in L(0)(([0, 1),L ([0, 1)));R) as follows. For k ∈ Z≥0 we define
f2k , f2k+1, . . . , f2k+1−1 by f2k+ j = χ[ j2−k,( j+1)2−k), j ∈ {0, 1, . . . , 2k

− 1}. Thus, for example,

f1 = χ[0,1),

f2 = χ[0, 12 ), f3 = χ[ 1
2 ,1),

f4 = χ[0, 14 ), f5 = χ[ 1
4 ,

1
2 ), f6 = χ[ 1

2 ,
3
4 ), f7 = χ[ 3

4 ,1).

We also define f ∈ L(0)(([0, 1),L ([0, 1)));R) by f (x) = 0 for x ∈ [0, 1). We claim that
this sequence converges in measure to f , but does not converge pointwise almost
everywhere to f .

To verify convergence in measure, let ε ∈ R>0 and note that for any j ∈ Z>0 we
have

{x ∈ [0, 1) | | f (x) − f j(x)| > ε} ⊆ {x ∈ [0, 1) | | f j(x)| > 0}.

If j ∈ {2k, 2k + 1, . . . , 2k+1
− 1} then

λ({x ∈ [0, 1) | | f j(x)| > 0}) = 2−k.

Therefore, it follows that

lim
j→∞

λ({x ∈ [0, 1) | | f j(x)| > 0}) = 0,

giving convergence in measure.
Now we verify that the sequence does not converge pointwise almost every-

where. Let x ∈ [0, 1) and let N ∈ Z>0. Choose k ∈ Z>0 such that 2k > N and choose
j ∈ {0, 1, . . . , 2k

−1} such that x ∈ [ j2−k, ( j+1)2−k). Then, for m ∈ {2k, 2k +1, . . . , 2k+1
−1}

we have

fm(x) =

1, m = 2k + j,
0, otherwise.

Thus, no matter how large we choose N, there are terms beyond the Nth term in
the sequence ( f j(x)) j∈Z>0 that have value 1 and terms beyond the Nth term in the
sequence ( f j(x)) j∈Z>0 that have value 0. This precludes pointwise convergence at x.
Since this is true for every x ∈ [0, 1) it follows that almost everywhere pointwise
convergence is precluded. Indeed, the sequence converges pointwise nowhere. •

The situation is not entirely hopeless, however. Indeed, one has the following
result.

5.6.26 Proposition (Convergence in measure implies almost everywhere pointwise
convergence of a subsequence) Let (X,A , µ) be a measure space, let (fj)j∈Z>0 be a
sequence in L(0)((X,A );R) and let f ∈ L(0)((X,A );R) satisfy the following:

(i) the sets {x ∈ X | f(x) < R} and {x ∈ X | fj(x) < R} have measure zero;
(ii) the sequence (fj)j∈Z>0 converges to f in measure.
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Then there exists a subsequence of (fj)j∈Z>0 which converges pointwise almost everywhere
to f.

Proof Define a strictly increasing sequence ( jk)k∈Z>0 in Z>0 as follows. Let j1 be such
that

µ({x ∈ X | | f (x) − f j1(x)| > 1}) ≤ 1
2 ,

this being possible by definition of convergence in measure. Then suppose that j1, . . . , jk
have been defined. Define jk+1 such that jk+1 > jk and such that

µ({x ∈ X | | f (x) − f jk+1(x)| > 1
k+1 } ≤

1
2k+1 ,

this again being possible by definition of convergence in measure. Now define

Ak = {x ∈ X | | f (x) − f jk(x)| < 1
k }, k ∈ Z>0,

and Bm = ∪∞k=mAk, m ∈ Z>0. Note that Bm+1 ⊇ Bm for m ∈ Z>0. Moreover,

µ(Bm) ≤
∞∑

k=m

µ(Ak) ≤
∞∑

k=m

1
2k

=
1

2m−1

∞∑
k=1

1
2k

=
1

2m−1

by Example 2.4.2–??. Therefore, by Proposition 5.3.3,

µ(∩∞m=1Bm) = lim
m→∞

µ(Bm) ≤ lim
m→∞

1
2m−1

= 0.

Now, if x < ∩∞m=1Bm there exists m ∈ Z>0 such that x < Bm. Thus x < ∪∞k=mAk and so

| f (x) − f jk(x)| < 1
2k , k ≥ m.

Thus limk→∞ f jk(x) = f (x). Thus ( f jk)k∈Z>0 converges pointwise to f on X \ (∩∞m=1Bm).
This gives almost everywhere pointwise convergence of this subsequence to f . �

5.6.4 C- and vector-valued measurable functions

It is important to be able to talk about functions taking values in spaces more
interesting thanR. In particular,C-valued functions will be frequently encountered
in these volumes. Here we allow this by considering functions taking values inRn.

First let us define what we mean by a measurable Rn-valued function.

5.6.27 Definition (Measurable vector-valued function) For a measurable space (X,A ),
a function f : X → Rn is A -measurable if its components f1, . . . , fn : X → R are
measurable in the sense of Definition 5.6.5. We denote the set of measurable Rn-
valued maps by L(0)((X,A );Rn), or simply by L(0)(X;Rn) with the understanding
that the σ-algebra A is implicit. •

Let us relate this notion of measurability to that in Definition 5.6.1.
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5.6.28 Proposition (Characterisation of vector-valued measurable functions) For a
measurable space (X,A ) and for a function f : X → Rn the following statements are
equivalent:

(i) f ∈ L(0)((X,A );Rn);
(ii) f is (A ,B(Rn))-measurable.

Proof Suppose that f ∈ L(0)((X,A );Rn). By Propositions 5.4.9 it follows that
f−1
j ((−∞, b j]) ∈ A for every b j ∈ R and for j ∈ {1, . . . ,n}. Now note that

f−1((−∞, b1] × · · · × (−∞, bn]) = f−1
1 ((−∞, b1]) ∩ · · · ∩ f−1

n ((−∞, bn]) ∈ A

for every b1, . . . , bn ∈ R. By Propositions 5.5.9 and 5.6.2 it follows that f is (A ,B(Rn))-
measurable.

Next suppose that f is (A ,B(Rn))-measurable. Then, for j ∈ {1, . . . ,n} and b j ∈ R,

f−1
j ((−∞, b j]) = X ∩ · · · ∩ f−1

j ((−∞, b j]) ∩ · · · ∩ X

= f−1
1 (R) ∩ · · · ∩ f−1

j ((−∞, b j]) ∩ · · · ∩ f−1
n (R)

= f−1(R × · · · × (−∞, b j] × · · · ×R).

Since R × · · · × (−∞, b j] × · · · ×R is a Borel set (it is closed), it follows that f−1
j ((−∞, b j])

is a Borel set, and so the result follows from Propositions 5.4.9 and 5.6.2. �

The definition of measurable C-valued functions follows directly from the pre-
ceding constructions. Indeed, we note that C is isomorphic as a R-vector space to
Rn via the isomorphism z 7→ (Re(z), Im(z)). Thus the following definition simply
specialises the above general definition.

5.6.29 Definition (Measurable C-valued functions) For a measurable space (X,A ), a
function f : X→ C is A -measurable if the R-valued functions

Re( f ) : x 7→ Re( f (x)), Im( f ) : x 7→ Im( f (x))

are measurable in the sense of Definition 5.6.5. We denote the set of measurable
C-valued maps by L(0)((X,A );C), with the understanding that the σ-algebra A is
implicit. •

It is straightforward to adapt the results concerning operations on measur-
able functions in Section 5.6.2 to vector-valued functions. Let us record this here
for Rn-valued functions, noting that these results apply immediately to C-valued
functions.

5.6.30 Proposition (Algebraic operations on measurable functions) Let (X,A ) be a
measurable space, let f,g ∈ L(0)((X,A );Rn), and let a ∈ R. Then the functions f + g and
af defined by

(f + g)(x) = f(x) + g(x), (af)(x) = a(f(x))

are A -measurable.
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Proof This follows directly from the definition of A -measurable vector-valued
functions, the definitions of vector addition and scalar multiplication, and Proposi-
tion 5.6.11. �

Next we consider compositions of measurable functions with functions between
Euclidean spaces.

5.6.31 Proposition (Composition and measurable functions) Let (X,A ) be a measurable
space, let f ∈ L(0)((X,A );Rn), and let φ : Rn

→ Rm be B(R)-measurable. Then φ ◦f ∈
L(0)((X,A );Rm).

Proof Let B ∈ B(Rm). By assumption and by Proposition 5.6.6 we have φ−1(B) ∈
B(Rn). Thus, using Exercise 1.3.2,

(φ ◦ f )−1(B) = f−1(φ−1(B)) ∈ A ,

and so φ ◦ f is A -measurable, as desired. �

5.6.32 Corollary (Composition by continuous functions and measurability) Let (X,A )
be a measurable space, let f ∈ L(0)((X,A );Rn), and let φ : Rn

→ Rn be continuous. Then
φ ◦f ∈ L(0)((X,A );Rm).

Proof This follows from Proposition 5.6.31, along with Example 5.6.3. �

5.6.33 Corollary (Measurability of norms of functions) Let (X,A ) be a measurable space,
let f ∈ L(0)((X,A );Rn), and let φ : Rn

→ Rn be continuous. Then the function x 7→
‖f(x)‖Rn is A -measurable.

Proof This follows from the previous corollary, along with continuity of the norm
(missing stuff ). �

Next we consider the restrictions of measurable functions, recalling from Propo-
sition 5.2.6 the definition of the restriction AA of a measurable space (X,A ) to a
measurable subset A ∈ A .

5.6.34 Proposition (Measurability and restriction) Let (X,A ) be a measurable space, let
f : X→ Rn be A -measurable, and let A ∈ A . Then f|A is AA-measurable.

Moreover, if B = X \A and if we have AA- and AB-measurable functions fA : A→ Rn

and fB : B→ Rn, respectively, then the function f : X→ Rn defined by

f(x) =

fA(x), x ∈ A,
fB(x), x ∈ B

is A -measurable.
Proof Let B ∈ A so that A ∩ B ∈ AA. Then, by Proposition 1.3.5,

f−1(A ∩ B) = f−1(A) ∩ f−1(B),

and from this we deduce that f−1(A ∩ B) is the intersection of measurable sets, and so
measurable.
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For the second assertion of the proposition, let E ∈ A and write E = (A∩E)∪(B∩E).
Then, again by Proposition 1.3.5,

f−1(E) = f−1(A ∩ E) ∪ f−1(B ∩ E) = f−1
A (A ∩ E) ∪ f−1

B (B ∩ E).

Since f A and f B are AA- and AB-measurable, f−1
A (A∩E) ∈ AA and f−1

B (B∩E) ∈ AB. Since
AA,AB ⊆ A , f−1(E) is the union of A -measurable sets, and so is A -measurable. �

Finally, we consider measurability of limits of vector-valued functions. We
consider a sequence S = ( f j) j∈Z>0 of Rn-valued functions on a measurable space
(X,A ). Let us denote

AS =
{
x ∈ X

∣∣∣ lim
j→∞

f j(x) exists
}

and define lim S : AS → Rn by lim S(x) = lim j→∞ f j(x). With this notation we have
the following result.

5.6.35 Proposition (Pointwise limits of sequences of measurable functions) Let
(X,A ) be a measurable space and let S = (fj)j∈Z>0 be a sequence in L(0)((X,A );Rn).
Then the set AS and the function lim S are A -measurable.

Proof Let f1, j, . . . , fn, j be the components of f j, j ∈ Z>0, and for k ∈ {1, . . . ,n} define

AS,k =
{
x ∈ X

∣∣∣ lim
j→∞

fk, j(x) exists
}
.

Note that AS = ∩n
k=1AS,k so that AS is measurable, being a finite intersection of measur-

able sets. From Propositions 5.6.15 and 5.6.18 it follows that the function

AS 3 x 7→ lim
j→∞

fk, j(x) ∈ R

is A -measurable. The definition of measurability of vector-valued functions now gives
the result. �

For almost everywhere pointwise convergent sequences, this gives the follow-
ing result.

5.6.36 Corollary (Measurability of almost everywhere convergent sequences) Let
(X,A , µ) be a complete measure space, let (fj)j∈Z>0 be a sequence in L(0)((X,A );Rn), and
let f : X→ Rn be such that

µ
(
X \

{
x ∈ X

∣∣∣∣ f(x) = lim
j→∞

fj(x)
})

= 0.

Then f is A -measurable.
Proof Let f1, j, . . . , fn, j be the components of f j, j ∈ Z>0, let f1, . . . , fn be the components
of f , and define

Bk =
{
x ∈ A

∣∣∣ fk(x) = lim
j→∞

fk, j(x)
}
, k ∈ {1, . . . ,n},

and
B =

{
x ∈ A

∣∣∣ f (x) = lim
j→∞

f j(x)
}
.
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Note that B = ∩n
k=1Bk. By hypothesis, µ(X \ B) = 0, and we claim that µ(X \ Bk) = 0 for

k ∈ {1, . . . ,n}. Indeed, suppose that µ(X \ Bk) > 0 for some k0 ∈ {1, . . . ,n}. Then

µ(X \ B) = µ(X \ ∩k
j=1Bk) = µ(∪n

k=1X \ Bk) ≥ µ(X \ Bk0) > 0,

contrary to our hypothesis. Since µ(X \ Bk) = 0 for every k ∈ {1, . . . ,n}, it follows from
Corollary 5.6.19 that fk is measurable, and so f is also measurable. �

5.6.5 Simple functions and approximations of measurable functions

In this section we consider a specific class of measurable functions that will be
fundamental to our construction of the integral in Section 5.7. There are various
ways to characterise this class of functions, and the following result gives some of
these.

5.6.37 Proposition (Characterisations of simple functions) For a measurable space (X,A )
and a function f : X→ R the following statements are equivalent:

(i) image(f) = {a1, . . . , ak} ⊆ R and the sets f−1(aj), j ∈ {1, . . . ,k}, are measurable;

(ii) there exists B1, . . . ,Bm ∈ A and b1, . . . , bm ∈ R such that f =
∑m

j=1 bjχBj ;

(iii) there exist pairwise disjoint sets C1, . . . ,Cr ∈ A and c1, . . . , cr ∈ R such that
f =

∑r
j=1 cjχCj .

Proof (i) =⇒ (ii) Given f : X → R satisfying condition (i), take m = k, b j = a j, and
B j = f−1(a j), j ∈ {1, . . . , k}. If x ∈ B j then we clearly have f (x) = b j and so f =

∑m
j=1 b jχB j ,

as desired.
(ii) =⇒ (iii) Let f : X→ R satisfy condition (ii). If x ∈ ∪m

j=1B j then there exists unique
j1(x), . . . , jr(x)(x) ∈ {1, . . . ,m} such that x ∈ C(x) , B j1(x) ∩ · · · ∩ B jr(x)(x), but x < B j for
j < { j1(x), . . . , jr(x)(x)}. Moreover, f (x) = b j1(x) + · · ·+b jr(x)(x). Since there is a finite number
of sets B1, . . . ,Bm there are only finitely many possible intersections of these sets. Thus
{C(x)}x∈X = {C1, . . . ,Cr} for disjoint sets C1, . . . ,Cr. Since each of the sets C1, . . . ,Cr is a
finite intersection of measurable sets, these sets are measurable. By construction of the
sets C(x), x ∈ X, the sets C1, . . . ,Cm are pairwise disjoint. Moreover, the value of f on
C j is constant for j ∈ {1, . . . , r}. From these observations we immediately conclude that
f satisfies property (iii).

(iii) =⇒ (i) First suppose that ∪r
j=1C j = X. Then, given f : X → R satisfying

condition (iii), define k = r and a j = c j, j ∈ {1, . . . , r}. Clearly image( f ) = {a1, . . . , ar} and,
since f−1(a j) is a union of the measurable sets C1, . . . ,Cr (it might be a union in case
the numbers c1, . . . , cr are not distinct), these sets are measurable. If ∪r

j=1C j ⊂ X then
define k = r + 1 and let Cr+1 = X \ ∪r

j=1C j and cr+1 = 0. The first part of the proof can
now be repeated to give the desired conclusion in this case. �

We now give a function having any of the preceding properties a name.

5.6.38 Definition (Simple function) If (X,A ) is a measurable space, a function f : X→ R
satisfying any one of the three equivalent properties of Proposition 5.6.37 is a simple
function. For any subset I ⊆ R (typically we will be concerned with I ∈ {R,R≥0})
we denote

S(X; I) = { f : X→ I | f is simple},
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with the understanding that the σ-algebra A is implicit. •

Simple functions can be thought of playing for the integral on measure spaces
the rôle of step functions in the construction of the Riemann integral. For the
Riemann integral, Riemann integrable functions are defined by their ability to be
well approximated by step functions. For the integral defined on measure spaces,
there exists a notion, definable only in terms of measurable sets, of a class of
functions that are well approximated by simple functions. These are none other
than the measurable functions that we have been talking about in this section. The
following result illustrates this.

5.6.39 Proposition (Approximations of measurable functions by simple functions)
For a measurable space (X,A ) and for an A -measurable function f : A→ R, the following
statements hold:

(i) there exists a sequence (fk)k∈Z>0 of simple functions having the property that, for each
x ∈ X, we have

lim
k→∞

fk(x) = f(x);

(ii) if f isR≥0-valued, the sequence (fk)k∈Z>0 of part (i) may be chosen so that the functions
are R≥0-valued, and so that, for each x ∈ X, the sequence (fk(x))k∈Z>0 is increasing.

Proof We prove part (ii) first, with (i) then following easily. Thus suppose that f (x) ≥ 0
for each x ∈ X. Let k ∈ Z>0. For j ∈ {1, . . . , k2k

}, define

Ak, j = {x ∈ X | 2−k( j − 1) ≤ f (x) < 2−k j}.

As f is measurable, each of these sets is measurable (why?). We then define fk(x) by

fk(x) =

2−k( j − 1), x ∈ Ak, j,

k, x ∈ A \ (∪k2k

j=1Ak, j).

If f (x) < ∞ then the sequence ( fk(x))k∈Z>0 converges to f (x) by construction. If f (x) = ∞
then fk(x) = k for all k ∈ Z>0, and again the sequence converges, i.e., diverges to∞.

This proves the result when f is positive-valued. If f is not positive-valued, then
one writes f = f+ − f− where

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0},

cf. Corollary 5.6.17. In this case, the preceding argument can be applied to f+ and f−
separately, giving (i). �

One can also consider simple functions that are C- or Rn-valued. Let us first
consider the vector-valued case.

5.6.40 Definition (Vector-valued simple function) For a measurable space (X,A ), a
function f : X → Rn is a simple function if each of its components f j : X → R,
j ∈ {1, . . . ,n}, is a simple function. •

The following characterisation of Rn-valued simple functions is then useful.
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5.6.41 Proposition (Characterisation of vector-valued simple functions) For a measur-
able space (X,A ) and for f : X→ Rn, the following statements are equivalent:

(i) f is a simple function;
(ii) image(f) = {a1, . . . , ak} ⊆ Rn and the sets f−1(aj), j ∈ {1, . . . ,k}, are measurable;
(iii) there exists B1, . . . ,Bm ∈ A and b1, . . . ,bm ∈ Rn such that f =

∑m
j=1 bjχBj ;

(iv) there exist pairwise disjoint sets C1, . . . ,Cr ∈ A and c1, . . . , cr ∈ Rn such that
f =

∑r
j=1 cjχCj .

Proof It suffices to show the equivalence of any of the last three statements with
the first. The arguments from Proposition 5.6.37 can then be applied to show the
equivalence with the other two statements, the only difference being the replacement
of R with Rn. We shall show that the first statement is equivalent to the fourth.

First suppose that f is a simple function and write

f j =

r j∑
k=1

c j,kχC j,k ,

for c j,k ∈ R and for pairwise disjoint sets C j,k ∈ A , j ∈ {1, . . . ,n}, k ∈ {1, . . . , r j}. Let x ∈ X
and denote

C(x) = ∩{C j,k | j ∈ {1, . . . ,n}, k ∈ {1, . . . , r j}, x ∈ C j,k}.

Since there are finitely many sets C j,k, j ∈ {1, . . . ,n}, k ∈ {1, . . . , r j}, it follows that there
are finitely many possible intersections of these sets. Therefore, there are pairwise
disjoint measurable sets C1, . . . ,Cr such that {C(x)}x∈X = {C1, . . . ,Cr}. Moreover, if x ∈ X
and if f (x) , 0, then x ∈ Cl for some l ∈ {1, . . . , r}. Moreover, since Cl = C j1,k1∩· · ·∩C jm,km

for some distinct j1, . . . , jm ∈ {1, . . . ,n} and some kl ∈ {1, . . . , r jl}, l ∈ {1 . . . ,m}, we have

f j(x) =

c jl,kl , j = jl for some l ∈ {1, . . . ,m},
0, otherwise.

Therefore, taking cl to be the vector whose jth component is given by the expression
on the right above, we have

f =

r∑
l=1

clχCl ,

as desired.
Conversely, suppose that f satisfies the fourth condition with

f =

r∑
l=1

clχCl .

Then

f j =

r∑
l=1

cl, jχCl ,

where cl, j, j ∈ {1, . . . ,n}, is the jth component of cl, l ∈ {1, . . . , r}. This shows that f is a
simple function. �

The same constructions obviously apply to C-valued functions, and we record
the constructions here.
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5.6.42 Definition (C-valued simple function) For a measurable space (X,A ), a function
f : X→ C is a simple function if Re( f ), Im( f ) : X→ R are simple functions. •

5.6.43 Corollary (Characterisation of C-valued simple functions) For a measurable space
(X,A ) and for f : X→ C, the following statements are equivalent:

(i) f is a simple function;
(ii) image(f) = {a1, . . . , ak} ⊆ C and the sets f−1(aj), j ∈ {1, . . . ,k}, are measurable;
(iii) there exists B1, . . . ,Bm ∈ A and b1, . . . , bm ∈ C such that f =

∑m
j=1 bjχBj ;

(iv) there exist pairwise disjoint sets C1, . . . ,Cr ∈ A and c1, . . . , cr ∈ C such that
f =

∑r
j=1 cjχCj .

One can also use C- or vector-valued simple functions to approximate C- or
vector-valued measurable functions.

5.6.44 Proposition (Approximation of vector-valued measurable functions by simple
functions) If (X,A ) is a measure space and if f : X→ Rn is measurable, then there exists
a sequence (fk)k∈Z>0 of Rn-valued simple functions such that

(i) limk→∞ fk(x) = f(x) for each x ∈ X and
(ii) ‖fk(x)‖Rn ≤ ‖f(x)‖Rn for each x ∈ X.

Proof Let f1, . . . , fn be the components of f . For each j ∈ {1, . . . ,n}, if we apply the
construction of Proposition 5.6.39, we arrive at a sequence ( f j,k)k∈Z>0 of simple functions
for which

1. limk→∞ f j,k(x) = f j(x) for every x ∈ X and
2. | f j,k(x)| ≤ | f j(x)| for every x ∈ X

(the verification of the second property requires looking for a moment at the particular
construction of Proposition 5.6.39. If we take

f k(x) = ( f1,k(x), . . . , fn,k(x)), x ∈ X, k ∈ Z>0

then one sees easily that the sequence ( f k)k∈Z>0 has the desired properties. �

Of course, this specialises to the C case.

5.6.45 Corollary (Approximation of C-valued measurable functions by simple func-
tions) If (X,A ) is a measure space and if f : X → C is measurable, then there exists a
sequence (fk)k∈Z>0 of C-valued simple functions such that

(i) limk→∞ fk(x) = f(x) for each x ∈ X and
(ii) |fk(x)| ≤ |f(x)| for each x ∈ X.

5.6.6 Topological characterisations of convergence for sequences of
measurable functions8

In this section we characterise some of the modes of convergence for sequences
of measurable functions in terms of topological constructions. We let (X,A , µ)

8The results in this section are not used in an essential way elsewhere in the text, except in
Sections 5.7.5 and 5.9.11.
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be a measure space. It will be useful to characterise measurable functions as
equivalence classes of functions that agree up to sets of measure zero. Thus we say
that f , g ∈ L(0)((X,A );R) are equivalent if

µ({x ∈ X | f (x) , g(x)}) = 0.

This is readily seen to define an equivalence relation in L(0)((X,A );R) and we
denote by L0((X,A );R) the set of equivalence classes, an equivalence class being
denoted by [ f ] for f ∈ L(0)((X,A );R). The following result shows that convergence
pointwise almost everywhere is defined independently of equivalence classes.

5.6.46 Lemma (Almost everywhere pointwise convergence is independent of equiv-
alence) Let (X,A , µ) be a measure space. For a sequence ([fj])j∈Z>0 in L0((X,A );R) and
for [f] ∈ L0((X,A );R) the following statements are equivalent:

(i) there exists a sequence (gj)j∈Z>0 in L(0)((X,A );R) and g ∈ L(0)((X,A );R) such that

(a) [gj] = [fj] for j ∈ Z>0,
(b) [g] = [f], and
(c) (gj)j∈Z>0 converges pointwise almost everywhere to g.

(ii) for every sequence (gj)j∈Z>0 in L(0)((X,A );R) and for every g ∈ L(0)((X,A );R)
satisfying

(a) [gj] = [fj] for j ∈ Z>0 and
(b) [g] = [f],

it holds that (gj)j∈Z>0 converges pointwise almost everywhere to g.
Proof It is clear that the second statement implies the first, so we only prove the
converse. Thus we let (g j) j∈Z>0 in L(0)((X,A );R) and g ∈ L(0)((X,A );R) be such that

1. [g j] = [ f j] for j ∈ Z>0,
2. [g] = [ f ], and
3. (g j) j∈Z>0 converges pointwise almost everywhere to g.

Let (h j) j∈Z>0 be a sequence in L(0)((X,A );R) and let h ∈ L(0)((X,A );R) be such that
1. [h j] = [ f j] for j ∈ Z>0 and
2. [h] = [ f ].

Define
A = {x ∈ X | g(x) , f (x)}, B = {x ∈ X | h(x) , f (x)}

and, for j ∈ Z>0, define

A j = {x ∈ X | g j(x) , f j(x)}, B j = {x ∈ X | h j(x) , f j(x)}

and note that

x ∈ X \ (A ∪ B) = (X \ A) ∩ (X \ B) =⇒ h(x) = f (x) = g(x)

and
x ∈ X \ (A j ∪ B j) = (X \ A j) ∩ (X \ B j) =⇒ h j(x) = f j(x) = g j(x).
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Thus,

x ∈ X \
(
(∪ j∈Z>0A j ∪ B j) ∪ (A ∪ B)

)
=⇒ lim

j→∞
h j(x) = lim

j→∞
g j(x) = g(x) = h(x).

Since (∪ j∈Z>0A j ∪ B j) ∪ (A ∪ B) is a countable union of sets of measure zero, it has zero
measure, and so (h j) j∈Z>0 converges pointwise almost everywhere to h. �

With the preceding lemma, the following definition makes sense.

5.6.47 Definition (Almost everywhere convergence of sequences of equivalence
classes of functions) Let (X,A , µ) be a measure space, let ([ f j]) j∈Z>0 be a sequence
in L0((X,A );R), and let [ f ] ∈ L0((X,A );R). The sequence ([ f j]) j∈Z>0 converges
pointwise almost everywhere to [ f ] if

µ
(
X \

{
x ∈ X

∣∣∣∣ f (x) = lim
j→∞

f j(x)
})

= 0. •

We begin by indicating that the convergence defined by almost everywhere
pointwise convergence cannot arise from a topology.

5.6.48 Proposition (Almost everywhere pointwise convergence is not always topo-
logical) Let (X,A , µ) be a measure space and let Ta.e. be the set of topologies τ on
L0((X,A );R) such that the convergent sequences in τ are precisely the almost everywhere
pointwise convergent sequences. If there exists a sequence (fj)j∈Z>0 in L(0)((X,A );R) and
f ∈ L(0)((X,A );R) such that (fj)j∈Z>0 converges in measure to f but does not converge
pointwise almost everywhere to f, then Ta.e. = ∅.

Proof Let us denote by z ∈ L(0)((X,A );R) the zero function. The hypotheses ensure
that the sequence (g j , f j − f ) j∈Z>0 converges to z in measure, but does not converges
pointwise almost everywhere to z. Suppose that Ta.e. , ∅ and let τ ∈ Ta.e.. Since
almost everywhere pointwise convergence agrees with convergence in τ, there exists
a neighbourhood U of [z] in L0((X,A );R) such that the set

{ j ∈ Z>0 | [ f j] ∈ U}

is finite. By Proposition 5.6.26 there exists a subsequence ( f jk)k∈Z>0 of ( f j) j∈Z>0 that
converges pointwise almost everywhere to z. Thus the sequence ([ f jk])k∈Z>0 converges
pointwise almost everywhere to [z], and so converges to [z] in τ. Thus, in particular,
the set

{k ∈ Z>0 | [ f jk] ∈ U}

is infinite, which is a contradiction. �

In particular, we have the following result which shows that in the most common
situation where one wishes to study almost everywhere pointwise convergence,
this sort of convergence is not topological.
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5.6.49 Corollary (Almost everywhere pointwise convergence is not topological for
the Lebesgue measure) Let Ta.e. be the set of topologies τ on L0((Rn,L (Rn));R) such
that the convergent sequences in τ are precisely the almost everywhere pointwise convergent
sequences using the Lebesgue measure on Rn. Then Ta.e. = ∅.

Proof In Example 5.6.25 we have seen that there exists a sequence in
L(0)((R,L (R));R) that converges in measure but does not converge pointwise almost
everywhere. This example is easily adapted to L(0)((Rn,L (Rn));R), and the result then
follows from Proposition 5.6.48. �

Now one can ask if there is a framework in which almost everywhere pointwise
convergence can be studied. Indeed there is such a framework. The construction
relies on notions concerning filters and nets from missing stuff .

5.6.50 Definition (Limit structure) A limit structure on a set S is a subset L ⊆ F (S) × S
with the following properties:

(i) if x ∈ S then (Fx, x) ∈ L ;
(ii) if (F, x) ∈ L and if F ⊆ G ∈ F (S) then (G, x) ∈ L ;
(iii) if (F, x), (G, x) ∈ L then (F ∩ G, x) ∈ L .

If (Λ,�) is a directed set, a Λ-net φ : Λ → S is L -convergent to x ∈ S if (Fφ, x) ∈
L . Let us denote by S (L ) the set of L -convergent Z>0-nets, i.e., the set of L -
convergent sequences. •

The intuition behind the notion of a limit structure is as follows. Condition (i)
says that the trivial filter converging to x should be included in the limit structure,
condition (ii) says that if a filter converges to x, then every coarser filter also con-
verges to x, and condition (iii) says that “mixing” filters converging to x should
give a filter converging to x. Starting from the definition of a limit structure, one
can reproduce many of the concepts from topology, e.g., openness, closedness,
compactness, continuity.

We are interested in the special case of limit structures on a vector space V. We
suppose that V is defined over a field F. For F,G ∈ F (V) and for a ∈ F we denote

F + G = {A + B | A ∈ F, B ∈ G}, aF = {aA | A ∈ F},

where, as usual,

A + B = {u + v | u ∈ A, v ∈ B}, aA = {au | u ∈ A}.

We say that a limit structure L on a vector space V is linear if (F1, v1), (F2, v2) ∈ L
implies that (F1 + F2, v1 + v2) ∈ L and if a ∈ F and (F, v) ∈ L then (aF, av) ∈ L .

For [ f ] ∈ L0((X,A );R) define

F[ f ] = {F ∈ F (L0((X,A );R)) | Fφ ⊆ F for some Z>0-net φ such that
(φ( j)) j∈Z>0 is almost everywhere pointwise convergent to [ f ]}.

We may now define a limit structure on L0((X,A );R) as follows.
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5.6.51 Theorem (Almost everywhere pointwise convergence is defined by a limit
structure) The subset of F (L0((X,A );R)) × L0((X,A );R) defined by

Lµ = {(F, [f]) | F ∈ F[f]}

is a linear limit structure on L0((X,A );R). Moreover, a sequence ([fj])j∈Z>0 is Lµ-
convergent to [f] if and only if the sequence is almost everywhere pointwise convergent
to [f].

Proof Let [ f ] ∈ L0((X,A );R). Consider the trivial Z>0-net φ[ f ] : Z>0 → L0((X,A );R)
defined by φ[ f ]( j) = [ f ]. Since Fφ = F[ f ] and since (Fφ, [ f ]) ∈ Lµ, the condition (i) for a
limit structure is satisfied.

Let (F, [ f ]) ∈ Lµ and suppose that F ⊆ G. Then F ∈ F[ f ] and so F ⊇ Fφ for
some Z>0-net φ that converges pointwise almost everywhere to [ f ]. Therefore, we
immediately have Fφ ⊆ G and so (G, [ f ]) ∈ Lµ. This verifies condition (ii) in the
definition of a limit structure.

Finally, let (F, [ f ]), (G, [ f ]) ∈ Lµ and letφ andψbeZ>0-nets that converge pointwise
almost everywhere to [ f ] and satisfy Fφ ⊆ F and Fψ ⊆ G. Define a Z>0-net φ ∧ ψ by

φ ∧ ψ( j) =

φ( 1
2 ( j + 1)), j odd,

ψ( 1
2 j), j even.

We first claim that φ ∧ ψ converges pointwise almost everywhere to [ f ]. Let

A =
{
x ∈ X

∣∣∣ lim
j→∞

φ( j)(x) , f (x)
}
, B =

{
x ∈ X

∣∣∣ lim
j→∞

ψ( j)(x) , f (x)
}
.

If x ∈ X \ (A ∪ B) then
lim
j→∞

φ( j)(x) = lim
j→∞

ψ( j)(x) = f (x).

Thus, for x ∈ X \ (A ∪ B) and ε ∈ R>0 there exists N ∈ Z>0 such that

| f (x) − φ( j)(x)|, | f (x) − ψ( j)(x)| < ε, j ≥ N.

Therefore, for j ≥ 2N and for x ∈ X \ (A ∪ B) we have | f (x) − φ ∧ ψ( j)(x)| < ε and so

lim
j→∞

φ ∧ ψ( j)(x) = f (x), x ∈ X \ (A ∪ B).

Since µ(A∪B) = 0 it indeed follows that φ∧ψ converges pointwise almost everywhere
to [ f ].

We next claim that Fφ∧ψ ⊆ F ∩ G. Indeed, let S ∈ Fφ∧ψ. Then there exists N ∈ Z>0
such that Tφ∧ψ(N) ⊆ S. Therefore, there exists Nφ,Nψ ∈ Z>0 such that Tφ(Nφ) ⊆ S and
Tψ(Nψ) ⊆ S. That is, S ∈ Fφ ∩ Fψ ⊆ F ∩ G. This shows that (F ∩ G, [ f ]) ∈ Lµ and so
shows that condition (iii) in the definition of a limit structure holds.

Thus we have shown that Lµ is a limit structure. Let us show that it is a linear
limit structure. Let (F1, [ f1]), (F2, v2) ∈ Lµ. Thus there exists Z-nets φ1 and φ2 in
L0((X,A );R) converging pointwise almost everywhere to [ f1] and [ f2], respectively,
and such that Fφ1 ⊆ F1 and Fφ2 ⊆ F2. Let us denote by ( f1, j) j∈Z>0 and ( f2, j) j∈Z>0

sequences in L(0)((X,A );R) such that [ f1, j] = φ1( j) and [ f2, j] = φ2( j) for j ∈ Z>0. Then,
as in the proof of Lemma 5.6.46, there exists a subset A ⊆ X of zero measure such that

lim
j→∞

f j,1(x) = f1(x), lim
j→∞

f2, j(x) = f2(x), x ∈ X \ A.
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Thus, for x ∈ X \ A,
lim
j→∞

( f1, j + f2, j)(x) = ( f1 + f2)(x).

This shows that theZ>0-netφ1 +φ2 converges pointwise almost everywhere to [ f1 + f2].
Since Fφ1+φ2 ⊆ F1 + F2, it follows that (F1 + F2, [ f1 + f2]) ∈ Lµ. An entirely similarly
styled argument gives (aF, av) ∈ Lµ for (F, v) ∈ Lµ.

We now need to show that S (Lµ) consists exactly of the almost everywhere
pointwise convergent sequences. The very definition of Lµ ensures that if a Z>0-net φ
is almost everywhere pointwise convergent then φ ∈ S (Lµ). We prove the converse,
and so let φ be Lµ-convergent to [ f ]. Therefore, by definition of Lµ, there exists a
Z>0-net ψ converging pointwise almost everywhere to [ f ] such that Fψ ⊆ Fφ.

1 Lemma There exists of a subsequence ψ′ of ψ such that Fψ′ = Fφ.

Proof Let n ∈ Z>0 and note that Tψ(n) ∈ Fψ ⊆ Fφ. Thus there exists k ∈ Z>0 such that
Tφ(k) ⊆ Tψ(n). Then define

kn = min{k ∈ Z>0 | Tφ(k) ⊆ Tψ(n)},

the minimum being well-defined since

k > k′ =⇒ Tφ(k) ⊆ Tφ(k′).

This uniquely defines, therefore, a sequence (kn)n∈Z>0 . Moreover, if n1 > n2 then
Tψ(n2) ⊆ Tψ(n1) which implies that Tφ(kn2) ⊆ Tψ(n1). Therefore, kn2 ≥ kn1 , showing that
the sequence (kn)n∈Z>0 is nondecreasing.

Now define θ : Z>0 → Z>0 as follows. If j < kn for every n ∈ Z>0 then define θ( j)
in an arbitrary manner. If j ≥ k1 then note that φ( j) ∈ Tφ(k1) ⊆ Tψ(1). Thus there exists
(possibly many) m ∈ Z>0 such that φ( j) = ψ(m). If j ≥ kn for n ∈ Z>0 then there exists
(possibly many) m ≥ n such that φ( j) = ψ(m). Thus for any j ∈ Z>0 we can define
θ( j) ∈ Z>0 such that φ( j) = ψ(θ( j)) if j ≥ k1 and such that θ( j) ≥ n if j ≥ kn.

Note that any function θ : Z>0 → Z>0 as constructed above is unbounded. There-
fore, there exists a strictly increasing function ρ : Z>0 → Z>0 such that image(ρ) =
image(θ). We claim that Fρ = Fθ. First let n ∈ Z>0 and let j ≥ kρ(n). Then θ( j) ≥ ρ(n).
Since image(ρ) = image(θ) there exists m ∈ Z>0 such that ρ(m) = θ( j) ≥ ρ(n). Since ρ is
strictly increasing, m ≥ n. Thus θ( j) ∈ Tρ(n) and so Tθ(kρ(n)) ⊆ Tρ(n). This implies that
Fρ ⊆ Fθ.

Conversely, let n ∈ Z>0 and let rn ∈ Z>0 be such that

ρ(rn) > max{θ(1), . . . , θ(n)};

this is possible since ρ is unbounded. If j ≥ rn then

ρ( j) ≥ ρ(rn) > max{θ(1), . . . , θ(n)}.

Since image(ρ) = image(θ) we have ρ( j) = θ(m) for some m ∈ Z>0. We must have
m > n and so ρ( j) ∈ Tθ(n). Thus Tρ(rn) ⊆ Tθ(n) and so Fθ ⊆ Fρ.

To arrive at the conclusions of the lemma we first note that, by definition of θ,
Fφ = Fψ ◦θ. We now define ψ′ = ψ ◦ρ and note that

Fφ = Fψ ◦θ = ψ(Fθ) = ψ(Fρ) = Fψ ◦ρ,

as desired. H
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Since a subsequence of an almost everywhere pointwise convergent sequence is
almost everywhere pointwise convergent to the same limit, it follows that ψ′, and so
φ, converges almost everywhere pointwise to [ f ]. �

Note that we have already seen in Sections ?? and ?? that pointwise and uni-
form convergence is prescribed by a topology. We shall see in missing stuff that
convergence in measure is topological.

Exercises

5.6.1 Let (X,A , µ) be a measure space that is not complete. Show that Proposi-
tion 5.6.10 fails in this case.

5.6.2 Let (X,A , µ) be a measure space that is not complete. Show that Corol-
lary 5.6.19 fails in this case.

5.6.3 Let (X,A ) be a measurable space and let A,B ∈ A be such that X = A
◦

∪B. Let
fA : A → R be AA-measurable and let fB : B → R be AB-measurable. Show
that f : X→ R defined by

f (x) =

 fA(x), x ∈ A,
fB(x), x ∈ B

is A -measurable.
5.6.4 Give an example of a measure space (X,A , µ), a sequence ( f j) j∈Z>0 in

L(0)((X,A );R), and a function f ∈ L(0)((X,A );R) such that ( f j) j∈Z>0 converges
pointwise almost everywhere to f , but does not converges pointwise to f .
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Section 5.7

Integration on measure spaces

Up to now, we have studied measurable and measure spaces in some detail.
These subjects certainly have some value in their own right, particularly in the
domain of probability theory which we discuss in missing stuff . In particular, the
properties of the Lebesgue measure onR andRn considered in Sections 5.4 and 5.5
are substantially useful. Following our discussion of measure, we introduced a
particular class of functions on measurable spaces called measurable functions.
While we showed in Sections 5.9.1 and ?? that for the Lebesgue measure that
these functions are not too far from easily understood functions such as step or
continuous functions, the importance of measurable functions is perhaps not so
easily understood. What we see in this section is that these functions form the
basis for a powerful and general theory of integration. For the Lebesgue measure,
this construction of the integral generalises the Riemann integral, and repairs some
of the defects of the latter as seen in Section 5.1.

The treatment of the integral is as easily carried out in the general setting of
a general measure space as it is for the specific case of the Lebesgue integral in
particular. Thus we do much of the work in this general setting. In Sections 5.9
and ?? we consider the Lebesgue integral, but only its particular properties that
rely on the structure of Lebesgue measure. Thus a reader wanting only to learn
about the Lebesgue integral will have to learn it here. A reader only believing they
are interested in Lebesgue integration will have to be satisfied by mentally making
the replacement of “(X,A , µ)” with “(R,L (R), λ)” or “(Rn,L (Rn), λn).”

Do I need to read this section? Clearly if you are reading this chapter, then you
must read this section. •

5.7.1 Definition of the integral

We consider a measure space (X,A , µ). The objective is to define the integral of
a measurable function f : X→ R. We do this in three stages.

Integration of nonnegative simple functions

Let f ∈ S(X;R≥0) be written as f =
∑k

j=1 a jχA j for a partition (A1, . . . ,Ak) of X into
measurable sets. Let us first make an observation concerning the fact that the
numbers a1, . . . , ak and the sets A1, . . . ,Ak are not uniquely prescribed by f .

5.7.1 Proposition (Independence of integral of simple functions on partition) For a
measure space (X,A , µ) suppose that f ∈ S(X;R≥0) satisfies

f =

k∑
j=1

ajχAj =

m∑
l=1

blχBl
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for a1, . . . , ak, b1, . . . , bm ∈ R≥0 and A1, . . . ,Ak ∈ A disjoint and B1, . . . ,Bm ∈ A disjoint.
Then

k∑
j=1

ajµ(Aj) =

m∑
l=1

blµ(Bl).

Proof Without loss of generality we suppose that none of a1, . . . , ak and b1, . . . , bm are
zero. It therefore follows that ∪k

j=1A j = ∪m
l=1Bl. Note that if A j ∩ Bm , ∅ for some

j ∈ {1, . . . , k} and l ∈ {1, . . . ,m}, it follows that a j = bl. Therefore, we have

k∑
j=1

a jµ(A j) =

k∑
j=1

m∑
l=1

a jµ(A j ∩ Bl) =

m∑
l=1

k∑
j=1

blµ(Bl ∩ A j) =

m∑
l=1

blµ(Bl),

as desired. �

Given the preceding result, the following definition makes sense.

5.7.2 Definition (Integral of nonnegative simple function) For a measure space
(X,A , µ) and for f ∈ S(X;R≥0) given by f =

∑k
j=1 a jχA j for a partition (A1, . . . ,Ak) of

X into measurable sets, the integral of f is∫
X

f dµ =

k∑
j=1

a jµ(A j). •

Note that the notion of integral for a simple function is a natural adaptation
of the notion of integral for a step function in our development of the Riemann
integral in Sections 3.4 and ??.

Let us give some examples of simple functions and their integrals.

5.7.3 Examples (Positive simple functions and their integrals)
1. Let P = (I1, . . . , Ik) be a partition of [a, b] ⊆ R with endpoints EP(P) =

(x0, x1, . . . , xk) and let f : [a, b] → R be a step function taking value c j on the
interval I j, j ∈ {1, . . . , k}. Clearly then, f is also a simple function since intervals
are measurable. Moreover,∫

[a,b]
f dλ =

∫ b

a
f (x) dx =

k∑
j=1

c j(x j − x j−1),

since the Lebesgue measure of an interval is its length.
2. Let us consider the measure space (R,L (R), λ) and take A = Q. By Exer-

cise 2.5.8 it follows that λ(A) = 0. Therefore, the simple function χA has
measure zero.

3. Let X be a set, let A = 2X, and let µΣ be the counting measure on X;
see Example 5.3.9–3. Let A1, . . . ,Ak ⊆ X be nonempty disjoint subsets, let
a1, . . . , ak ∈ R≥0, and define f =

∑k
j=1 a jχA j . If card(A j) = ∞ for any j ∈ {1, . . . , k}

for which a j , 0 or if a j = ∞ for any j ∈ {1, . . . , k}, then
∫

X
f dµΣ = ∞. Otherwise,∫

X
f dµΣ =

k∑
j=1

a j card(A j). •
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Integration of nonnegative measurable functions

Using the definition of the integral for simple functions, it is possible to immediately
deduce a definition of the integral for nonnegative-valued functions. This is done
as follows.

5.7.4 Definition (Integral of a nonnegative measurable function) For a measure space
(X,A , µ) and for f ∈ L(0)((X,A );R≥0), the integral of f is∫

X
f dµ = sup

{∫
X

g dµ

∣∣∣∣∣∣ g ∈ S(X;R≥0) satisfies 0 ≤ g(x) ≤ f (x) for x ∈ X
}
. •

The following result gives a useful characterisation of the integral of
nonnegative-valued functions. It also gives an idea of why measurable functions
are the “right” class of functions to integrate, since they are well-approximated by
simple functions.

5.7.5 Proposition (Sequential characterisation of the integral for nonnegative func-
tions) Let (X,A , µ) be a measure space, let f ∈ L(0)((X,A );R≥0), and let (fj)j∈Z>0 be a
sequence of increasing positive simple functions converging to f as in Proposition 5.6.39.
Then ∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof First we prove the result in the case that f is a simple function.

1 Lemma Let (X,A , µ) be a measure space, let f ∈ S(X;R≥0), and let (fj)j∈Z>0 be a sequence of
increasing positive simple functions converging to f as in Proposition 5.6.39. Then∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof By Exercise 5.7.1 the sequence (
∫

X f j dµ) j∈Z>0 is increasing and bounded above
by

∫
X f dµ. Thus the sequence (

∫
X f j dµ) j∈Z>0 converges inR≥0, by Theorem 2.3.8 if the

limit is finite, tautologically otherwise. Thus we have

lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

Next let ε ∈ (0, 1). Let us write f =
∑m

l=1 alχAl for a1, . . . , am ∈ R≥0 and disjoint
A1, . . . ,Am ∈ A . For l ∈ {1, . . . ,m} and j ∈ Z>0 denote

A j,l = {x ∈ Al | f j(x) ≥ (1 − ε)al},

noting that A j,l ∈ A since f j is measurable. Since the sequence ( f j) j∈Z>0 is monotonically
increasing, the sequence (A j,l) j∈Z>0 satisfies

A j,l ⊆ A j+1,l, ∪ j∈Z>0A j,l = Al.
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Let us define simple functions

g j =

m∑
l=1

(1 − ε)alχA j,l , j ∈ Z>0.

By Proposition 5.3.3 we have

lim
j→∞

∫
X

g j dµ = lim
j→∞

m∑
l=1

(1 − ε)alµ(A j,l) =

m∑
l=1

(1 − ε)alµ(Al) = (1 − ε)
∫

X
f dµ.

Since g j(x) ≤ f j(x) for every j ∈ Z>0, by Exercise 5.7.1 we have∫
X

g j dµ ≤
∫

X
f j dµ

=⇒ lim
j→∞

∫
X

g j dµ ≤ lim
j→∞

∫
X

f j dµ

=⇒ (1 − ε)
∫

X
f dµ ≤ lim

j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

Since ε is arbitrary, this implies that

lim
j→∞

∫
X

f j dµ =

∫
X

f dµ,

as desired. H

In the case that f is a general nonnegative-valued measurable function, we note
that ∫

X
f j dµ ≤

∫
X

f j+1 dµ, j ∈ Z>0,

and ∫
X

f j dµ ≤
∫

X
f dµ, j ∈ Z>0.

Thus the sequence (
∫

X f j dµ) j∈Z>0 converges in R≥0 to a limit (by Theorem 2.3.8 if the
limit is finite, tautologically otherwise) and this limit satisfies

lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

Next let ε ∈ R>0 and let g ∈ S(X;R≥0) be such that∫
X

g dµ ≥ (1 − ε)
∫

X
f dµ.

Define g j(x) = min{g(x), f j(x)}, and note that g j is a nonnegative simple function, and
that the sequence (g j(x)) j∈Z>0 converges to g(x) for each x ∈ X. By the lemma above we
thus have

lim
j→∞

∫
X

g j dµ =

∫
X

g dµ.
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By Exercise 5.7.1 we have∫
X

g j dµ ≤
∫

X
f j dµ =⇒

∫
X

g dµ ≤ lim
j→∞

∫
X

f j dµ

which gives

(1 − ε)
∫

X
f dµ ≤

∫
X

g dµ ≤ lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ,

which gives

lim
j→∞

∫
X

f j dµ =

∫
X

f dµ

since ε is arbitrary. �

The following corollary to the preceding result ensures consistency of Defini-
tion 5.7.4 with Definition 5.7.2.

5.7.6 Corollary (Consistency of integral definitions) If (X,A , µ) is a measure space and
if f ∈ S(X;R≥0) then the integral of f as in Definition 5.7.4 agrees with the integral of f as
in Definition 5.7.2.

Proof Consider the constant sequence ( f j) j∈Z>0 defined by f j = f , j ∈ Z>0. By Propo-
sition 5.7.5 it follows that the integral of f from Definition 5.7.4 satisfies∫

X
f dµ = lim

j→∞

∫
X

f j dµ,

where the integrals on the left are as in Definition 5.7.2. However, each of these
integrals is exactly the integral of f itself as in Definition 5.7.2. �

Let us give a somewhat simple application of the preceding result that uses
the counting measure. This example is interesting in and of itself as it begins the
casting of the notion of summation using general index sets from Section 2.4.7
in the framework of integration on measure spaces; this programme is completed
in Example 5.7.10 below. For other examples of integration we shall wait until
Sections 5.9 and ??.

5.7.7 Example (Sums as integrals) Let X be a set, take A = 2X, and let µΣ be the
counting measure; see Example 5.3.9–3. Note that all functions f : X → R are
measurable. Let f ∈ L(0)((X,A ),R≥0) be a positive nonnegative-valued function.
Let us attempt to understand the integral of f . We denote

supp( f ) = {x ∈ X | f (x) , 0}

and then consider three cases.
1. supp( f ) is finite: Here f is a simple function and we immediately have∫

X
f dµΣ =

∑
x∈supp( f )

f (x),

using the definition of the integral of a simple function and the definition of the
counting measure.
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2. supp( f ) is countably infinite: In this case we write supp( f ) = {x j} j∈Z>0 for distinct
x j ∈ X, j ∈ Z>0. Let us then define a sequence ( fk)k∈Z>0 of R≥0-valued functions
on X by

fk(x) =

 f (x), x ∈ {x1, . . . , xk},

0, otherwise.

Then the sequence ( fk)k∈Z>0 is monotonically increasing and satisfies
limk→∞ fk(x) = f (x) for every x ∈ X. Note that the functions fk, k ∈ Z>0, are
simple and that ∫

X
fk dµΣ =

k∑
j=1

f (x j),

using the definition of the integral of a simple function and the definition of the
counting measure. Thus, by Proposition 5.7.5 we have∫

X
f dµΣ = lim

k→∞

∫
X

fk(x) dµΣ =

∞∑
j=1

f (x j).

In other words, ∫
X

f dµΣ =
∑
x∈X

f (x),

where the sum is interpreted as in Section 2.4.7, and where we allow the sum
to be infinite.

3. supp( f ) is uncountable: For k ∈ Z>0 define

Ak =
{
x ∈ X

∣∣∣ f (x) ≥ 1
k

}
.

We claim that one of the sets Ak must be infinite for some k ∈ Z>0. Indeed, if
all of the sets Ak, k ∈ Z>0, is finite then, since supp( f ) = ∪k∈Z>0Ak, it follows
that supp( f ) is countable by Proposition ??. Thus it must be the case that Ak is
infinite for some k ∈ Z>0. In case Ak is uncountable, let A′k be a countable subset
of Ak. Now define fk : X→ R≥0 by

fk(x) =

 f (x), x ∈ A′k,
0, otherwise.

Note that fk(x) ≤ f (x) for every x ∈ X. Then, using Exercise 5.7.1 and the fact
that we know how to integrate fk from the preceding case, we have∫

X
f dµΣ ≥

∫
Ak

f dµΣ =
∑
x∈Ak

fk(x) ≥
∑
x∈Ak

1
k

= ∞.

Thus the integral of f is infinite.
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Thus, in summary, we have ∫
X

f dµΣ =
∑
x∈X

f (x),

using the definition of series using arbitrary index sets in Section 2.4.7, and with
the convention that the integral is allow to be infinite, and indeed will be infinite if
supp( f ) is uncountable. •

Integration of general measurable functions

It is now relatively easy to define the integral for general measurable functions
on a measure space (X,A , µ). To do so, if f ∈ L(0)((X,A );R) we define f+, f− ∈
L(0)((X,A );R≥0) by

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0},

noting that these functions are indeed measurable by Corollary 5.6.17. We may
now directly give the definition of the integral.

5.7.8 Definition (Integral of measurable function) For a measure space (X,A , µ) and
for f ∈ L(0)((X,A );R), we have the following definitions.

(i) If at least one of
∫

X
f+ dµ or

∫
X

f− dµ are finite then the integral of f with respect
to µ exists and is given by∫

X
f dµ =

∫
X

f+ dµ −
∫

X
f− dµ,

this being the integral of f with respect to µ.
(ii) If both

∫
X

f+ dµ and
∫

X
f− dµ are infinite then the integral of f with respect to

µ does not exist.
(iii) If

∫
X

f+ dµ < ∞ and
∫

X
f− dµ < ∞ then f is integrable with respect to µ.

For a subset I ⊆ R we denote the set of I-valued functions integrable with respect
to µ by L(1)((X,A , µ); I), or simply by L(1)(X; I) if A and µ are understood. •

5.7.9 Notation (L(1)((X,A , µ);R)) The notation L(1)((X,A , µ);R) seems a little odd at this
point. For example, what does the superscript “1” mean? And why are there
parentheses around the “1.” This will be presented in context in Section 6.7.8, so
the reader should perhaps not worry at this point what is the precise meaning of
the “1.” We might mention, however, that the “L” refers to “Lebesgue,” as this
notation was first used in the context of the Lebesgue integral, and this will be the
setting where the notation will be mainly used by us in these volumes. •

Again, we delay until Sections 5.9 and ?? the presentation of examples related
to the Lebesgue measure. However, we can at this point complete our example of
how the integral includes the usual notion of series.
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5.7.10 Example (Sums as integrals (cont’d)) As in Example 5.7.7 we consider a set X,
we let A = 2X, and we let µΣ be the counting measure defined in Example 5.3.9–3.
We let f : X→ R, noting again that all functions are measurable. We then note that,
as in Example 5.7.7, we have∫

X
f+ dµΣ =

∑
x∈X

f+(x),
∫

X
f− dµΣ =

∑
x∈X

f−(x), (5.15)

using the notion of sums with arbitrary index sets from Section 2.4.7, and allowing
that these quantities may be infinite. Note that the general summation construction
of Section 2.4.7, along with the definition of the integral, then immediately gives∫

X
f dµΣ =

∑
x∈X

f (x)

if either of the sums in (5.15) is finite, and otherwise the integral is undefined.
Using Proposition 2.4.32 we see that in the case that X = Z>0, a function

is integrable if and only if the sum
∑
∞

j=1 f ( j) is absolutely convergent. In this
case, the value of the integral is exactly the sum of the series. Thus we see that
the construction of the integral we give generalises the notion of an absolutely
convergent series. Note that it does not generalise the notion of a convergent
series. It can be made to do so by using special constructions. We do this for the
Lebesgue integral in Sections 5.9.2 and ??. •

Let us close this section by giving a few more or less obvious properties of the
integral.

5.7.11 Proposition (Integrals of functions agreeing almost everywhere) Let (X,A , µ)
be a measure space and let f,g ∈ L(0)((X,A );R) have the property that f(x) = g(x) for
almost every x ∈ X. Then the integral of f exists if and only if the integral of g exists, and
if either integral exists then we have∫

X
f dµ =

∫
X

g dµ.

Proof By breaking both f and g into their positive and negative parts, we can without
loss of generality suppose that both functions take values inR≥0. Let Z be the set where
f and g are not equal and let h take the value∞ on Z and zero elsewhere. Since f ≤ g+h
we have ∫

X
f dµ ≤

∫
X

g dµ +

∫
X

h dµ,

by Propositions 5.7.16 and 5.7.19. The argument can be reversed to give∫
X

g dµ ≤
∫

X
f dµ +

∫
X

h dµ,

and the result follows since
∫

X h dµ = 0. �

The following simple result comes up on occasion in our presentation, so we
state it explicitly. Since the result is “obvious,” we shall often use it without
mention.
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5.7.12 Proposition (Integrable functions are almost everywhere finite) If (X,A , µ) is
a measure space and if f ∈ L(1)((X,A , µ);R) then

µ
(
{x ∈ X | f(x) < R}

)
= 0.

Proof Since f is integrable if both its positive and negative parts, f+ and f−, are
integrable, we may as well assume that f takes values in R≥0. Suppose that f (x) = ∞
for x ∈ A with µ(A) > 0. For N ∈ Z>0 consider the simple function

gN(x) =

N, x ∈ A,
0, otherwise.

We have gN(x) ≤ f (x) for all x ∈ A and
∫

X gN dµ = Nµ(A) > 0. By the definition of the
integral we have

∫
X f dµ ≥ Nµ(A), so showing that the integral of f is not finite, since

this holds for all N ∈ Z>0. �

5.7.13 Remark (Integrable functions may as well be R-valued) Combining Proposi-
tions 5.7.11 and 5.7.12 we see that if f ∈ L(1)((X,A , µ);R) then, for the purposes of
integration, we may as well suppose that f is R-valued. Indeed, if we define

g(x) =

 f (x), f (x) ∈ R,
0, f (x) ∈ {−∞,∞},

then
∫

X
g dµ =

∫
X

f dµ. For this reason, when we discuss spaces of integrable
functions in Section 6.7, we will assume all functions are finite-valued. It is really
only useful to allow functions to take infinite values when doing constructions
with pointwise limits. •

The following result is another “obvious” result that we will use without men-
tion throughout the text.

5.7.14 Proposition (Positive functions with zero integral) If (X,A , µ) is a measure space
and if f ∈ L(0)((X,A );R≥0) satisfies

∫
X

f dµ = 0 then

µ
(
{x ∈ X | f(x) , 0}

)
= 0.

Proof Suppose that A ⊆ X has positive Lebesgue measure and that f (x) > 0 for all
x ∈ A. Since f ≥ fχA, by Proposition 5.7.19 it follows that∫

X
f dµ ≥

∫
X

fχA dµ > 0,

which gives the result. �

As a final result in this section we record the relationship between functions that
are measurable on the completion of a measure space and those that are measurable
on the incomplete measure space.
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5.7.15 Proposition (Integrable functions on the completion) Let (X,Aµ, µ) be the com-
pletion of the measure space (X,A , µ) and let f : X → R be Aµ-measurable. Then there
exists a function g: X→ R that is A -measurable and with the property that

µ({x ∈ X | g(x) , f(x)}) = 0.

Moreover, the integral of f with respect to µ exists if and only if the integral of g with
respect to µ exists, and in this case,∫

X
f dµ =

∫
X

g dµ.

Proof First suppose that f takes values in R≥0. By Proposition 5.6.39 let (g j) j∈Z>0 be
a monotonically increasing sequence of simple functions for which lim j→∞ g j(x) = f (x)
for all x ∈ X. This means that we may write f as an infinite sum of characteristic
functions:

f (x) =

∞∑
j=1

c jχA j(x),

where c j ∈ R≥0 and A j ∈ Aµ, j ∈ Z>0. For j ∈ Z>0 let L j,U j ∈ A have the property that
L j ⊆ A j ⊆ U j and µ(U j \ L j) = 0. Taking

g(x) =

∞∑
j=1

c jχU j(x)

for x ∈ X gives the first part of the result in this case since f and g differ on the set
(∪ j∈Z>0U j \A j) ⊆ (∪ j∈Z>0U j \ L j), and this latter set has measure zero by Exercise 5.3.4.

Now suppose that f is now allowed to take arbitrary values inR. Write f = f+− f−,
where

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0}.

These functions are Aµ-measurable by Corollary 5.6.17. Therefore, there exist A -
measurable functions g+ and g− such that f+ differs from g+ and f− differs from g− on
a set of measure zero. Therefore, f differs from g = g+ − g− on a set of measure zero.
The result follows since g is A -measurable by Proposition 5.6.11.

Now let us prove the last assertion of the proposition. Write f = g + h for f being
Aµ-measurable, for g being A -measurable, and for

µ({x ∈ X | h(x) , 0}) = 0.

Let Z ∈ A be a set such that h(x) = 0 for x ∈ X \ Z and such that µ(Z) = 0. Then∫
X

f dµ =

∫
X\Z

g dµ +

∫
Z

(g + h) dµ =

∫
X\Z

g dµ =

∫
X

g dµ,

using Proposition 5.7.11. Now note that since g if integrable with respect to µ, its
integral with respect to µ can be constructed using the definition of the integral without
reference to the distinction between µ and µ. That is to say,∫

X
g dµ =

∫
X

g dµ,

and from this the result follows. �
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5.7.2 The integral and operations on functions

In this section we provide the more or less expected result regarding the inter-
action of the integral with the standard operations one may perform on functions.
It is useful to record two different versions of results, one for arbitrary positive
measurable functions and one for integrable functions.

We begin with the relationships between the integral and the standard algebraic
operations on functions. We recall from Proposition 5.6.11 that L(0)((X,A );R) is

a subset of the set R
X

of all R-valued functions on X, and this subset is closed
under addition and multiplication on R. With this in mind we have the following
results.

5.7.16 Proposition (Algebraic operations on positive measurable functions) For a
measure space (X,A , µ), for f,g ∈ L(0)((X,A );R≥0), and for α ∈ R≥0, the following
statements hold:

(i)
∫

X
(f + g) dµ =

∫
X

f dµ +

∫
X

g dµ;

(ii)
∫

X
αf dµ = α

∫
X

f dµ.

Proof We let ( f j) j∈Z>0 and (g j) j∈Z>0 be sequences of simple functions converging to f
and g, respectively, as in Proposition 5.6.39.

(i) Note that if either lim j→∞ f j(x) or lim j→∞ g j(x) is infinite, then

lim
j→∞

( f j + g j)(x) = lim
j→∞

f j(x) + lim
j→∞

g j(x) = f (x) + g(x) = ∞.

If both lim j→∞ f j(x) and lim j→∞ g j(x) are finite then we have

lim
j→∞

( f j + g j)(x) = lim
j→∞

f j(x) + lim
j→∞

g j(x) = f (x) + g(x)

by Proposition 2.3.23. Thus ( f j + g j) j∈Z>0 is a monotonically increasing sequence of
simple functions converging to f + g. Thus this part of the result will follow from
Proposition 5.7.5 if we can establish it for simple functions. Thus we assume that f
and g are simple functions and denote

f =

k∑
j=1

a jχA j , g =

m∑
l=1

blχBl .

for a1, . . . , ak, b1, . . . , bl ∈ R and A1, . . . ,Ak and B1, . . . ,Bm are disjoint. We assume
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without loss of generality that ∪k
j=1A j = ∪m

l=1Bl. Then

∫
A

( f + g) dµ =

k∑
j=1

m∑
l=1

(a j + bl)µ(A j ∩ Bl)

=

k∑
j=1

m∑
l=1

a jµ(A j ∩ Bl) +

k∑
j=1

m∑
l=1

blµ(A j ∩ Bl)

=

k∑
j=1

a jµ(A j) +

m∑
l=1

blµ(Bl)

=

∫
A

f dµ +

∫
A

g dµ,

so giving (i).
(ii) If either α or lim j→∞ f j(x) is infinite then obviously we have

lim
j→∞

α f j(x) = α f (x) = ∞.

If both α and lim j→∞ f j(x) are finite then we have

lim
j→∞

α f j(x) = α f (x)

by Proposition 2.3.23. Thus (α f j) j∈Z>0 is a monotonically increasing sequence of posi-
tive simple functions that converges to α f . Part (ii) then follows from Proposition 5.7.5.

�

5.7.17 Proposition (Algebraic operations on integrable functions) For a measure space
(X,A , µ), for f,g ∈ L(1)((X,A , µ);R), and for α ∈ R, the following statements hold:

(i) f + g ∈ L(1)((X,A , µ);R) and∫
X
(f + g) dµ =

∫
X

f dµ +

∫
X

g dµ;

(ii) αf ∈ L(1)((X,A , µ);R) and ∫
X
αf dµ = α

∫
X

f dµ.

Proof The proposition follows from Proposition 5.7.16 by breaking f and g into their
positive and negative parts, and applying the lemma to both resulting integrals. �

One might wonder about the relationships between integrals and other alge-
braic operations on functions, like multiplication and division. Generally speaking,
these operations fail to preserve integrability.
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5.7.18 Examples (Multiplication, division, and the integral)
1. We take X = Z>0 with the σ-algebra A = 2Z>0 and the counting measure

µΣ. In this case, integrable functions are those functions f : Z>0 → R satisfy-
ing

∑
∞

j=1| f ( j)| < ∞; this follows from Example 5.7.10, or more straightforwardly
from Exercise 5.7.3. Let us define f : Z>0 → R by f ( j) = 1

j2 . By Example 2.4.2–??
it follows that f ∈ L(1)((Z>0, 2Z>0 , µΣ);R). However, since f 2( j) = 1

j , it follows
from Example 2.4.2–?? that f 2 < L(1)((Z>0, 2Z>0 , µΣ);R). Thus products of inte-
grable functions need not be integrable functions.

2. We take X = Z>0, A = 2Z>0 , and µ = µΣ as in the previous example.
We note that if we define f , g : Z>0 → R by f ( j) = 1

j2 and g( j) = 1
j3 ;

as above, f , g ∈ L(1)((Z>0, 2Z>0 , µΣ);R). However, clearly f
g ( j) = 1

j and so
f
g < L(1)((Z>0, 2Z>0 , µΣ);R). Thus the quotient of two integrable functions is
not necessarily integrable, even when the denominator function is nowhere
zero. •

For functions whose values are related by the total order on R we have the
following result applies.

5.7.19 Proposition (The integral and total order on R) If (X,A , µ) is a measure space and
if f,g ∈ L(1)((X,A , µ);R) (resp. f,g ∈ L(0)((X,A );R≥0)) satisfy f(x) ≤ g(x) for almost all
x ∈ X, then ∫

X
f dµ ≤

∫
X

g dµ.

Proof Without loss of generality we may suppose that f (x) ≤ g(x) for all x ∈ X.
Indeed, if this inequality holds except on a set Z which has zero measure, then we have∫

X
f dµ =

∫
X\Z

f dµ +

∫
Z

f dµ =

∫
X\Z

f dµ,

and so we can simply replace X with X \ Z.
Now we may use part (i) from Proposition 5.7.16 or Proposition 5.7.17 to write∫

X
g dµ =

∫
X

( f + (g − f )) dµ =

∫
X

f dµ +

∫
X

(g − f ) dµ ≥
∫

A
f dµ,

as desired. �

This result has the following corollary which we often apply.

5.7.20 Corollary (Functions bounded by integrable functions are integrable) Let
(X,A , µ) be a measure space and let f,g ∈ L(0)((X,A );R) satisfy |f(x)| ≤ |g(x)| for al-
most every x ∈ X. If g ∈ L(1)((X,A , µ);R) then f ∈ L(1)((X,A , µ);R).

Proof Write f = f+ − f− and g = g+ − g− for f+, g+, f−, g− ∈ L(0)((X,A );R≥0). Then we
obviously have

f+(x) ≤ g+(x), f− ≤ g−(x)
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for almost every x ∈ X. Thus, by Proposition 5.7.19 we have∫
X

f+ dµ ≤
∫

X
g+ dµ,

∫
X

f− dµ ≤
∫

X
g− dµ.

Therefore,∫
X
| f |dµ =

∫
X

f+ dµ +

∫
X

f− dµ ≤
∫

X
g+ dµ +

∫
X

g− dµ =

∫
X
|g|dµ,

as desired. �

The following result follows pretty much from the definitions surrounding the
Lebesgue integral.

5.7.21 Proposition (The integral and absolute value) Let (X,A , µ) be a measure space and
let f ∈ L(0)((X,A );R). Then f ∈ L(1)((X,A , µ);R) if and only if |f| ∈ L(1)((X,A , µ);R),
and if f ∈ L(1)((X,A , µ);R) then ∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f|dµ.

Proof The first assertion is Exercise 5.7.4. For the second assertion, write f = f+ − f−
as the sum of its positive and negative parts. Then∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
X

f+ dµ
∣∣∣∣ +

∣∣∣∣∫
X

f− dµ
∣∣∣∣ =

∫
X
| f |dµ,

using the fact that for a positive function the integral is positive. �

It is at times useful to break an integral into two parts by breaking the domain
of integration into two parts.

5.7.22 Proposition (Breaking the integral in two) Let (X,A , µ) be a measure space,
let A,B ∈ A be sets such that X = A

◦

∪B, and let f ∈ L(0)((X,A );R). Then
f ∈ L(1)((X,A , µ);R) if and only if f|A ∈ L(1)((A,AA, µ|AA);R) and f|B ∈

L(1)((B,Ab, µ|AB);R). Furthermore, if f ∈ L(1)((X,A , µ);R) then we have∫
X

f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.

Proof Let us define fA, fB : X → R by fA = fχA and fB = fχB. By Proposition 5.6.15
the functions fA and fB are measurable. We claim that, provided that fA and f |A are
integrable, ∫

X
fA dµ =

∫
A

( f |A) dµA. (5.16)

To see this, first suppose that f is R≥0-valued and let ( f j) j∈Z>0 be a sequence of sim-
ple functions converging to f as in Proposition 5.6.39. Then the sequence ( fA, j) j∈Z>0

defined by fA, j = f jχA is a sequence of simple functions converging to fA as in Propo-
sition 5.6.39. Moreover, ∫

X
fA, j dµ =

∫
A

( f j|A) dµA
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by Exercise 5.7.2. Therefore, by Proposition 5.7.5 we have∫
X

fA dµ = lim
j→∞

∫
X

fA, j dµ = lim
j→∞

∫
A

( f j|A) dµA =

∫
A

( f |A) dµA,

giving (5.16) when f is R≥0-valued. For R-valued f the same conclusion follows by
breaking f into its positive and negative parts. Similarly, of course, we have∫

X
fB dµ =

∫
B
( f |B) dµB,

and so Proposition 5.7.17 gives the final assertion of the result provided that f , fA, and
fB are integrable.

Now, if fA and fB are integrable, by Proposition 5.7.17 it follows that f is integrable.
Conversely, if either of fA or fB are not integrable, then neither can f be integrable
(why?). �

A more general version of the preceding result is useful, but is only valid for
complete measure spaces.

5.7.23 Corollary (Breaking the integral almost in two) Let (X,A , µ) be a complete measure
space, let A,B ∈ A be such that µ(A ∩ B) = 0 and such that X = A ∪ B, and let
f ∈ L(0)((X,A );R). Then f ∈ L(1)((X,A , µ);R) if and only if f|A ∈ L(1)((A,AA, µ|AA);R)
and f|B ∈ L(1)((B,AB, µ|AB);R). Furthermore, if f ∈ L(1)((X,A , µ);R) then we have∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.

Proof Let Z = A ∩ B, let A′ = A − Z and B′ = B − Z and write X = A′
◦

∪B′
◦

∪Z. Note
that Z, A′, and B′ are measurable since X is complete. Applying Proposition 5.7.22 (or
more properly, its obvious extension to finitely many disjoint components) gives∫

X
f dµ =

∫
A′

( f |A′) dµA′ +

∫
B′

( f |B′)dµB′ +

∫
Z

( f |Z) dµ.

The last integral is zero by Proposition 5.7.11 and, by the same result,∫
A′

( f |A′) dµA′ =

∫
A

( f |A) dµA

and ∫
B′

( f |B′) dµB′ =

∫
B
( f |B) dµB,

giving the result. �

5.7.3 Limit theorems

In Section 5.1 we suggested that one of the reasons why the Riemann integral
was not satisfactory was that it did not have useful properties with respect to swap-
ping of limits and integration. In this section we prove some powerful theorems
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for the integral on measure spaces which give very general conditions under which
limits and integrals will swap. When these are applied to the Lebesgue integral in
Sections 5.9 and ??, this will show that we have produced a theory of integration
that generalises the Riemann integral, and which has at least some more desirable
properties.

Our first theorem has very weak hypotheses, but only applies to nonnegative
functions.

5.7.24 Theorem (Monotone Convergence Theorem I) Let (X,A , µ) be a measure space and
let (fj)j∈Z>0 be a sequence in L(0)((X,A );R≥0) such that, for almost every x ∈ X, fj(x) ≤ fj+1(x)
for every j ∈ Z>0. If f ∈ L(0)((X,A );R) has the property that f(x) = limj→∞ fj(x) for almost
every x ∈ X, then ∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof First let us show that we may assume without loss of generality that the
relations f j(x) ≤ f j+1(x), j ∈ Z>0, and f (x) = lim j→∞ f j(x) hold for all x ∈ X. Let Z be
the set on which these relation do not hold, noting that Z has measure zero being a
union of two sets of measure zero. Let Y = X \Z. The sequence of functions ( f jχY) j∈Z>0

and the function fχY then satisfy the relations for all x ∈ X. If the theorem holds in
this case, then the result will follow from Proposition 5.7.11. For the remainder of the
proof we therefore assume that f j(x) ≤ f j+1(x), j ∈ Z>0, and f (x) = lim j→∞ f j(x) for all
x ∈ X.

By Proposition 5.7.19 we have∫
X

f j dµ ≤
∫

X
f j+1 dµ, j ∈ Z>0,

and ∫
X

f j dµ ≤
∫

X
f dµ, j ∈ Z>0.

Thus the sequence (
∫

X f j dµ) j∈Z>0 converges in R≥0 to a limit and this limit satisfies

lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

We wish to establish the opposite inequality. For each j ∈ Z>0 let (g j,k)k∈Z>0 be a
sequence of simple functions whose limit is f j, as in Proposition 5.6.39. Now define
hk(x) = max{g1,k(x), . . . , gk,k(x)}, and note that (hk)k∈Z>0 is a monotonically increasing
sequence of simple functions converging to f , and that hk(x) ≤ fk(x) for all x ∈ X. By
our above arguments for the sequence ( f j) j∈Z>0 , we have

lim
k→∞

∫
X

hk dµ ≤ lim
j→∞

∫
X

f j dµ ≤
∫

X
f dµ.

The theorem now follows by Proposition 5.7.5. �

In the next assertion, the condition that the functions be nonnegative is re-
laxed, but one must add an integrability condition for one of the functions in the
sequence.
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5.7.25 Theorem (Monotone Convergence Theorem II) Let (X,A , µ) be a measure space and
let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) such that, for almost every x ∈ X, fj(x) ≤ fj+1(x)
for every j ∈ Z>0 and such that f1 ∈ L(1)((X,A , µ);R). If f ∈ L(0)((X,A );R≥0) has the
property that f(x) = limj→∞ fj(x) for almost every x ∈ X, then∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof As in the proof of Theorem 5.7.24 we can assume that f j(x) ≤ f j+1(x), j ∈ Z>0,
and f (x) = lim j→∞ f j(x) for every x ∈ X. Note that the sequence ( f j − f1) is then in
L(0)((X,A );R≥0) and satisfies lim j→∞( f j(x) − f1(x)) = f (x) − f1(x) for every x ∈ X. Note
that if f ∈ L(1)((X,A , µ);R) then we have∫

X
f dµ −

∫
X

f1 dµ =

∫
X

( f − f1) dµ

by Proposition 5.7.17. If f < L(1)((X,A , µ);R) then the previous relation still holds
with value∞ on both sides (why?). Therefore, by Theorem 5.7.24, we have∫

X
f dµ −

∫
X

f1 dµ =

∫
X

( f − f1) dµ = lim
j→∞

∫
X

( f j − f1) dµ = lim
j→∞

∫
X

f j dµ −
∫

X
f1 dµ,

which gives the result since f1 ∈ L(1)((X,A , µ);R). �

We also have the following immediate corollary to the Monotone Convergence
Theorem.

5.7.26 Corollary (Beppo Levi’s9 Theorem) Let (X,A , µ) be a measure space and let (fj)j∈Z>0

be a sequence in L(0)((X,A );R≥0). If f : X→ R≥0 is defined by

f(x) =

∞∑
j=1

fj(x),

then f is measurable and we have∫
X

f dµ =

∞∑
j=1

∫
X

fj dµ.

Proof Define gk(x) =
∑k

j=1 f j(x), noting that gk ∈ L(0)((X,A );R≥0) by Proposi-
tion 5.6.11. Moreover, for every x ∈ X we have gk(x) ≤ gk+1(x). Thus Theorem 5.7.24
and Proposition 5.7.16 imply that∫

X
f dµ = lim

k→∞

∫
X

gk dµ = lim
k→∞

k∑
j=1

∫
X

f j dµ =

∞∑
j=1

∫
X

f j dµ,

as desired. �

The following result is also useful, but with weaker hypotheses and conclusions
than the Monotone Convergence Theorem.

9Beppo Levi (1875–1961) was an Italian mathematician who made mathematical contributions
to algebra and analysis. As a Jew, he left Italy after the rise of Mussolini for Argentina, where he
spent much of his professional life.
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5.7.27 Theorem (Fatou’s10 Lemma) If (X,A , µ) is a measure space and if (fj)j∈Z>0 is a sequence
in L(0)((X,A );R≥0), then ∫

X
lim inf

j→∞
fj dµ ≤ lim inf

j→∞

∫
X

fj dµ.

Proof For k ∈ Z>0 define gk(x) = inf j≥k f j(x), noting that gk so defined is measurable
by Proposition 5.6.18. We then note that the sequence (gk)k∈Z>0 is increasing and that

lim inf
j→∞

f j(x) = lim
k→∞

gk(x)

for x ∈ X. From Theorem 5.7.24 we then have∫
X

lim inf
j→∞

f j dµ = lim
k→∞

∫
X

gk dµ ≤ lim inf
j→∞

∫
X

f j dµ,

since g j(x) ≤ f j(x) for j ∈ Z>0 and x ∈ X. �

The most frequently useful of the limit theorems is the following. It is a result
that is used with great regularity in integration theory. For example, many of the
fundamental results we state in Sections 6.7 and 8.3 and in Chapters 12 and 13
rely at their core on this important theorem.

5.7.28 Theorem (Dominated Convergence Theorem I) Let (X,A , µ) be a measure space
and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) having the following properties:

(i) the limit f(x) = limj→∞ fj(x) exists for almost every x ∈ X;

(ii) there exists g ∈ L(1)((X,A , µ);R≥0) such that, for almost every x ∈ X, |fj(x)| ≤ g(x)
for every j ∈ Z>0.

Then the functions f and fj, j ∈ Z>0, are integrable and∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

Proof The integrability of f and f j, j ∈ Z>0, follows from Corollary 5.7.20. As with
our proof of Theorem 5.7.24, we can without loss of generality suppose that (i) and (ii)
hold for all x ∈ X. Furthermore, since g is integrable, we may as well suppose that
g(x) ∈ R for every x, again by Proposition 5.7.11. The sequence (g + f j) j∈Z>0 is then a
sequence of nonnegative functions for which

lim
j→∞

(g + f j)(x) = (g + f )(x), x ∈ X.

By Fatou’s Lemma this gives∫
X

(g + f ) dµ ≤ lim inf
j→∞

∫
X

(g + f j) dµ

=⇒

∫
X

f dµ ≤ lim inf
j→∞

∫
X

f j dµ.

10Pierre Joseph Louis Fatou (1878–1929) was a French mathematician who made substantial
contributions to analysis, particularly complex analysis.



2016/11/26 5.7 Integration on measure spaces 518

Similarly we can show that ∫
X

(g − f ) dµ ≤ lim inf
j→∞

∫
X

(g − f j) dµ

=⇒

∫
X

f dµ ≤ lim sup
j→∞

∫
X

f j dµ.

This gives the result. �

The Dominated Convergence Theorem also has the following weaker form for
more general sequences.

5.7.29 Theorem (Dominated Convergence Theorem II) Let (X,A , µ) be a measure
space and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) for which there exists g ∈
L(1)((X,A , µ);R≥0) such that, for almost every x ∈ X, |fj(x)| ≤ g(x) for every j ∈ Z>0.
Then the functions fj, j ∈ Z>0, are integrable and

(i)
∫

X
lim inf

j→∞
fj dµ ≤ lim inf

j→∞

∫
X

fj dµ and

(ii)
∫

X
lim sup

j→∞
fj dµ ≥ lim sup

j→∞

∫
X

fj dµ.

Proof The proofs for both conclusions are similar, so we only prove (i). The integrabil-
ity f j, j ∈ Z>0, follows from Corollary 5.7.20. The measurability of x 7→ lim inf j→∞ f j(x)
follows from Proposition 5.6.18. As in the proof of Theorem 5.7.24 we may as well as-
sume that | f j(x)| ≤ |g(x)| for all x ∈ X and j ∈ Z>0. In this case, the sequence (g + f j) j∈Z>0

is a sequence in L(0)((X,A );R≥0) and so, by Fatou’s Lemma and Proposition 5.7.16, we
have ∫

X
g dµ +

∫
X

lim inf
j∈∞

f j dµ =

∫
X

lim inf
j→∞

(g + f j) dµ

≤ lim inf
j→∞

∫
X

(g + f j) dµ

=

∫
X

g dµ + lim inf
j→∞

∫
X

f j dµ,

which gives the result since g ∈ L(1)((X,A , µ);R). �

Let us illustrate how one might use the preceding results.

5.7.30 Examples (Illustration of limit theorems) In both of the examples, we consider the
measure space (X,A , µ) with X = Z>0, A = 2Z>0 , andµ = µΣ, the counting measure.
Thus, as we have seen in Example 5.7.10, integrable functions are absolutely
convergent series.
1. The Monotone Convergence Theorem is often helpful for showing that a certain

integral diverges. Let us illustrate this as follows. We wish to ascertain whether
the limit

lim
α↓1

∞∑
k=1

1
kα

(5.17)
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exists. Let us define fα ∈ L(0)((Z>0, 2Z>0);R≥0) by fα(k) = 1
kα for α ∈ [1, 2]. Let

(α j) j∈Z>0 be a strictly monotonically decreasing sequence such that α1 = 2 and
lim j→∞ α j = 1. We then have

lim
α↓1

∞∑
k=1

1
kα

= lim
α↓1

∫
Z>0

fα dµΣ = lim
j→∞

∫
Z>0

fα j dµΣ.

Note that fα j(k) < fα j+1(k) for every k ∈ Z>0 and j ∈ Z>0. Therefore, the se-
quence ( fα j) j∈Z>0 satisfies the hypotheses of the Monotone Convergence Theo-
rem. Therefore, we have

lim
j→∞

∫
Z>0

fα j dµΣ =

∫
Z>0

lim
j→∞

fα j dµΣ =

∞∑
k=1

1
k

= ∞.

Thus the limit (5.17) does not exist, at least not in R.
2. Let us use the Dominated Convergence Theorem to determine the value of the

following limit:

lim
α↓1

∞∑
k=1

(−1)k+1

k2α .

We proceed much as above, defining fα ∈ L(0)((Z>0, 2Z>0);R) by fα(k) = (−1)k+1

k2α .
We let (α j) j∈Z>0 be a strictly monotonically decreasing sequence such that α1 = 2
and lim j→∞ α j = 1. It then holds that

lim
α↓1

∞∑
k=1

(−1)k+1

k2α = lim
α↓1

∫
Z>0

fα j dµΣ = lim
j→∞

∫
Z>0

fα j dµΣ.

We then have
| fα j(k)| =

1
k2α j

<
1
k2

for every j ∈ Z>0 and k ∈ Z>0. Define g ∈ L(0)((Z>0, 2Z>0);R) by g(k) = 1
k2 and

note that ∫
X

g dµΣ =

∞∑
k=1

1
k2 < ∞

by Example 2.4.2–??. Therefore, the hypotheses of the Dominated Convergence
Theorem apply, and we have

lim
j→∞

∫
Z>0

fα j dµΣ =

∫
Z>0

lim
j→∞

fα j dµΣ =

∞∑
k=1

(−1)k+1

k2 =
π2

12
,

where we look up the last sum. •
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5.7.4 Integration with respect to probability measures

In Section 5.3.5 we introduced the notion of a probability space. In this section
we investigate integration on probability spaces, giving a few results peculiar and
useful for such measure spaces.

The following general result concerning how integrals behave under composi-
tion by certain classes of functions. Recall from Sections 3.1.6 and 3.2.6 the notion
of a convex function. We shall use properties of convex functions we proved in
those sections.

5.7.31 Theorem (Jensen’s11 inequality) Let (X,A , µ) be a finite measure space, let f ∈
L(1)((X,A , µ);R), and let φ : R→ R be convex. Then

φ
(∫

X
f dµ

)
≤

∫
X
(φ ◦ f) dµ.

Proof From Proposition 3.2.30(??) we have

φ′(y0+)(y − y0) + φ(y0) ≤ φ(y)

for every y ∈ R. Let x ∈ X and let us take

y0 =

∫
X

f dµ, y = f (x),

so that the above inequality reads

φ(y0) ≤ φ ◦ f (x) − φ′(y0+)( f (x) − y0).

By Proposition 5.7.19 we have∫
X
φ(y0) dµ ≤

∫
X
φ ◦ f dµ −

∫
X
φ′(y0+)( f − y0) dµ.

Since µ is a probability measure (i.e.,
∫

X dµ = 1) and since the integral is linear, we have∫
X
φ(y0) dµ = φ(y0)

and ∫
X
φ′(y0+)( f − y0) dµ = φ′(y0+)

∫
X

f dµ − φ′(y0+)y0 = 0.

This immediately gives the result. �

The following version of Jensen’s inequality is often useful. Here we make use
of the Lebesgue integral on R discussed in detail in Section 5.9.

11Johan Ludwig William Valdemar Jensen (1859–1925) was a Danish telephone company em-
ployee who did some mathematics in his spare time.
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5.7.32 Corollary (Jensen’s inequality for integration on intervals) Let [a, b] ⊆ R be a
compact interval, let f ∈ L(1)(([a, b],L ([a, b]), λ[a,b]);R), and let φ : R → R be convex.
Then

φ
(∫

[a,b]
f dλ[a,b]

)
≤

1
b − a

∫
[a,b]

φ ◦ ((b − a)f) dλ[a,b].

Proof We shall use Riemann integral notation in the proof, cf. Notation 5.9.13. By
the change of variable theorem, Theorem 5.9.36,∫ b

a
f (x) dx =

∫ 1

0
(b − a) f (a + (b − a)s) ds.

By Jensen’s inequality above,

φ
(∫ b

a
f (x) dx

)
≤

∫ 1

0
φ(b − a) f (a + (b − a)s)) ds =

1
b − a

∫ b

a
φ((b − a) f (x)) dx,

which is the result. �

Now we give a few characterisations of how a function deviates from its mean.
For this, the following simple definition is useful.

5.7.33 Definition (Mean of a function) Let (X,A , µ) be a measure space and let f ∈
L(1)((X,A , µ);R). The mean of f is

mean( f ) =

∫
X

f dµ. •

With this notion, we have the following results.

5.7.34 Theorem (Markov’s12 inequality) Let (X,A , µ) be a measure space and let f ∈
L(1)((X,A , µ);R≥0). Then, for any a ∈ R>0 it holds that

µ({x ∈ X | f(x) ≥ a}) ≤
1
a

mean(f).

Proof Let us abbreviate
Ma = {x ∈ X | f (x) ≥ a}.

Then, for every x ∈ X.
a ≤ aχMa(x) ≤ f (x)χMa(x) ≤ f (x).

Therefore, by Proposition 5.7.19,∫
X

(aχMa) dµ ≤
∫

Ma

f dµMa ≤

∫
X

f dµ.

Dividing by a gives µ(Ma) ≤ 1
a mean( f ), as desired. �

Very often Markov’s inequality gives rather course estimates, and moreover
only applies to nonnegative-valued functions. In this respect, the following results
are sometimes useful.

12Andrei Andreyevich Markov (1856–1922) did mathematical research in analysis, and was one
of the pioneers in the early development of what we now know as probability theory. He also
involved himself in the political turmoil in which Russia was involved during his lifetime.
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5.7.35 Theorem (General Chebychev13 inequality) Let (X,A , µ) be a measure space, let f ∈
L(1)((X,A , µ);R), and let φ : R→ R be such that φ(y1) ≤ g(y2) for all y1,y2 ∈ image(f)
with y1 < y2. Then, for any a ∈ R for which φ(a) ∈ R, it holds that

µ({x ∈ X | f(x) ≥ a}) ≤
1
φ(a)

mean(φ ◦ f).

Proof Let
Ma = {x ∈ X | f (x) ≥ a}.

Then, for any x ∈ X,

φ(a)χMa(x) ≤ φ ◦ f (x)χMa(x) ≤ φ ◦ f (x),

noting that φ ◦ f (x) ≥ φ(a) for x ∈ Ma since φ is monotonically increasing. Using
Proposition 5.7.19, just as in the proof of Markov’s inequality, we have

φ(a)µ(Ma) ≤ mean(φ ◦ f ),

as desired. �

The usual form of Chebychev’s inequality is the following.

5.7.36 Corollary (Usual form of Chebychev’s inequality) Let (X,A , µ) be a measure space
and let f ∈ L(1)((X,A , µ);R≥0). Then, for any a ∈ R>0 it holds that

µ({x ∈ X | |f(x)| ≥ a}) ≤
1
a2

∫
X

f2 dµ.

Proof Applying the general form of Chebychev’s inequality with

φ(y) =

y2, y ∈ R≥0,

0, otherwise

and replacing f with | f | gives the result. �

Our final result of this form is the following result which follows from our
general for the Chebychev inequality. For c ∈ R let us denote expc : R→ R≥0 by

expc(y) =


ecy, y ∈ R≥0,

limy→−∞ ecy, y = −∞,

limy→∞ ecy, y = ∞,

allowing that one of the limits will be∞. With this notation we have the following
result.

13Pafnuty Lvovich Chebyshev (1821–1894) was a Russian mathematician, making contributions to
the areas of analysis, number theory, and approximation theory, and was one of the early researchers
in the area of modern probability theory.
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5.7.37 Corollary (Chernoff’s14 inequality) Let (X,A , µ) be a measure space and let f ∈
L(1)((X,A , µ);R). Then, for any a, c ∈ R>0, it holds that

µ({x ∈ X | f(x) ≥ a}) ≤ e−ca
∫

X
expc ◦ f dµ.

Proof Applying the general form of Chebychev’s inequality with φ = expc gives the
result. �

Note that it might very well be the case that the right-hand side of either of
the inequalities in the preceding two corollaries will be infinite. In this case the
inequalities hold vacuously, and so do not give useful information.

5.7.5 Topological characterisations of limit theorems15

It turns out that there is a very simple way to restate usual version of the
Dominated Convergence Theorem using the notion of a limit structure for almost
everywhere pointwise convergence from Theorem 5.6.51. For this purpose, it
is advantageous to have at hand two versions of the Dominated Convergence
Theorem. One is that stated as Theorem 5.7.28, and the other, an “everywhere”
rather than an “almost everywhere” version, being the following.

5.7.38 Theorem (“Everywhere” Dominated Convergence Theorem) Let (X,A , µ) be
a measure space and let (fj)j∈Z>0 be a sequence in L(0)((X,A );R) having the following
properties:

(i) the limit f(x) = limj→∞ fj(x) exists for every x ∈ X;

(ii) there exists g ∈ L(1)((X,A , µ);R≥0) such that, for every x ∈ X, |fj(x)| ≤ g(x) for
every j ∈ Z>0.

Then the functions f and fj, j ∈ Z>0, are integrable and∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

Proof This follows immediately from Theorem 5.7.28. �

Our objective is to restate the “everywhere” and “almost everywhere” ver-
sions of the Dominated Convergence Theorem in topological terms. First let us
consider the “everywhere” version of the Dominated Convergence Theorem, The-
orem 5.7.38. In this case we use the topology Cp of pointwise convergence on
L(0)((X,A );R) described in Section ??. Note that Proposition 5.6.18 implies that
L(0)((X,A );R) is a sequentially closed subspace of RX using this topology. Let us
say that a subset A ⊆ L(0)((X,A );R) is Cp-sequentially closed if every Cp convergent
sequence ( f j) j∈Z>0 in A converges to a function in A. A subset B ⊆ RX is Cp-bounded
if, for every sequence ( f j) j∈Z>0 in B and every sequence (a j) j∈Z>0 in R converging to

14Herman Chernoff, born in New York in 1923, is an American statistician.
15The results in this section are not used in an essential way elsewhere in the text, except in

Section 5.9.11.
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0, the sequence (a j f j) j∈Z>0 converges to the zero function in the Cp-topology. This
notion of boundedness may look strange at present. We shall examine the general
context from which this definition is derived in missing stuff .

The following result characterises Cp-bounded sets.

5.7.39 Proposition (Characterisation of Cp-bounded functions) Let X be a set. A subset
B ⊆ RX is Cp-bounded if and only if there exists a nonnegative-valued g ∈ RX such that

B ⊆ {f ∈ RX
| |f(x)| ≤ g(x) for every x ∈ X}.

Proof Suppose that there exists a nonnegative-valued g ∈ RX such that | f (x)| ≤ g(x)
for every x ∈ X if f ∈ B. Let ( f j) j∈Z>0 be a sequence in B and let (a j) j∈Z>0 be a sequence
in R converging to 0. If x ∈ X then

lim
j→∞
|a j f j(x)| ≤ lim

j→∞
|a j|g(x) = 0,

which gives Cp-convergence of the sequence (a j f j) j∈Z>0 to zero.
Next suppose that there exists no nonnegative-valued function g ∈ RX such that

| f (x)| ≤ g(x) for every x ∈ X if f ∈ B. This means that there exists x0 ∈ X such that,
for every M ∈ R>0, there exists f ∈ B such that | f (x0)| > M. Let (a j) j∈Z>0 be a sequence
in R converging to 0 and such that a j , 0 for every j ∈ Z>0. Then let ( f j) j∈Z>0 be a
sequence in B such that | f j(x0)| > |a−1

j | for every j ∈ Z>0. Then |a j f j(x0)| > 1 for every
j ∈ Z>0, implying that the sequence (a j f j) j∈Z>0 cannot Cp-converge to zero. Thus B is
not Cp-bounded. �

With the preceding development, we can now state the “everywhere” Domi-
nated Convergence Theorem in terms of the Cp-topology.

5.7.40 Theorem (Topological “everywhere” Dominated Convergence Theorem) If
(X,A , µ) is a measure space then Cp-bounded subsets of L(1)((X,A , µ);R) are Cp-
sequentially closed.

Proof This follows immediately from Theorem 5.7.38 and the definitions of the terms
involved. �

Now we turn to the “almost everywhere” Dominated Convergence Theorem.
Here matters are possibly (and often) complicated by the fact that almost every-
where pointwise convergence is not topological, as shown in Proposition 5.6.48.
However, we can effectively replace the rôle of the Cp-topology above with the
Lµ-limit structure. To this end, let us say that a subset A ⊆ L0((X,A );R) is Lµ-
sequentially closed if every Lµ convergent sequence ([ f j]) j∈Z>0 in A converges to an
equivalence class of functions in A. A subset B ⊆ L0((X,A );R) is Lµ-bounded if, for
every sequence ([ f j]) j∈Z>0 in B and every sequence (a j) j∈Z>0 inR converging to 0, the
sequence ([a j f j]) j∈Z>0 converges to the zero equivalence class in the Lµ-topology.

The following result characterises Lµ-bounded sets.

5.7.41 Proposition A subset B ⊆ L0((X,A );R) is Lµ-bounded if and only if there exists a
nonnegative-valued g ∈ L(0)((X,A );R) such that

B ⊆ {[f] ∈ L0((X,A );R) | |f(x)| ≤ g(x) for almost every x ∈ X}.
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Proof We first observe that the condition that | f (x)| ≤ g(x) for almost every x ∈ X is
independent of the choice of representative f from the equivalence class [ f ].

Suppose that there exists a nonnegative-valued g ∈ L(0)((X,A );R) such that, if
[ f ] ∈ B, then | f (x)| ≤ g(x) for almost every x ∈ X. Let ([ f j]) j∈Z>0 be a sequence in B and
let (a j) j∈Z>0 be a sequence in R converging to zero. For j ∈ Z>0 define

A j = {x ∈ X | | f j(x)| ≤ g(x)}.

Note that if x ∈ X \ (∪ j∈Z>0A j) then

lim
j→∞
|a j f j(x)| ≤ lim

j→∞
|a j|g(x) = 0.

Since µ(∪ j∈Z>0A j) = 0 this implies that the sequence (a j[ f j]) j∈Z>0 is Lµ-convergent to
zero. One may show that this argument is independent of the choice of representatives
f j from the equivalence classes [ f j], j ∈ Z>0.

Conversely, suppose that there exists no nonnegative-valued function g ∈
L(0)((X,A );R) such that, for every [ f ] ∈ B, | f (x)| ≤ g(x) for almost every x ∈ X. This
means that there exists a set E ⊆ X of positive measure such that, for any M ∈ R>0, there
exists [ f ] ∈ B such that | f (x)| > M for almost every x ∈ E. Let (a j) j∈Z>0 be a sequence
in R converging to 0 and such that a j , 0 for every j ∈ Z>0. Then let ([ f j]) j∈Z>0 be a
sequence in B such that | f j(x)| > |a−1

j | for almost every x ∈ E and for every j ∈ Z>0.
Define

A j = {x ∈ E | | f j(x)| > |a−1
j |}.

If x ∈ E \ (∪ j∈Z>0A j) then |a j f j(x)| > 1 for every j ∈ Z>0. Since µ(E \ (∪ j∈Z>0A j)) > 0 it
follows that (a j[ f j]) j∈Z>0 cannot Lµ-converge to zero, and so B is not Lµ-bounded. �

We can then state the following characterisation of the “almost everywhere”
Dominated Convergence Theorem. We denote by L1((X,A , µ);R) the image of
L(1)((X,A , µ);R) under the projection from L(0)((X,A );R) to L0((X,A );R). Thus
elements of L1((X,A , µ);R) are equivalence classes of integrable R-valued func-
tions under the equivalence relation of almost everywhere equality. The space
L1((X,A , µ);R) will be studied in detail as part of Section 6.7.8.

5.7.42 Theorem (Limit structure “almost everywhere” Dominated Convergence The-
orem) If (X,A , µ) is a measure space then Lµ-bounded subsets of L1((X,A , µ);R) are
Lµ-sequentially closed.

Proof This follows immediately from Theorem 5.7.28 and the definitions of the terms
involved. �

5.7.6 Image measure and integration by image measure

In this section we provide the definition of a measure induced by a map. We
shall not use this construction frequently, but it does arise, for example, in parts of
our discussion of convolution in Chapter 11.missing stuff

The construction is as follows.
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5.7.43 Proposition (Characterisation of image measure) Let (X,A , µ) be a measure space,
let (Y,B) be a measurable space, and let φ : X → Y be a (A ,B)-measurable map. If we
define µφ−1 : B → R≥0 by µφ−1(B) = µ(φ−1(B)), then (Y,B, µφ−1) is a measure space.

Proof Since φ−1(∅) = ∅ we have µφ−1(∅) = 0. Now let (B j) j∈Z>0 be a pairwise disjoint
family of subsets from B. We claim that (φ−1(B j)) j∈Z>0 is pairwise disjoint. This follows
since φ−1(B j) ∩ φ−1(Bk) = φ−1(B j ∩ Bk) by Proposition 1.3.5. It, therefore, follows that

∞∑
j=1

µφ−1(B j) =

∞∑
j=1

µ(φ−1(B j)) = µ
( ⋃

j∈Z>0

φ−1(B j)
)

= µφ−1
( ⋃

j∈Z>0

B j

)
,

again with an application of Proposition 1.3.5. �

The measure µφ−1 has a name.

5.7.44 Definition (Image measure) For (X,A , µ), (Y,B), and φ as in Proposition 5.7.43,
the measure µφ−1 is the image measure of µ by φ. •

One can characterise the functions integrable by the image measure.

5.7.45 Proposition (Integration by the image measure) Let (X,A , µ) be a measure space,
let φ : X→ Y be a (Y,B) be a (A ,B)-measurable map, and let µφ−1 be the image measure
of µ by φ. Then f ∈ L(0)((Y,B);R) is integrable with respect to µφ−1 if and only if f ◦φ is
integrable with respect to µ. Moreover, if f ∈ L(1)((Y,B, µφ−1);R) then we have∫

Y
f d(µφ−1) =

∫
X
(f ◦φ) dµ.

Proof Suppose that f is µφ−1-integrable. By Proposition 5.6.6 this means that f is
(B,B(R))-measurable. Since φ is (A ,B)-measurable, it follows easily that f ◦φ is
(A ,B(R))-measurable, and so measurable.

Now let B ∈ B and note that χB ◦φ = χφ−1(B), as can be directly verified. Therefore,∫
Y
χB d(µφ−1) = µφ−1(B) = µ(φ−1(B)) =

∫
X
χφ−1(B) dµ =

∫
X
χB ◦φdµ.

By linearity of the integral, Proposition 5.7.17, this implies that if f ∈ L(0)((Y,B);R) is
a simple function we have ∫

Y
f d(µφ−1) =

∫
X

( f ◦φ) dµ. (5.18)

If f ∈ L(1)((Y,B, µφ−1);R≥0) then by Proposition 5.6.39 there exists a sequence of mono-
tonically increasing simple functions (g j) j∈Z>0 such that f (y) = lim j→∞ g j(y) for each
y ∈ Y. The sequence (g j ◦φ) j∈Z>0 is then itself a sequence of monotonically increasing
functions such that f ◦φ(x) = lim j→∞ g j ◦φ(x). By the Monotone Convergence Theo-
rem, (5.18) then holds for f ∈ L(1)((Y,B, µφ−1);R≥0). For general integrable functions,
breaking the function f into its positive and negative parts and using linearity of
the integral gives (5.18) in this case. This shows that if f ∈ L(1)((Y,B, µφ−1);R) then
f ◦φ ∈ L(1)((X,A , µ);R) and the functions have equal integrals.

The argument above also clearly shows that if f ◦φ ∈ L(1)((X,A , µ);R) then f ∈
L(1)((Y,B, µφ−1);R), as desired. �
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5.7.7 The integral for C- and vector-valued functions

Thus far, we have always assumed that functions take values in R or subsets
of R. Some of the time, however, we wish to integrate functions that are vector-
valued, or particularly C-valued. The extension to these sorts of functions is easily
made, and in this section we write the (hopefully) expected results. The reader
will wish to recall our discussion in Section 5.6.4 of measurable vector-valued
functions.

We begin with the definitions.

5.7.46 Definition (Integrable vector-valued function) For a measure space (X,A , µ), a
function f : X → Rn is integrable if its components f1, . . . , fn are integrable in the
sense of Definition 5.7.8. The integral of an integrable function f : X→ Rn is∫

X
f dµ =

(∫
X

f1 dµ, . . . ,
∫

X
fn dµ

)
.

We denote the set of integrable Rn-valued maps by L(1)((X,A , µ);Rn). •

The following result gives a useful characterisation of the integrability of Rn-
valued functions.

5.7.47 Proposition (Characterisation of vector-valued integrable functions) For a mea-
sure space (X,A , µ) and f ∈ L(0)((X,A );Rn), the following statements are equivalent:

(i) f ∈ L(1)((X,A , µ);Rn);
(ii) the R-valued function x 7→ ‖f‖Rn(x) is integrable.

Moreover, if either of the above equivalent conditions holds, then∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
≤

∫
X
‖f‖Rn dµ.

Proof (i) =⇒ (ii) By Proposition 5.6.11 and Corollary 5.6.33 it follows that x 7→
‖ f (x)‖Rn is measurable. From Lemma ?? we have

‖ f (x)‖Rn ≤ | f1(x)| + · · · + | fn(x)|

for every x ∈ X. Therefore, by Propositions 5.7.17 and 5.7.19,∫
X
‖ f‖Rn dµ ≤

∫
X
| f1|dµ + · · · +

∫
X
| fn|dµ < ∞,

giving the result.
(ii) =⇒ (i) From Lemma ?? we have

| f1(x)| + · · · + | fn(x)| ≤
√

n‖ f (x)‖Rn

for every x ∈ X. Therefore, by Proposition 5.7.19, for each j ∈ {1, . . . ,n}we have∫
X
| f j|dµ ≤

∫
X
‖ f‖Rn dµ < ∞,
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as desired.
Now we prove the final assertion of the proposition. The inequality obviously

holds if
∫

X f dµ = 0, so we may suppose that
∫

X f dµ , 0. Let u ∈ Rn be such that
‖u‖Rn = 1 and ∫

X
f dµ = u

∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
.

Therefore, using linearity of the integral and the fact that 〈u,u〉Rn = 1,∫
X
〈u, f 〉Rn dµ =

〈
u,

∫
X

f dµ
〉
Rn

=
∥∥∥∥∫

X
f dµ

∥∥∥∥
Rn
.

Since |u j| ≤ 1 for each j ∈ {1, . . . ,n} we can use the Cauchy–Bunyakovsky–Schwarz
inequality and Lemma ?? to get

〈u, f (x)〉Rn ≤ |〈u, f (x)〉Rn | ≤ ‖u‖Rn‖ f (x)‖Rn = ‖ f (x)‖Rn .

Therefore, by Proposition 5.7.19,∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
≤

∫
X
‖ f (x)‖Rn dµ,

as desired. �

This result has the following immediate and useful corollary which gives an
easy means of checking the integrability of a vector-valued function.

5.7.48 Corollary (Integrability of vector-valued functions) Let (X,A , µ) be a measure
space and let f ∈ L(0)((X,A );Rn) and g ∈ L(0)((X,A ),R≥0) satisfy ‖f(x)‖Rn ≤ g(x) for
almost every x ∈ X. Then f ∈ L(1)((X,A , µ);Rn) if g ∈ L(1)((X,A , µ);R≥0) and, in this
case, ∥∥∥∥∫

X
f dµ

∥∥∥∥
Rn
≤

∫
X

g dµ.

Of course, the preceding definition and characterisation of integrable vector-
valued functions applies immediately to C-valued functions, using the fact that C
and R2 are isomorphic as R-vector spaces.

5.7.49 Definition (Integrable C-valued function) For a measure space (X,A , µ), a func-
tion f : X→ C is integrable if the R-valued functions

Re( f ) : x 7→ Re( f (x)), Im( f ) : x 7→ Im( f (x))

are integrable in the sense of Definition 5.7.8. The integral of an integrable function
f : X→ C is ∫

X
f dµ =

(∫
X

Re( f ) dµ,
∫

X
Im( f ) dµ

)
.

We denote the set of integrable C-valued maps by L(1)((X,A , µ);C). •

Following immediately from Proposition 5.7.47 is the following result.
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5.7.50 Corollary (Characterisation of C-valued integrable functions) For a measure
space (X,A , µ) and f ∈ L(0)((X,A );C), the following statements are equivalent:

(i) f ∈ L(1)((X,A , µ);C);
(ii) the R-valued function x 7→ |f|(x) is integrable.

Moreover, if either of the above equivalent statements holds then∣∣∣∣∫
X

f dµ
∣∣∣∣ ≤ ∫

X
|f|dµ.

Most of the properties of the integral generalise to vector- orC-valued integrals.
For completeness we record the results explicitly for Rn-valued functions, noting
that these results apply immediately to C-valued functions.

The following result is fundamental and often used without explicit mention.

5.7.51 Proposition (Integrals of functions agreeing almost everywhere) Let (X,A , µ)
be a measure space and let f,g ∈ L(0)((X,A );Rn) have the property that f(x) = g(x) for
almost every x ∈ X. Then the integral of f exists if and only if the integral of g exists, and
if either integral exists then we have∫

X
f dµ =

∫
X

g dµ.

Proof This follows immediately from Proposition 5.7.11, along with the definition of
the integral for vector-valued functions. �

Next let us see that the vector-valued integral is linear.

5.7.52 Proposition (Algebraic operations on integrable functions) For a measure space
(X,A , µ), for f,g ∈ L(1)((X,A , µ);Rn), and for α ∈ R, the following statements hold:

(i) f + g ∈ L(1)((X,A , µ);Rn) and∫
X
(f + g) dµ =

∫
X

f dµ +

∫
X

g dµ;

(ii) αf ∈ L(1)((X,A , µ);Rn) and ∫
X
αf dµ = α

∫
X

f dµ.

Proof This follows directly from Proposition 5.7.17 and the definition of the vector-
valued integral. �

It is also useful to know that the integral of C-valued functions is C-linear.
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5.7.53 Corollary (Linearity of the C integral) For a measure space (X,A , µ), for f,g ∈
L(1)((X,A , µ);C), and for α ∈ C, the following statements hold:

(i) f + g ∈ L(1)((X,A , µ);C) and∫
X
(f + g) dµ =

∫
X

f dµ +

∫
X

g dµ;

(ii) αf ∈ L(1)((X,A , µ);C) and ∫
X
αf dµ = α

∫
X

f dµ.

Proof The first assertion is a special case of the first assertion of Proposition 5.7.52.
The second assertion also follows from Proposition 5.7.52 since

Re(α f ) = Re(α) Re( f ) − Im(α) Im( f ), Im(α f ) = Re(α) Im( f ) + Im(α) Re( f ). �

For integrating vector-valued functions over disjoint subsets, we have the fol-
lowing result.

5.7.54 Proposition (Breaking the integral in two) Let (X,A , µ), let A,B ∈ A be sets
such that X = A

◦

∪B, and let f ∈ L(0)((X,A );Rn). Then f ∈ L(1)((X,A , µ);Rn) if and
only if f|A ∈ L(1)((A,AA, µ|AA);Rn) and f|B ∈ L(1)((B,AB, µ|AB);Rn). Furthermore, if
f ∈ L(1)((X,A , µ);Rn) then we have∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.

Proof Thus follows from Proposition 5.7.22, along with the definition of the integral
for vector-valued functions. �

As in the scalar case, this result has the following corollary.

5.7.55 Corollary (Breaking the integral almost in two) Let (X,A , µ) be a complete measure
space, let A,B ∈ A be such that µ(A ∩ B) = 0 and such that X = A ∪ B, and let f ∈
L(0)((X,A );Rn). Then f ∈ L(1)((X,A , µ);Rn) if and only if f|A ∈ L(1)((A,AA, µ|AA);Rn)
and f|B ∈ L(1)((B,AB, µ|AB);Rn). Furthermore, if f ∈ L(1)((X,A , µ);Rn) then we have∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB.

Proof This follows from Proposition 5.7.23, along with the definition of the vector-
valued integral. �

Finally, we can also state a version of the Dominated Convergence Theorem for
vector-valued integrals.
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5.7.56 Theorem (Vector-valued Dominated Convergence Theorem) Let (X,A , µ) be a
measure space and let (fj)j∈Z>0 be a sequence in L(0)((X,A );Rn) having the following
properties:

(i) the limit f(x) = limj→∞ fj(x) exists for almost every x ∈ X;
(ii) there exists g ∈ L(1)((X,A , µ);R≥0) such that, for almost every x ∈ X, ‖fj(x)‖Rn ≤

g(x) for every j ∈ Z>0.
Then the functions f and fj, j ∈ Z>0, are integrable and∫

X
f dµ = lim

j→∞

∫
X

fj dµ.

Proof For k ∈ {1, . . . ,n} denote by fk the kth component of f and by f j,k the kth
component of f j, j ∈ Z>0. Then, for almost every x ∈ X, we have

| fk(x)| ≤ ‖ f (x)‖Rn ≤ g(x), k ∈ {1, . . . ,n},
| f j,k(x)| ≤ ‖ f j(x)‖Rn ≤ g(x), k ∈ {1, . . . ,n}, j ∈ Z>0.

This gives integrability of f and f j, j ∈ Z>0, by definition of the vector-valued integral.
The final equality of the theorem now follows from the scalar Dominated Convergence
Theorem, Theorem 5.7.28. �

5.7.8 Integration with respect to signed, complex, and vector measures

In this section to this point we have talked solely about positive measure spaces.
Let us now see how signed, complex, and vector measure spaces arise in the
integration story.

We begin by indicating how one can define integrals with respect to signed,
complex, and vector measures. Here we use the Jordan decomposition of such
measures in an essential way. Let us consider first the case where (X,A , µ) is a
signed measure space.

5.7.57 Definition (Integration with respect to a signed measure) For a signed mea-
sure space (X,A , µ) let µ = µ+ − µ− be the Jordan decomposition of µ. For
f ∈ L(0)((X,A );R), we have the following definitions.

(i) If neither of the conditions

(a)
∫

X
f dµ+ = ∞ and

∫
X

f dµ− = ∞ and

(b)
∫

X
f dµ+ = −∞ and

∫
X

f dµ− = −∞

holds, then the integral of f with respect to µ exists and is given by∫
X

f dµ =

∫
X

f dµ+ −

∫
X

f dµ−,

this being the integral of f with respect to µ.
(ii) If either of the two conditions from part (i) hold then the integral of f with

respect to µ does not exist.
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(iii) If f ∈ L(1)((X,A , µ+);R) and f ∈ L(1)((X,A , µ−);R) then f is integrable with
respect to µ.

For a subset I ⊆ R we denote the set of I-valued functions integrable with respect
to µ by L(1)((X,A , µ); I), or simply by L(1)(X; I) if A and µ are understood. •

Using this definition of integrability and integral for signed measures, it is
straightforward to define the corresponding notions for complex and vector mea-
sures. The essential idea is that a complex measure µ can be written as

µ = Re(µ) + i Im(µ)

for finite signed measures Re(µ) and Im(µ). For a vector measure µ taking values
in Rn, we can write

µ = µ1e1 + · · · + µnen

for finite signed measures µ1, . . . , µ j and where {e1, . . . , en} is the standard basis for
Rn.

5.7.58 Definition (Integration with respect to complex and vector measures) For a
measurable space (X,A ) and for a complex measure µ on A and a vector measure
µ taking values in Rn, write them as above. For f ∈ L(0)((X,A );R), we have the
following definitions.

(i) the integral of f with respect to µ exists if the integrals of f with respect to
Re(µ) and Im(µ) exist, and is given by∫

X
f dµ =

(∫
X

f d(Re(µ))
)

+ i
(∫

X
f d(Im(µ))

)
,

this being the integral of f with respect to µ.
(ii) the integral of f with respect to µ exists if the integrals of f with respect to

µ1, . . . , µn exist, and is given by∫
X

f dµ =
(∫

X
f dµ1, . . . ,

∫
X

f dµn

)
,

this being the integral of f with respect to µ.
(iii) If the integral of f does not exist with respect to at least one of Re(µ) and

Im(µ), then the integral of f does not exist.
(iv) If the integral of f does not exist with respect to at least one of Re(µ) and

Im(µ), then the integral of f does not exist.

(v) If f ∈ L(1)((X,A ,Re(µ));R) and f ∈ L(1)((X,A , Im(µ));R) then f is integrable
with respect to µ.

(vi) If f ∈ L(1)((X,A , µ j);R), j ∈ {1, . . . ,n}, f is integrable with respect to µ.

For a subset I ⊆ R we denote the set of I-valued functions integrable with respect
to µ (resp. µ) by L(1)((X,A , µ); I) (resp. L(1)((X,A ,µ); I)), or simply by L(1)(X; I) if A
and µ (resp. µ) are understood. •
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Since, by virtue of the Jordan decomposition, integration with respect to signed,
complex, and vector measures boils down to integration with respect to positive
measures as usual, one anticipates that many of the properties of the integral
with respect to positive measures will carry over to signed, complex, and vector
measures. Let us record some of these.

First we relate the integral of a function with the integral with respect to a
measure to the integral with respect to the variation of the measure.

5.7.59 Proposition (Characterisation of integrals with respect to signed, complex,
and vector measures) For a measurable space (X,A ) and for f ∈ L(0)((X,A );R), the
following statements hold:

(i) if µ is a signed or complex measure on A , then f ∈ L(1)((X,A , µ);R) if and only if
f ∈ L(1)((X,A , |µ|);R), and if either of these equivalent statements holds, then∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f|d|µ|;

(ii) if µ is a vector measure on A taking values in Rn, then f ∈ L(1)((X,A ,µ);R) if and
only if f ∈ L(1)((X,A , ‖µ‖Rn);R), and if either of these equivalent statements holds,
then ∥∥∥∥∫

X
f dµ

∥∥∥∥
Rn
≤

∫
X
|f|d‖µ‖Rn .

Proof Let us first consider the case where µ is a signed measure on A with
Jordan decomposition µ = µ+ − µ−. If f ∈ L(1)((X,A , µ);R) then, by definition
f ∈ L(1)((X,A , µ+);R) and f ∈ L(1)((X,A , µ−);R). Therefore,∫

X
| f |d|µ| =

∫
X
| f |dµ+ +

∫
X
| f |dµ− < ∞,

and so f ∈ L(1)((X,A , |µ|);R). Conversely, suppose that f ∈ L(1)((X,A , |µ|);R). Then∫
X
| f |d|µ| =

∫
X
| f |dµ+ +

∫
X
| f |dµ− < ∞.

Thus f ∈ L (1)((X,A , µ+);R) and ∈ L (1)((X,A , µ−);R). Therefore,∫
X

f dµ =

∫
X

f dµ+ −

∫
X

f dµ−

is well-defined, and so f ∈ L (1)((X,A , µ);R).
For the final assertion of this part of the theorem, we compute∣∣∣∣∫

X
f dµ

∣∣∣∣ =
∣∣∣∣∫

X
f dµ+ −

∫
X

f dµ−
∣∣∣∣ ≤ ∣∣∣∣∫

X
f dµ+

∣∣∣∣ +
∣∣∣∣∫

X
f dµ−

∣∣∣∣
≤

∫
X
| f |dµ+ +

∫
X
| f |dµ− =

∫
X
| f |d|µ|,

as claimed.
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Now we consider the case of a vector measure µ, the case of a complex measure
following from this as a special case. Suppose first that f ∈ L(1)((X,A ,µ);R) so that, by
definition, f ∈ L(1)((X,A , µ j);R) for each j ∈ {1, . . . ,n}. Let us first suppose that f is a
nonnegative-valued simple function. Thus

f =

k∑
j=1

c jχA j

for c j ∈ R≥0, j ∈ {1, . . . , k}, and for pairwise disjoint measurable sets A j, j ∈ {1, . . . , k}.
Then ∫

X
f d‖µ‖Rn =

k∑
j=1

c j‖µ‖Rn(A j) ≤
k∑

j=1

c j

n∑
l=1

|µl|(A j),

the last inequality holding by (5.8). Noting that∫
X

f d|µl| =

k∑
j=1

c j|µl|(A j),

we deduce that ∫
X

f d‖µ‖Rn ≤

n∑
l=1

∫
X

f d|µl|,

giving f ∈ L(1)((X,A , ‖µ‖Rn);R) in the case when f is a nonnegative simple function.
For a general nonnegative function f ∈ L(1)((X,A ,µ);R) we let ( f j) j∈Z>0 be a sequence
of nonnegative simple functions such that f j(x) ≤ f j+1(x) for x ∈ X and j ∈ Z>0 and
such that lim j→∞ f j(x) = f (x); see Proposition 5.6.39. Then∫

X
f j d‖µ‖Rn ≤

n∑
l=1

∫
X

f jd|µl| ≤

n∑
l=1

∫
X

f d|µl|,

the last inequality by Proposition 5.7.19. Thus, by the Monotone Convergence Theo-
rem, ∫

X
f d‖µ‖Rn = lim

j→∞

∫
X

f j d‖µ‖Rn ≤

n∑
l=1

∫
X

f d|µl|,

giving f ∈ L(1)((X,A , ‖µ‖Rn);R) for a nonnegativeµ-integrable function f . For a general
µ-integrable function f we then have∫

X
| f |d‖µ‖Rn = lim

j→∞

∫
X

f j d‖µ‖Rn ≤

n∑
l=1

∫
X
| f |d|µl|,

giving f ∈ L(1)((X,A , ‖µ‖Rn);R).
Now we suppose that f ∈ L(1)((X,A , ‖µ‖Rn);R). As above, we first suppose that f

is a nonnegative-valued simple function:

f =

k∑
j=1

c jχA j .
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For l ∈ {1, . . . ,n}we have∫
X

f d|µl| ≤

n∑
l=1

∫
X

f d|µl| ≤

n∑
l=1

k∑
j=1

c j|µl|(A j)

≤
√

n
k∑

j=1

c j‖µ‖Rn(A j) =
√

n
∫

X
f d‖µ‖Rn ,

using Exercise 5.3.6 and Proposition 5.3.55. Thus, for nonnegative simple functions
f ∈ L(1)((X,A , ‖µ‖Rn);R) we have f ∈ L(1)((X,A , µl);R), l ∈ {1, . . . ,n}, and so f ∈
L(1)((X,A ,µ);R). Now one can prove that∫

X
f d|µl| ≤

n∑
l=1

∫
X

f d|µl| ≤
√

n
∫

X
f d‖µ‖Rn

for general nonnegative functions f ∈ L(1)((X,A , ‖µ‖Rn);R) using an argument involv-
ing a sequence of simple functions a ( f j) j∈Z>0 approximating f , just as in the preceding
paragraph. Also just as in the preceding paragraph, it follows that, for a general
f ∈ L(1)((X,A , ‖µ‖Rn);R),∫

X
| f |d|µl| ≤

n∑
l=1

∫
X
| f |d|µl| ≤

√
n
∫

X
| f |d‖µ‖Rn , (5.19)

and so f ∈ L(1)((X,A ,µ);R).
Moreover, by Proposition ??, by the fact that the proposition holds for signed

measures, and by (5.19), we have∥∥∥∥∫
X

f dµ
∥∥∥∥
Rn
≤

n∑
l=1

∣∣∣∣∫
X

f dµl

∣∣∣∣ ≤ n∑
l=1

∫
X
| f |d|µl| ≤

√
n
∫

X
| f |d‖µ‖Rn ,

which gives the final assertion of the proposition. �

First we can show that the integral depends, in the appropriate sense, on the
value of a function up to a set of measure zero.

5.7.60 Proposition (Integrals of functions agreeing almost everywhere) For a measur-
able space (X,A ) and for f,g ∈ L(0)((X,A );R), the following statements hold:

(i) if µ is a signed or complex measure on A and if

|µ|({x ∈ X | f(x) , g(x)}) = 0,

then f ∈ L(1)((X,A , µ);R) if and only if g ∈ L(1)((X,A , µ);R) and, if either of these
conditions holds, ∫

X
f dµ =

∫
X

g dµ;
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(ii) if µ is a vector measure on A taking values in Rn and if

‖µ‖Rn({x ∈ X | f(x) , g(x)}) = 0,

then f ∈ L(1)((X,A ,µ);R) if and only if g ∈ L(1)((X,A ,µ);R) and, if either of these
conditions holds, ∫

X
f dµ =

∫
X

g dµ.

Proof Let us first consider the case of a signed measure µ. First suppose that f ∈
L(1)((X,A , µ);R). By Proposition 5.7.59 it follows that f ∈ L(1)((X,A , |µ|);R). Since g
differs from f on a set whose |µ|-measure is zero, it follows from Proposition 5.7.11
that g ∈ L(1)((X,A , |µ|);R) and so g ∈ L(1)((X,A , µ);R), again by Proposition 5.7.59.
Of course, the argument is reversible, showing that if g ∈ L(1)((X,A , µ);R) then f ∈
L(1)((X,A , µ);R). If Z is the set of points where f and g differ, then∣∣∣∣∫

Z
( f − g) dµ

∣∣∣∣ ≤ ∫
Z
| f − g|d|µ| = 0,

the first inequality by Proposition 5.7.59. Therefore, using the Proposition 5.7.62
below, we have∫

X
( f − g) dµ =

∫
X\Z

( f − g) dµ +

∫
Z

( f − g) dµ =

∫
X\Z

( f − g) dµ = 0.

By Proposition 5.7.61 we then have∫
X

f dµ =

∫
X

g dµ,

giving the first part of the result.
To conclude, we prove the proposition for vector measures, the complex case being

a consequence of this. Suppose that Z denotes the set of points where f and g differ.
Then

|µl|(Z) =

∫
X
χZ dµl ≤

√
n
∫

X
χZ d‖µ‖Rn = 0, (5.20)

where we have used (5.19). Then the first part of the proof gives f ∈ L(1)((X,A , µl);R)
if and only if g ∈ L(1)((X,A , µl);R) for each l ∈ {1, . . . ,n}. The definition of the integral
with respect to µ, along with the conclusions from the first part of the result, gives∫

X
f dµ =

∫
X

g dµ,

as desired. �

The following result concerning algebraic operations can be deduced imme-
diately by applying the corresponding result for positive measures to the Jordan
decomposition of the measures involved.
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5.7.61 Proposition (Algebraic operations for the integral with respect to signed,
complex, and signed measures) For a measurable space (X,A ), the following state-
ments hold:

(i) if µ is a signed or complex measure and if f,g ∈ L(1)((X,A , µ);R), then f + g ∈
L(1)((X,A , µ);R) and ∫

X
(f + g) dµ =

∫
X

f dµ +

∫
X

g dµ;

(ii) if µ is a vector measure taking values in Rn and if f,g ∈ L(1)((X,A ,µ);R), then
f + g ∈ L(1)((X,A ,µ);R) and∫

X
(f + g) dµ =

∫
X

f dµ +

∫
X

g dµ;

(iii) if µ is a signed or complex measure, if f ∈ L(1)((X,A , µ);R) and if α ∈ R, then
αf ∈ L(1)((X,A , µ);R) and ∫

X
αf dµ = α

∫
X

f dµ;

(iv) if µ is a vector measure taking values in Rn, if f ∈ L(1)((X,A ,µ);R), and if α ∈ R,
then αf ∈ L(1)((X,A ,µ);R) and∫

X
αf dµ = α

∫
X

f dµ.

Proof We first consider the case of a signed measure µ with Jordan decomposition
µ = µ+ − µ−. We then have∫

X
( f + g) dµ =

∫
X

( f + g) dµ+ −

∫
X

( f − g) dµ−

=

∫
X

f dµ+ +

∫
X

g dµ+ −

∫
X

f dµ− −
∫

X
g dµ−

=

∫
X

f dµ +

∫
X

g dµ

by Proposition 5.7.17. A similarly styled argument gives∫
X
α f dµ = α

∫
X

f dµ.

The result for vector measures then follows immediately from the result for signed
measures by the definition of the integral with respect to a vector measure. The result
for complex measures is a special case of the result for vector measures. �

We can also break integrals with respect to signed, complex, and vector mea-
sures into separate integrals over disjoint sets.
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5.7.62 Proposition (Breaking the integral in two) For a measurable space (X,A ) let A,B ∈
A be such that X = A

◦

∪B and let f ∈ L(0)((X,A );R). Then the following statements hold:

(i) if µ is a signed or complex measure on A , then f ∈ L(1)((X,A , µ);R) if and only if
f|A ∈ L(1)((A,AA, µ|AA);R) and f|B ∈ L(1)((B,AB, µ|AB);R), and if either of these
two equivalent conditions holds,∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB;

(ii) if µ is a vector measure on A , then f ∈ L(1)((X,A ,µ);R) if and only if f|A ∈
L(1)((A,AA,µ|AA);R) and f|B ∈ L(1)((B,AB,µ|AB);R), and if either of these two
equivalent conditions holds,∫

X
f dµ =

∫
A

(f|A) dµA +

∫
B
(f|B) dµB;

Proof We first consider the case of a signed measure µ. By Proposition 5.7.22 it
follows that f ∈ L(1)((X,A , |µ|);R) if and only if f |A ∈ L(1)((A,AA, |µ||AA);R) and f |B ∈
L(1)((B,AB, |µ||AB);R). By Proposition 5.7.59 it follows that f ∈ L(1)((X,A ,µ);R) if
and only if f |A ∈ L(1)((A,AA,µ|AA);R) and f |B ∈ L(1)((B,AB,µ|AB);R), as claimed.
Moreover, writing f = fχA + fχB, we use Proposition 5.7.61 to give∫

X
f dµ =

∫
A

( f |A) dµA +

∫
B
( f |B) dµB.

The result for vector and complex measures follows immediately from the conclu-
sion for signed measures, using the definition of the integral in these cases. �

5.7.63 Corollary (Breaking the integral almost in two) missing stuff For a measurable
space (X,A ) let A,B ∈ A be such that X = A ∪ B and let f ∈ L(0)((X,A );R). Then the
following statements hold:

(i) if µ is a signed or complex measure on A and if |µ|(A) = 0, then f ∈ L(1)((X,A , µ);R)
if and only if f|A ∈ L(1)((A,AA, µ|AA);R) and f|B ∈ L(1)((B,AB, µ|AB);R);

(ii) if µ is a vector measure on A and if ‖µ‖Rn(A) = 0, then f ∈ L(1)((X,A ,µ);R) if and
only if f|A ∈ L(1)((A,AA,µ|AA);R) and f|B ∈ L(1)((B,AB,µ|AB);R).

Proof This follows from Propositions 5.7.60 5.7.62. �

Finally, for signed, complex, and vector measures we have a version of the
Dominated Convergence Theorem. Note here that a little care must be exercised in
stating the hypotheses.
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5.7.64 Theorem (Dominated Convergence Theorem for signed, complex, and vector
measures) For a measurable space (X,A ) and for a sequence (fj)j∈Z>0 in L(0)((X,A );R)
the following statements hold:

(i) if µ is a signed or complex measure and if

(a) the limit f(x) = limj→∞ fj(x) exists for |µ|-almost every x ∈ X and if

(b) there exists g ∈ L(1)((X,A , |µ|);R≥0) such that, for |µ|-almost every x ∈ X,
|fj|(x) ≤ g(x) for every j ∈ Z>0,

then f, fj ∈ L(1)((X,A , µ);R), j ∈ Z>0, and∫
X

f dµ = lim
j→∞

∫
X

fj dµ;

(ii) if µ is a vector measure taking values in Rn and if

(a) the limit f(x) = limj→∞ fj(x) exists for ‖µ‖Rn-almost every x ∈ X and if

(b) there exists g ∈ L(1)((X,A , ‖µ‖Rn);R≥0) such that, for ‖µ‖Rn-almost every
x ∈ X, |fj|(x) ≤ g(x) for every j ∈ Z>0,

then f, fj ∈ L(1)((X,A ,µ);R), j ∈ Z>0, and∫
X

f dµ = lim
j→∞

∫
X

fj dµ.

Proof We first consider the case of a signed measure µ with Jordan decomposition
µ = µ+ − µ−. The integrability of f and f j, j ∈ Z>0, with respect to µ follows from
their assumed integrability with respect to |µ|, along with Proposition 5.7.59. Since
|µ| = µ+ + µ−, it follows that the limit f (x) = lim j→∞ f j(x) exists for µ+-almost every
x ∈ X and for µ−-almost every x ∈ X. Also, |µ|-integrability of g implies µ+- and
µ−-integrability of g. Finally, we have | f j|(x) ≤ g(x) for µ+- and µ−-almost every x ∈ X
and for every j ∈ Z>0. Then we compute

lim
j→∞

∫
X

f j dµ = lim
j→∞

(∫
X

f j µ+ −

∫
X

f j dµ−
)

= lim
j→∞

∫
X

f j µ+ − lim
j→∞

∫
X

f j dµ−

=

∫
X

f dµ+ −

∫
X

f dµ− =

∫
X

f dµ,

using the Dominated Convergence Theorem for positive measures, along with the
commutativity of limits with sums (Proposition 2.3.23).

We next prove the theorem for the case of a vector measure, noting that the case
of complex measures follows from this. As in (5.20), if Z has ‖µ‖Rn-measure zero, then
Z also has |µl|-measure zero for each l ∈ {1, . . . ,n}. Therefore, the hypotheses of the
theorem give:

1. the limit f (x) = lim j→∞ f j(x) exists for |µl|-almost x ∈ X for each l ∈ {1, . . . , l};
2. | f j|(x) ≤ g(x) for |µl|-almost every x ∈ X for each j ∈ Z>0 and l ∈ {1, . . . ,n}.
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As we saw in the proof of Proposition 5.7.59,∫
X

g d|µl| ≤
√

n
∫

X
g d‖µ‖Rn ,

and so our hypotheses imply that g ∈ L(1)((X,A , |µl|);R≥0) for each l ∈ Z>0. This all
implies that the result from the first part of the theorem gives the result for vector
measures. �

We next show how signed, complex, and vector measures can be built from
positive measures and integrable functions. This gives us a wealth of signed,
complex, and vector measures. We shall see in missing stuff , moreover, that an
important class of measures arise exactly in the manner of the next result.

5.7.65 Proposition (Signed, complex, and vector measures from functions) If
(X,A , µ) is a measure space, then the following statements hold:

(i) if f ∈ L(1)((X,A , µ);R) then f · µ : A → R defined by

(f · µ)(A) =

∫
X

fχA dµ

is a finite signed measure on A ;
(ii) if f ∈ L(1)((X,A , µ);C) then f · µ : A → C defined by

(f · µ)(A) =

∫
X

fχA dµ

is a complex measure on A ;
(iii) if f ∈ L(1)((X,A , µ);Rn) then f · µ : A → Rn defined by

(f · µ)(A) =

∫
X

fχA dµ

is a vector measure on A .
Proof We prove the statement for vector measures, since the other cases are a special
case of this.

It is clear that ( f · µ)(∅) = 0. Now let (A j) j∈Z>0 be a family of pairwise disjoint
elements of A and let A = ∪ j∈Z>0A j. If g = ‖ f‖RnχA then g(x) ≤ ‖ f‖Rn(x) for every
x ∈ X and so g ∈ L(1)((X,A , µ);R≥0) by Proposition 5.7.47. If we define Bk = ∪k

j=1A j

and f k = fχk, k ∈ Z>0, then

lim
k→∞

f k(x) = f (x)χA(x), x ∈ X.

Therefore, by the Dominated Convergence Theorem, Theorem 5.7.56,

( f · µ)(A) =

∫
X

fχA dµ = lim
k→∞

∫
X

f k dµ = lim
k→∞

k∑
j=1

∫
X

fχA j dµ =

∞∑
j=1

( f · µ)(A j),

giving countable additivity of f · µ. �

For the measures determined by integrable functions, as in Proposition 5.7.65,
it is possible to explicitly characterise the integrals with respect to these measures.
The notation from the previous proposition will be used in the statement of the
next.
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5.7.66 Proposition (Integration with respect to measures from functions) If (X,A , µ)
is a measure space and if f ∈ L(1)((X,A , µ);R), g ∈ L(1)((X,A , µ);C), and f ∈
L(1)((X,A , µ);Rn), then the following statements hold:

(i) if f ∈ L(1)((X,A , µ);R) then g ∈ L(1)((X,A , f · µ);R) if and only if fg ∈
L(1)((X,A , µ);R), and if either of these equivalent conditions holds,∫

X
g d(f · µ) =

∫
X
(fg) dµ;

(ii) if f ∈ L(1)((X,A , µ);C) then g ∈ L(1)((X,A , f · µ);R) if and only if fg ∈
L(1)((X,A , µ);C), and if either of these equivalent conditions holds,∫

X
g d(f · µ) =

∫
X
(fg) dµ;

(iii) if f ∈ L(1)((X,A , µ);Rn) then g ∈ L(1)((X,A , f · µ);R) if and only if gf ∈
L(1)((X,A , µ);Rn), and if either of these equivalent conditions holds,∫

X
g d(f · µ) =

∫
X
(gf) dµ.

Proof Let us first consider the case where f ∈ L(1)((X,A , µ);R). Let us define

P = {x ∈ X | f (x) ≥ 0}, N = X \ P,

noting that P (and so N) is measurable by Proposition 5.6.16. Clearly (P,N) is a Hahn
decomposition for (X,A , f · µ). Moreover, the corresponding Jordan decomposition is

f · µ = f+ · µ − f− · µ,

where, as usual, f+(x) = max{ f (x), 0} and f−(x) = max{− f (x), 0}. Noting that g f is
integrable if and only if both g f+ and g f− are integrable, and computing∫

X
( f g) dµ =

∫
X

( f+g) dµ −
∫

X
( f−g) dµ =

∫
X

g d( f+ · µ) −
∫

X
g d( f− · µ) =

∫
X

g d( f · µ),

the result for signed measures follows.
To complete the proof, we suppose that f ∈ L(1)((X,A , µ);Rn), and prove the last

assertion in the statement of the proposition. The proof of the second assertion is a
consequence of this. For A ∈ A and l ∈ {1, . . . ,n}we have

( f · µ)l(A) = prl

(∫
X

fχA dµ
)

=

∫
X

flχA dµ = ( fl · µ)(A),

where prl : Rn
→ R is the projection onto the lth component. Given this, and the

definitions of the integral with respect to a vector measure and the integral of a vector-
valued function, the result follows from the result proved above forR-valued functions.

�
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5.7.9 Notes

There is no standard convention on what Beppo Levi’s Theorem is. Sometimes
what we call the Monotone Convergence Theorem is called Beppo Levi’s Theorem.

Exercises

5.7.1 Let (X,A , µ) be a measure space and let f , g ∈ S(X;R≥0) satisfy f (x) ≤ g(x)
for each x ∈ X. Show that ∫

X
f dµ ≤

∫
X

g dµ.

5.7.2 Let (X,A , µ) be a measure space and let f ∈ S(X;R). For A ∈ A define
fA : X→ R by fA = fχA. Show that∫

X
fA dµ =

∫
A

( f |A) dµA.

5.7.3 Let X = Z>0, let A = 2Z>0 , and let µΣ : A → R≥0 be the counting measure:

µΣ(A) =

card(A), card(A) < ∞,
∞, otherwise.

Verify the following statements using only the definition of the inte-
gral, i.e., do not use the general constructions of Examples 5.7.7 and 5.7.10.
(a) A function f : Z>0 → R is integrable if and only if the series

∑
∞

j=1 f ( j) is
absolutely convergent.

(b) If f is integrable then ∫
Z>0

f dµΣ =

∞∑
j=1

f ( j).

5.7.4 For a measure space (X,A , µ) and for f ∈ L(0)((X,A );R), show that f ∈
L(1)((X,A , µ);R) if and only if | f | ∈ L(1)((X,A , µ);R).

5.7.5 Let X = Z>0, A = 2X, and let µΣ be the counting measure on A . Define
f : Z>0 → R by f ( j) = j. Use the Monotone Convergence Theorem to show
that f < L(1)((Z>0, 2Z, µΣ);R).

The following exercise requires the notion of the concept of a norm which will be
introduced in Section 6.1.

5.7.6 Let (X,A , µ) be a measure space, let f ∈ L(1)((X,A , µ),Rn), and let ‖·‖ be a
norm on Rn. Show that ∥∥∥∥∫

X
f dµ

∥∥∥∥ ≤ ∫
X
‖ f‖dµ.

Hint: Use Proposition 5.7.47 and Theorem 6.1.15. missing stuff
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Section 5.8

Integration on products

In Section ?? we presented Fubini’s Theorem for the Riemann integral which
showed how the n-dimensional Riemann integral could be computed by means of
one-dimensional integrals. In Section 5.3.6 we introduced the product measure
on a finite product of measure spaces. Understanding these two things, it is then
naturally ask whether the integral for a product measure can be understood in
terms of the measure of the component measure spaces. The result is the general
version of Fubini’s Theorem. As part of our treatment of Fubini’s Theorem, we
give an alternative characterisation of the product measure.

Do I need to read this section? We shall make frequent use of Fubini’s Theorem.
That being said, to make use of Fubini’s Theorem it is not necessary to understand
all of the details we present here. What is most important is to understand the
hypotheses of Fubini’s Theorem. •

5.8.1 The product measure by integration

In Section 5.3.6 we defined a unique measure on a product of measure spaces
that had a natural property in terms of the measure of measurable rectangles.
In this section we retrieve this measure in another way, using the integral. This
construction has the benefit of being simpler than that in Section 5.3.6, but only
after one has the integral at hand.

In Section 5.3.6 we defined product measures for arbitrary finite products.
However, it is notationally easier to deal with a product with two factors, and
then use induction to arrive at the general case. Thus we consider two measure
spaces (X,A , µ) and (Y,B, ν). As in Section 5.2.3, a measurable rectangle is a subset
A × B ⊆ X × Y where A ∈ A and B ∈ B. We denote by σ(A ×B) the σ-algebra
generated by the collection of measurable rectangles. For a set E ⊆ X × Y and for
(x, y) ∈ X × Y we define subsets Ex ⊆ Y and Ey

⊆ X by

Ex = {y′ ∈ Y | (x, y′) ∈ E}, Ey = {x′ ∈ X | (x′, y) ∈ E}.

One calls the sets Ex and Ey sections of the set E.
The following result begins our construction of the product measure using the

integral. The reader will hopefully recognise something Fubini-like in this result.

5.8.1 Lemma (Integrals of sections) For σ-finite measure spaces (X,A , µ) and (Y,B, ν)
and for E ∈ σ(A ×B), define

φE : X→ R

x 7→ ν(Ex),
ψE : Y→ R

y 7→ µ(Ey).



2016/11/26 5.8 Integration on products 544

Then φE and ψE are A -measurable and B-measurable, respectively. Moreover,∫
X
φE dµ =

∫
Y
ψE dν.

Proof Denote by M (X × Y) the collection of all sets E for which the conclusions of
the lemma hold. We shall show that M (X × Y) is a monotone class containing the set
of measurable rectangles.

For A ∈ A and B ∈ B we have

φA×B(x) = ν(B)χA(x), ψA×B(y) = µ(A)χB(y),

which shows that A × B ∈ M (X × Y). Therefore, φA×B and ψA×B are measurable (by
Example 5.6.8–2) and ∫

X
φA×B dµ =

∫
Y
ψA×B dν = µ(A)ν(B).

Thus M (X × Y) contains the measurable rectangles.
Now let (E j) j∈Z>0 be a collection of subsets of M (A×B) for which E j ⊆ E j+1, j ∈ Z>0.

Then, denoting E = ∪ j∈Z>0E j,

lim
j→∞

φE j(x) = φE(x), lim
j→∞

ψE j(y) = ψE(y).

Thus φE ∈ L(0)((X,A ),R) and ψE ∈ L(0)((Y,B);R) by Proposition 5.6.18. Note that the
sequences (φE j(x)) j∈Z>0 and (ψE j(x)) j∈Z>0 are monotonically increasing, so the Monotone
Convergence Theorem gives∫

X
φE dµ = lim

j→∞

∫
X
φE j dµ = lim

j→∞

∫
Y
ψE j dν =

∫
Y
ψE dν.

Therefore, E ∈M (X × Y), which is part (i) of the definition of a monotone class.
Now, for the moment, suppose that µ(X) and ν(Y) are finite. Let (E j) j∈Z>0 be a

sequence in σ(A ×B) such that E j ⊇ E j+1, j ∈ Z>0. Define E = ∩ j∈Z>0E j and note that

lim
j→∞

φE j(x) = φE(x), lim
j→∞

ψE j(y) = ψE(y).

Thus φE ∈ L(0)((X,A ),R) and ψE ∈ L(0)((Y,B);R) by Proposition 5.6.18. Note that we
obviously have

φE j(x) ≤ ν(Y)χX(x), φE(x) ≤ ν(Y)χX(x), ψE j(y) ≤ µ(X)χY(y), ψE(y) ≤ µ(X)χY(y)

for every (x, y) ∈ X,Y. Moreover, since we are assuming that X and Y have finite
measure we have χX ∈ L(1)((X,A , µ);R) and χY ∈ L(1)((Y,B, ν);R). Therefore, the
hypotheses of the Dominated Convergence Theorem hold and we have∫

X
φE dµ = lim

j→∞

∫
X
φE j dµ = lim

j→∞

∫
Y
ψE j dν =

∫
Y
ψE dν,

from which we conclude that E ∈M (X × X). This verifies part (ii) of Definition 5.2.11
in this case. Thus this shows that, when µ(X), ν(Y) < ∞, M (X × Y) is a monotone



545 5 Measure theory and integration 2016/11/26

class containing the measurable rectangles. From Theorem 5.2.13 it then follows that
σ(A ×B) ⊆M (X × Y). Thus the lemma holds in this case.

Now let us suppose that µ(X) and ν(Y) are not necessarily finite, but that using
our assumption of σ-additivity we can write X = ∪k∈Z>0Xk and Y = ∪k∈Z>0Yk where
µ(Xk), ν(Yk) < ∞, k ∈ Z>0, and where (Xk)k∈Z>0 and (Yk)k∈Z>0 are pairwise disjoint
measurable sets. Thus X × Y is the disjoint union of the measurable rectangles X×Yl,
k, l ∈ Z>0. Let f : Z>0 → Z>0 ×Z>0 be a bijection and, for m ∈ Z>0, define Zm = Xk ×Yl
where φ(m) = (k, l). Now X × Y is a disjoint union of the measurable sets Zm, m ∈ Z>0.
Finally, define Sn = ∪n

m=1Zm so that X×Y is a union of the measurable sets Sn, n ∈ Z>0,
where Sn ⊆ Sn+1. Note that µ(Sn) < ∞ for every n ∈ Z>0 since Sn is a finite union of
sets of finite measure.

Now let E ∈ σ(A × B) and denote En = E ∩ Sn. From our argument above,
En ∈ σ(A ×B) and ∫

X
φEn dµ =

∫
Y
ψEn dν.

We also have
lim
n→∞

φEn(x) = φE(x), lim
n→∞

ψEn(y) = ψE(y)

for every (x, y) ∈ X × Y. Since Sn ⊆ Sn+1 for every n ∈ Z>0, the sequences (φEn(x))n∈Z>0

and (ψEn(y))n∈Z>0 are increasing for every (x, y) ∈ X × Y. Therefore, by the Monotone
Convergence Theorem,∫

X
φE dµ = lim

n→∞

∫
X
φEn dµ = lim

n→∞

∫
Y
ψEn dν =

∫
Y
ψE dν,

giving the lemma. �

With the preceding, we can fairly easily derive the product measure using the
integral.

5.8.2 Theorem (The product measure using the integral) For σ-finite measure spaces
(X,A , µ) and (Y,B, ν), the map µ × ν : σ(A ×B)→ R≥0 defined by

µ × ν(E) =

∫
X
φE dµ =

∫
Y
ψE dν

makes (X × Y, σ(A ×B), µ × ν) a σ-finite measure space. Moreover, the measure µ × ν is
the product measure as defined in Definition 5.3.34.

Proof It is clear that µ × λ(∅) = 0 since ∅ = ∅ × ∅ is a measurable rectangle, being the
product of two sets with zero measure. For a sequence (E j) j∈Z>0 of disjoint subsets of
σ(A ×B) define E = ∪ j∈Z>0E j. Note that

φE(x) =

∞∑
j=1

φE j(x),

and so Beppo Levi’s Theorem gives

µ × ν(E) =

∫
X
φE dµ =

∞∑
j=1

∫
X
φE j dµ =

∞∑
j=1

µ × ν(E j),
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as desired.
That µ×ν is the product measure follows from Theorem 5.3.33, along with the fact

that we showed in the proof of Lemma 5.8.1 that µ × ν(A × B) = µ(A)ν(B) for A ∈ A
and B ∈ B. �

Now that we have established the product measure using the integral for a
product with two factors, it is more or less a straightforward induction to do the
same for products with three or more factors. Indeed, suppose we have σ-finite
measure spaces (X j,A j, µ j), j ∈ {1, . . . , k}. For E ⊆ X1 × · · · × Xk and for xk ∈ Xk,
denote

Exk = {(x1, . . . , xk−1) ∈ X1 × · · · × Xk−1 | (x1, . . . , xk−1, xk) ∈ E}.

Suppose that we have defined the product measure µ1× · · ·×µk−1 on X1× · · ·×Xk−1.
Then define φE : Xk → R by

φE(xk) = µ1 × · · · × µk−1(Exk).

We then have

µ1 × · · · × µk(E) =

∫
Xk

φEk dµk,

which is the product measure.

5.8.2 The integral on product spaces

Either by the construction of the previous section, or by the construction of
Section 5.3.6, we have defined on the product X1 × · · · × Xk, for measure spaces
(X j,A j, µ j), j ∈ {1, . . . , k}, a natural measure. One can then apply the construction
of the integral from Section 5.7 to define the integral of measurable functions on
the product. There is a slight hitch here that one needs to account for if one is to
use this theory for the n-dimensional Lebesgue integral. To wit, in Section 5.5.4
we observed that the n-dimensional Lebesgue measure is not the product of the
1-dimensional Lebesgue measures on R × · · · × R, but is the completion of this
measure. Thus we should develop integration for, not just the product measure, but
its completion. This is not particularly difficult, but just requires a few additional
words.

As in the preceding section, for simplicity we start with two measure spaces
(X,A , µ) and (Y,B, ν). As in the preceding section, we denote by σ(A × B) the
natural product σ-algebra on X×Y, i.e., the σ-algebra generated by the measurable
rectangles. By µ × ν we denote the product measure. As we saw in Section 5.5.4
(and more generally in Remark 5.3.36), there are cases where the measure µ × ν is
not complete (although there are also cases where the product measure is complete).
Thus we denote by (X×Y, σ(A ×B), µ × ν) the completion of (X×Y, σ(A ×B), µ×ν).

In the previous section we defined the notion of the sections for a subset E ⊆
X×Y. This can also be done for functions. For a function f : X×Y→ R, we define
functions fx : Y→ R and f y : X→ R by

fx(y) = f y(x) = f (x, y).
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One calls the functions fx and f y sections of the function f . The following result
give the measurability properties of sections of sets and functions.

5.8.3 Lemma (Measurability of sections) For measure spaces (X,A , µ) and (Y,B, ν), the
following statements hold:

(i) if E ⊆ X×Y is σ(A ×B)-measurable, then Ex ∈ B for every x ∈ X and Ey
∈ A for

every y ∈ Y;
(ii) if (X,A , µ) and (Y,B, ν) are complete and if E ⊆ X × Y is σ(A ×B)-measurable,

then Ex ∈ B for every x ∈ X and Ey
∈ A for every y ∈ Y;

(iii) if f : X×Y→ R is σ(A ×B)-measurable, then fx ∈ L(0)((Y,B);R) for almost every
x ∈ X and fy

∈ L(0)((X,A );R) for almost every y ∈ Y;

(iv) if (X,A , µ) and (Y,B, ν) are complete and if f : X×Y→ R is σ(A ×B)-measurable,
then fx ∈ L(0)((Y sB);R) and fy

∈ L(0)((X,A );R).
Proof (i) This is a special case of Proposition 5.2.18.

(ii) Next suppose that E ∈ σ(A × B). We let U ⊆ E ⊆ L have the property that
U,L ∈ σ(A ×B) and µ × ν(U \ L) = 0. We may apply the first part of the proof to U to
assert that Ux and Lx are measurable for all x ∈ X. Since (Ux \ Ex) ⊆ (Ux \ Lx) and since
Ux \ Lx has measure zero, it follows that Ux \ Ex is measurable by completeness of A .
Thus Ex is σ(A ×B)-measurable. Similarly, Ey is also σ(A ×B)-measurable.

(iii) Note that for S ⊆ R we have f−1
x (S) = ( f−1(S))x and ( f y)−1(S) = ( f−1(S))y. This

part of the lemma now follows from part (i).
(iv) By Proposition 5.7.15 we may find g that is σ(A × B)-measurable and for

which f (x, y) = g(x, y) except on a set that has zero measure relative to µ × ν. Thus
h = f − g is zero except on a set that has zero measure relative to µ × ν. This part of
the lemma will follow from part (iii) if we can show that hx and hy are measurable for
almost every x ∈ X and y ∈ Y. If E is the set of points in X ×Y where h does not vanish
then E ∈ σ(A ×B). Thus we may find E ⊆ U with U ∈ σ(A ×B) with (µ × ν)(U) = 0.
By Lemma 5.8.1 we have ∫

X
φU dµ = 0.

Now let Z = {x ∈ X | φU(x) , 0}. We must have µ(Z) = 0. Thus, for almost every
x ∈ X we have µ(Ux) = 0. Since Ex ⊆ Ux and since µ is complete, it follows that Ex is
B-measurable for almost every x ∈ X. If y < Ex then we must have hx(y) = 0. This
implies that, as long as x < Z then hx is measurable and zero almost everywhere. This
completes the proof. �

5.8.3 Fubini’s Theorem

Now let us investigate swapping the order of integration in computing integrals
on products. Let us see what we might mean by this. If f : X×Y→ R is σ(A ×B)-
measurable or σ(A ×B)-measurable, then we define

φ f (x) =


∫

Y
fx dν, the integral exists,

0, otherwise,
ψ f (y) =


∫

X
f y dµ, the integral exists,

0, otherwise.
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We may then ask when it holds that∫
X
φ f dµ =

∫
Y
ψ f dν,

and when, if the preceding equality holds, both sides are, in fact, the integral of f
with respect to the product measure. We have two more or less identical theorems,
one for the product measure and one for its completion.

The first theorem deals with the product measure on A × B.

5.8.4 Theorem (Fubini’s Theorem for the product measure) Let (X,A , µ) and (Y,B, ν)
be σ-finite measure spaces and let f : A × B → R be σ(A × B)-measurable. Then the
following statements hold:

(i) if f is R≥0-valued then φf and ψf are measurable and∫
X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(ii) if φ|f| ∈ L(1)((X,A , µ);R) or if ψ|f| ∈ L(1)((Y,B, ν),R), then

f ∈ L(1)((X × Y, σ(A ×B), µ × ν);R)

and ∫
X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(iii) if f ∈ L(1)((X × Y, σ(A ×B), µ × ν);R) then

(a) fx ∈ L(1)((Y,B, ν);R) and fy
∈ L(1)((X,A , µ);R) for almost every x ∈ X and

y ∈ Y,

(b) φf ∈ L(1)((X,A , µ);R) and ψf ∈ L(1)((Y,B, ν);R), and
(c) it holds that ∫

X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν).

Proof (i) By Lemma 5.8.3 the functions φ f and ψ f are everywhere defined since the
integral of a nonnegative-valued measurable function always exists. By Lemma 5.8.1
this part of the theorem holds for characteristic functions of L (A) ×L (B)-measurable
sets. Therefore, it also holds for simple functions by Proposition 5.7.16 since sim-
ple functions are finite linear combinations of characteristic functions. By Propo-
sition 5.6.39 let (g j) j∈Z>0 be a monotonically increasing sequence of simple functions
such that f (x, y) = lim j→∞ g j(x, y) for each (x, y) ∈ X×Y. By the Monotone Convergence
Theorem we have∫

X
φ f dµ = lim

j→∞

∫
X
φg j dµ = lim

j→∞

∫
X×Y

g j d(µ × ν) =

∫
X×Y

f d(µ × ν),

and similarly for ψ f . This gives the result.
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(ii) By part (i) we have∫
X
φ| f | dµ =

∫
X
ψ| f | dν =

∫
X×Y
| f |d(µ × ν) < ∞.

Thus f is µ× ν-integrable, as desired. Note, then, that f+, f− are µ× ν-integrable. Thus
f ∈ L(1)((X × Y),A ×B, µ × ν);R) by Exercise 5.7.4. By part (i) we have∫

X
φ f+ dµ =

∫
X
ψ f+ dν =

∫
X×Y

f+ d(µ × ν),

and similarly for f−. By Proposition 5.7.17 it then follows that∫
X
φ f dµ =

∫
X
ψ f dν =

∫
X×Y

f d(µ × ν),

as desired.
(iii) Write f = f+ − f− and note that fx, f+,x, and f−,x are B-measurable by

Lemma 5.8.3. By part (i) the functions φ f+ and φ f− are A -measurable. Also by
part (i) we have ∫

X
φ f+ dµ =

∫
X
ψ f+ dν =

∫
X×Y

f+ d(µ × ν),

and similarly for f−. Therefore, φ f+ and φ f− are integrable with respect to µ. Therefore,
φ f+ and φ f− are finite for almost all x ∈ X by Proposition 5.7.12. If

Z = {x ∈ X | φ f+(x) = ∞} ∪ {x ∈ X | φ f−(x) = ∞}

then Z ∈ A by Proposition 5.6.6 and µ(Z) = 0. If x < Z then we have

φ f (x) =

∫
X

f+ dµ −
∫

X
f− dµ = φ f+(x) − φ f−(x)

and if x ∈ Z we have φ f (x) = 0. Thus φ f almost everywhere agrees with φ f+ − φ f− . By
Propositions 5.7.11 and 5.7.17 we have∫

X
φ f dµ =

∫
X
φ f+ dµ −

∫
X
φ f− dµ

=

∫
X×Y

f+ d(µ × ν) −
∫

X×Y
f− d(µ × ν)

=

∫
X×Y

f d(µ × ν),

as desired. A similar argument gives∫
Y
ψ f dν =

∫
X×Y

f d(µ × ν)

which completes the proof. �

We shall also use the following result, which follows from the previous theo-
rem, along with the definition of the integral for vector-valued functions. In the
statement of the theorem, we use the obvious definitions for f x and f y for a function
f : X × Y→ Rn and for functions φ f : X→ Rn and ψ f : Y→ Rn.



2016/11/26 5.8 Integration on products 550

5.8.5 Corollary (Vector-valued Fubini’s Theorem for the product measure) Let
(X,A , µ) and (Y,B, ν) be σ-finite measure spaces and let f : A × B → Rn be σ(A ×B)-
measurable. Then the following statements hold:

(i) if φ‖f‖Rn ∈ L(1)((X,A , µ);Rn) or if ψ‖f‖Rn ∈ L(1)((Y,B, ν),Rn), then

f ∈ L(1)((X × Y, σ(A ×B), µ × ν);Rn)

and ∫
X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(ii) if f ∈ L(1)((X × Y, σ(A ×B), µ × ν);Rn) then
(a) fx ∈ L(1)((Y,B, ν);Rn) and fy

∈ L(1)((X,A , µ);Rn) for almost every x ∈ X and
y ∈ Y,

(b) φf ∈ L(1)((X,A , µ);Rn) and ψf ∈ L(1)((Y,B, ν);Rn), and
(c) it holds that ∫

X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν).

Of course, the theorem applies to the space case of R2 and so to C-valued
functions.

Let us give some examples that illustrate how to use Fubini’s Theorem, as well
as some of the caveats one must be aware of when applying the theorem.

5.8.6 Examples (Fubini’s Theorem)
1. Let us take X = Y = Z>0, A = B = 2Z>0 , and µ = ν = µΣ, where we recall from

Example 5.3.9–3 that µΣ denotes the counting measure. For f : Z>0 ×Z>0 → R
and m ∈ Z>0 define fm : Z>0 ×Z>0 → R by

fm( j, k) =

 f ( j, k), j, k ∈ {1, . . . ,m},
0, otherwise.

Note that ∫
Z>0×Z>0

fm d(µΣ × µΣ) =

m∑
j=1

m∑
k=1

f ( j, k)

since fm is a simple function. Clearly, f ( j, k) = limm→∞ fm( j, k) for every ( j, k) ∈
Z>0 ×Z>0. Thus, by the Monotone Convergence Theorem,∫

Z>0×Z>0

| f |dµΣ × µΣ = lim
m→∞

m∑
j=1

m∑
j=1

| f ( j, k)|.

In other words, f ∈ L(1)((Z>0 ×Z>0), 2Z>0 × 2Z>0 , µΣ × µΣ);R) if and only if

∞∑
j,k=1

| f ( j, k)| < ∞,
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noting that the doubly infinite sum is unambiguously defined since it is a sum
of positive terms, cf. Theorem 2.4.5.
Now, Fubini’s Theorem in this case tells us that when f ∈ L(1)((Z>0 ×Z>0, 2Z>0 ×

2Z>0 , µΣ × µΣ);R) then
∞∑
j=1

∞∑
k=1

f ( j, k) =

∞∑
k=1

∞∑
j=1

f ( j, k) =

∞∑
j,k=1

f ( j, k),

i.e., the order of summation can be swapped.
2. We take X = Y = Z, A = B = 2Z, and µ = ν = µΣ. We define f : Z ×Z→ R by

f ( j, k) =


1, j ∈ Z≥0, k = j,
−1, j ∈ Z≥0, k = j + 1,
0, otherwise.

We directly compute

φ f ( j) = 0, ψ f (k) =

1, k = 0,
0, otherwise.

Therefore, ∫
Z

φ f dµΣ = 0,
∫
Z

ψ f dµΣ = 1,

which shows that the order of integration (order of summation, in this case)
cannot be swapped. This does not contradict Theorem 5.8.4, however. Indeed,
note that

φ| f |( j) =

2, j ∈ Z≥0,

0, otherwise,
ψ| f | =


1, j = 0,
2, j ∈ Z>0,

0, otherwise.

Since neither of these functions is integrable, part (ii) of Theorem 5.8.4 cannot
be applied.

3. One might wonder whether the fact that the measure spaces are infinite in the
preceding example is the reason for the failure of Fubini’s Theorem. In this
example, we shall show that this is not the case. Here we shall use the Lebesgue
integral, which is defined using the Lebesgue measure. Although we do not
discuss this in detail until Sections 5.9 and ??, this should not cause problems
since for this example it suffices to consider the functions as being Riemann
integrable.
We take X = Y = [0, 1], A = B = L ([0, 1]), and µ = ν = λ[0,1]. Define ξ j = 1− 1

j+1 ,
j ∈ Z>0, and let g j : [0, 1] → R be a positive continuous function such that∫
[0,1]

g j dλ[0,1] = 1 and such that supp(g j) ⊆ (ξ j, ξ j+1) (for example, a “triangular”
function of the right height and base). Then define f : [0, 1] × [0, 1]→ R by

f (x, y) =

∞∑
j=1

(g j(x) − g j+1(x))g j(y).
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It is clear that for each (x, y) ∈ [0, 1] × [0, 1] this sum has at most one nonzero
term, and so is well-defined. By construction, we have

φ f (x) =

∞∑
j=1

(g j(x) − g j+1(x))
∫

[0,1]
g j dλ[0,1] =

∞∑
j=1

(g j(x) − g j+1(x))

and

ψ f (y) =

∞∑
j=1

g j(y)
∫

[0,1]
(g j − g j+1) dλ[0,1] = 0.

Therefore, observing that
∞∑
j=1

(g j(x) − g j+1(x)) = g1(x),

we have ∫
[0,1]

φ f dλ[0,1] = 1,
∫

[0,1]
ψ f dλ[0,1] = 0,

showing that the order of integration cannot be swapped. But this does not
contradict part (ii) of Theorem 5.8.4 since

φ| f |(x) =

∞∑
j=1

|g j(x) − g j+1(x)|
∫

[0,1]
g j dλ[0,1] =

∞∑
j=1

(g j(x) + g j+1(x))

=⇒

∫
[0,1]

φ| f | dλ[0,1] = ∞,

using the fact that the functions g j, j ∈ Z>0, are positive and have pairwise
disjoint support. Thus the hypotheses of part (ii) of Theorem 5.8.4 do not hold.

4. Let us consider now a case where Fubini’s Theorem can fail for a positive-valued
function. Again, we make use of the Lebesgue integral. We take X = Y = [0, 1],
A = 2[0,1]a, B = L ([0, 1]), and µ = µΣ and ν = λ[0,1]. We define f : Z×R→ R by

f (x, y) =

1, x = y,
0, otherwise.

Then we compute
φ f (x) = 0, ψ f (y) = 1

for all (x, y) ∈ [0, 1] × [0, 1]. Therefore,∫
[0,1]

φ f dµΣ = 0,
∫

[0,1]
ψ f dλ[0,1] = 1.

Again, the order of integration cannot be swapped. In this case, the issue cannot
be with the hypotheses of part (ii) of Theorem 5.8.4 since f is nonnegative-
valued, and so it is part (i) that should be applied. However, the problem with
this example is that the measure space ([0, 1], 2[0,1], µΣ) is not σ-finite.
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5. missing stuff •

Next we state the version of Fubini’s Theorem for the completion of the product
measure. This is actually the version of Fubini’s Theorem that gets the most use
since it applies to the Lebesgue integral on Rn as a product measure. Fortunately,
it differs from Theorem 5.8.4 only in the use of the completed measure in the
statement.

5.8.7 Theorem (Fubini’s Theorem for the completion of the product measure) Let
(X,A , µ) and (Y,B, ν) be σ-finite measure spaces and let f : A × B → R be σ(A ×B)-
measurable. Then the following statements hold:

(i) if f is R≥0-valued then φf and ψf are measurable and∫
X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(ii) if φf ∈ L(1)((X,A , µ);R) or if ψf ∈ L(1)((Y,B, ν),R), then

f ∈ L(1)((X × Y, σ(A ×B), µ × ν);R)

and ∫
X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν);

(iii) if f ∈ L(1)((X × Y, σ(A ×B), µ × ν);R) then

(a) fx ∈ L(1)((Y,B, ν);R) and fy
∈ L(1)((X,A , µ);R) for almost every x ∈ X and

y ∈ Y,

(b) φf ∈ L(1)((X,A , µ);R) and ψf ∈ L(1)((Y,B, ν);R), and
(c) it holds that ∫

X
φf dµ =

∫
Y
ψf dν =

∫
X×Y

f d(µ × ν).

Proof By Proposition 5.7.15 we can write f = g + h where

µ × ν({(x, y) ∈ X × Y | h(x, y) , 0}) = 0

and where g is σ(A × B)-measurable. One now applies Theorem 5.8.4 to g, notes
that fx = gx for almost every x by Lemma 5.8.3, and therefore deduces from Proposi-
tion 5.7.15 that∫

X×Y
f d(µ × ν) =

∫
X
φ f dµ =

∫
X
φg dµ =

∫
X×Y

g d(µ × ν),

provided that all integrals exist. A similar conclusion holds using f y, gy, ψ f , and ψg.
The theorem follows directly from this. �

The next result deals with a situation we will commonly encounter when using
Fubini’s theorem.
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5.8.8 Corollary (A special case of Fubini’s Theorem) Let (X,A , µ) and (Y,B, ν) be σ-
finite measure spaces, let f ∈ L(0)((X,A );R) and g ∈ L(0)((Y,B);R), and define F: X×Y→
R by F(x,y) = f(x)g(y). Then

(i) F is both σ(A ×B)- and σ(A ×B)-measurable and
(ii) F is integrable with respect to both µ × ν and µ × ν if f ∈ L(1)((X,A , µ);R) and

g ∈ L(1)((Y,B, ν);R).
Proof (i) Denote f̃ , g̃ : X × Y→ R by f̃ (x, y) = f (x) and g̃(x, y) = g(y). Then

f̃−1([a,∞]) = f−1([a,∞]) × Y ∈ A ×B,

and so both f̃ is σ(A ×B)- and σ(A ×B)-measurable. Similarly, g̃ is both σ(A ×B)- and
σ(A ×B)-measurable. Therefore, by Proposition 5.6.11, f̃ g̃ is both σ(L (A) ×L (B))-
and σ(A ×B)-measurable. This part of the result follows since F = f̃ g̃.

(ii) By part (i) of Theorem 5.8.4 we compute∫
X×Y
|F|d(µ × ν) =

∫
Y
|g|

(∫
X
| f |dµ

)
dν =

(∫
X
| f |dµ

)(∫
Y
|g|dν

)
< ∞.

The result now follows from part (ii) of Theorem 5.8.4. �

missing stuff

5.8.9 Example (Fubini’s Theorem for the Lebesgue measure) Let us consider X =
Y = R, A = B = L (R), and µ = ν = λ. Define f : R ×R→ R by

f (x, y) =


1, x ∈ R≥0, y ∈ [x, x + 1],
−1, x ∈ R>0, y ∈ [x + 1, x + 2],
0, otherwise.

In Sections 5.9 and ?? we shall show that the Lebesgue integral agrees with the
Riemann integral in cases where the latter is defined. Therefore, to work out this
example, it suffices to perform integration using the usual Riemann integral. Let
us then denote the integral with respect to the first factor by

∫
dx and the integral

with respect to the second factor by
∫

dy. In Figure 5.5 we depict the function.
With this figure in mind we compute∫

R

(∫
R

f (x, y) dx
)

dy =

∫ 1

0

(∫ y

0
dx

)
dy +

∫ 2

1

(∫ y

y−1
dx −

∫ y−1

0

)
dy

+

∫
∞

2

(∫ y

y−1
dx −

∫ y−1

y−2
dx

)
dy

=
1
2

+
1
2

+ 0 = 1

and ∫
R

(∫
R

f (x, y) dy
)

dx =

∫
∞

0

(∫ x+1

x
dy −

∫ x+2

x+1

)
dx = 0.
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x

y

f
=
1

f
=
−1

Figure 5.5 A function for which Fubini’s Theorem does not hold

Thus both integrals∫
R

(∫
R

f (x, y) dx
)

dy,
∫
R

(∫
R

f (x, y) dy
)

dx

exist, but they are not equal to one another. However, this does not contradict
Theorem 5.8.7. To see this, note that

φ| f |(x) =

2, x ∈ R≥0,

0, otherwise,
ψ| f |(y) =


y, y ∈ [0, 2],
y − 2, y ∈ (2,∞),
0, otherwise.

Since neither of these functions is integrable, part (ii) of Theorem 5.8.7 does not
apply. More directly, | f | is the characteristic function of the union of the shaded
regions in Figure 5.5. Therefore, the integral of | f | is the area of this region which
is infinity. Thus f is not integrable. •

Exercises

5.8.1
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Section 5.9

The single-variable Lebesgue integral

The Lebesgue integral on R is nothing but the integral defined in Section 5.7.1
when the measure space is (R,L (R), λ). We shall not develop the definition of
Lebesgue integral beyond this observation, so the reader looking to understand
this definition will have to read Section 5.4 and then read Section 5.7 replacing all
occurrences of (X,A , µ) with (R,L (R), λ). This will give the reader most of what
they will need to use the Lebesgue integral effectively. In this section we gather a
few results and observations that are particuar to the Lebesgue integral on R.

Do I need to read this section? The reader looking for the definition of the
Lebesgue integral and some of its basic properties will get that by reading Sec-
tions 5.4 and 5.7 as described above. If this is all one is interested in, then this
section can be bypassed, and the results consulted when needed. One topic in this
section that may be of interest, and which is not contained in Sections 5.4 and 5.7,
is the relationship between the Lebesgue integral and the Riemann integral. This,
after all, is how we motivated the constructions that have gotten us to where we
are. •

5.9.1 Lebesgue measurable functions

We begin by studying the character of Lebesgue measurable functions on R. In
this case, the additional structure of R allows us to give some further refinements
of the properties of measurable functions.

Let us introduce the common terminology for the particular measurable func-
tions we discuss in this section.

5.9.1 Definition (Borel measurable, Lebesgue measurable) Let A ⊆ R. A function
f : A→ R is

(i) Borel measurable if A ∈ B(R) and if f is B(A)-measurable and
(ii) Lebesgue measurable if A ∈ L (R) and if f is L (A)-measurable.

We shall almost always write L(0)(A;R) for the Lebesgue measurable functions on
A, rather than L(0)((R,L (A));R). •

Now let us consider the approximation of measurable functions by “nice” func-
tions like step functions and continuous functions. We recall from Section 3.4.1 the
notion of a step function defined on a compact interval.

5.9.2 Theorem (Lebesgue measurable functions are approximated by step func-
tions) If I = [a, b] is a compact interval, if f : I→ R is measurable and satisfies

λ({x ∈ I | f(x) ∈ {−∞,∞}} = 0,
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and if ε1, ε2 ∈ R>0, then there exists a step function g: I→ R≥0 such that

λ({x ∈ I | |f(x) − g(x)| ≥ ε1}) < ε2.

Proof It suffices to prove the theorem when ε1 = ε2 = ε. Thus we take ε ∈ R>0.
For k ∈ Z>0 define

Ak = {x ∈ I | | f (x)| ≥ k},

and note that the sequence (λ(I \ Ak))k∈Z>0 is monotonically increasing and bounded
above by b − a. Thus it is convergent by Theorem 2.3.8. Moreover, it converges
to b − a. Indeed, if the sequence converges to ` < b − a then this would imply, by
Proposition 5.3.3, that

lim
k→∞

λ(I \ Ak) = λ(I \ ∪k∈Z>0Ak) < b − a.

Thus there exists a set B ⊆ I of positive measure such that I = (∪k∈Z>0Ak

◦

∪B). Note
if x ∈ B then | f (x)| = ∞, contradicting our assumptions on f . Thus we indeed have
limk→∞ λ(I \ Ak) = b − a. Thus there exists M ∈ Z>0 such that λ(I \ AM) < b − a −
ε
2 , i.e., λ(AM) < ε

2 . Therefore,

λ({x ∈ I | | f (x)| ≥M}) < ε
2 .

Then define fM : I→ R by

fM(x) =


f (x), | f (x)| < M,
M, | f (x)| ≥M,
−M, f (x) < −M.

Note that fM is measurable by Proposition 5.6.16.
Now take K ∈ Z>0 such that 2−K < ε and such that K ≥ M. If we follow the

construction in the proof of Proposition 5.6.39 then we define

A+,K, j = {x ∈ I | 2−K( j − 1) ≤ fM(x) < 2−K j}

and
A−,K, j = {x ∈ I | − 2−K j ≤ fM(x) < −2−K( j − 1)}

for j ∈ {1, . . . ,K2K
}. Since K ≥M we have

I = (∪K2K

j=1 A+,K, j) ∪ (∪K2K

j=1 A−,K, j).

Moreover, if we define a simple function h : I→ R by

h(x) =

2−K( j − 1), x ∈ A+,K, j,

−2−K j, x ∈ A−,K, j,

then we have |h(x) − fM(x)| < ε for every x ∈ I.
Now that we have a R-valued simple function h that approximates fM to within

ε on I, let us dispense with the cumbersome notation above we introduced to define
h, and instead write h =

∑k
j=1 a jχA j for a1, . . . , ak ∈ R and for a partition (A1, . . . ,Ak)
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of I into Lebesgue measurable sets. Fix j ∈ {1, . . . , k}. Since A j is measurable, by
Corollary 5.4.20 we can write A j = U j \B j where U j is open and where B j ⊆ U j satisfies
λ(B j) < ε

8k . Since U j is open, it is a countable union of disjoint open intervals by
Proposition 2.5.6. If U j is in fact a finite union of open intervals then denote V j = U j. If
any of the intervals comprising V j have common endpoints, then these intervals may
be shrunk so that their complement in A j has measure at most ε

2k . Next suppose that
U j is a countable union of open intervals (J j,l)l∈Z>0 . Since U j is bounded we must have∑
∞

l=1 λ(J j,l) < ∞. Therefore, there exists N j ∈ Z>0 such that
∑
∞

j=N j+1 λ(Jl, j) < ε
8k . We

then define V j = ∪
N j

l=1J j,l. If any of the intervals J1, j, . . . , JN j+1, j have common endpoints,
they can be shrunk while maintaining the fact that the measure of their complement
in A j is at most ε

2k . Define g : I → R on V j by asking that g(x) = a j for x ∈ V j. Doing
this for each j ∈ {1, . . . , k} defines g : I → R on the set ∪k

j=1V j which is a finite union of

open intervals whose complement has measure at most ε
2 . The complement to ∪k

j=1V j

is a union of intervals, and on these intervals define g to be, say, 0. Note that g as
constructed is a step function, and that g(x) = h(x) for x ∈ ∪k

j=1V j.

Note that if x ∈ (∪k
j=1V j) ∪ (I \ AM) we have

|g(x) − f (x)| = |h(x) − fM(x)| < ε.

Therefore,
λ({x ∈ I | f (x) − g(x) ≥ ε}) ⊆ I \ ((∪k

j=1V j) ∪ (I \ AM)),

and
λ(I \ ((∪k

j=1V j) ∪ (I \ AM))) < ε,

giving the result. �

A similar sort of result holds for approximations of measurable functions by
continuous functions.

5.9.3 Theorem (Lebesgue measurable functions are approximated by continuous
functions) If I = [a, b] is a compact interval, if f : I→ R is measurable and satisfies

λ({x ∈ I | f(x) ∈ {−∞,∞}} = 0,

and if ε1, ε2 ∈ R>0, then there exists a continuous function h: I→ R≥0 such that

λ({x ∈ I | |f(x) − h(x)| ≥ ε1}) < ε2.

Proof We shall merely outline how this works, since this is “obvious” once one has
the basic idea at hand. We assume that ε1 = ε2 = ε. By the method of Theorem 5.9.2,
we approximate f with a step function g such that

λ({x ∈ I | | f (x) − g(x)| ≥ ε}) < ε.

Note that the set of points in I where | f (x) − g(x)| < ε is a finite union of intervals with
pairwise disjoint closures on each of which g is constant. The value of g on the intervals
complementary to these intervals is of no consequence. To define the continuous
function h we ask that h agree with g on the intervals upon which g is constant, and
between these intervals we ask that h be a linear function that interpolates between the
values of h at the two endpoints. The resulting function clearly satisfies the conclusions
of the theorem. �
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In Definition 6.7.28 we willmissing stuff define the support for continuous
functions as the closure of the set of points where the function is nonzero. For
continuous functions, this is a satisfactory definition. For more general classes of
functions, this is not so. For example, if f : R → R is the characteristic function of
Q, then the definition of support for continuous functions, when applied to f , gives
supp( f ) = R. However, this does not reflect the fact that f is zero almost every-
where. So we adapt the notion of support for continuous functions to measurable
functions as follows.

5.9.4 Definition (Support of a measurable function) Let f ∈ L(0)(R;R) and define

O f = {U ⊆ R | U open and f (x) = 0 for almost every x ∈ U}.

Then the support of f is supp( f ) = R \ (∪U∈O f U). •

Being the complement of an open set, the support of a measurable function is
closed. The following result gives the essential property of closure.

5.9.5 Proposition (Characterisation of support) For f,g ∈ L(0)(R;R), the following two
statements hold:

(i) f(x) = 0 for almost every x ∈ R \ supp(f);
(ii) if f(x) = g(x) for almost every x ∈ R then supp(f) = supp(g).

Proof (i) We have R \ supp( f ) = O f in the notation of Definition 5.9.4. Recall from
Definition ?? that the distance between x ∈ R and A ⊆ R is denoted by

dist(x,A) = inf{|y − x| | y ∈ A}.

Let k ∈ Z>0 and define

Kk = {x ∈ O f | dist(x, supp( f )) ≥ 1
k , |x| ≤ k}.

By Proposition ??, the function x 7→ dist(x,A) is continuous. By Corollary 3.1.4, since
the set [ 1

k ,∞) is closed and since B(k, 0) is closed, Kk is the intersection of closed sets,
and so closed. Therefore, since it is also bounded, it is compact. Since Kk ⊆ O f and
since O f is a union of open sets, by the Heine–Borel Theorem, Kk is a finite union of
open sets from O f , say Kk = ∪mk

j=1Uk, j. Denote

Zk, j = {x ∈ Uk, j | f (x) , 0}, j ∈ {1, . . . ,mk}.

Since f (x) = 0 for almost every x ∈ U jk for each jk ∈ {1, . . . ,mk}, it follows thatλ(Zk, j) = 0.
Therefore, since the set of points in Kk at which f is nonzero is ∪mk

j=1Zk, j, it follows that
f (x) = 0 for almost every x ∈ Kk. Now note that O f = ∪k∈Z>0Kk. Thus the set of points
x ∈ O f such that f (x) , 0 is a countable union of sets of measure zero, and so has
measure zero. That is, f (x) = 0 for almost every x ∈ O f .

(ii) We claim that if f and g agree almost everywhere, then O f = Og. Indeed,
suppose that U ∈ O f so that f (x) = 0 for almost every x ∈ U. Define

Z1 = {x ∈ U | f (x) , 0}, Z2 = {x ∈ U | g(x) , f (x)}.

Note that Z1 and Z2 have measure zero and so Z1∪Z2 also has measure zero. Moreover,
if x ∈ U \ (Z1 ∪ Z2) then g(x) = f (x) = 0. Thus U ∈ Og and so O f ⊆ Og. Reversing the
argument shows that Og ⊆ O f . It then immediately follows that supp( f ) = supp(g). �
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Let us give an example which shows that the notion of support must be treated
with some care, the previous result notwithstanding.

5.9.6 Example (A caveat concerning the support of a function) Note that Q ⊆ R has
Lebesgue measure zero. It follows, by definition of measure zero, that there exists
a countable collection of intervals ((a j, b j)) j∈Z>0 such that

∞∑
j=1

|b j − a j| < 1

and such that Q ⊆ ∪ j∈Z>0(a j, b j). Let us define A = ∪ j∈Z>0(a j, b j). By countable
subadditivity of the Lebesgue measure we haveλ(A) ≤ 1. We claim that supp(χA) =
R. Indeed, if U ∈ OχA then λ(A ∩ U) = o. If U is nonempty then it contains an
interval, say (a, b). Note that A is a nonempty open set by Exercise 2.5.1. Moreover,
since there are rational numbers in (a, b) by Proposition 2.2.15, it follows that A∩U
is a nonempty open set, and so has positive Lebesgue measure. We conclude,
therefore, that if U ∈ OχA then U = ∅. Thus supp(χA) = R, as claimed. The point is
that we have

λ(A) ≤ 1 < λ(supp(A)) = ∞.

Thus the measure of the support of a function can far exceed the measure of the set
of points where the function is nonzero. This is a consequence of our asking that
the support be a closed set. •

For continuous functions, the preceding definition of support reduces to the
usual one, i.e., the one used in Definition 6.7.28.

5.9.7 Proposition (The support of a continuous function) If f : R → R is continuous
then

supp(f) = cl({x ∈ R | f(x) , 0}).
Proof Let x0 ∈ R \ supp( f ). Then there exists U ∈ O f such that x0 ∈ U. By Exer-
cise 3.1.12 we have f (x) = 0 for every x ∈ U. In particular, f (x0) = 0 and, moreover,
f (x) = 0 in the neighbourhood U of x0. Thus x0 cannot be a limit lim j→∞ x j with
f (x j) , 0. That is,

x0 < cl({x ∈ R | f (x) , 0}).

Conversely, suppose that x0 ∈ R \ cl({x ∈ R | f (x) , 0}). Then there must be a
neighbourhood U of x0 such that f (x) = 0 for every x ∈ U. Thus U ⊆ O f and so
x ∈ R \ supp( f ). �

5.9.2 The (conditional) Lebesgue integral

Let L (R) be the collection of Lebesgue measurable subsets of R (see Defini-
tion 5.4.4) and let λ : L (R)→ R≥0 be the Lebesgue measure (see Definition 5.4.4).
From Proposition 5.4.6, recall also that if A ∈ L (R) then we denote by L (A) the
Lebesgue measurable subsets of A and by λA the restriction of λ to L (A).

Although it is pretty clear if you have been reading this chapter from the begin-
ning, perhaps the following definition ought to be made for those who “skipped
to the good bit.”
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5.9.8 Definition (Lebesgue integral on R) If f ∈ L(0)(R;R) then f is Lebesgue integrable
and the Lebesgue integral of f is the integral of f with respect to the Lebesgue
measure when the integral exists: ∫

R

f dλ.

If f ∈ L(0)(A;R), then f is Lebesgue integrable and the Lebesgue integral of f is the
integral of f with respect to the Lebesgue measure when the integral exists:∫

A
f dλA.

We shall almost always denote the Lebesgue integrable functions on A by L(1)(A;R)
rather than L(1)((A,L (A), λA);R). •

Of course, if A ∈ L (R) and if f ∈ L(0)(A;R), we can think of f as being in
L(0)(R;R) by making it zero outside A. The resulting function can be directly
verified to be measurable (cf. Exercise 5.6.3). We can, therefore, write∫

A
f dλA =

∫
R

f dλ

without risk of confusion. When it is convenient to do so, we shall do this. We will
also omit the subscript “A” in “dλA” when the resulting compactness of notation
is desired. Thus, we will use the symbols∫

A
f dλA,

∫
A

f dλ,
∫
R

f dλ

to stand for the same thing when it is clear from context what is meant.
It is worth making some connections at this point with how we defined the

single-variable Riemann integral in Section 3.4. For the Riemann integral we had
two constructions which we showed were equivalent when the domain of the
function was a compact interval. However, the so-called conditional Riemann
integral generalises the Riemann integral when the domain of the function is a not
a compact interval. This can be generalised for the Lebesgue integral as follows.

5.9.9 Definition (Conditionally Lebesgue integrable functions on a general interval)
Let I ⊆ R be an interval and let f : I → R be a function whose restriction to every
compact subinterval of I is Lebesgue integrable.

(i) If I = [a, b] then define

C
∫

I
f dλI =

∫
I

f dλ.

(ii) If I = (a, b] then define

C
∫

I
f dλI = lim

ra↓a

∫
[ra,b]

f dλ[ra,b]

if the limit exists.
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(iii) If I = [a, b) then define

C
∫

I
f dλI = lim

rb↑b

∫
[a,rb]

f dλ[a,rb]

if the limit exists.
(iv) If I = (a, b) then define

C
∫

I
f dλI = lim

ra↓a

∫
[ra,c]

f dλ[ra,c] + lim
rb↑b

∫
[c,rb]

f dλ[c,rb]

for some c ∈ (a, b), if the limit exists.
(v) If I = (−∞, b] then define

C
∫

I
f dλI = lim

R→∞

∫
[−R,b]

f dλ[−R,b]

if the limit exists.
(vi) If I = (−∞, b) then define

C
∫

I
f dλI = lim

R→∞

∫
[−R,c]

f dλ[−R,c] + lim
rb↑b

∫
[c,rb]

f dλ[c,rb]

for some c ∈ (−∞, b), if the limit exists.
(vii) If I = [a,∞) then define

C
∫

I
f dλI = lim

R→∞

∫
[a,R]

f dλ[a,R]

if the limit exists.
(viii) If I = (a,∞) then define

C
∫

I
f dλI = lim

ra↓a

∫
[ra,c]

f dλ[ra,c] + lim
R→∞

∫
[c,R]

f dλ[c,R]

for some c ∈ (a,∞), if the limit exists.
(ix) If I = R then define

C
∫
R

f dλ = lim
R→∞

∫
[−R,c]

f dλ[−R,c] + lim
R→∞

∫
[c,R]

f dλ[c,R]

for some c ∈ R, if the limit exists.
If, for a given I and f , the appropriate of the above limits exists, then f is condition-
ally Lebesgue integrable on I, and the conditional Lebesgue integral is the value of
the limit. •

It is not usual to define the conditional Lebesgue integral, but we do so in order
to make our analogies with the Riemann integral, explored in Section 5.9.3, more
clear. Thus a few comments are relevant at this point.
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5.9.10 Remarks (On the conditional Lebesgue integral)
1. Since the Lebesgue integral is so general, it is not really natural to restrict the

definition of the Lebesgue integral to functions defined on intervals. Indeed, a
somewhat more natural construction would be as follows. Let A ∈ L (R) and
let f : A → R be measurable. By Theorem 5.4.19 let (K j) j∈Z>0 be a family of
compact sets such that K j ⊆ A, K j ⊆ K j+1, j ∈ Z>0, and λ(A) = lim j→∞ λ(K j).
Then we can define the conditional Lebesgue integral of f by

C
∫

A
f dλA = lim

j→∞

∫
K j

( f |K j) dλK j .

This construction generalises the more complicated, but more direct construc-
tion of Definition 5.9.9. Since we will not use this level of generality for the con-
ditional Lebesgue integral, we shall stick to the more concrete Definition 5.9.9
as our definition of the conditional Lebesgue integral. It also make more clear
the comparison with the Riemann integral.

2. The conditional Lebesgue integral shares with the Lebesgue integral the usual
properties with respect to operations on functions, i.e., those properties given
in Section 5.7.2 for the general integral. The verification of this is a matter of
using the results of Section 5.7.2, the fact that the conditional Lebesgue integral
is defined as a limit, and the fact that limits commute with natural operations
as shown in Section 2.3.6. We leave the details of proving this statement to
a sufficiently bored reader. However, we shall make free use of these facts
ourselves.

3. In Theorem 5.9.11 we shall show that the (conditional) Lebesgue integral gener-
alises the (conditional) Riemann integral. For this reason, to give an example of
a function that is conditionally Lebesgue integrable but not Lebesgue integrable,
it suffices to give an example of a function that is conditionally Riemann inte-
grable but not Riemann integrable. Such a function is given in Example 3.4.20.

•

5.9.3 Properties of the Lebesgue integral

In this section we shall give some useful properties of the Lebesgue integral
and the conditional Lebesgue integral. In the preceding section we constructed
two versions of the Lebesgue integral for functions of a single variable. As was
pointed out in the course of these constructions, these two integral mirror in spirit
the development in Section 3.4 for the Riemann integral. We begin this section by
showing that the Riemann integral is generalised by the Lebesgue integral.

One of the intentions of Section 5.1 was to show that the Riemann integral suffers
a few theoretical defects. If the Lebesgue integral is to redress these problems, it
would be helpful it applied in all cases when the Riemann integral applies. This is
indeed the case.

5.9.11 Theorem (The (conditional) Lebesgue integral generalises the (conditional)
Riemann integral) If I ⊆ R is an interval and if f : I → R is (conditionally) Riemann
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integrable, then f is (conditionally) Lebesgue integrable, and

(C)
∫

I
f(x) dx = (C)

∫
I
f dλ.

Proof First let us consider the case where I = [a, b] is compact. Suppose that f : [a, b]→
R is Riemann integrable. For k ∈ Z>0 let Pk be a partition with the property that
A+( f ,Pk) − A−( f ,Pk) < 1

k . By redefining partitions if necessary we can assume that the
endpoints of the intervals for Pk+1 contain those for Pk, cf. Lemma 1 from the proof of
Theorem 3.4.9. Upon doing this, the sequences (s+( f ,Pk)(x))k∈Z>0 and (s−( f ,Pk)(x))k∈Z>0

are increasing and decreasing, respectively, for each x ∈ [a, b]. Moreover, since the
functions in these sequences are step functions, they are simple functions and so are
measurable. It is also clear that the Riemann integral of a step function is equal to the
Lebesgue integral of the same function, by definition of the Riemann integral of a step
function and the Lebesgue integral of a simple function. Thus∫

[a,b]
s+( f ,Pk) dλ = A+( f ,Pk),

∫
[a,b]

s−( f ,Pk) dλ = A−( f ,Pk).

Denote
f+(x) = lim

k→∞
s+( f ,Pk)(x), f−(x) = lim

k→∞
s−( f ,Pk)(x),

for x ∈ [a, b]. Proposition 5.6.18 implies that f+ and f− are measurable. Note that f , and
therefore f+ and f−, are bounded. Thus f+ and f− are bounded in absolute value by a
constant function. Such a function is obviously in L (1)([a, b];R), and so the Dominated
Convergence Theorem implies that∫

[a,b]
f+ dλ = lim

k→∞
A+( f ,Pk) =

∫ b

a
f (x) dx

and ∫
[a,b]

f− dλ = lim
k→∞

A−( f ,Pk) =

∫ b

a
f (x) dx,

where we have used the characterisation of the Riemann integral in Theorem 3.4.9.
From this we conclude that ∫

[a,b]
( f+ − f−) dλ = 0,

which implies that f+(x) = f−(x) for almost every x ∈ [a, b] by Proposition 5.7.14. Since
f−(x) ≤ f (x) ≤ f+(x) for every x ∈ []1, b], it, therefore, follows that f is itself measurable
(being almost everywhere equal to the measurable functions f+ and f−) and Lebesgue
integrable (again, being almost everywhere equal to the Lebesgue integrable functions
f+ and f−). Moreover, by Proposition 5.7.11 it follows that∫

[a,b]
f+ dλ =

∫
[a,b]

f− dλ =

∫
[a,b]

f dλ =

∫ b

a
f (x) dx,

as desired.
Now we consider an arbitrary interval I ⊆ R and suppose that f is Riemann

integrable. Here, we first take f to be nonnegative-valued. In this case, the definition
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of the Riemann integral from Definition 3.4.14 implies that there exists a sequence
(Ik)k∈Z>0 of compact intervals such that Ik ⊆ Ik+1, k ∈ Z>0, such that I = ∪k∈Z>0Ik, and
such that ∫

I
f (x) dx = lim

k→∞

∫
Ik

f (x) dx.

From the Monotone Convergence Theorem, Theorem 5.7.24, and the first part of the
proof it then follows that∫

I
f dλ = lim

k→∞

∫
Ik

f (x) dx =

∫
I

f (x) dx.

For generalR-valued f , the result follows from writing f = f+− f−, and using linearity
of the Riemann and Lebesgue integrals, Propositions 3.4.22 and 5.7.17.

Finally, we consider an arbitrary interval I and suppose that f is condition-
ally Riemann integrable. According to Definition 5.9.9 there exists a sequence
(K j = [a j, b j]) j∈Z>0 of compact intervals such that K j ⊆ K j+1, j ∈ Z>0, and such that
I ∪ j∈Z>0 K j. By our arguments above we have∫

K j

( f |K j) dλK j =

∫ b j

a j

f (x) dx, j ∈ Z>0.

Therefore,

lim
j→∞

∫
K j

( f |K j) dλK j = lim
j→∞

∫ b j

a j

f (x) dx,

and the result follows by the definitions of the conditional Riemann and Lebesgue
integrals. �

We must, of course, also show that there are Lebesgue integrable functions that
are not Riemann integrable.

5.9.12 Example (A Lebesgue integrable, but not Riemann integrable, function) Let
I = [0, 1] and let A = Q ∩ [0, 1]. Then define f : [0, 1]→ R by f = χA. Note that f is
not Riemann integrable; see Example 3.4.10. However, f is Lebesgue integrable,
as can be seen in many ways. Most directly, f is the characteristic function of the
Lebesgue measurable set A, and so is Lebesgue integrable simply by definition. If
one wishes, one can also “derive” the Lebesgue integrability of f . For example, if
we let (qk)k∈Z>0 be an enumeration of the set A, we can define gk : [0, 1]→ R by

gk(x) =

1, x ∈ {q1, . . . , qk},

0, otherwise.

The functions gk, k ∈ Z>0, are Lebesgue integrable, indeed Riemann inte-
grable, cf. Example 5.1.11. Moreover, f (x) = limk→∞ gk(x) for all x ∈ [0, 1]. By
the Dominated Convergence Theorem (verify its hypotheses!), we then have∫

[0,1]
f dλ = lim

k→∞

∫
[0,1]

gk dλ = lim
k→∞

∫ 1

0
gk(x) dx = 0.

Thus f is indeed Lebesgue integrable, with Lebesgue integral zero. •
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It is rather important not to overstate the importance of this example. It is not
interesting, but it does serve to easily verify that the Lebesgue integral generalises
the Riemann integral.

5.9.13 Notation and Remarks (Riemann integral versus Lebesgue integral) Having
now established the relationship between the Riemann and Lebesgue integrals, we
shall often use the sometimes more convenient notation for the Riemann integral
when we actually are using the Lebesgue integral. Thus, for example, we may well
write ∫ b

a
f (x) dx,

∫ b

−∞

f (x) dx, C
∫
∞

a
f (x) dx

where we really mean∫
[a,b]

f dλ[a,b],

∫
(−∞,b]

f dλ(−∞,b], C
∫

[a,∞)
f dλ[a,∞),

respectively.
This confounding of notation for the Lebesgue and Riemann integrals suggests

that the additional generality of the Lebesgue integral is not of great importance.
This is both true and not true. It is true that we shall not encounter specific examples
of Lebesgue integrable functions that are not Riemann integrable. That is to say, we
shall not often care to compute the Lebesgue integral in cases where the Riemann
integral will not suffice. However, it is the case that the Riemann integral has
certain undesirable features, as we discussed in Section 5.1.2. These undesirable
features come in two basic flavours.
1. The Riemann and Lebesgue integrals both possess a Dominated Convergence

Theorem, Theorems ?? and 5.7.28, respectively. However, the two theorems
differ in a crucial way. Specifically, in the Dominated Convergence Theorem
for the Riemann integral, the Riemann integrability of the limit function is an
hypothesis, while in the Dominated Convergence Theorem for the Lebesgue
integral, the integrability of the limit function is a conclusion. This inability of
the Dominated Convergence Theorem for the Riemann integral to predict the
integrability of the limit function is a crucial defect. We shall discuss this further
in Section 5.9.11.

2. It is interesting to consider not just individual Riemann or Lebesgue integrable
functions, but the set of all Riemann or Lebesgue integrable functions. We have
already denoted by L(1)(I;R) the set of R-valued Lebesgue integrable functions
on the interval I. Let us denote by R(1)(I;R) the set of R-valued Riemann
integrable functions on I, cf. the discussion preceding Proposition 5.1.12. Both
L(1)(I;R) and R(1)(I;R) are R-vector spaces by the standard linearity properties
of the integral. In Chapter 6 we shall discuss the notion of a normed vector
space and the important related notion of completeness. We shall show in
Theorem 6.7.56 (essentially) that the set of Lebesgue integrable functions form
a complete normed vector space. This is not the case for Riemann integrable
functions, as we show in Proposition 5.1.12. It may not be clear at this point
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why this is important, but this is, in fact, extremely important. As we go along,
and we use the Lebesgue integral at various points in these volumes, we shall
point out instances where the particular properties of the Lebesgue integral are
crucial. •

Now that we have established the close relationship between the Lebesgue and
Riemann integrals, let us explore some of the properties of Lebesgue integrable
functions. In Section 5.9.1 we explored the manner in which Lebesgue measurable
functions can be pointwise approximated by “nice” functions like step functions
or continuous functions. Lebesgue integrable functions, being Lebesgue measur-
able, are subject to the same approximations. However, for Lebesgue integrable
functions we have another sort of approximation that is possible by virtue of the
integral.

5.9.14 Theorem (Lebesgue integrable functions are approximated by step func-
tions) If I = [a, b] is a compact interval, if f ∈ L(1)(I;R), and if ε ∈ R>0, then there
exists a step function g: I→ R such that∫

I
|f − g|dλI < ε.

Proof Let us first consider the case when f is bounded. Let M ∈ R>0 be such that
f (x) ≤M for all x ∈ I. Let ε ∈ R>0. By Theorem 5.9.2 there exists a continuous function
g : I→ R≥0 such that

λ
({

x ∈ I
∣∣∣ | f (x) − g(x)| < ε

(2(b−a))

})
<

ε
2M

.

Then ∫
I
| f (x) − g(x)|dλI <

ε
2(b − a)

(b − a) +
ε

2M
M < ε,

giving the result in this case.
Next we consider the case when f is possibly unbounded and takes values inR≥0.

Let ε ∈ R>0. For M ∈ R>0 define

fM(x) =

 f (x), f (x) ≤M,
M, f (x) > M.

Since f ∈ L(1)(I;R) we have f (x) = limM→∞ fM(x) for almost every x ∈ I. By the
Dominated Convergence Theorem,

lim
M→∞

∫
I
( f − fM) dλI = 0.

Thus there exists M sufficiently large that∫
I
| f (x) − fM(x)|dλI <

ε
2
.
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By the argument in the previous paragraph there exists a step function g : I → R≥0
such that ∫

I
| fM − g|dλI <

ε
2
.

Then, using the triangle inequality and monotonicity of the integral, Proposition 5.7.19,∫
I
| f − g|dλI ≤

∫
I
| f − fM|dλI +

∫
I
| fM − g|dλI < ε,

giving the result in this case.
Finally, if f is R-valued, we write f = f+ − f− for f+ and f− taking values in R≥0.

Let ε ∈ R>0. By our arguments above there exists step functions g+, g− : I → R≥0 such
that ∫

I
| f+ − g+|dλI <

ε
2
,

∫
I
| f− − g−|dλI <

ε
2
.

Taking g = g+ − g−, the triangle inequality and Proposition 5.7.19 then give∫
I
| f − g|dλI ≤

∫
I
| f+ − g+|dλI +

∫
I
| f− − g−|dλI < ε,

as desired. �

A similar result as the previous holds for approximations of integrable functions
by continuous functions. However, in this case it is possible to even be more general
in terms of the domain of definition of the functions involved. The notion of support
is used in the title of this theorem, but will only be introduced in Definition 6.7.28.

5.9.15 Theorem (Lebesgue integrable functions are approximated by compactly
supported continuous functions) If I ⊆ R is an interval, if f ∈ L(1)(I;R), and if
ε ∈ R>0, then there exists a continuous function g: I→ R such that∫

I
|f − g|dλI < ε

and such that the support of f, i.e., the set

clI({x ∈ I | f(x) , 0}),

is compact.
Proof If I is compact, then the result follows just like Theorem 5.9.14, but using
Theorem 5.9.3 rather than Theorem 5.9.2. Thus the result holds when I is compact.

Thus we need only consider the case when I is not compact. Let ε ∈ R>0. We let
(I j) j∈Z>0 be a sequence of compact intervals such that I j ⊆ I j+1 for each j ∈ Z>0 and such
that ∪ j∈Z>0I j = I. Define a sequence ( f j) j∈Z>0 in L(1)(I;R) by

f j(x) =

 f (x), x ∈ I j,

0, otherwise.
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By the Monotone Convergence Theorem we have

lim
j→∞

∫
I
| f − f j|dλI =

∫
I

lim
j→∞
| f − f j|dλI = 0.

Thus ( f j) j∈Z>0 converges to f in L(1)(I;F). Now, for each j ∈ Z>0, the fact that the
theorem holds for compact intervals ensures the existence of a continuous function
h j : I j → R≥0 such that ∫

I j

| f j|I j − h j|dλI j <
ε
4
.

Note that if we extend h j to I by asking that it be zero on I \ I j then this extension may
not be continuous. However, we can linearly taper h j to zero on I \ I j to arrive at a
continuous function g j : I→ R≥0 with compact support satisfying∫

I\I j

|g j|dλI\I j <
ε
4
.

Then ∫
I
| f j − g j|dλI =

∫
I j

| f j − h j|dλI j +

∫
I\I j

|g j(x)|dλI\I j <
ε
4

+
ε
4
<
ε
2
.

Now choose N ∈ Z>0 sufficiently large that∫
I
| f − f j|dλI <

ε
2
.

Then, by the triangle inequality,∫
I
| f − g j|dλI ≤

∫
I
| f − f j|dλI +

∫
I
| f j − g j|dλI < ε,

as desired. �

5.9.4 Swapping operations with the Lebesgue integral

It is useful to have at hand results that tell us the nature of an integral as a
function of a parameter. Thus we let A ∈ L (R) and let (a, b) be an open interval.
We suppose that f : (a, b) × A→ R has the property that, for p ∈ (a, b), the function
x 7→ f (p, x) is integrable. We denote f p(x) = f (p, x) and fx(p) = f (p, x). We then
define

I f (p) =

∫
A

f p(x) dx.

The next result indicates when such a function is continuous or differentiable.

5.9.16 Theorem (Continuous and differentiable dependence of integral on a param-
eter) Let (a, b) ⊆ R, let A ∈ L (R), and let f : (a, b) × A → R have the property that
fp
∈ L(1)(A;R)) for every p ∈ (a, b). Let p0 ∈ (a, b).
(i) If fx is continuous at p0 for almost every x ∈ A and if there exists g ∈ L(1)(A;R) and

a neighbourhood U of p0 in (a, b) for which |fp(x)| ≤ g(x) for all p ∈ U, then If is
continuous at p0.
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(ii) If there exists ε ∈ R>0 so that
(a) (p0 − ε,p0 + ε) ⊆ (a, b),
(b) fp is differentiable on (p0 − ε,p0 + ε), and
(c) there exists g ∈ L(1)(A;R) so that

∣∣∣ ∂f
∂p (p, x)

∣∣∣ ≤ g(x) for p ∈ (p0 − ε,p0 + ε) and
for almost every x ∈ A,

then If is differentiable at p0 and

I′f(p0) =

∫
A

∂f
∂p

(p0, x) dx.

Proof (i) Let (p j) j∈Z>0 be a sequence in U this neighbourhood converging to p0. By the
Dominated Convergence Theorem we have

lim
j→∞

∫
A

f (p j, x) dx =

∫
A

lim
j→∞

f (p j, x) dx =

∫
A

f (p0, x) dx,

the final equality by continuity of fx for almost every x ∈ A and by Theorem 3.1.3.
This shows that lim j→∞ I f (p j) = I f (p0), giving the result by another application of
Theorem 3.1.3.

(ii) We again let (p j) j∈Z>0 be a sequence approaching p0. By the Mean Value Theorem,
for each j ∈ Z>0, there exists q j between p j and p0 such that

f (p j, x) − f (p0, x)
p j − p0

=
∂ f
∂p

(q j, x).

Note that we necessarily have lim j→∞ q j = p0. Then we compute

lim
j→∞

I f (p j) − I f (p0)

p j − p0
= lim

j→∞

∫
A

f (p j, x) − f (p0, x)
p j − p0

dx =

∫
A

lim
j→∞

f (p j, x) − f (p0, x)
p j − p0

dx

=

∫
A

lim
j→∞

∂ f
∂p

(q j, x) dx =

∫
A

∂ f
∂p

(p0, x) dx.

Here the interchanging of the limit and the integral is valid by the Dominated Conver-
gence Theorem. �

The above theorem is proved using tools that we presently have at our disposal.
It suffices for many purposes. However, it is possible to weaken the hypotheses
significantly while retaining the same conclusions, but at a price of using the
notion of absolute continuity we introduce in Section 5.9.6 and the formalism of
distributions we introduce in Chapter 10.

5.9.17 Theorem (A strong theorem on differential dependence of integral on a pa-
rameter) Let A ∈ L (R) and let f : R ×A→ R have the properties

(i) that fx is locally absolutely continuous for almost every x ∈ A and
(ii) that, for every compact subset K ⊆ R, the functions

(p, x) 7→ f(p, x), (p, x) 7→ D1f(p, x),

when restricted to K ×A, are integrable.
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Then, if If : R→ R is as above, If is locally absolutely continuous and

I′f(p) =

∫
A

D1f(p, x) dx

for almost every p ∈ I.
Proof For x ∈ A let θ f (x) ∈ D ′(R;R) be the regular distribution associated with fx.
Adopting and slightly modifying the notation used in Proposition 10.2.43, let us define
F f : A ×D(R;R)→ R by

F f (x, φ) = 〈θ f (x);φ〉 =

∫
R

f (p, x)φ(p) dp,

for φ ∈ D(R;R) define F f ,φ : A→ R by

F f ,φ(x) = F f (x, φ),

and then define Θ f : D(R;R)→ R by

Θ f (φ) =

∫
A

F f ,φ dλ =

∫
A

(∫
R

f (p, x)φ(p) dp
)

dx.

We first claim that Θ f ∈ D ′(R;R). We prove this by verifying that the hypotheses of
Proposition 10.2.43 are satisfied. Let (φ j) j∈Z>0 be a sequence converging to zero in
D(R;R). Let K ⊆ R be a compact interval for which supp(φ j) ⊆ K for every j ∈ Z>0.
Let

M = sup{|φ j(p)| | j ∈ Z>0, p ∈ R},

noting that M < ∞ since the sequence (φ j) j∈Z>0 converges uniformly to zero. Then we
have ∫

A
|sup{F f ,φ j(x) | j ∈ Z>0}|dx ≤

∫
A

(∫
R

sup{| f (p, x)φ j(p)| | j ∈ Z>0}dp
)

dx

≤M
∫

A

(∫
K
| f (p, x)|dp

)
dx < ∞,

by hypothesis.
Now, for φ ∈ D(R;R) we compute

Θ′f (φ) = −Θ f (φ′) = −

∫
A

(∫
R

f (p, x)φ′(p) dp
)

dx

=

∫
A

(∫
R

D1 f (p, x)φ(p) dp
)

dx =

∫
R

(∫
A

D1 f (p, x) dx
)
φ(p) dp

using Proposition 5.9.34, the fact that φ has compact support, and Fubini’s Theorem.
This shows that Θ′f is equal to the regular distribution associated with the function

p 7→
∫

A
D1 f (p, x) dx.

By Proposition 10.2.31 it follows that this function is locally absolutely continuous and
that it is equal almost everywhere to the derivative of the function

p 7→
∫

A
f (p, x) dx,

which is the desired result. �
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It is also useful to have at hand a result which indicates when holomorphicity
of the integrand implies holomorphicity of the integral.

5.9.18 Theorem (Holomorphic dependence on a parameter) Suppose we have the follow-
ing data:

(i) a measurable subset A ⊆ R;
(ii) an open subset D ⊆ C;
(iii) a function G: A ×D→ C such that

(a) the function x 7→ G(x, z) is in L(1)(A;C) for each z ∈ D,
(b) the function z 7→ G(x, z) is in H(D,C) for each x ∈ A, and
(c) for each z0 ∈ D there exists a neighbourhood U of z0 in D and h ∈ L(1)(A;R≥0)

such that |G(x, z)| ≤ h(x) for each z ∈ U.

Then the function F: D→ C defined by

F(z) =

∫
A

G(x, z) dx

is in H(D;C).
Proof By Theorem 5.9.16 we know that F is continuous in D. Now let Γ be a closed
contour in D. Parameterise Γ with a map γ : [0,L]→ Dmissing stuff so that∫

Γ

F(z) dz =

∫ L

0

(∫
A

G(x, γ(s)) dx
)

ds.

Then the function x 7→ G(x, γ(s)) is in L(1)(A;C) for every s ∈ [0,L]. Also, the function
s 7→ G(x, γ(s)) is in L(1)([0,L];C) for every x ∈ A since it is a continuous function defined
on a compact interval. Therefore, Fubini’s Theorem gives∫

Γ

F(z) dz =

∫
A

(∫ L

0
G(x, γ(s)) ds

)
dx =

∫
A

(∫
Γ

G(x, z) dz
)

= 0,

using Cauchy’s Theorem and holomorphicity of z 7→ G(x, z). Since this holds for every
closed contour in D, Morera’s Theorem allows us to conclude that F is holomorphic in
D.missing stuff �

5.9.5 Locally Lebesgue integrable functions

Very often on wants to speak of functions that are integrable about every point,
but which may not be integrable on their entire domain. This is another instance
of the concept of “locality” that we have encountered many times before.

5.9.19 Definition (Locally Lebesgue integrable function) If A ∈ L (R) then f ∈
L(0)(A;R) is locally Lebesgue integrable, or merely locally integrable, if, for ev-
ery compact set K ⊆ A, f |K ∈ L(1)(K;R). The set of locally Lebesgue integrable
functions on A is denoted by L(1)

loc(A;R). •
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Note that if f ∈ L(0)(A;R) then one can define f̄ : R→ R to be defined to be equal
to f on A and zero elsewhere. Moreover, f ∈ L(1)

loc(A;R) if and only if f̄ ∈ L(1)
loc(R;R).

Therefore, when talking about locally integrable functions one can, without loss of
generality, think about functions whose domain is R. When it is convenient to do
this, we shall.

It is obvious that if f is integrable then it is locally integrable. Let us give
some examples which clarify the meaning of local integrability as opposed to
integrability.

5.9.20 Examples (Local integrability)
1. The function f : R→ R given by f (x) = x2 is locally integrable (its restriction to

every compact set is continuous and bounded) but not integrable.
2. The function f : R→ R defined by

f (x) =

x−1/2, x ∈ R>0,

0, otherwise,

is locally integrable but not integrable.
3. The function f : [0, 1]→ R defined by

f (x) =

x−1/2, x ∈ (0, 1],
0, x = 0,

is both locally integrable and integrable.
4. The function f : R→ R defined by

f (x) =

x−1, x ∈ (0, 1],
0, otherwise,

is both locally integrable and integrable. •

The following characterisation of locally integrable functions is sometimes use-
ful.

5.9.21 Proposition (Characterisation of locally Lebesgue integrable functions) For a
function f : R→ R the following statements are equivalent:

(i) f is locally Lebesgue integrable;

(ii) for each x ∈ R there exists a neighbourhood U of x such that f|U ∈ L(1)(U;R);
(iii) for every continuous function g: R→ R such that supp(g) is compact, it holds that

fg ∈ L(1)(R;R).

Proof (i) =⇒ (ii) Let x ∈ R and let K = [x − 1, x + 1]. By hypothesis, f |K ∈ L(1)(K;R)
and so f ∈ L(1)((x − 1, x + 1);R) by Proposition 5.7.22. This gives the result with
U = (x − 1, x + 1).
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(ii) =⇒ (iii) Let g : R → R be continuous with compact support. For x ∈ supp(g)
there exists a neighbourhood Ux of x such that f ∈ L(1)(Ux,R). Since (Ux)x∈supp(g) covers
the compact set supp(g) there exists x1, . . . , xk ∈ supp(g) such that supp(g) ⊆ ∪k

j=1Ux j .
Since g is continuous with compact support there exists M ∈ R>0 such that |g(x)| ≤ M
for every x ∈ R by Theorem 3.1.22. Then∫

R
| f g|dλ ≤M

∫
supp(g)

f dλsupp(g) ≤M
k∑

j=1

∫
Uxj

f dλUxj
< ∞,

since supp(g) ⊆ ∪k
j=1Ux j . This gives the desired conclusion.

(iii) =⇒ (i) Let K ⊆ R be compact and let a, b ∈ R be such that K ⊆ [a, b]. Now take
g : R→ R defined by

g(x) =


1, x ∈ [a, b],
x − (a − 1), x ∈ [a − 1, a),
−x + (b + 1), x ∈ (b, b + 1],
0, otherwise.

Note that g is positive, continuous with compact support, and g(x) = 1 for all x ∈ [a, b].
Then ∫

K
| f |dλK ≤

∫
[a,b]
| f |dλ[a,b] ≤

∫
R
| f g|dλ < ∞,

giving the result. �

Using the preceding characterisation of locally integrable functions, one can eas-
ily prove that the set of locally integrable functions is a subspace of the measurable
functions.

5.9.22 Proposition (Algebraic operations on locally integrable functions) If A ∈

L (R), if f,g ∈ L(1)
loc(A;R), and if a ∈ R, then

(i) f + g ∈ L(1)
loc(A;R) and

(ii) af ∈ L(1)
loc(A;R).

Proof This follows from the definition of local integrability, along with Proposi-
tion 5.7.17. �

Local integrability is not preserved by products and quotients, cf. Exam-
ple 5.7.18.

5.9.6 Absolute continuity

In this section we introduce a special class of continuous functions that are
almost everywhere differentiable. With this class of functions one can prove a
stronger form of the Fundamental Theorem of Calculus than was possible when
we initially discussed this in Section 3.4.6.

The definition of absolute continuity shares with the definition of bounded
variation the feature of being unbearably cryptic at first sight. However, we shall
see as we go along that absolute continuity is a notion that arises naturally from
the Lebesgue integral.
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5.9.23 Definition ((Locally) absolutely continuous function) Let [a, b] be a compact
interval. A function f : [a, b] → R is absolutely continuous if, for each ε ∈ R>0,
there exists δ ∈ R>0 such that, if ((a j, b j)) j∈{1,...,k} is a finite family of disjoint open
intervals for which

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| < ε.

For a general interval I ⊆ R, a function f : I → R is locally absolutely continuous
if f |J is absolutely continuous for every compact interval J ⊆ I. •

We can make the same sort of comments concerning “absolute continuity”
versus “local absolute continuity” as were made in Notation 3.3.8 concerning the
relationship between “bounded variation” and “locally bounded variation.”

The following result gives the most basic properties of absolutely functions.

5.9.24 Proposition (Locally absolutely continuous functions are continuous and of
locally bounded variation) If I ⊆ R is an interval and if f : I→ R is a locally absolutely
continuous function, then f is continuous and has locally bounded variation.

Proof We first consider the case where I = [a, b]. Let x ∈ [a, b] and let ε ∈ R>0. Then,
by definition of absolute continuity, there exists δ ∈ R>0 such that, if [c, d] ⊆ [a, b] is an
interval for which d − c < δ, then | f (d) − f (c)| < ε. In particular, if y ∈ B(δ, x) ∩ I, then
| f (y) − f (x)| < ε, giving continuity of f at x. Now let ε ∈ R>0 and let δ ∈ R>0 have the
property that for any family ((a j, b j)) j∈{1,...,k} of disjoint intervals for which

k∑
j=1

|b j − a j| < δ,

we have
k∑

j=1

| f (b j) − f (a j)| < ε.

Now let P be a partition of [a, b] for which |P| < δ, and let EP(P) = (x0, x1, . . . , xk). Noting
that ((x j−1, x j)) j∈{1,...,k} is a finite family of disjoint intervals, we have

k∑
j=1

| f (x j) − f (x j−1)| < kε.

Since this holds for any partition P for which |P| < δ, and since the expression

k∑
j=1

| f (x j) − f (x j−1)|
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is monotonically increasing as a function of |P|, it follows that

TV( f ) = sup
{ l∑

j=1

| f (x j) − f (x j−1)|
∣∣∣∣ (x0, x1, . . . , xl) = EP(P), P ∈ Part([a, b])

}
≤ kε,

showing that f has bounded variation.
The result for general intervals follows directly from the result for compact inter-

vals, along with the definition of local absolute continuity. �

The converse of the preceding result is generally not true, as the following
example illustrates.

5.9.25 Example (A continuous function of bounded variation that is not absolutely
continuous) We consider the Cantor function fC : [0, 1] → R of Example 3.2.27.
We have shown that fC is continuous, and since it is monotonically increasing,
it is necessarily of bounded variation by Theorem 3.3.3. We claim, nonetheless,
that fC is not locally absolutely continuous. To see this, let δ ∈ R>0. Recall from
Example 2.5.39 that C is the intersection of a family (Ck)k∈Z>0 of sets for which each
of the sets Ck is a collection of 2k disjoint closed intervals of length 3−k. Therefore,
since the total lengths of the intervals comprising Ck (i.e., limk→∞ 2k3−k) goes to zero
as k goes to infinity, there exists N ∈ Z>0 such that we can cover CN with a finite
family, say ((a j, b j)) j∈{1,...,2N}, of disjoint open intervals for which

2N∑
j=1

|b j − a j| < δ.

Now note that since C is closed, [0, 1] \ C is open, and so, by Proposition 2.5.6,
is a countable union of open intervals. By construction, fC is constant on each of
these open intervals. Since C ⊆ CN, it follows that [0, 1] \ CN ⊆ [0, 1] \ C and so
[0, 1]\CN is itself a countable (in fact, finite) collection of open intervals, each having
the property that fC is constant when restricted to it. Since fC is monotonically
increasing and continuous, it then follows that

2N∑
j=1

| fC(b j) − fC(a j)| = f (1) − f (0) = 1.

Since this conclusion is independent of δ ∈ R>0, we therefore are forced to deduce
that fC is not absolutely continuous. •

This example illustrates that there is a “gap” between the notion of absolute
continuity and the notion of continuous and bounded variation. It is perhaps not
immediately clear why we should care about this. The reason we will care comes
about in missing stuff where we shall see that any function of bounded variation
is a sum of three functions, one being a saltus function, one being absolutely
continuous, and the other being continuous, but not absolutely continuous (such
functions we will call “singular”).
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Locally absolutely continuous functions, by virtue of also being of locally
bounded variation, are almost everywhere differentiable. The next result we state
provides us with a large collection of locally absolutely continuous functions based
on their differentiability. The result also strengthens Proposition 3.3.14 where the
hypotheses are the same, but here we draw the sharper conclusion of absolute
continuity, not just bounded variation.

5.9.26 Proposition (Nice differentiable functions are locally absolutely continuous)
If I ⊆ R is an interval and if f : I→ R is a differentiable function having the property that
f′ is locally bounded, then f is locally absolutely continuous.

Proof Clearly it suffices to consider the case where I = [a, b]. Let M ∈ R>0 have the
property that | f ′(x)| < M for each x ∈ [a, b]. Then, for ε ∈ R>0 take δ = ε

M and note that,
if ((a j, b j)) j∈{1,...,k} is a finite family of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < ε,

then
k∑

j=1

| f (b j) − f (a j)| =
k∑

j=1

| f ′(c j)(b j − a j)| < ε,

where c j ∈ (a j, b j), j ∈ {1, . . . , k}, are as asserted by the Mean Value Theorem. �

The boundedness of the derivative in the preceding result is essential, as Exam-
ple 3.3.15 shows.

Let us next consider how absolutely continuous functions behave under the
standard algebraic operations on functions. First we consider the standard alge-
braic operations.

5.9.27 Proposition (Addition and multiplication, and local absolute continuity) Let
I ⊆ R be an interval and let f,g: I → R be locally absolutely continuous. Then the
following statements hold:

(i) f + g is locally absolutely continuous;
(ii) fg is locally absolutely continuous;
(iii) if additionally there exists α ∈ R>0 such that |g(x)| ≥ α for all x ∈ I, then f

g is locally
absolutely continuous.

Proof Throughout the proof we suppose, without loss of generality, that I = [a, b] is
a compact interval.

(i) For ε ∈ R>0 let δ ∈ R>0 have the property that, if ((a j, b j)) j∈{1,...,k} is a finite family
of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| < ε
2 ,

k∑
j=1

|g(b j) − g(a j)| < ε
2 .
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Then, again for any finite collection ((a j, b j)) j∈{1,...,k} of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

we have

k∑
j=1

|( f + g)(b j) − ( f + g)(a j)| ≤
k∑

j=1

| f (b j) − f (a j)| +
k∑

j=1

|g(b j) − g(a j)| < ε,

using the triangle inequality.
(ii) Let

M f = sup{| f (x)| | x ∈ [a, b]}, Mg = sup{|g(x)| | x ∈ [a, b]}.

Let ε ∈ R>0 and let δ ∈ R>0 have the property that, if ((a j, b j)) j∈{1,...,k} is a finite family of
disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

then
k∑

j=1

| f (b j) − f (a j)| <
ε

2M f
,

k∑
j=1

|g(b j) − g(a j)| <
ε

2Mg
.

Then, for any finite collection ((a j, b j)) j∈{1,...,k} of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

we compute

k∑
j=1

| f (b j)g(b j) − f (a j)g(a j)| ≤
k∑

j=1

| f (b j)g(b j) − f (a j)g(b j)|

+

k∑
j=1

| f (a j)g(b j) − f (a j)g(a j)|

≤

k∑
j=1

Mg| f (b j) − f (a j)| +
k∑

j=1

M f |g(b j) − g(a j)|

< ε
2 + ε

2 = ε,

giving the result.
(iii) Let ε ∈ R>0 and let δ ∈ R>0 have the property that, if ((a j, b j)) j∈{1,...,k} is a finite

collection of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,
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then
k∑

j=1

| f (b j) − f (a j)| < α2ε.

Then, for any finite collection ((a j, b j)) j∈{1,...,k} of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < δ,

we compute

k∑
j=1

∣∣∣∣ 1
g(b j)

−
1

g(a j)

∣∣∣∣ =

k∑
j=1

∣∣∣∣ g(a j) − g(b j)
g(b j)g(a j)

∣∣∣∣ ≤ k∑
j=1

∣∣∣∣ g(b j) − g(a j)

α2

∣∣∣∣ < ε.
Thus 1

g is locally absolutely continuous, and this part of the result follows from part (ii).
�

Next let us show that local absolute continuity for a function on an interval can
be determined by breaking the interval into parts, and determining local absolute
continuity on each.

5.9.28 Proposition (Local absolute continuity on disjoint subintervals) Let I ⊆ R be
an interval and let I = I1 ∪ I2, where I1 ∩ I2 = {c}, where c is the right endpoint of I1 and
the left endpoint of I2. Then f is locally absolutely continuous if and only if f|I1 and f|I2 are
locally absolutely continuous.

Proof It suffices to consider the case where I = [a, c], I1 = [a, c], and I2 = [c, b].
First suppose that f is absolutely continuous and, for ε ∈ R>0, choose δ ∈ R>0 such

that, if ((a j, b j)) j∈{1,...,k} is a finite family of disjoint open intervals satisfying

k∑
j=1

|b j − a j| < 2δ.

then
k∑

j=1

| f (b j) − f (a j)| < ε.

Then let ((a j, c j)) j∈{1,...,k1} and ((d j, b j)) j∈{1,...,k2} be finite families of disjoint open subinter-
vals of [a, c] and [a, c], respectively, satisfying

k1∑
j=1

|c j − a j| < δ,
k2∑
j=1

|b j − d j| < δ.

Then ((a j, c j)) j∈{1,...,k1} ∪ ((d j, b j)) j∈{1,...,k2} is a finite collection of disjoint open subintervals
of [a, b] satisfying

k1∑
j=1

|c j − a j| +

k2∑
j=1

|b j − d j| < 2δ.
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Therefore,
k1∑
j=1

| f (c j) − f (a j)| +
k2∑
j=1

| f (b j) − f (d j)| < ε,

implying that
k1∑
j=1

| f (c j) − f (a j)| < ε,
k2∑
j=1

| f (b j) − f (d j)| < ε.

Thus f |[a, c] and f |[c, b] are absolutely continuous.
Now suppose that f |[a, c] and f |[c, b] are absolutely continuous. Let ε ∈ R>0 and let

δ ∈ R>0 be chosen such that, if ((a j, c j)) j∈{1,...,k1} and ((d j, b j)) j∈{1,...,k2} are finite collections
of disjoint open subintervals of [a, c] and [c, b], respectively, satisfying

k1∑
j=1

|c j − a j| < δ,
k2∑
j=1

|b j − d j| < δ,

then
k1∑
j=1

| f (c j) − f (a j)| < ε
2 ,

k2∑
j=1

| f (b j) − f (d j)| < ε
2 .

Now let ((a j, b j)) j∈{1,...,k} be a finite collection of disjoint subintervals of [a, b] satisfying

k∑
j=1

|b j − a j| < δ.

If c ∈ (a j0 , b j0) for some j0 ∈ {1, . . . , k}, then define the collection of disjoint open intervals

(((a j, b j)) j∈{1,...,k} \ ((a j0 , b j0))) ∪ ((a j0 , c), (c, b j0)),

i.e., split the interval containing c into two intervals. Denote this collection of dis-
joint open intervals by ((ã j, b̃ j)) j∈{1,...,k̃}. If c is not contained in any of the intervals
((a j, b j)) j∈{1,...,k}, then denote ((ã j, b̃ j)) j∈{1,...,k̃} = ((a j, b j)) j∈{1,...,k}. Note that

k̃∑
j=1

|b̃ j − ã j| < δ.

This new collection of disjoint open intervals is then the union of two collections of
disjoint open intervals, ((ã j, c̃ j)) j∈{1,...,k1} and ((d̃ j, b̃ j)) j∈{1,...,k2}, the first being subintervals
of [a, c] and the second being subintervals of [c, b]. These collections satisfy

k1∑
j=1

|c̃ j − ã j| < δ,
k2∑
j=1

|b̃ j − d̃ j| < δ,

and so we have
k∑

j=1

| f (b j) − f (a j)| ≤
k̃∑

j=1

| f (b̃ j) − f (ã j)| =
k1∑
j=1

| f (c̃ j) − f (ã j)| +
k2∑
j=1

| f (b̃ j) − f (d̃ j)| < ε,

which shows that f is absolutely continuous. �

Next we show that one of the standard operations on functions does not respect
absolute continuity.
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5.9.29 Example (Compositions of locally absolutely continuous functions need not
be locally absolutely continuous) In Example 3.3.16 we gave two functions of
bounded variation whose composition was not a function of bounded variation.
In fact, the functions we used were not only of bounded variation, but absolutely
continuous. These functions, therefore, show that the composition of absolutely
continuous functions may not be an absolutely continuous function.

Let us show that the functions in question are, in fact, absolutely continuous.
Recall that the functions f , g : [−1, 1]→ R were given by f (x) = x1/3 and by

g(x) =

x3(sin 1
x )3, x , 0,

0, x = 0.

That g is absolutely continuous follows from Proposition 5.9.26 since we showed
in Example 3.3.16 that g was of class C1. It then only remains to show that f is
absolutely continuous. Let ε ∈ R>0 and take δ = ε3

4 . Now let ((a j, b j)) j∈{1,...,k} be a
finite collection of open intervals satisfying

k∑
j=1

|b j − a j| < δ.

Let ` ≤ 2 and let [a, b] ⊆ [−1, 1] be an interval of length `. One can easily see that, if
one fixes the length of the interval at `, then the quantity | f (b) − f (a)| is maximum
when one takes a = − `2 and b = `

2 . From this it follows that

k∑
j=1

| f (b j) − f (a j)| < | f ( δ2 ) − f (− δ2 )| = ε.

Thus f is absolutely continuous, as desired. •

5.9.7 The Fundamental Theorem of Calculus for the Lebesgue integral

In this section we explore the Fundamental Theorem of Calculus that is asso-
ciated with the Lebesgue integral. As we shall see, it is here that the notion of
absolute continuity comes up in a natural way.

Before we state the main result,

5.9.30 Lemma (Locally absolutely continuous functions with a.e. zero derivative) Let
I ⊆ R be an interval and let f : I → R be locally absolutely continuous and having the
property that the set

{x ∈ I | f is not differentiable at x} ∩ {x ∈ I | f′(x) , 0}

has measure zero. Then there exists c ∈ R such that f(x) = c for all x ∈ I.
Proof Consider an interval [a, b] ⊆ I. Let

E = {x ∈ I | f is not differentiable at x} ∩ {x ∈ I | f ′(x) , 0}.
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For ε ∈ R>0 choose η ∈ R>0 such that, if ((a j, b j)) j∈{1,...,k} is a finite collection of disjoint
intervals having the property that

k∑
j=1

|b j − a j| < η,

then
k∑

j=1

| f (b j) − f (a j)| < ε.

Let ((cα, dα))α∈A be a countable collection of open intervals satisfying

E ⊆
⋃
α∈A

(cα, dα)

and ∑
α∈A

|dα − cα| < η.

Now define δ : [a, b]→ R>0 according to the following:
1. if x ∈ E take δ(x) such that B(δ(x), x) ∩ [a, b] ⊆ (cα, dα) for some α ∈ A;
2. if x < E take δ(x) such that | f (y) − f (x)| < ε|y − x| for y ∈ B(δ(x), x) ∩ [a, b].

Now let ((c1, I1), . . . , (ck, Ik)) be a δ-fine tagged partition and write {1, . . . , k} = K1
◦

∪K2
where

K1 = { j ∈ {1, . . . , k} | c j ∈ E}, K2 = { j ∈ {1, . . . , k} | c j < E}.

We then compute, denoting EP(P) = (x0, x1, . . . , xk),

| f (b) − f (a)| =
∣∣∣∣ k∑

j=1

( f (x j) − f (x j−1))
∣∣∣∣

≤

∑
j∈K1

| f (x j) − f (x j−1)| +
∑
j∈K2

| f (x j) − f (x j−1)|

≤ ε +
∑
j∈K2

ε(x j − x j−1) ≤ ε(1 + b − a).

This shows that | f (b)− f (a)| can be made arbitrarily small, and so gives the result since
a and b are arbitrary. �

The main result in this section is the following.

5.9.31 Theorem (The Fundamental Theorem of Calculus for the Lebesgue integral)
For an interval I ⊆ R the following statements hold:

(i) a function F: I → R defined on an interval I is locally absolutely continuous if and
only if there exists f ∈ L(1)

loc(I;R) and x0 ∈ I such that

F(x) = F(x0) +

∫ x

x0

f(ξ) dξ,
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where we adopt the convention that if x < x0 we have∫ x

x0

g(ξ) dξ = −

∫ x0

x
g(ξ) dξ;

(ii) if x0 ∈ I, if f ∈ L(1)
loc(I;R), and define F: I→ R by

F(x) =

∫ x

x0

f(ξ) dξ,

then F is differentiable for almost every x ∈ I and F′(x) = f(x) for almost every x ∈ I.
Proof (i) We first consider the case when I is compact: I = [a, b].

First suppose that

F(x) = F(x0) +

∫ x

x0

f (ξ) dξ

for x0 ∈ [a, b] and f ∈ L(1)([a, b];R). Note that, by Proposition 5.7.22, we have

F(x) = F(x0) +

∫ x

a
f (ξ) dξ −

∫ x0

a
f (ξ) dξ

= F(x0) +

∫ x

a
f (ξ) dξ + (F(a) − F(x0) = F(a) +

∫ x

a
f (ξ) dξ.

Thus we can take x0 = a without loss of generality. First assume that f is nonnegative-
valued. For k ∈ Z>0 define

fk(x) =

 f (x), f (x) ≤ k
k, otherwise.

Note that fk is bounded and that for each x ∈ [a, b] we have limk→∞ fk(t) = f (t).
Therefore, the Monotone Convergence Theorem asserts that

lim
k→∞

∫ b

a
( f (x) − fk(x)) dx = 0.

Now let ε ∈ R>0. Choose N ∈ Z>0 such that∫ b

a
( f (x) − fk(x)) dx <

ε
2
, k ≥ N.

Letting δ = ε
2N and letting ((a j, b j)) j∈{1,...,n} be any finite family of nonoverlapping inter-

vals in [a, b] satisfying
n∑

j=1

|b j − a j| < δ,

we have ∫
A

f (x) dx =

∫
A

( f (x) − fN(x)) dx +

∫
A

fN(x) dx ≤
ε
2

+
ε
2

= ε,
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where A denotes the union of the intervals ((a j, b j)) j∈{1,...,n}. Note that since f is nonneg-
ative, it follows that F is monotonically increasing. Thus

n∑
j=1

|F(b j) − F(a j)| =
n∑

j=1

(F(b j) − F(a j)).

Given the definition of F we thus have

n∑
j=1

|F(b j) − F(a j)| =
∫

A
f (x) dx < ε,

and we conclude that F is absolutely continuous.
If f is not nonnegative-valued, then we write f = f+ − f− where f+ and f− are

nonnegative. Our arguments above show that the functions

x 7→
∫ x

a
f+(ξ) dξ, x 7→

∫ x

a
f−(ξ) dξ

are absolutely continuous. Therefore, since

F(x) = F(a) +

∫ x

a
f+(ξ) dξ −

∫ x

a
f−(ξ) dξ,

it follows that F is the sum of three absolutely continuous functions (a constant function
is trivially absolutely continuous) and so F is itself absolutely continuous by Proposi-
tion 5.9.27.

Now suppose that F is absolutely continuous, and so of bounded variation by
Proposition 5.9.24. Now, by part (ii) of Theorem 3.3.3, write F = F+−F− for monotonic
functions F+ and F−. By part (vi) of Theorem 3.3.3 the derivative of F exists almost
everywhere and we then have

F′(x) = F′+(x) − F′−(x) =⇒ |F′(x)| ≤ |F′+(x)| + |F′−(x)|

for almost every x ∈ [a, b]. Therefore we have∫ b

a
|F′(x)|dx ≤ F+(b) + F−(b) − F+(a) − F−(a),

implying that F′ ∈ L(1)([a, b];R). Note that the function

x 7→
∫ x

a
F′(ξ) dξ

is now absolutely continuous by our arguments from the first part of the proof, so that
the function

x 7→ F(x) −
∫ x

a
F′(ξ) dξ

is also absolutely continuous by Proposition 5.9.27. This function also has derivative
zero, and the result now follows by Lemma 5.9.30.
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Now suppose that I is an arbitrary interval. We first suppose that

F(x) = F(x0) +

∫ x

x0

f (ξ) dξ

for some x0 ∈ I and some locally integrable function f . Let [a, b] ⊆ I be a compact
subinterval. As we determined in the first part of the proof, we have

F(x) = F(a) +

∫ x

a
f (ξ) dξ,

from which we conclude that F|[a, b] is absolutely continuous, since we proved have
already proved the theorem for compact intervals. It then follows that F is locally
absolutely continuous since this can be done for any compact subinterval. Conversely,
suppose that F is locally absolutely continuous and let x0 ∈ I. Let x ∈ I, supposing
that x > x0. Note that, since F|[x0, x] is absolutely continuous, the first part of the proof
allows us to conclude that

F(x) = F(x0) +

∫ x

x0

f (ξ) dξ.

If x < x0 we have that F|[x, x0] is absolutely continuous and so we can write

F(x0) = F(x) +

∫ x0

x
f (ξ) dξ,

and the theorem follows by a rearrangement of this equation, using the stated conven-
tion for integrals whose lower limit exceeds the upper limit.

(ii) We first prove a technical lemma from which this part of the theorem will
follow.

1 Lemma If A ⊆ R then

lim
β↓0

λ(A ∩ (x, x + β))
β

= lim
α↓0

λ(A ∩ (x − α, x))
α

= lim
α,β↓0

λ(A ∩ (x − α, x + β))
α + β

= 1

for almost every x ∈ A. If we additionally have A ∈ L (R) then the above limits are equal to
zero for almost every x ∈ R \A.

Proof First suppose that A is bounded so that λ∗(A) < ∞. By definition of Lebesgue
outer measure, for k ∈ Z>0 there exists a countable collection ((ak, j, bk, j)) j∈Z>0 of open
intervals such that

∞∑
j=1

|bk, j − ak, j| − 2−k < λ∗(A).

If we define U′′k = ∪∞j=1(ak, j, bk, j) then we have

λ(U′′k ) − 2−k
≤

∞∑
j=1

|bk, j − ak, j| − 2−k < λ∗(A).

Then define U′m = ∩m
k=1U′′k so that U′m+1 ⊆ U′m, m ∈ Z>0, and

λ(U′m) − 2−m
≤ λ(U′′m) − 2−m < λ∗(A).
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Finally, let (a, b) be such that A ⊆ (a, b) and define Uk = U′k ∩ (a, b), k ∈ Z>0. Then
A ⊆ ∩k∈Z>0Uk, Uk+1 ⊆ Uk, k ∈ Z>0, and λ(Uk) − 2−k < λ∗(A), k ∈ Z>0.

Now define fk : R→ R, k ∈ Z>0, and f : R→ R by

fk(x) = λ(Uk ∩ (a, x)), f (x) = λ(A ∩ (a, x)).

Since Uk is open for k ∈ Z>0, if x ∈ Uk and if ε ∈ R>0 is such that (x − ε, x + ε) ⊆ Uk we
have

fk(x + ε) − fk(x)
ε

=
fk(x) − fk(x − ε)

ε
= 1.

Thus fk|Uk is differentiable with derivative 1.
Let x1, x2 ∈ R with a ≤ x1 < x2. Then, for each k ∈ Z>0,

fk(x2) − f (x2) − ( fk(x1) − f (x1)) = λ(Uk ∩ [x1, x2)) − λ(A ∩ (a, x2)) + λ(A ∩ (a, x1))
= λ(Uk ∩ [x1, x2)) − λ(A ∩ [x1, x2)) ≥ 0

by monotonicity of Lebesgue measure. This shows that the function fk − f is mono-
tonically increasing for each k ∈ Z>0. We also have

fk(b) − f (b) = λ(Uk) − λ(A) < 2−k

which gives
∞∑

k=1

( fk(x) − f (x)) ≤
∞∑

k=1

( fk(b) − f (b)) ≤
∞∑

k=1

2−k < ∞,

using Example 2.4.2–??. If we define

g(x) =

∞∑
k=1

( fk(x) − f (x)),

then, by Theorems 3.2.26 and 3.5.25, g is almost everywhere differentiable and

g′(x) =

∞∑
k=1

( f ′k (x) − f ′(x))

for almost every x ∈ (a, b). Since g is monotonically increasing, g′(x) is finite for almost
every x ∈ [a, b]. This gives

∞∑
k=1

( f ′k (x) − f ′(x)) < ∞

for almost every x ∈ (a, b). Since f ′k (x) − f ′(x) ≥ 0 for almost every x ∈ (a, b) we must
have

lim
k→∞

f ′k (x) − f ′(x) = 0

for almost every x ∈ (a, b). Let N ⊆ (a, b) be the set of points on which the above limit
does not hold, so λ∗(N) = 0. Let x ∈ (∩k∈Z>0Uk) − N. Then f ′k (x) = 1 for every k ∈ Z>0
and so f ′(x) = 1. Thus f ′(x) = 1 for x ∈ A−N, giving the first assertion of the lemma in
the case when A is bounded. If A is not bounded then we can write A as a countable
union of bounded sets: A = ∪ j∈Z>0A j. Let N j ⊆ A j be the subset of A j where the limits
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in the first assertion of the theorem do not have the value 1. Then the limits in the first
assertion of the theorem hold for all x ∈ A \ ∪ j∈Z>0N j. Since ∪ j∈Z>0N j has measure zero
by Exercise 2.5.9, the first part of the theorem is proved.

For the second assertion, if A is measurable then we have

α + β = λ((x − α, x + β)) = λ(A ∩ (x − α, x + β)) + λ((R \ A)(x − α, x + β)).

Thus

1 =
λ(A ∩ (x − α, x + β))

α + β
+
λ((R \ A)(x − α, x + β))

α + β
,

and taking the limit as α and β decrease to zero gives

lim
α,β↓0

λ((R \ A)(x − α, x + β))
α + β

,

using the fact that the first part of the proof has been proved. H

Proceeding with the proof of the theorem, first consider the case when I = [a, b]
and

F(x) =

∫ x

a
f (ξ) dξ;

the lower limit can be taken to be a as we saw in the first part of the proof. We first
consider the case where f is a finite nonnegative simple function,

f (x) =

k∑
j=1

a jχA j(x).

Then, by linearity of the integral,

F(x) =

∫ x

a
f (ξ) dξ =

k∑
j=1

a jλ(A j ∩ (a, x)).

By the lemma it follows that F is differentiable for almost every x ∈ (a, b) and that
F′(x) = f (x) for almost every x ∈ (a, b).

Now suppose that f is a nonnegative simple function and let (g j) j∈Z>0 be a sequence
of nonnegative simple functions as in part (ii) of Proposition 5.6.39. For j ∈ Z>0 define

G j(x) =

∫ x

a
g j(ξ) dξ.

By the Monotone Convergence Theorem,

F(x) =

∫ x

a
f (ξ) dξ = lim

j→∞

∫ x

a
g j(ξ) dξ = lim

j→∞
G j(x)

= G1(x) +

∞∑
j=1

(G j+1(x) − G j(x))



2016/11/26 5.9 The single-variable Lebesgue integral 588

for every x ∈ [a, b]. Note that for each j ∈ Z>0 the functions G j and G j+1 −G j are mono-
tonically increasing, being the indefinite integrals of nonnegative functions. Therefore,
we can apply Theorem 3.5.25 to arrive at the equality

F′(x) = G′1(x) +

∞∑
j=1

(G′j+1(x) − G′j(x)) = lim
j→∞

G′j(x)

for almost every x ∈ (a, b). Since the theorem has been proved for nonnegative simple
functions, we have

lim
j→∞

G′j(x) = lim
j→∞

g j(x) = f (x)

for almost every x ∈ (a, b). Therefore, F′(x) = f (x) for almost every x ∈ (a, b).
Now let I be an arbitrary interval with x0 ∈ I and

F(x) =

∫ x

x0

f (ξ) dξ.

Let (I j) j∈Z>0 be a sequence of bounded intervals all containing x0 such that I j ⊆ I j+1,
j ∈ Z>0, and such that ∪ j∈Z>0I j = I (make sure you understand why this is possible).
By the arguments above, F′(x) = f (x) for almost every x ∈ I j and for every j ∈ Z>0.
Thus, if N j ⊆ I j is the set of measure zero for which F′ does not exist or, if it exists is
not equal to f (x), then F′(x) = f (x) for all x ∈ I \ ∪ j∈Z>0N j. Since λ(∪ j∈Z>0N j) = 0 by
Exercise 2.5.9, the theorem follows. �

In Example 3.4.31 we considered a collection of examples illustrating the Fun-
damental Theorem of Calculus for the Riemann integral. The examples where this
version of the Fundamental Theorem applies still apply for the Lebesgue integral
by virtue of Theorem 5.9.11. However, in Example 3.4.31 we saw an instance of a
differentiable function on [0, 1] that is everywhere differentiable and with bounded
derivative, but the derivative is not Riemann integrable. This example is more
satisfactory with the Lebesgue integral.

5.9.32 Example (The Fundamental Theorem of Calculus for the Lebesgue integral)
The reader should go back and carefully read the construction of Example 3.4.31.
The reader will see that the example is of a function F : [0, 1]→ Rwith the property
that F is everywhere differentiable with a bounded derivative. However, F′ is not
Riemann integrable. By Proposition 5.9.26, however, F is absolutely continuous,
and so F′ is Lebesgue integrable by Theorem 5.9.31. •

One of the conclusions of the Fundamental Theorem of Calculus for the
Lebesgue integral is that an absolutely continuous function is almost everywhere
differentiable. As we saw in Proposition 5.9.24, absolutely continuous functions
are continuous. One might speculate, then, that a characterisation of absolute con-
tinuity using continuity and the derivative might be possible. For example, here
are some guesses, along with counterexamples.
1. An absolutely continuous function is one that is continuous and differentiable almost

everywhere. This is false as seen by Example 3.3.15.
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2. An absolutely continuous function is one that is continuous, differentiable almost
everywhere, and with integrable derivative. This is false by virtue of Example 5.9.25.

3. An absolutely continuous function is one that is differentiable almost everywhere. This
is false by virtue of Example 3.3.15.

However, there is the following result, which is sometimes enough to understand
absolute continuity.

5.9.33 Theorem (A class of absolutely continuous functions) If F: [a, b]→ R is
(i) continuous,
(ii) differentiable at all but at most countable many points in [a, b], and
(iii) the function

f(x) =

F′(x), the derivative exists,
0, otherwise,

is in L(1)([a, b];R),
then F is absolutely continuous.

Proof Our proof relies on the definition in Section ?? of lower semicontinuous func-
tions. Note that, by Proposition ??, lower semicontinuous functions are Borel measur-
able. With this notion recalled, we have the following lemma.

1 Lemma If f ∈ L(1)([a, b];R) then, for each ε ∈ R>0, there exists a lower semicontinuous
g ∈ L(1)([a, b]; (−∞,∞]) such that f(x) ≤ g(x) for every x ∈ [a, b] and∫ b

a
g(x) dx <

∫ b

a
f(x) dx + ε.

Proof Let ε ∈ R>0. We first consider the case when f is nonnegative-valued. We let
( f j) j∈Z>0 be a sequence of simple functions as in part (ii) of Proposition 5.6.39. Then

f (x) = lim
j→∞

f j(x) = f1(x) +

∞∑
j=1

( f j+1(x) − f j(x)). (5.21)

Let j ∈ Z>0 and write

f j =

m∑
k=1

akχAk , f j+1 =

n∑
l=1

blχBl .

For each l ∈ {1, . . . ,n}write
Bl = ∪n

k=1(Ak ∩ Bl).

If Ak ∩ Bl , ∅ then, on Ak ∩ Bl the value of f j+1 − f j is bl − ak ∈ R>0. Thus ( f j+1 − f j)|Bl
is a nonnegative simple function. Since this is true for every l it follows that f j+1 − f j
is a nonnegative simple function. Thus, by (5.21), f is an infinite sum of nonnegative
simple functions. Thus we write

f =

∞∑
k=1

akχAk
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where the numbers ak ∈ R>0 and the sets Ak, k ∈ Z>0, are not related to those above.
For k ∈ Z>0 let Uk be an open set such that Ak ⊆ Uk and such that

λ(Uk) < λ(Ak) + ε
ak2k .

Then
∞∑

k=1

akλ(Uk) <
∞∑

k=1

akλ(Ak) +

∞∑
k=1

ε

2k
=

∞∑
k=1

akλ(Ak) + ε,

where we use Example 2.4.2–??. By Example ??–?? each of the functions akχUk is lower
semicontinuous. Define

hm(x) =

m∑
k=1

akλ(Uk)

and

h(x) =

∞∑
k=1

akλ(Uk).

Then hm is lower semicontinuous by missing stuff , and, since

h(x) = sup{hm(x) | m ∈ Z>0},

h is also lower semicontinuous by Proposition ??. We then have∫ b

a
h(x) dx <

∫ b

a
f (x) dx + ε

and f (x) ≤ h(x) for all x ∈ [a, b].
Now suppose that f ∈ L(1)([a, b];R) and, for k ∈ Z>0, define

fk(x) =

 f (x), f (x) > −k,
−k, f (x) ≤ −k.

By the Dominated Convergence Theorem,∫ b

a
f (x) dx = lim

k→∞

∫ b

a
fk(x) dx.

Now let N ∈ Z>0 be sufficiently large that∫ b

a
fN(x) dx <

∫ b

a
f (x) dx −

ε
2
.

Since fN + Nχ[a,b] is nonnegative, from the first part of the proof there exists a lower
semicontinuous function h such that fN(x) + N ≤ h(x) for every x ∈ [a, b] and such that∫ b

a
h(x) dx <

∫ b

a
( fN(x) + Nχ[a,b]) dx +

ε
2
.

Define g = h −Nχ[a,b]. Then f (x) ≤ fN(x) ≤ g(x) for every x ∈ [a, b] and∫ b

a
g(x) dx =

∫ b

a
(h(x) −Nχ[a,b]) dx <

∫ b

a
fN(x) dx <

∫ b

a
f (x) dx −

ε
2
,

as desired. H
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2 Lemma Let h: [a, b] → R be continuous and let C ⊆ [a, b] be countable. If, for each
x ∈ [a, b) − C, there exists rx ∈ R>0 such that h(z) > h(x) for each z ∈ (x, x + rx), then h is
monotonically increasing.

Proof Suppose that h is continuous and that x1, x2 ∈ [a, b] satisfy x1 < x2 and h(x1) >
h(x2). For y ∈ (h(x2), h(x1)) define

xy = sup{x ∈ [x1, x2] | h(x) > y}.

Then there exists a sequence (x j) j∈Z>0 in [x1, x2] such that x j ≤ xy, j ∈ Z>0, and such that
lim j→∞ x j = xy. By continuity of h, lim j→∞ h(x j) = y, using Theorem 3.1.3. We claim
that, for any ry ∈ R>0, there exists z ∈ (xy, xy + ry) such that h(z) ≤ h(xy). Indeed, were
this not so, then there would exist z > xy such that h(z) > h(xy) = y, contradicting the
definition of xy. Since this construction can be made for every y ∈ (h(x2), h(x1)), this
shows, therefore, that the complement to the set

{x ∈ [a, b) | there exists rx ∈ R>0 such that h(z) > h(x) for each z ∈ (x, x + rx)}

is not countable, which give the lemma. H

Proceeding with the proof, let ε ∈ R>0. Denote by C ⊆ [a, b] the countable subset
at whose points F is not differentiable. By Lemma 1 let h : [a, b] → (−∞,∞] be lower
semicontinuous and such that f (t) ≤ h(t) for t ∈ [a, b] \ C and such that∫ b

a
h(x) dx <

∫ b

a
f (x) dx +

ε
2
.

Then, if we define g = h + ε
2(b−a) , then f (t) < g(t) for t ∈ [a, b] \ C and∫ b

a
g(x) dx <

∫ b

a
f (x) dx + ε.

Let G : [a, b]→ R be defined by

G(x) = F(a) +

∫ x

a
g(ξ) dξ

Let x ∈ [a, b). Since g is lower semicontinuous, for each η ∈ R>0 there exists δ ∈ R>0
such that, if x′ ∈ [x, x + δ], we have g(x′) > g(x)− η. Then, for any y ∈ [x, x + δ] we have

G(y) − G(x) = F(a) +

∫ y

a
g(ξ) dξ − F(a) −

∫ x

a
g(ξ) dξ =

∫ y

x
g(ξ) dξ

>

∫ y

x
(g(x) − η) dξ = (g(x) − η)(y − x),

or
G(y) − G(x)

y − x
> g(x) − η.

This implies that

lim inf
y↓x

G(y) − G(x)
y − x

≥ g(x)
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for every x ∈ [a, b). Therefore, if x ∈ [a, b] \ C we have

lim inf
y↓x

(G(y) − F(y)) − (G(x) − F(x))
y − x

= lim inf
y↓x

G(y) − G(x)
y − x

− lim inf
y↓x

F(y) − F(x)
y − x

≥ g(x) − f (x) > 0.

This implies that, if x ∈ [a, b] \ C, there exists rx ∈ R>0 such that

(G(y) − F(y)) − (G(x) − F(x))
y − x

> 0

for y ∈ (x, x + rx). Since y − x > 0 for y ∈ (x, x + rx) this implies that

(G(y) − F(y)) − (G(x) − F(x)) > 0, y ∈ (x, x + rx).

By Lemma 2 this implies that G − F is nondecreasing. Therefore, since G(a) = F(a) it
follows that F(x) ≤ G(x) for x ∈ [a, b]. Therefore,

F(x) ≤ G(x) = F(a) +

∫ x

a
g(ξ) dξ

= F(a) +

∫ x

a
f (ξ) dξ +

∫ x

a
(g(ξ) − f (ξ)) dξ

≤ F(a) +

∫ x

a
f (ξ) dξ + ε

by the definition of g. Since ε ∈ R>0 is arbitrary, this shows that

F(x) ≤ F(a) +

∫ x

a
f (ξ) dξ.

A similar argument to the above, applied to −F, gives

−F(x) ≤ −F(a) −
∫ x

a
f (ξ) dξ =⇒ F(x) ≥ F(a) +

∫ x

a
f (ξ) dξ,

which gives the theorem. �

Our definition of absolute continuity allows us to state a more powerful version
of the integration by parts formula than was given as Proposition 3.4.28 for the
Riemann integral.

5.9.34 Proposition (Integration by parts) If f,g: [a, b]→ R are absolutely continuous, then∫ b

a
f(x)g′(x) dx = f(b)g(b) − f(a)g(a) −

∫ b

a
f′(x)g(x) dx.

Proof We have

f (x) = f (a) +

∫ x

a
f ′(ξ) dξ

=⇒

∫ b

a
f (x)g′(x) dx =

∫ b

a
f (a)g′(x) dx +

∫ b

a
g′(x)

(∫ x

a
f ′(ξ) dξ

)
dx

=⇒

∫ b

a
f (x)g′(x) dx = f (a)(g(b) − g(a)) +

∫ b

a
g′(x)

(∫ b

a
χ[a,x](ξ) f ′(ξ) dξ

)
dx. (5.22)
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By Corollary 5.8.8 the function F(x, ξ) = g(x)χ[a,x](ξ) f ′(ξ) is integrable with respect to
λ[a,b] × λ[a,b]. Thus we may apply Fubini’s Theorem (the version in Theorem 5.8.4) to
the last of the above integrals to get∫ b

a
g′(x)

(∫ b

a
χ[a,x](ξ) f ′(ξ) dξ

)
dx =

∫ b

a
f ′(ξ)

(∫ b

a
χ[ξ,b](x)g′(x) dx

)
dξ

=

∫ b

a
f ′(ξ)

(∫ b

ξ
g′(x) dx

)
dξ

=

∫ b

a
f ′(ξ)(g(b) − g(ξ)) dξ

= f (b)g(b) − f (a)g(b) −
∫ b

a
f ′(ξ)g(ξ) dξ,

using the fact that χ[a,x](ξ) = χ[ξ,b](x). Combining this with (5.22) gives the result. �

5.9.8 Lebesgue points

One might speculate that Lebesgue measurable functions are very nasty. How-
ever, in Theorems 5.9.2 and 5.9.3 we show that measurable functions can be
approximated well by “nice” functions. In this section we show that if a function
is additionally integrable, then we can make some further conclusions about how
nice it is.

The main result we state relies on taking a limit over intervals where the length
of the interval goes to zero. To make this precise we need to define a directed set for
the limit to be well-defined. We refer to missing stuff for this notion of convergence
using directed sets and nets. We let I ⊆ R be an interval, let x0 ∈ I, and let C (x0, I)
be the set of closed subintervals of I containing x0. This set is partially ordered by
saying that J1 � J2 if J1 ⊇ J2. It is easily verified that C (x0) is a directed set with this
partial order. If f ∈ L(1)

loc(I;R) then we define P f ,x0 : C (x0, I)→ R by

P f ,x0(J) =
1
λ(J)

∫
J
| f (x) − f (x0)|dx,

which defines a C (x0, I) net.

5.9.35 Theorem (Almost every point is a Lebesgue point for an integrable function)
If f ∈ L(1)(I;R) then lim Pf,x0 = 0 for almost every x0 ∈ R.

Proof We begin with a technical lemma.

1 Lemma If f ∈ L(1)([a, b];R) then there exists A ⊆ [a, b] such that
(i) λ([a, b] \A) = 0 and such that
(ii) for all α ∈ R and for all x ∈ A,

lim
δ↓0

1
δ

∫ x+δ

x
|f(ξ) − α|dξ = lim

δ↓0

1
δ

∫ x

x−δ
|f(ξ) − α|dξ = |f(x) − α|.
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Proof Let α ∈ R, let (q j) j∈Z>0 be an enumeration of the rationals and, for j ∈ Z>0,
define f j ∈ L(1)([a, b];R) by

f j(x) = | f (x) − α|.

By part (ii) of Theorem 5.9.31, for each j ∈ Z>0 there exists a set A j ⊆ [a, b] such that
λ([a, b] \ A j) = 0 and such that, for all x ∈ A j,

lim
δ↓0

1
δ

∫ x+δ

x
g j(ξ) dξ = lim

δ↓0

1
δ

∫ x

x−δ
g j(ξ) dξ = g j(x).

Take A = ∩ j∈Z>0A j, and note that

λ([a, b] \ A) = λ(∪ j∈Z>0[a, b] \ A j) = 0,

where we have used De Morgan’s Laws and Exercise 2.5.9.
Let δ ∈ R>0 and let k ∈ Z>0 be such that |qk − α| <

δ
3 . By Exercise 2.2.7 we have

|| f (x) − α| − | f (x) − qk|| ≤ |q j − α| <
δ
3

for all x ∈ [a, b]. Therefore,∣∣∣∣1δ
∫ x+δ

x
| f (ξ) − α|dξ −

1
δ

∫ x+δ

x
|gk(ξ) − α|dξ

∣∣∣∣ ≤ f rac1δ
∫ x+δ

x

δ
3

dξ =
δ
3

for every δ ∈ R>0 such that the integrals are defined. Therefore, we let x ∈ A and let
δ0 ∈ R>0 be such that ∣∣∣∣1δ

∫ x+δ

x
gk(ξ) dξ − gk(x)

∣∣∣∣ < δ
3

for all δ ∈ (0, δ0). Then, provided that δ ∈ (0, δ0) we have∣∣∣∣1δ
∫ x+δ

x
| f (ξ) − α|dξ − f (x)

∣∣∣∣ ≤ ∣∣∣∣1δ
∫ x+δ

x
| f (ξ) − α|dξ −

1
δ

∫ x+δ

x
|gk(ξ) − α|dξ

∣∣∣∣
+
∣∣∣∣1δ

∫ x+δ

x
gk(ξ) dξ − gk(x)

∣∣∣∣ + |qk − α| <
δ
3

+
δ
3

+
δ
3

= δ,

using the triangle inequality. This gives the left limit equal to the right expression
in the statement of the lemma. The proof that the middle limit is equal to the right
expression follows along entirely similar lines. H

It is now somewhat easy to complete the proof of the theorem. First suppose
that I = [a, b] is compact. As per the preceding lemma, let A ⊆ [a, b] be such that
λ([a, b] \ A) = 0 and such that, for all α ∈ R and x ∈ A,

lim
δ↓0

1
δ

∫ x+δ

x
| f (ξ) − α|dξ = lim

δ↓0

1
δ

∫ x

x−δ
| f (ξ) − α|dξ = | f (x) − α|.

Now let x0 ∈ A ∩ (a, b) and let ε ∈ R>0. Then there exists δ0 ∈ R>0 such that∣∣∣∣1δ
∫ x0+δ

x0

| f (x) − f (x0)|dx
∣∣∣∣ < ε

2
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and ∣∣∣∣1δ
∫ x0

x0−δ
| f (x) − f (x0)|dx

∣∣∣∣ < ε
2

for δ ∈ (0, δ0). Define J0 = [x0−δ0, x0 +δ0]. We may suppose that δ0 is sufficiently small
that J0 ∈ [a, b]. If J0 � J then J ⊆ J0 and so we have∣∣∣∣ 1
λ(J)

∫
J
| f (x) − f (x0)|dx

∣∣∣∣
≤

∣∣∣∣ 1
δ0

∫ x0+δ0

x0

| f (x) − f (x0)|dx +
1
δ0

∫ x0

x0−δ0

| f (x) − f (x0)|dx
∣∣∣∣ ≤ ε2 +

ε
2

= ε.

This shows that lim P f ,x0 = 0, giving the theorem when I is compact. When I is not
compact, then we can write I as a countable union of compact intervals (I j) j∈Z>0 . For
each j ∈ Z>0 let N j ⊆ I j be the set of measure zero such that if x ∈ N j we have
lim P f ,x , 0. Since λ(∪ j∈Z>0N j) = 0 by Exercise 2.5.9, and since if x ∈ I \ ∪ j∈Z>0N j we
have lim P f ,x = 0, the theorem follows. �

5.9.9 Maximal functions

5.9.10 The change of variables formula

In this section we state and prove a simple version of the change of variables for-
mula for the Lebesgue integral. This is one of the places in our development where
the extension to the Lebesgue integral on Rn is not so easily accomplished. In-
deed, the higher-dimensional versions are difficult to prove in any useful degree of
generality, and normally require the Radon–Nikodym Theorem (see, for example,
WR:86). We refer to [DEV:71] for a quite general statement of the multivariable
change of variable formula. Fortunately, we shall only need the single-variable
change of variable, and this can be proved more directly, even though, as the
reader can see, the proof is not quite trivial.

5.9.36 Theorem (Change of variable) Let I, J ⊆ R be intervals with φ : I→ J a map with the
properties that

(i) φ is surjective,
(ii) φ is either monotonically decreasing or monotonically increasing, and
(iii) there exists an integrable function φ′ : I→ R and x0 ∈ I so thatmissing stuff

φ(x) = φ(x0) +

∫
[x0,x]

φ′ dλ[x0,x].

If f : J→ R is integrable then f ◦φ is measurable, f ◦φ|φ′| is integrable, and∫
J
f dλJ =

∫
I
f ◦φ|φ′|dλI.

Proof We first take the case where I = [a, b] and J = [c, d]. We claim that the theorem
is true for step functions in this case. Indeed, let g : [c, d] → R be a step function and



2016/11/26 5.9 The single-variable Lebesgue integral 596

write

g =

k∑
j=1

α jχI j

where I j = (x j, x j−1], j ∈ {0, 1, . . . , k}, are the endpoints of a partition (I1, . . . , Ik) of
[c, d]. Corresponding to this partition of [c, d] we define a partition (J1, . . . , Jk) of [a, b]
endpoints (ξ0, ξ1, . . . , ξk) such that φ(ξ j) = x j, j ∈ {0, 1, . . . , k}. There may be ambiguity
in this definition of ξ j, j ∈ {0, 1, . . . , k}, but this does not matter. Assuming thatφ′(x) ≥ 0
for all x we then compute∫ b

a
g ◦φ(ξ)φ′(ξ) dξ =

k∑
j=1

∫ ξ j

ξ j−1

α jφ
′(ξ) dξ

=

k∑
j=1

α j(φ(ξ j) − φ(ξ j−1))

=

k∑
j=1

α j(x j − x j−1) =

∫ d

c
g(x) dx.

A similarly styled computation shows that the result is also true if φ′(x) ≤ 0.
Now suppose that f takes values in [0,∞). Using Theorem 5.9.2, let (g j) j∈Z>0 be a

sequence of step functions on [c, d] with the property that for almost every x ∈ [c, d] we
have lim j→∞ g j(x) = f (x). Let us denote by Z1 the subset of measure zero where this
limit does not hold. By examining the proofs of Proposition 5.6.39 and Theorem 5.9.2
we see that we can take the sequence (g j) j∈Z>0 so that for each x ∈ [c, d] \ Z1 the
sequence (g j(x)) j∈Z>0 is nondecreasing. Therefore the sequence (g j ◦φ(ξ)|φ′(ξ)|) j∈Z>0 is
also nondecreasing provided that φ(ξ) < Z1. Indeed, provided that either

1. φ(ξ) < Z1 or
2. φ′(x) = 0

hold, then we have lim j→∞ g j ◦φ(ξ)|φ′(ξ)| = f ◦φ(ξ)|φ′(ξ)|. We claim that the set of
points Z2 ⊆ [a, b] where both conditions 1 and 2 fail to hold has measure zero. We do
this with the aid of a lemma.

1 Lemma Z ⊆ R has Lebesgue measure zero if and only if there exists a sequence (Ij)j∈Z>0 of
nonempty open intervals such that

(i)
∑
∞

j=1 λ(Ij) < ∞ and
(ii) for each x ∈ Z there exists a sequence (jk)k∈Z>0 of Z>0 so that x ∈ Ijk , k ∈ Z>0.

Proof By definition, Z has Lebesgue measure zero if for each ε ∈ R>0 there exists a
family (Ĩ`)`∈Z>0 of open intervals, some possibly empty, for which Z ⊆ ∪`∈Z>0 Ĩ` and∑
∞

`=1 λ(Ĩ`) < ε.
Suppose that there exists a collection of intervals (I j) j∈Z>0 having properties (i)

and (ii) and let ε ∈ R>0. Choose a finite collection I j1 , . . . , I jm of intervals so that

∞∑
j=1

λ(I j) −
m∑

k=1

λ(I jk) < ε.
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It then follows that the family (I j) j∈Z>0 \ (I jk)k∈{1,...,m} of open intervals has total length
less than ε. Furthermore, since only a finite number of intervals are removed from
(I j) j∈Z>0 , the remaining intervals still cover Z. Thus Z has Lebesgue measure zero.

Now suppose that Z has measure zero. For n ∈ Z>0 let (In, j) j∈Z>0 have the property
that Z ⊆ ∪ j∈Z>0In, j and that

∞∑
j=1

λ(In, j) <
1
2n .

Then the collection (I j,n) j,n∈Z>0 satisfies (i) and (ii). H

According to the lemma, choose a sequence (I j) j∈Z>0 of intervals covering Z1 and
whose total length is finite. Define a step function gn : [c, d]→ R by

gn =

n∑
j=1

χI j ,

and note that for each x ∈ Z1 we have limn→∞ gn(x) = ∞. If ξ ∈ Z2 it follows that
limn→∞ gn ◦φ(ξ)|φ′(ξ)| = ∞. Now note that∫ b

a
gn ◦φ(ξ)|φ′(ξ)|dξ =

∫ d

c
gn(x) dx <

∞∑
j=1

λ(I j) < ∞.

It follows from Proposition 5.7.12 that λ(Z2) = 0.
Thus we have shown that, provided that I = [a, b], that J = [c, d], and that f (J) ⊆

[0,∞), for almost every ξ ∈ [a, b] and almost every x ∈ [c, d] we have

lim
j→∞

g j(x) = f (x), lim
j→∞

g j ◦φ(ξ)|φ′(ξ)| = f ◦φ(ξ)|φ′(ξ)|

with both limits being monotonic, and that for each j ∈ Z>0 we have∫ b

a
g j ◦φ(ξ) dξ =

∫ d

c
g j(x) dx.

The result under the current assumptions now follows by the Monotone Convergence
Theorem. For an arbitrary f with I = [a, b] and J = [c, d] the result follows from breaking
f into its positive and negative parts.

It remains to prove the result for general intervals I and J. Let (In = [an, bn]) j∈Z>0

be a sequence of intervals with the property that int(I) = ∪n∈Z>0In. Define Jn = φ(In),
n ∈ Z>0, noting that Jn so defined is a closed interval by monotonicity of φ. We then
have, by the Dominated Convergence Theorem,∫

I
f dλI = lim

n→∞

∫
I
χIn f dλI,

∫
J

f ◦φ|φ′|dλJ = lim
n→∞

∫
J
χJn f ◦φ|φ′|dλJ.

From this the result follows since∫
I
χIn f dλI =

∫
J
χJn f ◦φ|φ′|dλJ. �
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5.9.11 Topological characterisations of the deficiencies of the Riemann
integral16

In Section 5.7.5 we saw that it was possible to give interesting topological
characterisations of the Dominated Convergence Theorem for the general measure
theoretic integral. These characterisations are, of course, inherited by the Lebesgue
integral. That is to say, one can specialise Theorems 5.7.40 and 5.7.42 to the
Lebesgue integral as follows.

5.9.37 Theorem (Topological “everywhere” Dominated Convergence Theorem for
the Lebesgue integral) If A ∈ L (R) then Cp-bounded subsets of L(1)(A;R) are Cp-
sequentially closed.

5.9.38 Theorem (Limit structure “almost everywhere” Dominated Convergence The-
orem for the Lebesgue integral) If A ∈ L (R) then LλA-bounded subsets of L1(A;R)
are LλA-sequentially closed.

In this section we give a couple of examples that show that these theorems do
not hold for the Riemann integral. First we consider the “everywhere” version of
the Dominated Convergence Theorem.

5.9.39 Example (The topological “everywhere” Dominated Convergence Theorem
does not hold for the Riemann integral) By means of an example, we show that
there are Cp-bounded subsets of the seminormed vector space R(1)([0, 1];R) that are
not Cp-sequentially closed. Let us denote

B = { f ∈ R(1)([0, 1];R) | | f (x)| ≤ 1},

noting by Proposition 5.7.39 that B is Cp-bounded. Let (q j) j∈Z>0 be an enumeration
of the rational numbers in [0, 1] and define a sequence ( fk)k∈Z>0 in R(1)([0, 1];R) by

fk(x) =

1, x ∈ {q1, . . . , qk},

0, otherwise.

The sequence converges in the Cp-topology to the characteristic function ofQ∩[0, 1];
let us denote this function by f . This limit function is not Riemann integrable and
so not in R(1)([0, 1];R). Thus B is not Cp-sequentially closed. •

Next we turn to the “almost everywhere” version of the Dominated Conver-
gence Theorem for the Riemann integral.

5.9.40 Example (The limit structure “almost everywhere” Dominated Convergence
Theorem does not hold for the Riemann integral) Recall from Section 5.6.6 that
L0([0, 1];R) denotes the set of equivalence classes ofR-valued measurable functions
on [0, 1] under the equivalence relation of almost everywhere equality. We denote
by R1([0, 1];R) the image of R(1)([0, 1];R) by the projection from L(0)([0, 1];R) to

16The results in this section are not used in an essential way anywhere else in the text.
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L0([0, 1];R). Thus elements of R1([0, 1];R) are equivalence classes of R-valued
Riemann integrable functions under the equivalence relation of almost everywhere
equality. We denote elements of R1([0, 1];R) by [ f ], reflecting the fact that they are
equivalence classes of functions. For brevity we denote the Lebesgue measure on
[0, 1] by λ.

We give an example that shows that Lλ-bounded subsets of the normed vector
space R1([0, 1];R) are not Lλ-sequentially closed. We first remark that the con-
struction of Example 5.9.39, projected to R1([0, 1];R), does not suffice because [ f ]
is equal to the equivalence class of the zero function which is Riemann integrable,
even though f is not. The fact that [ f ] contains functions that are Riemann inte-
grable and functions that are not Riemann integrable is a reflection of the fact that
the set

R0([0, 1];R) =
{

f : [0, 1]→ R
∣∣∣∣ f Riemann integrable and

∫ 1

0
f (x) dx = 0

}
is not sequentially closed. This is a phenomenon of interest, but it is not what is of
interest here.

We use the construction of the function f from the proof of Proposition 5.1.12.
In that proof, the function f was shown to have the following properties:

1. f is the pointwise limit of a sequence ( fk)k∈Z>0 of Riemann integrable functions;

2. any function almost everywhere equal to f is not Riemann integrable.

Therefore, by Theorem 5.6.51 it follows that ([ fk])k∈Z>0 is Lλ-convergent to [ f ].
Moreover, [ f ] < R1([0, 1];R). To complete the example, we note that the sequence
([Gk]) j∈Z>0 is in the set

B = {[ f ] ∈ R1([0, 1];R) | | f (x)| ≤ 1 for almost every x ∈ [0, 1]},

which is Lλ-bounded by Proposition 5.7.41. The example shows that this Lλ-
bounded subset of R1([0, 1];R) is not Lλ-sequentially closed. •

Exercises

5.9.1 Use Lemma 5.9.30 to directly conclude that the Cantor function of Exam-
ple 5.9.25 is not absolutely continuous.

5.9.2 Give an example of a function f : R→ R such that | f | is Lebesgue measurable,
but f is not Lebesgue measurable.

5.9.3 Answer the following two questions.
(a) Why must a Riemann integrable function f : [a, b] → R on a compact

interval be bounded?
(b) Provide an unbounded function on [a, b] that is continuous when re-

stricted to (a, b), and that is Lebesgue integrable.

One of the differences between the Lebesgue and Riemann integral is that the
Lebesgue integral is defined by first approximating a measurable function by a
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sequence of simple function only from below. In contrast, for the Riemann inte-
gral, one asks that the function be approximated from below and above by step
functions. One might legitimately wonder whether this is asking too much of the
approximation, and whether one can get away, as one does with the Lebesgue
integral, by approximation from (say) below. The following exercise asks you to
explore this.

5.9.4 Let I = [0, 1] and let
f = χI∩Q, g = χI∩(R\Q).

Answer the following questions.
(a) Show that I−( f ) = I−(g) = 0. Thus, when approximated just by step

functions from below, both f and g have zero “integral.”
(b) Show that I−( f + g) , I−( f ) + I−(g). Thus the “integral” is not linear.

5.9.5 Let A ⊆ I = [0, 1] be the subset of irrational numbers, and let χA be the
characteristic function. Show that

∫
I
χA dλ = 1.

5.9.6 Show that there is a function f : [0, 1] → R that is not Riemann integrable,
but for which | f | is Riemann integrable.

5.9.7 Let I = [0,∞) and define f : I → R by f (x) = x. Use the Monotone Conver-
gence Theorem to show that f is not integrable.

5.9.8 Let I ⊆ R be an interval, and let f : I→ R be continuous. Show that if

λ({x ∈ I | f (x) , 0}) = 0

then f (x) = 0 for every x ∈ I.
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Section 5.10

Notes



Chapter 6

Banach spaces

In Chapter ??, particularly in Sections ?? and ??, we studied linear algebra over
arbitrary fields. Here we relied on the notion, introduced in Section 4.3, of a vector
space. In many instances in applications, one is interested in the case where the field
is either R or C. In finite-dimensions, the story here is not too complicated; finite-
dimensional vector spaces overR orC are fairly easy to understand and linear maps
on these spaces are also fairly easy to understand. However, in applications, it turns
out that infinite-dimensional vector spaces are often what is of most interest. We
make no attempt to motivate this here, but refer the reader to Chapter 8. The reader
will note that we were careful to understand the algebra of infinite-dimensional
vector spaces in Section 4.3 and linear maps between them in Section ??. It turns
out, though, that the key to understanding the infinite-dimensional vector spaces
that arise in applications is through the various topologies one can put on these.
This is the genesis of the huge subject of topological vector spaces which we spend
the next three chapters introducing. The present chapter is devoted to topologies
defined by a “norm.” These are the most basic topologies, and suffice to cover
many, but by no means all, areas of application.

Certain parts of what we say in this chapter have already been accounted for
in Chapter ??. However, we it seems like a good idea to make the treatment
here independent, for the most part, of the more general and abstract treatment
in Chapter ??. Therefore, at the cost of repetitiveness we make treat all of the
topological ideas for normed vector spaces independently of the fact that we have
already considered them.

Do I need to read this chapter? This chapter is fundamental to understanding
in any rigorous way topics like Fourier series, Fourier transforms, linear system
theory, signal processing, etc. This makes at least the basic material in this chapter
essential reading. Perhaps a reading of the detailed examples of dual spaces in
Section ?? can be postponed until it is needed, although it is at least interesting. •
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Section 6.1

Definitions and properties of normed vector spaces

The basic ingredient in this chapter is a norm on a vector space. While it is
possible to introduce this notion for other classes of fields, we restrict our attention
to vector spaces over eitherR orC. It will often be convenient to be able to consider
both of these cases together, and so let us introduce some notation for doing this.

6.1.1 Notation (F) The symbol F will denote either R or C. That is to say, whenever the
symbol F is present, the statement can be read by replacing it with either R or C.
In order to use this convenient notation as much as possible we have the following
conventions.

(i) If F = R and if a ∈ F then |a| denotes the absolute value of a.
(ii) If F = C and if a ∈ F then |a| denotes the modulus of a.
(iii) If F = R and if a ∈ F then ā = a.
(iv) If F = C if a ∈ F then ā is the complex conjugate of a. •

Do I need to read this section? Accepting that normed vector spaces are impor-
tant (they are), this section must then be important. •

6.1.1 Norms and seminorms

In this section we consider norms and seminorms. While the notion of a norm is
the most important for us, we will see that seminorms come up in two natural ways.
One is in Section 6.7.8 when we give an extremely important class of normed vector
spaces. As we shall see, in the construction of this class it is natural to first define
a seminorm. Thus, although one is interested in a norm in the end, a seminorm
naturally arises along the way. In a completely different manner, seminorms will
be important in Chapter ?? in their own right. As we shall see, particularly in the
context of so-called “generalised signals” in Chapter 10, seminorms often arise in
natural way independently of whether they are used to define a norm.

In any event, here are the definitions.

6.1.2 Definition (Seminorm, norm) Let F ∈ {R,C} and let V be an F-vector space. A
seminorm on V is a map V 3 v 7→ ‖v‖ ∈ R≥0 with the following properties:

(i) ‖av‖ = |a|‖v‖ for a ∈ F and v ∈ V (homogeneity);
(ii) ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ for v1, v2 ∈ V (triangle inequality).

A norm on V is a seminorm v 7→ ‖v‖with the additional property that
(iii) ‖v‖ = 0 only if v = 0V (positive-definiteness).

We shall often denote a seminorm by ‖·‖. •

Let us give some examples of norms and seminorms. Sometimes examples are
illustrative and sometimes they are of great value in their own right. The examples
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below, with the exception of the first one, are all of great independent interest, as
well as illustrating the concept of a norm.

6.1.3 Examples (Seminorm, norm)
1. For any F-vector space V there is a useless seminorm defined by v 7→ 0. Let us

call this the trivial seminorm since it is good for giving trivial examples. Unless
V = {0V}, the trivial seminorm is never a norm.

2. On Fn define
‖v‖2 =

(
|v1|

2 + · · · + |vn|
2
)1/2

.

In the case when F = R this is the standard norm on Rn as discussed in
Section ??. In particular, this norm defines the usual notion of length of a
vector in Fn, i.e., ‖v‖ is the distance from 0Fn to v. Note that we now use
different notation for this norm. We shall also sometimes call it the 2-norm
on Fn rather than the standard norm. It is pretty evident that ‖·‖2 satisfies the
homogeneity and positive-definiteness properties required of a norm. It is also
true that ‖·‖2 satisfies the triangle inequality. We do not prove this here, although
it was proved in the case when F = R as part of Proposition ??. The proof of
this relies on the so-called “Cauchy–Bunyakovsky–Schwarz Inequality.” This
inequality holds because ‖·‖2 is the norm derived from an inner product on Fn.
Thus we shall see how ‖·‖2 satisfies the triangle inequality when we discuss
inner products in Section 7.1. Moreover, we shall see this example come up in
another general context in Section 6.7.1. The point is that we will subsequently
see multiple proofs of the triangle inequality for ‖·‖2.

3. Let us consider another norm on Fn which differs from the standard norm. For
v = (v1, . . . , vn) ∈ Fn define

‖v‖1 = |v1| + · · · + |vn|.

All properties of the norm are readily verified, including the triangle inequality,
as this now follows from the triangle inequality for |·|. Although different from
the standard norm, this norm is in some sense equivalent to it, and we refer to
Exercise 6.1.6 for an exploration of this. This norm is called the 1-norm.

4. Let us consider a final (for now) norm on Fn given by

‖v‖∞ = max{|v j| | j ∈ {1, . . . ,n}}.

This is in fact a norm, called the ∞-norm. The only not entirely trivial norm
property to verify is the triangle inequality. For this, let u,v ∈ Fn and let j, k, ` ∈
{1, . . . ,n} have the property that ‖u‖∞ = |u j|, ‖v‖∞ = |vk|, and ‖u + v‖∞ = |u` + v`|.
We then have

‖u + v‖∞ = |u` + v`| ≤ |u`| + |v`| ≤ |u j| + |vk| = ‖u‖∞ + ‖v‖∞.

Note that this norm is also different from the standard norm, but it is equivalent
in some sense; Exercise 6.1.6.
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The above three examples of norms were all defined on the finite-dimensional
F-vector space Fn. Let us now consider infinite-dimensional analogues of these
norms.
5. Recall from Example 4.3.2–?? that F∞0 denotes the sequences (v j) j∈Z>0 for which

the set { j ∈ Z>0 | v j , 0} is finite. Thus sequences in F∞0 are eventually zero. We
define

‖(v j) j∈Z>0‖2 =
( ∞∑

j=1

|v j|
2
)1/2

,

noting that the sum makes sense since it is actually finite. That ‖·‖2 satisfies the
properties of a norm is straightforward. Let us verify just the triangle inequality,
since its proof gives the idea of how the norm works. We let (u j) j∈Z>0 , (v j) j∈Z>0 ∈

F∞0 and let N ∈ Z>0 be such that u j = v j = 0 for j ≥ N. Then

‖(u j) j∈Z>0 + (v j) j∈Z>0‖2 =
( ∞∑

j=1

|u j|
2 +

∞∑
j=1

|v j|
2
)1/2

=
( ∞∑

j=1

(|u j|
2 + |v j|

2)
)1/2

=
( N∑

j=1

(|u j|
2 + |v j|

2)
)1/2
≤

( N∑
j=1

|u j|
2
)1/2

+
( N∑

j=1

|u j|
2
)1/2

=
( ∞∑

j=1

|u j|
2
)1/2

+
( ∞∑

j=1

|u j|
2
)1/2

= ‖(u j) j∈Z>0‖2 + ‖(v j) j∈Z>0‖2,

where we have used the triangle inequality for the 2-norm on FN. This norm is
called the 2-norm on F∞0 .

6. We again consider the vector space F∞0 and now define

‖(v j) j∈Z>0‖1 =

∞∑
j=1

|v j|,

this sum again making sense since it is finite. It is easy to verify, just as we did
for the 2-norm above, that ‖·‖1 is a norm, and we call it the 1-norm.

7. As a final norm on F∞0 we define

‖(v j) j∈Z>0‖∞ = sup{|v j| | j ∈ Z>0}.

Because the sequence (v j) j∈Z>0 is finite, it is certainly bounded, and so the defini-
tion makes sense. Moreover, the norm properties follow, essentially from those
of ‖·‖∞ on Fn. This norm we call, of course, the∞-norm.

Now we consider yet another generalisation of the three types of norms we have
been considering, now thinking about, not sequences, but functions. The reader
should note the very strong analogies between the definitions of the norms that
follow and the norms above: the sums are replaced with integrals and the “max” is
replaced with a “sup.” Since the issues surrounding norms on infinite-dimensional
vector spaces can be complex, one should cling to familiarity where possible.
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8. We consider the F-vector space C0([a, b];F) of continuous F-valued functions
on the compact interval [a, b]. Provided that b > a this is an infinite-dimensional
vector space, cf. Example 4.3.18–??. On this vector space we define

‖ f ‖2 =
(∫ b

a
| f (x)|2 dx

)1/2
.

Note that continuous functions (and therefore their squares) on compact inter-
vals are always Riemann integrable by Corollary 3.4.12, and so the integral
here is the friendly Riemann integral. It is easy to see that this possible norm
satisfies the homogeneity and positive-definiteness properties of a norm (see
Exercise 3.4.1 for positive-definiteness). Thus, like its 2-norm brother on Fn,
the difficult norm property to verify is the triangle inequality. However, we
shall see in missing stuff that this norm is derived from an inner product, and
so this will give the triangle inequality just like the 2-norm on Fn. We shall also
see this norm arise from the more general setting of Section 6.7.8. Again, the
point is that we will subsequently prove the triangle inequality for ‖·‖2 in a few
different ways.
This norm will be called the 2-norm on C0([a, b];F).

9. On C0([a, b];F) define

‖ f ‖1 =

∫ b

a
| f (x)|dx.

Again, the integral here is the Riemann integral. The three norm properties are
easily verified. Only the triangle inequality is possibly nontrivial:

‖ f + g‖1 =

∫ b

a
| f (x) + g(x)|dx ≤

∫ b

a

(
| f (x)| + |g(x)|

)
dx

=

∫ b

a
| f (x)|dx +

∫ b

a
|g(x)|dx = ‖ f ‖1 + ‖g‖1.

This norm, called the 1-norm, is different than the 2-norm. As the reader can
explore in Exercise 6.1.6, for the 1- and 2-norms on Fn, there is some sort of
equivalence between these. However, for the 1- and 2-norms on C0([a, b];F) this
is no longer true. This is not perfectly obvious right now, and the reader will
have to wait until missing stuff to start understanding this. But this is where
we start to see how things are more complicated for infinite-dimensional vector
spaces.

10. As a final norm on C0([a, b],F) we take

‖ f ‖∞ = sup{| f (x)| | x ∈ [a, b]}.

Again, the triangle inequality is the troublesome property to verify. In this case
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the verification goes as follows:

‖ f + g‖∞ = sup{| f (x) + g(x)| | x ∈ [0, 1]}
≤ sup{| f (x)| + |g(x)| | x ∈ [0, 1]}
≤ sup{| f (x)| + |g(y)| | x, y ∈ [0, 1]}
≤ sup{| f (x)| | x ∈ [0, 1]} + sup{|g(y)| | y ∈ [0, 1]}
= ‖ f ‖∞ + ‖g‖∞.

This norm is yet again different than the 1- and 2-norms. Moreover, it is yet
again fundamentally not equivalent, distinguishing the infinite-dimensional
case from the finite-dimensional case. This will be elucidated in missing stuff . •

An obvious question is whether a vector space always possesses a norm. The
answer is, “Yes, it does,” and the astute reader will have seen from Examples 5, 6,
and 7 above how this can be done. We record this as the following result.

6.1.4 Proposition (Vector spaces always have at least one norm) If F ∈ {R,C} and if
V is an F-vector space then there is a norm on V.

Proof By Theorem 4.3.46 we know the vector space V possesses a basis which estab-
lishes an isomorphism ι of V with FJ

0 for some set J. Let us first define a norm on FJ
0.

Writing a typical element of FJ
0 as (v j) j∈J we define

‖(v j) j∈J‖J =
∑
j∈J

|v j|,

noting that this sum exists since all but finitely many of the v j’s are zero. To verify that
this is a norm is straightforward, cf. Example 6.1.3–5. Now define ‖·‖V by ‖v‖V = ‖ι(v)‖J.
That this is indeed defines a norm follows from linearity of ι:

‖av‖V = ‖ι(av)‖J = ‖aι(v)‖J = |a|‖ι(v)‖ = |a|‖v‖V;
‖v1 + v2‖V = ‖ι(v1) + ι(v2)‖J ≤ ‖ι(v1)‖J + ‖ι(v2)‖J = ‖v1‖V + ‖v2‖V.

Also, if ‖v‖V = 0 this ‖ι(v)‖J = 0 which means that ι(v) = 0
FJ

0
. Thus v = 0V since ι is an

isomorphism. �

One needs to take care with the preceding result: (1) it does not say that there
is a unique norm on a given vector space; (2) it does not say that there is a useful
norm on a given vector space. Indeed, we will see in Corollary 6.6.27 that some
vector spaces do not possess “useful” norms. Thus the result should be thought
of as being in the interesting vein rather than the useful vein, particularly for
infinite-dimensional normed vector spaces.

In terms of convenient lingo the following definition is helpful.

6.1.5 Definition (Seminormed vector space, normed vector space) Let F ∈ {R,C}.
(i) A seminormed F-vector space is a pair (V, ‖·‖) where V is a F-vector space and
‖·‖ is a seminorm on V.

(ii) A normed F-vector space is a pair (V, ‖·‖) where V is a F-vector space and ‖·‖
is a norm on V. •
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6.1.6 Notation ((Semi)normed vector spaces) If a norm or seminorm is understood,
we shall often say, “the (semi)normed F-vector space V.” One really needs to
exercise caution with this abuse, however, since the same vector space can have
multiple norms, and the behaviour can depend in a drastic way on the norm. •

Let us give some more or less trivial properties of normed vector spaces.

6.1.7 Proposition (Properties of seminormed and normed vector spaces) Let F ∈
{R,C}, let (V, ‖·‖) be a seminormed F-vector space, and let U ⊆ V be a subspace. Then the
following statements hold:

(i) the map (v1,v2) 7→ ‖v1 − v2‖ is a semimetric on V, and is a metric when ‖·‖ is a
norm;

(ii)
∣∣∣‖v1‖ − ‖v2‖

∣∣∣ ≤ ‖v1 − v2‖ for all v1,v2 ∈ V;

(iii)
∣∣∣‖v1 − v3‖ − ‖v2 − v4‖

∣∣∣ ≤ ‖v1 − v2‖ + ‖v3 − v4‖ for all v1,v2,v3,v4 ∈ V;
(iv) the restriction of ‖·‖ to U defines a seminorm on U, and this seminorm is a norm

when ‖·‖ is a norm.
Proof (i) This is just a matter of plugging in the definitions. Perhaps the only nontrivial
fact is the triangle inequality:

‖v1 − v3‖ = ‖(v1 − v2) + (v2 − v3)‖ ≤ ‖v1 − v2‖ + ‖v2 − v3‖.

(ii) This is Exercise 6.1.3.
(iii) We use the triangle inequality and part (ii):∣∣∣‖v1 − v3‖ − ‖v2 − v4‖

∣∣∣ =
∣∣∣‖v1 − v3‖ − ‖v2 − v3‖ + ‖v3 − v2‖ − ‖v2 − v4‖

∣∣∣
≤

∣∣∣‖v1 − v3‖ − ‖v2 − v3‖
∣∣∣ +

∣∣∣‖v3 − v2‖ + ‖v2 − v4‖
∣∣∣

≤ ‖v1 − v2‖ + ‖v3 − v4‖,

as desired.
(iv) This is trivial. �

Now we indicate how one can pass from a seminormed vector space to a normed
vector space in a natural way. This mirrors our result Theorem ?? for semimetric
spaces.

6.1.8 Theorem (Normed vector spaces from seminormed vector spaces) Let F ∈
{R,C} and let (V, ‖·‖) be a seminormed F-vector space. Then the following statements hold:

(i) the set V0 = {v ∈ V | ‖v‖ = 0} is a subspace of V;
(ii) the function V/V0 3 v + V0 7→ ‖v‖ is a norm on V/V0.

Proof (i) If u, v ∈ V0 and if a ∈ F then

0 ≤ ‖u + v‖ ≤ ‖u‖ + ‖v‖ = 0

and
‖av‖ = |a|‖v‖ = 0,

giving u + v, av ∈ V0, as desired.
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(ii) First let us show that the function is well-defined. Suppose that v + V0 = v′+ V0
so that v − v′ ∈ V0. Then

‖v′‖ = ‖v + (v′ − v)‖ ≤ ‖v‖ + ‖v′ − v‖ = ‖v‖

and
‖v‖ = ‖v′ + (v − v′)‖ ≤ ‖v′‖ + ‖v − v′‖ = ‖v′‖

using the triangle inequality. Thus ‖v′‖ = ‖v‖, and the map is then well-defined. It
clearly has the homogeneity and triangle inequality properties of a norm. To check the
positive-definiteness, suppose that ‖v + V0‖ = 0. Then ‖v‖ = 0 and so v ∈ V0, giving
v + V0 = 0V + V0, as desired. �

6.1.2 Open and closed subsets of normed vector spaces

As we saw in Proposition 6.1.7 a seminorm (resp. norm) ‖·‖ on V determines
a semimetric (resp. metric) on V by d‖·‖(v1, v2) = ‖v1 − v2‖. A semimetric then
determines a topology, and, if the semimetric is a metric, this topology is Hausdorff
(see missing stuff ). Therefore, seminormed vector spaces are topological spaces,
and normed vector spaces are Hausdorff topological spaces. In this section we
describe this topology in more detail. Some of what we say is redundant since
it follows from what we have already said for metric spaces. However, we aim
to make our treatment of normed vector spaces as self-contained as possible. In
this section we make statements that are valid for seminormed vector spaces, and
not just normed vector spaces, although it is the latter that are of most immediate
interest. We adopt the convention of writing “(semi)norm” when we mean that the
object can be either a norm or a seminorm. Readers caring only about norms can
omit the “(semi)” in their heads.

As with metrics, the building block of the topology of a normed vector space is
the open ball.

6.1.9 Definition (Open, closed, and bounded sets in (semi)normed vector spaces)
Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space.

(i) The open ball of radius r about v0 ∈ V is the set

B(r, v0) = {v ∈ V | ‖v − v0‖ < r}.

(ii) The closed ball of radius r about v0 ∈ V is the set

B(r, v0) = {v ∈ V | ‖v − v0‖ ≤ r}.

(iii) A subset U ⊆ V is open if, for each v ∈ U, there exists ε ∈ R>0 such that
B(ε, v) ⊆ U. (The empty set is also open, by declaration.)

(iv) A subset A ⊆ V is closed is V \ A if open.
(v) A subset A ⊆ V is bounded if there exists R ∈ R>0 such that A ⊆ B(R, 0V). •

One can easily show that the open ball is open (this is Exercise 6.1.1).
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We shall not attempt to systematically distinguish notationally the rôle of ‖·‖ in
the open ball B(r, v0). If there is a potential cause of confusion we will handle it as
it comes up. For example, if we are working with multiple (semi)normed vector
spaces, we may use the notation BV(r, v0) to specify that a ball is in V.

Let us give some properties of open sets.

6.1.10 Proposition (Properties of open subsets of (semi)normed vector spaces) Let
F ∈ {R,C} and let (V, ‖·‖) be a (semi)normedF-vector space. Then the following statements
hold:

(i) for (Ua)a∈A an arbitrary family of open sets, ∪a∈AUa is open;
(ii) for (U1, . . . ,Un) a finite family of open sets, ∩n

j=1Uj is open.

Proof (i) Let v ∈ ∪a∈AUa. Then, since v ∈ Ua0 for some a0 ∈ A, there exists ε ∈ R>0
such that B(ε, v) ⊆ Ua0 ⊆ ∪a∈AUa.

(ii) Let v ∈ ∩n
j=1U j. For each j ∈ {1, . . . ,n}, choose ε j ∈ R>0 such that B(ε j, v) ⊆ U j,

and let ε = min{ε1, . . . , εn}. Then B(ε, v) ⊆ U j, j ∈ {1, . . . ,n}, and so B(ε, v) ⊆ ∩n
j=1U j. �

This result shows that the collection of open subsets of a (semi)normed vector
space define a topology.

6.1.11 Definition ((Semi)norm topology) LetF ∈ {R,C} and let (V, ‖·‖) be a (semi)normed
F-vector space. The topology on V whose open sets are the open sets defined by
the (semi)norm ‖·‖ is the (semi)norm topology on V. •

One of the most important properties about the norm topology is that it is
translation invariant. Let us see what this means. For v0 ∈ V define τv0 : V→ V by
τv0(v) = v + v0. Thus τv0 is “translation by v0.” We then have the following result.

6.1.12 Proposition (Translation invariance of the (semi)norm topology) Let F ∈ {R,C}
and let (V, ‖·‖) be a (semi)normed F-vector space. Then a subset U ⊆ V is open if and only
if τv0(U) is open.

Proof Suppose that U ⊆ V is open and let v ∈ τv0(U). Then τ−v0(v) ∈ U and so there
exists ε > 0 such that B(ε, v) ⊆ U. Note that

τv0(B(ε, v)) = τv0({u ∈ V | ‖u − v‖ < ε})
= {v0 + u ∈ V | ‖u − v‖ < ε}
= {u′ ∈ V | ‖u′ − (v + v0)‖ < ε}
= B(ε, τv0(v)).

Thus
B(ε, v) ⊆ U =⇒ τv0(B(ε, v)) ⊆ τv0(U) =⇒ B(ε, τv0(v)) ⊆ τv0(U).

Thus τv0(U) is open.
Conversely, if τv0(U) is open then, by the first part of the proof, τ−v0(τv0(U)) = U is

open. �

As the proof of the preceding result makes clear, the key to the translation
invariance of the norm topology is the fact that τv0(B(r, v)) = B(r, τv0(v)) for every
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r ∈ R>0 and v, v0 ∈ V. This is a pretty obvious fact, but is so useful that it is worth
pointing out explicitly.

The norm topology generally depends on the norm. However, it is possible that
two different norms will give the same topology. The following definition captures
this idea.

6.1.13 Definition (Equivalent norms) Let F ∈ {R,C} and let V be a F-vector space. Two
norms ‖·‖1 and ‖·‖2 (the subscripts “1” and “2” have nothing to do with the 1- and
2-norms considered in Example 6.1.3) are equivalent if a subset U ⊆ V is open in
the norm topology defined by ‖·‖1 if and only if it is open in the norm topology
defined by ‖·‖2. •

We will not be interested in the notion of equivalence for seminorms.
In short, equivalent norms define the same open sets. It is useful to be able to

characterise equivalent norms in a more computational manner, one that might be
able to check in practice. The following result gives just such a characterisation.

6.1.14 Theorem (Characterisation of equivalent norms) Let F ∈ {R,C} and let V be a
F-vector space. Two norms ‖·‖1 and ‖·‖2 on V are equivalent if and only if there exists
C ∈ R>0 such that

C−1
‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2

for all v ∈ V.
Proof First suppose that ‖·‖1 and ‖·‖2 are equivalent. Let B1(r, v0) and B2(r, v0) denote
the open balls of radius r centred at v0 for ‖·‖1 and ‖·‖2, respectively. By missing stuff ,
equivalence of the two norm topologies implies that for every R ∈ R>0 there exists
C1,C2 ∈ R>0 such that

B2(C1, 0V) ⊆ B1(R, 0V) ⊆ B2(C2, 0V).

Let us consider the inclusion B2(C1, 0V) ⊆ B1(R, 0V). If v ∈ V is nonzero then this
inclusion gives

‖v‖2 ≤ 1 =⇒ ‖C1v‖2 ≤ C1 =⇒ ‖C1v‖1 ≤ R =⇒
‖C1v‖1
‖C1v‖2

≤
R

‖C1v‖2

=⇒
‖v‖1
‖v‖2

≤
R
C1

=⇒ ‖v‖1 ≤
R
C1
‖v‖2.

Thus ‖v‖1 ≤ R
C1
‖v‖2 holds if v is nonzero and if ‖v‖2 ≤ 1. Clearly the same equality

holds for v = 0V. For v ∈ V nonzero we also have∥∥∥∥ v
‖v‖2

∥∥∥∥
1
≤

R
C1

∥∥∥∥ v
‖v‖2

∥∥∥∥
2

=⇒ ‖v‖1 ≤
R
C1
‖v‖2.

Thus the relation ‖v‖1 ≤ R
C1
‖v‖2 holds for all v ∈ V.

An entirely similar argument shows that the inclusion B1(R, 0V) ⊆ B2(C2, 0V) im-
plies that ‖v‖2 ≤

C2
R ‖v‖1 for all v ∈ V. Thus we have

C2

R
‖v‖2 ≤ ‖v‖1 ≤

R
C1
‖v‖2
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for all v ∈ V. Taking C = max{ R
C1
, R

C2
} gives

C−1
‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2, v ∈ V,

as desired.
Now suppose that there exists C ∈ R>0 such that

C−1
‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2

for all v ∈ V. Let R ∈ R>0 and note that

v ∈ B1(R, 0V) =⇒ ‖v‖1 < R =⇒ ‖v‖2 ≤ RC =⇒ vB2(RC, 0V).

Thus B1(R, 0V) ⊆ B2(RC, 0V). Similarly we show that B2( R
C , 0V) ⊆ B1(R, 0V). Thus we

have
B2( R

C , 0V) ⊆ B1(R, 0V) ⊆ B2(RC, 0V)

for every R ∈ R>0. From the remarks following the proof of Proposition 6.1.12 it
follows that

B2( R
C , v0) ⊆ B1(R, v0) ⊆ B2(RC, v0)

for every R ∈ R>0 and every v0 ∈ V. The equivalence of the two norm topologies now
follows from missing stuff . �

The following result shows that, on a finite-dimensional normed vector space
there is really only one norm topology, although one can use different norms to
define it.

6.1.15 Theorem (Uniqueness of the norm topology on finite-dimensional normed
vector spaces) If F ∈ {R,C} and if V is a finite-dimensional F-vector space, then any
two norms on V are equivalent.

Proof Let {e1, . . . , en} be a basis for V and let ι : V→ Fn be defined by

ι(v1e1, . . . , vnen) = (v1, . . . , vn).

Define norms ‖·‖1 and ‖·‖2 on V by

‖v‖1 = ‖ι(v)‖1 =

n∑
j=1

|v j|,

‖v‖2 = ‖ι(v)‖2 =
( n∑

j=1

|v j|
2
)1/2

.

Thus we are abusing notation and using ‖·‖1 and ‖·‖2 for norms both on V andFn. These
do define norms on V by Example 6.1.3 (also, cf. the proof of Proposition 6.1.4). Since
the notion of equivalence of norms is an equivalence relation (this is Exercise 6.1.5), it
suffices to show that any other norm of V is equivalent to ‖·‖2. Let ‖·‖ be another norm
on V and write, for u, v ∈ V,

u = u1e1 + · · · + unen, v = v1e1 + · · · + vnen.
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We then have, by Exercise 6.1.3 and Proposition ??, and the triangle inequality,

|‖u‖ − ‖v‖| ≤ ‖u − v‖ =
∥∥∥∥ n∑

j=1

(u j − v j)e j

∥∥∥∥ ≤ n∑
j=1

|u j − v j|‖e j‖

≤ max{‖e j‖ | j ∈ {1, . . . ,n}}‖u − v‖1 ≤ C‖v‖2,

where C = max{‖e j‖ | j ∈ {1, . . . ,n}}
√

n. We claim that this implies that the function
v 7→ ‖ι−1(v)‖ on Fn is continuous with respect to the norm ‖·‖2. Indeed, for ε ∈ R>0 let
δ = ε

C . For v0 ∈ Fn suppose that ‖v − v0‖2 < δ. Then, from our computations above,

|‖ι−1(v)‖ − ‖ι−1(v0)‖| ≤ C‖v − v0‖2 < ε,

giving continuity of v 7→ ‖ι−1(v)‖ at v0. Let B2(1, 0Fn) be the unit ball with respect to
the norm ‖·‖2 centred at the origin in Fn and let B2(1, 0V) be the unit ball with respect
to the norm ‖·‖2 centred at the origin in V. The boundary of B2(1, 0Fn) is closed and
bounded with respect to the norm ‖·‖2 and its topology, and so is compact in Fn with
respect to the usual topology by the Heine–Borel Theorem. Therefore, by missing stuff ,
the function v 7→ ‖ι−1(v)‖ attains a minimum value m ∈ R>0 and a maximum value
M ∈ R>0 on bd(B2(1, 0Fn). Thus, for v ∈ B2(1, 0Fn) we have

m ≤ ‖ι−1(v)‖ ≤M

which is equivalent to saying that, for v ∈ bd(B2(1, 0V)) (boundary being taken with
respect to the norm topology on V for the norm ‖·‖2) we have

m ≤ ‖v‖ ≤M.

For arbitrary v ∈ V \ {0V} this gives

m ≤
∥∥∥∥ v
‖v‖2

∥∥∥∥ ≤M =⇒ m‖v‖2 ≤ ‖v‖ ≤M‖v‖2,

showing that ‖·‖ and ‖·‖2 are equivalent if we take C = max{M,m−1
}. �

We will use this theorem to unambiguously talk about the norm topology on
Fn, or any finite-dimensional F-vector space, as being the topology defined by any
norm.

6.1.3 Subspaces, direct sums, and quotients

We have studied in Section 4.3 the notions of subspace, direct sum, and quotient
from an algebraic point of view. Let us see now how these notions interact with
the structure of a norm.

For subspaces we record the following trivial result. We will have much more
to say about subspaces of normed vector spaces in Section 6.6.4.
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6.1.16 Proposition (Subspaces of (semi)normed vector spaces are (semi)normed
vector spaces) Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. If
U ⊆ V is a subspace then the map U 3 u 7→ ‖u‖ ∈ R≥0 is a (semi)norm on U.

Now we consider direct sums of normed vector spaces. Let us first consider
the general case, and then consider the case of finite direct sums as a special case.
We recall from Definition 4.3.40 that the direct sum of a family (Vi)i∈I of vector
spaces is the set of maps φ : I → ∪i∈IVi for which φ(i) ∈ Vi, i ∈ I, and for which the
set {i ∈ I | φ(i) , 0Vi} is finite. This set has a natural vector space structure and is
denoted

⊕
i∈I Vi.

6.1.17 Theorem (Direct sums of (semi)normed vector spaces are (semi)normed vec-
tor spaces) Let F ∈ {R,C} and let ((Vi, ‖·‖i))i∈I be a family of (semi)normed F-vector
spaces. For φ ∈

⊕
i∈I Vi define

‖φ‖I =
∑
i∈I

‖φ(i)‖i,

this sum being well-defined since it is finite. Then (
⊕

i∈I Vi, ‖·‖I) is a (semi)normed F-
vector space, and is moreover a normed vector space if each of the components (Vi, ‖·‖i),
i ∈ I, is a normed vector space.

Proof Let a ∈ F and compute

‖aφ‖I =
∑
i∈I

‖aφ(i)‖a =
∑
i∈I

|a|‖φ(i)‖i = |a|
∑
i∈I

‖φ(i)‖a = |a|‖φ‖I,

where all operations make sense since the sums are finite.
If φ,ψ ∈

⊕
i∈I Vi we compute

‖φ + ψ‖I =
∑
i∈I

‖φ(i) + ψ(i)‖i ≤
∑
i∈I

‖φ(i)‖i +
∑
i∈I

‖ψ(i)‖i = ‖φ‖I + ‖ψ‖I,

as desired.
Finally, if

‖φ‖ =
∑
i∈I

‖φ(i)‖i = 0

then we must have ‖φ(i)‖i = 0 for each i ∈ I. If each of the seminorms ‖·‖i, i ∈ I, are
norms then this implies that φ(i) = 0Vi , i ∈ I, implying that ‖·‖I is a norm. �

We can now make the following definition.

6.1.18 Definition (Direct sum of (semi)normed vector spaces) Let F ∈ {R,C} and let
((Vi, ‖·‖i))i∈I be a family of (semi)normed F-vector spaces. The (semi)normed vector
space (

⊕
i∈I Vi, ‖·‖I) is the direct sum of ((Vi, ‖·‖i))i∈I. •

Let us record how this works for the direct sum of two (semi)normed vector
spaces. Thus let (V1, ‖·‖1) and (V2, ‖·‖2) be (semi)normed F-vector spaces. Their
direct sum is the vector space V1 ⊕ V2, points in which we denote by (v1, v2), with
the (semi)norm

‖(v1, v2)‖1,2 = ‖v1‖1 + ‖v2‖2.

Now we consider quotients of normed vector spaces by subspaces.
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6.1.19 Proposition (The quotient of a (semi)normed vector space is a (semi)normed
vector space) Let F ∈ {R,C}, let (V, ‖·‖) be a (semi)normed F-vector space, and let U be
a subspace. If we define

‖v + U‖/U = inf{‖v + u‖ | u ∈ U}

then ‖·‖/U is a seminorm on V/U. Moreover, if ‖·‖ is a norm and if U is closed, then ‖·‖/U
is a norm.

Proof It is evident that ‖v + U‖/U ∈ R>0. If a = 0 we have

‖0(v + U)‖/U = ‖0v + U‖/U = inf{‖0V + u‖ | u ∈ U} = 0 = |a|‖v + U‖/U.

For a ∈ F \ {0}we have

‖a(v + U)‖/U = ‖av + U‖/U = inf{‖av + u‖ | u ∈ U}
= inf{‖av + au′‖ | u′ ∈ U} = inf{|a|‖v + u′‖ | u′ ∈ U}
= |a| inf{‖v + u′‖ | u′ ∈ U} = |a|‖v + U‖/U.

For the triangle inequality we have

‖(v1 + U) + (v2 + U)‖/U = ‖(v1 + v2) + U‖/U = inf{‖v1 + v2 + u‖ | u ∈ U}
= inf{‖v1 + v2 + u1 + u2‖ | u1,u2 ∈ U}
≤ inf{‖v1 + u1‖ + ‖v2 + u2‖ | u1,u2 ∈ U}
= inf{‖v1 + u1‖ | u1 ∈ U} + inf{‖v2 + u2‖ | u2 ∈ U}
= ‖v1 + U‖/U + ‖v2 + U‖/U,

as desired, where we have used Proposition 2.2.27.
To prove the final assertion we rely on some facts about closed sets that we will

not prove until Section 6.6.2. Let v + U ∈ V/U satisfy ‖v + U‖/U = 0. Thus

inf{‖v + u‖ | u ∈ U} = 0.

Therefore, for j ∈ Z>0, there exists u j ∈ U such that ‖v + u j‖ <
1
j . Thus the sequence

(v + u j) j∈Z>0 converges to 0V. By Proposition 6.2.6 it follows that the sequence (u j) j∈Z>0

converges to−v. Since the sequence is in U and since U is closed, by Proposition 6.6.8(ii)
it follows that −v ∈ U and so v ∈ U. Thus v + U = 0V + U, giving ‖·‖/U as a norm. �

One should be a little careful with the result. It does not say that ‖·‖/U is a norm
if ‖·‖ is a norm; this requires the additional assumption that U is closed.

Let us examine some properties of the canonical projection from V to V/U.
Let us examine some properties of the canonical projection from V to V/U. Here

we refer ahead to Section 6.5 for notion of continuity and back to missing stuff for
the notion of the quotient topology.

6.1.20 Proposition (The canonical projection onto the quotient is continuous) Let
F ∈ {R,C}, let (V, ‖·‖) be a (semi)normed F-vector space, and let U be a subspace. Then
the canonical projection πU : V → V/U is continuous. Moreover, the seminorm topology
on V/U coincides with the quotient topology.
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Proof Let v ∈ V with v + U the projection to V/U. Let (v j) j∈Z>0 be a sequence in V
converging to v. We claim that (v j + U) j∈Z>0 converges to v + U. Indeed, if ε ∈ R>0, take
N ∈ Z>0 such that ‖v − v j‖ < ε for j ≥ N. Then

‖(v − v j) + U‖/U ≤ ‖v − v j‖ < ε

for j ≥ N, giving convergence as desired. Continuity of v 7→ v + U now follows from
Theorem 6.5.2.

Let π : V → V/U denote the canonical projection. Now let S ⊆ V/U be such that
π−1(S) is a open. We claim that S is a open. For v0 + U ∈ S let BV(ε, v0) be an open ball
about v0 contained in π−1(S). We have

π(BV(ε, v0)) = {v + U | ‖v − v0‖ < ε} = {v + U | ‖(v − v0) + U‖/U < ε}
= BV/U(ε, v0 + U).

Since π(BV(ε, v0)) ⊆ S it follows that S is open. �

Exercises

6.1.1 Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. Show that
B(r, v0) is open for every r ∈ R>0 and v0 ∈ V.

6.1.2 Let F ∈ {R,C} and let (V, ‖·‖) be a F-vector space. Let r1, r2 ∈ R>0 satisfy
r2 ≤ r1 and let v1, v2 ∈ Rn. Show that if B(r1, v1)∩ B(r2, v2) , ∅ then B(r2, v2) ⊆
B(3r1, v1). Show that you understand your proof by drawing a picture.

6.1.3 In a normed vector space (V, ‖·‖) show that for each v1, v2 ∈ V, |‖v1‖ − ‖v2‖| ≤

‖v1 − v2‖.
6.1.4 Denote by C1([0, 1];R) the set of R-valued functions on [0, 1] which are

continuously differentiable, derivatives at 0 and 1 being taken from the right
and left, respectively.
(a) For f ∈ C1([0, 1];R) define

‖ f ‖ =

∫ 1

0
| f ′(x)|dx.

Show that ‖·‖ is a seminorm on C1([0, 1];R), but not a norm.
(b) For f ∈ C1([0, 1];R) define

‖ f ‖ = | f (0)| +
∫ 1

0
| f ′(x)|dx.

Show that ‖·‖ is a norm on C1([0, 1];R).
6.1.5 Let F ∈ {R,C} and let V be an F-vector space. Define a relation ∼ on the set

of norms on V by saying that ‖·‖1 ∼ ‖·‖2 if ‖·‖1 and ‖·‖2 are equivalent in the
sense of Definition 6.1.13. Show that ∼ is an equivalence relation.

6.1.6 On V = R2 consider the three norms ‖·‖2, ‖·‖1, and ‖·‖∞ given by Exam-
ples 6.1.3–2, 6.1.3–3, and 6.1.3–4, respectively.
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(a) Draw the subsets B2(r, 0), B1(r, 0), and B∞(r, 0) of R2 defined by

B2(r, 0) = {v ∈ R2
| ‖v‖2 ≤ r}

B1(r, 0) = {v ∈ R2
| ‖v‖1 ≤ r}

B∞(r, 0) = {v ∈ R2
| ‖v‖∞ ≤ r}.

(b) Using your drawings from part (a), argue that if and only if a sequence
of points (v j) j∈Z>0 inR2 converges in one of the three norms, it converges
in the other two norms.

6.1.7 Let F ∈ {R,C} and let (V, ‖·‖) be a finite-dimensional normed F-vector space.
Let {e1, . . . , en} be a basis for V for which ‖e1‖ = · · · = ‖en‖ = 1.
(a) For v = v1e1 + · · · + vnen ∈ V define

‖v‖1 = |v1| + · · · + |vn|.

Show that ‖·‖1 is a norm on V that satisfies ‖e1‖1 = · · · = ‖en‖1 = 1.
(b) Let B(1, 0V) and B1(1, 0V) be the unit balls for the norms ‖·‖ and ‖·‖1,

respectively. Show that B1(1, 0V) ⊆ B(1, 0V).
(The point is that the balls in the norm ‖·‖1 are the smallest among the balls
for all norms in which the basis vectors have unit length.)
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Section 6.2

Sequences in normed vector spaces

Much of the structure of normed vector spaces can be captured by studying
sequences in these spaces. Much of the presentation here follows the presentation
of Section 2.3. Indeed, many of the proofs are mere changes of notation of the
analogous proofs for sequences in R. However, we give all of the details of the
presentation here for both (1) completeness and (2) because not all results are
exactly the same as those forR. This has the disadvantage of repetitiveness, but the
advantage of making this section more self-contained.

Do I need to read this section? The ideas in this section are basic, so the defini-
tions should be read and the results understood. Readers who are familiar with
the material in Section 2.3 will find this section reads pretty easily. •

6.2.1 Definitions and properties of sequences

Let V be aF-vector space. A sequence in V is, in accordance with Definition 1.4.8,
a map fromZ>0 to V, and we denote a sequence by (v j) j∈Z>0 . For sequences we have
the usual definitions corresponding to notions of convergence.

6.2.1 Definition (Convergence of sequences) LetF ∈ {R,C} and let (V, ‖·‖) be a
(semi)normed F-vector space. Let (v j) j∈Z>0 be a sequence in R and let v0 ∈ V.
The sequence:

(i) is a Cauchy sequence if, for each ε ∈ R>0, there exists N ∈ Z>0 such that
‖v j − vk‖ < ε for j, k ≥ N;

(ii) converges to v0 if, for each ε ∈ R>0, there exists N ∈ Z>0 such that ‖v j− v0‖ < ε
for j ≥ N;

(iii) diverges if it does not converge to any element in V;
(iv) is bounded if there exists M ∈ R>0 such that ‖v j‖ < M for each j ∈ Z>0.

If the sequence converges to v0 then v0 is the limit of the sequence and we write
v0 = lim j→∞ v j. •

6.2.2 Notation (Limits with general index sets) As in Section 2.3.7 we can talk about
limits of things more general than sequences. The setup where we will use this idea
is the following. Let F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector
spaces. We consider an open subset O ⊆ U and a map φ : O → V. For u0 ∈ O,
we wish to define what we mean by limu→u0 φ(u). What we mean is this. If, there
exists v0 ∈ V such that, for any sequence (u j) j∈Z>0 converging to u0, the sequence
(φ(u j)) j∈Z>0 converges to 0, then we write limu→u0 φ(u0) = v0. •

As for sequences in Q, R, or C, convergent sequences are Cauchy.
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6.2.3 Proposition (Convergent sequences are Cauchy) Let F ∈ {R,C} and let (V, ‖·‖)
be a (semi)normed F-vector space. If (vj)j∈Z>0 is a sequence converging to v0 then it is a
Cauchy sequence.

Proof Let ε ∈ R>0 and choose N ∈ Z>0 such that |v j − v0| < ε
2 for j ≥ N. Then, for

j, k ≥ N we have

‖v j − vk‖ = ‖v j − v0 − vk + v0‖ = ‖v j − v0‖ + ‖vk − v0‖ < ε
2 + ε

2 = ε,

using the triangle inequality. �

Cauchy sequences are bounded.

6.2.4 Proposition (Cauchy sequences are bounded) Let F ∈ {R,C} and let (V, ‖·‖) be a
(semi)normed F-vector space. If (vj)j∈Z>0 is a Cauchy sequence, then it is bounded.

Proof Choose N ∈ Z>0 such that ‖v j − vk‖ < 1 for j, k ∈ Z>0. Then take MN to be the
largest of the nonnegative real numbers ‖v1‖, . . . , ‖vN‖. Then, for j ≥ N we have, using
the triangle inequality,

‖v j‖ = ‖v j − vN + vN‖ ≤ ‖v j − vN‖ + ‖vN‖ < 1 + MN,

giving the result by taking M = MN + 1. �

Since we often deal simultaneously with seminorms rather than just norms, it is
useful to record what is different about the two cases. What we lose for seminorms
is the uniqueness of limits for convergent sequences.

6.2.5 Proposition ((Non)uniqueness of limits for (semi)normed vector spaces) Let
F ∈ {R,C} and let (V, ‖·‖) be a seminormedF-vector space. If a sequence (vj)j∈Z>0 converges
to limits u0 and v0, then

u0 − v0 ∈ V0 , {v ∈ V | ‖v‖ = 0}.

In particular, if ‖·‖ is a norm then convergent sequences have unique limits.
Proof Suppose that the sequence (v j) j∈Z>0 converges to u0 and v0 and let ε ∈ R>0.
Choose N ∈ Z>0 such that

‖u0 − v j‖ ≤
ε
2 , ‖v0 − v j‖ <

ε
2 , j ≥ N.

For j ≥ N we then have

‖u0 − v0‖ = ‖u0 − v j − (v0 − v j)‖ ≤ ‖u0 − v j‖ + ‖v0 − v j‖ ≤ ε.

Therefore, ‖u0 − v0‖ = 0, giving the result. �

As is the case in our previous discussions of sequences in Q, R, and C, one can
wonder whether all Cauchy sequences converge. In cases where they do, we call
the normed vector space complete (see Definition 6.3.2). In Section 6.3 we shall
see that all finite-dimensional normed vector spaces are complete (Theorem 6.3.3)
but that there are easy examples of infinite-dimensional normed vector spaces
that are not complete (Example 6.3.1). This is one of the factors that tends to
make the theory of infinite-dimensional normed vector spaces significantly more
complicated than the finite-dimensional theory. For sequences in R and C there
are useful tests for convergence. There are no significant analogues for sequences
in normed vector spaces.
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6.2.2 Algebraic operations on sequences

Convergence is compatible with the standard algebraic operations on vector
spaces.

6.2.6 Proposition (Algebraic operations on sequences) Let F ∈ {R,C} and let (V, ‖·‖)
be a (semi)normed F-vector space. Let (uj)j∈Z and (vj)j∈Z>0 be sequences in V converging
to u0 and v0, respectively, let (aj)j∈Z>0 be a sequence in F converging to a0, and let a ∈ F.
Then the following statements hold:

(i) the sequence (avj)j∈Z>0 converges to av0;
(ii) the sequence (uj + vj)j∈Z>0 converges to u0 + v0;
(iii) the sequence (ajvj)j∈Z>0 converges to a0v0.

Proof (i) The result is trivially true for a = 0, so let us suppose that a , 0. Let ε > 0
and choose N ∈ Z>0 such that ‖v j − v0‖ < ε

|a| . Then, for j ≥ N,

‖av j − av0‖ = |a|‖v j − v0‖ < ε.

(ii) Let ε > 0 and take N1,N2 ∈ Z>0 such that

‖u j − u0‖ < ε
2 , j ≥ N1, ‖v j − v0‖ < ε

2 , j ≥ N2.

Then, for j ≥ max{N1,N2},

‖u j + v j − (u0 + v0)‖ ≤ ‖u j − u0‖ + ‖v j − v0‖ = ε,

using the triangle inequality.
(iii) Let ε > 0 and define N1,N2,N3 ∈ Z>0 such that

|a j − a0| < 1, j ≥ N1, =⇒ |a j| < |a0| + 1, j ≥ N1,

|a j − a0| <
ε

2(|a0| + 1)
, j ≥ N2,

‖v j − v0‖ <
ε

2(‖v0‖ + 1)
, j ≥ N2.

Then, for j ≥ max{N1,N2,N3},

‖a jv j − a0v0‖ = ‖a jv j − a jv0 + a jv0 − a0v0‖

= ‖a j(v j − v0) + (a j − a0)v0‖

≤ |a j|‖v j − v0‖ + |a j − a0|‖v0‖

≤ (|a0| + 1)
ε

2(|a0| + 1)
+

ε
2(‖v0‖ + 1)

(‖v0‖ + 1) = ε,

as desired. �

6.2.3 Multiple sequences

Finally, let us introduce the notion of a double sequence in a normed vector
space.
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6.2.7 Definition (Double sequence) Let F ∈ {R,C} and let V be an F-vector space. A
double sequence in V is a family of elements of V indexed by Z>0 ×Z>0. We denote
a double sequence by (v jk) j,k∈Z>0 , where v jk is the image of ( j, k) ∈ Z>0 ×Z>0 in V. •

For double sequences we have the following notions of convergence.

6.2.8 Definition (Convergence of double sequences) Let F ∈ {R,C}, let (V, ‖·‖ be a
(semi)normed F-vector space, and let v0 ∈ V. A double sequence (v jk) j,k∈Z>0 :

(i) converges to v0, and we write lim j,k→∞ v jk = v0, if, for each ε > 0, there exists
N ∈ Z>0 such that ‖v0 − v jk‖ < ε for j, k ≥ N;

(ii) has v0 as a limit if it converges to v0.
(iii) is convergent if it converges to some member of V;
(iv) diverges if it does not converge. •

missing stuff

Exercises

6.2.1 In the F-vector space F∞0 , if possible find sequences with the following prop-
erties:
(a) Cauchy in the∞-norm but not the 2-norm;
(b) Cauchy in the 2-norm but not the 1-norm;
(c) Cauchy in the 1-norm;
(d) Cauchy in the 1-norm but not the 2-norm;
(e) Cauchy in the 2-norm but not the∞-norm.

6.2.2 Give an example of a sequence in C0([0, 1];R) that is Cauchy with respect to
the norm ‖·‖1 but not with respect to the norm ‖·‖2.
Hint: Consider the function f : [0, 1]→ R defined by

f(x) =

x−1/2, x ∈ (0, 1],
0, x = 0.

6.2.3 Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. Let (u j) j∈Z>0 and
(v j) j∈Z>0 be Cauchy sequences in V, let (a j) j∈Z>0 be a Cauchy sequence in F,
and let a ∈ F.
(a) Show that (av j) j∈Z>0 is a Cauchy sequence.
(b) Show that (a jv j) j∈Z>0 is a Cauchy sequence.
(c) Show that (u j + v j) j∈Z>0 is a Cauchy sequence.
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Section 6.3

Completeness and completions

In Theorem 2.3.5 we showed that the set of real numbers is complete in that
every Cauchy sequence of real numbers converges. In Theorem ?? we used the
completeness of R to conclude that Rn is complete. As we shall see in Theo-
rem 6.3.3, every finite-dimensional normed vector space is complete. This is not
true for infinite-dimensional normed vector spaces, and so for these spaces the no-
tion of completeness has teeth: in infinite-dimensional normed vector spaces there
may well be Cauchy sequences that do not converge.

For reasons that are may not be perfectly clear initially, completeness is an
essential property for a normed vector space to possess. If one is confronted with
a normed vector space that is not complete, the first thing one does is complete
it. We have already seen in Section ?? how this works for metric spaces, and the
same ideas apply for normed vector spaces. Completions are easier to understand
in general than they are in specific cases. This will become painfully clear in some
of the examples in Section 6.7.

Do I need to read this section? Completeness is important, so the basic ideas in
this section should be understood. The technicalities can be glossed over on a first
reading. •

6.3.1 Completeness (Banach spaces)

Let us begin with two examples that illustrate that for normed vector spaces,
the notions of Cauchy sequences and convergent sequences are not the same.

6.3.1 Examples (Nonconvergent Cauchy sequences)
1. First consider the normed vector space (F∞0 , ‖·‖1) of Example 6.1.3–6. Consider

the sequence (sk)k∈Z>0 in F∞0 defined by asking that sk be the sequence (vkj) j∈Z>0

with

vkj =

 1
j2 , j ∈ {1, . . . , k},
0, j > k.

Thus the sequence sk is the truncation to k terms of the sequence ( 1
j2 ) j∈Z>0 in R.

We claim that this is a Cauchy sequence. Indeed, let ε > 0 and choose N ∈ Z>0

sufficiently large that, for k, l ≥ N with l > k,

l∑
j=k+1

1
j2 < ε.

This is possible since the series
∑
∞

j=1
1
j2 is convergent by Example 2.4.2–??, and

so its sequence of partial sums is Cauchy. Now let k, l ≥ N with l > k and
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compute

‖sl − sk‖1 =

∞∑
j=1

|vl j − vkj| =

l∑
j=k+1

1
j2 < ε.

Thus the sequence (sk)k∈Z>0 is indeed Cauchy. However, it does not converge,
as we now show. Suppose that σ = (v j) j∈Z>0 is an element of F∞0 such that
limk→∞‖σ − sk‖1 = 0, i.e., such that (sk)k∈Z>0 converges to σ. We claim that this
implies that v j = 1

j2 for each j ∈ Z>0. Indeed, suppose that v j0 ,
1
j20

for some
j0 ∈ Z>0. Then

‖σ − sk‖1 =

∞∑
j=1

|v j − sk| ≥
∣∣∣v j0 −

1
j20

∣∣∣
for every k ∈ Z>0. This implies that if v j0 ,

1
j20

for some j0 ∈ Z>0 then (sk)k∈Z>0

cannot converge to σ. However, the sequence ( 1
j2 ) j∈Z>0 is not in F∞0 , as so we

conclude that the sequence (sk)k∈Z>0 does not converge.
2. We work next with the normed vector space (C0([0, 1];R), ‖·‖1) of

Example 6.1.3–9. In this vector space, consider the sequence of functions
( f j) j∈Z>0 given by

f j(x) =


0, x ∈ [0, 1

2 −
1
2 j ],

2 jx + 1 − j, x ∈ ( 1
2 −

1
2 j ,

1
2 ),

1, x ∈ [ 1
2 , 1].

In Figure 6.1 a few terms in this sequence are graphed. Suppose that k ≥ j so
that the function f j − fk is positive. A simple computation gives

‖ f j − fk‖1 =

∫ 1

0
| f j(x) − fk(x)|dx

=

∫ 1

0
( f j(x) − fk(x)) dx

=

∫ 1

0
f j(x) dx −

∫ 1

0
fk(x) dx

=
1
2

+
1
4 j
−

1
2
−

1
4k

=
1
4 j
−

1
4k
.

Now let ε > 0 and take N = d 1
2εe. This means that for any j ≥ N we have

j ≥ N ≥
1
2ε

=⇒
1
2 j
≤ ε.

We then have, for j, k ≥ N,

‖ f j − fk‖1 =
∣∣∣∣ 1
4 j
−

1
4k

∣∣∣∣ < 1
4 j

+
1
4k
≤
ε
2

+
ε
2

= ε.
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Figure 6.1 A Cauchy sequence ( f1, f2, and f10 are shown) in
(C0([0, 1];R), ‖·‖1)

This shows that ( f j) j∈Z>0 is a Cauchy sequence. However, it is evident that for
any x ∈ [0, 1] we have

lim
j→∞

f j(x) = f (x)

where f : [0, 1]→ R is the function

f (x) =

0, x ∈ [0, 1
2 ),

1, x ∈ [ 1
2 , 1].

Note that f < C0([0, 1];R). One might want to conclude that the sequence
( f j) j∈Z>0 does not converge since it converges pointwise to a discontinuous func-
tion. However, we should not really feel so comfortable with our knowledge
of the normed vector space (C0([0, 1];R), ‖·‖1) at this point. Thus we prove a
lemma that really settles that ( f j) j∈Z>0 does not, in fact, converge.

1 Lemma Consider the sequence (fj)j∈Z>0 as above. If g ∈ C0([0, 1];R) is such that the
sequence (fj)j∈Z>0 converges to g in the norm ‖·‖1, then

g(x) =

0, x ∈ (0, 1
2 ),

1, x ∈ (1
2 , 1).

Proof Suppose that g(x0) > 0 for some x0 ∈ [0, 1
2 ). Then, by continuity of g,

there exists δ ∈ R>0 such that

(x0 − δ, x0 + δ) ⊆ (0, 1
2 )
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and such that g(x) > 1
2 g(x0) for all x ∈ (x0 − δ, x0 + δ) has the same sign as g(x0).

Let N ∈ Z>0 be sufficiently large that fN(x) = 0 for all x ∈ (x0 − δ, x0 + δ). It then
holds that for j ≥ N we have

‖g − f j‖1 =

∫ 1

0
|g(x) − f j(x)|dx ≥

∫ x0+δ

x0−δ

|g(x) − f j(x)|dx

=

∫ x0+δ

x0−δ

|g(x)|dx ≥ δg(x0).

This shows that the sequence ( f j) j∈Z>0 cannot converge to g if g(x0) > 0 for some
x0 ∈ (0, 1

2 ). A completely similar argument shows that the sequence ( f j) j∈Z>0

cannot converge to g if g(x0) < 0 for some x0 ∈ (0, 1
2 ).

Now suppose that g(x0) > 1 for some x0(1
2 , 1). Then there exists δ > 0 such that

(x0 − δ, x0 + δ) ⊆ ( 1
2 , 1)

and such that g(x) − 1 > 1
2 (g(x0) − 1) for all x ∈ (x0 − δ, x0 + δ). Then, for any

j ∈ Z>0,

‖g − f j‖1 =

∫ 1

0
|g(x) − f j(x)|dx ≥

∫ x0+δ

x0−δ

|g(x) − f j(x)|dx

=

∫ x0+δ

x0−δ

|g(x) − 1|dx ≥ δ(g(x0) − 1).

This shows that the sequence ( f j) j∈Z>0 cannot converge to g if g(x0) > 1 for some
x0 ∈ ( 1

2 , 1). A completely similar argument shows that the sequence ( f j) j∈Z>0

cannot converge to g if g(x0) < 1 for some x0 ∈ ( 1
2 , 1). H

There is obviously no continuous function satisfying the conditions of the
lemma. Thus we have found a Cauchy sequence in (C0([0, 1];R), ‖·‖1) that
does not converge. •

The examples show something very important: that there is a genuine distinc-
tion between Cauchy sequences and convergent sequences. Moreover, normed
vector spaces where the two notions agree are important.

6.3.2 Definition (Completeness, Banach space) Let F ∈ {R,C}. A normed F-vector
space (V, ‖·‖) is complete if every Cauchy sequence in V converges. A F-Banach
space is a complete normed F-vector space. •

The following result is important in the same way that completeness of R is
important.
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6.3.3 Theorem (Completeness of finite-dimensional normed vector spaces) If F ∈
{R,C} and if (V, ‖·‖) is a finite-dimensional normed F-vector space, then V is complete.

Proof Let {e1, . . . , en} be a basis for V which defines an isomorphism ι : V→ Fn by

ι(v1e1 + · · · + vnen) = (v1, . . . , vn).

Define a norm ‖·‖2 on V by ‖v‖2 = ‖ι(v)‖2 where ‖·‖2 also denotes the standard norm on
Fn. This is a norm, cf. the proof of Proposition 6.1.4. By Theorem 6.1.15 it follows that
there exists C ∈ R>0 such that

C−1
‖v‖2 ≤ ‖v‖ ≤ C‖v‖2.

Now let (v j) j∈Z>0 be a Cauchy sequence in V. Let’s write

v j = v j1e1 + · · · + v jnen

for v jl ∈ F, j ∈ Z>0, l ∈ {1, . . . ,n}. For ε ∈ R>0 let N ∈ Z>0 by such that ‖v j − vk‖ < C−1ε
for j, k ∈ Z>0. We then have

C−1ε > ‖v j − vk‖ ≥ C−1
‖v j − vk‖2 = C−1

( n∑
l=1

|v jl − vkl|
)1/2
≥ C−1

|v jl0 − vkl0 |

for j, k ≥ N and for each l0 ∈ {1, . . . ,n}. Thus |v jl0 − vkl0 | < ε for j, k ≥ N and for each
l0 ∈ {1, . . . ,n}. Thus (v jl0) j∈Z>0 is a Cauchy sequence in F for each l0 ∈ {1, . . . ,n}. Since F
is complete by Theorem ?? it follows that there exists vl0 ∈ F, l0 ∈ {1, . . . ,n}, such that
lim j→∞ v jl0vl0 . Now define v = v1e1 + · · · + vnen. We claim that (v j) j∈Z>0 converges to v.
To see this, for ε ∈ R>0 let N ∈ Z>0 be such that ‖vl − v jl‖ <

ε
C
√

n
. Then

‖v − v j‖ ≤ C‖v − v j‖2 = C
( n∑

l=1

|vl − v jl|
2
)1/2
≤ C

( n∑
l=1

( ε

C
√

n

)2)1/2
= ε,

as desired. �

6.3.2 Why completeness is important

We have now seen completeness arise in three important cases. The first was
with the incompleteness of the rational numbers and the second and third were
in Example 6.3.1. It is fair to ask, “Who cares whether a normed vector space is
complete?” In this section we address this.

First let us consider the simple case of the incompleteness of the rational num-
bers. Rational numbers are fairly simple to define and pretty easy to understand.
Real numbers are somewhat more difficult to define, and we think we understand
them only because we live in a world where the notion of a real number has been
accepted for so long that they are as integral a part of science as are the integers.
However, it is worth reflecting that the notion of numbers that were not rational
numbers has not always been as acceptable as it is now. Indeed, the development
of mathematics is marked by strong resistance to any of the “unusual” kinds of new
numbers that arose, whether they be negative numbers, real numbers, or complex
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numbers. As concerns real numbers, many Greek mathematicians were dedicated
to the existence only of rational numbers. There is an amusing story—completely
unsubstantiated by any historical record and thus almost certainly false—that a
student of Pythagoras was thrown into the sea for proving that

√
2 was not ratio-

nal. It is also worth reflecting that, if one is only interested in computation, rational
numbers are all one can represent in a digital computer. Thus it is difficult to justify
the construction of the real numbers from a purely practical point of view. So why
are the real numbers important? They are important precisely because they are
complete. It is completeness that makes true “obvious” statements like, “every
bounded increasing sequence converges.” Relatively simple ideas like continuity
and differentiability of functions, the Riemann integral, convergence of sequences
of functions, all rely on the completeness of the real numbers for their power. Sci-
entific life would be very difficult and complicated without the completeness of
the real numbers.

The point of the above paragraph is this:

1. The real numbers arise in a natural way from the incompleteness of the
rational numbers.

2. The completeness of the real numbers is not important for the purposes of
computation.

3. The completeness of the real numbers is important for the very basic ideas
we use every day concerning real variables and functions of a real variable.

4. You are probably comfortable with the real numbers, but this is only because
of societal norms.

Now let us think about the notion of completeness in normed vector spaces.
Indeed, let us think specifically about Example 6.3.1–2. In that example we saw
that there is a simple Cauchy sequence in (C0([0, 1];R), ‖·‖1) that does not converge.
But the sequence of functions certainly converges to a perfectly nice, albeit discon-
tinuous, function. So why not just include this limit function in our set and move
on? Well, one can certainly do this, but it also leads to the question, “What are the
functions that we need to add to C0([0, 1];R) in order to be sure that all Cauchy
sequences of continuous functions converge?” This is a little like saying that, since
√

2 is irrational, why not just add it to our collection of numbers and move on (the
result would be the field extension Q(

√
2)). One could do this, but then eventually

one would need to address the matter of what other kinds of numbers need to be
added to the rational numbers. Thinking about things in this sort of ad hoc way
is not satisfying, and is really just faking your way around the real issue, which is
this: one should be sure to always be dealing with complete normed vector spaces.

The difficulty that arises, as we shall see in Section 6.7.7, is that it is difficult to
describe the set of functions that need to be added to C0([0, 1];R) in order to ensure
completeness with respect to the norm ‖·‖1. But the point is that just because it is
difficult does not mean that it is not important to do. It is important to do. Indeed,
at some point one must do it.
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6.3.3 Completeness and direct sums and quotients

In this section we consider how completeness interacts with direct sums and
quotients. We first consider direct sums. Recall from Theorem 6.1.17 that if
((Vi, ‖·‖i))i∈I is a family of normed vector spaces then we define a norm ‖·‖I on the
direct sum

⊕
i∈I Vi by

‖φ‖I =
∑
i∈I

‖φ(i)‖i,

the sum making sense since it is finite.

6.3.4 Proposition (Completeness of direct sums of Banach spaces) Let F ∈ {R,C}
and let ((Vi, ‖·‖i))i∈I be a family of F-Banach spaces. Then (

⊕
i∈I Vi, ‖·‖I) is complete if and

only if I is finite.
Proof First suppose that I is finite and so take I = {1, . . . , k}. Let us denote elements
of

⊕k
l=1 V j as (v1, . . . , vk). Let ((v1 j, . . . , vkj)) j∈Z>0 be a Cauchy sequence in

⊕k
l=1 V j. We

claim that, for each l ∈ {1, . . . , k}, (vl j) j∈Z>0 is a Cauchy sequence in Vl. Let ε ∈ R>0 and
take N ∈ Z>0 sufficiently large that

‖(v1 j, . . . , vkj) − (v1m, . . . , vkm)‖I < ε, j,m ≥ N.

Since
‖(v1 j, . . . , vkj) − (v1m, . . . , vkm)‖I = ‖v1 j − v1m‖1 + · · · + ‖vkj − vkm‖k

it follows that
‖vl j − vlm‖l < ε, j,m ≥ N,

and so the sequence (vl j) j∈Z>0 is indeed Cauchy. Therefore, since Vl is a Banach space,
the sequence converges to vl ∈ Vl. We next claim that the sequence ((v1 j, . . . , vkj)) j∈Z>0

converges to (v1, . . . , vk). Indeed, let ε ∈ R>0 and take N ∈ Z>0 sufficiently large that

‖vl j − vl‖l <
ε
k , l ∈ {1, . . . , k}, j ≥ N.

Then
‖(v1 j, . . . , vkj) − (v1, . . . , vk)‖I = ‖v1 j − v1‖1 + · · · + ‖vkj − vk‖k < ε,

for j ≥ N, giving the desired convergence.
Next suppose that I is infinite and, for each i ∈ I, choose vi ∈ Vi such that ‖vi‖i = 1.

Let {il}l∈Z>0 be a set of distinct elements of I and then define a sequence (φk)k∈Z>0 in⊕
i∈I Vi by

φk(i) =

2− jvi j , i = i j, j ∈ {1, . . . , k},
0, otherwise.

We claim that (φk)k∈Z>0 is a Cauchy sequence. Indeed, let ε > 0 and let N ∈ Z>0 be
such that for k,m ≥ N with m > k we have

∑m
j=k+1 < ε. This is possible since the series∑

∞

j=1 2− j converges by Example 2.4.2–??. Now note that, for k,m ≥ N with m > k we
have

‖φk − φm‖I =

m∑
j=k+1

‖2− jvi j‖i j =

m∑
j=k+1

2− j < ε,

showing that the sequence (φk)k∈Z>0 is indeed Cauchy. However, the sequence does
not converge. Indeed, if φ ∈

⊕
i∈I Vi has the property that limk→∞‖φ − φk‖I = 0 then

this implies that φ(i j) = 2− jvi j for j ∈ Z>0, cf. Example 6.3.1–1. But then φ <
⊕

i∈I Vi.�
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In Section 6.7.3 we will revisit the matter of the completeness of direct sums.
For now we turn to quotients. We recall from Proposition 6.1.19 the definition

of the norm ‖·‖/U on V/U.

6.3.5 Proposition (Quotients of Banach spaces by closed subspaces are Banach
spaces) If F ∈ {R,C}, if (V, ‖·‖) is an F-Banach space, and if U is a closed subspace of
V, then (V/U, ‖·‖/U) is an F-Banach space.

Proof We already know from Proposition 6.1.19 that (V/U, ‖·‖/U) is a normed vector
space, so it is completeness that e must prove here. Let (v j + U) j∈Z>0 be a Cauchy
sequence. By passing to a subsequence if necessary we can suppose that ‖(v j+1 − v j) +

U‖/U < 2− j, j ∈ Z>0. By definition of ‖·‖/U this means that there exists u2 ∈ U such
that ‖v2 + u2 − v1‖ < 2−1. Define v′2 = v2 + u2. Similarly, there exists u3 ∈ U such that
‖v3 + u3 − v2‖ < 2−2. Define v′3 = v3 + u3. Proceeding in this way we define a sequence
(v′j) j∈Z>0 such that ‖v′j+1 − v′j‖ < 2− j and such that v′j + U = v j + U for j ∈ Z>0. In
particular, the sequence (v j) j∈Z>0 is Cauchy and so converges to some v ∈ V since V is
complete. Then, by Theorem 6.5.2,

lim
j→∞

(v′j + U) = ( lim
j→∞

v′j) + U = v + U

since the projection from V to V/U is continuous. �

6.3.4 Completions

Having been confronted in Section 6.3.1 with the reality of normed vector spaces
that are not complete, and having seen evidence of the importance of completeness
in Section 6.3.2, it becomes important to know the answer to this question: “What
do we do when we have an incomplete normed vector space?” The answer is: “We
complete it!”

The notion of a completion was discussed in detail in Section ?? for metric spaces.
Since normed vector spaces are metric spaces by Proposition 6.1.7, that entire
discussion can be transported here to define the completion of a normed vector
space. However, we will develop at least some of this discussion independently.

The main result is the following. In the statement of the result we make reference
to the notion of an isomorphism of normed vector spaces. We will not formally
get to this idea until Section 6.5.2, but let us just say here that an isomorphism
of normed vector spaces is an invertible linear map that is continuous and has a
continuous inverse.

6.3.6 Theorem (Completion of a normed vector space) Let F ∈ {R,C} and let (V, ‖·‖)
be a normed F-vector space. Then there exists a Banach space (V, ‖·‖) with the following
properties:

(i) there exists an injective linear map ιV : V → V such that ‖ιV(v)‖ = ‖v‖ for every
v ∈ V;

(ii) for each v ∈ V there exists a sequence (vj)j∈Z>0 in V such that (ιV(vj))j∈Z>0 converges
to v.
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Such a Banach space (V, ‖·‖) is a completion of (V, ‖·‖).
Furthermore, if (V1, ‖·‖1) and (V2, ‖·‖2) are two completions of (V, ‖·‖) with ιV,1 : V→

V1 and ιV,2 : V → V2 being the corresponding injective linear maps, then there exists an
isomorphism L : V1 → V2 of Banach space such that the following diagram commutes:

V
ιV,1

��

ιV,2

��
V1 L

// V2

Proof Many of the details of this proof follow that of Theorem ??, and we therefore
omit them, only making reference to the existing proof.

We let CS(V) denote the collection of Cauchy sequences in V. If we define vector
addition and scalar multiplication by

(u j) j∈Z>0 + (v j) j∈Z>0 = (u j + v j) j∈Z>0 , a(v j) j∈Z>0 = (av j) j∈Z>0 ,

then CS(V) is an F-vector space by Exercise 6.2.3.
For a Cauchy sequences (v j) j∈Z>0 let us define

˜‖(v j) j∈Z>0‖ = lim
j→∞
‖v j‖.

To make the connection with the proof of Theorem ?? we note that we can define

d̃((u j) j∈Z>0 , (v j) j∈Z) = lim
j→∞
‖u j − v j‖.

Then we obviously have

˜‖(v j) j∈Z>0‖ = d̃((v j) j∈Z>0 , (0) j∈Z>0).

This identity can be used to easily prove many of the assertions we are about to make
about ‖̃·‖. In particular, the definition of ‖̃·‖ is shown to make sense in that the limit
exists. Moreover, ‖̃·‖ is readily seen to be a seminorm on CS(V). For example, we
compute

˜‖a(v j) j∈Z>0‖ = lim
j→∞
‖av j‖ = |a| lim

j→∞
‖v j‖ = |a| ˜‖(v j) j∈Z>0‖.

(Note that in the third step we make use of continuity of the norm which we will
prove as Proposition 6.5.4.) The remaining seminorm properties follow just as do the
corresponding assertions from Theorem ??.

We now let (V, ‖·‖) be the normed vector space associated with (CS(V), ‖̃·‖) as in
Theorem 6.1.8. Note that (V, ‖·‖) as in Theorem 6.1.8 is the normed vector space whose
associated metric space is the metric space (V, d) of Theorem ??. From Exercise 6.3.4 it
immediately follows that (V, ‖·‖) is a Banach space.

Recalling from Theorem 6.1.8 that V is a quotient of CS(V) by a subspace, denote by
πV : CS(V) → V the canonical projection. Now define ιV : V → V by ιV(v) = πV((v) j∈V).
As for the corresponding assertion from Theorem ??, we readily show that ‖ιV(v)‖ = ‖v‖
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for each v ∈ V. Since the injection ιV of V into V is the same as the injection in the proof
of Theorem ??, it follows from Theorem ?? that for any v ∈ V there is a sequence (v j) j∈Z>0

for which (ιV(v j)) j∈Z>0 converges to v.
Now we prove the final assertion of the theorem, letting (V1, ‖·‖1) and (V1, ‖·‖2) be

completions of (V, ‖·‖). Let v1 ∈ V1 and let (v j) j∈Z>0 be a sequence for which (ιV,1) j∈Z>0

converges to v1. Thus (ιV,1(v j)) j∈Z>0 is Cauchy. Since ιV,1 preserves the norm, one
easily shows that (v j) j∈Z>0 is Cauchy. Since ιV,2 also preserves the norm, the sequence
(ιV,2(v j)) j∈Z>0 is Cauchy, and so converges since V2 is complete. Let v2 denote its limit.
We define L : V1 → V2 by L(v1) = v2, according to the preceding construction. As
with the corresponding assertion in the proof of Theorem ??, one can show that this
definition is independent of the choice of sequence converging to v1. Moreover, just as
in the proof of Theorem ??, we can show that L is a bijection and an isometry. Therefore,
it is continuous and has a continuous inverse.missing stuff All that remains is to show
that L is linear. To see this, let u1, v1 ∈ V1 and let a ∈ F. Let (u j) j∈Z>0 and (v j) j∈Z>0 be
sequences in V for which lim j→∞ ιV,1(u j) = u1 and lim j→∞ ιV,1(u j) = u1. We then have

L(av1) = lim
j→∞

ιV,2(av j) = a lim
j→∞

ιV,2(v j) = aL(v1)

and

L(u1 + v1) = lim
j→∞

ιV,2(u j + v j) = lim
j→∞

ιV,2(u j) + lim
j→∞

ιV,2(v j) = L(u1) + L(v1),

where we have used the continuity properties of the norm as in Proposition 6.5.4
below. �

The preceding theorem is nice in that the proof is constructive. The comple-
tion consists of equivalence classes of Cauchy sequences, just as was the case for
the construction of R in Section 2.1.2. The problem is that it may not be so easy
to understand what elements in the completion “look like.” For example, in Ex-
ample 6.3.1 we gave two instances of incomplete normed vector spaces. For the
incomplete normed vector space (F∞0 , ‖·‖1) it is fairly easy to understand the comple-
tion; we do this in Section 6.7.2. However, for the incomplete normed vector space
(C0([0, 1];R), ‖·‖1) the completion is harder to understand. Indeed, try to imagine
what might be the set of limits of all Cauchy sequences in C0([0, 1];R). Surely
these limits can be pretty complicated! And we shall see in Section 6.7.7 that to
describe these limits is possible by using Lebesgue’s integral that we dedicated so
much effort to in Chapter 5. Indeed, many of the examples of Banach spaces in
Section 6.7 are constructed as completions. The diversity of the examples in that
section should, alone, convince the reader of the importance of completeness and
completions.

Exercises

6.3.1 For F ∈ {R,C} show that (F∞0 , ‖·‖∞) (see Example 6.1.3–7) is not complete.
6.3.2 Consider the sequence ( f j) j∈Z>0 of signals in C0([0, 1];R) as defined in

Example 6.3.1–2. In this exercise, use the norm ‖·‖∞.



633 6 Banach spaces 2016/11/26

(a) Show by explicit calculation that the sequence is not a Cauchy sequence.
(b) Is it possible to deduce that the sequence is not Cauchy without doing

any calculations?
6.3.3 Consider the sequence { f j} j∈Z>0 of functions in C0([0, 1];R) defined by f j(x) =

x j. For the vector space C0([0, 1];R) consider two norms, ‖·‖∞ and ‖·‖1, defined
by:

‖ f ‖∞ = sup{| f (x)| | x ∈ [0, 1]},

‖ f ‖1 =

∫ 1

0
| f (x)|dx.

Answer the following questions.
(a) Sketch the graphs of the first few functions in the sequence { f j} j∈Z>0 .
(b) Is the sequence { f j} j∈Z>0 a Cauchy sequence in (C0([0, 1];R), ‖·‖∞)?
(c) Is the sequence { f j} j∈Z>0 a Cauchy sequence in (C0([0, 1];R), ‖·‖1)?
(d) Does the sequence { f j} j∈Z>0 converge in (C0([0, 1];R), ‖·‖∞)?
(e) If the sequence { f j} j∈Z>0 does not converge in (C0([0, 1];R), ‖·‖∞), does it

converge in the completion of (C0([0, 1];R), ‖·‖∞)? If so, to what function
does it converge?

(f) Does the sequence { f j} j∈Z>0 converge in (C0([0, 1];R), ‖·‖1)?
(g) If the sequence { f j} j∈Z>0 does not converge in (C0([0, 1];R), ‖·‖1), does it

converge in the completion of (C0([0, 1];R), ‖·‖1)? If so, to what function
does it converge?

6.3.4 Show that a normed vector space (V, ‖·‖) is complete if and if the associated
metric space (from Proposition 6.1.7) is complete.

6.3.5 Let ((Vi, ‖·‖i))i∈I be a family of normed vector spaces with (
⊕

i∈I Vi, ‖·‖I) the
corresponding direct sum normed vector space. Show that, if (

⊕
i∈I Vi, ‖·‖I)

is complete, then (Vi, ‖·‖i) is complete for each i ∈ I.
6.3.6 Let ((Vi, ‖·‖i))i∈I be a family of Banach spaces and define the norm ‖·‖I,∞ on⊕

i∈I Vi by
‖φ‖I,∞ = max{|φ(i)| | i ∈ I}.

Show that (
⊕

i∈I Vi, ‖·‖I,∞) is incomplete if I is infinite.
6.3.7 On the vector space AC([a, c];F) ofF-valued absolutely continuous functions

on [a, b], define the function f 7→ ‖ f ‖ by

‖ f ‖ =

∫ b

a
| f (x)|dx.

Answer the following questions.
(a) Show that (AC([a, b];F), ‖·‖) is a normed vector space.
(b) Show that you understand why (AC([a, b];F), ‖·‖) is not a Banach space

by providing a nonconvergent Cauchy sequence.
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Section 6.4

Series in normed vector spaces

We now consider series in normed vector spaces. While some of the develop-
ment here bears a strong resemblance to that for series in R given in Section 2.4,
there are some significant differences. In particular, we introduce two new notions
of convergence, condition and unconditional convergence. The latter of these is
equivalent for series inR to absolute convergence, as we show in Proposition 6.4.5.
However, in infinite-dimensions the two notions are not equivalent, and we prove
this as the nontrivial Theorem 6.4.8. Much of the rest of the development follows
in the same vein as that for series in R.

Do I need to read this section? The reader should understand the notion of a
series in a normed vector space since this will be important to us in Section 7.3,
which in turn is important in the theory of Fourier series. The material in Sec-
tion 6.4.2, while interesting, is also somewhat technical and can be skipped at a
first reading. The material in Sections 6.4.5 and 6.4.6 can likewise be overlooked
until it is needed. •

6.4.1 Definitions and properties of series

A series in an F-vector space is an expression of the form
∞∑
j=1

v j,

where v j ∈ V, j ∈ Z>0. As with series in R or C, this expression is merely symbolic
(but still sensible as a formal expression) unless something can be said about its
convergence. For vector spaces without any structure, series can be nothing more
than formal. Fortunately, (semi)normed vector spaces have topologies defined on
them, and so notions of convergence can be defined. These are as follows.

6.4.1 Definition (Convergence, absolute convergence, and conditional conver-
gence of series) Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space.
Let (v j) j∈Z>0 be a sequence in V and consider the series

S =

∞∑
j=1

v j.

The corresponding sequence of partial sums is the sequence (Sk)k∈Z>0 in V defined
by

Sk =

k∑
j=1

v j.

Let v0 ∈ V. The series:
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(i) is Cauchy if the sequence of partial sums is a Cauchy sequence;
(ii) converges to v0, and we write

∑
∞

j=1 v j = v0, if the sequence of partial sums
converges to v0;

(iii) has v0 as a limit if it converges to v0;
(iv) is convergent if it converges to some member of V;
(v) converges absolutely, or is absolutely convergent, if the series

∞∑
j=1

‖v j‖

converges;
(vi) is unconditionally Cauchy if, for every bijection φ : Z>0 → Z>0, the series

Sφ =
∑
∞

j=1 vφ( j) is Cauchy;
(vii) converges unconditionally, or is unconditionally convergent, if, for every

bijection φ : Z>0 → Z>0, the series Sφ =
∑
∞

j=1 vφ( j) converges;
(viii) is conditionally Cauchy if it is not unconditionally Cauchy;
(ix) converges conditionally, or is conditionally convergent, if it is not uncondi-

tionally convergent;
(x) diverges if it does not converge. •

There are a few differences between the definitions we give here and those for
given in Definition 2.4.1 for series of real numbers. These differences have real
substance, so let us record why they arise.
1. In Definition 2.4.1 we did not have the notion of Cauchy series. This is be-

cause this is not necessary for series in R since Cauchy sequences converge.
However, in infinite-dimensional normed vector spaces there may well be non-
convergent Cauchy sequences. Therefore, it is useful to distinguish between
Cauchy sequences of partial sums and convergent sequences of partial sums.
Whenever possible we state results for Cauchy series rather than convergent
series, keeping in mind that convergent series are Cauchy.

2. There is a difference between the notions of conditional convergence for series in
normed vector spaces and for real numbers as given in Definition 2.4.1. There
is some substance to this difference, and we shall explore this in Section 6.4.2,
particularly Theorem 6.4.8.
Just as for series of real numbers and complex numbers, there is a useful rela-

tionship between the norm of a sum and the sum of the norms.

6.4.2 Proposition (Swapping summation and norm) Let F ∈ {R,C} and let (V, ‖·‖) be a
(semi)normed F-vector space. For a sequence (vj)j∈Z>0 , if the series S =

∑
∞

j=1 vj is absolutely
convergent, then ∥∥∥∥ ∞∑

j=1

vj

∥∥∥∥ ≤ ∞∑
j=1

‖vj‖.
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Proof Define

S1
m =

∥∥∥∥ m∑
j=1

v j

∥∥∥∥, S2
m =

m∑
j=1

‖v j‖, m ∈ Z>0.

By Exercise 6.4.1 we have S1
m ≤ S2

m for each m ∈ Z>0. Moreover, by Proposition 6.4.5
the sequences (S1

m)m∈Z>0 and (S2
m)m∈Z>0 are Cauchy sequences in R and so converge. It

is then clear that
lim

m→∞
S1

m ≤ lim
m→∞

S2
m,

which is the result. �

While we do not have for series in normed vector spaces the bevy of tests for
convergence, we do have the obvious sufficient condition.

6.4.3 Proposition (Sufficient condition for a series to diverge) Let F ∈ {R,C} and let
(V, ‖·‖) be a (semi)normed F-vector space. If the sequence (‖vj‖)j∈Z>0 does not converge to
zero, then the series

∑
∞

j=1 vj diverges.
Proof Suppose that the series

∑
∞

j=1 v j converges to v0 and let (Sk)k∈Z>0 be the sequence
of partial sums. Then vk = Sk − Sk−1. Then

lim
k→∞

vk = lim
k→∞

Sk − lim
k→∞

Sk−1 = v0 − v0 = 0V,

as desired. �

6.4.2 Absolute and unconditional convergence

In this section we explore the relationship between absolute and unconditional
convergence. For finite-dimensional normed vector spaces we will see that the two
notions are equivalent.

Let us begin by showing why unconditional convergence is useful, in the same
way we showed that absolute convergence is useful in Theorem 2.4.5.

6.4.4 Proposition (Unconditional limits are rearrangement independent) Let F ∈
{R,C} and let (V, ‖·‖) be a normed F-vector space. If the series

∑
∞

j=1 vj is uncondition-
ally convergent and converges to v0, then, for any bijection φ : Z>0 → Z>0, the series∑
∞

j=1 vφ(j) also converges to v0.
Proof In order to avoid duplication of part of the proof, we make use of the implica-
tion (ii) =⇒ (i) of Theorem 6.4.20. We do this in the following way. Let S =

∑
∞

j=1 v j.
Since S is unconditionally convergent it is unconditionally Cauchy by Proposition 6.2.3.
By the implication (ii) =⇒ (i) of Theorem 6.4.20 it follows that

∑
j∈Z>0

v j is Cauchy in
the sense of Definition 6.4.16. Now let ε ∈ R>0 and let I ⊆ Z>0 be a finite set with the
property that ∥∥∥∥∑

j∈J

v j

∥∥∥∥ < ε
2

for any finite set J such that J ∩ I = ∅. Now let N1 ∈ Z>0 be such that

∥∥∥∥ k∑
j=1

v j − v0

∥∥∥∥ < ε
2
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for every k ≥ N1 (this being possible since
∑
∞

j=1 v j converges to v0) and such that
I ⊆ {1, . . . ,N1}. Let φ : Z>0 → Z>0 be a bijection and choose N2 ∈ Z>0 sufficiently large
that {1, . . . ,N1} ⊆ {φ(1), . . . , φ(N2)}. Then we write

{φ(1), . . . , φ(N2)} = {1, . . . ,N1} ∪ J

where J ∩ {1, . . . ,N1} = ∅. Note that J ∩ I = ∅ since I ⊆ {1, . . . ,N1}. Therefore, we
compute

∥∥∥∥ N2∑
j=1

vφ( j) − v0

∥∥∥∥ =
∥∥∥∥ N1∑

j=1

v j +
∑
j∈J

v j − v0

∥∥∥∥ ≤ ∥∥∥∥ N1∑
j=1

v j − v0

∥∥∥∥ +
∥∥∥∥∑

j∈J

v j

∥∥∥∥ < ε
2

+
ε
2

= ε,

giving convergence of
∑
∞

j=1 vφ( j) to v0. �

As with series inR, one of the essential features of absolutely convergent series
is that their convergence is independent of rearrangement of terms. This mirrors
the situation for series in R.

6.4.5 Proposition (Absolute convergence implies unconditional Cauchy) Let F ∈
{R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. For a sequence (vj)j∈Z>0 consider
the series S =

∑
∞

j=1 vj. If S is absolutely convergent then it is unconditionally Cauchy.
Moreover, if S converges then, for any bijection φ : Z>0 → Z>0, the series Sφ =

∑
∞

j=1 vφ(j)

converges absolutely to the same limit as S.
Proof Let φ : Z>0 → Z>0 be a bijection. First let us show that Sφ is absolutely
convergent. Since S is absolutely convergent the sequence (|S|k)k∈Z>0 defined by

|S|k =

k∑
j=1

‖v j‖

is bounded and monotonically increasing. Thus there exists M ∈ R>0 such that |S|k ≤M
for every k ∈ Z>0. Now define the sequence (|Sφ|k)k∈Z>0 by

|Sφ|k =

k∑
j=1

vφ( j).

For k ∈ Z>0 there exists N ∈ Z>0 such that {φ(1), . . . , φ(k)} ⊆ {1, . . . ,N}. Then

|Sφ|k ≤
N∑

j=1

‖v j‖ ≤M.

Thus (|Sφ|k)k∈Z>0 is bounded and monotonically increasing, and so convergent. Thus
Sφ is absolutely convergent.

Next we show that if S is absolutely convergent then it is unconditionally Cauchy.
Let ε ∈ R>0 and let N1 ∈ Z>0 be such that

∞∑
j=N1

‖v j‖ < ε.
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Now let N2 ∈ Z>0 be such that {φ(1), . . . , φ(N1)} ⊆ {1, . . . ,N2}. Let k, l ≥ N2 with l > k
and note that if j ∈ {k + 1, . . . , l} then φ−1( j) ≥ N1. Thus

∥∥∥∥ l∑
j=k+1

vφ( j)

∥∥∥∥ ≤ k∑
j=l+1

‖vφ( j)‖ ≤

∞∑
j=N1

‖v j‖ < ε,

showing that Sφ is Cauchy.
Now suppose that S converges to v0 and let us show that Sφ converges to v0. For

ε ∈ R>0 let N1 ∈ Z>0 be such that

∥∥∥∥ N1∑
j=1

v j − v0

∥∥∥∥ < ε
2

(this is possible since S converges to v0) and such that

∞∑
j=N1

‖v j‖ <
ε
2

(6.1)

(this is possible since S is absolutely convergent). There then exists N2 ∈ Z>0 such that
{φ(1), . . . , φ(N1)} ⊆ {1, . . . ,N2}. Then

N2∑
j=1

vφ( j) =

N1∑
j=1

v j +
∑
j∈J

vφ( j),

where J = {1, . . . ,N2} \ {φ(1), . . . , φ(N1)}. Note that

∑
j∈J

‖vφ( j)‖ ≤

∞∑
j=N1

‖v j‖ <
ε
2

by (6.1). Then

∥∥∥∥ N2∑
j=1

vφ( j) − v0

∥∥∥∥ =
∥∥∥∥ N1∑

j=1

v j +
∑
j∈J

vφ( j) − v0

∥∥∥∥
≤

∥∥∥∥ N1∑
j=1

v j − v0

∥∥∥∥ +
∥∥∥∥∑

j∈J

vφ( j)

∥∥∥∥
≤
ε
2

+
∑
j∈J

‖vφ( j)‖ ≤
ε
2 + ε

2 = ε,

giving convergence of Sφ to v0 as desired. �

Thus Proposition 6.4.5 says that absolute convergence implies unconditional
convergence. We shall see below in Theorem 6.4.8 that the two notions are equiv-
alent if and only if the normed vector space is finite-dimensional. Thus the notion
of unconditional convergence is the more general notion, and one may wonder
whether absolute convergence is important. It is, and here is why.
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6.4.6 Theorem (Absolute convergence and completeness) Let F ∈ {R,C}. A normed
F-vector space (V, ‖·‖) is complete if and only if every absolutely convergent series in V
converges.

Proof Suppose that V is complete and let
∑
∞

j=1 v j be an absolutely convergent series.
From Proposition 6.4.5 it follows that

∑
∞

j=1 v j is Cauchy, and so it converges since V is
complete.

Now suppose that every absolutely convergent series converges, and let (v j) j∈Z>0 be
a Cauchy sequence. Choose a subsequence (v jk)k∈Z>0 for which ‖u jk+1 −u jk‖ <

1
2k+1 . Then

define u1 = vk1 and uk = v jk − v jk−1 so that the series
∑
∞

k=1 uk is absolutely convergent,
and so convergent. This means therefore that

lim
k→∞
‖uk‖ = lim

k→∞
‖v jk − v jk−1‖ = 0.

Thus the sequence (v jk)k∈Z>0 is convergent. Suppose it converges to v. Now, for ε > 0
choose k and j sufficiently large that ‖v j − v jk‖ <

ε
2 and ‖v − v jk‖ <

ε
2 . Then we have

‖v − v j‖ ≤ ‖v − v jk‖ + ‖v jk − v j‖ < ε,

so showing that (v j) j∈Z>0 converges to v. �

The following trivial corollary is sometimes useful by itself.

6.4.7 Corollary (Absolutely convergent sequences in Banach spaces converge) Let
F ∈ {R,C}. If (V, ‖·‖) is a F-Banach space and if

∑
∞

j=1 vj is an absolutely convergent series
in V, then

∑
∞

j=1 vj is convergent.

Now let us explore the possibility of a converse to Proposition 6.4.5. That is,
let us consider the question, “Is it true that an unconditionally convergent series is
absolutely convergent?” In Theorem 2.4.5 we saw that this was true for series inR.
However, this is not generally true in normed vector spaces, but holds if and only
if the vector space is finite-dimensional. This is an instance of where the difference
between finite- and infinite-dimensions shows up.

6.4.8 Theorem (Absolute convergence and unconditional Cauchy agree (only) in
finite-dimensions) Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. Then the
set of absolutely convergent series and the set of unconditionally Cauchy series coincide if
and only if V is finite-dimensional.

Proof From Proposition 6.4.5 we know that absolutely convergent series are always
unconditionally convergent. Suppose that V is finite-dimensional and that

∑
∞

j=1 v j is
unconditionally convergent. Let us also suppose that F = R for the moment. Choose
a basis {e1, . . . , en} for V and write

v j = v1
j e1 + · · · + vn

j en

for vl
j ∈ F, j ∈ Z>0, l ∈ {1, . . . ,n}. By Theorem 6.1.15 we can use any norm on V we

wish to discuss convergence, so let us use the∞-norm induced by the basis:

‖v1e1 + · · · + vnen‖ = max{|v1
|, . . . , |vn

|}.
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Let φ : Z>0 → Z>0 be a bijection so that
∑
∞

j=1 vφ( j) converges, say to v0 ∈ V. Let us write

v0 = v1
0e1 + · · · + vn

0en.

Now let ε ∈ R>0 and choose N ∈ Z>0 such that∥∥∥∥ N∑
j=1

vφ( j) − v0

∥∥∥∥ < ε.
Then ∣∣∣∣ N∑

j=1

vl
φ( j) − vl

0

∣∣∣∣ ≤ ∥∥∥∥ N∑
j=1

vφ( j) − v0

∥∥∥∥ < ε.
Thus

∑
∞

j=1 vl
φ( j) converges to vl

0 for each l ∈ {1, . . . ,n}. Thus
∑
∞

j=1 vl
j is unconditionally

convergent, and so absolutely convergent by Theorem 2.4.5. Now again let ε ∈ R>0
and let N ∈ Z>0 be such that

∞∑
j=N+1

|vl
j| < ε, l ∈ {1, . . . ,n},

this being possible by absolute convergence of
∑
∞

j=1 vl
j. Then, for any l ∈ {1, . . . ,n},

∞∑
j=N+1

‖v j‖ ≤

∞∑
j=N+1

|vl
j| < ε,

giving absolute convergence of
∑
∞

j=1 v j.
If V is a finite-dimensional C-vector space, then it is also a finite-dimensional R-

vector space of twice the dimension, and so the above arguments can be used to show
that an unconditionally convergent sum is absolutely convergent.

It remains to show that if V is infinite-dimensional then there exists an uncondi-
tionally convergent series that is not absolutely convergent. We do this via a sequence
of lemmata, the first of which seems to have nothing to do with the problem at hand.
Let us suppose that F = R.

The following lemma is crucial, and is called the Dvoretzky–Rogers Lemma.

1 Lemma Let C ⊆ Rn be a compact convex set with nonempty interior and with centre at 0Rn

and let k ∈ {1, . . . ,n}. Then there exists x1, . . . , xn ∈ bd(C) such that, for any λ1, . . . , λk ∈ R,

λ1x1 + · · · + λkxk ∈ λC , {λx | x ∈ C},

where
λ2 =

(
2 +

k(k−1)
n

)
(λ2

1 + · · · + λ2
k).

Proof By Theorem ?? let E be the ellipsoid with largest volume contained in C. If
A ∈Matn×n(R) is invertible then hypotheses of the lemma hold for the convex set A(C)
and the conclusions hold for the points Ax1, . . . ,Axn. Thus we can apply an invertible
linear transformation of Rn to the problem without changing either the hypotheses or
the conclusions. Let us suppose that A has been chosen such that A(E) = B(1, 0Rn), the
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closed unit ball in the 2-norm in Rn. For the remainder of the proof we work with the
transformed problem.

We next claim that there exists an orthogonal matrix R, thought of as a linear
mapping from Rn to itself, and points x1, . . . , xn ∈ B(1, 0Rn) ∩ C such that

y j , Rx j = (y1
j , . . . , y

j
j, 0, . . . , 0), j ∈ {1, . . . ,n}, (6.2)

(i.e., the last n − j components of Rx j are zero) and such that

(y1
j )

2 + · · · + (y j−1
j )2 = 1 − (y j

j)
2
≤

j−1
n , j ∈ {1, . . . ,n}. (6.3)

We construct the points x1, . . . , xn inductively. For j = 1 we take x1 ∈ B(1, 0Rn) ∩ C
(this is possible by our initial definition of E). We then make an orthogonal change of
basis for which x1 is the first basis vector. This defines an orthogonal transformation
R1 satisfying (6.2) and (6.3) for j = 1. Suppose now, for k− 1 < n, that we have defined
Rk−1 and x1, . . . , xk−1 ∈ B(1, 0Rn)∩C satisfying (6.2) and (6.3) for j ∈ {1, . . . , k−1}. Define
fk : R≥0 ×Rn

→ R by

fk(ε, x) = (1 + ε)n−k+1((y1)2 + · · · + (yk−1)2) + (1 + ε + ε2)−k+1((yk)2 + · · · + (yn)2),

where y = Rk−1x. For ε ∈ R≥0 define

Eε = {x ∈ Rn
| f (ε, x) ≤ 1}.

Thus Eε is an ellipsoid. We claim that for ε ∈ R>0 the volume of Eε exceeds that of
B(1, 0Rn). To see this, consider the linear transformation Tε of Rn defined by

Tε(y1, . . . , yn) = (
√

(1 + ε)n−k+1y1, . . . ,
√

(1 + ε)n−k+1yk−1,√
(1 + ε + ε2)−k+1yk, . . . ,

√
(1 + ε + ε2)−k+1yn).

Thus Tε(Eε) = B(1, 0Rn). Using the change of variables formula for the integral in Rn

we have the volume of Eε as det T−1
ε times the volume of B(1, 0Rn). Since

det T−1
ε =

(1 + ε + ε2

1 + ε

)(n−k+1)(k−1)/2
> 1

for ε ∈ R>0, we indeed have the volume of Eε as exceeding that of B(1, 0Rn).
Now, since B(1, 0Rn) is the largest ellipsoid contained in C, there exists a point

xε ∈ bd(C)∩Eε. Since xε ∈ bd(C) and since B(1, 0Rn) ⊆ C it follows that ‖xε‖ ≥ 1 (where
‖·‖ is the 2-norm on Rn). Letting yε = Rk−1xε we have

((y1
ε)

2 + · · · + (yk−1
ε )2) + ((yk

ε)
2 + · · · + (yn

ε )2) ≥ 1.

Subtracting this inequality from the inequality f (ε, xε) ≤ 1 gives

((1 + ε)n−k+1
− 1)((y1

ε)
2 + · · · + (yk−1

ε )2)

+ ((1 + ε + ε2)−k+1
− 1)((yk

ε)
2 + · · · + (yn

ε )2) ≤ 0. (6.4)
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Let (ε j) j∈Z>0 be a sequence in R>0 converging to zero. The resulting sequence (xε j) j∈Z>0

is in bd(C) which is compact, being a closed subset of a compact set (Corollary ??).
Therefore, by the Bolzano–Weierstrass Theorem, there exists a subsequence of (xε j) j∈Z>0

converging to some x0 ∈ B(1, 0Rn) ∩ bd(C). Moreover, denoting y0 = Rx0, (6.4) gives

1
ε

((1 + ε)n−k+1
− 1)((y1

ε)
2 + · · · + (yk−1

ε )2)

+ ((1 + ε + ε2)−k+1
− 1)((yk

ε)
2 + · · · + (yn

ε )2) ≤ 0

=⇒ lim
ε↓0

1
ε

((1 + ε)n−k+1
− 1)((y1

ε)
2 + · · · + (yk−1

ε )2)

+ ((1 + ε + ε2)−k+1
− 1)((yk

ε)
2 + · · · + (yn

ε )2) ≤ 0

=⇒ (n − k + 1)((y1
0)2 + · · · + (yk−1

0 )2) + (−k + 1)((yk
0)2 + · · · + (yn

0)2) ≤ 0.

Now define xk = x0. If Rk−1xk ∈ spanR(e1, . . . , ek−1) then clearly the last n − k com-
ponents of Rk−1xk are zero in the basis defined by Rk−1. If not, then the vectors
{R−1

k−1e1, . . . ,R−1
k−1ek−1, xk} span a subspace of dimension k and by choosing an orthogo-

nal complement in this subspace to spanR(R−1
k−1e1, . . . ,R−1

k−1ek−1) we get an orthonormal
basis for Rn where the first k − 1 basis vectors are those defined by Rk−1 and the first k
basis vectors span a subspace containing xk. Thus the last n−k components of xk in this
basis will be zero, and the components of x1, . . . , xk−1 will be unchanged from those in
the basis defined by Rk−1. This new orthonormal basis defines an orthogonal matrix
Rk. This gives condition (6.2). Moreover, if we abuse notation slightly and denote by
(y1, . . . , yn) the coordinates in the basis defined by Rk, the point yk = Rkxk satisfies

(n − k + 1)((y1
k)2 + · · · + (yk−1

k )2) + (−k + 1)(yk
k)2
≤ 0.

Since we also have (y1
k)2 + · · · + (yk

k)2 = 1 we then get

(y1
k)2 + · · · + (yk−1

k )2 = 1 − (yk
k)2 =

k − 1
n

,

and so (6.3) also holds.
Finally, let λ1, . . . , λk ∈ R. We compute the square of the length of λ1x1 + · · · + λkxk

as

k∑
j=1

( k∑
l=1

λly
j
l

)2
≤

k∑
j=1

(
2λ2

j (y j
j)

2 + 2
( k∑

l= j+1

λly
j
l

)2)
≤ 2

k∑
j=1

(
λ2

j (y j
j)

2 +
( k∑

l= j+1

λ2
l

)( k∑
m= j+1

(y j
m)2

))

= 2
k∑

j=1

(
(y j

j)
2 +

k∑
l=1

min{ j−1,l−1}∑
m=1

(ym
l )2

)
λ2

j .

Since (6.3) holds we have

(y j
j)

2 +

k∑
l=1

min{ j−1,l−1}∑
m=1

(ym
l )2
≤ 1 +

k∑
l=1

l − 1
n
, j ∈ {1, . . . , k}.
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Therefore, the length of λ1x1 + · · · + λkxk is bounded above by

k∑
j=1

(
1 +

k∑
l=1

l − 1
n

)
λ2

j =
(
2 +

k(k − 1)
n

) k∑
j=1

λ2
j .

In other words, λ1x1 + · · · + λkxk ∈ B(λ, 0Rn) where

λ2 =
(
2 +

k(k − 1)
n

) k∑
j=1

λ2
j .

Thus λ1x1 + · · · + λkxk ∈ λC since B(1, 0Rn) ⊆ C. H

2 Lemma Let (V, ‖·‖) be an infinite-dimensional normed R-vector space, let k ∈ Z>0, and let
c1, . . . , ck ∈ R>0. Then there exists v1, . . . ,vk ∈ V such that

(i) ‖vj‖
2 = cj, j ∈ {1, . . . ,k}, and

(ii)
∥∥∥∑j∈J vj

∥∥∥2
≤ 3

∑
j∈J cj for every subset J ⊆ {1, . . . ,k}.

Proof Let n = k(k − 1) and let u1, . . . ,un ∈ V be linearly independent. Define

C =
{
(x1, . . . , xn) ∈ Rn

∣∣∣ ‖x1u1 + · · · + xnun‖ ≤ 1
}
.

We claim that C is convex, compact, has nonempty interior, and has centre 0Rn . One
sees this as follows. The map

L : (x1, . . . , xn) 7→ x1u1 + · · · + xnun

is a linear injection of Rn onto the n-dimensional subspace spanned by u1, . . . ,un. One
can then define a norm on Rn to be the norm induced from the restriction of the norm
in V to the subspace L(Rn). The closed unit ball in this norm is simply C. Then L(C) is
the intersection of the closed unit ball in V with the subspace L(Rn). Thus L(C) is the
intersection of convex sets and so is convex by Exercise ??. Moreover, L(C) is clearly a
closed and bounded subset of L(Rn) and so is compact by the Heine–Borel Theorem.
The unit ball in any norm clearly has nonempty interior (see Exercise 6.1.1). Also, 0Rn

is the centre of C since x ∈ C if and only if −x ∈ C.
Let x1, . . . , xn be as in Lemma 1 and define

v j =
√

c jL(x j), j ∈ {1, . . . , k},

where L : Rn
→ V is the map from the preceding paragraph. Then

‖v j‖
2 = c j‖x1

j u1 + · · · + xn
j un‖ = c j, j ∈ {1, . . . , k},

since x1, . . . , xk ∈ bd(C). Now let J ⊆ {1, . . . , k}. Then, by Lemma 1,∑
j∈J

√
c jx j ∈ λC

where

λ2 =
(
2 +

k(k − 1)
n

)∑
j∈J

c j = 3
∑
j∈J

c j.



2016/11/26 6.4 Series in normed vector spaces 644

This implies that

L
(∑

j∈J

√
c jx j

)
∈ L(λC) =⇒

∥∥∥∥∑
j∈J

v j

∥∥∥∥ ≤ (
3
∑
j∈J

c j

)1/2
,

as claimed. H

3 Lemma Let (V, ‖·‖) be an infinite-dimensional normed R-vector space and let
∑
∞

j=1 cj be a
convergent series inR>0. Then there exists an unconditionally Cauchy series

∑
∞

j=1 vj in V such
that ‖vj‖

2 = cj, j ∈ Z>0.

Proof Define n0 = 0 and define n1 such that

( ∞∑
j=n1+1

c j

)1/2
< 1,

this being possible since
∑
∞

j=1 c j is a convergent series of positive terms. Then define
n2 > n1 such that ( ∞∑

j=n2+1

c j

)1/2
<

1
4
.

Carrying on in this way we define an increasing sequence (n j) j∈Z≥0 such that

( nk+1∑
j=nk+1

c j

)1/2
<

( ∞∑
j=nk+1

c j

)1/2
<

1
k2 , k ∈ Z>0.

The series
∞∑

k=0

( nk+1∑
j=nk+1

c j

)1/2

then converges by Example 2.4.2–??. Take k ∈ Z≥0. By Lemma 2 let v j, j ∈ {nk +
1, . . . ,nk+1}, be such that ‖v j‖

2 = c j and such that∥∥∥∥∑
j∈J

v j

∥∥∥∥2
≤ 3

∑
j∈J

c j

for any J ⊆ {nk + 1, . . . ,nk+1}. Let ε ∈ R>0 and choose N1 ∈ Z>0 such that

∞∑
k=N1

( nk+1∑
j=nk+1

c j

)1/2
<
ε
3
.

Let φ : Z>0 → Z>0 be a bijection and choose N2 ∈ Z>0 such that

{1, . . . ,nN1} ⊆ {φ(1), . . . , φ(N2)}.

Thus
(vφ( j))∞j=N2

⊆ (v j)∞j=N1+1.
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Let N3 > N2 and let k ≥ N1. Denote by Jk ⊆ {nk + 1, . . . ,nk+1} the indices such that j ∈ Jk
if and only if φ( j) ∈ {N2, . . . ,N3}. Then we have

∥∥∥∥ N3∑
j=N2

vφ( j)

∥∥∥∥ =
∥∥∥∥ ∞∑

k=N1

∑
j∈Jk

v j

∥∥∥∥ ≤ ∞∑
k=N1

∥∥∥∥∑
j∈Jk

v j

∥∥∥∥ ≤ ∞∑
k=N1

(
3

nk∑
j=nk+1

c j

)1/2
< ε.

Thus the norm of the N3rd partial sum minus the N2nd partial sum for the series∑
∞

j=1 vφ( j) is less than ε. Thus this series is Cauchy and so
∑
∞

j=1 v j is unconditionally
Cauchy. H

Now let us prove the theorem. Consider the sequence
(
c j = 1

j2

)
j∈Z>0

and by

Lemma 3 let (v j) j∈Z>0 be a sequence for which ‖v j‖
2 = c j and for which the series

∑
∞

j=1 v j

is unconditionally Cauchy. But
∑
∞

j=1‖v j‖ =
∑
∞

j=1
1
j is divergent by Example 2.4.2–??

and so
∑
∞

j=1 v j is not absolutely convergent. This proves the theorem for normed R-
vector spaces. For normedC-vector spaces we note that these are also normedR-vector
spaces. Since none of the constructions in the proof alter when complex scalars are
replaced with real scalars, the proof is also valid for normed C-vector spaces. �

6.4.3 Algebraic operations on series

Let us close by indicating that convergence of series respects the algebraic
structure of vector spaces. We first give two definitions of products of series of
scalars and vectors.

6.4.9 Definition (Scalar multiplication of series) Let F ∈ {R,C} and let (V, ‖·‖) be a
(semi)normed F-vector space. Let S =

∑
∞

j=0 v j be a series in V and let s =
∑
∞

j=0 a j be
series in R.

(i) The product of s and S is the double series
∑
∞

j,k=0 a jvk.

(ii) The Cauchy product of s and S is the series
∑
∞

k=0

(∑k
j=0 a jvk− j

)
. •

Now we can state the interaction between convergence of series and the vector
space operations.

6.4.10 Proposition (Algebraic operations on series) Let F ∈ {R,C} and let (V, ‖·‖) be a
(semi)normed F-vector space. Let S =

∑
∞

j=0 uj and T =
∑
∞

j=0 vj be series in V converging to
U0 and V0, respectively, let s =

∑
∞

j=0 aj be a series in F converging to A0, and let a ∈ F.
Then the following statements hold:

(i) the series
∑
∞

j=0 avj converges to aV0;

(ii) the series
∑
∞

j=0(uj + vj) converges to U0 + V0;
(iii) if s and T are absolutely convergent, then the product of s and T is absolutely

convergent and converges to A0V0;
(iv) if s and T are absolutely convergent, then the Cauchy product of s and T is absolutely

convergent and converges to A0V0;
(v) if s or T are absolutely convergent, then the Cauchy product of s and T is convergent

and converges to A0V0.
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Proof (i) Since
∑k

j=0 av j = a
∑k

j=0 v j, this follows from part (i) of Proposition 6.2.6.

(ii) Since
∑
∞

j=0(u j + v j) =
∑k

j=0 u j +
∑k

j=0 v j, this follows from part (ii) of Proposi-
tion 6.2.6.

(iii) and (iv) To prove these parts of the result, we first make a general argument.
We note that Z≥0 ×Z≥0 is a countable set (e.g., by Proposition ??), and so there exists a
bijection, in fact many bijections, φ : Z>0 → Z≥0 ×Z≥0. For such a bijection φ, suppose
that we are given a double sequence (v jk) j,k∈Z≥0 and define a sequence (vφj ) j∈Z>0 by

vφj = xkl where (k, l) = φ( j). We then claim that, for any bijectionφ : Z>0 → Z≥0×Z≥0, the

double series A =
∑
∞

k,l=1 vkl converges absolutely if and only if the series Aφ =
∑
∞

j=1 vφj
converges absolutely.

Indeed, suppose that the double series ‖A‖ =
∑
∞

k,l=1‖vkl‖ converges to β ∈ R. For
ε > 0 the set

{(k, l) ∈ Z≥0 ×Z≥0 | |‖A‖kl − β| ≥ ε}

is then finite. Therefore, there exists N ∈ Z>0 such that, if (k, l) = φ( j) for j ≥ N, then
|‖A‖kl − β| < ε. It therefore follows that |‖Aφ

‖ j − β| < ε for j ≥ N, where ‖Aφ
‖ denotes

the series
∑
∞

j=1|v
φ
j |. This shows that the series ‖Aφ

‖ converges to β.

For the converse, suppose that the series ‖Aφ
‖ converges to β. Then, for ε > 0 the

set
{ j ∈ Z>0 | ||Aφ

| j − β| ≥ ε}

is finite. Therefore, there exists N ∈ Z>0 such that

{(k, l) ∈ Z≥0 | k, l ≥ N} ∩ {(k, l) ∈ Z≥0 | ||Aφ
|φ−1(k,l) − β| ≥ ε} = ∅.

It then follows that for k, l ≥ N we have ||A|kl − β| < ε, showing that |A| converges to β.
Thus we have shown that A is absolutely convergent if and only if Aφ is absolutely

convergent for any bijection φ : Z>0 → Z≥0 × Z≥0. From Proposition 6.4.5 we know
that the limit of an absolutely convergent series or double series is independent of the
manner in which the terms in the series are arranged.

Consider now a term in the product of s and T. It is easy to see that this term
appears exactly once in the Cauchy product of s and T. Conversely, each term in the
Cauchy product appears exactly one in the product. Thus the product and Cauchy
product are simply rearrangements of one another. Moreover, each term in the product
and the Cauchy product appears exactly once in the expression

( N∑
j=0

a j

)( N∑
k=0

vk

)
as we allow N to go to∞. That is to say,

∞∑
j,k=0

a jvk =

∞∑
k=0

( k∑
j=k

a jvk− j

)
= lim

N→∞

( N∑
j=0

a j

)( N∑
k=0

vk

)
.

However, this last limit is exactly A0V0, using part (iii) of Proposition 6.2.6.
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(v) Suppose that s converges absolutely. Let (sk)k∈Z>0 , (Tk)k∈Z>0 , and ((sT)k)k∈Z>0

be the sequences of partial sums for s, T, and the Cauchy product, respectively. Also
define τk = Tk − V0, k ∈ Z≥0. Then

(sT)k = a0v0 + (a0v1 + a1v0) + · · · + (a0vk + · · · + akv0)
= a0Tk + a1Tk−1 + · · · + akT0

= a0(V0 + τk) + a1(V0 + τk−1) + · · · + ak(V0 + τ0)
= skV0 + a0τk + a1τk−1 + · · · + akτ0.

Since limk→∞ skV0 = A0V0 by part Proposition 2.4.30(??), this part of the result will
follow if we can show that

lim
k→∞

(a0τk + a1τk−1 + · · · + akτ0) = 0. (6.5)

Denote

σ =

∞∑
j=0

|a j|,

and for ε > 0 choose N1 ∈ Z>0 such that ‖τ j‖ ≤
ε

2σ for j ≥ N1, this being possible since
(τ j) j∈Z>0 clearly converges to zero. Then, for k ≥ N1,

‖a0τk + a1τk−1 + · · · + akτ0‖ ≤ ‖a0τk + · · · + ak−N1−1τN1−1‖ + ‖ak−N1τN1 + · · · + akτ0‖

≤
ε
2 + ‖ak−N1τN1 + · · · + akτ0‖.

Since limk→∞ ak = 0, choose N2 ∈ Z>0 such that

‖ak−N1τN1 + · · · + akτ0‖ < ε
2

for k ≥ N2. Then

lim sup
k→∞

‖a0τk + a1τk−1 + · · · + akτ0‖

= lim
k→∞

sup{‖a0τ j + a1τ j−1 + · · · + a jτ0‖ | j ≥ k}

≤ lim
k→∞

sup{ ε2 + ‖ak−N1τN1 + · · · + akτ0‖ | j ≥ k}

≤ sup{ ε2 + ‖ak−N1τN1 + · · · + akτ0‖ | j ≥ N2} ≤ ε.

Thus
lim sup

k→∞
‖a0τk + a1τk−1 + · · · + akτ0‖ ≤ 0,

and since clearly
lim inf

k→∞
‖a0τk + a1τk−1 + · · · + akτ0‖ ≥ 0,

we infer that (6.5) holds by Proposition 2.3.17.
If T converges absolutely, the above argument can be modified by defining

σ =

∞∑
j=0

‖v j‖

and swapping the rôles of s and T in the remainder of the proof. �

6.4.4 Multiple series

One also has the notion of double series in normed vector spaces.
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6.4.11 Definition (Double series) Let F ∈ {R,C} and let V be a F-vector space. A double
series in V is a sum of the form

∑
∞

j,k=1 v jk where (v jk) j,k∈Z>0 is a double sequence in
V. •

We then have the following notions of convergence of double series.

6.4.12 Definition (Convergence and absolute convergence of double series) Let F ∈
{R,C} and let (V, ‖·‖) be a F-vector (semi)normed space. Let (v jk) j,k∈Z>0 be a double
sequence in V and consider the double series

S =

∞∑
j,k=1

v jk.

The corresponding sequence of partial sums is the double sequence (S jk) j,k∈Z>0

defined by

S jk =

j∑
l=1

k∑
m=1

vlm.

Let v0 ∈ V. The double series:
(i) converges to v0, and we write

∑
∞

j,k=1 v jk = v0, if the double sequence of partial
sums converges to v0;

(ii) has v0 as a limit if it converges to v0;
(iii) is convergent if it converges to some member of V;
(iv) converges absolutely, or is absolutely convergent, if the series

∞∑
j,k=1

‖v jk‖

converges;
(v) converges conditionally, or is conditionally convergent, if it is convergent,

but not absolutely convergent;
(vi) diverges if it does not converge. •

6.4.5 Cesàro convergence of sequences and series

If a sequence diverges, all hope may not be lost. Indeed, it is possible that con-
vergence may not actually be what one was interested in. This seems a somewhat
absurd proposition at first glance, but it actually forms the first steps towards a
powerful theory of Fourier series, as we shall see in Section 12.2.7. The point is
that when one has a divergent sequence or series, one should not just throw in
the towel. It is possible that by modifying one’s notion of convergence, useful
information can still be extracted.

The idea of Cesàro convergence is that one should average the sequence and
see if the averaged sequence converges. The same idea can be applied to sums via
their partial sums.
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6.4.13 Definition (Cesàro1 convergence) Let F ∈ {R,C}, let (V, ‖·‖) be a normed F-vector
space, and let (v j) j∈Z>0 be a sequence in V.

(i) The Cesàro means for the sequence (v j) j∈Z>0 is the sequence (v̄1
k))k∈Z>0 where

v̄1
k =

1
k

k∑
j=1

vk.

(ii) The Cesàro means for the series S =
∑
∞

j=1 v j is the sequence (S̄1
k)k∈Z>0 of Cesàro

means for the sequence of partial sums. Thus

S̄1
k =

1
k

k∑
j=1

S j =
1
k

k∑
j=1

j∑
l=1

vl.

(iii) The sequence (v j) j∈Z>0 is Cesàro convergent if the sequence (v̄1
k)k∈Z>0 of Cesàro

means converges.
(iv) The series S =

∑
∞

j=1 v j is Cesàro convergent or Cesàro summable if the sequence
(S̄1

k)k∈Z>0 of Cesàro means converges. •

The us give some examples to illustrate the concept.

6.4.14 Examples (Cesàro convergence)
1. The sequence (x j , (−1) j+1) j∈Z>0 in R is oscillatory and so does not converge.

However, the sequence is Cesàro convergent since the Cesàro means are given
by

x̄1
j =

1
j , j odd,

0, j even,

and so the sequence is Cesàro convergent.
2. Let us consider the sum S =

∑
∞

j=1(−1) j+1 in R. The sequence of partial sums is
(Sk)k∈Z>0 with

Sk =

1, k odd,
0, k even.

Thus this series is oscillatory. The Cesàro means for the series are (S̄1
k)k∈Z>0 with

S̄1
k =

 k+1
2k , k odd,

1
2 , k even.

Thus the series is Cesàro convergent and the Cesàro means converge to 1
2 . •

1Ernesto Cesàro (1859–1906) was an Italian mathematician who made contributions to analysis,
number theory, and differential geometry.
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The examples illustrate that when one has a divergent sequence or series, it is
possible to have Cesàro convergence. This is a useful property that one would
ask of a modified version of convergence. The other natural notion is that it
should actually generalise the standard notion of convergence. Thus a convergent
sequence should still converge with any modified version of convergence. Cesàro
convergence possesses this property.

6.4.15 Theorem (Convergence implies Cesàro convergence) Let F ∈ {R,C} and let
(V, ‖·‖) be a normed F-vector space. If a sequence (vj)j∈Z>0 (resp. a series

∑
∞

j=1 vj) converges
to v0 ∈ V then the sequence (resp. series) converges to v0 in the sense of Cesàro convergence.

Proof Since the statement for series follows, by definition, from the statement for
sequences, we only show that a convergent sequence is Cesàro convergent with the
same limit.

Define v̄1
k = 1

k (v1 + · · · + vk). Let ε ∈ R>0 and take N1 ∈ Z>0 such that ‖v j − v0‖ < ε
2

for j ≥ N1. Also take N2 ∈ Z>0 sufficiently large that

1
N2

(‖v1‖ + · · · + ‖vN1‖ + N1‖v0‖) < ε
2 .

Then, for j ≥ {N1,N2}, we have

‖v̄1
k − v0‖ =

∥∥∥1
k (v1 + · · · + vk) − v0

∥∥∥ = 1
k ‖(v1 − v0) + · · · + (vk − v0)‖

≤
1
k ‖(v1 − v0) + · · · + (vN1 − v0)‖ + 1

k ‖(vN1+1 − v0) + · · · + (vk − v0)‖

≤
1
k (‖v1‖ + · · · + ‖vN1‖ + N1‖v0‖) + 1

k (‖vN1+1 − v0‖ + · · · + ‖vk − v0‖)

≤
ε
2

+
k −N1

k
ε
2
<
ε
2
,

giving the result.missing stuff �

Note that the Cesàro means for a sequence (v j) j∈Z>0 form a sequence (v̄1
j ) j∈Z>0 . If

this sequence diverges one can ask whether its sequence of Cesàro means converges.
That is, we can define

v̄2
k =

1
k

k∑
j=1

v̄1
j =

1
k

k∑
j=1

1
j

j∑
l=1

v j,

and consider the convergence of the sequence (v̄2
k)k∈Z>0 . This can clearly be iterated

any finite number of times. This is interesting, although we shall not consider it
here. We refer to the notes in Section 6.4.7 for references.

6.4.6 Series in normed vector spaces with arbitrary index sets

In Section 2.4.7 we presented the notion of a series inRwith an arbitrary index
set. Such series were useful in discussion saltus functions. Here we discuss series
in normed vector spaces with arbitrary index sets. This will be helpful for us in
Section 7.3 when we discuss Hilbert bases in general inner product spaces. In any
case, much of the treatment mirrors to some extent that for arbitrary series in R.

Let us begin with the definition.
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6.4.16 Definition (Convergence of series with arbitrary index sets) Let F ∈ {R,C} and
let (V, ‖·‖) be a (semi)normed F-vector space. Let A be an index set, consider a
family (va)a∈A in V, and denote S =

∑
a∈A va. Let v0 ∈ V.

(i) The series S converges to v0 if, for any ε ∈ R>0, there exists a finite set I ⊆ A
such that ∥∥∥∥∑

a∈J

va − v0

∥∥∥∥ < ε
for every finite subset J ⊆ A for which I ⊆ J.

(ii) The series S is Cauchy if, for every ε ∈ R>0, there exists a finite set I ⊆ A such
that ∥∥∥∥∑

a∈J

va

∥∥∥∥ < ε
for every finite subset J ⊆ A for which J ∩ I = ∅. •

We already have one point of difference with the results in Section 2.4.7 in that
here we have the notion of Cauchy series. This is because we need to allow for the
possibility of sums that seem like they should converge, but do not. The next result
is analogous to the fact that convergent sequences are always Cauchy, but Cauchy
sequences need not converge, but only generally converge when the normed vector
space is complete.

6.4.17 Theorem (Relationship between convergent series and Cauchy series) Let
F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. For a series S =

∑
a∈A va the

following statements hold:
(i) if S is convergent then it is Cauchy;
(ii) if V is complete and if S is Cauchy then it is convergent.

Proof (i) Let ε ∈ R>0 and let I ⊆ A be a finite subset such that∥∥∥∥∑
a∈J

va − v0

∥∥∥∥ < ε
2

for every finite subset J for which I ⊆ J. Let K ⊆ A be finite and such that K ∩ I = ∅.
Then ∥∥∥∥∑

a∈K

va

∥∥∥∥ =
∥∥∥∥∑

a∈K

va +
(∑

a∈I

va − v0

)
−

(∑
a∈I

va − v0

)∥∥∥∥
≤

∥∥∥∥ ∑
a∈K∪I

va − v0

∥∥∥∥ +
∥∥∥∥∑

a∈I

va − v0

∥∥∥∥
≤

ε
2 + ε

2 = ε,

as desired.
(ii) Let k ∈ Z>0 and let Ik ⊆ A be a finite subset such that∥∥∥∥∑

a∈J

va

∥∥∥∥ < 1
k
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for every finite subset J for which J ∩ Ik = ∅. Then define

uk =
∑
a∈Ik

va.

We claim that the sequence (uk)k∈Z>0 is Cauchy. Indeed, let N ∈ Z>0 be such that 1
N < ε

2 .
Then, for j, k ≥ N, we have

‖u j − uk‖ =
∥∥∥∥∑

a∈I j

va −
∑
a∈Ik

va

∥∥∥∥ =
∥∥∥∥ ∑

a∈I j−Ik

va −
∑

a∈Ik−I j

va

∥∥∥∥
≤

∥∥∥∥ ∑
a∈I j−Ik

va

∥∥∥∥ +
∥∥∥∥ ∑

a∈Ik−I j

va

∥∥∥∥ = 1
j + 1

k < ε,

giving (uk)k∈Z>0 as a Cauchy sequence. Since V is complete there exists a limit u0 of
(uk)k∈Z>0 . Thus, for ε ∈ R>0, there exists N1 ∈ Z>0 such that ‖u j − u0‖ < ε

2 for j ≥ N1. If
N2 = max{N1,

2
ε } then∥∥∥∥∑

a∈J

va − u0

∥∥∥∥ =
∥∥∥∥∑

a∈IN2

va − u0 +
∑

a∈J\IN2

va

∥∥∥∥
≤

∥∥∥∥∑
a∈IN2

va − u0

∥∥∥∥ +
∥∥∥∥ ∑

a∈J\IN2

va

∥∥∥∥ ≤ ε
2 +

1
N2

< ε,

where J is any finite set for which IN2 ⊆ J. Thus S converges to u0. �

The theorem illustrates the difference between a convergent series and a Cauchy
series. The most important fact is that the two notions are equivalent when V is a
Banach space.

Just as with arbitrary sums of real numbers, any convergent arbitrary sum in
normed vector space can have only countably many nonzero elements.

6.4.18 Proposition (There are only countably many nonzero terms in a convergent
series) Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. If S =

∑
a∈A va is a

convergent series then the set {a ∈ A | va , 0V} is countable.
Proof By Theorem 6.4.17, since S converges, for any k ∈ Z>0 there exists a finite set
Ik ⊆ A such that ∥∥∥∥∑

a∈J

va

∥∥∥∥ < 1
k

for any finite set J such that J ∩ Ik = ∅. Let I = ∪k∈Z>0Ik so that I is countable by
Proposition ??. If a < I then a < Ik for all k ∈ Z>0, i.e., {a} ∩ Ik = ∅ for all k ∈ Z>0.
Therefore, ‖va‖ < 1

k for all k ∈ Z>0 and so ‖va‖ = 0. Thus va = 0V for all a < I. �

Note that Definition 6.4.16 is not the generalisation of Definition 2.4.31, or at
least not obviously. Let us prove that the two definitions are, in fact, consistent.
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6.4.19 Proposition (Consistency of two notions of arbitrary sums) Let A be an index set
and let S =

∑
a∈A xa be a series in R. This series converges according to Definition 2.4.31

if and only if it converges according to Definition 6.4.16, and in case the series converge,
they converge to the same limit.

Proof It suffices to consider the case when the numbers xa, a ∈ A, are nonnegative
(why?). First suppose that S converges according to Definition 2.4.31. Thus

sup
{∑

a∈I

xa

∣∣∣∣ I ⊆ A is finite
}

= L < ∞.

Let ε ∈ R>0 and let I ⊆ A be a finite set such that

L − ε ≤
∑
a∈I

xa ≤ L.

Therefore, for any finite set J ⊆ A for which I ⊆ J it holds that

L − ε ≤
∑
a∈I

xa ≤
∑
a∈J

xa ≤ L

since the elements in the family (xa)a∈A are nonnegative. This implies that∥∥∥∥∑
a∈J

xa − L
∥∥∥∥ < ε

for any finite set J for which I ⊆ J, giving convergence of S to R in the sense of
Definition 6.4.16.

The argument above can be essentially reversed to show that if S converges to L in
the sense of Definition 6.4.16 then it converges to L in the sense of Definition 2.4.31.�

For arbitrary series inRwe saw that convergence amounted to absolute conver-
gence in the case when the index set was Z>0. The same is true for arbitrary series
in formed vector spaces. For the following result, recall from Proposition 6.4.4 that
limits of unconditionally convergent series are independent of rearrangement.

6.4.20 Theorem (A convergent series with index set Z>0 is unconditionally conver-
gent) Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. For a sequence
(vj)j∈Z>0 the statements are equivalent:

(i) the series
∑

j∈Z>0
vj is Cauchy in the sense of Definition 6.4.16;

(ii) the series
∑
∞

j=1 vj is unconditionally Cauchy.
Moreover, for v0 ∈ V, the following statements are also equivalent:

(iii) the series
∑

j∈Z>0
vj converges to v0;

(iv) the series
∑
∞

j=1 converges unconditionally to v0.

Proof (i) =⇒ (ii) Let ε ∈ R>0 and let I ⊆ Z>0 be a finite subset such that∥∥∥∥∑
j∈J

v j

∥∥∥∥ < ε
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for any finite set J ⊆ Z>0 for which J ∩ I = ∅. Let φ : Z>0 → Z>0 be a bijection and
choose N ∈ Z>0 sufficiently large that I ⊆ {φ(1), . . . , φ(N)}. Then, for k, l ≥ N with l > k
the set {φ(k + 1), . . . , φ(l)} does not intersect I. Thus∥∥∥∥ l∑

j=k+1

vφ( j)

∥∥∥∥ < ε,
showing that the lth partial sum minus the kth partial sum is bounded above in norm
by ε for any k, l ≥ N. Thus

∑
∞

j=1 vφ( j) is Cauchy.
(ii) =⇒ (i) Suppose that (ii) does not hold. Then there exists ε ∈ R>0 such that, for

any finite set I ⊆ Z>0, there exists a finite set J ⊆ Z>0 with J ∩ I = ∅ and such that∥∥∥∥∑
j∈J

v j

∥∥∥∥ > ε.
Now let I1 ⊆ Z>0 be finite and let J1 ⊆ Z>0 be finite with J1 ∩ I1 = ∅ and with∥∥∥∥∑

j∈J1

v j

∥∥∥∥ > ε.
Note that I2 = I1 ∪ J1 is finite. Thus there exists a finite set J2 ⊆ Z>0 such that J2 ∩ I2 = ∅
and such that ∥∥∥∥∑

j∈J2

v j

∥∥∥∥ > ε.
We can continue in this way to define a sequence (Jk)k∈Z>0 of finite pairwise disjoint
subsets of Z>0 with the property that∥∥∥∥∑

j∈Jk

v j

∥∥∥∥ > ε, k ∈ Z>0.

Let us denote min Jk = mk and max Jk = Mk. Also denote Jk = { jk,1, . . . , jk,rk}. Now let
φ : Z>0 → Z>0 be a bijection such that

φ({mk, . . . ,Mk}) ⊆ {mk, . . . ,Mk}

and such that
φ(mk) = jk,1, . . . , φ(mk + rk − 1) = jk,rk

for each k ∈ Z>0. Then, for any k ∈ Z>0 we have∥∥∥∥mk+rk−1∑
j=mk

vφ( j)

∥∥∥∥ =
∥∥∥∥∑

j∈Jk

v j

∥∥∥∥ > ε.
Therefore, no matter how large we choose N ∈ Z>0, there exists k, l ≥ N such that the
lth partial sum minus the kth partial sum for the series

∑
∞

j=1 vφ( j) is bounded below in
norm by ε. Thus the series is not Cauchy.

(iii) =⇒ (iv) Suppose that
∑

j∈Z>0
v j converges to v0 in the sense of Definition 6.4.16

to v0. Let ε ∈ R>0 and let I ⊆ Z>0 be a finite set such that∥∥∥∥∑
j∈J

v j − v0

∥∥∥∥ < ε
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for any finite subset J ⊆ Z>0 for which I ⊆ J. Let φ : Z>0 → Z>0 be a bijection. Choose
N ∈ Z>0 sufficiently large that I ⊆ {φ(1), . . . , φ(N)} and note that, for k ≥ N we have∥∥∥∥ k∑

j=1

vφ( j) − v0

∥∥∥∥ < ε
since S ⊆ {φ(1), . . . , φ(k)}. Thus

∑
∞

j=1 vφ( j) converges to v0.
(iv) =⇒ (iii) Now suppose that

∑
∞

j=1 v j converges unconditionally to v0. Then∑
∞

j=1 v j is unconditionally Cauchy and so Cauchy in the sense of Definition 6.4.16 by
the implication (ii) =⇒ (i). Let ε ∈ R>0 and let I′ ⊆ Z>0 be a finite subset such that∥∥∥∥∑

j∈J′
v j

∥∥∥∥ < ε
2

for every finite subset J′ ⊆ Z>0 for which J′ ∩ I′ = ∅. Let N ∈ Z>0 be such that∥∥∥∥ k∑
j=1

v j − v0

∥∥∥∥ < ε
2

for every k ≥ N and such that I′ ⊆ N. Define I = {1, . . . ,N} and let J ⊆ Z>0 be a finite
set such that I ⊆ J. Write J = I ∪ J′ with J′ ∩ I = ∅. Note that J′ ∩ I′ = ∅. Therefore,∥∥∥∥∑

j∈J

v j − v0

∥∥∥∥ =
∥∥∥∥ N∑

j=1

v j − v0 +
∑
j∈J′

v j

∥∥∥∥ ≤ ∥∥∥∥ N∑
j=1

v j − v0

∥∥∥∥ +
∥∥∥∥∑

j∈J′
v j

∥∥∥∥ < ε
2

+
ε
2

= ε.

Thus
∑

j∈Z>0
v j converges to v0 in the sense of Definition 6.4.16. �

6.4.7 Notes

We saw in Section 6.4.5 that revised notions of convergence can be applied to
divergent series. The classic book of GHH:49 discusses divergent series in detail.

Theorem 6.4.8 was first proved by AD/CAR:50, and the proof we give follows
the original proof in form.

Exercises

6.4.1 Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. Show that∥∥∥∥ m∑
j=1

v j

∥∥∥∥ ≤ m∑
j=1

‖v j‖

for any finite family (v1, . . . , vm) in V.
6.4.2 In Definition 6.4.1 we defined the notions of “convergent series,” “Cauchy

series,” “unconditionally convergent series,” and “unconditionally Cauchy
series.” We also defined the notion of “absolutely convergent series.” Why
did we not define the notion of “absolutely Cauchy series”?
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Section 6.5

Continuous maps between normed vector spaces

As with so many areas of mathematics, for normed vector spaces it is interesting
to study maps that preserve the structure, in this case the structure defined by the
norm. Normed vector spaces have two facets to their structure: (1) the vector
space structure and (2) the topology defined by the norm. Thus the interesting
maps to consider are linear and continuous. We studied linear maps from an
algebraic point of view in Sections ?? and ??, with particular emphasis on the
finite-dimensional setting in Section ??. Maps between topological spaces were the
subject of Section ??. As we shall see, in combining these points of view, one ends
up with some quite rich structure.

Do I need to read this section? Continuous linear maps are extremely impor-
tant in applications. Indeed, the Fourier and Laplace transforms studied in Vol-
ume ?? are important examples of continuous linear maps. Therefore, the basic
material in this section is important to understand. Some of the more detailed
material, for example that in missing stuff , can be skimmed at a first reading, and
referred to as needed. •

6.5.1 General continuous maps between normed vector spaces

Most often we will be interested in continuous linear maps between normed
vector spaces. However, there are also times when it will be helpful to have on
hand the notion of continuity for general maps. Thus we present this first.

6.5.1 Definition (Continuous maps between normed vector spaces) Let F ∈ {R,C}
and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. For open sets S ⊆ U and
T ⊆ V and for u0 ∈ S, a map f : S→ T is:

(i) continuous at u0 if, for each ε ∈ R>0 there exists δ ∈ R>0 such that ‖ f (u) −
f (u0)‖V < ε whenever u ∈ S satisfies ‖u − u0‖U < δ;

(ii) continuous if it is continuous at each u0 ∈ S;
(iii) uniformly continuous if, for each ε ∈ R>0 there exists δ ∈ R>0 such that
‖ f (u1) − f (u2)‖ < ε for all u1,u2 ∈ S satisfying ‖u1 − u2‖ < δ;

(iv) discontinuous at u0 if it is not continuous at u0;
(v) discontinuous if it is not continuous. •

We will give interesting examples of continuous linear maps in Example 6.5.10.
Here let us record some alternative characterisations of continuity.

6.5.2 Theorem (Alternative characterisations of continuity) Let F ∈ {R,C} and let
(U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. For a map f : S→ V defined on an open
subset S ⊆ U and for u0 ∈ S, the following statements are equivalent:

(i) f is continuous at u0;
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(ii) for every neighbourhood B of f(u0) there exists a neighbourhood A of u0 in S such
that f(A) ⊆ B;

(iii) limu→u0 f(u) = f(u0).
Proof In the proof we denote open balls in U and V by BU(r,u) and BV(r, v), respec-
tively.

(i) =⇒ (ii) Let B ⊆ V be a neighbourhood of f (u0). Let ε ∈ R>0 be defined such that
BV(ε, f (u0)) ⊆ B, this being possible since B is open. Since f is continuous at u0, there
exists δ ∈ R>0 such that, if u ∈ BU(δ,u0)∩S, then we have f (u) ∈ B(ε, f (u0)). This shows
that, around the point u0, we can find an open set A in S whose image lies in B.

(ii) =⇒ (iii) Let (u j) j∈Z>0 be a sequence in S converging to u0 and let ε ∈ R>0. By
hypothesis there exists a neighbourhood A of u0 in S such that f (A) ⊆ BV(ε, f (u0)).
Thus there exists δ ∈ R>0 such that f (BU(δ,u0) ∩ S) ⊆ BV(ε, f (u0)) since A is open in S.
Now choose N ∈ Z>0 sufficiently large that |u j − u0| < δ for j ≥ N. It then follows that
| f (u j) − f (u0)| < ε for j ≥ N, so giving convergence of ( f (u j)) j∈Z>0 to f (u0), as desired,
keeping in mind Notation 6.2.2.

(iii) =⇒ (i) Let ε ∈ R>0. Then, by definition of limu→u0 f (u) = f (u0) from Nota-
tion 6.2.2, there exists δ ∈ R>0 such that, for u ∈ BU(δ,u0) ∩ S, | f (u) − f (u0)| < ε, which
is exactly the definition of continuity of f at u0. �

As we have seen, different norms can really be different (i.e., not equivalent),
and so, in particular, maps continuous in one norm may not be continuous in
another. Moreover, even in finite-dimensions where all norms are equivalent, it
is sometimes convenient to use one norm or another, and in this case one would
like to ensure that one’s conclusions concerning continuity are not dependent on
norm. In some sense this is trivial, since equivalent norms define the same topology
(Theorem 6.1.14), and it is the topology that determines continuity. However, it
is instructive to verify independence of continuity on a choice of equivalent norm.
Thus we state the result here, and leave the proof to the reader as Exercise 6.5.2.
The result assumes the fact that open sets are the same for equivalent norms; this
is exactly what Theorem 6.1.14 shows.

6.5.3 Proposition (Continuity is independent of equivalent norm) Let F ∈ {R,C}, let
U and V be F-vector spaces, let ‖·‖1,U and ‖·‖2,U be equivalent norms on U, let ‖·‖1,V and
‖·‖2,V be equivalent norms on V, and let S ⊆ U and T ⊆ V be open sets. Then, for a map
f : S→ T, the following statements are equivalent:

(i) f is continuous relative to the norms ‖·‖1,U on U and ‖·‖1,V on V;
(ii) f is continuous relative to the norms ‖·‖1,U on U and ‖·‖2,V on V;
(iii) f is continuous relative to the norms ‖·‖2,U on U and ‖·‖1,V on V;
(iv) f is continuous relative to the norms ‖·‖2,U on U and ‖·‖2,V on V.

With the definition of continuity, let us prove the continuity of some of the
standard vector space operations relative to the norm.

6.5.4 Proposition (Continuity properties of operations on normed vector spaces)
Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. Then the following maps are
continuous:
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(i) V 3 v 7→ v + v0 ∈ V for v0 ∈ V;
(ii) V ⊕ V 3 (v1,v2) 7→ v1 + v2 ∈ V;
(iii) V 3 v 7→ av ∈ V for a ∈ F;
(iv) F ⊕ V 3 (a,v) 7→ av ∈ V;
(v) V 3 v 7→ ‖v‖ ∈ R.

Moreover, the maps in parts (i), (ii), (iii), and (v) are uniformly continuous.
Proof (i) For ε ∈ R>0 let δ = ε. Let v, v′ ∈ V satisfy ‖v′ − v‖ < δ. We then have

‖(v′ + v0) − (v − v0)‖ = ‖v′ − v‖ < δ = ε,

giving uniform continuity of the stated map.
(ii) Let ε ∈ R>0 and let δ = ε. Let (u1,u2), (v1, v2) ∈ V⊕V satisfy ‖(v1, v2)−(u1,u2)‖ < δ,

where, by abuse of notation, ‖·‖ denotes the norm on V ⊕ V. Then we have

‖v1 + v2 − (u1 − u2)‖ ≤ ‖v1 − u1‖ + ‖v2 − u2‖ = ‖(v1, v2) − (u1,u2)‖ < ε,

giving uniform continuity of the stated map.
(iii) If a = 0 then the map is constant, and so certainly uniformly continuous. If

a , 0, let ε ∈ R>0 and define δ = ε
|a| . Then, if ‖v − v′‖ < δ we have

‖av − av′‖ = |a|‖v − v′‖ < ε,

giving uniform continuity as desired.
(iv) Let ε ∈ R>0 and let (a0, v0) ∈ F ⊕ V. Define

δ = min
{
1,

ε
2(|a0| + 1)

,
ε

2(‖v0‖ + 1)

}
and note that if ‖(a, v) − (a0, v0)‖ < δ (again we abuse notation and denote by ‖·‖ the
norm on F ⊕ V) then we have

|a − a0| + ‖v − v0‖ < δ

which in turn implies that

|a − a0| < 1 =⇒ |a| < |a0| + 1,

|a − a0| <
ε

2(|a0| + 1)
,

‖v − v0‖ <
ε

2(‖v0‖ + 1)
.

We then compute, for ‖(a, v) − (a0, v0)‖ < δ,

‖av − a0v0‖ = ‖av − av0 + av0 − a0v0‖ = ‖a(v − v0) + (a − a0)v0‖

≤ |a|‖v − v0‖ + |a − a0|‖v0‖

≤ (|a0| + 1)
ε

2(|a0| + 1)
+

ε
2(‖v0‖ + 1)

(‖v0‖ + 1) = ε.

(v) For ε ∈ R>0 define δ = ε. Then, if v, v′ ∈ V satisfy ‖v − v′‖ < δ, we have

|‖v‖ − ‖v′‖| ≤ ‖v − v′‖ < δ = ε,

giving uniform continuity of the norm. �

Particularly interesting are continuous bijections with continuous inverses.
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6.5.5 Definition (Homeomorphism) Let F ∈ {R,C}, let (U, ‖·‖U) and (V, ‖·‖V) be normed
F-vector spaces, and let S ⊆ U and T ⊆ V be open sets. A map f : S → T is a
homeomorphism if f is a continuous bijection with a continuous inverse. •

Let us give some examples of homeomorphisms.

6.5.6 Examples (Homeomorphism)
1. The map f : (−π2 ,

π
2 ) → R defined by f (x) = tan(x) is a homeomorphism with

inverse f −1 = arctan.
2. Let (V, ‖·‖) be a normed F-vector space and let v0 ∈ V. The map v 7→ v + v0 is a

homeomorphism of V with itself, and has inverse v 7→ v − v0.
3. Let (V, ‖·‖) be a normed F-vector space and let a ∈ F \ {0}. The map v 7→ av is a

homeomorphism of V with itself, and has inverse v 7→ a−1v. •

6.5.2 Continuous linear maps between normed vector spaces

For vector spaces the maps that preserve the structure are linear maps. For
topological spaces the maps that preserve the structure are continuous maps. Thus
is makes sense that for normed vector spaces, as they have both the structure of
a vector space and a topological space, the most informative maps to consider are
those that are linear and continuous. These have a surprisingly rich structure. In
this section we give some of their more elementary properties.

Let us first give the notation we will use for continuous linear maps, along with
some other useful concepts that can be attached to a linear map.

6.5.7 Definition (Continuous linear maps between normed vector spaces) Let F ∈
{R,C} and let (U; ‖·‖U) and (V, ‖·‖V) be normedF-vector spaces. The set of continuous
linear maps from U to V is denoted by L(U; V). A linear map L ∈ HomF(U; V) is:

(i) bounded if there exists M ∈ R>0 such that ‖L(u)‖V ≤M‖u‖U for every u ∈ U;
(ii) unbounded if it is not bounded;
(iii) norm-preserving if ‖L(u)‖V = ‖u‖U for all u ∈ U;
(iv) an isomorphism of normed vector spaces if it is an isomorphism of vector

spaces and is norm-preserving. •

Note that a homeomorphism of normed vector spaces is not necessarily an
isomorphism of normed vector spaces, as can be seen in Exercise 6.5.3.

The following result gives a collection of useful conditions that are equivalent
to continuity.

6.5.8 Theorem (Characterisations of continuous linear maps) Let F ∈ {R,C} and let
(U; ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. For L ∈ HomF(U; V) the following
conditions are equivalent:

(i) L is continuous;
(ii) L is continuous at 0U;
(iii) L is uniformly continuous;
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(iv) L is bounded.
Moreover, any of the preceding four conditions implies the following:

(v) ker(L) is a closed subspace of U.
Proof (i) =⇒ (ii) This is clear.

(ii) =⇒ (iii) Let ε ∈ R>0 and take δ ∈ R>0 such that ‖L(u)‖V < ε if ‖u‖U < δ; this is
possible since L is linear at 0U. Now let u0 ∈ U and suppose that ‖u − u0‖U < δ. Then

‖L(u) − L(u0)‖ = ‖L(u − u0)‖ < ε,

which gives uniform continuity, as desired.
(iii) =⇒ (iv) Since L is uniformly continuous, it is continuous at 0U. Let M ∈ R>0 be

such that if ‖u‖U < 2
M then ‖L(u)‖V < 1. Let u ∈ U and note that∥∥∥∥ u

M‖u‖U

∥∥∥∥
U
<

2
M

=⇒
∥∥∥∥ L(u)

M‖u‖U

∥∥∥∥
V
< 1 =⇒ ‖L(u)‖V < M‖u‖U.

Thus L is bounded.
(iv) =⇒ (i) Let M ∈ R>0 be such that ‖L(u)‖V < M‖u‖U for all u ∈ U. For ε ∈ R>0 let

δ = ε
M . If u0 ∈ U and if ‖u − u0‖U < δ we have

‖L(u) − L(u0)‖V = ‖L(u − u0)‖V ≤M‖u − u0‖U < ε.

This gives continuity of L.
(iv) =⇒ (v) Let (u j) j∈Z>0 be a sequence in ker(L) converging to v ∈ V. Then, since L

is bounded,
‖L(v) − L(u j)‖V = ‖L(v − u j)‖V ≤M‖v − u j‖U.

Therefore, if ε ∈ R>0 we can take N ∈ Z>0 sufficiently large that ‖v − u j‖U <
ε
M , and for

j ≥ N we have
‖L(v)‖V = ‖L(v) − L(u j)‖V < ε.

Thus L(v) = 0U and so v ∈ ker(L). Thus ker(L) is closed by Proposition 6.6.8 below. �

In finite-dimensions, as is so often the case, things simplify.

6.5.9 Theorem (Linear maps from finite-dimensional spaces are continuous) Let
F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. If U is finite-
dimensional then L(U; V) = HomF(U; V).

Proof Let {e1, . . . ,n} be a basis for U and denote

M′ = max{‖L(e1)‖V, . . . , ‖L(en)‖V}.

Define a norm ‖·‖1,U on U by

‖u1e1 + · · · + unen‖ = |u1| + · · · + |un|.

By Theorem 6.1.15 there exists C ∈ R>0 such that ‖u‖1,U ≤ C‖u‖U for all u ∈ U. Take
M = CM′. Then, for u = u1e1 + · · · + unen ∈ U,

‖L(u)‖V = ‖L(u1e1 + · · · + unen)‖V
≤ |u1|‖L(e1)‖V + · · · + |un|‖L(en)‖V
≤M′‖u‖1,U ≤M‖u‖U,

showing that L is bounded, and so continuous. �

Let us give some examples of continuous and discontinuous linear maps, noting
that the only interesting examples are infinite-dimensional.
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6.5.10 Examples (Continuous linear maps)
1. We take the normed F-vector space C0([a, b];F) of continuous F-valued func-

tions on [a, b] equipped with the norm ‖·‖∞ as in Example 6.1.3–10. Define
L : C0([a, b];F)→ C0([a, b];F) by

L( f )(x) =

∫ x

a
f (ξ) dξ.

It is easy to show that L is linear, using linearity of the integral. We claim that
L is also continuous. To prove this, it suffices to prove that L is continuous at
zero. Let ε ∈ R>0 and let δ = ε

b−a . Then, if ‖ f ‖∞ < δ,

‖L( f )‖∞ = sup{|L( f )(x)| | x ∈ [a, b]}

= sup
{∣∣∣∣∫ x

a
f (ξ) dξ

∣∣∣∣ ∣∣∣∣ x ∈ [a, b]
}

≤ sup
{ ∫ x

a
| f (ξ)|dξ

∣∣∣∣ x ∈ [a, b]
}

≤ δ(b − a) = ε,

as desired.
2. Let C1([0, 1];R) be the R-vector space of continuously differentiable R-valued

functions on [0, 1]. Define L : C1([0, 1];R) → C0([0, 1];R) by L( f ) = f ′. By
linearity of the derivative, L is linear. We claim that L is not continuous if we
use the norm ‖·‖∞ on both C1([0, 1];R) and C0([0, 1];R). To show this we shall
use the following lemma that is useful in its own right.

1 Lemma Let F ∈ {R,C}, let (U; ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces, and let
L ∈ HomF(U; V). Then L is discontinuous if and only if there exists a sequence (uj)j∈Z>0

in BU(1, 0U) such that the sequence (‖L(uj)‖V)j∈Z>0 diverges.
Proof Suppose that L is continuous. Then there exists M ∈ R>0 such that
L(BU(1, 0U)) ⊆ BV(M, 0V) by boundedness of L. Thus, there can exist no sequence
(u j) j∈Z>0 in BU(1, 0U) such that the sequence (‖L(u j)‖V) j∈Z>0 is unbounded.
No suppose that there is a sequence (u j) j∈Z>0 in BU(1, 0U) such that the sequence
(‖L(u j)‖V) j∈Z>0 diverges. Then, for any M ∈ R>0 there exists N ∈ Z>0 such that

‖L(u j)‖V ≥M ≥M‖u j‖U, j ≥ N.

Thus L is unbounded, and so not continuous. H

Now consider the sequence ( f j) j∈Z>0 in C1([0, 1];R) given by f j(x) = x j. This
sequence satisfies ‖ f j‖∞ = 1. But L( f j)(x) = jx j−1, and so ‖L( f j)‖∞ = j, showing
that the sequence (‖L( f j)‖∞) j∈Z>0 diverges. By the lemma it follows that L is
discontinuous. •

As a final basic result, let us show that continuous linear maps extend uniquely
to the closure. We have not yet defined closure for normed vector spaces, so if
you feel like you need to be reminded about what it is, you may refer ahead to
Definition 6.6.7.
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6.5.11 Proposition (Extension of continuous linear maps to the closure) Let F ∈
{R,C}, let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces with V complete, and let
W ⊆ U be a subspace for which cl(W) = U. Then, for L ∈ L(W; V) there exists a unique
L̄ ∈ L(U; V) such that L̄(w) = L(w) for all w ∈W.

Proof We let u ∈ U and let (w j) j∈Z>0 be a sequence with the property that lim j→∞‖u −
w j‖U = 0. We first claim that (L(w j)) j∈Z>0 is a Cauchy sequence. Let M ∈ R>0 be such
that ‖L(w)‖V ≤M‖w‖U for all w ∈W. Then

‖L(w j) − L(wk)‖V = ‖L(w j − wk)‖V ≤M‖w j − wk‖U.

Since (w j) j∈Z>0 converges it is a Cauchy sequence, and so it follows that there exists
N ∈ Z>0 for which ‖w j − wk‖U < ε

M for j, k ≥ N. This gives ‖L(w j) − L(wk)‖V < ε for
j, k ≥ N, so showing that (L(w j)) j∈Z>0 is indeed a Cauchy sequence. Since (V, ‖·‖V) is
complete, there exists L̄(u) ∈ V which is the limit of the sequence (L(w j)) j∈Z>0 . Next we
claim that this limit is independent of the sequence (w j) j∈Z>0 in W that converges to
u ∈ U. Thus let (w̃ j) j∈Z>0 be another sequence in W converging to u. We denote by L̃(u)
the limit in V of the Cauchy sequence (L(w̃ j)) j∈Z>0 . For j ∈ Z>0 we have

‖w j − w̃ j‖U ≤ ‖w j − u‖U + ‖w̃ j − u‖U,

implying that lim j→∞‖w j − w̃ j‖U = 0. Therefore

‖L̄(u) − L̃(u)‖V ≤ ‖L̄(u) − L(w j)‖V + ‖L̃(u) − L(w̃ j)‖V + ‖L(w̃ j) − L(w j)‖V.

Taking the limit as j → ∞ we see that ‖L̄(u) − L̃(u)‖V can be made smaller than any
positive number, and so must be zero.

This then gives us a well-defined element L̄(u) associated to each u ∈ U. We next
claim that the assignment u 7→ L̄(u) is linear. For u, ũ ∈ U let (w j) j∈Z>0 and (w̃ j) j∈Z>0 be
sequences in W converging to u and ũ, respectively. Then (w j + w̃ j) j∈Z>0 converges to
u + ũ by Proposition 6.2.6. Similarly, (aw j) j∈Z>0 converges to au for a ∈ F. Therefore

‖L̄(u) + L̄(ũ) − L̄(u + ũ)‖V ≤ ‖L̄(u) + L̄(ũ) − L(w j) − L(w̃ j)‖V
+ ‖L̄(u + ũ) − L(w j + w̃ j)‖V

≤ ‖L̄(u) − L(w j)‖V + ‖L̄(ũ) − L(w̃ j)‖V
+ ‖L̄(u + ũ) − L(w j + w̃ j)‖V.

Taking the limit as j→∞ shows that the left hand side must be zero, giving L̄(u + ũ) =
L̄(u) + L̄(u). In an entirely similar way we have

‖L̄(au) − aL̄(u)‖V ≤ ‖L̄(au) − L(aw j)‖V + ‖aL̄(u) − aL(w j)‖V,

and taking the limit j→∞ gives L̄(au) − aL̄(u).
Let us now demonstrate the uniqueness of the extension L̄. Suppose that L̃ ∈ L(U; V)

is another continuous linear map with the property that it agrees with L on W. For
u ∈ U let (w j) j∈Z>0 be a sequence in W converging to u. Then

L̃(u) = lim
j→∞

L̃(w j) = lim
j→∞

L(w j) = L̄(w j)

by continuity of L̃.
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missing stuff Finally we show that the operator norm of L̄ is the same as that of L.
Since L̄ and L agree on W we have

‖L̄‖U,V = sup
‖u‖U=1

‖L(u)‖V ≥ sup
‖w‖U=1

‖L(w)‖V = ‖L‖W,V.

Now we prove the opposite inequality. Let u ∈ U and let (w j) j∈Z>0 be a sequence in W
converging to u. We then have

‖L̄(u)‖V = lim
j→∞
‖L(w j)‖ ≤ lim

j→∞
‖L‖W,V‖w j‖U = ‖L‖W,V‖u‖U.

This gives the desired inequality since this must hold for all u ∈ U, and so concludes
the proof. �

We also have the following related result.

6.5.12 Proposition (Extension of isomorphisms from dense subspaces) Let (V, ‖·‖) be
a Banach space with W a dense subspace. Suppose that L ∈ Lc(V; V) is a continuous linear
map with the property that L|W is a continuous norm preserving bijection from W to itself
with (L|W)−1 being continuous.2 Then L is an isomorphism, and L−1 is the extension, as
defined by Proposition 6.5.11, of (L|W)−1 to V.

Proof First we note that by Proposition 6.5.11, ‖L‖V,V = ‖L|W‖W,W. We claim that this
implies that L is norm-preserving. Indeed, let v ∈ V and let (w j) j∈Z>0 be a sequence in
W converging to v. Then

‖L(u)‖ = lim
j→∞
‖L(w j)‖ = lim

j→∞
‖w j‖ = ‖u‖,

as desired. We next claim that this implies injectivity of L. Indeed, if L(v) = 0 for
v ∈ V we must then have ‖v‖ = ‖L(v)‖ = 0, giving v = 0. Thus L is injective. We also
claim that image(L) is a closed subspace. Let (L(v j)) j∈Z>0 be a sequence in image(L)
converging to u ∈ V. Then since ‖L(v j) − L(vk)‖ = ‖v j − vk‖ it follows that (v j) j∈Z>0 is a
Cauchy sequence. Let v ∈ V denote the limit of this sequence. We need to show that
L(v) = u. Indeed,

‖L(v) − u‖ ≤ ‖L(v) − L(v j)‖ + ‖u − L(v j)‖,

and taking the limit as j→∞ gives ‖L(v) − u‖ = 0, so showing that image(L) is closed.
Since W ⊆ image(L) and since cl(W) = V we must have cl(image(L)) = image(L) = V,
thus showing surjectivity of L.

Finally we must show that L−1 is the unique continuous extension of (L|W)−1 to V.
Let M denote the unique continuous extension of (L|W)−1 to V. Just as L is a continuous
bijection, so too is M. Let v ∈ V and let (w j) j∈Z>0 be a sequence in W converging to L(v).
Then

M ◦L(v) = lim
j→∞

(L|W)−1(w j).

There then exists a sequence (u j) j∈Z>0 so that L(u j) = w j, j ∈ Z>0. We then have

M ◦L(v) = lim
j→∞

(L|W)−1
◦L(u j) = lim

j→∞
u j.

2The assumption that (L|W)−1 be continuous is actually superfluous by the Banach Isomorphism
Theorem.
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We claim that lim j→∞ u j = v. Since L is continuous and injective, this is equivalent to
showing that lim j→∞ L(u j) = L(v). However, this follows directly from the definition of
the sequence (u j) j∈Z>0 . Next let v ∈ V and let (w j) j∈Z>0 be a sequence in W converging
to M(v). Then

L ◦M(v) = lim
j→∞

L(w j).

Let (u j) j∈Z>0 be a sequence in W with the property that (L|W)−1(u j) = w j, j ∈ Z>0. Then
we have

L ◦M(v) = lim
j→∞

L ◦ (L|W)−1(u j) = lim
j→∞

u j.

We must show that lim j→∞ u j = v. Since M is continuous and injective this is equivalent
to showing that lim j→∞M(u j) = M(v). This follows, however, from the definition of the
sequence (u j) j∈Z>0 . Thus we have shown that M ◦L(v) = L ◦M(v) = v for all v ∈ V. Thus
M = L−1. �

6.5.3 Induced topologies on continuous linear maps

Let F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. In
Corollary ?? we showed that HomF(U; V) is an F-vector space. This is a purely
algebraic observation. Now we wish to study the structure of the continuous
linear maps. As we shall see, this is itself a normed vector space.

First we should establish that the set of continuous linear maps form a vector
space.

6.5.13 Proposition (L(U; V) is a subspace of HomF(U; V)) If F ∈ {R,C} and if (U, ‖·‖U)
and (V, ‖·‖V) are normed F-vector spaces, then L(U; V) is a subspace of HomF(U; V).

Proof Let L1,L2 ∈ L(U; V). For ε ∈ R>0 let δ ∈ R>0 be such that ‖L1(u)‖V < ε
2 and

‖L2(u)‖V < ε
2 for ‖u‖U < δ. Then compute

‖(L1 + L2)(u)‖V ≤ ‖L1(u)‖V + ‖L2(u)‖V < ε,

showing that L1 + L2 is continuous at 0U, and so continuous. Also let a ∈ F and
L ∈ L(U; V). If a = 0 it is clear that aL is continuous. So suppose that a , 0, let ε ∈ R>0,
and let δ ∈ R>0 be such that if ‖u‖U < δ then ‖L(u)‖V < ε

|a| . For ‖u‖U < δ we then have

‖(aL)(u)‖V = |a|‖L(u)‖V < ε,

giving continuity of aL. �

This shows that L(U; V) is indeed an F-vector space. It is moreover true that it
is a normed vector space.

6.5.14 Theorem (L(U; V) is a normed vector space) Let F ∈ {R,C} and let (U, ‖·‖U) and
(V, ‖·‖V) be normed F-vector spaces. For L ∈ L(U; V) define

‖L‖U,V = inf{M ∈ R>0 | ‖L(u)‖V ≤M‖u‖U, u ∈ U}.

Then ‖·‖U,V is a norm on L(U; V). Moreover,
(i) ‖L(u)‖V ≤ ‖L‖U,V‖u‖U for all u ∈ U,
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(ii) ‖L‖U,V = sup
{‖L(u)‖V
‖u‖U

∣∣∣∣ u ∈ U \ {0V}
}
,

(iii) ‖L‖U,V = sup{‖L(u)‖V | ‖u‖U = 1}, and
(iv) ‖L‖U,V = sup{‖L(u)‖V | ‖u‖U ≤ 1}, and
(v) if (V, ‖·‖V) is complete then so is (L(U; V), ‖·‖U,V).

Proof Let us first verify (i), disregarding whether or not ‖·‖U,V is a norm. Suppose
that (i) does not hold. Then there exists u ∈ U such that ‖L(u)‖V > ‖L‖U,V‖u‖U. Thus
there exists ε ∈ R>0 such that

‖L(u)‖V > (‖L‖U,V − ε)‖u‖U,

and this contradicts the definition of ‖L‖U,V.
We next note that ‖L‖U,V ∈ R>0 for every L ∈ L(U; V). Moreover, ‖0L(U;V)‖U,V = 0.

Now suppose that ‖L‖U,V = 0. Then

‖L(u)‖V ≤ ‖L‖U,V‖u‖U = 0, u ∈ U.

Thus L = 0L(U;V). Clearly we have ‖0L‖U,V = |0|‖L‖U,V. If a ∈ F \ {0} then we compute

‖aL‖U,V = inf{M ∈ R>0 | ‖aL(u)‖V ≤M‖u‖U,u ∈ U}
= inf{M ∈ R>0 | |a|‖L(u)‖V ≤M‖u‖U,u ∈ U}

= inf
{
M ∈ R>0

∣∣∣∣ ‖L(u)‖V ≤
M
|a|
‖u‖U,u ∈ U

}
= inf{|a|M′ ∈ R>0 | ‖L(u)‖V ≤M′‖u‖U,u ∈ U} = |a|‖L‖U,V,

using Proposition 2.2.28. Finally, if L1,L2 ∈ L(U; V) then

‖L1 + L2‖U,V = inf{M ∈ R>0 | ‖(L1 + L2)(u)‖V ≤M‖u‖U, u ∈ U}
≤ inf{M ∈ R>0 | ‖L1(u)‖V + ‖L2(u)‖V ≤M‖u‖U, u ∈ U}
= inf{M1 + M2 ∈ R>0 | ‖L1(u)‖V ≤M1‖u‖U,
‖L2(u)‖V ≤M2‖u‖U, u ∈ U}

= inf{M ∈ R>0 | ‖L1(u)‖V ≤M‖u‖U, u ∈ U}
+ inf{M ∈ R>0 | ‖L2(u)‖V ≤M‖u‖U, u ∈ U}

= ‖L1‖U,V + ‖L2‖U,V,

where we have used Proposition 2.2.28. This verifies that ‖·‖U,V has the properties
demanded of a norm.

(ii) First note that the equality is trivial when L = 0L(U;V), so we suppose this is not
the case. In this case, ‖L‖U,V > 0 and so

‖L‖U,V = inf{M ∈ R>0 | ‖L(u)‖V ≤M‖u‖U, u ∈ U \ {0V}}

and so

‖L‖U,V = inf{M ∈ R>0 | ‖L(u)‖V ≤M‖u‖U, u ∈ U \ {0V}}

= inf
{
M ∈ R>0

∣∣∣∣ ‖L(u)‖V
‖u‖U

≤M, u ∈ U \ {0U}
}

= sup
{‖L(u)‖V
‖u‖U

∣∣∣∣ u ∈ U \ {0U}
}
.



2016/11/26 6.5 Continuous maps between normed vector spaces 666

(iii) Carrying on from part (ii) we have

‖L‖U,V = sup
{‖L(u)‖V
‖u‖U

∣∣∣∣ u ∈ U \ {0U}
}

= sup
{∥∥∥∥L

( u
‖u‖U

)∥∥∥∥ ∣∣∣∣ u ∈ U \ {0U}
}

= sup{‖L(u)‖V | ‖u‖U = 1}.

(iv) It is evident that

sup{‖L(u)‖V | ‖u‖U ≤ 1} ≥ sup{‖L(u)‖V | ‖u‖U = 1},

the supremum on the left being taken over a larger set. On the other hand,

sup{‖L(u)‖V | ‖u‖U ≤ 1} = sup{‖L(λu)‖V | λ ∈ [0, 1], ‖u‖U = 1}
= sup{λ‖L(u)‖V | λ ∈ [0, 1], ‖u‖U = 1}
≤ sup{‖L(u)‖V | ‖u‖U = 1},

giving the result.
(v) Let (L j) j∈Z>0 be a Cauchy sequence in L(U; V). We claim that (L j(u)) j∈Z>0 is a

Cauchy sequence in V. This is clear if u = 0U, so let us suppose otherwise. Let ε ∈ R>0
and let N ∈ Z>0 be sufficiently large that ‖L j − Lk‖U,V <

ε
‖u‖U

for j, k ≥ N. Then

‖L j(u) − Lk(u)‖V ≤ ‖L j − Lk‖U,V‖u‖V < ε

for j, k ≥ N. Thus the sequence (L j(u)) j∈Z>0 converges to an element in V which we
denote by L(u). One may easily show that the assignment u 7→ L(u) is well-defined
and linear, cf. the proof of Proposition 6.5.11. Thus this defines L ∈ HomF(U; V).

We now show that L is continuous. Let ε ∈ R>0 and let N ∈ Z>0 be such that
‖L j − Lk‖U,V < ε for j, k ≥ N. Then, if ‖u‖U ≤ 1,

‖(L j − Lk)(u)‖V ≤ ‖L j − Lk‖U,V‖u‖U < ε.

Using continuity of the norm and Theorem 6.5.2 we have, for fixed j ≥ N,

lim
k→∞
‖(L j − Lk)(u)‖V =

∥∥∥(L j − lim
k→∞

Lk)(u)
∥∥∥

V = ‖(L j − L)(u)‖V < ε.

Therefore, for any u ∈ U we have

‖(L j − L)(u)‖V < ε‖u‖U,

implying that L j − L is bounded and so L j − L ∈ L(U; V). Since L j ∈ L(U; V) and since
L(U; V) is a subspace it follows that L ∈ L(U; V).

Moreover, our computations also show that, for any ε ∈ R>0 there exists N ∈ Z>0
such that ‖L j − L‖U,V < ε for j ≥ N. Thus (L j) j∈Z>0 converges to L. �

Let us attach some terminology to our norm on L(U; V).

6.5.15 Definition (Induced norm, operator norm, convergence in norm) LetF ∈ {R,C}
and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces.

(i) The norm ‖·‖U,V is the induced norm or the operator norm on L(U; V).
(ii) A sequence (L j) j∈Z>0 converges in norm if it converges in the normed F-vector

space (L(U; V), ‖·‖U,V). •

The induced norm also satisfies nice properties with respect to composition.
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6.5.16 Proposition (Induced norm and composition) Let F ∈ {R,C} and let (U, ‖·‖U),
(V, ‖·‖V), and (W, ‖·‖W) be normed F-vector spaces. If L ∈ L(U; V) and K ∈ L(V; W) then

‖K ◦L‖U,W ≤ ‖K‖V,W‖L‖U,V.

In particular, K ◦L ∈ L(U; W).
Proof For u ∈ U we compute

‖K ◦L(u)‖W ≤ ‖K‖V,WL(u) ≤ ‖K‖V,W‖L‖U,V‖u‖U,

as desired. �

As suggested by the terminology “converges in norm,” we wish to allow other
versions of convergence of sequences of continuous linear maps. The principal
such notion is the following.

6.5.17 Definition (Strong convergence) Let F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V) be
normed F-vector spaces. A sequence (L j) j∈Z>0 in L(U; V) converges strongly to
L ∈ L(U; V) if, for each u ∈ U, the sequence (L j(u)) j∈Z>0 converges. •

Let us explore strong convergence by providing its relationship with conver-
gence in norm.

6.5.18 Proposition (Convergence in norm implies strong convergence) Let F ∈ {R,C}
and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. A sequence (Lj)j∈Z>0 in L(U; V)
converges strongly if it converges in norm.

Proof This is Exercise 6.5.4. �

It is not generally true that strong convergence implies convergence in norm.
The following example relies on the reader knowing about Banach spaces of se-
quences as discussed in Section 6.7.2.

6.5.19 Example (Strong convergence may not imply norm convergence) We consider
the F-Banach space `2(F) of sequences (a j) j∈Z>0 in F for which

∑
∞

j=1|a j|
2 < ∞. This is

a Banach space with norm

‖(a j) j∈Z>0‖2 =
( ∞∑

j=1

|a j|
2
)1/2

.

For k ∈ Z>0 define Lk ∈ L(`2(R);F) by Lk((a j) j∈Z>0) = ak (it is clear that Lk is linear
and bounded). Now note that

(Lk − Ll)((a j) j∈Z>0) = ak − al

so that

|(Lk − Ll)((a j) j∈Z>0)| ≤ |ak| + |al| ≤
√

2(|ak|
2 + |al|

2)1/2
≤

√

2‖(a j) j∈Z>0‖2,
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where we have used Proposition ??. Thus ‖Lk − Ll‖`2(F),F ≤
√

2. However, taking
the particular sequence

a j =


1, j = k,
−1, j = l,
0, otherwise,

we have
|(Lk − Ll)((a j) j∈Z>0)| =

√

2‖(a j) j∈Z>0‖2,

showing that ‖Lk−Ll‖`2(F),F ≤
√

2. In particular, the sequence (L j) j∈Z>0 is not Cauchy,
and so does not converge in norm. We claim that it does, however, converge
strongly. Indeed, if (a j) j∈Z>0 ∈ `

2(F) then we have lim j→∞|a j|
2 = 0 by Proposi-

tion 2.4.7. Therefore,
lim
k→∞

Lk((a j) j∈Z>0) = lim
k→∞

ak = 0,

showing that the sequence (L j) j∈Z>0 converges strongly to the zero linear map. •

The preceding example notwithstanding, the reader may not be surprised to
learn that strong and norm convergence agree in finite-dimensions.

6.5.20 Proposition (Equivalence of strong and norm convergence in finite-
dimensions) Let F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V) be finite-dimensional normed
F-vector spaces. A sequence (Lj)j∈Z>0 in L(U; V) converges strongly if and only if it con-
verges in norm.

Proof Let {e1, . . . , en} be a basis for U. We claim that

|||L||| = max{‖L(e1)‖V, . . . , ‖L(en)‖V}

is a norm on L(U; V). The only possibly nontrivial fact to verify is the triangle inequality.
For this we have

|||L1 + L2||| = max{‖(L1 + L2)(e1)‖V, . . . , ‖(L1 + L2)(en)‖V}
≤ max{‖L1(e1)‖V + ‖L2(e1)‖V, . . . , ‖L1(en)‖V + ‖L2(en)‖V}
= max{‖L1(e1)‖V, . . . , ‖L1(en)‖V} + max{‖L2(e1)‖V, . . . , ‖L2(en)‖V}
= |||L1||| + |||L2|||,

as desired.
Now we claim that a sequence (L j) j∈Z>0 in L(U; V) converges strongly to L if and only

if it converges to L in the norm ||| · |||. Indeed, strong convergence implies immediately
that lim j→∞ L j(ek) = L(ek) for each k ∈ {1, . . . ,n}. This in turn implies convergence in
the norm ||| · |||. Conversely, if a sequence (L j) j∈Z>0 converges in the norm ||| · ||| then, for
each k ∈ {1, . . . ,n}, (L j(ek)) j∈Z>0 converges in V to L(ek). Thus, if u = u1e1 + · · ·+ unen ∈ U
we have,

lim
j→∞

L j(u1e1 + · · · + unen) =

n∑
k=1

uk lim
j→∞

L(ek) = L(u1e1 + · · · + unen).

Thus (L j) j∈Z>0 converges to L strongly.
The result follows from this since the norms ||| · ||| and ‖·‖U,V are equivalent by virtue

of L(U; V) being finite-dimensional (see Exercise ??). �
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We close this section by indicating that strong convergence is, in fact, conver-
gence in a suitable topology. The material here relies on an understanding of topics
covered in missing stuff . It is not necessary to understand this to understand strong
convergence.

6.5.21 Definition (Strong operator topology) Let F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V)
be normedF-vector spaces. The strong operator topology is the topology for which
sets of the form

∩
m
k=1{L ∈ L(U; V) | ‖L(uk) − L0(uk)‖ < εk}, u1, . . . ,um ∈ U, ε1, . . . , εm ∈ R>0,

are a neighbourhood basis about L0. •

That this does indeed define a topology on L(U; V) follows from missing stuff .
The following result connects the strong operator topology with the notion of

strong convergence.

6.5.22 Theorem (Strong convergence is convergence in the strong operator topol-
ogy) Let F ∈ {R,C} and let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces. Then a
sequence (Lj)j∈Z>0 in L(U; V) converges strongly to L0 if and only if it converges to L0 in the
strong operator topology.

Proof First suppose that (L j) j∈Z>0 converges strongly to L0. Let S ⊆ L(U; V) be a
neighbourhood of L0 in the strong operator topology and let ε1, . . . , εk ∈ R>0 and
u1, . . . ,uk ∈ U be such that

∩
m
k=1{L ∈ L(U; V) | ‖L(uk) − L0(uk)‖V < εk} ⊆ S.

For k ∈ {1, . . . ,m} let Nk ∈ Z>0 be sufficiently large that ‖L j(uk)−L0(uk)‖V < εk for j ≥ Nk
and let N = max{N1, . . . ,Nm}. Then, for j ≥ N and for k ∈ {1, . . . ,m},

‖L j(uk) − L0(uk)‖V < εk

so that
L j ∈ ∩

m
k=1{L ∈ L(U; V) | ‖L(uk) − L0(uk)‖V < εk}.

Thus (L j) j∈Z>0 converges in the strong operator topology.
Now suppose that (L j) j∈Z>0 converges to L0 in the strong operator topology. For

ε ∈ R>0 and u ∈ U note that

S(L0,u, ε) , {L ∈ L(U; V) | ‖L(u) − L0(u)‖V < ε}

is a neighbourhood of L0 in the strong operator topology. Thus, for ε ∈ R>0 and u ∈ U,
there exists N ∈ Z>0 such that L j ∈ S(L0,u, ε) for j ≥ N. That is, for each ε ∈ R>0 and for
each u ∈ U, there exists N ∈ Z>0 such that ‖L(u) − L0(u)‖V < ε showing that (L j(u)) j∈Z>0

converges to L0(u). This is exactly strong convergence of (L j) j∈Z>0 to L0. �
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6.5.23 Remark (The strong operator topology is locally convex) As a glimpse ahead to
Chapter ?? we make the observation that the strong operator topology is the locally
convex topology defined by the family of seminorms (pu)u∈U where pu(L) = ‖L(u)‖V.

•

missing stuff

6.5.4 The Open Mapping Theorem and Closed Graph Theorem

In the preceding twomissing stuff sections we studied some of the more basic
characterisations of continuous linear maps between normed vector spaces. In the
next missing stuff sections we give some deeper results which provide some very
useful structure for Banach spaces.

6.5.24 Theorem (Banach–Schauder Open Mapping Theorem) Let F ∈ {R,C} and let
(U, ‖·‖U) and (V, ‖·‖V) be F-Banach spaces. If L ∈ L(U; V) is surjective then it is
open, i.e., L(S) is open for every open subset S ⊆ U.

Proof �

It is worth reflecting on whether it is necessary that U and V be Banach spaces
in order for the result to hold. It turns out that these assumptions are necessary.

6.5.25 Examples (Open Mapping Theorem fails for normed vector spaces)
1. Consider the following data:

(a) U = C0([0, 1],R);
(b) ‖·‖U = ‖·‖∞;
(c) V is the subspace of functions f in C0([0, 1];R) that are continuously differ-

entiable and that satisfy f (0) = 0;
(d) ‖·‖V = ‖·‖∞;
(e) L ∈ HomR(U; V) is defined by

L( f )(x) =

∫ x

0
f (ξ) dξ.

Note that V is not complete; we invite the reader to adapt Example 6.6.25–2 to
provide a Cauchy sequence in V that does not converge.
We claim that L is a continuous bijection but its inverse is not continuous.

2. Let (V, ‖·‖) be a Banach space of infinite-dimension and let {ei}i∈I be a basis for
V, and suppose without loss of generality that ‖ei‖ = 1 for each i ∈ I. As in the
proof of Proposition 6.1.4 define a norm ‖·‖1 on V by∥∥∥∥∑

i∈I

ciei

∥∥∥∥
1

=
∑
i∈I

|ci|,

this definition making sense since the sum is finite. As in missing stuff , (V, ‖·‖1)
is incomplete. We claim that the identity map on V, thought of as a linear
map from the normed vector space (V, ‖·‖1) to the Banach space (V, ‖·‖), is a
continuous bijection but has an inverse that is not continuous.
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Exercises

6.5.1 Let F ∈ {R,C}, let (U, ‖·‖U) and (V, ‖·‖V) be normed F-vector spaces, and let
L ∈ L(U; V). Show that L is norm-preserving if and only if it is an isometry
of the metric spaces associated with the norms (cf. Proposition 6.1.7).

6.5.2 Prove Proposition 6.5.3.
6.5.3 LetF ∈ {R,C}. OnFn consider the two norms ‖·‖1 and ‖·‖2 as in Example 6.1.3.

Show that idFn is a homeomorphism of the normed vector spaces (Fn, ‖·‖1)
and (Fn, ‖·‖2) but is not an isomorphism of normed vector spaces.

6.5.4 Prove Proposition 6.5.18.
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Section 6.6

Topology of normed vector spaces

Since a (semi)normed vector space is a metric space, and so a topological space,
one has all of the usual notions associated with topological spaces: interior, closure,
boundary, compactness, etc. These notions inherit all of the attributes from general
topological spaces as discussed in detail in Chapter ??. We would like, however,
for the reader to be able to at least read the results in this section without having
first read Chapter ??. Therefore, we adopt the following approach for presentation.
All definitions and theorems are stated so that they can be read independently of
having read Chapter ??. When it is easily done, proofs are given in a way that
does not rely on understanding general notions from topology. However, we also
do not shy away from using some general ideas from Chapter ?? in a proof when
doing so avoids duplication. The bottom line is this: A reader should be able to
understand the flow of ideas without having read Chapter ??, but understanding
all proofs may require understanding some parts of Chapter ??.

It is also the case that, like quite a few of the results in this chapter, the statements
and proofs bear a strong resemblance to those for real numbers; the reader should
thus compare what we say here with what has been said already in Section 2.5.
The similarities and the differences together will help reader understand normed
vector spaces.

Do I need to read this section? Readers already familiar with topology can
forgo the basic definitions and theorems.missing stuff The notion of a Schauder
basis in Section 6.6.5 will come up in missing stuff . •

6.6.1 Properties of balls in normed vector spaces

In this section we give some fairly easy and pretty “obvious” results concerning
the character of open and closed balls in normed vector spaces. These results will
be used constantly in our description of the topology of normed vector spaces.

We know that, by definition, the open balls in a normed vector space form a
basis for the norm topology; every open set is by definition a union of open balls.
This description can be refined a little to show that it is really open balls about 0V

that are important.

6.6.1 Proposition (Balls about the origin are sufficient to describe the norm topol-
ogy) Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. For any open set U ⊆ V
there exists an index set I, positive numbers (ri)i∈I, vectors (vi)i∈I such that

U = ∪i∈I{vi + B(ri, 0V)},

where
vi + B(ri, 0V) = {v + vi | v ∈ B(ri, 0V)}.
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Proof This follows since B(r, v) is the translation by v of B(r, 0V), cf. the proof of
Proposition 6.1.12. �

Let us next give some fairly elementary properties of open and closed balls.

6.6.2 Proposition (Properties of open and closed balls) Let F ∈ {R,C}, let (V, ‖·‖) be a
normed F-vector space, and let r ∈ R>0 and v0 ∈ V. Then the following statements hold:

(i) B(r,v0) is open;

(ii) B(r,v0) is closed and bounded;
(iii) B(r,v0) is compact if and only if B(1, 0V) is compact.

Proof (i) This is Exercise 6.1.1.
(ii) If M = ‖v‖ + r and if v ∈ B(r, v) then

‖v‖ = ‖v − v0 + v0‖ ≤ ‖v − v0‖ + ‖v0‖ ≤M,

showing that B(r, v0) ⊆ B(M, 0V) and so B(r, v0) is bounded. Define f : V → R by
f (v) = ‖v‖ and note that B(1, 0V) = f−1([0, 1]). Since f is continuous by Proposition 6.5.4
and since [0, 1] is closed, it follows that B(1, 0V) is closed by Proposition ??. Now define
fr, fv0 : V → V by fr(v) = rv and fv0(v) = v + v0. By Proposition 6.5.4 these maps are
homeomorphisms. Therefore, fv0

◦ fr is continuous. Since B(r, v0) = fv0
◦ fr(B(1, 0V)) and

since the homeomorphic image of a closed set is closed (Corollary ??), it follows that
B(r, v0) is closed.

(iii) As in the preceding part of the proof, B(r, v0) = fv0
◦ fr(B(1, 0V)), and since the

continuous image of compact sets is compact (Proposition ??), the result follows. �

6.6.2 Interior, closure, boundary, etc.

The definitions and results here are similar to those forR given in Section 2.5.3,
so we will go through them quickly. Examples, discussion, and motivation can be
found in Section 2.5.3.

6.6.3 Definition (Neighbourhood) Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector
space. For v ∈ V, a neighbourhood of v is an open set U for which v ∈ U. •

6.6.4 Definition (Accumulation point, cluster point, limit point) Let F ∈ {R,C} and let
(V, ‖·‖) be a normed F-vector space. For a subset A ⊆ V, a point v ∈ V is:

(i) an accumulation point for A if, for every neighbourhood U of v, the set
A ∩ (U \ {v}) is nonempty;

(ii) a cluster point for A if, for every neighbourhood U of v, the set A ∩ U is
infinite;

(iii) a limit point of A if there exists a sequence (v j) j∈Z>0 in A converging to v.
The set of accumulation points of A is called the derived set of A, and is denoted
by der(A). •

In Remark 2.5.12 we made some comments about conventions concerning the
words “accumulation point,” “cluster point,” and “limit point.” Those remarks
apply equally here.
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6.6.5 Proposition (“Accumulation point” equals “cluster point”) Let F ∈ {R,C} and
let (V, ‖·‖) be a normed F-vector space. For a set A ⊆ V, v ∈ V is an accumulation point
for A if and only if it is a cluster point for A.

Proof It is clear that a cluster point for A is an accumulation point for A. Suppose
that v is not a cluster point. Then there exists a neighbourhood U of v for which the set
A∩U is finite. If A∩U = {v}, then clearly v is not an accumulation point. If A∩U , {v},
then A ∩ (U \ {v}) ⊇ {v1, . . . , vk}where the points v1, . . . , vk are distinct from v. Now let

ε = 1
2 min{‖v1 − v‖, . . . , ‖vk − v‖}.

Clearly A ∩ (B(ε, v) \ {v}) is then empty, and so v is not an accumulation point for A. �

6.6.6 Proposition (Properties of the derived set) Let F ∈ {R,C} and let (V, ‖·‖) be a
normed F-vector space. For A,B ⊆ V and for a family of subsets (Ai)i∈I of V, the following
statements hold:

(i) der(∅) = ∅;
(ii) der(V) = V;
(iii) der(der(A)) = der(A);
(iv) if A ⊆ B then der(A) ⊆ der(B);
(v) der(A ∪ B) = der(A) ∪ der(B);
(vi) der(A ∩ B) ⊆ der(A) ∩ der(B).

Proof Parts (i) and (ii) follow directly from the definition of the derived set.
(iii) missing stuff
(iv) Let v ∈ der(A) and let U be a neighbourhood of v. Then the set A ∩ (U \ {v}) is

nonempty, implying that the set B ∩ (U \ {v}) is also nonempty. Thus v ∈ der(B).
(v) Let v ∈ der(A∪B) and let U be a neighbourhood of v. Then the set U∩((A∪B)\{v})

is nonempty. But

U ∩ ((A ∪ B) \ {v}) = U ∩ ((A \ {v}) ∪ (B \ {v}))
= (U ∩ (A \ {v})) ∪ (U ∩ (B \ {v})). (6.6)

Thus it cannot be that both U∩ (A\ {v}) and U∩ (B\ {v}) are empty. Thus x is an element
of either der(A) or der(B).

Now let v ∈ der(A)∪der(A). Then, using (6.6), U∩ ((A∪B) \ {v}) is nonempty, and
so v ∈ der(A ∪ B).

(vi) Let x ∈ der(A∩B) and let U be a neighbourhood of v. Then U∩((A∩B)\{v}) , ∅.
We have

U ∩ ((A ∩ B) \ {v}) = U ∩ ((A \ {v}) ∩ (B \ {v}))

Thus the sets U ∩ (A \ {v}) and U ∩ (B \ {v}) are both nonempty, showing that v ∈
der(A) ∩ der(B). �
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6.6.7 Definition (Interior, closure, and boundary) Let F ∈ {R,C} and let (V, ‖·‖) be a
normed F-vector space. Let A ⊆ V.

(i) The interior of A is the set

int(A) = ∪{U | U ⊆ A, U open}.

(ii) The closure of A is the set

cl(A) = ∩{C | A ⊆ C, C closed}.

(iii) The boundary of A is the set bd(A) = cl(A) ∩ cl(V \ A). •

6.6.8 Proposition (Characterisation of interior, closure, and boundary) LetF ∈ {R,C}
and let (V, ‖·‖) be a normed F-vector space. For A ⊆ V, the following statements hold:

(i) v ∈ int(A) if and only if there exists a neighbourhood U of v such that U ⊆ A;
(ii) v ∈ cl(A) if and only if, for each neighbourhood U of v, the set U ∩A is nonempty;
(iii) v ∈ bd(A) if and only if, for each neighbourhood U of v, the sets U∩A and U∩(V\A)

are nonempty.
Proof (i) Suppose that v ∈ int(A). Since int(A) is open, there exists a neighbourhood
U of v contained in int(A). Since int(A) ⊆ A, U ⊆ A.

Next suppose that v < int(A). Then, by definition of interior, for any open set U for
which U ⊆ A, v < U.

(ii) Suppose that there exists a neighbourhood U of v such that U ∩ A = ∅. Then
V \ U is a closed set containing A. Thus cl(A) ⊆ V \ U. Since v < V \ U, it follows that
v < cl(A).

Suppose that v < cl(A). Then v is an element of the open set V \ cl(A). Thus there
exists a neighbourhood U of v such that U ⊆ V \ cl(A). In particular, U ∩ A = ∅.

(iii) This follows directly from part (ii) and the definition of boundary. �

6.6.9 Proposition (Properties of interior) Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-
vector space. For A,B ⊆ V and for a family of subsets (Ai)i∈I of V, the following statements
hold:

(i) int(∅) = ∅;
(ii) int(V) = V;
(iii) int(int(A)) = int(A);
(iv) if A ⊆ B then int(A) ⊆ int(B);
(v) int(A ∪ B) ⊇ int(A) ∪ int(B);
(vi) int(A ∩ B) = int(A) ∩ int(B);
(vii) int(∪i∈IAi) ⊇ ∪i∈I int(Ai);
(viii) int(∩i∈IAi) ⊆ ∩i∈I int(Ai).
Moreover, a set A ⊆ V is open if and only if int(A) = A.
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Proof Parts (i) and (ii) are clear by definition of interior. Part (v) follows from part (vii),
so we will only prove the latter.

(iii) This follows since the interior of an open set is the set itself.
(iv) Let v ∈ int(A). Then there exists a neighbourhood U of v such that U ⊆ A. Thus

U ⊆ B, and the result follows from Proposition 6.6.8.
(vi) Let v ∈ int(A) ∩ int(B). Since int(A) ∩ int(B) is open by Exercise 2.5.1, there

exists a neighbourhood U of v such that U ⊆ int(A) ∩ int(B). Thus U ⊆ A ∩ B. This
shows that v ∈ int(A ∩ B). This part of the result follows from part (viii).

(vii) Let v ∈ ∪i∈I int(Ai). By Exercise 2.5.1 the set ∪i∈I int(Ai) is open. Thus there
exists a neighbourhood U of v such that U ⊆ ∪i∈I int(Ai). Thus U ⊆ ∪i∈IAi, from which
we conclude that v ∈ int(∪i∈IAi).

(viii) Let v ∈ int(∩i∈IAi). Then there exists a neighbourhood U of v such that
U ⊆ ∩i∈IAi. It therefore follows that U ⊆ Ai for each i ∈ I, and so that v ∈ int(Ai) for
each i ∈ I.

The final assertion follows directly from Proposition 6.6.8. �

6.6.10 Proposition (Properties of closure) Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-
vector space. For A,B ⊆ V and for a family of subsets (Ai)i∈I of V, the following statements
hold:

(i) cl(∅) = ∅;
(ii) cl(V) = V;
(iii) cl(cl(A)) = cl(A);
(iv) if A ⊆ B then cl(A) ⊆ cl(B);
(v) cl(A ∪ B) = cl(A) ∪ cl(B);
(vi) cl(A ∩ B) ⊆ cl(A) ∩ cl(B);
(vii) cl(∪i∈IAi) ⊇ ∪i∈I cl(Ai);
(viii) cl(∩i∈IAi) ⊆ ∩i∈I cl(Ai).
Moreover, a set A ⊆ V is closed if and only if cl(A) = A.

Proof Parts (i) and (ii) follow immediately from the definition of closure. Part (vi)
follows from part (viii), so we will only prove the latter.

(iii) This follows since the closure of a closed set is the set itself.
(iv) Suppose that v ∈ cl(A). Then, for any neighbourhood U of v, the set U ∩ A is

nonempty, by Proposition 6.6.8. Since A ⊆ B, it follows that U ∩ B is also nonempty,
and so v ∈ cl(B).

(v) Let v ∈ cl(A ∪ B). Then, for any neighbourhood U of v, the set U ∩ (A ∪ B) is
nonempty by Proposition 6.6.8. By Proposition 1.1.4, U ∩ (A∪ B) = (U ∩A)∪ (U ∩ B).
Thus the sets U ∩ A and U ∩ B are not both nonempty, and so v ∈ cl(A) ∪ cl(B). That
cl(A) ∪ cl(B) ⊆ cl(A ∪ B) follows from part (vii).

(vi) Let v ∈ cl(A ∩ B). Then, for any neighbourhood U of v, the set U ∩ (A ∩ B) is
nonempty. Thus the sets U ∩ A and U ∩ B are nonempty, and so v ∈ cl(A) ∩ cl(B).

(vii) Let v ∈ ∪i∈I cl(Ai) and let U be a neighbourhood of v. Then, for each i ∈ I,
U∩Ai , ∅. Therefore, ∪i∈I(U∩Ai) , ∅. By Proposition 1.1.7, ∪i∈I(U∩Ai) = U∩ (∪i∈IAi),
showing that U ∩ (∪i∈IAi) , ∅. Thus v ∈ cl(∪i∈IAi).
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(viii) Let v ∈ cl(∩i∈IAi) and let U be a neighbourhood of v. Then the set U ∩ (∩i∈IAi)
is nonempty. This means that, for each i ∈ I, the set U∩Ai is nonempty. Thus v ∈ cl(Ai)
for each i ∈ I, giving the result. �

6.6.11 Proposition (Joint properties of interior, closure, boundary, and derived set)
Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. For A ⊆ V, the following
statements hold:

(i) V \ int(A) = cl(V \A);
(ii) V \ cl(A) = int(V \A).
(iii) cl(A) = A ∪ bd(A);
(iv) int(A) = A − bd(A);
(v) cl(A) = int(A) ∪ bd(A);
(vi) cl(A) = A ∪ der(A);
(vii) V = int(A) ∪ bd(A) ∪ int(V \A).

Proof (i) Let v ∈ V \ int(A). Since v < int(A), for every neighbourhood U of v it holds
that U 1 A. Thus, for any neighbourhood U of v, we have U ∩ (V \ A) , ∅, showing
that v ∈ cl(V \ A).

Now let v ∈ cl(V \A). Then for any neighbourhood U of v we have U∩ (V \A) , ∅.
Thus v < int(A), so v ∈ V \ A.

(ii) The proof here strongly resembles that for part (i), and we encourage the reader
to provide the explicit arguments.

(iii) This follows from part (v).
(iv) Clearly

∫
(A) ⊆ A. Suppose that v ∈ A ∩ bd(A). Then, for any neighbourhood

U of v, the set U ∩ (V \ A) is nonempty. Therefore, no neighbourhood of v is a subset
of A, and so v < int(A). Conversely, if v ∈ int(A) then there is a neighbourhood U of v
such that U ⊆ A. The precludes the set U ∩ (V \ A) from being nonempty, and so we
must have v < bd(A).

(v) Let v ∈ cl(A). For a neighbourhood U of v it then holds that U ∩ A , ∅. If
there exists a neighbourhood V of v such that V ⊆ A, then v ∈ int(A). If there exists no
neighbourhood V of v such that V ⊆ A, then for every neighbourhood V of v we have
V ∩ (V \ A) , ∅, and so v ∈ bd(A).

Now let v ∈ int(A) ∪ bd(A). If v ∈ int(A) then v ∈ A and so v ∈⊆ cl(A). If v ∈ bd(A)
then it follows immediately from Proposition 6.6.8 that v ∈ cl(A).

(vi) Let v ∈ cl(A). If v < A then, for every neighbourhood U of v, U ∩ A =
U ∩ (A \ {v}) , ∅, and so v ∈ der(A).

If v ∈ A ∪ der(A) then either v ∈ A ⊆ cl(A), or v < A. In this latter case, v ∈ der(A)
and so the set U ∩ (A \ {v}) is nonempty for each neighbourhood U of v, and we again
conclude that v ∈ cl(A).

(vii) Clearly int(A) ∩ int(V \ A) = ∅ since A ∩ (V \ A) = ∅. Now let v ∈ V \ (int(A) ∪
int(V \A)). Then, for any neighbourhood U of v, we have U 1 A and U 1 (V \A). Thus
the sets U ∩ (V \ A) and U ∩ A must both be nonempty, from which we conclude that
v ∈ bd(A). �

Let us close this section with a discussion of some notions not present in Sec-
tion 2.5, but which are important for normed vector spaces. General topological
versions of these ideas have been discussed in missing stuff .
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6.6.12 Definition (Dense, nowhere dense, separable) Let F ∈ {R,C} and let (V, ‖·‖) be a
normed F-vector space. Let A,B ⊆ V with A ⊆ B.

(i) The set A is dense in B if cl(A) = B.
(ii) The set A is nowhere dense in B if B \ cl(A) is dense in B.
(iii) The set A is separable if there exists a countable dense subset of A. •

We refer to missing stuff for simple examples that illustrate these definitions.
Generally speaking, it is not uncommon to see the requirement that a Banach
space be separable, although there are important examples of nonseparable Banach
spaces, as we shall see in Section 6.7.

6.6.3 Compactness

As we shall shortly see, the discussion of compactness for normed vector spaces
has a different flavour than that for compact subsets of R. This is because com-
pactness in infinite-dimensional normed vector spaces is quite a strict notion, for
example more strict than closed and bounded. However, the initial definitions
proceed just as for R.

We begin with simple definitions concerning open covers.

6.6.13 Definition (Open cover) LetF ∈ {R,C}, let (V, ‖·‖) be a normedF-vector space, and
let A ⊆ V.

(i) An open cover for A is a family (Ui)i∈I of open subsets of V having the property
that A ⊆ ∪i∈IUi.

(ii) A subcover of an open cover (Ui)i∈I of A is an open cover (V j) j∈J of A having
the property that (V j) j∈J ⊆ (Ui)i∈I. •

We may now define compactness and other related properties of a subset of a
normed vector space.

6.6.14 Definition (Bounded, compact, totally bounded) Let F ∈ {R,C} and let (V, ‖·‖)
be a normed F-vector space. A subset A ⊆ V is:

(i) bounded if there exists M ∈ R>0 such that A ⊆ B(M, 0);
(ii) compact if every open cover (Ui)i∈I of A possesses a finite subcover;
(iii) precompact3 if cl(A) is compact;
(iv) totally bounded if, for every ε ∈ R>0 there exists v1, . . . , vk ∈ V such that

A ⊆ ∪k
j=1B(ε, v j). •

3What we call “precompact” is very often called “relatively compact.” However, we shall use
the term “relatively compact” for something different.
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6.6.15 Theorem (Compactness and dimension) Let F ∈ {R,C} and let (V, ‖·‖) be a normed
F-vector space. Then the following statements are equivalent:

(i) V is finite-dimensional;

(ii) the closed unit ball B(1, 0V) is compact;
(iii) a subset K ⊆ V is compact if and only if it is closed and bounded;
(iv) V with the norm topology is locally compact.

Proof (i) =⇒ (ii) By Proposition 6.6.2 B(1, 0V) is closed and bounded. Now, if
{e1, . . . , en} is a basis for V, we have a map ι : V→ Fn defined by

ι(v1e1 + · · · + vnen) = (v1, . . . , en)

which induces a norm on Fn (cf. the proof of Proposition 6.1.4), which we also denote
by ‖·‖. Since ι is a homeomorphism of the normed vector spaces (V, ‖·‖) and (Fn, ‖·‖),
it follows from the Heine–Borel Theorem that B(1, 0Fn) is compact. Since the image
of compact sets under continuous maps is compact (Proposition ??), we conclude that
B(1, 0V) is compact.

(ii) =⇒ (iii) Suppose that B(1, 0V) is compact and let K ⊆ V be compact. By
Proposition ?? we immediately have that K is closed. Let ε ∈ R>0 and note that
(B(ε, v))v∈K is an open cover of K. Then there exists a finite subset v1, . . . , vk ∈ K such
that

K ⊆ B(ε, v1) ∪ · · · ∪ B(ε, vk).

We claim that ∪k
j=1B(ε, vk) is bounded. Let

M = max{‖v j‖ | j, l ∈ {1, . . . , k}} + ε.

For j ∈ {1, . . . , k} and v ∈ B(ε, v j) we compute

‖v‖ = ‖v − v j + v j‖ ≤ ‖v − v j‖ + ‖v j‖ ≤M.

Thus ∪k
j=1B(ε, vk) ⊆ B(M, 0V). Thus K is bounded as well as being closed.

Now suppose that B(1, 0V) is compact and let K ⊆ V be closed and bounded. Since K
is bounded K ⊆ B(M, 0V) for some M ∈ R>0. By Proposition 6.6.2, B(M, 0V) is compact.
Then K is a closed subset of a compact set, and so is compact by Proposition ??.

(iii) =⇒ (iv) Since V is a metric space it is Hausdorff by Proposition ??. Thus we
need only show that v ∈ V possesses a precompact neighbourhood. However, for any
ε ∈ R>0, B(ε, v) is a neighbourhood of v. We claim that B(ε, 0V) is closed and bounded,
and so compact by hypothesis. It is clearly bounded since B(ε, v) ⊆ B(M, 0V) where
M = ‖v‖ + ε (why?). It is moreover closed since, as we showed in the first part of the
proof, it is the preimage of a closed set under a continuous map.

(iv) =⇒ (i) Let us first show that, if B(1, 0V) is compact, then V is finite-dimensional.
Note that (B( 1

2 , v))v∈B(1,0V) is an open covering of B( 1
2 , 0V). Therefore, there exists

v1, . . . , vk ∈ B( 1
2 , 0V) such that

B(1, 0V) ⊆ B( 1
2 , v1) ∪ · · · ∪ B( 1

2 , vk).
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Let U = spanR(v1, . . . , vk), which is then a finite-dimensional subspace of V. Since U is
complete by Theorem 6.3.3 it is closed by Proposition ??. We will show that U = V.
Suppose this is not so and let v0 ∈ V \ U. Since U is closed, v0 < cl(U) and so by
Proposition 6.6.8 the number

r = inf{‖u − v0‖ | u ∈ V}

is in R>0. Let R ∈ R>0 be such that B(R, v0) ∩ U , ∅. Then B(R, v0) ∩ U is closed
since it is the intersection of closed sets. The set B(R, v0) ∩ U is also clearly bounded.
Since we have proved that (i) =⇒ (iii) it follows that B(R, v0) ∩ U is compact. Define
f : B(R, v0)∩U→ R by f (u) = ‖u−v0‖. By Proposition 6.5.4 this function is continuous.
By Theorem ?? it follows that f achieves its minimum on B(R, v0) ∩ U. Since R ≥ r it
follows that there exists u0 ∈ B(R, v0)∩U such that f (u0−v0) = r. Since v0−u0

‖v0−u0‖
∈ B(1, 0V)

there is some j ∈ {1, . . . , k} such that v0−u0
‖v0−u0‖

∈ B( 1
2 , v j). Therefore,∥∥∥∥ v0 − u0

‖v0 − u0‖
− v j

∥∥∥∥ ≤ 1
2

=⇒
∥∥∥v0 − u0 − ‖v0 − u0‖v j

∥∥∥ ≤ 1
2‖v0 − u0‖ = r

2 .

But we also have v0 − u0 − ‖v0 − u0‖v j ∈ U and so∥∥∥v0 − u0 − ‖v0 − u0‖v j
∥∥∥ ≥ r,

giving a contradiction. Thus U = V and so compactness of B(1, 0V) implies finite-
dimensionality of V.

Now suppose that V is locally compact. Then there exists a neighbourhood U of
0V for which cl(U) is compact. Openness of U implies that there exists ε ∈ R>0 such
that B(ε, 0V) ⊆ U. Then B(ε, 0V) is a closed subset of the compact set cl(U), implying by
Proposition ?? that B(ε, 0V) is compact. By Proposition 6.6.2 it follows that B(1, 0V) is
compact. Our argument above implies that V is finite-dimensional. �

The theorem is rather an important one, given that compact sets have important
properties that one often makes use of in applications (see, for example, missing
stuff ). Since, in infinite dimensions, one loses the convenient interpretation of
compact sets as being equivalent to closed and bounded sets, it then becomes
important to understand the nature of the compact sets in a given normed vector
space. This can really only be done on a case-by-case basis. For example, we do
this in missing stuff for missing stuff . The fact that the closed unit ball is not
compact in infinite dimensions is also responsible for the sometimes nonintuitive
distinctions between finite- and infinite-dimensional normed vector spaces. We
shall try to point out specific instances of this as we go along.

6.6.4 Closed subspaces

Subspaces of normed vector spaces are again normed vector spaces by
Proposition 6.1.7(iv). It is interesting to know what properties a subspace inherits
from the space in which is sits. This is simple in finite-dimensions, but rather more
complicated in infinite-dimensions. For reasons that are perhaps not a priori clear,
closed subspaces play an important rôle in Banach space theory and practice, and
for this reason we here study closed subspaces in a little detail.
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First we characterise the closed subspaces of a Banach space in a manner com-
pletely analogous to Proposition ?? for metric spaces.

6.6.16 Proposition (Characterisations of closed subspaces) Let F ∈ {R,C} and let
(V, ‖·‖) be a normed F-vector space. For a subspace U ⊆ V and with ‖·‖U the restriction of
‖·‖ to U, the following statements hold:

(i) if V is a Banach space and if U is closed, then (U, ‖·‖U) is a Banach space;
(ii) if (U, ‖·‖U) is a Banach space then U is closed.

Proof (i) If (u j) j∈Z>0 is a Cauchy sequence in U, then this is also a Cauchy sequence
V. Thus the sequence converges to some v ∈ V. By Proposition 6.6.8(ii) it follows that
v ∈ cl(U) = U, and so U is complete.

(ii) Let (v j) j∈Z>0 be a sequence in U converging to v ∈ V. This is a Cauchy sequence
in V and so is also a Cauchy sequence in U, by definition of ‖·‖U. Therefore, v ∈ U since
U is complete. By Proposition 6.6.8(ii) it follows that U is closed. �

The result has the following useful corollaries. The first is simply a useful
rewording of Proposition 6.6.16. But the result is nice, because it says that closed
subspaces of Banach spaces are Banach spaces, and so closed subspaces are the
proper notion of “subobject” when dealing with Banach spaces.

6.6.17 Corollary (Subspaces of Banach spaces are closed if and only if they are
complete) If F ∈ {R,C} and if (V, ‖·‖) is a F-Banach space, a subspace U ⊆ V is closed if
and only if it is complete.

The next corollary provides some insight into how one should view the com-
pletion of a normed vector space.

6.6.18 Corollary (The closure of a subspace is a completion of the subspace) Let
F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. For a subspace U ⊆ V denote by
‖·‖U and ‖·‖cl(U) the restriction of ‖·‖ to U and cl(U), respectively. Then (cl(U), ‖·‖cl(U)) is a
completion of (U, ‖·‖U).

Proof It is clear that the inclusion map of U into cl(U) preserves the norm, i.e., that
‖u‖U = ‖u‖cl(U). Moreover, by Proposition 6.6.8(ii) it follows that, given v ∈ cl(U), there
exists a sequence (u j) j∈Z>0 converging to v. Thus (cl(U), ‖·‖cl(U)) is indeed a completion
of (U, ‖·‖U). �

The next two corollaries concern finite-dimensional cases.

6.6.19 Corollary (Finite-dimensional subspaces are closed) Let F ∈ {R,C} and let
(V, ‖·‖) be a normed F-vector space. If U ⊆ V is a finite-dimensional subspace then U
is closed.

Proof By Theorem 6.3.3, U is complete, and so is closed by part (ii) of Proposi-
tion 6.6.16. �



2016/11/26 6.6 Topology of normed vector spaces 682

6.6.20 Corollary (Subspaces of finite-dimensional normed vector spaces are
closed) Let F ∈ {R,C} and let (V, ‖·‖) be a finite-dimensional normed F-vector space.
If U ⊆ V is subspace then U is closed.

Proof Subspaces of finite-dimensional vector spaces are finite-dimensional, and so
closed by Corollary 6.6.19. �

Let us record the topological properties of the basic subspace operations of sum
and intersection. For intersections the story is fairly simple.

6.6.21 Proposition (Intersections of closed subspaces) If F ∈ {R,C}, if (V, ‖·‖) is a
normed F-vector space, and if (Ua)a∈A is a family of closed subspaces of V, then ∩a∈A is a
closed subspace of V.

Proof The set ∩a∈AUa is a subspace by Proposition 4.3.34 and is closed by Proposi-
tion ??. �

For sums the story is significantly more complex. First we give a counterexam-
ple to the simplest statement one may wish to make.

6.6.22 Example (The sum of closed subspaces may not be closed) The example we
use here begins with the Banach space `2(F) consisting of sequences (a j) j∈Z>0 for
which

∑
∞

j=1|a j|
2 < ∞. The norm we use is

‖(a j) j∈Z>0‖2 =
( ∞∑

j=1

|a j|
2
)1/2

.

In Corollary 6.7.21 we show that this is a Banach space and is, moreover, the
completion of F∞0 under the norm ‖·‖2. We denote by (e j) j∈Z>0 the standard basis for
F∞0 . Thus

e j(k) =

1, j = k,
0, j , k.

For the purposes of this example we consider two subspaces of `2(F). We let

U = cl(spanF(e2 j−1| j ∈ Z>0)),

V = cl(spanF(e2 j−1 + 1
j e2 j| j ∈ Z>0))

so that U and V are closed subspaces.
Let us establish some facts about these subspaces via a sequence of lemmata.

1 Lemma U ∩ V = {0`2(F)}.
Proof Let us denote

U′ = spanF(e2 j−1| j ∈ Z>0), V′ = spanF(e2 j−1 + 1
j e2 j| j ∈ Z>0).

Let (a j) j∈Z>0 ∈ U ∩ V. By definition of U and V there exist sequences ((x jl) j∈Z>0)l∈Z>0

and ((y jl) j∈Z>0)l∈Z>0 in U′ and V′, respectively, such that

lim
l→∞

(x jl) j∈Z>0 = lim
l→∞

(y jl) j∈Z>0 = (a j) j∈Z>0 .
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Since (x jl) j∈Z>0 ∈ U′ for each l ∈ Z>0 it follows that a2 j = 0 for j ∈ Z>0. Therefore,
liml→∞ y(2 j)l = 0 for j ∈ Z>0. Since y(2 j−1)l = jy(2 j)l for each j, l ∈ Z>0 it then follows
that liml→∞ y(2 j−1)l = 0 for each j ∈ Z>0. Therefore, a j = 0 for each j ∈ Z>0, giving
the lemma. H

2 Lemma cl(U + V) = `2(F).
Proof Let U′ and V′ be as in the proof of Lemma 1. We claim that U′ + V′ = F∞0 . To
see this, let (a j) j∈Z>0 and write a j = x j + y j where

x j =

a j − ja j+1, j odd,
0, j even,

y j =

 ja j+1, j odd,
a j, j even.

Note that (x j) j∈Z>0 ∈ U′ and (y j) j∈Z>0 ∈ V′. Thus U′ + V′ = F∞0 , as desired. Therefore,

cl(U′ + V′) = cl(F∞0 ) = `2(F)

and so
cl(U′ + V′) ⊆ cl(U + V) = `2(F),

as desired. H

3 Lemma U + V ⊂ `2(F).
Proof Following the proof of Lemma 1, elements of U and V have the form

(x1, 0, x2, 0, x3, 0, . . . ), (y1, y1, y2, 1
2 y2, y3, 1

3 y3, . . . ),

respectively, where

∞∑
j=1

|x j|
2 < ∞,

∞∑
j=1

|y j|
2 +

∞∑
j=1

|y j|
2

j2 < ∞. (6.7)

Thus an element of U + V has the form

(x1 + y1, y1, x2 + y2, 1
2 y2, x3 + y3, 1

3 y3, . . . ), (6.8)

where the inequalities (6.7) hold. Now consider the sequence

(1, 1, 1
2 ,

1
2 ,

1
3 ,

1
3 , . . . ) ∈ `

2(F).

We claim that this sequence is not in U + V. Indeed, suppose that the sequence can
be expressed in the form (6.8). Then we must have x j + y j = 1

j and 1
j y j = 1

j for each
j ∈ Z>0. Thus x j = 1

j − 1 and y j = 1. The inequalities (6.7) do not hold in this case,
so the sequence cannot be in U + V. H

Now we make the following observation. The subspaces U and V are closed
and complementary. The sum U + V is a strict subspace of `2(F) but is dense in
`2(F). Thus U + V ⊂ cl(U + V) and so U + V is not closed. That is, the sum of closed
subspaces need not be closed. •
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Now being deprived of access to the nicest result concerning sums of closed
subspaces, we must now wonder what is true. It turns out that the story here is
a little complicated, but it is worth understanding since it actually reveals some-
thing interesting about Banach space geometry. So let us spend a few moments
understanding this. Suppose that we have a Banach space (V, ‖·‖) with two closed
subspaces U1 and U2. Then define

δ(U1,U2) = sup{ρ ∈ [0, 1] | B(ρ, 0V) ∩ (U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2},

with the convention that if A,B ⊆ V then

A + B = {u + v | u ∈ A, v ∈ B}.

This is a definition with geometric character so let us examine it in a simple case so
that we have a little insight into what it means.

6.6.23 Example (δ(U1,U2)) Let V = R2 and let

U1 = spanR((1, 0)), U2 = spanR((1, 1)).

We use the standard norm on R2: ‖(x1, x2)‖ =
√

x2
1 + x2

2. The set (B(1, 0V) ∩ U1) + U2

is depicted on the left in Figure 6.2 and B(ρ, 0V) ∩ (U1 + U2) is shown on the right.

Figure 6.2 The definition of δ(U1,U2): (B(1, 0V) ∩U1) + U2 on the
left and B(ρ, 0V) ∩ (U1 + U2) on the right

The idea is that (B(1, 0V) ∩ U1) + U2 is obtained by translating the unit ball in U1

by all vectors in U2. Thus one “thickens” U2 by the unit ball in U1. Now one
take balls of increasing radius in U1 + U2 until the ball is no longer contained in
(B(1, 0V) ∩ U1) + U2. In this example one can see that δ(U1,U2) = 1. •

In finite dimensions the constructions we give are not so insightful. For example,
if V is finite-dimensional then δ(U1,U2) > 0. However, in infinite dimensions it turns
out that δ(U1,U2) measures when U1 + U2 is not closed.
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6.6.24 Theorem (When is the sum of closed subspaces closed?) If (V, ‖·‖) is a Banach
space and if U1 and U2 are closed subspaces of V, then U1 + U2 is closed if and only if
δ(U1,U2) > 0.

Proof Let us define

α(U1,U2) = sup{ρ ∈ [0, 1] | B(ρ, 0V) ∩ cl(U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2)},

β(U1,U2) = sup{ρ ∈ [0, 1] | B(ρ, 0V) ∩ cl(U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2}.

Both of these quantities are, in fact, equal to δ(U1,U2).

1 Lemma α(U1,U2) = β(U1,U2) = δ(U1,U2).

Proof Let us abbreviate

α = α(U1,U2), β = β(U1,U2), δ = δ(U1,U2).

Let us first prove that α ≤ β. This is clearly true if α = 0 so suppose that α > 0. Since
cl((B(1, 0V) ∩ U1) + U2) is closed we have

B(α, 0V) ∩ cl(U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2).

Note that
(B(1, 0V) ∩ U1) + U2 = ∩r∈(0,1)((B( 1

1−r , 0V) ∩ U1) + U2).

Therefore, if
B(α, 0V) ∩ cl(U1 + U2) ⊆ (B( 1

1−r , 0V) ∩ U1) + U2 (6.9)

for every r ∈ (0, 1) then we have

B(α, 0V) ∩ cl(U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2 (6.10)

since B(α, 0V) ∩ cl(U1 + U2) is closed. Moreover, if (6.9) holds then α ≤ β, and so it
thus suffices for this part of the proof to show that (6.9) holds for every r ∈ (0, 1). By
Proposition 6.6.8 we have

cl((B(1, 0V) ∩ U1) + U2) ⊆ ((B(1, 0V) ∩ U1) + U2) + B(αr, 0V) ∩ cl(U1 + U2)

for every r ∈ (0, 1). By definition of α we then have

B(α, 0V) ∩ cl(U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2)

⊆ ((B(1, 0V) ∩ U1) + U2) + B(αr, 0V) ∩ cl(U1 + U2) (6.11)

for every r ∈ (0, 1). Let
u0 ∈ B(α, 0V) ∩ cl(U1 + U2).

By (6.11) there exists

u1 ∈ B(αr, 0V) ∩ cl(U1 + U2), v0 ∈ (B(1, 0V) ∩ U1) + U2

such that u0 = v0 + u1. By definition of α we have

B(αr, 0V) ∩ cl(U1 + U2) ⊆ r cl((B(1, 0V) ∩ U1) + U2),
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where, if a ∈ F and A ⊆ V, we denote aA = {av | v ∈ A}. Thus, again by (6.11), there
exists

u2 ∈ B(αr2, 0V) ∩ cl(U1 + U2), v1 ∈ (B(1, 0V) ∩ U1) + U2

such that u1 = rv1 + u2. Continuing in this way, there exist sequences (u j) j∈Z≥0 and
(v j) j∈Z≥0 such that

1. u j ∈ B(αr j, 0V) ∩ cl(U1 + U2) ⊆ r j cl((B(1, 0V) ∩ U1) + U2),

2. v j ∈ (B(1, 0V) ∩ U1) + U2, and

3. u j = r jv j + v j+1

for each j ∈ Z>0. Clearly, then, lim j→∞ u j = 0V. Therefore,

u0 − uk =

k∑
j=0

q jv j =⇒ u0 = lim
k→∞

(u0 − uk) =

∞∑
j=0

r jv j.

Also,
‖v j‖ = r− j

‖u j − u j+1‖ ≤ r− j(‖u j‖ + u j+1) ≤ r− j(αr j + αr j+1) = α(1 + r).

Thus the sequence (v j) j∈Z≥0 is bounded. Now, for each j ∈ Z≥0 define w j ∈ B(1, 0V)∩U1
and z j ∈ U2 such that v j = w j + z j. Then we have

‖z j‖ = ‖v j − w j‖ ≤ ‖v j‖ + ‖w j‖ ≤ α(1 + r) + 1,

and so the sequence (z j) j∈Z≥0 is bounded. Therefore,

∥∥∥∥ ∞∑
j=0

r jw j

∥∥∥∥ ≤ ∞∑
j=0

r j
‖w j‖ ≤

1
1 − r

=⇒

∞∑
j=0

r jw j ∈ B(1, 0V) ∩ U1

since B(1, 0V) ∩ U1 is closed. Similarly,∥∥∥∥ ∞∑
j=0

r jz j

∥∥∥∥ ≤ ∞∑
j=0

r j
‖z j‖ ≤

1
1 − r

(α(1 + r) + 1) =⇒

∞∑
j=0

r jz j ∈ U2

since U2 is closed. Thus

u0 =

∞∑
j=0

r jv j =

∞∑
j=0

r jw j +

∞∑
j=0

r jz j ∈ B(1, 0V) ∩ U1 + U2.

Since u0 was chosen arbitrarily from B(α, 0V)∩ cl(U1 + U2) and since the argument can
be made for every r ∈ (0, 1), we have shown that (6.9) holds for every r ∈ (0, 1), giving
α ≤ β.

That β ≤ δ follows directly from the definitions.
To show that δ ≤ α, and so to complete the proof, it suffices to show that

cl(B(1, 0V) ∩ (U1 + U2)) = B(1, 0V) cl(U1 + U2)

(why?). To show this, let v ∈ B(1, 0V) cl(U1 + U2). If v = 0V then we obviously have
v ∈ cl(B(1, 0V) ∩ (U1 + U2)). Thus we can suppose that v , 0V. Let (v j) j∈Z>0 be a
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sequence in U1 + U2 converging to v. We can without loss of generality suppose
that v j , 0V for each j ∈ Z>0. Then define u j = ‖v‖

‖v j‖
v j for each j ∈ Z>0, noting that

u j ∈ B(1, 0V) cl(U1 + U2). Moreover, lim j→∞ u j = v and so v ∈ cl(B(1, 0V) ∩ (U1 + U2)).
This gives

B(1, 0V) cl(U1 + U2) ⊆ cl(B(1, 0V) ∩ (U1 + U2)).

By Proposition 6.6.10 we have

cl(B(1, 0V) ∩ (U1 + U2)) ⊆ B(1, 0V) ∩ cl(U1 + U2).

This gives δ < α be the definitions. H

Carrying on with the proof of the theorem, first suppose that U1 + U2 is closed. By
Corollary 6.6.17 it follows that U1 + U2 is complete. We obviously have

U1 + U2 = ∪∞j=1 j((B(1, 0V) ∩ U1) + U2).

Therefore, by the Baire Category Theoremmissing stuff there exists at least one j ∈ Z>0
for which

int(cl( j((B(1, 0V) ∩ U1) + U2))) , ∅.

Thus there exist v ∈ cl((B(1, 0V) ∩ U1) + U2) and r ∈ R>0 such that

B(r, v) ∩ (U1 + U2) ⊆ j cl((B(1, 0V) ∩ U1) + U2).

Therefore,
B( r

j , v) ∩ (U1 + U2) ⊆ cl((B(1, 0V) ∩ U1) + U2),

giving α(U1,U1) > 0 and so, by the lemma, δ(U1,U2) > 0.
Conversely, suppose that δ(U1,U2) > 0 and so, by the lemma, β(U1,U2) > 0. Let

β ∈ (0, β(U1,U2)). We obviously have

cl(U1 + U2) = ∪∞j=1 j(B(β, 0V)) ∩ cl(U1 + U2).

By definition of β(U1,U2) it holds that

B(β, 0V) ∩ cl(U1 + U2) ⊆ (B(1, 0V) ∩ U1) + U2.

Moreover, we then obviously have

∪
∞

j=1 j(B(β, 0V)) ∩ cl(U1 + U2) ⊆ U1 + U2.

This gives cl(U1 + U2) ⊆ U1 + U2 which gives U1 + U2 as being closed, as desired. �

Let us close our discussion of closed subspaces by considering some examples
of closed and non-closed subspaces of normed vector spaces.
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6.6.25 Examples (Closed subspace) Both examples we consider are subspaces of the
normed vector space (C0

bdd(R;R), ‖·‖∞). By C0
bdd(R;R) we denote the set of bounded,

continuous R-valued functions on R and the norm ‖·‖∞ is defined thusly:

‖ f ‖∞ = sup{| f (x)| | x ∈ R}.

Note that convergence in the norm ‖·‖∞ is, by definition, uniform convergence.
In Theorem 3.5.8 we essentially showed that (C0

bdd(R;R), ‖·‖∞) is a Banach space,
although we shall revisit this in Section 6.7.4.
1. Let C0

0(R;R) be the subset of C0
bdd(R;R) consisting of those functions satisfying

lim
x→−∞

f (x) = 0, lim
x→∞

f (x) = 0.

It is easy to verify (cf. Proposition 2.3.23) that C0
0(R;R) is a subspace of

C0
bdd(R;R). We claim that it is a closed subspace. To show this, it suffices to

show that, if ( f j) j∈Z>0 is any sequence in C0
0(R;R) converging in Cbdd(R;R), then

the limit function is in C0
0(R;R). We shall prove this below as Theorem 6.7.40,

but it is not too hard to imagine why it is true. Uniform convergence requires
that the limit function be approximated uniformly over all of R by sufficiently
large terms in the sequence. Since all functions in the sequence tend to zero at
infinity, they will pull the limit function down to zero with them.

2. Let C1
bdd(R;R) be the subset of C0

bdd(R;R) consisting of those functions that are
continuously differentiable. By Proposition 3.2.10 it follows that C1

bdd(R;R) is
a subspace of C0

bdd(R;R). We claim that it is not closed. To see this, define a
sequence of functions ( f j) j∈Z>0 as follows:

f j(x) =



−1, x ∈ (−∞,−1 − 1
j ),

1
4 jx2 + 1

2 ( j + 1)x +
( j−1)2

4 j , x ∈ [−1 − 1
j ,−1 + 1

j ],

x, x ∈ (−1 + 1
j , 1 −

1
j ),

−
1
4 jx2 + 1

2 ( j + 1)x − ( j−1)2

4 j , x ∈ [1 − 1
j , 1 + 1

j ],

1, x ∈ (1 + 1
j ,∞).

We depict this sequence in Figure 6.3. One can show by direct computation
that f j is differentiable for each j ∈ Z>0; one need only check that the left and
right limits for the function and its derivative match at the points −1− 1

j , −1 + 1
j ,

1 − 1
j , and 1 + 1

j . A direct computation also shows that the sequence ( f j) j∈Z>0

converges pointwise to the function

f (x) =


−1, x ∈ (−∞,−1),
x, x ∈ [−1, 1],
1, x ∈ (1,∞).

To show that ( f j) j∈Z>0 converges to f in C0
bdd(R;R) we need to show that the

convergence is uniform.
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Figure 6.3 A sequence in C1
bdd(R;R) not converging in

C1
bdd(R;R) (the terms f1, f2, and f10 are shown)

This is sort of “obvious” from Figure 6.3, but let us go through the details
anyway. The only possible problems can occur on the intervals [−1 − 1

j ,−1 + 1
j ]

and [1 − 1
j , 1 + 1

j ] since off these intervals f j agrees with f . So let ε ∈ R>0 and let
N be sufficiently large that 1

4N < ε. On [1 − 1
j , 1] the maximum deviation of f j

from f will occur at x = 1. Thus, for x ∈ [1 − 1
j , 1] we have

| f j(x) − f (x)| ≤ | f j(1) − f (1)|

=
∣∣∣− 1

4 j + 1
2 ( j + 1) − ( j−1)2

4 j − 1
∣∣∣ =

∣∣∣ 1
4 j

∣∣∣ < ε
for j ≥ N. Similarly, on [1, 1 + 1

j ] the maximum deviation of f j from f will occur
at x = 1, and the same computation gives | f j(x) − f (x)| < ε for x ∈ [1, 1 + 1

j ] for
j ≥ N. This gives | f j(x) − f (x)| < ε for x ∈ [1 − 1

j , 1 + 1
j ]. An entirely similar

argument gives | f j(x) − f (x)| < ε for x ∈ [−1 − 1
j ,−1 + 1

j ].

The point is that the sequence ( f j) j∈Z>0 in C1
bdd(R;R) converges to f ∈ C0

bdd(R;R).
But since f < C1

bdd(R;R), it follows that C1
bdd(R;R) is not closed. The reason

for this is fairly evident. The norm ‖·‖∞ does not know anything about the
derivative of a function, and so it cannot be expected that the sequence of
derivatives will converge to the derivative of the limit function, nor even that
the limit function will indeed be even differentiable. •

6.6.5 Bases for normed vector spaces

In Section 4.3.4 we discussed at length the notion of a basis for a vector space,
sometimes called a Hamel basis. The fact that every vector space possesses a
Hamel basis is of great use in algebra, but not great value in analysis. To exhibit
the limitations of the effectiveness of Hamel bases, let us prove that certain vector
spaces are incapable of supporting a norm for which the resulting normed vector
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space is complete (thus we are supposing here familiarity with completeness, a
notion we discuss in detail in Section 6.3).

6.6.26 Theorem (Dimension of an infinite-dimensional Banach space) If F ∈ {R,C}
and if (V, 〈·, ·〉) is an infinite-dimensional F-Banach space, then dimF(V) ≥ card(R). If V
is separable then dimF(V) = card(R).

Proof Let v1 ∈ V\{0V} be such that ‖v1‖ = 1. Define α̂1 : spanF(v1)→ F by α̂1(av1) = a.
It is trivial to check that α̂1 is a continuous linear function satisfying α̂1(v1) = 1. By the
Hahn–Banach Theorem, Theorem ??, there exists α1 ∈ V∗ such that α1(v1) = 1. Next
consider the closed subspace V2 = ker(α1) and let v2 ∈ V2 so that α1(v2) = 0. Also
suppose that ‖v2‖ = 1. Then define α̂2 : spanF(v1, v2) → F by α̂2(a1v1 + a2v2) = a2. As
above, use the Hahn–Banach Theorem to deduce the existence of α2 ∈ V∗ such that
α2(a1v2 + a2v2) = a2 for every a1, a2 ∈ F. We may continue inductively in this way to
define sequences (v j) j∈Z>0 and (α j) j∈Z>0 such that ‖v j‖ = 1, j ∈ Z>0, and such that

α j(vk) =

1, j = k,
0, j , k.

We claim that the family (v j) j∈Z>0 is linearly independent. Indeed, suppose that

c1v j1 + · · · + ckv jk = 0

for some c1, . . . , ck ∈ F and j1, . . . , jk ∈ Z>0. For each l ∈ {1, . . . , k}, apply α jl to the
preceding equality to get cl = 0. This give the desired linear independence. We also
claim that

vk < cl(spanF(v j| j , k))

for each k ∈ Z>0. Indeed, if (wl)l∈Z>0 is a convergent sequence in spanF(v j| j , k) then
αk(wl) = 0 for all l ∈ Z>0. Continuity of αk and Theorem 6.5.2 ensure that

αk(lim
l→∞

wl) = lim
l→∞

αk(wl) = 0.

Thus cl(spanF(v j| j , k)) ⊆ ker(αk). Since αk(vk) = 1 our claim follows.
Now we use a lemma.

1 Lemma If S is a countably infinite set then there exists a family (At)t∈[0,1] of infinite subsets
of S such that At1 ∩At2 is finite for t1 , t2.

Proof For θ ∈ [0, π) denote

Σθ = {(x cosθ − y sinθ, x sinθ + y cosθ) ∈ R2
| x ∈ R, y ∈ [−1, 1]}.

Thus Σθ is a bi-infinite strip of width 2 inclined at an angle θ to the x-axis in R2. For
θ ∈ [0, π) define

Âθ = {(x, y) ∈ Z2
⊆ R2

| (x, y) ∈ Σθ}

as the points in Z2 lying in Σθ. Some elementary geometry can be used to verify the
fact that if θ1 , θ2 then Σθ1 ∩Σθ2 is compact. From this fact it follows that Âθ1 ∩ Âθ2 is
finite for θ1 , θ2. Moreover, one can verify that Âθ is infinite for every θ. To see this
note that every ball of the form B(1, (r cosθ, r sinθ)) must contain a point with integer
coordinates.
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Since S andZ2 are both countable there exists a bijectionφ : S→ Z2. Since [0, 1] and
[0, π) both have the cardinality of R (why?), there exists a bijection ψ : [0, 1] → [0, π).
Then, for t ∈ [0, 1], define

At = {s ∈ S | φ(s) ∈ Âψ(t)}.

It then follows that At is infinite since Âψ(t) is infinite and that At1 ∩ At2 is finite since
Âψ(t1) ∩ Âψ(t2) is finite. H

Now, using the lemma, let (At)t∈[0,1] be a family of subsets ofZ>0 such that At1 ∩At2

is finite for t1 , t2. Then define

ut =
∑
j∈At

v j

2 j , t ∈ [0, 1].

Note that

‖ut‖ =
∥∥∥∥∑

j∈At

v j

2 j

∥∥∥∥ ≤∑
j∈At

‖v j‖

2 j < ∞

by Example 2.4.2–??. Thus the series for ut is absolutely convergent and so convergent
by Theorem 6.4.6. We claim that the set {ut}t∈[0,1] is linearly independent. For l ∈
{1, . . . , k} and m ∈ Z>0 we have

αm(utl) = αm
(∑

j∈At

v j

2 j

)
=

∑
j∈At

αm(v j)

2 j ,

using Theorem 6.5.2. Thus

αm(utl) =

2−m, m ∈ Atl ,

0, m < Atl .

Now suppose that
c1ut1 + · · · + ckutk = 0 (6.12)

for c1, . . . , ck ∈ F and t1, . . . , tk ∈ [0, 1]. Without loss of generality we may suppose that
the numbers t1, . . . , tk are distinct. Then ∩k

l=1Atl is finite; let us denote it by {m1, . . . ,mr}.
For l ∈ {1, . . . , k} define A′l = Atl \ {m1, . . . ,mr}, noting that the sets A′l , l ∈ {1, . . . , k}, are
countably infinite and disjoint. We can then rewrite (6.12) as

a1vm1 + · · · + arvmr + c1

∑
j1∈A′1

v j1

2 j1
+ · · · + ck

∑
jk∈A′k

v jk

2 jk

for suitable constants a1, . . . , ar ∈ F that depend on the coefficients c1, . . . , ck and factors
of 1

2 ; the precise form of these is immaterial to our computations. Indeed, for each
l ∈ {1, . . . , k} let ml ∈ A′l . Then, by the properties for (v j) j∈Z>0 and (α j) j∈Z>0 given before
the lemma,

0 = αml(c1ut1 + · · · + ckutk) =
cl

2ml
.

Thus cl = 0 for each l ∈ {1, . . . , k}, giving linear independence of {ut}t∈[0,1]. Since
card([0, 1]) = card(R) the first assertion of the theorem follows.
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For the final assertion of the theorem we shall prove that card(V) = card(R) if V
is separable. It is clear that card(V) ≥ card(R). For the opposite inequality, let D ⊆ V
be a countable dense subset of V. For v ∈ V we can write v = lim j→∞ v j for a sequence
(v j) j∈Z>0 in D. Thus to every point in V we assign a sequence in the countable set D.
The set of such sequences is DZ>0 , and so card(V) ≤ card(DZ>0) = ℵℵ0

0 . Now note that
2 ≤ ℵ0 ≤ 2ℵ0 by Example ??–?? and Exercise ??. Thus

2ℵ0 ≤ ℵ
ℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0

by Theorem ??. Thus ℵℵ0
0 = 2ℵ0 and so card(V) ≤ 2ℵ0 = card(R) by Exercise ??. �

6.6.27 Corollary (There are no Banach spaces of countable dimension) If F ∈ {R,C}
and if V is an F-vector space with an infinite, countable Hamel basis, then there is no norm
on V for which the resulting normed F-vector space is complete.

missing stuff

6.6.6 Notes

Our approach to characterising the closedness of sums of closed subspaces
follows RM/BS:79, who base their presentation on that of TK:80a. Note that we
also used this characterisation of sums of closed subspaces in our proofs of the
Open Mapping Theorem and the Closed Graph Theorem. This idea is included in
the paper of RM/BS:79.

The proof we give for Theorem 6.6.26 is due to HEL:73. The proof of the
lemma used in the proof of the theorem is from [JRB:71]. An elementary proof of
Corollary 6.6.27 can be found in [WRB/RHB:71].

Exercises

6.6.1 Let F ∈ {R,C} and let (V, ‖·‖) be a finite-dimensional normed F-vector space.
Show that a subspace U ⊆ V is dense in V if and only if U = V. Point out
which parts of your argument are not generally valid when V is infinite-
dimensional.

6.6.2 Let (V, ‖·‖) be a normed vector space and let A,B,C ⊆ V be subsets with
A ⊆ B ⊆ C. Show that if A is dense in B and if B is dense in C then A is dense
in C.

6.6.3 Consider Example 6.6.22. On the subspace U (resp. V) denote the restriction
of ‖·‖2 by ‖·‖U (resp. ‖·‖V). By Proposition 6.3.4 the normed vector space
U1 ⊕ U2 is complete. But in Example 6.6.22 we showed that U1 ⊕ U2 is not a
closed subspace of `2(F) and so is not complete by Corollary 6.6.17.

Why are these conclusions not in contradiction?
6.6.4 Let F ∈ {R,C} and let (V, ‖·‖) be a normed F-vector space. If U ⊆ V is a

subspace, show that cl(U) is a subspace.
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Section 6.7

Examples of Banach spaces

In this section we consider some of the common Banach spaces we will en-
counter in these volumes. As has already been mentioned, these examples serve
as more than just an illustration of the concept of a Banach space; the examples
are of great interest per se. Many of the examples are interconnected in that there
is a very general example that contains simpler ones as a subcase. Logically, the
proper way to present such examples is to give the most general construction first,
and then provide the particular situations as following from the general. However,
this method of presentation has serious defect that we are often most interested in
the simpler situation, and a purely logical presentation would require the reader
to understand some unnecessary abstraction. Therefore, we present our examples
in order from the most particular to the most general. This has the drawback of
being repetitive, but the advantage that a reader will not have to absorb a degree
of abstraction that is not needed in the simpler examples.

Do I need to read this section? As we have said, some of the examples in this
section are crucial in understanding a lot of the applied material that will follow.
As the very least the reader should understand the spaces Lp(I;F) and `p(F). Some
of the other examples can perhaps be omitted on a first reading, and covered when
needed. •

6.7.1 The p-norms on Fn

Let F ∈ {R,C}. Let us begin our presentation with the simplest situation of
a class of norms on a finite-dimensional F-vector space. We are interested in a
concrete collection of norms on the vector space Fn. Specifically, for p ∈ [1,∞] we
define a norm ‖·‖p on Fn by

‖(v1, . . . , vn)‖p =


(∑n

j=1|v j|
p
)1/p

, p ∈ [1,∞),
max{|v1|, . . . , |vn|}, p = ∞.

That this is a norm for p ∈ {1,∞} has already been shown in Examples 6.1.3–3
and 6.1.3–4. In order to show that ‖·‖p is a norm for p ∈ [1,∞), the only nontrivial
verification is of the triangle inequality. We verify this by using the following
lemma.

6.7.1 Lemma (Hölder’s inequality) If a1, . . . , an, b1, . . . , bn ∈ R≥0 and if p ∈ (1,∞) then
n∑

j=1

ajbj ≤
( n∑

j=1

ap
j

)1/p( n∑
j=1

bp′

j

)1/p′

,

where 1
p + 1

p′ = 1. Moreover, equality holds if and only if (ap
1 , . . . , a

p
n) and (bp′

1 , . . . , b
p′
n ) are

collinear.
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Proof We first prove a lemma.

1 Sublemma If a, b ∈ R≥0 and if α ∈ (0, 1) then

aαb1−α
≤ αa + (1 − α)b,

and equality holds if and only if a = b.
Proof If a = b then both sides of the inequality are equal to a, and so the result holds
in this case. Thus we consider the case when a , b. Since the desired inequality is
symmetric with respect to a and b we can assume that b > a without loss of generality.
Consider the function f : [a, b]→ Rdefined by f (x) = x1−α. By the Mean Value Theorem
there exists c ∈ (a, b) such that

f ′(c) = (1 − α)c−α =
f (b) − f (a)

b − a
=

b1−α
− a1−α

b − a
.

Thus b1−α
− a1−α = (b − a)(1 − α)c−α. Since α ∈ (0, 1) and since c > a it follows that

c−α < a−α. Therefore,

b1−α
− a1−α < (b − a)(1 − α)a−α,

=⇒ aαb1−α
− a < (b − a)(1 − α)

=⇒ aαb1−α < αa + (1 − α)b.

Since this inequality is strict for b > a the result follows. H

Let us denote α = 1
p and β = 1

p′ = 1 − α. Define a′j = a1/α
j and b′j = b1/β

j and suppose
initially that

∑n
j=1 a′j = 1 and

∑n
j=1 b′j = 1. By Sublemma 1 we have

(a′j)
α(b′j)

β
≤ αa′j + βb′j, j ∈ {1, . . . ,n},

=⇒

n∑
j=1

((a′j)
α(b′j)

β) ≤
n∑

j=1

(αa′j + βb′j) = α + β = 1 =
( n∑

j=1

a′j
)α( n∑

j=1

b′j
)β
,

=⇒

n∑
j=1

a jb j ≤
( n∑

j=1

ap
j

)1/p( n∑
j=1

bp′

j

)1/p′
,

with equality holding if and only if a′j = b′j, j ∈ {1, . . . ,n}. This gives inequality in the
sublemma when

∑n
j=1 a′j = 1 and

∑n
j=1 b′j = 1. If these relations do not hold then we have∑n

j=1 a′j = λ and
∑n

j=1 b′j = µ for some λ, µ ∈ R≥0. Since the inequality is clearly equality
if either λ = 0 or µ = 0, we can suppose that λ, µ ∈ R>0 without loss of generality. We
can then write a′′j = 1

λa′j and b′′j = 1
µb′j for j ∈ {1, . . . ,n} so that

∑n
j=1 a′′j =

∑n
j=1 b′′j = 1.

Then
n∑

j=1

a jb j =

n∑
j=1

(a′j)
α(b′j)

β = λαµβ
n∑

j=1

(a′′j )α(b′′j )β

≤ λαµβ
( n∑

j=1

a′′j
)α( n∑

j=1

b′′j
)β

=
( n∑

j=1

a′j
)α( n∑

j=1

b′j
)β

=
( n∑

j=1

ap
j

)1/p( n∑
j=1

bp′

j

)1/p′
,
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giving the desired inequality. Moreover, from our previous computations, equality
holds if and only if a′′j = b′′j , j ∈ {1, . . . ,n}. This, in turn, holds if and only if µa′j = λb′j,
j ∈ {1, . . . ,n}. In turn, this holds if and only if

µap
j = λbp′

j , j ∈ {1, . . . ,n},

which is the result. �

6.7.2 Notation (Conjugate index) For p ∈ (1,∞) the number p′ ∈ (1,∞) such that 1
p + 1

p′ =

1 is called the conjugate index for the index p. As we shall see, principally in
Section ??, the conjugate index plays a surprisingly important rôle, although at this
point it comes up as something of a conjurer’s trick. Note that when p = 2 we have
p′ = 2. This in the important special case when the norm is derived from an inner
product. We hope that the reader is tantalised at this moment. •

A variant of Hölder’s inequality holds when p = 1, and we refer to Exercise 6.7.1
for this.

We next prove the useful Minkowski inequality.

6.7.3 Lemma (Minkowski’s inequality) If F ∈ {R,C}, if a1, . . . , an, b1, . . . , bn ∈ F, and if
p ∈ [1,∞) then ( n∑

j=1

|aj + bj|
p
)1/p
≤

( n∑
j=1

|aj|
p
)1/p

+
( n∑

j=1

|bj|
p
)1/p

.

Moreover, equality holds if and only if the following conditions hold:
(i) p = 1: for each j ∈ {1, . . . ,n} there exists αj, βj ∈ R≥0, not both zero, such that
αjaj = βjbj;

(ii) p ∈ (1,∞): there exists α, β ∈ R≥0, not both zero, such that αaj = βbj for every
j ∈ {1, . . . ,n}.

Proof The first part of the lemma has been proved for p = 1 in Example 6.1.3–3. Let
us also prove the second part of the lemma for p = 1. First of all, it is easy to check that
(i) is sufficient for equality in the Minkowski inequality. For the converse, note that, no
matter whetherF = R orF = C, equality holds in the triangle inequality |a+b| ≤ |a|+ |b|,
a, b ∈ F, if and only if there exists α, β ∈ R≥0, not both zero, such that αa = βb. The
reader not seeing this is encouraged to do the elementary geometry needed to verify
this. From this observation,

n∑
j=1

|a j + b j| =

n∑
j=1

|a j| +

n∑
j=1

|b j|

if and only if (i) holds.
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Since the case of p = 1 has already been proved, we consider p ∈ (1,∞). We
compute, using Lemma 6.7.1,

n∑
j=1

|a j + b j|
p =

n∑
j=1

|a j + b j||a j + b j|
p−1

≤

n∑
j=1

|a j||a j + b j|
p−1 +

n∑
j=1

|b j||a j + b j|
p−1

≤

( n∑
j=1

|a j|
p
)1/p( n∑

j=1

|a j + b j|
p
)1/p′

+
( n∑

j=1

|b j|
p
)1/p( n∑

j=1

|a j + b j|
p
)1/p′

=
(( n∑

j=1

|a j|
p
)1/p

+
( n∑

j=1

|b j|
p
)1/p)( n∑

j=1

|a j + b j|
p
)1/p′

from which we deduce, using the fact that 1
p = 1 − 1

p′ ,

( n∑
j=1

|a j + b j|
p
)1/p
≤

( n∑
j=1

|a j|
p
)1/p

+
( n∑

j=1

|b j|
p
)1/p

,

as desired. By considering where the possible inequality is introduced in the preceding
computation, and in view of Lemma 6.7.1, equality in the statement of the sublemma
holds if and only if

1. for each j ∈ {1, . . . ,n} there exists α j, β j ∈ R≥0, not both zero, such that α ja j = β jb j
and

2. both (|a1|
p, . . . , |an|

p) and (|b1|
p, . . . , |bn|

p) are collinear with (|a1 + b1|
p, . . . , |an + bn|

p).
The second of these conditions is equivalent to the existence of α, λ ∈ R≥0, not both
zero, and β, µ ∈ R≥0, not both zero, such that

α|a j|
p = λ|a j + b j|

p, β|b j|
p = µ|a j + b j|

p.

We consider a few cases.
1. a j, b j , 0 for every j: In this case we must have α j, β j ∈ R>0. Then a j = δ jb j for

δ j =
β j

α j
∈ R>0. We can then solve for δ j to give δ j = λ

α−λ . Note that α , λ since
b j , 0. This gives

(α − λ)a j = λb j

for every j ∈ {1, . . . ,n}, giving the result in this case.
2. a j, b j , 0 for some j ∈ {1, . . . ,n}: In this case, whenever a j, b j , 0 the argument from

the previous case gives
(α − λ)a j = λb j

Now we consider some subcases, taking into account that a j and/or b j might be
zero for some j.
(a) a j = 0, b j , 0: In this case we have λ = β j = 0 and β = µ. It, therefore, holds

that
(α − λ)a j = λb j.
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(b) a j , 0, b j = 0: In this case µ = α j = 0 and α = λ. It, therefore, holds that

(α − λ)a j = λb j.

3. a j = 0 for all j ∈ {1, . . . ,n}: In this case we have, for any α ∈ R>0 and with β = 0,

αa j = βb j

for all j ∈ {1, . . . ,n}.
4. b j = 0 for all j ∈ {1, . . . ,n}: In this case we have, for any β ∈ R>0 with α = 0,

αa j = βb j

for all j ∈ {1, . . . ,n}.
The upshot of the preceding monotony is that condition (ii) holds when equality in the
Minkowski inequality holds. �

There is another version of the Minkowski inequality that is sometimes useful.
We call this the “integral version” of the Minkowski inequality for reasons that are
best made clear in missing stuff .

6.7.4 Lemma (Integral version of Minkowski’s inequality) missing stuff If F ∈ {R,C},
if ajk ∈ F, j ∈ {1, . . . ,m}, k ∈ {1, . . . ,n}, and if p ∈ [1,∞) then

( m∑
j=1

∣∣∣∣ n∑
k=1

ajk

∣∣∣∣p)1/p
≤

n∑
k=1

( m∑
j=1

|ajk|
p
)1/p

.

Moreover, equality holds if and only if there exists b1, . . . , bm, c1, . . . , cn ∈ F such that
ajk = bjck.

Proof For p = 1 we have

m∑
j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣ ≤ m∑
j=1

( n∑
k=1

|a jk|
)

=

n∑
k=1

( m∑
j=1

|a jk|
)
,

giving the result in this case.
Now let p ∈ (1,∞). Here we compute

m∑
j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p =

m∑
j=1

(∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p−1)(∣∣∣∣ n∑
l=1

a jl

∣∣∣∣)
≤

m∑
j=1

( n∑
l=1

(
|a jl|

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p−1))
=

n∑
l=1

( m∑
j=1

(
|a jl|

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p−1))
,
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swapping the order of summation in the last step. Now let p′ =
p

p−1 be the conjugate
index. Now, by Hölder’s inequality,

m∑
j=1

(
|a jl|

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p−1)
≤

( m∑
j=1

|a jl|
p
)1/p( m∑

j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p′(p−1))1/p′

=
( m∑

j=1

|a jl|
p
)1/p( m∑

j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p)1/p′
.

Substituting this last relation into the preceding equation yields

m∑
j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p ≤ n∑
l=1

(( m∑
j=1

|a jl|
p
)1/p( m∑

j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p)1/p′
)

=
( n∑

l=1

( m∑
j=1

|a jl|
p
)1/p)( m∑

j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p)1/p′
.

Now we note that the lemma is obviously true when

m∑
j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p = 0.

So we suppose that this quantity is nonzero and divide the above-derived inequality

m∑
j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p ≤ ( n∑
l=1

( m∑
j=1

|a jl|
p
)1/p)( m∑

j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p)1/p′

by ( m∑
j=1

∣∣∣∣ n∑
k=1

a jk

∣∣∣∣p)1/p′
,

which gives the desired inequality after noting that p′ is conjugate to p. �

From Minkowski’s inequality we immediately have the following result.

6.7.5 Proposition ((Fn, ‖·‖p) is a Banach space) If F ∈ {R,C} and if p ∈ [1,∞] then
(Fn, ‖·‖p) is an F-Banach space.

Moreover, we know from Theorem 6.1.15 that the norms ‖·‖p are equivalent.
One can then wonder at why one would not just choose one of these norms and be
done with it. There are at least two reasons why not.

1. Sometimes one norm is more convenient than another.

2. The finite-dimensional setting provides an opportunity to begin to under-
stand the rôle p in how the norms “look.” These sorts of p-norms will come
up in increasingly more abstract settings, and the finite-dimensional example
gives some useful intuition.
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Along the lines of using the finite-dimensional setting to provide some intuition
for more complicated ideas that will arise later, let us consider a variant of the p-
norm for p ∈ (0, 1). The definition is the same. For p ∈ (0, 1) we define

‖(v1, . . . , vn)‖p =
( n∑

j=1

|v j|
p
)1/p

.

The function v 7→ ‖v‖p clearly has the positivity and homogeneity properties needed
for a norm. What we lose is the triangle inequality. Indeed, for p ∈ (0, 1) we have
the following results which mirror Lemmata 6.7.1 and 6.7.3.

6.7.6 Lemma (Hölder’s inequality for p ∈ (0, 1)) If a1, . . . , an, b1, . . . , bn ∈ R≥0 and if
p ∈ (0, 1) then

n∑
j=1

ajbj ≥
( n∑

j=1

ap
j

)1/p( n∑
j=1

bp′

j

)1/p′

,

where 1
p + 1

p′ = 1.

Proof Let q = p−1 so that q ∈ (1,∞) and define c j = b−1/q
j and d j = a1/q

j b1/q
j , j ∈ {1, . . . ,n}.

Let q′ satisfy 1
q + 1

q′ = 1. Then one shows directly that cq′

j = bp′

j and ap
j = c jd j, j ∈ {1, . . . ,n}.

Then we have, using Lemma 6.7.1,
n∑

j=1

ap
j =

n∑
j=1

c jd j ≤
( n∑

j=1

dq
j

)1/q( n∑
j=1

cq′

j

)1/q′
=

( n∑
j=1

a jb j

)p( n∑
j=1

bp′

j

)1/q′
,

from which we deduce that
n∑

j=1

a jb j ≥
( n∑

j=1

ap
j

)1/p( n∑
j=1

bp′

j

)−1/(q′p)
,

from which the result follows since − 1
q′p = 1

p′ . �

6.7.7 Lemma (Minkowski’s inequality for p ∈ (0, 1)) If a1, . . . , an, b1, . . . , bn ∈ R≥0 and if
p ∈ (0, 1) then ( n∑

j=1

(aj + bj)p
)1/p
≥

( n∑
j=1

ap
j

)1/p
+

( n∑
j=1

bp
j

)1/p
,

Proof This follows from Lemma 6.7.6 using the same sequence of computations used
in proving that Lemma 6.7.3 follows from Lemma 6.7.1. �

In Figure 6.4 we depict the boundaries of the balls Bp(1, 0) in R2. The main
point is that the balls are convex of and only if p ∈ [1,∞). In the present finite-
dimensional setting this has no consequences. One can define a topology on Fn as
being generated by the open balls, even though they are not convex. This topology
is equivalent to the standard topology (one can see this by applying missing stuff ),
and so all the usual notions of convergence, continuity, etc., carry over to this case.
However, when we generalise this to infinite-dimensions, it turns out that the lack
of convexity causes problems. For example, in missing stuff we shall see that the
lack of convexity causes the topological dual to consist only of the zero functional.
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Figure 6.4 The unit spheres for the (if p > 1, at least) norms ‖·‖2
on R2 (shown are, from inside to out, p ∈ {1/3, 1, 3,∞})

6.7.2 Banach spaces of sequences

Among the more important classes of Banach spaces we will encounter are
those that are sequences characterised by certain summability properties. As we
shall expound on in detail in missing stuff , such Banach spaces are models for dis-
crete time- and frequency-domain representations of signals. Here we are merely
interested in some basic definitions and properties.

The most fundamental Banach space of sequences are those that are bounded.

6.7.8 Definition (`∞(F)) Let F ∈ {R,C}. Define a subspace `∞(F) of FZ>0 by

`∞(F) = {(a j) j∈∞ | there exists M ∈ R>0 such that |a j| ≤M, j ∈ Z>0}

and define
‖(a j) j∈Z>0‖∞ = sup{|a j| | j ∈ Z>0}

for (a j) j∈Z>0 ∈ `
∞(F). •

Thus `∞(F) consists of the set of bounded sequences in F and ‖·‖∞ is the least
upper bound for the terms in the sequence.

6.7.9 Theorem (`∞(F) is a Banach space) If F ∈ {R,C} then (`∞(F), ‖·‖∞) is an F-Banach
space.
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Proof The only not entirely trivial norm property to verify for ‖·‖∞ is the triangle
inequality:

‖(a j) j∈Z>0 + (b j) j∈Z>0‖∞ = sup{|a j + b j| | j ∈ Z>0}

≤ sup{|a j| + |b j| | j ∈ Z>0}

= sup{|a j| | j ∈ Z>0} + sup{|b j| | j ∈ Z>0}

= ‖(a j) j∈Z>0‖∞ + ‖(b j) j∈Z>0‖∞,

where we have used Proposition 2.2.27.
Now let us verify that (`∞(F), ‖·‖∞) is complete. We let ((a(l)

j ) j∈Z>0)l∈Z>0 be a Cauchy

sequence in `∞(F). We claim that, for each j ∈ Z>0, (a(l)
j )l∈Z>0 is a Cauchy sequence in

F. To see this, let ε ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥(a(l)
j ) j∈Z>0 − (a(k)

j ) j∈Z>0

∥∥∥
∞
< ε

for k, l ≥ N. Then, by definition of ‖·‖∞,∣∣∣a(l)
j − a(k)

j

∣∣∣ < ε
for k, l ≥ N and for j ∈ Z>0. Thus (a(l)

j )l∈Z>0 is indeed a Cauchy sequence, and so

converges to some a j ∈ F. We now claim that the sequence ((a(l)
j ) j∈Z>0)l∈Z>0 converges

to (a j) j∈Z>0 . To see this, let ε ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥(a(l)
j ) j∈Z>0 − (a(k)

j ) j∈Z>0

∥∥∥
∞
< ε

2

for k, l ≥ N. Thus ∣∣∣a(l)
j − a(l)

j

∣∣∣ < ε
2 , k, l ≥ N.

Now, for fixed j ∈ Z>0, let N′ ∈ Z>0 be sufficiently large that
∣∣∣a(k)

j − a j
∣∣∣ < ε

2 for k ≥ N′.
In this case, if l ≥ N and k ≥ max{N,N′}, we have∣∣∣a(l)

j − a j
∣∣∣ ≤ ∣∣∣a(l)

j − a(k)
j

∣∣∣ +
∣∣∣a(k)

j − a j
∣∣∣ < ε.

Since this holds for each j ∈ Z>0 we have∥∥∥(a(l)
j ) j∈Z>0 − (a j) j∈Z>0

∥∥∥
∞
≤ ε,

as desired. �

One property of `∞(F) that makes it different than some of the other Banach
spaces we consider is the following.

6.7.10 Proposition (`∞(F) is not separable) For F ∈ {R,C}, the Banach space (`∞(F), ‖·‖∞)
is not separable.

Proof Let U be the collection of sequences (a j) j∈Z>0 ∈ `
∞(F) such that a j ∈ {−1, 1},

j ∈ Z>0. It follows from Exercises ??, ??, and 2.1.4 that U is countable. Note that if
(a j) j∈Z>0 , (b j) j∈Z>0 ∈ U are distinct then

‖(a j) j∈Z>0‖∞ = 1, ‖(a j) j∈Z>0 − (b j) j∈Z>0‖∞ = 2.
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Let (a j) j∈Z>0 ∈ U and let (b j) j∈Z>0 ∈ B(1, (a j) j∈Z>0). By Exercise 6.1.3 we have∣∣∣‖(b j) j∈Z>0‖ − ‖(a j) j∈Z>0‖∞

∣∣∣ ≤ ∥∥∥(b j) j∈Z>0 − (a j) j∈Z>0

∥∥∥
∞

=⇒
∣∣∣‖(b j) j∈Z>0‖ − 1

∣∣∣ ≤ 1

=⇒
∥∥∥(b j) j∈Z>0

∥∥∥
∞
≤ 2.

Thus B(1, (a j) j∈Z>0) ⊆ B(2, 0`∞(F)) for each (a j) j∈Z>0 ∈ U . If

(a j) j∈Z>0 , (b j) j∈Z>0 ∈ U

and
(c j) j∈Z>0 ∈ B(1, (a j) j∈Z>0), (d j) j∈Z>0 ∈ B(1, (b j) j∈Z>0)

then

‖(c j) j∈Z>0 − (b j) j∈Z>0‖∞

≥ |‖(c j) j∈Z>0 − (a j) j∈Z>0‖∞ − ‖(a j) j∈Z>0 − (b j) j∈Z>0‖∞| ≥ 2

using Proposition ??. Thus (c j) j∈Z>0 < B(1, (b j) j∈Z>0). One similarly shows that
(d j) j∈Z>0 < B(1, (a j) j∈Z>0). This shows that B(2, 0`∞(F)) contains the collection

{B(1, (a j) j∈Z>0) | (a j) j∈Z>0 ∈ U }

of disjoint open balls. In particular, if ((b(l)
j ) j∈Z>0)l∈Z>0 is any countable subset of `∞(F)

then there is a countable or finite subset ((a(α)
j ) j∈Z>0)α∈A of U in which are contained all

of the sequences ((b(l)
j ) j∈Z>0)l∈Z>0 . Note that

cl
(
((b(l)

j ) j∈Z>0)l∈Z>0

)
⊆ ∪α∈AB(1, (a(α)

j ) j∈Z>0).

Therefore, any of the set of balls

{B(1, (a j) j∈Z>0) | (a j) j∈Z>0 ∈ U , (a j) j∈Z>0 , (a(α)
j ) j∈Z>0 , α ∈ A}

cannot lie in cl
(
((b(l)

j ) j∈Z>0)l∈Z>0

)
which prohibits ((b(l)

j ) j∈Z>0)l∈Z>0 from being dense. �

Now we begin looking at subspaces of `∞(F). We begin with subspaces of
sequences that converge.

6.7.11 Definition (c(F) and c0(F)) Let F ∈ {R,C}. Define subspaces c(F) and c0(F) of FZ>0

by
c(F) =

{
(a j) j∈Z>0

∣∣∣ there exists a ∈ F such that lim
j→∞

a j = a
}

and
c0(F) =

{
(a j) j∈Z>0

∣∣∣ lim
j→∞

a j = 0
}
,

respectively. •

Note that by Propositions 2.3.23 and missing stuff it follows that c(F) and c0(F)
are subspaces. Moreover, by Propositions 2.3.3 and missing stuff it follows that
c(F) and c0(F) are subspaces of `∞(F). The appropriate norm to use on the spaces
of sequences c(F) and c0(F) is the restriction of norm ‖·‖∞ on `∞(F). We denote
this norm simply by ‖·‖∞. With this norm our spaces of convergent sequences are
Banach spaces.
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6.7.12 Theorem ((c(F), ‖·‖∞) and (c0(F), ‖·‖∞) are Banach spaces) If F ∈ {R,C} then
(c(F), ‖·‖∞) and (c0(F), ‖·‖∞) are F-Banach spaces.

Proof Let ((a(l)
j ) j∈Z>0)l∈Z>0 be a Cauchy sequence in c(F). By Theorem 6.7.9 this means

that the sequence converges to (a j) j∈Z>0 ∈ `
∞(F). Since each sequence (a(l)

j ) j∈Z>0 is in

c(F) there exists a(l)
∈ F such that lim j→∞ a(l)

j = a(l). We claim that (a(l))l∈Z>0 is a Cauchy
sequence. For ε ∈ R>0 let N ∈ Z>0 be sufficiently large that∥∥∥(a(k)

j ) j∈Z>0 − (a(l)
j ) j∈Z>0

∥∥∥
∞
< ε

3 ,

which implies that ∣∣∣a(k)
j − a(l)

j

∣∣∣ < ε
3 , k, l ≥ N, j ∈ Z>0.

Now let k, l ≥ N and let j ∈ Z>0 be sufficiently large that∣∣∣a(k)
j − a(k)

∣∣∣ < ε
3 ,

∣∣∣a(l)
j − a(k)

∣∣∣ < ε
3 .

Then ∣∣∣a(k)
− a(l)

∣∣∣ ≤ ∣∣∣a(k)
− a(k)

j

∣∣∣ +
∣∣∣a(k)

j − a(l)
j

∣∣∣ +
∣∣∣a(l)

j − a(l)
∣∣∣ < ε.

As this holds for every k, l ≥ N it follows that (a(l))l∈Z>0 is a Cauchy sequence in F. We
denote its limit by a.

Finally we show that lim j→∞ a j = a, which shows that (a j) j∈Z>0 ∈ c(F). Let ε ∈ R>0

and let N′ ∈ Z>0 be sufficiently large that
∣∣∣a(k)
− a

∣∣∣ < ε
3 for k ≥ N′. Now fix k ≥ N′ and

let N ∈ Z>0 be sufficiently large that∣∣∣a j − a(k)
j

∣∣∣ < ε
3 ,

∣∣∣a(k)
j − a(k)

∣∣∣ < ε
3 , j ≥ N.

Then, for j ≥ N,
|a j − a| ≤

∣∣∣a j − a(k)
j

∣∣∣ +
∣∣∣a(k)

j − a(k)
∣∣∣ +

∣∣∣a(k)
− a

∣∣∣ < ε,
which completes the proof that (c(F), ‖·‖∞) is a Banach space.

If ((a(l)
j ) j∈Z>0)l∈Z>0 is a Cauchy sequence in c0(F) ⊆ c(F) the above argument is easily

modified to show that the limit sequence, denoted (a j) j∈Z>0 ∈ c(F) above is actually
in c0(F). The key point is that a(l) = 0 for each l ∈ Z>0 and so a = 0 as well. Thus
(c0(F), ‖·‖∞) is also a Banach space. �

The Banach spaces c(F) an c0(F) have the friendly property of being separable.

6.7.13 Proposition (c(F) and c0(F) are separable) If F ∈ {R,C} then the Banach spaces
(c(F), ‖·‖∞) and (c0(F), ‖·‖∞) are separable.

Proof It suffices to prove the proposition for c(F). We first take the case when F = R.
In this case, for q ∈ Q, we let Dq(R) be the subset of c(R) consisting of sequences
(q j) j∈Z>0 with q j ∈ Q, j ∈ Z>0, and such that q j = q for all j sufficiently large. We then
take

D(R) = ∪q∈QDq(R).

We claim that D(R) is countable. We note that Dq(R) is a countable (indexed by Z>0)
disjoint union of copies of Q and so is countable by Proposition ??. Thus D(R) is a
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countable union of countable sets, and so is again countable by Proposition ??. We
should also show that D(R) is dense in c(R). Let (a j) j∈Z>0 and let ε ∈ R>0. Suppose
that q ∈ Q is such that ∣∣∣ lim

j→∞
a j − q

∣∣∣ < ε
and let N ∈ Z>0 be sufficiently large that |a j−q| < ε for j ≥ N. Now choose q1, . . . , qN ∈ Q
such that |a j − q j| < ε for j ∈ {1, . . . ,N}. Now define (q j) j∈Z>0 by asking that q j = q for
j > N. Then (q j) j∈Z>0 ∈ D(R) and

‖(a j) j∈Z>0 − (q j) j∈Z>0‖∞ < ε.

Thus D(R) is dense in c(R).
For F = C the procedure above can be duplicated by letting D(C) be the set of

sequences (q j + ir j) j∈Z>0 ∈ c(C) with (q j) j∈Z>0 , (r j) j∈Z>0 ∈ D(R). �

The result has the following interesting corollary.

6.7.14 Corollary (c0(F) is the completion of F∞
0

) If F ∈ {R,C} then (c0(F), ‖·‖∞) is the
completion of (F∞0 , ‖·‖∞).

Proof Borrowing the notation from the proof of Proposition 6.7.13 we have

D0(F) ⊆ F∞0 ⊆ c0(F)

from which we deduce that

c0(F) = cl(D0(F)) ⊆ cl(F∞0 ) ⊆ cl(c0(F)) = c0(F).

Therefore, cl(F∞0 ) = c0(F), as desired. �

Now we consider Banach spaces of sequences which naturally use a different
norm that the∞-norm.

6.7.15 Definition (`p(F)) Let F ∈ {R,C} and let p ∈ [1,∞). Define a subspace `p(F) of FZ>0

by

`p(F) =
{
(a j) j∈Z>0

∣∣∣∣ ∞∑
j=1

|a j|
p < ∞

}
and define

‖(a j) j∈Z>0‖p =
( ∞∑

j=1

|a j|
p
)1/p

for (a j) j∈Z>0 ∈ `
p(F). •

At this point it is not necessarily clear that `p(F) is actually a subspace of FZ>0 ,
but we shall show shortly that it is, and is in fact a Banach space when equipped
with ‖·‖p as a norm.

Let us give some properties of the function ‖·‖p analogous to Lemmata 6.7.1
and 6.7.3.
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6.7.16 Lemma (Hölder’s inequality) If p ∈ (1,∞) and if (aj)j∈Z>0 ∈ `
p(F) and (bj)j∈Z>0 ∈

`p′(F), then
∞∑

j=1

|ajbj| ≤
( ∞∑

j=1

|aj|
p
)1/p( ∞∑

j=1

|bj|
p′
)1/p′

,

where 1
p + 1

p′ = 1. Moreover, equality holds if and only if (|aj|
p)j∈Z>0 and (|bj|

p′)j∈Z>0 are
collinear.

Proof For N ∈ Z>0, by Lemma 6.7.1 we have

N∑
j=1

|a jb j| ≤
( N∑

j=1

|a j|
p
)1/p( N∑

j=1

|b j|
p′
)1/p′
≤

( ∞∑
j=1

|a j|
p
)1/p( ∞∑

j=1

|b j|
p′
)1/p′

.

Thus
∞∑
j=1

|a jb j| = lim
N→∞

N∑
j=1

|a jb j| ≤
( ∞∑

j=1

|a j|
p
)1/p( ∞∑

j=1

|b j|
p′
)1/p′

,

as desired.
For the final assertion of the lemma, first note that a direction computation shows

that equality holds in the Hölder equality if (|a j|
p) j∈Z>0 and (|b j|

p′) j∈Z>0 are collinear.
For the converse, suppose that (|a j|

p) j∈Z>0 and (|b j|
p′) j∈Z>0 are not collinear. Then there

exists N ∈ Z>0 such that (|a1|
p, . . . , |aN |

p) and (|b1|
p′ , . . . , |bN |

p′) are not collinear. By
Lemma 6.7.1 we then have

N∑
j=1

|a jb j| <
( N∑

j=1

|a j|
p
)1/p( N∑

j=1

|bj|p
′
)1/p′

.

Since
∞∑

j=N+1

|a jb j| <
( ∞∑

j=N+1

|a j|
p
)1/p( ∞∑

j=N+1

|bj|p
′
)1/p′

it follows that equality cannot hold in the Hölder inequality. �

A version of Hölder’s inequality holds for p = 1 and we refer to Exercise 6.7.2
for this.

The Minkowski inequality also holds in this case.

6.7.17 Lemma (Minkowski’s inequality) If p ∈ [1,∞) and if (aj)j∈Z>0 , (bj)j∈Z>0 ∈ `
p(F) then

( ∞∑
j=1

|aj + bj|
p
)1/p
≤

( ∞∑
j=1

|aj|
p
)1/p

+
( ∞∑

j=1

|bj|
p
)1/p

.

Moreover, equality holds if and only if the following conditions hold:
(i) p = 1: for each j ∈ Z>0 there exists αj, βj ∈ R≥0, not both zero, such that αjaj = βjbj;
(ii) p ∈ (1,∞): there exists α, β ∈ R≥0, not both zero, such that αaj = βbj for every

j ∈ Z>0.
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Proof Let p ∈ [1,∞) and let (a j) j∈Z>0 , (b j) j∈Z>0 ∈ `
p(F). For each N ∈ Z>0( N∑

j=1

|a j + b j|
p
)1/p
≤

( N∑
j=1

|a j|
p
)1/p

+
( N∑

j=1

|b j|
p
)1/p
≤ ‖(a j) j∈Z>0‖p + ‖(b j) j∈Z>0‖p

by Lemma 6.7.3. Therefore,

‖(a j) j∈Z>0 + (b j) j∈Z>0‖p = lim
N→∞

( N∑
j=1

|a j + b j|
p
)1/p
≤ ‖(a j) j∈Z>0‖p + ‖(b j) j∈Z>0‖p.

This shows that (a j) j∈Z>0 + (b j) j∈Z>0 ∈ `
p(F).

An argument similar to that used in the last part of Lemma 6.7.16 can be used to
prove the last assertion of the lemma. �

The integral version of Minkowski’s inequality also holds in this case.

6.7.18 Lemma (Integral version of Minkowski’s inequality) missing stuff If F ∈ {R,C},
if p ∈ [1,∞), if ajk ∈ F, j,k ∈ Z>0, are such that (ajk)j∈Z>0 ∈ `

p(F) for every k ∈ Z>0 and
(ajk)k∈Z>0 ∈ `

p(F) for every j ∈ Z>0, then( ∞∑
j=1

∣∣∣∣ ∞∑
k=1

ajk

∣∣∣∣p)1/p
≤

∞∑
k=1

( ∞∑
j=1

|ajk|
p
)1/p

.

Moreover, equality holds if and only if there exists bj, , ck ∈ F, j,k ∈]integerp, such that
ajk = bjck.

Proof For p = 1 we have
∞∑
j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣ ≤ ∞∑
j=1

( ∞∑
k=1

|a jk|
)

=

∞∑
k=1

( ∞∑
j=1

|a jk|
)
,

giving the result in this case.
Now let p ∈ (1,∞). Here we compute

∞∑
j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p =

∞∑
j=1

(∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p−1)(∣∣∣∣ ∞∑
l=1

a jl

∣∣∣∣)
≤

∞∑
j=1

( ∞∑
l=1

(
|a jl|

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p−1))
=

∞∑
l=1

( ∞∑
j=1

(
|a jl|

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p−1))
,

swapping the order of summation in the last step. Now let p′ =
p

p−1 be the conjugate
index. Now, by Hölder’s inequality,

∞∑
j=1

(
|a jl|

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p−1)
≤

( ∞∑
j=1

|a jl|
∞
)1/p( ∞∑

j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p′(p−1))1/p′

=
( ∞∑

j=1

|a jl|
p
)1/p( ∞∑

j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p)1/p′
.
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Substituting this last relation into the preceding equation yields

∞∑
j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p ≤ ∞∑
l=1

(( ∞∑
j=1

|a jl|
p
)1/p( ∞∑

j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p)1/p′
)

=
( ∞∑

l=1

( ∞∑
j=1

|a jl|
p
)1/p)( ∞∑

j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p)1/p′
.

Now we note that the lemma is obviously true when

∞∑
j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p = 0.

So we suppose that this quantity is nonzero and divide the above-derived inequality

∞∑
j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p ≤ ( ∞∑
l=1

( ∞∑
j=1

|a jl|
p
)1/p)( ∞∑

j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p)1/p′

by ( ∞∑
j=1

∣∣∣∣ ∞∑
k=1

a jk

∣∣∣∣p)1/p′
,

which gives the desired inequality after noting that p′ is conjugate to p. �

Now we can prove that `p(F) is a Banach space.

6.7.19 Theorem ((`p(F), ‖·‖p) is a Banach space) If F ∈ R,C} and if p ∈ [1,∞) then
(`p(F), ‖·‖p) is an F-Banach space.

Proof Let us first verify that `p(F) is a subspace. We first consider the case of p = 1.
Let (a j) j∈Z>0 , (b j) j∈Z>0 ∈ `

1(F). By Lemma 6.7.17 we have (a j + b j) j∈Z>0 ∈ `
1(F). If α ∈ F

we have
∞∑
j=1

|αa j| = |α|
∞∑
j=1

|a j|

by Proposition 2.4.30. Thus α(a j) j∈Z>0 ∈ `
1(F), which shows that `1(F) is a subspace of

FZ>0 .
By Lemma 6.7.17, if (a j) j∈Z>0 , (b j) j∈Z>0 ∈ `

p(F) then (a j + b j) j∈Z>0 ∈ `
p(F). It is easy

to see, just as for the case of p = 1, that α(a j) j∈Z>0 ∈ `
p(F) if α ∈ F and if (a j) j∈Z>0 ∈ `

p(F),
p ∈ (1,∞).

As we have shown the triangle inequality for ‖·‖p already in Lemma 6.7.17, and
since the other norm properties for ‖·‖p hold trivially, it follows that `p(F) is a normed
vector space. It remains to show that it is complete. Let ((a(l)

j ) j∈Z>0)l∈Z>0 be a Cauchy

sequence in `p(F). We claim that the sequence (a(l)
j )l∈Z>0 is a Cauchy sequence for each

j ∈ Z>0. For every ε ∈ R>0 there exists N ∈ Z>0 such that

∥∥∥(a(k)
j ) j∈Z>0 − (a(l)

j ) j∈Z>0

∥∥∥
p =

( ∞∑
j=1

∣∣∣a(k)
j − a(l)

j

∣∣∣p)1/p
< ε.
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Now let ε ∈ R>0 and let N ∈ Z>0 be such that∥∥∥(a(k)
j ) j∈Z>0 − (b(l)

j ) j∈Z>0

∥∥∥
p < ε.

Then ∣∣∣a(k)
j − a(l)

j

∣∣∣p ≤ ∞∑
j=1

∣∣∣a(k)
j − a(l)

j

∣∣∣p < εp,

giving (a(l)
j )l∈Z>0 as a Cauchy sequence. Denote its limit by a j ∈ F. We next claim that

(a(l)
j )l∈Z>0 converges to (a j) j∈Z>0 in `p(F). Let ε ∈ R>0 and let N ∈ Z>0 be such that∥∥∥(a(l)

j ) j∈Z>0 − (a(k)
j ) j∈Z>0

∥∥∥
p <

ε
2 , l, k ≥ N.

For n ∈ Z>0 the sequence ((a(l)
j )n

j=1)l∈Z converges to (a j)n
j=1 inFn with respect to the norm

‖·‖p by Theorem 6.3.3. Thus there exists N′ ∈ Z>0 such that

( n∑
j=1

∣∣∣a(k)
j − a j

∣∣∣p)1/p
<
ε
2
, k ≥ N′.

Then, for k ≥ max{N,N′},

( n∑
j=1

∣∣∣a(l)
j − a j

∣∣∣p)1/p
≤

( n∑
j=1

∣∣∣a(l)
j − a(k)

j

∣∣∣p)1/p
+

( n∑
j=1

∣∣∣a(k)
j − a j

∣∣∣p)1/p

≤

∥∥∥(a(l)
j ) j∈Z>0 − (a(k)

j ) j∈Z>0

∥∥∥
p +

( n∑
j=1

∣∣∣a(k)
j − a j

∣∣∣p)1/p
< ε.

Now we have ∥∥∥(a(l)
j ) j∈Z>0 − (a j) j∈Z>0

∥∥∥
p = lim

n→∞

( n∑
j=1

∣∣∣a(l)
j − a j

∣∣∣p)1/p
≤ ε.

This gives convergence of (a(l)
j )l∈Z>0 to (a j) j∈Z>0 in `p(F), as desired. �

Let us show that, unlike `∞(F), the Banach spaces `p(F), p ∈ [1,∞), have the
property of being separable.

6.7.20 Proposition (`p(F) is separable for p ∈ [1,∞)) If F ∈ {R,C} and if p ∈ [1,∞) then
the Banach space (`p(F), ‖·‖p) is separable.

Proof We recall the definition of Dq(F) from the proof of Proposition 6.7.13 for q ∈ Q.
There we showed that D(F) was countable. We will show that D0(R) is dense in `p(F).
It is clear that D0(F) ⊆ `p(F) for p ∈ [1,∞). To show that it is dense in `p(F) let ε ∈ R>0
and let (a j) j∈Z>0 ∈ `

p(F). Let N ∈ Z>0 be sufficiently large that

( ∞∑
j=N+1

|a j|
p
)1/p

<
ε
2
.
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Now let q1, . . . , qN ∈ Q be such that

( N∑
j=1

|a j − q j|
p
)1/p

<
ε
2
.

Then, taking q j = 0 for j > N,

∥∥∥(a j) j∈Z>0 − (q j) j∈Z>0

∥∥∥
p =

( N∑
j=1

|a j − q j|
p
)1/p

+
( ∞∑

j=N+1

|a j|
p
)1/p

< ε.

Since (q j) j∈Z>0 ∈ D0(R) the result follows. �

From this result we have the following useful corollary which finishes off
Example 6.3.1–1.

6.7.21 Corollary (`p(F) is the completion of F∞
0

) If F ∈ {R,C} and if p ∈ [1,∞) then
(`p(F), ‖·‖p) is the completion of (F∞0 , ‖·‖p).

Proof Borrowing the notation from the proof of Proposition 6.7.20 we have

D0(F) ⊆ F∞0 ⊆ `
p(F)

from which we deduce, using the proof of Proposition 6.7.20, that

`p(F) = cl(D0(F)) ⊆ cl(F∞0 ) ⊆ cl(`p(F)) = `p(F).

Therefore, cl(F∞0 ) = `p(F), as desired. �

6.7.3 Banach spaces of direct sums

Let F ∈ {R,C} and let ((Vi, ‖·‖i))i∈I be a family of nontrivial F-Banach spaces.
We shall generalise the situation of Proposition 6.3.4 as follows. For p ∈ [1,∞] we
define a norm ‖·‖I,p on

⊕
i∈I Vi by

‖(vi)i∈I‖I,p =


(∑

i∈I‖vi‖
p
i

)1/p
, p ∈ [1,∞),

sup{‖vi‖i | i ∈ I}, p = ∞.

The argument in the proof of Proposition 6.3.4 used to show incompleteness of
(
⊕

i∈I Vi, ‖·‖I,1) when I is infinite is easily adapted to the case when p ∈ [1,∞).
Moreover, for p = ∞ one can also show that (

⊕
i∈I Vi, ‖·‖I,∞) is incomplete; we leave

this to the reader as Exercise 6.3.6.
Note that the situation we consider here is a generalisation of the spaces of

sequences considered in detail in Section 6.7.2. Indeed, the situation in Section 6.7.2
occurs upon taking I = Z>0 and Vi = F for each i ∈ I. For this reason, many of
the particulars in this section go just as they do in Section 6.7.2, and we encourage
the reader to understand this. It will be helpful in understanding the further
generalisations we will make from families to functions.

That ‖·‖p is a norm for each p ∈ [1,∞) is not difficult to show, but we will show
this as we go along in any event. In fact, we shall follow closely the course set out in
Section 6.7.2. In keeping with this, we start off making the following definition.
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6.7.22 Definition (`∞(
⊕

i∈I Vi)) If F ∈ {R,C} and if ((Vi, ‖·‖i)i∈I is a family of normed F-
vector spaces then we define

`∞(
⊕

i∈IVi) =
{
(vi)i∈I ∈

∏
i∈IVi

∣∣∣ sup{‖vi‖i | i ∈ I} < ∞
}

and define
‖(vi)i∈I‖I,∞ = sup{‖vi‖i | i ∈ I}

for (vi)i∈I ∈ `∞(
⊕

i∈I Vi. •

It is evident (and see Exercise 6.7.5) that it is necessary that each of the normed
vector spaces Vi be a Banach space if `∞(

⊕
i∈I Vi) is to be a Banach space. Moreover,

this is sufficient.

6.7.23 Theorem ((`∞(
⊕

i∈I Vi), ‖·‖I,∞) is a Banach space) LetF ∈ {R,C} and let ((Vi, ‖·‖i))i∈I

be a family of F-Banach spaces. Then (`∞(
⊕

i∈I Vi), ‖·‖I,∞) is an F-Banach space.
Proof The only not entirely trivial norm property to verify for ‖·‖I,∞ is the triangle
inequality:

‖(ui)i∈I + (vi)i∈I‖I,∞ = sup{‖ui + vi‖i | i ∈ I}
≤ sup{‖ui‖i + ‖vi‖i | i ∈ I}
= sup{‖ui‖i | i ∈ I} + sup{‖vi‖i | i ∈ I}
= ‖(ui)i∈I‖∞ + ‖(vi)i∈I‖∞,

where we have used Proposition 2.2.27.
Now let us verify that (`∞(

⊕
i∈I Vi), ‖·‖I,∞) is complete. We let ((v(l)

i )i∈I)l∈Z>0 be a

Cauchy sequence in `∞(
⊕

i∈I Vi). We claim that, for each i ∈ I, (v(l)
i )l∈Z>0 is a Cauchy

sequence in Vi. To see this, let ε ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥(v(l)
i )i∈I − (v(k)

i )i∈I
∥∥∥

I,∞ < ε

for k, l ≥ N. Then, by definition of ‖·‖I,∞,∥∥∥v(l)
i − v(k)

i

∥∥∥
i < ε

for k, l ≥ N and for i ∈ I. Thus (v(l)
i )l∈Z>0 is indeed a Cauchy sequence, and so converges

to some vi ∈ Vi. We now claim that the sequence ((v(l)
i )i∈I)l∈Z>0 converges to (vi)i∈I. To

see this, let ε ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥(v(l)
i )i∈I − (v(k)

i )i∈I
∥∥∥

I,∞ <
ε
2

for k, l ≥ N. Thus ∥∥∥v(l)
i − v(l)

i

∥∥∥
i <

ε
2 , k, l ≥ N.

Now, for fixed i ∈ I, let N′ ∈ Z>0 be sufficiently large that
∥∥∥v(k)

i − vi
∥∥∥

i <
ε
2 for k ≥ N′. In

this case, if l ≥ N and k ≥ max{N,N′}, we have∥∥∥v(l)
i − vi

∥∥∥
i ≤

∥∥∥v(l)
i − v(k)

i

∥∥∥
i +

∥∥∥v(k)
i − vi

∥∥∥
i < ε.

Since this holds for each i ∈ I we have∥∥∥(v(l)
i )i∈I − (vi)i∈I

∥∥∥
I,∞ ≤ ε,

as desired. �
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Again sticking with the plan of Section 6.7.2, let us consider a subspace of
`∞(

⊕
i∈I Vi) that is analogous to the subspace c0(F) of `∞(F).

6.7.24 Definition (c0(
⊕

i∈I Vi)) If F ∈ {R,C} and if ((Vi, ‖·‖i)i∈I is a family of normed F-
vector spaces then we define c0(

⊕
i∈I Vi) to be the elements (vi)i∈I ∈ `∞(

⊕
i∈I Vi)

with the property that, for each ε ∈ R>0 the set {i ∈ I | ‖vi‖i ≥ ε} is finite. •

As with the corresponding conclusion in Section 6.7.2, we have the following
result.

6.7.25 Theorem (c0(
⊕

i∈I Vi) is a Banach space) Let F ∈ {R,C} and let ((Vi, ‖·‖i))i∈I be
a family of F-Banach spaces. Then (c0(

⊕
i∈I Vi), ‖·‖I,∞) is an F-Banach space, and is

moreover the completion of
⊕

i∈I Vi with respect to the norm ‖·‖I,∞.
Proof Let ((v(l)

i )i∈I)l∈Z>0 be a Cauchy sequence in c0(
⊕

i∈I Vi). By Theorem 6.7.23
this means that the sequence converges to (vi)i∈I ∈ `∞(

⊕
i∈I Vi). We next show that

(vi)i∈I ∈ c0(
⊕

i∈I Vi). Let ε ∈ R>0 and let N ∈ Z>0 be sufficiently large that∥∥∥vi − v(k)
i

∥∥∥
i <

ε
2 , k ≥ N, i ∈ I.

For fixed k ≥ N let J ⊆ I be a finite set such that
∥∥∥v(k)

i

∥∥∥ < ε
2 for each i ∈ I \ J. Then, for

i ∈ I \ J,
‖vi‖i ≤

∥∥∥vi − v(k)
i

∥∥∥
i +

∥∥∥v(k)
i

∥∥∥
i < ε,

which completes the proof that c0(
⊕

i∈I Vi) is a Banach space.
To see that c0(

⊕
i∈I Vi) is the completion of

⊕
i∈I Vi, let ε ∈ R>0 and let (vi)i∈I ∈

c0(
⊕

i∈I Vi). Let J ⊆ I be a finite set such that ‖vi‖i < ε for each i ∈ I \ J. Then define
(ui)i∈I ∈

⊕
i∈I Vi by

ui =

vi, i ∈ J,
0Vi , i ∈ I \ J.

It then follows immediately that ‖(vi)i∈I − (ui)i∈I‖I,p < ε, and so
⊕

i∈I Vi is dense in
c0(

⊕
i∈I Vi). �

Now let us turn to the case of p ∈ [1,∞).

6.7.26 Definition (`p(
⊕

i∈I Vi)) Let F ∈ {R,C} and let ((Vi, ‖·‖i))i∈I be a family of normed
F-vector spaces. For p ∈ [1,∞) we define

`p(
⊕

i∈IVi) =
{
(vi)i∈I ∈

∏
i∈IVi

∣∣∣∣ ∑
i∈I

‖vi‖
p
i < ∞

}
and

‖(vi)i∈I‖I,p =
(∑

i∈I

‖vi‖
p
i

)1/p
,

for (vi)i∈I ∈ `p(
⊕

i∈I Vi). •

Since the sum in the definition of ‖·‖I,p for p ∈ [1,∞) is over a general index set,
it must be interpreted as in Section 2.4.7 (see also Section 6.4.6).

We now have the expected result that `p(
⊕

i∈I Vi) is a Banach space.
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6.7.27 Theorem ((`p(
⊕

i∈I Vi), ‖·‖I,p) is a Banach space) Let F ∈ {R,C} and let ((Vi, ‖·‖i))i∈I

be a family of F-Banach spaces. Then (`p(
⊕

i∈I Vi), ‖·‖I,p) is an F-Banach space, and is
moreover the completion of

⊕
i∈I Vi with respect to the norm ‖·‖I,p.

Proof Let us first verify that `p(
⊕

i∈I Vi) is a subspace. We first consider the case of
p = 1. Let (ui)i∈I, (vi)i∈I ∈ `1(

⊕
i∈I Vi) and note that for each finite subset J ⊆ I we have∑

j∈J

‖u j + v j‖ j ≤
∑
j∈J

‖u j‖ j +
∑
j∈J

‖v j‖ j ≤ ‖(ui)i∈I‖I,1 + ‖(vi)i∈I‖I,1,

where we have used the triangle inequality for ‖·‖i, i ∈ I. Therefore, by definition of
sums over arbitrary index sets,

‖(ui)i∈I + (vi)i∈I‖I,1 =
∑
i∈I

‖ui + vi‖i ≤ ‖(ui)i∈I‖I,1 + ‖(vi)i∈I‖I,1. (6.13)

This shows that (ui)i∈I + (vi)i∈I ∈ `1(
⊕

i∈I Vi). If α ∈ F we have∑
i∈I

‖αvi‖i = |α|
∑
i∈I

‖vi‖i

by Proposition 2.4.30 (noting that the sum is over a countable subset of I). Thus
α(vi)i∈I ∈ `1(

⊕
i∈I Vi), which shows that `1(

⊕
i∈I Vi) is a subspace of

∏
i∈I Vi.

Now let p ∈ (1,∞) and let (ui)i∈I, (vi)i∈I ∈ `p(
⊕

i∈I Vi). For each finite subset J ⊆ I(∑
j∈J

‖u j + v j‖
p
j

)1/p
≤

(∑
j∈J

‖u j‖
p
j

)1/p
+

(∑
j∈J

‖v j‖)
p
j

)1/p
≤ ‖(ui)i∈I‖I,p + ‖(vi)i∈I‖I,p

by Lemma 6.7.3. Therefore,

‖(ui)i∈I + (vi)i∈I‖I,p =
(∑

i∈I

‖ui + vi‖
p
i

)1/p
≤ ‖(ui)i∈I‖I,p + ‖(vi)i∈I‖I,p. (6.14)

This shows that (ui)i∈I + (vi)i∈I ∈ `p(
⊕

i∈I Vi). It is easy to see, just as for the case of p = 1,
that α(vi)i∈I ∈ `p(

⊕
i∈I Vi) if α ∈ F and if (vi)i∈I ∈ `p(

⊕
i∈I Vi), p ∈ (1,∞).

As we have shown the triangle inequality for ‖·‖I,p already in (6.13) and (6.14),
and since the other norm properties for ‖·‖I,p hold trivially, it follows that `p(

⊕
i∈I Vi)

is a normed vector space. It remains to show that it is complete. Let ((v(l)
i )i∈I) j∈Z>0 be

a Cauchy sequence in `p(
⊕

i∈I Vi). We claim that the sequence (v(l)
i )l∈Z>0 is a Cauchy

sequence for each i ∈ I. For every ε ∈ R>0 there exists N ∈ Z>0 such that∥∥∥(v(k)
i )i∈I − (v(l)

i )i∈I
∥∥∥

I,p =
(∑

i∈I

∥∥∥v(k)
i − v(l)

i

∥∥∥p
i

)1/p
< ε.

Now let ε ∈ R>0 and let N ∈ Z>0 be such that∥∥∥(v(k)
i )i∈I − (v(l)

i )i∈I
∥∥∥

I,p < ε.

Then ∥∥∥v(k)
i − v(l)

i

∥∥∥p
i ≤

∑
i∈I

∥∥∥v(k)
i − v(l)

i

∥∥∥p
i < ε

p,
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giving (v(l)
i )l∈Z>0 as a Cauchy sequence. Denote its limit by vi ∈ Vi. We next claim that

(v(l)
i )l∈Z>0 converges to (vi)i∈I in `p(

⊕
i∈I Vi). Let ε ∈ R>0 and let N ∈ Z>0 be such that∥∥∥(v(l)

i )i∈I − (v(k)
i )i∈I

∥∥∥
p <

ε
2 , l, k ≥ N.

For any finite subset J ⊆ I we claim that the sequence ((v(l)
j ) j∈J)l∈Z converges to (v j) j∈J

in
⊕

j∈J V j with respect to the norm ‖·‖J,p defined by

‖(v j) j∈J‖J,p =
(∑

j∈J

‖v j‖
p
j

)1/p
.

This claim is proved for p = 1 in Proposition 6.3.4. The proof for p ∈ (1,∞) is exactly
the same, save for notation. Thus there exists N′ ∈ Z>0 such that(∑

j∈J

∥∥∥v(k)
j − v j

∥∥∥p
j

)1/p
<
ε
2
, k ≥ N′.

Then, for k ≥ max{N,N′},(∑
j∈J

∥∥∥v(l)
j − v j

∥∥∥p
j

)1/p
≤

(∑
j∈J

∥∥∥v(l)
j − v(k)

j

∥∥∥p
j

)1/p
+

(∑
j∈J

∥∥∥v(k)
j − v j

∥∥∥p
j

)1/p

≤

∥∥∥(v(l)
i )i∈I − (v(k)

i )i∈I
∥∥∥

I,p +
(∑

j∈J

∥∥∥v(k)
j − v j

∥∥∥p
j

)1/p
< ε.

Since this can be done for any finite set J ⊆ I we have∥∥∥(v(l)
i )i∈I − (ai)i∈I

∥∥∥
p ≤ ε.

This gives convergence of (v(l)
i )l∈Z>0 to (ai)i∈I in `p(

⊕
i∈I Vi), as desired. �

Of significant interest is the case when I is finite. In this case, all of the Banach
spaces `p(

⊕
i∈I Vi), p ∈ [1,∞], and c0(

⊕
i∈I Vi) are the same and equal to

⊕
i∈I Vi.

In particular,
⊕

i∈I Vi is a Banach space if I is finite and if all of the normed vector
spaces Vi, i ∈ I, are complete.

6.7.4 Banach spaces of continuous functions on R

One way to think of this section is as giving a generalisation of the construction
of `∞(F) and its subspaces in Section 6.7.2. The generalisation is to functions on
the real line from sequences, which can be thought of as functions on Z>0. For
functions on the real line one has the possible property of continuity that one is
compelled to keep track of.

We begin by providing the classes of continuous functions we will talk about.
We recall from Definition ?? that if I ⊆ R is an interval and if A ⊆ I then clI(A) =
cl(A) ∩ I.
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6.7.28 Definition (C0(I;F), C0
cpt

(I;F), C0
bdd

(I;F), C0
0
(I;F)) Let F ∈ {R,C} and let I ⊆ R be an

interval.
(i) C0(I;F) = { f : I→ F | f is continuous}.
(ii) If f ∈ C0(I;F) then the support of f ismissing stuff

supp( f ) = clI({x ∈ I | f (x) , 0}).

(iii) C0
cpt(I;F) = { f ∈ C0(I;F) | f has compact support}.

(iv) C0
0(I;F) = { f ∈ C0(I;F)| for every ε ∈ R>0 there exists a compact set K ⊆

I such that {x ∈ I | | f (x)| ≥ ε} ⊆ K}.
(v) C0

bdd(I;F) = { f ∈ C0(I;F)| there exists M ∈ R>0 such that | f (x)| ≤ M for all x ∈
I}. •

One should be a little careful about the meaning of compact support when I is
not closed. For example, the function f ∈ C0

bdd((0, 1];F) defined by f (x) = 1 does
not have compact support since its support is (0, 1].

We first understand the case when I = R. In this case, one can verify that

C0
0(R;F) =

{
f ∈ C0

bdd(R;F)
∣∣∣ lim
|x|→∞
| f (x)| = 0

}
(6.15)

(this is Exercise 6.7.6). Thus C0
0(R;F) consists of those functions which “die off” at

infinity.
Clearly

C0
cpt(R;F) ⊂ C0

0(R;F) ⊂ C0
bdd(R;F) ⊂ C0(R;F). (6.16)

For I = R the vector space C0(I;F) is too large to be of interest for the purposes
of the discussion here. This is simply because continuous functions on R can be
unbounded, and we wish to use a norm that is reliant on functions being bounded.
Indeed, we define ‖·‖∞ by

‖ f ‖∞ = sup{| f (x)| | x ∈ R}

for f ∈ C0
bdd(R;F). That this is a norm follows just as do the norm properties of

Example 6.1.3–10.
Let us get the ball rolling by giving an important property of C0

cpt(R;F). This
result should be thought of as being analogous to (F∞0 , ‖·‖∞) not being complete.

6.7.29 Proposition ((C0
cpt

(R;F), ‖·‖∞) is not complete) If F ∈ {R,C} then (C0
cpt(R;F), ‖·‖∞)

is not complete.
Proof Let us define a sequence ( f j) j∈Z>0 in C0

cpt(R;F) by

f j(x) =

 1
1+x2 , x ∈ [− j, j],
0, otherwise.

Let ε ∈ R>0. Since limx→∞
1

1+x2 = 0 it follows that there exists N ∈ Z>0 such that∣∣∣ 1
1+x2

1
−

1
1+x2

2

∣∣∣ < ε for every x1, x2 ≥ N. It then holds that | f j(x) − fk(x)| < ε for every
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j, k ≥ N and for every x ∈ R. This shows that ( f j) j∈Z>0 is a Cauchy sequence. We
next claim that this sequence does not converge. The argument used in the lemma in
Example 6.3.1–2 can be adapted to show that if g ∈ C0

bdd(R;F) is a function to which
the sequence ( f j) j∈Z>0 converges then g(x) = 1

1+x2 for every x ∈ R. In particular, the
sequence ( f j) j∈Z>0 does not converge in C0

cpt(R;F), and so C0
cpt(R;F) is not complete.�

With this in our back pocket let us proceed in a manner entirely analogous
to what we did in Section 6.7.2 in looking at `∞(F) and its subspaces. Here the
key observation is the following fairly obvious translation from the language of
Section 3.5.2 to the current language of convergence in normed vector spaces.

6.7.30 Proposition (Characterisation of convergence in (C0
bdd

(R;F), ‖·‖∞)) If F ∈ {R,C}
and if (fj)j∈Z>0 is a sequence in C0

bdd(R;F) then the following statements are equivalent:
(i) the sequence (fj)j∈Z>0 converges uniformly to f ∈ C0

bdd(R;F);
(ii) the sequence (fj)j∈Z>0 converges to f ∈ C0

bdd(R;F) with respect to the norm ‖·‖∞.
Proof This just follows directly from the definitions of each sort of convergence. If
the reader does not see this, they ought to convince themselves that this is the case. �

The following theorem is now fairly easily proved, given what we already did
in Section 3.5.2.

6.7.31 Theorem ((C0
bdd

(R;F), ‖·‖∞) is a Banach space) If F ∈ {R,C} then
(C0

bdd(R;F), ‖·‖∞) is an F-Banach space.
Proof Let ( f j) j∈Z>0 be a Cauchy sequence in C0

bdd(R;F). By Theorem 3.5.8missing
stuff it follows that this sequence converges to a function f ∈ C0

bdd(R;F), and so the
theorem follows. �

As with `∞(F), C0
bdd(R;F) is not separable.

6.7.32 Proposition (C0
bdd

(R;F) is not separable) If F ∈ {R,C} then (C0
bdd(R;F), ‖·‖∞) is

not separable.
Proof Define a function g0 : R→ F by

g0(x) =


1 + x, x ∈ [−1

2 , 0],
1 − x, x ∈ (0, 1

2 ],
0, otherwise.

Then let U be the collection of functions f ∈ C0
bdd(R;F) of the form

f (x) =
∑

j∈Z>0

(−1)k j g0(x − j)

where (k j) j∈Z>0 is a sequence in {0, 1}. The reader ought to sketch the graph of a typical
function in U to understand what they are doing. Upon doing this it will be clear
that, if f ∈ U then ‖ f ‖∞ = 1 and if f1, f2 ∈ U are distinct then ‖ f1 − f2‖∞ = 2. The
remainder of the proof follows the proof of Proposition 6.7.10, but we give it here for
completeness.
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Note that there are as many distinct functions in U as there are maps from Z>0
into {0, 1}. Thus card(U ) = 2ℵ0 . It then follows from Exercises ??, ??, and 2.1.4 that U
is uncountable. By Exercise 6.1.3 we have

|‖g‖∞ − ‖ f ‖∞| ≤ ‖g − f ‖∞
=⇒ |‖g‖∞ − 1| ≤ 1

=⇒
∥∥∥g

∥∥∥
∞
≤ 2

for f ∈ U . Thus B(1, f ) ⊆ B(2, 0C0
bdd(R;F)) for each f ∈ U . If f , g ∈ U are distinct, and

α ∈ B(1, f ) and β ∈ B(1, g) then

‖α − g‖∞ ≥ |‖α − f ‖∞ − ‖ f − g‖∞| ≥ 2

using Proposition ??. Thus α < B(1, g). One similarly shows that β < B(1, f ). This
shows that B(2, 0C0

bdd(R;F)) contains the collection

{B(1, f ) | f ∈ U }

of disjoint open balls. In particular, if (g j) j∈Z>0 is any countable subset of C0
bdd(R;F)

then there is a countable or finite subset ( fα)α∈A of U in which are contained all of the
functions (g j) j∈Z>0 . Note that

cl((g j) j∈Z>0) ⊆ ∪α∈AB(1, fα).

Therefore, any of the set of balls

{B(1, f ) | f ∈ U , f , fα, α ∈ A}

cannot lie in cl((g j) j∈Z>0) which prohibits (g j) j∈Z>0 from being dense. �

Next let us characterise the completion of C0
cpt(R;F). The following result is

entirely analogous to Corollary 6.7.14 which asserts that c0(F) is the completion of
F∞0 .

6.7.33 Theorem ((C0
0
(R;F), ‖·‖∞) is a Banach space) If F ∈ {R,C} then C0

0(R;F) is an
F-Banach space, and moreover is the completion of (C0

cpt(R;F), ‖·‖∞).
Proof We first make the observation that C0

0(R;F) is a subspace of C0
bdd(R;F). This

follows from Propositions 2.3.23 and 2.3.29. Now suppose that ( f j) j∈Z>0 is a Cauchy
sequence in C0

0(R;F). By Theorem 6.7.31 there exists a function f ∈ C0
bdd(R;F) such

that ( f j) j∈Z>0 converges to f . We need only show that f ∈ C0
0(R;F). Let ε ∈ R>0 and let

N ∈ Z>0 be sufficiently large that | f (x)− f j(x)| < ε
2 for all x ∈ R provided that j ≥ N. Let

K ⊆ R be a compact set such that | fN(x)| < ε
2 for x ∈ R \ K. Then, for x ∈ R \ K we have

| f (x)| ≤ | f (x) − fN(x)| + | fN(x)| < ε,

giving f ∈ C0
0(R;F), as desired.

To show that C0
0(R;F) is the completion of C0

cpt(R;F), let f ∈ C0
0(R;F) and define

( f j) j∈Z>0 by

f j(x) =


f (x), x ∈ [− j, j],
f (− j)( j + 1 + x), x ∈ [− j − 1,− j),
f ( j)( j + 1 − x), x ∈ ( j, j + 1],
0, otherwise.
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We claim that this sequence converges to f . For ε ∈ R>0 let N ∈ Z>0 have the property
that | f (x)| < ε if |x| ≥ N. Then we immediately have | f (x) − f j(x)| < ε for j ≥ N, giving
the desired convergence, and showing that C0

cpt(R;F) is dense in C0
0(R;F). �

Just as c0(F) is separable, so too is C0
0(R;F).

6.7.34 Proposition (C0
0
(R;F) is separable) If F ∈ {R,C} then (C0

0(R;F), ‖·‖∞) is separable.
Proof For N ∈ Z>0 let us denote by PN(F) the set of functions f : R → F having the
form

f (x) =


zkxk + · · · + z1x + z0, x ∈ [−N,N],
(zkNk + · · · + z1N + z0)(N + 1 − x), x ∈ (N,N + 1),
((−1)kzkNk + · · · − z1N + z0)(N + 1 + x), x ∈ (−N − 1,−N),
0, |x| ≥ N + 1,

where k ∈ Z≥0 and z0, z1, . . . , zk ∈ F are rational if F = R and whose real and imaginary
parts are rational of F = C. Note that functions in PN(F) are continuous. Moreover, for
each N ∈ Z>0 the set PN(F) is countable by Proposition ??. Thus ∪N∈Z>0PN(F) is also
countable, again by Proposition ??.

We claim that ∪N∈Z>0PN(F) is dense in C0
0(R;F). Indeed, let f ∈ C0

0(R;F) and let
ε ∈ R>0. Let N ∈ Z>0 be sufficiently large that | f (x)| < ε for |x| ≥ N. By the Weierstrass
Approximation Theorem, Theorem 3.5.21, let g ∈ PN(F) be such that | f (x)−g(x)| < ε for
x ∈ [−N,N]. Our construction of functions in PN(F) then ensures that | f (x) − g(x)| < ε
for all x ∈ R. �

In the preceding discussion we have pointed out various analogies with con-
structions concerning sequences in Section 6.7.2. In Table 6.1 we summarise the

Table 6.1 The relationships between the objects in the left column
are analogous to the relationships between the objects in the
right column

Sequence space Function space

F∞0 C0
cpt(R;F)

`∞(F) C0
bdd(R;F)

c0(F) C0
0(R;F)

correspondences. The correspondences for the sequence spaces `p(F) for p ∈ [1,∞)
are more complicated, and we present these in Table 6.2.

Having now somewhat understood the structure of the spaces C0
cpt(I;F), C0

0(I;F),
and C0

bdd(I;F) when I = R, let us turn to the case of a general interval. It is fairly easy
to carry out the programme directly in this case, adapting the arguments above.
However, it is also the case that we shall do this in some generality in Section 6.7.5.
Therefore, we abbreviate the discussion somewhat, mostly only giving outlines of
proofs and referring to the more general results for complete arguments.

First let us observe that Proposition 6.7.30 holds for arbitrary intervals.
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6.7.35 Proposition (Characterisation of convergence in (C0
bdd

(R;F), ‖·‖∞)) If F ∈

{R,C}, if I ⊆ R, and if (fj)j∈Z>0 is a sequence in C0
bdd(I;F) then the following statements

are equivalent:
(i) the sequence (fj)j∈Z>0 converges uniformly to f ∈ C0

bdd(I;F);
(ii) the sequence (fj)j∈Z>0 converges to f ∈ C0

bdd(I;F) with respect to the norm ‖·‖∞.
Proof As with Proposition 6.7.30, this follows directly from the definitions. �

Now let us indicate that things are significantly more trivial for compact inter-
vals than for general intervals.

6.7.36 Proposition (Continuous function spaces for compact intervals) If F ∈ {R,C}
and if I ⊆ R is a compact interval, then

C0
cpt(I;F) = C0

0(I;F) = C0
bdd(I;F) = C0(I;F).

Proof This is a consequence of (6.16) along with the fact that C0
cpt(I;F) = C0(I;F) since

every closed subset of I is compact according to Corollary 2.5.28. �

For compact intervals this gives the following characterisation of their continu-
ous functions as forming a particularly nice Banach space.

6.7.37 Corollary (Properties of continuous function spaces for compact intervals) If
F ∈ {R,C} and if I ⊆ R is a compact interval, then C0

cpt(I;F), C0
0(I;F), C0

bdd(I;F), and
C0(I;F) are separable F-Banach spaces with the norm ‖·‖∞.

Proof That these are Banach spaces follows from Theorem 3.5.8missing stuff since
there we showed that in C0

bdd(I;F) all Cauchy sequences converge. Separability follows
from the Weierstrass Approximation Theorem, just as does Proposition 6.7.34. �

Since C0
cpt(I;F) is the smallest of the spaces we consider, let us characterise

precisely when it is a Banach space.

6.7.38 Proposition (Completeness of (C0
cpt

(I;F), ‖·‖∞)) If F ∈ {R,C} and if I ⊆ R is an
interval, then (C0

cpt(I;F), ‖·‖∞) is complete if and only if I is compact.
Proof For the noncompleteness of C0

cpt(I;F) when I is not compact, we consider two
cases of intervals: I = (0, 1] and I = [0,∞). The proof for an arbitrary noncompact
interval follows by a trivial modification of these two cases.

First we show that C0
cpt((0, 1];F) is not complete. We consider a sequence of

functions ( f j) j∈Z>0 in C0
cpt((0, 1];F) defined by

f j(x) =


0, x ∈ (0, 1

j ],

2 jx−1
j−2 , x ∈ [ 1

j ,
1
2 ],

1, x ∈ [ 1
2 , 1].

The reader is encouraged to plot the graphs of a few of the functions in this sequence to
see what they are doing. Upon doing this it is easy to see that the sequence converges
pointwise, in fact uniformly, to the function f : (0, 1]→ F defined by

f (x) =

x, x ∈ (0, 1
2 ],

1, x ∈ ( 1
2 , 1].



719 6 Banach spaces 2016/11/26

We leave the elementary formal verification of this to the reader. Thus the sequence
( f j) j∈Z>0 converges in the normed vector space (C0

bdd((0, 1];F), ‖·‖∞). It is, therefore, a
Cauchy sequence. However, since f does not have compact support, the sequence
does not converge in C0

cpt((0, 1];F), giving the incompleteness of C0
cpt((0, 1];F).

Now we show that C0
cpt([0,∞);F) is not complete. Let us define a sequence ( f j) j∈Z>0

in C0
cpt([0,∞);F) by

f j(x) =

 1
1+x2 , x ∈ [0, j],
0, otherwise.

It then follows, just as in the proof of Proposition 6.7.29, that this is a Cauchy sequence
that does not converge.

That C0
cpt(I;F) is complete when I is compact is Proposition 6.7.36. �

The bounded continuous functions on I form a Banach space.

6.7.39 Theorem ((C0
bdd

(I;F), ‖·‖∞) is a Banach space) If F ∈ {R,C} and if I ⊆ R is an
interval then (C0

bdd(I;F), ‖·‖∞) is an F-Banach space. This Banach space is separable if and
only if I is compact.

Proof While the first assertion follows from Theorem 3.5.8missing stuff just as does
Theorem 6.7.31, we give a complete self-contained proof here, since this is an important
result for us.

Let ( f j) j∈Z>0 be a Cauchy sequence in C0
bdd(I;F) and for x ∈ I define f (x) =

lim j→∞ f j(x). This pointwise limit exists since ( f j(x)) j∈Z>0 is a Cauchy sequence in
R (why?).

First we claim that for any ε > 0 there exists N ∈ Z>0 such that | f (x) − f j(x)| < ε
for all x ∈ I whenever j ≥ N. Let ε ∈ R>0 and let x ∈ I. Since ( f j) j∈Z>0 is Cauchy there
exists N ∈ Z>0 such that | f j(x) − fk(x)| < ε

2 . We may also find N(x) ∈ Z>0 such that
| f (x) − f j(x)| < ε

2 for j ≥ N(x). Let k = max{N,N(x)}. For j ≥ N we then have

| f j(x) − f (x)| = |( f j(x) − fk(x)) + ( fk(x) − f (x))|
≤ | f j(x) − fk(x)| + | fk(x) − f (x)|
< ε

2 + ε
2 = ε,

where we have used the triangle inequality. Note that this shows uniform convergence
to f of the sequence ( f j) j∈Z>0 , and so convergence to f using the norm ‖·‖∞.

We next claim that f is bounded. To see this, for ε > 0 let N ∈ Z>0 have the
property that ‖ f − fN‖∞ < ε. Then

| f (x)| ≤ | f (x) − fN(x)| + | fN(x)| ≤ ε + ‖ fN‖∞.

Since the expression on the right is independent of x, this gives the desired boundedness
of f .

Finally we prove that the limit function f is continuous. As we showed above, for
any ε > 0 there exists N ∈ Z>0 such that | fN(x) − f (x)| < ε

3 for all x ∈ I. Now fix x0 ∈ I,
and consider the N ∈ Z>0 just defined. By continuity of fN, there exists δ > 0 such
that if x ∈ I satisfies |x − x0| < δ, then | fN(x) − fN(x0)| < ε

3 . Then, for x ∈ I satisfying
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|x − x0| < δ, we have

| f (x) − f (x0)| = |( f (x) − fN(x)) + ( fN(x) − fN(x0)) + ( fN(x0) − f (x0))|
≤ | f (x) − fN(x)| + | fN(x) − fN(x0)| + | fN(x0) − f (x0)|
< ε

3 + ε
3 + ε

3 = ε,

where we have again used the triangle inequality. Since this argument is valid for any
x0 ∈ I, it follows that f is continuous.

Now let us turn to the separability of C0
bdd(I;F). The separability of C0

bdd(I;F)
when I is compact is part of Corollary 6.7.37. If I is not compact, there are two cases
to consider, when I is bounded and when I is not bounded. If I is not bounded a
modification of the argument used in Proposition 6.7.32 can be used to show that
C0

bdd(I;F) is not separable. Thus we need only consider the case when I is bounded
but not compact.

We consider the case of I = (0, 1], the general case following, mutatis mutandis, from
this. For j ∈ Z>0 define g j : (0, 1]→ F by

g j(x) =


2 j(Herex( j + 1) − 1), x ∈ [ 1

j+1 ,
1+2 j

2 j( j+1) ],

2( j + 1)(1 − jx), x ∈ ( 1+2 j
2 j( j+1) ,

1
j ],

0, otherwise.

The reader would probably benefit from sketching the graph of this function to un-
derstand what the proof is achieving. We now let U be the collection of functions
f ∈ C0

bdd((0, 1];F) of the form

f (x) =
∑

j∈Z>0

(−1)k j g j(x).

One can now repeat the argument of Proposition 6.7.32 using this collection U of
functions to show that C0

bdd((0, 1];F) is not separable. �

The generalisation of Theorem 6.7.33 also holds.

6.7.40 Theorem ((C0
0
(I;F), ‖·‖∞) is a Banach space) If F ∈ {R,C} and if I ⊆ R is an interval

then (C0
0(I;F), ‖·‖∞) is a separable F-Banach space, and moreover, is the completion of

(C0
cpt(I;F), ‖·‖∞).

Proof A modification of the proof of Theorem 6.7.33 is easily made to give a direct
proof; we leave the details to the reader. We also note that the present theorem also
follows directly from the more general Theorem 6.7.43 below. �

6.7.5 Banach spaces of continuous functions on metric spaces

We let F ∈ {R,C} and let (S, d) be a metric space and define

C0
bdd(S;F) = { f : S→ F | f is continuous and bounded}.

For f ∈ C0
bdd(S;F) we define

‖ f ‖∞ = sup{| f (x)| | x ∈ S}.

We claim that (C0
bdd(S,F), ‖·‖∞) is a Banach space.
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6.7.41 Theorem ((C0
bdd

(S,F), ‖·‖∞) is a Banach space) (C0
bdd(S,F), ‖·‖∞) is a Banach space.

Proof missing stuff First let us show that ‖·‖∞ is a norm. It is clear that ‖λ f ‖∞ = |λ|‖ f ‖∞
for all λ ∈ F and f ∈ C0

bdd(S,F), and that ‖ f ‖∞ ≥ 0 and ‖ f ‖∞ = 0 if and only if f = 0.
We also compute, using Proposition 2.2.27,

‖ f + g‖∞ = sup{| f (x) + g(x)| | x ∈ S}
≤ sup{| f (x) + g(y)| | (x, y) ∈ S × S}
≤ sup{| f (x)| | x ∈ S} + sup{|g(y)| | y ∈ S}
= ‖ f ‖∞ + ‖g‖∞

for f , g ∈ C0
bdd(S,F). To show that (C0

bdd(S,F), ‖·‖∞) is a complete normed vector space,
we note that the norm topology is exactly the metric topology defined in general in The-
orem ??. Since (F, |·|) is complete, it then follows from Theorem ?? that (C0

bdd(S,F), ‖·‖∞)
is also complete. �

Let us record some of the properties of the Banach space C0
bdd(S,F).

6.7.42 Proposition (Properties of C0
bdd

(S;F)) missing stuff

6.7.43 Theorem ((C0
0
(S;F), ‖·‖∞) is a Banach space)

Proof �

6.7.6 Banach spaces of continuous functions on locally compact
topological spaces

6.7.7 Banach spaces of integrable functions on R

In this section we look at an extremely important class of Banach spaces. In some
sense, these are adaptations of the spaces of sequences considered in Section 6.7.2
to functions defined on intervals. These classes of functions play an essential rôle
in Fourier analysis as we shall see in Chapters 12 and 13.

We begin, as we did with sequences, by considering functions that are, in the
appropriate sense, bounded.

6.7.44 Definition (L(∞)(I;F)) Let F ∈ {R,C} and let I ⊆ R be an interval. A measurable
function f : I→ F is essentially bounded if there exists M ∈ R≥0 such that the set

λ({x ∈ I | | f (x)| > M}) = 0.

The set of essentially bounded functions from I to F is denoted by L(∞)(I;F) and
define

‖ f ‖∞ = inf{M ∈ R≥0 | λ({x ∈ I | | f (x)| > M}) = 0}

for f ∈ L(∞)(I;F). •

Let us give some initial properties of L(∞)(I;F).
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6.7.45 Proposition (Properties of (L(∞)(I;F), ‖·‖∞)) If F ∈ {R,C} and if I ⊆ R is an interval
then (L(∞)(I;F), ‖·‖∞) is a seminormed F-vector space. Moreover, ‖f‖∞ = 0 if and only if
f(x) = 0 for almost every x ∈ I.

Proof The only seminorm property that is not completely trivial is the triangle in-
equality, so let us verify this. If f : φ → R is an arbitrary measurable function we
denotemissing stuff

ess sup{φ(x) | x ∈ I} = inf{M ∈ R≥0 | λ({x ∈ I | φ(x) > M} = 0)}.

If
Zφ = {x ∈ I | φ(x) > ess sup{φ(x) | x ∈ I}}

and if Z is any set of measure zero containing Zφ then

ess sup{φ(x) | x ∈ I} = sup{φ(x) | x ∈ I \ Z}.

Now let f , g ∈ L(∞)(I;F) and compute

‖ f + g‖∞ = ess sup{| f (x) + g(x)| | x ∈ I}
= sup{| f (x) + g(x)| | x ∈ I \ Z| f+g|}

≤ sup{| f (x)| + |g(x)| | x ∈ I \ Z| f+g|}

≤ sup{| f (x)| | x ∈ I \ Z| f+g|} + sup{| f (x)| | x ∈ I \ Z| f+g|}

= sup{| f (x)| | x ∈ I \ (Z| f+g| ∪ Z f )} + sup{| f (x)| | x ∈ I \ (Z| f+g| ∪ Zg)}

≤ sup{| f (x)| | x ∈ I \ Z f } + sup{| f (x)| | x ∈ I \ Zg}

= ‖ f ‖∞ + ‖g‖∞.

Thus (L(∞)(I;F), ‖·‖∞) is a seminormed F-vector space, as claimed.
The final assertion of the result is clear. �

Now let
Z∞(I;F) = { f ∈ L(∞)(I;F) | ‖ f ‖∞ = 0}.

By Theorem 6.1.8 we know that L(∞)(I;F)/Z∞(I;F),—i.e., the set of equivalence
classes in L(∞)(I;F) where functions are equivalent if they agree almost every-
where—is a normed F-vector space where the norm on the equivalence class
f + Z∞(I;F) is defined by

‖ f + Z∞(I;F)‖∞ = ‖ f ‖∞;

it is convenient to use the same symbol for the norm.

6.7.46 Definition (L∞(I;F)) For F ∈ {R,C} and for an interval I ⊆ R,

L∞(I;F) = L(∞)(I;F)/Z∞(I;F). •

Let us verify that L∞(I;F) is a Banach space.
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6.7.47 Theorem ((L∞(I;F), ‖·‖∞) is a Banach space) If F ∈ {R,C} and if I ⊆ R then
(L∞(I;F), ‖·‖∞) is an F-Banach space.

Proof For brevity, let us denote [ f ] = f +Z∞(I;F) the equivalence class of f ∈ L(∞)(I;F)
in L∞(I;F). We use the characterisation of completeness of Theorem 6.4.6. We let∑
∞

j=1[ f j] be an absolutely convergent series. For j ∈ Z>0 define

Z j = {x ∈ I | | f j(x)| > ‖ f j‖∞},

noting that λ(Z j) = 0. For x < ∪∞j=1Z j we have

∞∑
j=1

| f j(x)| ≤
∞∑
j=1

‖ f j‖∞ =

∞∑
j=1

‖[ f j]‖∞ < ∞

since
∑
∞

j=1[ f j] is absolutely convergent. This means that
∑
∞

j=1 f j(x) converges since
absolute convergence in F implies convergence by Proposition 2.4.3.missing stuff
Now define

f (x) =


∑
∞

j=1 f j(x), x < ∪∞j=1Z j

0, otherwise.

By Proposition 5.6.18 the function f is measurable. We then have

f (x) −
n∑

j=1

f j(x) =

∞∑
j=n+1

f j(x), x < ∪∞j=1Z j

=⇒
∥∥∥∥ f −

n∑
j=1

f j

∥∥∥∥
∞

≤

∞∑
j=n+1

‖ f j‖∞

=⇒
∥∥∥∥[ f −

n∑
j=1

f j

]∥∥∥∥
∞

≤

∞∑
j=n+1

‖[ f j]‖∞

=⇒ lim
n→∞

∥∥∥∥[ f ] −
n∑

j=1

[ f j]
∥∥∥∥
∞

≤ lim
n→∞

∞∑
j=n+1

‖[ f j]‖∞ = 0,

thus giving convergence of
∑
∞

j=1[ f j] to [ f ] in L∞(I;F). �

6.7.48 Notation (Representing functions in L∞(I;F)) While functions in L∞(I;F) are, by
definition, equivalence classes of functions in L(∞)(I;F). The usual convention,
however, is to in practice identify the equivalence class with one of its represen-
tatives. Most of the time the identification of an equivalence class with one of its
representatives does not cause problems. However, there do arise instances where
the distinction between these things becomes important, and so one must keep in
mind what one is actually doing in writing “ f ” rather than “ f + Z∞(I;F).” •

As with its brother `∞(F), L∞(I;F) is not separable.
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6.7.49 Proposition (L∞(I;F) is not separable) If F ∈ {R,C} and if I ⊆ R is an interval with
a nonempty interior then L∞(I;F) is not separable.

Proof We shall only sketch the argument here as the details are already present in
the proof of Proposition 6.7.32 and Theorem 6.7.39. If I is not bounded then an
appropriate adaptation of the proof of the proof of Proposition 6.7.32 can be used
to show that L∞(I;F) is not separable. If I is bounded then the idea in the proof of
Theorem 6.7.39 can be used to give non-separability of L∞(I;F) in this case. Note that
functions in L∞(I;F) are not required to be continuous and so the idea in the proof of
Theorem 6.7.39 does indeed carry over to all bounded intervals, even those that are
compact. �

Before we leave L∞(I;F) to talk about the spaces Lp(I;F) for p ∈ [1,∞) let us point
out a possible source of confusion. We note that the Banach space (L∞(I;F), ‖(‖·)∞)
contains the Banach spaces (C0

bdd(I;F); ‖·‖∞) and C0
0(I;F) as a closed proper sub-

spaces (they is a closed by Proposition 6.6.16 since it is complete). Thus L∞(I;F)
is not the completion of these spaces. This is to be contrasted with the conclusion
of Theorem 6.7.56 where we show that Lp(I;F) is the completion of a space of
continuous functions when p ∈ [1,∞). This explains why the reader does not see
L∞(I;F) in Tables 6.1 and 6.2.

Next we consider functions defined by their integrals. This is analogous to the
sequence spaces `p(F), p ∈ [1,∞), being defined by their infinite sums.

6.7.50 Definition (L(p)(I;F)) Let F ∈ {R,C}, let p ∈ [1,∞), and let I ⊆ R be an interval.
Define a subspace L(p)(I;F) of the measurable functions from I to F by

L(p)(I;F) =
{

f : I→ F
∣∣∣∣ f measurable,

∫
I
| f |pdλ < ∞

}
and define

‖ f ‖p =
(∫

I
| f |pdλ

)1/p

for f ∈ L(p)(I;F). •

In the preceding definition it turns out to be crucial that the integral used is the
Lebesgue integral. Indeed, many of the results we prove in this section simply do
not hold if we instead attempt to use the Riemann integral. We shall, nonetheless,
generally adopt the policy of writing the Lebesgue integral as

∫
dx rather than

∫
dλ

for simplicity.
Let us give the analogues of Lemmata 6.7.16 and 6.7.17 in this setup.

6.7.51 Lemma (Hölder’s inequality) Let F ∈ {R,C} and let I ⊆ R be an interval, and let
p ∈ (1,∞) with p′ defined by 1

p + 1
p′ = 1. Then, for f ∈ L(p)(I;F) and g ∈ L(p′)(I;F),

fg ∈ L(1)(I;F) and
‖fg‖1 ≤ ‖f‖p‖g‖p′ .

Moreover, equality holds if and only if there exists α, β ∈ R≥0, not both zero, such that

α|f(x)|p = β|g(x)|p
′

, a.e. x ∈ I.
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Proof For p, p′ ∈ (1,∞) satisfying 1
p + 1

p′ = 1 we claim that for x, y ∈ R≥0 we have

xy ≤
xp

p
+

yp′

p′
.

This is trivial if either x or y are zero. So suppose that x, y ∈ R>0. Taking ξ = xp

yp′ we
easily check that

xy ≤
xp

p
+

yp′

p′
⇐⇒ ξ1/p

≤
ξ
p

+
1
p′
.

One can check using Theorem 3.2.16 that the function

ξ 7→
ξ
p

+
1
p′
− ξ1/p

has a minimum value of 0 attained at ξ = 1. Thus

ξ
p

+
1
p′
− ξ1/p

≥ 0 =⇒ =⇒ xy ≤
xp

p
+

yp′

p′
,

as desired.
Now let us proceed with the proof. The result is clearly true if ‖ f ‖p = 0 or ‖g‖p′ = 0.

So we assume neither of these are true. For all x ∈ I we have

| f (x)g(x)| ≤
| f (x)|p

p
+
|g(x)|p

′

p′
.

Therefore, if ‖ f ‖p = ‖g‖p′ = 1, we immediately have

‖ f g‖1 ≤
1
p

+
1
p′

= ‖ f ‖p‖g‖p′ .

In general we have

‖ f g‖1 = ‖ f ‖p‖g‖p′
∥∥∥∥ f
‖ f ‖p

g
‖g‖p′

∥∥∥∥
1
≤ 1,

and the first part of the result follows.
If one chases through the argument above one sees that equality is achieved only

when

| f (x)g(x)|
| f (x)|p

p
+
|g(x)|p

′

p′

for almost every x ∈ I. A tedious argument like that for the last part of Lemma 6.7.1,
but replacing sums with integrals, shows that the above equality implies the final
conclusion of the lemma. �

There is a version of Hölder’s inequality for the case when p = 1, and we refer
to Exercise 6.7.8 for this.

Let us prove the Minkowski inequality in this case.
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6.7.52 Lemma (Minkowski’s inequality) Let F ∈ {R,C}, let I ⊆ R be an interval, and let
p ∈ [1,∞). Then, for f,g ∈ L(p)(I;F), we have f + g ∈ L(p)(I;F) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Moreover, equality holds if and only if the following conditions hold:
(i) p = 1: there exists nonnegative measurable functions α, β : I → R≥0 such that
α(x)f(x) = β(x)g(x) and α(x) and β(x) are not both zero for almost every ∈ I;

(ii) p ∈ (1,∞): there exists α, β ∈ R≥0, not both zero, such that αf(x) = βg(x) for almost
every x ∈ I.

Proof For p = 1 we have

‖ f + g‖1 =

∫
I
| f (x) + g(x)|dx ≤

∫
I
| f (x)|dx +

∫
I
|g(x)|dx = ‖ f ‖1 + ‖g‖1.

The second assertion of the lemma for p = 1 follows from the fact, pointed out in the
proof of Lemma 6.7.1, that |a+b| = |a|+ |b| for a, b ∈ F if and only if αa = βb for α, β ∈ R≥0
not both zero. Note that the sets

A f = {x ∈ I | f (x) = 0}, Ag = {x ∈ I | g(x) = 0}, A f ,g = {x ∈ I | f (x)g(x) = 0}

are measurable and so, therefore, are their complements. We then define α, β : I→ R≥0
by

α(x) =


g(x), x ∈ I \ A f ,g,

g(x), x ∈ A f ,g − A f ,

0, x ∈ Ag

and

β(x) =


f (x), x ∈ I \ A f ,g,

0, x ∈ Ag,

f (x), x ∈ A f ,g − Ag.

For p ∈ (1,∞) we let 1
p + 1

p′ = 1. We then have(
| f (x) + g(x)|p−1

)p′
= | f (x) + g(x)|p

from which we deduce that | f + g|p−1
∈ L(p′)(I;F). Therefore, using Lemma 6.7.51,∫

I
| f (x) + g(x)|p dx ≤

∫
I
| f (x)|| f (x) + g(x)|p−1 dx +

∫
I
|g(x)|| f (x) + g(x)|p−1 dx

≤ ‖ f ‖p‖| f + g|p−1
‖p′ + ‖g‖p‖| f + g|p−1

‖p′

= (‖ f ‖p + ‖g‖p)
(∫

I
| f (x) + g(x)|p dx

)1/p′
,

which implies that
‖ f + g‖p−p/p′

p ≤ ‖ f ‖p + ‖g‖p,

provided that ‖ f + g‖p , 0 (if it is zero, the result is trivial). The first part of the result
follows since p − p/p′ = 1. The second part of the result for p ∈ (1,∞) follows as does
the second part of the proof of Lemma 6.7.1, replacing “for every j ∈ {1, . . . ,n}” with
“for almost every x ∈ I” and replacing “for some j ∈ {1, . . . ,n}” with “for x ∈ A with
A ⊆ I of positive measure.” We leave the tedious details to the reader. �

The following version of the Minkowski inequality is also useful.
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6.7.53 Lemma (Integral version of Minkowski inequality) missing stuff Let F ∈ {R,C},
let I, J ⊆ R be intervals, and let p ∈ [1,∞). Let f : I × J → F have the property that
x 7→ f(x,y) is in L(p)(I;F) for almost every y ∈ J and that y 7→ f(x,y) is in L(p)(J;F) for
almost every x ∈ I. Then, we have(∫

I

∣∣∣∣∫
J
f(x,y) dy

∣∣∣∣p dx
)1/p
≤

∫
J

(∫
I
|f(x,y)|pdx

)1/p
dy.

Proof For p = 1 we have∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣ dx ≤

∫
I

(∫
J
| f (x, y)|dy

)
dx =

∫
J

(∫
I
| f (x, y)|dx

)
dy,

giving the result in this case by Fubini’s Theorem.
Now let p ∈ (1,∞). Here we compute∫

I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx =

∫
I

((∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p−1)(∣∣∣∣∫

J
f (x, z) dz

∣∣∣∣)) dx

≤

∫
I

(∫
J

(
| f (x, z)|

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p−1

)
dz

)
dx

=

∫
J

(∫
I

(
| f (x, z)|

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p−1

)
dx

)
dz

using Fubini’s Theorem in the last step. Now let p′ =
p

p−1 be the conjugate index. Now,
by Hölder’s inequality,∫

I

(
| f (x, z)|

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p−1

)
dx ≤

(∫
I
| f (x, z)|p dx

)1/p(∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p′(p−1)

dx
)1/p′

=
(∫

I
| f (x, z)|p dx

)1/p(∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx

)1/p′
.

Substituting this last relation into the preceding equation yields∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx ≤

∫
J

((∫
I
| f (x, z)|p dx

)1/p(∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx

)1/p′
)

dz

=
(∫

J

(∫
I
| f (x, z)|p dx

)1/p
dz

)(∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx

)1/p′

Now we note that the lemma is obviously true when∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx = 0.

So we suppose that this quantity is nonzero and divide the above-derived inequality∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx ≤

(∫
J

(∫
I
| f (x, z)|p dx

)1/p
dz

)(∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx

)1/p′

by (∫
I

∣∣∣∣∫
J

f (x, y) dy
∣∣∣∣p dx

)1/p′

which gives the desired inequality after noting that p′ is conjugate to p. �

Now we can prove the basic fact about the spaces L(p)(I;F).
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6.7.54 Proposition (Properties of (L(p)(I;F), ‖·‖∞)) If F ∈ {R,C}, if p ∈ [1,∞), and if I ⊆ R
is an interval then (L(p)(I;F), ‖·‖∞) is a seminormed F-vector space. Moreover, ‖f‖p = 0 if
and only if f(x) = 0 for almost every x ∈ I.

Proof That L(p)(I;F) is a seminormed vector space follows from Lemma 6.7.52 which
gives the triangle inequality; the other seminorm properties are clear. The final asser-
tion is clear. �

Now we proceed much as we did for L(∞)(I;F). That is, we define

Zp(I;F) = { f ∈ L(p)(I;F) | ‖ f ‖p = 0}

and note that, by Theorem 6.1.8, L(p)(I;F)/Zp(I;F) is a normed F-vector space if we
define the norm by

‖ f + Zp(I;F)‖p = ‖ f ‖p.

This leads to the following definition.

6.7.55 Definition (Lp(I;F)) For F ∈ {R,C}, for p ∈ [1,∞), and for an interval I ⊆ R,

Lp(I;F) = L(p)(I;F)/Zp(I;F). •

We can prove that Lp(I;F) is a Banach space.

6.7.56 Theorem ((Lp(I;F), ‖·‖p) is a Banach space) If F ∈ {R,C}, if p ∈ [1,∞), and if I ⊆ R
is an interval, then (Lp(I;F), ‖·‖p) is an F-Banach space. Moreover, Lp(I;F) is isomorphic,
as a normed vector space, to the completion of C0

cpt(I;F).
Proof For brevity let us denote [ f ] = f + Zp(I;F) for f ∈ L(p)(I;F). We use the char-
acterisation of completeness of Theorem 6.4.6. Let

∑
∞

j=1[ f j] be absolutely convergent.
Define g : I→ F ∪ {∞} by

g(x) =
( ∞∑

j=1

| f j(x)|
)p
,

and note that Minkowski’s inequality gives

‖g‖1 ≤
∞∑
j=1

‖ f j‖p =

∞∑
j=1

‖[ f j]‖p < ∞

since
∑
∞

j=1[ f j] is absolutely convergent. Therefore, g ∈ L(1)(I;F), and it, therefore,
follows that g is finite for almost every x ∈ I. This implies that for almost every x ∈ I
the series

∑
∞

j=1 f j(x) is absolutely convergent and so convergent. Now define

f (x) =


∑
∞

j=1 f j(x), g(x) < ∞

0, otherwise.

Since f is almost everywhere equal to the measurable function g, it is itself measurable,
and further ‖ f ‖p ≤ ‖g‖1 < ∞ so that f ∈ L(p)(I;F). Furthermore, the Dominated
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Convergence Theorem gives

f (x) −
n∑

j=1

f j(x) =

∞∑
j=n+1

f j(x), a.e. x ∈ I

=⇒
∣∣∣∣ f (x) −

n∑
j=1

f j(x)
∣∣∣∣ ≤ ∞∑

j=n+1

| f j(x)|, a.e. x ∈ I

=⇒ lim
n→∞

∥∥∥∥ f −
n∑

j=1

f j

∥∥∥∥
p
≤ lim

n→∞

∞∑
j=n+1

‖ f j‖p = 0

=⇒ lim
n→∞

∥∥∥∥[ f −
n∑

j=1

f j

]∥∥∥∥
p
≤ lim

n→∞

∞∑
j=n+1

‖[ f j]‖p = 0,

so giving convergence of
∑
∞

j=1[ f j].
Now let us prove that Lp(I;F) is isomorphic, as a normed vector space, to the

completion of C0
cpt(I;F). We first note that C0

cpt(I;F) is a subspace of L(p)(I;F). Moreover,
by Exercise 5.9.8 it follows that if ‖ f ‖p = 0 for f ∈ C0

cpt(I;F) then f (x) = 0 for every
x ∈ I. That is to say, the map

C0
cpt(I;F) 3 f 7→ [ f ] ∈ Lp(I;F)

is injective and so C0
cpt(I;F) is a subspace of Lp(I;F). Thus to prove the theorem we

need only show that Lp(I;F) is the closure of C0
cpt(I;F). Thus we will show that if

f ∈ L(p)(I;F) then, for every ε ∈ R>0 there exists g ∈ C0
cpt(I;F) such that ‖ f − g‖p < ε.

By Exercise 5.7.4, we can without loss of generality restrict to the case where f takes
values in R≥0. We shall make this restriction in the arguments below.

Let us first consider the case when I = [a, b] is compact and f is bounded. Let
M ∈ R>0 be such that f (x) ≤M for all x ∈ I. Let ε ∈ R>0. By Theorem 5.9.3 there exists
a continuous function g : I→ R≥0 such that

λ
({

x ∈ I
∣∣∣ | f (x) − g(x)| < ε

(2(b−a))1/p

})
<

εp

2Mp .

Then ∫ b

a
| f (x) − g(x)|dx <

εp

2(b − a)
(b − a) +

εp

2Mp Mp < εp.

Thus ‖ f − g‖p < ε, giving the result in this case.
Next we consider the case when I = [a, b] is compact and f is possibly unbounded.

Let ε ∈ R>0. For M ∈ R>0 define

fM(x) =

 f (x), f (x) ≤M,
M, f (x) > M.

Since f ∈ L(p)(I;F) there exists M sufficiently large that∫ b

a
| f (x) − fM(x)|p dx <

εp

2p .
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By the argument in the previous paragraph there exists a continuous function g : I →
R≥0 such that ‖ fM − g‖p < ε

2 . Then, using the triangle inequality,

‖ f − g‖p ≤ ‖ f − fM‖p + ‖ fM − g‖p < ε,

giving the result in this case.
Finally, we consider the case when I is not compact. Let ε ∈ R>0. We let (I j) j∈Z>0

be a sequence of compact intervals such that I j ⊆ I j+1 for each j ∈ Z>0 and such that
∪ j∈Z>0I j = I. Define a sequence ( f j) j∈Z>0 in Lp(I;R) by

f j(x) =

 f (x), x ∈ I j,

0, otherwise.

By the Monotone Convergence Theorem we have

lim
j→∞

∫
I
| f (x) − f j(x)|p dx =

∫
I

lim
j→∞
| f (x) − f j(x)|p dx = 0.

Thus ( f j) j∈Z>0 converges to f in L(p)(I;F). Now, for each j ∈ Z>0, our arguments above
ensure the existence of a continuous function h j : I j → R≥0 such that ‖ f j|I j − h j‖

p
p <

εp

2p+1 .
Note that if we extend h j to I by asking that it be zero on I \ I j then this extension may
not be continuous. However, we can linearly taper h j to zero on I \ I j to arrive at a
continuous function g j : I→ R≥0 with compact support satisfying∫

I\I j

|g j(x)|p dx <
εp

2p+1
.

Then∫
I
| f j(x) − g j(x)|p dx =

∫
I j

| f j(x) − h j(x)|p dx +

∫
I\I j

|g j(x)|p dx <
εp

2p+1
+

εp

2p+1
<
εp

2p .

Now choose N ∈ Z>0 sufficiently large that ‖ f − f j‖p < ε
2 . Then, by the triangle

inequality,
‖ f − g j‖p ≤ ‖ f − f j‖p + ‖ f j − g j‖p < ε,

as desired. �

6.7.57 Notation (Representing functions in Lp(I;F)) Just as we indicated for L∞(I;F) in
Notation 6.7.48, we shall make use of the widespread and convenient convention
of identifying an equivalence class in L(p)(I;F), p ∈ [1,∞), with one of its represen-
tatives. This is mostly innocuous; however, there are times when this distinction
must be made in order for things to make sense. While we do adopt the convention
of writing elements of Lp(I;F) as f rather than f + Zp(I;F), we shall try to be careful
to point out places where it really is the equivalence class that is being used. •

The second part of the Theorem 6.7.56 bears attention. As we commented after
the proof of Theorem 6.3.6, although it is not difficult to demonstrate the existence
of a completion of a normed vector space, it is not necessarily easy to understand
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what the meaning of points in the completion are relative to the original normed
vector space. The second part of Theorem 6.7.56 says that although elements in
the completion of C0

cpt(I;F) are not functions, they are at least related to functions in
that they are equivalence classes of functions. It might also be helpful to view the
relationship between C0

cpt(I;F) and Lp(I;F) as being analogous to the relationship
between F∞0 and `p(F), as born out in Table 6.2. What is interesting is that, to make

Table 6.2 The relationships between the objects in the left column
are analogous to the relationships between the objects in the
right column

Sequence space Function space

F∞0 C0
cpt(I;F)

`p(F) Lp(I;F)

this seemingly innocent analogy, one must go through the trials of defining the
Lebesgue integral.

Let us prove the separability of Lp(I;F).

6.7.58 Proposition (Lp(I;F) is separable) If F ∈ {R,C}, if I ⊆ R is an interval, and if
p ∈ [1,∞), then Lp(T;F) is separable.

Proof From Theorem 6.7.40 we know that C0
0(I;F) is separable and so Ccpt(I;F) is also

separable, being a subspace of C0
0(I;F). Thus a countable dense subset D ⊆ C0

cpt(I;F) is
also dense in Lp(I;F) by Exercise 6.6.2. �

It is useful to be able to relate convergence in Lp(I;F) to pointwise convergence.
The precise statement of this is as follows. Here we are careful to express the result
in terms of equivalence classes of functions, since this is important to the meaning
of the result. In the statement of the result we denote [ f ] = f + Zp(I;F) for brevity.

6.7.59 Proposition (Pointwise convergence and convergence in Lp(I;F)) Let F ∈
{R,C}, let p ∈ [1,∞], and let I ⊆ R be an interval. If ([fj])j∈Z>0 is a sequence in Lp(I;F)
converging to [f] ∈ Lp(I;F) then there exists a subsequence ([fjk])k∈Z>0 with the property
that, for any representatives fjk ∈ [fjk], k ∈ Z>0, and any representative f ∈ [f]p, we have
limk→∞ fjk(x) = f(x) for almost every x ∈ I.

Proof Throughout the proof we work with arbitrary representatives f jk , k ∈ Z>0, as
stated in the proof. Since lim j→∞‖ f − f j‖p = 0 there exists a subsequence ( f jk)k∈Z>0

satisfying ‖ f jk+1 − f jk‖p ≤ 2−k. We then define

gk(x) =

k∑
`=1

| f jk+1(x) − f jk(x)|

and g(x) = limk→∞ gk(x) whenever these quantities are finite, taking them to be zero
otherwise. Using Minkowski’s inequality, ‖gk‖p ≤ 1. Fatou’s Lemma then gives
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‖g‖p ≤ 1. This means that g(x) is finite for almost every x ∈ I. Now define

f (x) = f j1(x) +

∞∑
j=1

( f jk+1(x) − f jk(x)) (6.17)

when this limit exists, taking it to be zero otherwise. Since the sum converges absolutely
for almost every x ∈ I this implies that the limit in (6.17) exists for almost every x ∈ I.
The matter of showing that f ∈ Lp(I;F) goes like the last steps in the proof of the
completeness of in Theorems 6.7.47 and 6.7.56. This gives the result for a particular
representative of the limit class in Lp(I;F). That the result holds for any representative
follows since any two representatives differ on a set of zero measure. �

6.7.8 Banach spaces of integrable functions on measure spaces

6.7.9 Banach spaces of measures

In this section we let (X,A ) be a measurable space, and we recall from Sec-
tion 5.3.10 the R-vector spaces M((X,A );R) and M((X,A );Rn) of finite signed and
Rn-valued vector measures on A , and the C-vector space M((X,A );C) of complex
measures on A . For µ in either M((X,A );R) or M((X,A );C) the total variation of µ
is defined to be

‖µ‖ = sup
{ k∑

j=1

|µ(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of X

}
(for signed measures this follows from Proposition 5.3.48). If µ ∈ M((X,A );Rn)
then the total variation of µ is defined by

|||µ|||Rn = sup
{ k∑

j=1

‖µ(A j)‖Rn

∣∣∣∣ (A1, . . . ,Ak) is a partition of X
}
.

We can now state the main result of this section.

6.7.60 Theorem (Banach spaces of measures) The pairs (M((X,A );R), ‖·‖) and
(M((X,A );Rn), |||·|||Rn) areR-Banach spaces and the pair (M((X,A );C), ‖·‖) is aC-Banach
space.

Proof We first must verify that ‖·‖ and ||| · |||Rn are norms. For ‖·‖, we clearly have
‖µ‖ ∈ R>0 for µ ∈ M((X,A );R). Also, if α ∈ F for F ∈ {R,C},

‖αµ‖ = sup
{ k∑

j=1

|αµ(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of X

}
= |α| sup

{ k∑
j=1

|µ(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of X

}
= |α|‖µ‖.
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If µ1, µ2 ∈ M((X,A );F) then we have

‖µ1 + µ2‖ = sup
{ k∑

j=1

|µ1(A j) + µ2(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of X

}
≤ sup

{ k∑
j=1

|µ1(A j)| + |µ2(A j)|
∣∣∣∣ (A1, . . . ,Ak) is a partition of X

}
= ‖µ1‖ + ‖µ2‖

using Proposition 2.2.27. This gives the triangle inequality for ‖·‖. Finally, we suppose
that ‖µ‖ = 0. For A ∈ A we have

|µ(A)| ≤ |µ(A)| + |µ(X \ A)| ≤ ‖µ‖

since (A,X \A) is a partition of X. Thus it follows that µ(A) = 0 for every A ∈ A . Thus
µ is the zero measure. This verifies positive-definiteness of ‖·‖ and so verifies that it is
a norm. An entirely similar analysis yields the same conclusion for ||| · |||Rn .

It now remains to verify the completeness of the normed vector spaces. We
consider the case of a signed or complex measure, letting F ∈ {R,C}. We consider a
Cauchy sequence (µ j) j∈Z>0 in M((X,A );F). Let ε ∈ R>0 and let N ∈ Z>0 be such that
‖µ j − µk‖ ≤ ε for j, k ≥ N. Then, for A ∈ A , we have, since (A,X \A) is a partition of X,

|µ j(A) − µk(A)| ≤ |(µ j − µk)(A)| + |(µ j − µk)(X \ A)| ≤ ‖µ j − µk‖ ≤ ε

for j, k ≥ N. Thus, for every A ∈ A , (µ j(A)) j∈Z>0 is a Cauchy sequence in F. We
then denote the limit of this Cauchy sequence by µ(A). We must show that the map
A 7→ µ(A) is a signed or complex measure.

The following lemma will be useful, saying that the limit lim j→∞ µ j(A) = µ(A) in
uniform in A.

1 Lemma For ε ∈ R>0 there exists N ∈ Z>0 such that |µ(A) − µj(A)| < ε for each j ≥ N and
A ∈ A .

Proof Let ε ∈ R>0 and choose N ∈ Z>0 such that ‖µ j − µk‖ <
ε
2 for j, k ≥ N. Thus, as

we saw above, |µ j(A) − µk(A)| < ε
2 for j, k ≥ N. Now let N1 be sufficiently large that

|µ(A) − µk(A)| < ε
2 for k ≥ N1. Now, if A ∈ A and j ≥ N we have

|µ(A) − µ j(A)| ≤ |µ(A) − µk(A)| + |µk(A) − µ j(A)| < ε,

where k ≥ max{N,N1}. H

Since µ j(∅) = 0 for every j ∈ Z>0 we obviously have

µ(∅) = lim
j→∞

µ j(∅) = 0.

Let A1, . . . ,Am be a finite family of pairwise disjoint A -measurable sets. Since µ j,
j ∈ Z>0, is countably-additive, it is finitely-additive, and so

µ j(∪m
l=1Al) =

m∑
l=1

µ j(Al), j ∈ Z>0.
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Therefore,

µ(∪m
l=1Al) = lim

j→∞
µ j(∪m

l=1Al) = lim
j→∞

m∑
l=1

µ j(Al) =

m∑
l=1

µ(Al),

swapping the finite sum with the limit. This gives finite-additivity of µ. It also holds
that µ is consistent since, by construction, it takes values in R.

Now let (Al)l∈Z>0 be a family of A -measurable sets such that Al+1 ⊆ Al, l ∈ Z>0,
and such that ∩l∈Z>0Al = ∅. Since µ j, j ∈ Z>0, is countably-additive and consistent, by
Proposition 5.3.3 we have

lim
l→∞

µ j(Al) = 0, j ∈ Z>0.

Let ε ∈ R>0 and, by Lemma 1, let N1 ∈ Z>0 be such that |µ(A) − µ j(A)| < ε
2 for j ≥ N1

and A ∈ A . Let N ∈ Z>0 be such that |µN1(Al)| < ε
2 for l ≥ N. Then, for l ≥ N we have

|µ(Al)| ≤ |µ(Al) − µN1(Al)| + |µN1(Al)| < ε.

Thus liml→∞ µ(Al) = 0 and so µ is countable additive by Proposition 5.3.3.
Finally, we must show that (µ j) j∈Z>0 converges to µ. Let ε ∈ R>0 and let N ∈ Z>0

be such that ‖µ j −µk‖ < ε for j, k ≥ N. Let (A1, . . . ,Am) be a partition of X and note that,
by definition of ‖·‖,

m∑
l=1

|µ j(Al) − µk(Al)| =
m∑

l=1

|(µ j − µk)(Al)| ≤ ‖µ j − µk‖ < ε

for j, k ≥ N. Therefore,

m∑
l=1

|µ(Al) − µk(Al)| = lim
j→∞

m∑
l=1

|µ j(Al) − µk(Al)| ≤ ε

for k ≥ N. Since this holds for every partition (A1, . . . ,Am) of X, taking the supremum
over all such partitions gives ‖µ − µk‖ ≤ ε for k ≥ N, so giving convergence of (µ j) j∈Z>0

to µ. �

6.7.10 Notes

Exercises

6.7.1 For a1, . . . , an, b1, . . . , bn ∈ R>0 show that

n∑
j=1

a jb j ≤ max{b1, . . . , bn}

n∑
j=1

a j.

6.7.2 LetF ∈ {R,C}. For (a j) j∈Z>0 ∈ `
1(F) and (b j) j∈Z>0 ∈ `

∞(F), show that (a jb j) j∈Z>0 ∈

`1(F) and that
‖(a jb j) j∈Z>0‖1 ≤ ‖(a j) j∈Z>0‖1‖(b j) j∈Z>0‖∞.

6.7.3 Show that F∞0 is not dense in `∞(F).
6.7.4 Let F ∈ {R,C}.
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(a) Show that `p(F) ⊆ c0(F) for p ∈ [1,∞).
(b) Is `∞(F) ⊆ c0(F)?

6.7.5 Let F ∈ {R,C} and let ((Vi, ‖·‖i))i∈I be a family of normed F-vector spaces.
Show that if `p(

⊕
i∈I Vi) is a Banach space for any p ∈ [1,∞) then Vi is a

Banach space for every i ∈ I.
6.7.6 Show that C0

0(R;F) can be defined alternatively by (6.15).
6.7.7 Show that C0

cpt((0, 1);F) is not dense in L∞((0, 1);R).
Hint: Consider f(x) = 1, x ∈ (0, 1).

6.7.8 Let F ∈ {R,C}, let I ⊆ R be an interval, and let f ∈ L(1)(I;F) and g ∈ L(∞)(I;F).
Show that f g ∈ L(1)(I;F) and ‖ f g‖1 ≤ ‖ f ‖1‖g‖∞.



Chapter 7

Hilbert spaces

The notion of a Hilbert space is one of the most important in mathematics and
applications of mathematics. It will arise in a crucial way in Fourier analysis in
Chapters 12, 13, ??, and 14. Hilbert space theory also plays an important rôle
in optimisation theory, system theory, and partial differential equations, to name
just as a few applications. As we shall see, Hilbert spaces are examples of Banach
spaces, so all of our discussions of Chapter 6 apply to Hilbert spaces. However,
the norm in a Hilbert space arises in a particular way, from an inner product. The
inner product structure gives rise to important concepts such as orthogonality, and
it is concepts such as these that account for the importance of Hilbert spaces as
examples of Banach spaces.

In this chapter we give a systematic overview of the notion of a Hilbert space,
developing the theory starting in the simple but insightful finite-dimensional case.
We endeavour to indicate how all of the concepts in general Banach space theory
as developed in Chapter 6 specialise to Hilbert spaces.

Do I need to read this chapter? This chapter is an important one and most of
the material in it is essential to the applied material that follows in later volumes.
Certain specialised topics can be omitted on an initial reading. In particular, the
details of uncountable orthonormal sets in Section 7.3.1 can be initially sidestepped,
instead referring explicitly to the countable case considered in Section 7.3.3. •
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Section 7.1

Definitions and properties of inner product spaces

We have already encountered an important example of inner product, the stan-
dard inner product on Rn in Section ??. The axioms defining a general inner
product are exactly those for the standard inner product on Rn, with the slight
added generality that we allow for vector spaces over C as well as over R.

Do I need to read this section? If you are reading this chapter then you should
read this section. •

7.1.1 Inner products and semi-inner products

Just as we did in Chapter 6, we will simultaneously deal with the fields R and
C by letting F denote wither R or C, by letting |a|, a ∈ F, denote the absolute value
or modulus, and by letting ā, a ∈ F, denote either a or the complex conjugate of a.
We refer to Notation 6.1.1.

Just as in parts of Chapter 6 we considered seminorms, we will also consider
semi-inner products in parts of this chapter. There is an additional caveat to
make in this respect. The notion of a seminorm has an important independent life
separate from its defining a norm as in Theorem 6.1.8. Indeed, in Chapter ?? we
will devote significant time and effort to how seminorms arise in linear analysis.
However, this is much less the case with the notion of a semi-inner product. Indeed,
most authors do not mention the concept. We do so for two reasons: (1) there are
examples of semi-inner products that arise en route to the construction of certain
inner products; (2) we wish to maintain some consistency with the presentation in
Chapter 6. Nonetheless, the reader is well-advised to not place much stock in the
concept of a semi-inner product and to focus instead on the special case of an inner
product.

With all that said, we can give the definitions.

7.1.1 Definition (Semi-inner product, inner product) Let F ∈ {R,C} and let V be an
F-vector space. A semi-inner product on V is a map V × V 3 (v1, v2) 7→ 〈v1, v2〉 ∈ F
with the following properties:

(i) 〈v1, v2〉 = 〈v2, v1〉 for v1, v2 ∈ V (symmetry);
(ii) 〈a1 v1 + a2 v2, v〉 = a1〈v1, v〉 + a2〈v2, v〉 for a1, a2 ∈ F and v1, v2 ∈ V (linearity);
(iii) 〈v, v〉 ≥ 0 for v ∈ V, (positivity).

An inner product on V is a semi-inner product (v1, v2) 7→ 〈v1, v2〉with the additional
property that

(iv) 〈v, v〉 = 0 only if v = 0V (definiteness).
We shall often denote a semi-inner product by 〈·, ·〉. •
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Note that the condition for positivity makes sense even when F = C since 〈v, v〉
is always real. Indeed, using symmetry of the semi-inner product,

〈v, v〉 = 〈v, v〉 = 〈v, v〉,

and since the subset R ⊆ C is exactly characterised by its being the subset fixed by
complex conjugation, it follows that 〈v, v〉 ∈ R.

Let us record a trivial consequence of the properties of a semi-inner product.

7.1.2 Proposition (Bilinearity or sesquilinearity of a semi-inner product) Let F ∈
{R,C}, let V be an F-vector space, and let 〈·, ·〉 be a semi-inner product on V. Then, for
a1, a2, b1, b2 ∈ F and u1,u2,v1,v2 ∈ V we have

〈a1u1 + a2u2, b1v1 + b2v2〉

= a1b̄1〈u1,v1〉 + a1b̄2〈u1,v2〉 + a2b̄1〈u2,v1〉 + a2b̄2〈u2,v2〉.

Proof We leave this as Exercise 7.1.1. �

In the case when F = R this property is called bilinearity and when F = C this
property is called sesquilinearity.

Let us give some examples of inner products and semi-inner products.

7.1.3 Examples (Semi-inner product, inner product)
1. Any F-vector space V has the useless semi-inner product defined by 〈v1, v2〉 = 0

for all v1, v2 ∈ V. This is only an inner product in the uninteresting case when
V = {0V}.

2. On Fn define

〈u,v〉2 =

n∑
j=1

u jv̄ j.

This is readily seen to be an inner product on Fn. In the case when F = R this
specialises to the standard inner product on Rn discussed in Section ??. Note
that we use different notation for this object than was used in Chapter ??, but
we will still refer to it as the standard inner product.

3. Recall from Example 4.3.2–?? that F∞0 denotes the sequences (a j) j∈Z>0 in F for
which the set { j ∈ Z>0 | v j , 0} is finite. Thus sequences in F∞0 are eventually
zero. We define

〈(a j) j∈Z>0 , (b j) j∈Z>0〉2 =

∞∑
j=1

a jb̄ j,

noting that the sum makes sense since it is finite. It is a straightforward exercise
to show that 〈·, ·〉2 is an inner product.

4. Finally, we consider the F-vector space C0([a, b];F) of continuous F-valued
functions on the compact interval [a, b]. Here we define an inner product on
C0([a, b];F) by

〈 f , g〉 =

∫ b

a
f (x)ḡ(x) dx.
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One readily verifies all properties of the inner product, possibly resorting to
Exercise 3.4.1 for the positive-definiteness. •

Just as all vector spaces were shown to possess a norm in Proposition 6.1.4, we
can use a similar strategy to show that all vector spaces possess an inner product.

7.1.4 Proposition (Vector spaces always have at least one inner product) If F ∈
{R,C} and if V is an F-vector space then there is an inner product on V.

Proof By Theorem 4.3.46 we know the vector space V possesses a basis which estab-
lishes an isomorphism ι of V with FJ

0 for some set J. Let us first define an inner product
on FJ

0. Writing a typical element of FJ
0 as (v j) j∈J we define

〈(u j) j∈J, (v j) j∈J〉J =
∑
j∈J

ū jv j,

the sum being well-defined since it is finite. To show that 〈·, ·〉J is an inner product is a
mere matter of checking the definitions. Now define

〈u, v〉V = 〈ι(u), ι(v)〉J, u, v ∈ V.

To verify that 〈·, ·〉V is an inner product is straightforward. Symmetry is obvious. For
linearity we compute

〈a1v1 + a2v2, v〉V = 〈ι(a1v1 + a2v2), v〉J = ιa1ι(v1) + a2ι(v2)vJ = a1〈v1, v〉 + a2〈v2, v〉V,

using linearity of 〈·, ·〉J and ι. Positivity follows immediately from positivity of 〈·, ·〉J.
Definiteness is shown as follows. Suppose that 〈v, v〉V = 0. Then 〈ι(v), ι(v)〉J = 0 and so
ι(v) = 0

FJ
0

by definiteness of 〈·, ·〉J. Thus v = 0V since ι is an isomorphism. �

As with the corresponding Proposition 6.1.4, one must take care to understand
that the preceding result asserts neither the existence of a unique or even natural
inner product. Moreover, there is no assurance that the inner product defined in
the preceding result is useful. We refer to Corollary 6.6.27 to see why some vector
spaces are incapable of supporting interesting norms; the same idea applies to
inner products since, as we shall shortly see, inner products give rise to norms.

Analogous to normed vector spaces we have the following terminology.

7.1.5 Definition (Semi-inner product space, inner product space) Let F ∈ {R,C}.
(i) An F-semi-inner product space is a pair (V, 〈·, ·〉) where V is a F-vector space

and 〈·, ·〉 is a semi-inner product on V.
(ii) An F-inner product space is a pair (V, 〈·, ·〉) where V is a F-vector space and
〈·, ·〉 is an inner product on V. •

7.1.6 Notation ((Semi-)inner product spaces) As was the case when we were working
with seminormed and normed vector spaces, it will be convenient to be able to
state results for both semi-inner product spaces and inner product spaces at the
same time. In order to facilitate this we will write “(semi-)inner product space”
when we wish to mean that either sorts of objects may be used in the statement. •
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7.1.2 Inner product spaces as normed vector spaces

In this section we show that a (semi-)inner product space gives rise in a natural
way to an associated (semi)normed vector space. In order to do so, let (V, 〈·, ·〉) be a
F-(semi-)inner product space and define a map V 3 v 7→ ‖v‖ ∈ R≥0 by ‖v‖ =

√
〈v, v〉.

While we use the notation ‖·‖ as if this function is a (semi)norm, we do not in fact
know that this is a (semi)norm at this point. It is, however, easy to see that ‖·‖
satisfies all (semi)norm properties except the triangle inequality. In order to verify
this we first prove the following result that is of independent interest.

7.1.7 Theorem (Cauchy–Bunyakovsky–Schwarz inequality) For an F-(semi-)inner
product space (V, 〈·, ·〉) we have

|〈v1,v2〉| ≤ ‖v1‖ ‖v2‖, v1,v2 ∈ V.

Moreover, if 〈·, ·〉 is an inner product then equality holds in the above expression if and only
if v1 and v2 are collinear, i.e., if and only if

spanF(v1) ⊆ spanF(v2) or spanF(v2) ⊆ spanF(v1).

Proof The result is obviously true for v2 = 0, so we shall suppose that v2 , 0. We first
prove the result for ‖v2‖ = 1. In this case we have

0 ≤ ‖v1 − 〈v1, v2〉v2‖
2

= 〈v1 − 〈v1, v2〉v2, v1 − 〈v1, v2〉v2〉

= 〈v1, v1〉 − 〈v1, v2〉〈v2, v1〉 − 〈v1, v2〉〈v1, v2〉 + 〈v1, v2〉〈v1, v2〉〈v2, v2〉

= ‖v1‖
2
− |〈v1, v2〉|

2,

where we have used Proposition 7.1.2. Thus we have shown that, provided ‖v2‖ = 1,

|〈v1, v2〉|
2
≤ ‖v1‖

2.

Taking square roots yields the result in this case. For ‖v2‖ , 1 we define v3 = v2
‖v2‖

so
that ‖v3‖ = 1. In this case

|〈v1, v3〉| ≤ ‖v1‖ =⇒
|〈v1, v2〉|

‖v2‖
≤ ‖v1‖,

and so the inequality in the theorem holds.
Note that spanF(v1) ⊂ spanF(v2) if and only if v1 = 0V. In this case it is obvious

that equality holds in the stated inequality. Similarly, equality holds if spanF(v2) ⊂
spanF(v1). If spanF(v1) = spanF(v2) then v1 = av2 for some a ∈ F. In this case it is
a direct computation, using properties of the inner product, to show that the stated
inequality is in fact achieved with equality.

Conversely, suppose that the inequality in the theorem is achieved with equality.
If equality is achieved with zero on each side then either or both of ‖v1‖ and ‖v2‖ = 0
hold, i.e., either or both of v1 and v2 are zero. In this case we have either

spanF(v1) ⊆ spanF(v2) or spanF(v2) ⊆ spanF(v1),
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as desired. Thus the final assertion to prove is that one of the preceding inclusions
holds when equality is obtained with both sides of the equality being strictly positive.
In this case both of v1 and v2 are nonzero. Let us first suppose that ‖v2‖ = 1. If equality
holds in the theorem statement then, going backwards through the argument in the
first part of the proof, we must have

‖v1 − 〈v1, v2〉v2‖
2 = 0 =⇒ v1 = 〈v1, v2〉v2,

giving the result in this case. If ‖v2‖ , 0 then define v3 = v2
‖v3‖

so that ‖v3‖ = 1. Moreover,

|〈v1, v3〉| =
|〈v1, v2〉|

‖v2‖
= ‖v1‖ = ‖v1‖‖v3‖,

and so equality holds for v1 and v3 in the inequality in the theorem. By the preceding
argument we then have

v1 = 〈v1, v3〉v3 =⇒ v1 =
〈v1, v2〉

‖v2‖2
v2,

giving the final assertion for ‖v2‖ , 0. �

Using the Cauchy–Bunyakovsky–Schwarz inequality it is possible to show that
the quantity ‖·‖ associated with an inner product is indeed a norm.

7.1.8 Theorem ((Semi-)inner product spaces are (semi)normed vector spaces) Let
F ∈ {R,C}, let (V, 〈·, ·〉) be anF-(semi-)inner product space, and define V 3 v 7→ ‖v‖ ∈ R≥0

be defined by ‖v‖ =
√
〈v,v〉. Then (V, ‖·‖) is a (semi)normed vector space.

Proof All (semi)norm properties except the triangle inequality are easily verified. To
verify the triangle inequality, for v1, v2 ∈ V, we compute

‖v1 + v2‖
2 = 〈v1 + v2, v1 + v2〉 = ‖v1‖

2 + 〈v1, v2〉 + 〈v2, v1〉 + ‖v2‖
2

= ‖v1‖
2 + 〈v1, v2〉 + 〈v1, v2〉 + ‖v2‖

2 = ‖v1‖
2 + 2 Re(〈v1, v2〉) + ‖v2‖

2

≤ ‖v1‖
2 + 2|Re(〈v1, v2〉)| + ‖v2‖

2
≤ ‖v1‖

2 + 2|〈v1, v2〉| + ‖v2‖
2

≤ ‖v1‖
2 + 2‖v1‖‖v2‖ + ‖v2‖

2 = (‖v1‖ + ‖v2‖)2,

using the Cauchy–Bunyakovsky–Schwartz inequality. Taking square roots gives the
result. �

Needless to say, when we talk about the (semi)norm on a (semi-)inner product
space, it is the norm of the preceding theorem to which we will refer.

A natural question that arises is then, “Given a norm on a vector space, can one
tell when it comes from an inner product?” This question admits an easily stated,
but not so easily proved, answer.

7.1.9 Theorem (When does a norm come from an inner product?) If F ∈ {R,C} and
if (V, ‖·‖) is a (semi)normed F-vector space, then the following statements are equivalent:

(i) there exists an (semi-)inner product 〈·, ·〉 on V such that ‖v‖ =
√
〈v,v〉 for all v ∈ V;

(ii) ‖v1 + v2‖
2 + ‖v1 − v2‖

2 = 2
(
‖v1‖

2 + ‖v2‖
2
)

for every v1,v2 ∈ V (parallelogram
law).
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Proof We leave to the reader as Exercise 7.1.4 the fairly easy task of showing that a
(semi)norm derived from a (semi-)inner product satisfies the parallelogram law. Here
we show the converse.

The proof for F = R and F = C are carried out separately. Let us consider the case
of F = R first. We claim that if a (semi)norm satisfies the parallelogram law then

〈u, v〉 , 1
4

(
‖u + v‖2 − ‖u − v‖2

)
is a (semi-)inner product on V. It is clear that 〈u, v〉 = 〈v,u〉 and that 〈v, v〉 ≥ 0 for all
v ∈ V and that (in the case when ‖·‖ is a norm) 〈v, v〉 = 0 if and only if v = 0V.

Let u, v1, v2 ∈ V. Then

〈u, v1〉+〈u, v2〉 = 1
4

(
‖u + v1‖

2
− ‖u − v1‖

2 + ‖u + v2‖
2
− ‖u − v2‖

2
)

= 1
4

(∥∥∥u + 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2
−

∥∥∥u − 1
2 (v1 + v2) − 1

2 (v1 − v2)
∥∥∥2

+∥∥∥u + 1
2 (v1 + v2) − 1

2 (v1 − v2)
∥∥∥2
−

∥∥∥u − 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2)
. (7.1)

By the parallelogram law we have∥∥∥u + 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2

+
∥∥∥u + 1

2 (v1 + v2) − 1
2 (v1 − v2)

∥∥∥2
=

2
∥∥∥u + 1

2 (v1 + v2)
∥∥∥2

+ 2
∥∥∥ 1

2 (v1 − v2)
∥∥∥2

(7.2)

and∥∥∥u − 1
2 (v1 + v2) + 1

2 (v1 − v2)
∥∥∥2

+
∥∥∥u − 1

2 (v1 + v2) − 1
2 (v1 − v2)

∥∥∥2
=

2
∥∥∥u − 1

2 (v1 + v2)
∥∥∥2

+ 2
∥∥∥ 1

2 (v1 − v2)
∥∥∥2
. (7.3)

If we substitute (7.2) and (7.3) into (7.1) we get

〈u, v1〉 + 〈u, v2〉 = 1
4

(∥∥∥u + 1
2 (v1 + v2)

∥∥∥2
−

∥∥∥u − 1
2 (v1 + v2)

∥∥∥2)
= 2

〈
u, 1

2 (v1 + v2)
〉
. (7.4)

With this we prove a lemma.

1 Lemma If k ∈ Z≥0 then
〈

1
2k u,v

〉
= 1

2k 〈u,v〉 for all u,v ∈ V.

Proof The result is vacuously true for k = 0. If we let v2 = 0 in (7.4) we have〈
1
2 u, v

〉
= 1

2〈u, v〉, giving the lemma for k = 1. Now we proceed by induction. Suppose
that the lemma holds for k = m ≥ 2. Then〈

1
2m+1 u, v

〉
=

〈
1

2m
1
2 u, v

〉
= 1

2m

〈
1
2 u, v

〉
= 1

2m+1 〈u, v〉,

using the induction hypotheses. H

Note that we now have

〈u, v1 + v2〉 = 〈v1 + v2,u〉 = 2
〈

1
2 (v1 + v1),u

〉
= 2

〈
u, 1

2 (v1 + v2)
〉

= 〈u, v1〉 + 〈u, v2〉

where we have used (7.4).
Now we give another lemma.
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2 Lemma We have
〈

m
2k u,v

〉
= m

2k 〈u,v〉 for all u,v ∈ V, m ∈ Z, and k ∈ Z≥0.

Proof We shall prove the result for m ∈ Z>0. The result for m = 0 is trivial, and the
proof for m ∈ Z<0 follows along the same lines as the proof for m ∈ Z>0.

The result is clearly true for m = 1. Now suppose it is true for m = l ≥ 2. Then we
have 〈

l+1
2k u, v

〉
=

〈
l+1
2k u, v

〉
=

〈
l

2k u + 1
2k u, v

〉
=

〈
l

2k u, v
〉

+
〈

1
2k u, v

〉
=

〈
l

2k u, v
〉

+
〈

1
2k u, v

〉
= l

2k 〈u, v〉 + 1
2k 〈u, v〉 = l+1

2k 〈u, v〉,

using the induction hypotheses. H

Now need a pair of technical lemmata.

3 Lemma Let a, b ∈ R be such that a < b. Then there exist m ∈ Z and k ∈ Z≥0 such that
a < m

2k < b.

Proof This is Exercise 2.1.5. H

4 Lemma Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. Fix u,v ∈ V and
define φ : F→ R by φ(a) = ‖au + v‖. Then φ is continuous.

Proof This follows from Proposition 6.5.4 along with the fact that the composition of
continuous maps is continuous. H

We may now prove the final property needed to show that 〈·, ·〉 is a (semi-)inner
product. That is, we show that 〈au, v〉 = a〈u, v〉 for all a ∈ F and u, v ∈ V. We will show
that |〈au, v〉 − a〈u, v〉| < ε for any ε ∈ R>0. Let δm,k = a − m/2k for m ∈ Z and k ∈ Z≥0.
Note that we can make |δm,k| as small as we like by appropriately choosing m and k.
We thus have

|〈au, v〉 − a〈u, v〉| = |〈(m2n + δm,k)u, v〉 − (m/2n + δm,k)〈u, v〉|
= |〈δm,ku, v〉 − δm,k〈u, v〉| ≤ |〈δm,ku, v〉| + |δm,k〈u, v〉|.

For ε > 0 let δ1 =
∣∣∣ ε
2〈u,v〉

∣∣∣ and let δ2 be such that |〈δ2u, v〉| ≤ ε/2. This is possible since
a 7→ 〈au, v〉 is continuous by Proposition 7.2.1. Now choose m ∈ Z and k ∈ Z>0 so that
δm,k < min(δ1, δ2). Then

|〈au, v〉 − a〈u, v〉| ≤ |〈δm,ku, v〉| + |δm,k〈u, v〉| < ε/2 + ε/2 = ε,

as desired. This shows that 〈·, ·〉 is a (semi-)inner product. Now we show that ‖·‖ is
derived from this (semi-)inner product. This is easy since

〈v, v〉 = 1
4‖v + v‖2 = ‖v‖2.

This completes the proof for the case when F = R.
When F = C we claim that

〈u, v〉 , 1
4

(
‖u + v‖2 − ‖u − v‖2

)
+ i

4

(
‖u + iv‖2 − ‖u − iv‖2

)
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is a (semi-)inner product on V. First note that

〈v,u〉 = 1
4

(
‖v + u‖2 − ‖v − u‖2

)
−

i
4

(
‖v + iu‖2 − ‖v − iu‖2

)
= 1

4

(
‖u + v‖2 − ‖u − v‖2

)
−

i
4

(
‖−iiv + iu‖2 − ‖−iiv − iu‖2

)
= 1

4

(
‖u + v‖2 − ‖u − v‖2

)
+ i

4

(
‖iiv + iu‖2 − ‖iiv − iu‖2

)
= 1

4

(
‖u + v‖2 − ‖u − v‖2

)
+ i

4

(
‖u + iv‖2 − ‖u − iv‖2

)
= 〈u, v〉.

We also compute

〈u, v1 + v2〉 = 〈u, v1〉 + 〈u, v2〉, 〈au, v〉 = a〈u, v〉

for u, v, v1, v2 ∈ V and for a ∈ R. We also compute

〈iu, v〉 = 1
4

(
‖iu + v‖2 − ‖iu − v‖2

)
+ i

4

(
‖iu + iv‖2 − ‖iu − iv‖2

)
= i

4

(
‖u + v‖2 − ‖u − v‖2

)
+ 1

4

(
‖iu − iiv‖ − ‖iu + iiv‖

)
= i 1

4

(
‖u + v‖2 − ‖u − v‖2

)
+ i i

4

(
‖u + iv‖2 − ‖u − iv‖2

)
= i〈u, v〉

We can then readily check that 〈au, v〉 = a〈u, v〉 for every u, v ∈ V and a ∈ C. This shows
that 〈·, ·〉 is a (semi-)inner product. We also have

〈v, v〉 = 1
4‖2v‖2 + i

4 |1 + i|2‖v‖2 − |1 − i|2‖v‖2 = 1
4‖2v‖2 = ‖v‖2.

Taking square roots shows that ‖·‖ is the (semi)norm derived from the inner product
〈·, ·〉, and so gives the theorem when F = C. �

As a consequence of the proof we have the following formulae which relate an
inner product to the norm defined by it.

7.1.10 Corollary (Polarisation identity) Let F ∈ {R,C} and let (V, 〈·, ·〉) be an F-(semi-)inner
product space with ‖·‖ the norm defined by 〈·, ·〉. The following statements hold:

(i) if F = R then
〈u,v〉 = 1

4

(
‖u + v‖2 − ‖u − v‖2

)
for all u,v ∈ V;

(ii) if F = C then

〈u,v〉 , 1
4

(
‖u + v‖2 − ‖u − v‖2

)
+ i

4

(
‖u + iv‖2 − ‖u − iv‖2

)
for all u,v ∈ V.

The fact is that it is unusual for a norm to be derived from an inner product.
However, since norms coming from inner products are so important, we will devote
a great deal of effort to this special case.

With (semi-)inner product spaces now being normed vector spaces, all the norm
machinery can be piled into a (semi-)inner product space. Indeed, we shall in this
chapter freely refer to any part of Chapter 6. Also, we shall frequently apply the
name for a (semi)normed vector space concepts directly to a (semi-)inner product
space.
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7.1.3 Orthogonality

One of the essential features of an inner product spaces that distinguish them
from more general normed vector spaces is that one has the notion of orthogonality.
We have some intuition about what orthogonality means in low dimensions (see
Section ??), and some of this intuition carries over to general inner product spaces.
However, as is often the case when one makes the leap to infinite-dimensions, one
must be careful in relying solely on intuition in making assertions about what is
true or not.

Let us give the definitions. Note that the word “orthogonal” has multiple
meanings, depending on context.

7.1.11 Definition (Orthogonal, orthogonal complement) Let F ∈ {R,C} and let (V, 〈·, ·〉)
be an F-(semi-)inner product space.

(i) Vectors v1, v2 ∈ V are orthogonal if 〈v1, v2〉 = 0. We shall write v1 ⊥ v2 to
denote v1 and v2 being orthogonal.

(ii) Sets A1,A2 ⊆ V are orthogonal if 〈v1, v2〉 = 0 for every v1 ∈ A1 and v2 ∈ A2. We
shall write A1 ⊥ A2 to denote A1 and A2 being orthogonal.

(iii) If A ⊆ V then the orthogonal complement of A is the set

A⊥ = {u ∈ V | 〈u, v〉 = 0 for all v ∈ A}. •

Let us give some elementary examples of orthogonal sets.

7.1.12 Examples (Orthogonality)
1. The vectors (1, 2i,−1), (1, 3

2 + i
2 , 3i) ∈ C3 are orthogonal.

2. In F3 the sets

A1 = spanF((1, 1, 1), (0, 1, 1)), A2 = spanF((0, 1,−1))

are orthogonal. Moreover, A1 is the orthogonal complement of A2 and A2 is the
orthogonal complement of A1. •

In some sense, this entire chapter is about orthogonality. Let us here give a few
simple consequences of the definitions.

7.1.13 Proposition (Properties of orthogonal complement) Let F ∈ {R,C}, let (V, 〈·, ·〉)
be an F(semi-)-inner product space, and let A,B ⊆ V. Then the following statements hold:

(i) if A ⊆ B then B⊥ ⊆ A⊥;
(ii) A ⊆ (A⊥)⊥;
(iii) A⊥ is a closed subspace of V;
(iv) A⊥ = (cl(spanF(A)))⊥.

If 〈·, ·〉 is additionally an inner product then
(v) cl(spanF(A)) ∩A⊥ = {0V}.
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Proof The proof of parts (i), (ii), and (iii) are left to the reader as Exercise 7.1.11.
(iv) Since A ⊆ cl(spanF(A)) it follows from part (i) that

A⊥ ⊇ (cl(spanF(A)))⊥.

Now let u ∈ A⊥ so that 〈u, v〉 = 0 for every v ∈ A. Next let v̂ ∈ cl(spanF(A)) and by
Proposition 6.6.8 let (v̂ j) j∈Z>0 be a sequence in spanF(A) converging to v̂. For each
j ∈ Z>0 we can write

v̂ j =

k j∑
r=1

c jrv jr

for some k j ∈ Z>0 and c jr ∈ F and v jr ∈ A, r ∈ {1, . . . , k j}. It therefore follows that

〈
u, v̂ j

〉
=

〈
u,

k j∑
r=1

c jrv jr

〉
=

k j∑
j=1

c̄ jr〈u, v jr〉 = 0

for each j ∈ Z>0. This allows us to deduce that〈
u, v̂

〉
= lim

j→∞

〈
u, v̂ j

〉
= 0

by Proposition 7.2.1 and Theorem 6.5.2. Thus u ∈ (cl(spanF(A)))⊥ as desired.
(v) If

v ∈ cl(spanF(A)) ∩ A⊥ = cl(spanF(A)) ∩ (cl(spanF(A)))⊥

then 〈v, v〉 = 0 which gives v = 0V if 〈·, ·〉 is an inner product. �

The equality A⊥ = (cl(spanF(A)))⊥ is an important one. It tells us that the
orthogonal complement of a set is not a feature of the set, but of the closure of
the subspace generated by this set. Thus there are two operations happening
when taking orthogonal complements: “span” and “closure” (in that order). The
appearance of the topological closure operation here is perhaps surprising at first
encounter. Indeed, since all subspaces are closed in finite dimensions, closure does
not make an appearance in that case.

It is fairly obviously true that A , (A⊥)⊥ in general, merely because A may not
be a subspace but (A⊥)⊥ is a subspace. So the question of when A = (A⊥)⊥ is only
interesting when A is a subspace. However, even in this case equality does not
generally hold. This is something that we will explore in greater detail in missing
stuff , so here we merely content ourselves with a counterexample.

7.1.14 Example (U , (U⊥)⊥) Let us take V = `2(F) with the inner product

〈(a j) j∈Z>0 , (b j) j∈Z>0〉 =

∞∑
j=1

a jb̄ j.

This is a specialisation to p = 2 of the Banach space `p(F) considered in Section 6.7.2.
We showed in Theorem 6.7.19 that this is a Banach space and in Corollary 6.7.21
that this Banach space is the completion of F∞0 . Let us then take the subspace F∞0
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of `2(F). We claim that F∞0 is a strict subspace of ((`∞0 )⊥)⊥. To see this we first claim
that (F∞0 )⊥ = {0`2(F)}. Indeed, let (e j) j∈Z>0 be the standard basis for F∞0 . Thus, as a
reminder,

e j(k) =

1, j = k,
0, j , k.

Then, if (a j) j∈Z>0 ∈ (F∞0 )⊥ then

〈(a j) j∈Z>0 , ek〉 = ak = 0

for every k ∈ Z>0. Thus (F∞0 )⊥ = {0`2(F)} as claimed. It, therefore, follows that
((F∞0 )⊥)⊥ = `2(F) and so we have F∞0 as a strict subspace of ((F∞0 )⊥)⊥ as claimed. •

The issue with the preceding example, as we shall see in Theorem 7.1.19, is that
F∞0 is not a closed subspace of `2(F).

Let us also record how orthogonality interacts with sums and intersections of
subsets of V. For A,B ⊆ V we denote

A + B , {u + v | u ∈ A, v ∈ B}.

We now have the following assertions.

7.1.15 Proposition (Orthogonality and sum and intersection) LetF ∈ {R,C}, let (V, 〈·, ·〉)
be a F-inner product space, and let A,B ⊆ V. Then the following statements hold:

(i) (A + B)⊥ = A⊥ ∩ B⊥.
(ii) (cl(spanF(A)) ∩ cl(spanF(B)))⊥ = A⊥ + B⊥.

Proof (i) By part (iv) of Proposition 7.1.13 we have

(A + B)⊥ = (spanF(A + B))⊥ = (spanF(A) + spanF(B))⊥,

using the easily verified identity spanF(A+B) = spanF(A)+spanF(B). Let w ∈ (A+B)⊥.
Then 〈w,u + v〉 = 0 for every u ∈ spanF(A) and v ∈ spanF(B). In particular, 〈w,u〉 = 0
and 〈w, v〉 = 0 for every u ∈ spanF(A) and v ∈ spanF(B). Thus w ∈ A⊥ ∩ B⊥. Next
suppose that w ∈ A⊥ ∩ B⊥. Then, using part (iv) of Proposition 7.1.13,

w ∈ (spanF(A))⊥ ∩ (spanF(B))⊥.

Therefore, 〈w,u〉 = 〈w, v〉 = 0 for every u ∈ spanF(A) and v ∈ spanF(B). Thus 〈w,u+v〉 =
0 u ∈ spanF(A) and v ∈ spanF(B), giving

w ∈ (spanF(A) + spanF(B))⊥ = (A + B)⊥,

as desired.
(ii)
Conversely, since

cl(spanF(A)) ∩ cl(spanF(A)) ⊆ cl(spanF(A))

we have
(cl(spanF(A)))⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥
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by part (i) of Proposition 7.1.13. By part (iv) of the same result we then have

A⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥.

In like manner
B⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥.

Since (cl(spanF(A)) ∩ cl(spanF(A)))⊥ is a subspace by part (iii) of Proposition 7.1.13 it
then follows that

A⊥ + B⊥ ⊆ (cl(spanF(A)) ∩ cl(spanF(A)))⊥,

giving the desired conclusion. �

7.1.4 Hilbert spaces and their subspaces

As inner-product spaces are normed vector spaces, the whole discussion of
Cauchy sequences, convergent sequences, and completeness in Sections 6.2 and 6.3
can be applied to inner product spaces. The notion of a complete inner product
space is important enough to have its own name.

7.1.16 Definition (Completeness, Hilbert space) Let F ∈ {R,C}. A F-inner product
space (V, 〈·, ·〉) is complete if the corresponding normed vector space is complete.
A F-Hilbert1 space is a complete F-inner product space. •

Since inner product spaces are also normed vector spaces, the construction of
the completion in Theorem 6.3.6 also applies to inner product spaces. That is to
say, every inner product space possesses a completion that is a Banach space. Of
course, one would also like to have the completion be a Hilbert space, and this is
the content of the next result.

7.1.17 Theorem (Completion of an inner product space) If (V, 〈·, ·〉) is an inner product
space then there exists a Hilbert space (V, 〈·, ·〉) and an injective linear map iV : V→ V with
the following properties:

(i) image(iV) is dense in V;

(ii) 〈v1,v2〉 = 〈iV(v1), iV(v2)〉.
Proof We let V be the vector space constructed from the normed vector space asso-
ciated to V as in Theorem 6.3.6, and we let iV also be the linear map constructed in
the proof of that result. Now let v ∈ V and v ∈ V and let (v j) j∈Z>0 be a sequence in
V for which v = lim j→∞ v j. We claim that the sequence (〈v j, v〉) j∈Z>0 in F converges.
We may suppose that v , 0 without loss of generality. Let ε > 0 and choose N ∈ Z>0
so that ‖v j − vk‖ <

ε
‖v‖ for j, k ≥ N; this is possible by continuity of the norm. By the

Cauchy–Bunyakovsky–Schwarz inequality we then have

|〈v j, v〉 − 〈vk, v〉| ≤ |〈v j − vk, v〉| ≤ ‖v j − vk‖‖v‖ ≤ ε

1David Hilbert (1862–1943) in one of history’s greatest mathematicians. At the 1900 International
Congress of Mathematics in Paris, Hilbert gave a list of twenty three problems which he felt should
guide mathematical research in the upcoming centuries. Many of Hilbert’s problems have been
solved, some to great aplomb. Hilbert’s own contributions were in many fields, including geometry,
analysis, logic, and algebra.
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for j, k ≥ N, showing that (〈v j, v〉) j∈Z>0 is Cauchy, and so convergent. Thus we may
sensibly define 〈v, v〉 = lim j→∞〈v j, v〉. We may similarly, of course, define 〈v, v〉, thus
defining 〈·, ·〉 on V × V and V × V. The same sort of arguments also allow one to define
〈v1, v2〉 for v1, v2 ∈ V. To show that the resulting map V × V 3 (v1, v2) 7→ 〈v1, v2〉 ∈ F
is an inner product is a simple verification of the axioms, using the fact, for example,
that if a sequence (v j) j∈Z>0 converges to v, then the sequence (av j) j∈Z>0 converges to
av for a ∈ F. That (i) holds is an immediate consequence of Theorem 6.3.6, and (ii) is
obvious. �

Let us consider our inner product space examples to determine which are
Hilbert spaces.

7.1.18 Examples (Hilbert spaces and non-Hilbert spaces)
1. The inner product space (Fn, 〈·, ·〉2) is a Banach space by virtue of the fact that

every finite-dimensional inner product space is complete (Theorem 6.3.3).
2. The inner product space (F∞0 , 〈·, ·〉2) is not complete. Indeed, in Corollary 6.7.21

we saw that its completion is `2(F) which contains F∞0 as a strict subset. To
“by hand” show that (F∞0 , 〈·, ·〉2) is not complete can be done following the
strategy of Example 6.3.1–1. We leave the working out of this to the reader
as Exercise 7.1.6. The completion of (F∞0 , 〈·, ·〉2) is (`2(F), 〈·, ·〉2) as is proved in
Corollary 6.7.21.

3. The inner product space (C0([a, b];F), 〈·, ·〉2) is not a Hilbert space if b > a. In
missing stuff we showed that L2([a, b];F) is the completion of C0([a, b];F) with
respect to the norm induced by the inner product 〈·, ·〉. Since C0([a, b];F) is a
strict subset of L2([a, b];F) this allows us to conclude that (C0([a, b];F), 〈·, ·〉2) is
not complete. Moreover, one can show this explicitly following the arguments
of Example 6.3.1–2; see Exercise 7.1.7. •

The following conclusion for complete subspaces of inner product spaces is
important. Note that definiteness of the inner product is essential here.

7.1.19 Theorem (Complete subspaces and direct sum decompositions) If F ∈ {R,C},
if (V, 〈·, ·〉) is an F-inner product space, and if U is a complete subspace of V, then
V = U ⊕ U⊥.

Proof We refer ahead to Theorem 7.1.25 for a characterisation of the minimisation
of the distance from a point to a convex subset. There is nothing in that theorem that
involves machinery not yet available to us.

Let v0 ∈ V and, by Theorem 7.1.25, let v̂0 ∈ U be the unique vector such that

‖v0 − v̂0‖ = inf{‖v0 − u‖ | u ∈ U}.

We claim that v0 − v̂0 ∈ U⊥.
First we do a little computation. Let v ∈ V, let u ∈ U \ {0V}, and let a ∈ F. Then we
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compute

‖v − au‖2 = 〈v − au, v − au〉

= ‖v‖2 − a〈u, v〉 − ā〈v,u〉 + aā‖u‖2

= ‖v‖2 + ‖u‖2
(
aā − a

〈v,u〉
‖u‖2

− ā
〈v,u〉
‖u‖2

)
= ‖v‖2 + ‖u‖2

(
a −
〈v,u〉
‖u‖2

)(
ā −
〈v,u〉
‖u‖2

)
−
|〈v,u〉|2

‖u‖2

= ‖v‖2 + ‖u‖2
∣∣∣∣∣∣a − 〈v,u〉‖u‖2

∣∣∣∣∣∣
2

−
|〈v,u〉|2

‖u‖2
.

As a function of a this quantity is minimised when a = a0 ,= 〈v,u〉
‖u‖2 and the minimum

value of the function is

‖v‖2 −
|〈v,u〉|2

‖u‖2
.

Now apply this to v = v0 − v̂0 to give

‖v0 − v̂0 − a0u‖ = ‖v0 − v̂0‖ −
|〈v0 − v̂0,u〉|2

‖u‖2
(7.5)

for every u ∈ U \ {0V}. By definition of v̂0 we have

‖v0 − v̂0 + a0u‖2 ≥ ‖v0 − v̂0‖
2,

and from this and (7.5) we have

|〈v0 − v̂0,u〉|2

‖u‖2
= 0 =⇒ |〈v0 − v̂0,u〉|2 = 0

for all u ∈ U \ {0V}. Thus v0 − v̂0 ∈ U⊥, as claimed above.
Therefore, for every v ∈ V we can write v = (v− v̂)− v̂ where v̂ ∈ U and v− v̂ ∈ U⊥.

Since U ∩ U⊥ = {0V} by Proposition 7.1.13 we have V = U ⊕ U⊥, giving the theorem. �

As concerns Hilbert spaces, we have the following result.

7.1.20 Corollary (Closed subspaces and direct sum decompositions) If F ∈ {R,C}, if
(V, 〈·, ·〉) is an F-Hilbert space, and if U is a closed subspace of V, then V = U ⊕ U⊥.

Proof By Proposition ?? closed subspaces of Hilbert spaces are complete. Thus the
result follows from Theorem 7.1.19. �

In finite dimensions the hypotheses of the theorem are always satisfied for any
inner product.

7.1.21 Corollary (Orthogonal decompositions of finite-dimensional inner product
spaces) If F ∈ {R,C}, if (V, 〈·, ·〉) is a finite-dimensional F-inner product space, and
if U is a subspace of V, then V = U ⊕ U⊥.

Let us give an examples exploring the necessity of the hypotheses of the pre-
ceding results concerning direct sum decompositions.
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7.1.22 Examples (Direct sum decomposition of inner product spaces)
1. The assumption in Theorem 7.1.19 that U is complete is essential. Indeed,

consider the Hilbert space (`2(F), 〈·, ·〉2) with

〈(a j) j∈Z>0 , (b j) j∈Z>0〉 =

∞∑
j=1

a jb̄ j.

Take the subspace F∞0 which is not complete since its completion is `2(F) by
Corollary 6.7.21. By Proposition 7.1.13 we have

(F∞0 )⊥ = (cl(F∞0 ))⊥ = `2(F)⊥ = {0`2(F)}.

Thus we have `2(F) , F∞0 ⊕ (F∞0 )⊥.
2. Let us now consider the necessity that V be a Hilbert space in Corollary 7.1.20.

We consider the incomplete inner product space (F∞0 , 〈·, ·〉2) and the subspace

U =
{
(a j) j∈Z>0

∣∣∣∣ ∞∑
j=1

a j

j
= 0

}
.

We leave to the reader the elementary verification that U is a proper subspace
of F∞0 .
Let us verify that U is closed. Let ((a jl) j∈Z>0)l∈Z>0 be a sequence in U converging
to (a j) j∈Z>0 in F∞0 . Fix j ∈ Z>0 and let ε ∈ R>0. Choose N ∈ Z>0 sufficiently large
that

‖(a j) j∈Z>0 − (a jl) j∈Z>0‖ < ε

for l ≥ N. Then, for l ≥ N,

|a j − a jl|
2
≤

∞∑
k=1

|ak − akl|
2 = ‖(ak)k∈Z>0 − (akl)k∈Z>0‖

2 < ε2.

That is to say, liml→∞ a jl = a j for each j ∈ Z>0. Define

bnl =

n∑
j=1

a jl

j
.

We claim that the double sequence (bnl)n,l∈Z converges to zero. Since (a j) j∈Z>0 ∈

F∞0 there exists N1 ∈ Z>0 such that a j = 0 for j > N1. Now let ε ∈ R>0 and let
N2 ∈ Z>0 be sufficiently large that

‖(a j) j∈Z>0 − (a jl) j∈Z>0‖ <
ε
M

for l ≥ N2, where

M ,
∞∑
j=1

1
j2 ,
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this series being summable by Example 2.4.2–??. Then, using the
Cauchy–Bunyakovsky–Schwarz inequality, for l,n ≥ max{N1,N2},

|bnl| =
∣∣∣∣ n∑

j=1

a jl

j

∣∣∣∣ ≤ ∣∣∣∣ n∑
j=1

a jl − a j

j

∣∣∣∣ +
∣∣∣∣ n∑

j=1

a j

j

∣∣∣∣
≤

( n∑
j=1

|a j − a jl|
2
)1/2( n∑

j=1

1
j2

)1/2

≤

( ∞∑
j=1

|a j − a jl|
2
)1/2( ∞∑

j=1

1
j2

)1/2
< ε,

as desired. Then we have
∞∑
j=1

a j

j
=

∞∑
j=1

lim
l→∞

a jl

j
= lim

n→∞
lim
l→∞

bnl = 0,

using Proposition 2.3.21. Thus we indeed have (a j) j∈Z>0 ∈ U and so U is closed.
Now let us show that U⊥ = {0F∞0 }. Let (a j) j∈Z>0 ∈ U⊥ and let N ∈ Z>0 be such that
a j = 0 for j > N. Then define (b jl) j∈Z>0 ∈ U, l ∈ {1, . . . ,N + 1}, by

b jl =


−l, j = l,
N + 1, j = N + 1,
0, otherwise.

Then
∞∑
j=1

b jl

j
= −

l
l

+
N + 1
N + 1

= 0,

so (b jl) j∈Z>0 is indeed in U for each l ∈ {1, . . . ,N + 1}. Moreover, for each l ∈
{1, . . . ,N},

0 = 〈(a j) j∈Z>0 , (b jl) j∈Z>0〉 = −lal,

and so al = 0 for l ∈ {1, . . . ,N}. Thus U⊥ = {0F∞0 } as claimed. •

The preceding examples suggest that there is some sort of relationship between
completeness of inner product spaces and properties of closed subspaces. Let us
clarify this with the following result.

7.1.23 Theorem (Subspace characterisations of completeness of inner product
spaces) ForF ∈ {R,C} and for aF-inner product space (V, 〈·, ·〉), the following statements
are equivalent:

(i) V is a Hilbert space;
(ii) for every closed subspace U of V it holds that V = U ⊕ U⊥;
(iii) for every closed subspace U of V it holds that U = (U⊥)⊥;
(iv) for every proper closed subspace U of V it holds that U⊥ , {0V}.
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Proof (i) =⇒ (ii) This is Corollary 7.1.20.
(ii) =⇒ (iii) By Proposition 7.1.13 we have U ⊆ (U⊥)⊥. Now let v ∈ (U⊥)⊥ and write

v = v1 + v2 for v1 ∈ U and v2 ∈ U⊥. Then v2 = v − v1 ∈ (U⊥)⊥ since v ∈ (U⊥)⊥ and
v1 ∈ U ⊆ (U⊥)⊥. But this means that v2 ∈ U⊥ ∩ (U⊥)⊥ = {0V} and so v = v1 ∈ U.

(iii) =⇒ (iv) Let U be a subspace of V for which U⊥ = {0V}. By assumption,
U = {0V}

⊥ = V. Thus U is not proper.
(iv) =⇒ (i) Let V be a completion of V and regard V as a subspace of V. Let v̄ ∈ V.

If v̄ = 0V then v̄ ∈ V. So suppose that v̄ , 0V. Define fv̄ : V→ F by fv̄(u) = 〈u, v̄〉 noting
that fv̄ is continuous by Proposition 7.2.1. Thus ker( fv̄) is closed by Theorem 6.5.2,
being the preimage of the closed set {0V}. We claim that ker( fv̄) is a proper subspace.
To see this, suppose that ker( fv̄) = V and let (v j) j∈Z>0 be a sequence in V converging to
v̄. Then, by Theorem 6.5.2 and Proposition 7.2.1, we have

〈v̄, v̄〉 = 〈 lim
j→∞

v j, v̄〉 = lim
j→∞
〈v j, v̄〉 = 0,

contradicting the definiteness of the inner product. Thus we have ker( fv̄) ⊂ V. By
assumption there exists v′ ∈ ker( fv̄)⊥ such that ‖v‖ = 1. One can verify, cf. the proof of
Theorem 7.2.2 below, that if we take v = fv(v′)v′ then 〈u, v̄〉 = 〈u, v〉 for every u ∈ V.
Thus 〈u, v̄ − v〉 = 0 for every u ∈ V and so v̄ = v. Thus V = V. �

For other conditions equivalent to completeness we refer to Theorems 7.2.4
and 7.3.10.

7.1.5 Minimising distance to a set

One of the very interesting and useful features of inner product spaces is that
they allow one to solve certain sorts of problems. In this section we consider the
following problem.

7.1.24 Problem (Distance minimisation problem) Let F ∈ {R,C} and let (V, ‖·‖) be a
F-normed vector space. For v0 ∈ V and for a subset S ⊆ V do the following:

(i) determine dist(v0,S) , inf{‖v0 − v‖ | v ∈ S};
(ii) ascertain whether there exists v̂0 ∈ S such that ‖v0 − v̂0‖ = dist(v0,S). •

In general, the previous problem is too difficult to be approachable. There
are a couple of reasons for this. First of all, by stating the problem for arbitrary
subsets the problem is simply unreasonable. One really must place some additional
structure on the set S. Below we will consider the case when S is convex. However,
even if one restricts the set S to be something “reasonable,” the problem can still be
too difficult to solve. One of the reasons this may be so is that general norms are
difficult to understand. The reader can explore this a little in the finite-dimensional
situation in Exercise 7.1.14. However, if one restricts the norm to come from an
inner product it turns out that it is possible to characterise the solutions to some
distance minimisation problems in a useful way. Thus we restrict our attention in
this section to the distance minimisation problem for inner product spaces.

The most accessible sufficiently interesting result concerns the minimisation of
the distance from a point to a convex set. We dealt with convexity inRn in detail in
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Section ?? and in general vector spaces in Chapter ??. Here we simply recall that a
convex subset of a F-vector space V is a subset C for which

u, v ∈ C =⇒ {(1 − s)u + sv | s ∈ [0, 1]} ⊆ C.

We then have the following result which gives a case where the distance minimi-
sation problem possesses a unique solution.

7.1.25 Theorem (Minimisation of distance to convex subsets) Let F ∈ {R,C}, let
(V, 〈·, ·〉) be an F-inner product space, and let v0 ∈ V. If C ⊆ V is a complete convex
set then there exists a unique vector v̂0 ∈ C for which

‖v0 − v̂0‖ = dist(v0,C).

Proof Denote m = dist(v,C) and let (v j) j∈Z>0 be a sequence in C such that ‖v0 − v j‖
2 <

m2 + 1
j . We claim that the set

{v0} + C = {v0 + v | v ∈ C}

is convex. Indeed, if v0 + v1, v0 + v2 ∈ {v0} + C for v1, v2 ∈ C and if s ∈ [0, 1] then

(1 − s)(v0 + v1) + s(v0 + v2) = v0 + (1 − s)v1 + sv2 ∈ {v0} + C.

Now, since {v0}+ C is convex, for each j, k ∈ Z>0 we have
∥∥∥1

2 ((v0 + v j) + (v0 + vk))
∥∥∥2
≥ m2.

Now let ε ∈ R>0 and let N ∈ Z>0 be such that 4
N < ε2. For j, k ≥ N, using the

parallelogram law we then have

‖v j − vk‖
2 = ‖(v0 − v j) − (v0 − vk)‖2

= 2‖v0 − v j‖
2 + 2‖v0 − vk‖

2
− 4

∥∥∥ 1
2 ((v0 + v j) + (v0 + vk))

∥∥∥2

< 2m2 + 2
j + 2m2 + 2

k − 4m2 < 4
N < ε2.

Thus ‖v j−vk‖ < ε for j, k ≥ N and so (v j) j∈Z>0 is a Cauchy sequence. Since C is complete
there exists v̂0 ∈ C such that (v j) j∈Z>0 converges to v̂0. This gives the existence part of
the lemma.

If û0 ∈ C has the property that ‖v0 − û0‖ = m then, using the parallelogram law,

‖û0 − v̂0‖
2 = 2‖v0 − û0‖

2 + 2‖v0 − v̂0‖
2

− 4
∥∥∥ 1

2 ((v0 + û0) + (v0 + v̂0))
∥∥∥ ≤ 2m2 + 2m2

− 4m2 = 0.

Thus ‖û0 − v̂0‖ = 0 and so û0 = v̂0. �

Since a subspace of a vector space is obviously convex we can immediately apply
the preceding result to the case when C is a subspace. For subspaces, however, there
is more that can be said about the character of the points that solve the distance
minimisation problem: they are orthogonal to the subspace.
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7.1.26 Theorem (Minimisation of distance to subspaces) Let F ∈ {R,C} and let (V, 〈·, ·〉)
be an F-inner product with v0 ∈ V and U ⊆ V a subspace. Then v̂0 ∈ U satisfies

‖v0 − v̂0‖ = dist(v0,U) (7.6)

if and only if v0 − v̂0 ∈ U⊥. Furthermore, if U is complete then there exists a unique vector
v̂0 ∈ U such that (7.6) holds.

Proof First suppose that v0 − v̂0 ∈ U⊥. Then, since v̂0 − u ∈ U for any u ∈ U, v0 − v̂0
and v̂0 − u are orthogonal. The Pythagorean identity (Exercise 7.1.12) then gives

‖v0 − u‖2 = ‖v0 − v̂0‖
2 + ‖v̂0 − u‖2

for any u ∈ U. From this we conclude that ‖v0 − v̂0‖
2
≤ ‖v0 − u‖2 for every u ∈ U. This

exactly means that v̂0 satisfies (7.6).
Now suppose that v̂0 satisfies (7.6). Let α ∈ F \ {0} and define fα : U → U by

fα(u) = v̂0 + α(u − v̂0). Since v̂0 satisfies (7.6) we have

‖v0 − v̂0‖
2
≤ ‖v0 − fα(u)‖2

= ‖(v0 − v̂0) − α(u − v̂0)‖2

= ‖v0 − v̂0‖
2 + |α|2‖u − v̂0‖ − α〈u − v̂0, v0 − v̂0〉 − ᾱ〈v0 − v̂0,u − v̂0〉.

From this we conclude that

α〈u − v̂0, v0 − v̂0〉 + ᾱ〈u − v̂0, v0 − v̂0〉 ≤ |α|
2
‖u − v̂0‖ (7.7)

for every u ∈ U. Now we write α = |α|eiθ for θ ∈ (−π, π]. If F = R we restrict to
θ ∈ {0, π}. Now divide (7.7) by |α| and take the limit as |α| → 0. Also note that

{u − v̂0 | u ∈ U} = U.

Putting this all together gives

eiθ
〈u, v0 − v̂0〉 + e−iθ

〈u, v0 − v̂0〉 ≤ 0,

which again holds for all u ∈ U and θ ∈ (−π, π]. Taking θ = 0 gives

2 Re(〈u, v0 − v̂0〉) ≤ 0,

and taking θ = π gives
−2 Re(〈u, v0 − v̂0〉) ≤ 0

for all u ∈ U. From this we conclude that Re(〈u, v0 − v̂0〉) = 0 for all u ∈ U. A similar
argument, using θ = π

2 and θ = −π2 , gives Im(〈u, v0 − v̂0〉) = 0. Thus v0 − v̂0 ∈ U⊥, as
desired.

The final assertion of the theorem follows directly from Theorem 7.1.25. �

The preceding result is insightful as it gives us a concrete description of the set of
points that minimise the distance from a vector v0 to a subspace U. This description
will be important for us in Section 7.3.4 subsequently for applications of the ideas
in Section 7.3.4. You will observe that the most difficult part of Theorem 7.1.26
is showing that the set of points minimising the distance is nonempty, and in fact
contains a single point, at least when U is complete. In finite-dimensions, these
issues are not so complicated, as can be seen in Exercise 7.1.15.

missing stuff
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7.1.6 Norms

Theorem 7.1.9 was proved by John von Neumann.
Example 7.1.22–2 is taken from [SG:74b], as are the characterisations of com-

pleteness in Theorem 7.1.23.

Exercises

7.1.1 Prove Proposition 7.1.2.
7.1.2 Let F ∈ {R,C} and let (V, 〈·, ·〉) be a F-(semi-)inner product space. For a

subspace U ⊆ V, define a map from U×U toFby (u1,u2) 7→ 〈u1,u2〉 , 〈u1,u2〉U.
Show that (U, 〈·, ·〉U) is an F-(semi-)inner product space.

7.1.3 Show that a C-inner product space is always a R-inner product space, using
the fact that a C-vector space is always a R-vector space.

7.1.4 Answer the following three questions.
(a) Show that the norm defined by an inner product satisfies the parallelo-

gram law.
(b) Show that the norm defined in Example 6.1.3–4 does not come from an

inner product.
(c) Give an interpretation of the parallelogram law in R2 with the standard

inner product.
7.1.5 Show using the parallelogram law that the norms ‖·‖1 and ‖·‖∞ on Fn are not

derived from an inner product if n ≥ 2.
7.1.6 Show explicitly (i.e., as is done in Example 6.3.1–1) that (F∞0 , 〈·, ·〉2) is not

complete.
7.1.7 Show explicitly (i.e., as is done in Example 6.3.1–2) that (C0([a, b],F), 〈·, ·〉2)

is not complete.
7.1.8 Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. Show that

the following two assertions are equivalent:

(i) there exists a (semi-)inner product 〈·, ·〉 on V such that ‖v‖ =
√
〈v, v〉 for

every v ∈ V;
(ii) the expression

‖u + v + w‖2 + ‖u + v − w‖2 − ‖u − v − w‖2 − ‖u − v + w‖2

is independent of w.
Hint: Use Theorem 7.1.9.

7.1.9 Let F ∈ {R,C} and let (V, ‖·‖) be a (semi)normed F-vector space. Show that
the following two assertions are equivalent:

(i) there exists a (semi-)inner product ‖·‖· on V such that ‖v‖ =
√
〈v, v〉 for

every v ∈ V;
(ii) the function s 7→ ‖u + sv‖2 is a polynomial function of degree 2 for every

u, v ∈ V.
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Hint: Use Theorem 7.1.9.
7.1.10 Let F ∈ {R,C} and let (V, 〈·, ·〉) be an F-inner product space. Show that if

subsets A,B ⊆ V are orthogonal then so too are the subsets spanF(A) and
spanF(B).

7.1.11 Prove parts (i), (ii), and (iii) of Proposition 7.1.13.
7.1.12 Let F ∈ {R,C} and let (V, 〈·, ·〉) be a F-semi-inner product space.

(a) Prove the Pythagorean identity:

‖v1 + v2‖
2 = ‖v1‖

2 + ‖v2‖
2

if v1 and v2 are orthogonal.
(b) Show that if F = R then the Pythagorean identity for v1 and v2 implies

that v1 and v2 are orthogonal.
(c) Give an example showing that the assertion in part (b) is generally false

if F = C.
7.1.13 For F ∈ {R,C}, for an F-inner product space (V, 〈·, ·〉), and for a subspace

U ⊆ V, answer the following two questions.
(a) Show that U ∩ U⊥ = {0}.
(b) Show that if U is closed then for every v ∈ V there exists unique vectors

u1 ∈ U and u2 ∈ U⊥ so that v = u1 + u2.
7.1.14 Consider the Banach space (R2, ‖·‖2) of Example 6.1.3–2 and the Banach

space (R2, ‖·‖∞) of Example 6.1.3–4. For each of these norms, and for the
subsets S and the points v0 given below, determine dist(v0,S) and determine
the set of points v̂0 ∈ S such that ‖v0 − v̂0‖ = dist(v0,S).
(a) v0 = (0, 1) and S = {(v1, 0) | v1 ∈ [−1, 1]}.
(b) v0 = (0, 1) and S = spanR((1, 0)).
(c) v0 = (0, 1) and S = spanR((1, 1)).
(d) v0 = (0, 0) and S = {(v1, v2) | v2

1 + v2
2 ≥ 1}.

(e) v0 = (0, 0) and S = {(v1, v2) | v2
1 + v2

2 > 1}.

In the next exercise you will prove Theorem 7.1.26 when V is finite-dimensional.
As you will see, it is possible to be somewhat more concrete in this case, making you
appreciate that there is something real happening in the proof of Theorem 7.1.26.

7.1.15 Let (V, 〈·, ·〉) be a finite-dimensional inner product space, and let v0 ∈ V with
U ⊆ V a subspace. Provide a proof of Theorem 7.1.26 in this case along the
following lines.

1. Argue that the result is trivial unless v0 < U. Thus assume this for the
remainder of the proof.

2. For a subspace U ⊆ V let {u1, . . . ,um} be an orthonormal basis for U. Can
this always be done?

3. Extend the basis from the previous part of the question to an orthonor-
mal basis {v1 = u1, . . . , vm = um, vm+1, . . . , vn} for V. Can this always be
done?
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4. As a function on U, use the above basis to explicitly write down the
function defining the distance from U to v0.

5. Show that the unique point in U that minimises the distance function is

v̂0 =

m∑
j=1

〈v,u j〉u j.
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Section 7.2

Continuous maps between inner product spaces

Inner product spaces, being normed vector spaces, are of course subject to all the
definitions and results concerning maps between normed vector spaces as stated
in Section 6.5. We shall take all of these definitions and results for granted, and
instead emphasise the things that are distinctive for inner product spaces.

Do I need to read this section? The results in this section complement those of
Section 6.5, and so should be absorbed if one is in the business of understanding
continuous maps between infinite-dimensional spaces. •

7.2.1 The dual of an inner product space

Much of the special character of inner product spaces, as opposed to more
general normed vector spaces, is reflected in the structure of the topological dual
of an inner product space. In order to understand this it is useful to first record
some elementary properties of inner products.

7.2.1 Proposition (Continuity properties of operations in an inner product space)
Let F ∈ {R,C} and let (V, 〈·, ·〉) be an inner product space. Then the following maps are
uniformly continuous:

(i) V 3 v 7→ 〈v,v0〉 ∈ F for v0 ∈ V;
(ii) V 3 v 7→ 〈v0,v〉 ∈ F for v0 ∈ V;
(iii) F 3 a 7→ 〈av1,v2〉 ∈ F for v1,v2 ∈ V;
(iv) F 3 a 7→ 〈v1, av2〉 ∈ F for v1,v2 ∈ V.

Proof (i) If v0 = 0V the assertion is clearly true as the map is the constant map with
value zero. Thus consider v0 , 0V. Let ε ∈ R>0 and take δ = ε

‖v0‖
. Then, using the

Cauchy–Bunyakovsky–Schwarz inequality,

|〈v1, v0〉 − 〈v2, v0〉| = |〈v1 − v2, v0〉| ≤ ‖v1 − v2‖‖v0‖ ≤ ε

for ‖v1 − v2‖ < δ.
(ii) Conjugation a 7→ ā is clearly uniformly continuous. Therefore, v 7→ 〈v0, v〉 =

〈v, v0〉 is uniformly continuous, being a composition of uniformly continuous maps.
(iii) If 〈v1, v2〉 = 0 then clearly the given map is continuous since it is the constant

map with value zero. So suppose that 〈v1, v2〉 is nonzero. Let ε ∈ R>0 and take
δ = ε

|〈v1,v2〉|
. Then

|〈a1v1, v2〉 − 〈a2v1, v2〉| = |〈(a1 − a2)v1, v2〉| = |a1 − a2||〈v1, v2〉| ≤ ε

for |a1 − a2| < δ.
(iv) This follows from part (iii) as part (ii) follows from (i). �

The central result concerning the dual of an inner product space is then the
following.
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7.2.2 Theorem (Riesz Representation Theorem) Let F ∈ {R,C} and let (V, 〈·, ·〉) be a
Hilbert space with topological dual V∗. If α ∈ V∗ then there exists a unique vα ∈ V such
that 〈u,vα〉 = α(u) for every u ∈ V.

Proof If α = 0 then we can take vα = 0. So let α ∈ V∗ \ {0}. We claim that ker(α) is a
closed subspace of V. It is certainly a subspace. To show that it is closed, let (v j) j∈Z>0 be
a sequence in ker(α) converging to v0 ∈ V. Then, by continuity of α and Theorem 6.5.2
we have

α(v0) = α
(
lim
j→∞

v j

)
= lim

j→∞
α(v j) = 0.

Thus v0 ∈ ker(α) and so ker(α) is closed by Proposition 6.6.8. Since α , 0, ker(α) , V.
By Theorem 7.1.19, since ker(α) is closed we can choose a nonzero vector v0 ∈ ker(α)⊥,
supposing this vector to further have length 1. We claim that we can take vα = ᾱ(v0)v0,
where ᾱ : V → F is defined by ᾱ(v) = α(v). Indeed note that for u ∈ V the vector
α(u)v0 − α(v0)u is in ker(α). Therefore

0 = 〈α(u)v0 − α(v0)u, v0〉 = α(u) − α(v0)〈u, v0〉.

Thus
α(u) = 〈u, ᾱ(v0)v0〉 = 〈u, vα〉.

Thus vα as defined meets the desired criterion. Let us show that this is the only vector
satisfying the conditions of the theorem. Suppose that v1, v2 ∈ V have the property that
α(u) = 〈u, v1〉 = 〈u, v2〉 for all u ∈ V. Then 〈u, v1 − v2〉 = 0 for all u ∈ V. In particular,
taking u = v1 − v2 we have ‖v1 − v2‖

2 = 0, giving v1 = v2. �

The assumption that V is a Hilbert space is essential as the following example
shows.

7.2.3 Example (The dual of an incomplete inner product space) Let us consider the
F-inner product space (F∞0 , 〈·, ·〉2) where, we recall, that

〈(a j) j∈Z>0 , (b j) j∈Z>0〉 =

∞∑
j=1

a jb̄ j;

the sum is finite. Recall from Proposition ?? that (F∞0 )′ = F∞ and so (F∞0 )∗ is a
subspace of F∞. Define α ∈ F∞ by α( j) = 1

j for each j ∈ Z>0. By Example 2.4.2–??
note that

( 1
j ) j∈Z>0 ∈ `

2(F) ⊆ F∞ =⇒ M2 ,
∞∑
j=1

1
j2 < ∞.

(In fact, M2 = π2

6 but this precise number is not important for us, only that it is
finite.)

We claim that α is a continuous linear function on F∞0 . Indeed, let ε ∈ R>0 and
take δ = ε

M . Let a = (a j) j∈Z>0 , b = (b j) j∈Z>0 be such that

‖(a j) j∈Z>0 − (b j) j∈Z>0‖2 < δ.
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Then, using the Cauchy–Bunyakovsky–Schwarz inequality,

|α(a) − α(b)| = |α(a − b)| =
∣∣∣∣ ∞∑

j=1

a j − b j

j2

∣∣∣∣ ≤ ( ∞∑
j=1

|a j − b j|
2
)1/2( ∞∑

j=1

1
j2

)1/2
< ε.

Thus α is indeed continuous.
We next claim that there exists no fα ∈ F

∞

0 such that 〈 fα,a〉 = α(a) for every
a ∈ F∞0 . To see this, let (e j) j∈Z>0 be the standard basis for F∞0 so that e j(k) = 1 for
j = k and 0 otherwise. Then, if fα ∈ F

∞

0 we have 〈 fα, e j〉 = fα( j). Also, α(e j) = 1
j for

each j ∈ Z>0. Thus if fα ∈ F
∞ has the property that 〈 fα, e j〉 = α(e j) for every j ∈ Z>0

then it follows that fα( j) = 1
j for each j ∈ Z>0. But this means that fα( j) < F∞0 . •

The preceding example is, actually, representative of the general situation in the
sense of the following result which states that the assumption that V be a Hilbert
space is essential in the Riesz Representation Theorem.

7.2.4 Theorem (The Riesz Representation Theorem does not hold for non-Hilbert
spaces) ForF ∈ {R,C} and for aF-inner product space (V, 〈·, ·〉), the following statements
are equivalent:

(i) V is a Hilbert space;
(ii) for every α ∈ V∗ there exists vα ∈ V such that 〈u,vα〉 = α(u) for every u ∈ V.

Proof That (i) =⇒ (ii) is simply Theorem 7.2.2, so we need only prove the converse.
Thus we let V be a completion of V, let v̄ ∈ V, and define fv̄ : V → F by fv̄(u) = 〈u, v̄〉.
By Proposition 7.2.1 it follows that fv̄ is continuous. By assumption there exists v ∈ V
such that 〈u, v〉 = fv̄(u) = 〈u, v̄〉 for every u ∈ V. Thus v = v̄ and so V = V. �

Let us examine a consequence of the Riesz Representation Theorem.

7.2.5 Corollary (The dual of a Hilbert space) Let F ∈ {R,C} and let (V, 〈·, ·〉) be an F-
Hilbert space. Then the map α 7→ vα from V∗ to V is an isomorphism of R-normed vector
spaces that further satisfies vaα = āvα.

Proof According to the proof of Theorem 7.2.2 we have vα = ᾱ(v0)v0, where ᾱ ∈ V∗

is defined by ᾱ(v) = α(v) and where v0 is a fixed vector of unit length in ker(α)⊥. The
conclusions of the corollary are directly verified. �

Note that V∗ are V are not isomorphic asF-vector spaces in the case whenF = C.
Sometimes the property of a linear map L : U→ V that

1. L(u1 + u2) = L(u1) + L(u2), u1,u2 ∈ U, and

2. L(au) = āL(u), a ∈ F, u ∈ U,

is called conjugate linearity and agree with the property of linearity if and only if
F = R.

Let us examine the Riesz Representation Theorem in a few special cases.
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7.2.6 Examples (Riesz Representation Theorem)
1. Let us consider the inner product space (Fn, 〈·, ·〉2). We represent an element
α ∈ (Fn)∗ by a 1 × n matrix:

α =
[
α(1) · · · α(n)

]
.

The vector vα ∈ Fn corresponding to αmust then satisfy

α(u) = 〈u,vα〉, u ∈ Fn

=⇒

n∑
j=1

α( j)u( j) =

n∑
j=1

u( j)vα( j), u ∈ Fn

=⇒ vα( j) = α( j), j ∈ {1, . . . ,n}.

2. Next we consider the Hilbert space (`2(F), 〈·, ·〉2) and let α ∈ `2(F)∗. Then Corol-
lary 7.2.5 ensures that there exists vα ∈ `2(F) such that

α(u) =

∞∑
j=1

u( j)vα( j)

for every u ∈ `2(F). From this expression we easily see that vα( j) = α(e j), j ∈ Z>0,
where {e j} j∈Z>0 is the standard basis for F∞0 .

3. Finally, we consider the Hilbert space (L2([a, b];F), 〈·, ·〉2). If α ∈ L2([a, b];F)∗ then
Corollary 7.2.5 ensures that there exists fα ∈ L2([a, b];F) such that

α(g) =

∫ b

a
g(x) fα(x) dx

for every g ∈ L2([a, b];F). To extract a more explicit characterisation of fα is
possible once one has on hand the notion of a maximal orthonormal family. We
refer to Exercise 7.3.8 for a working out of this characterisation. •

7.2.2 Particular aspects of continuity for inner product spaces

To get started we give a few constructions concerning linear maps between
inner product spaces that are specific to the inner product structure. We begin with
the notion of the adjoint of a continuous linear map.

7.2.7 Definition

7.2.8 Remark (Self-adjointness in Sturm–Liouville2 theory) One of the important ar-
eas of application of inner product spaces is in so-called “Sturm–Liouville theory,”

2Friedrich Otto Rudolf Sturm (1841–1919) was a German mathematician whose contributions
were mainly in the area of geometry. Joseph Liouville (1809–1882) was a French mathematician
who made contributions to many areas of mathematics and its applications. These areas include
mathematical physics, differential equations, number theory, and analysis.
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which deals with a certain sort of ordinary differential equation. In this subject
one is interested in linear maps that are self-adjoint. The sort of maps that arise in
Sturm–Liouville theory are not of the sort coming from the preceding definition.
There are many reasons why this is so, and we refer the reader to missing stuff for
details. We mention this here because in reading some elementary treatments of
Sturm–Liouville theory one might be led to believe that the theory has to do with
the more or less simple situation of Definition 7.2.7. •

7.2.3 Notes

The Riesz Representation Theorem is frequently attributed to FR:07c, FR:09 and
also to MF:07.
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Section 7.3

Orthonormal bases in Hilbert spaces

One of the features distinguishing Hilbert spaces from their more general Ba-
nach space brethren is that Hilbert spaces always possess a Schauder basis. In
the theory of Hilbert space these bases go by various names, including maximal
orthonormal set or complete orthonormal families; we use the former convention.
The idea that every vector in a Hilbert space can be written as a (possibly infinite)
sum of distinguished basis vectors is an important one, and plays an important
rôle in the theory of, for example, Fourier series; see Chapter 12. Our presenta-
tion in this section begins with the finite-dimensional case in order to build some
important intuition. We then progress to countable then general bases.

Do I need to read this section? This chapter, at least that part dealing with finite
and countable maximal orthonormal sets, is important in our study of Fourier
series in Chapter 12. Moreover, understanding the “geometry” of Hilbert spaces
will be facilitated by understanding the notion of a maximal orthonormal set. •

7.3.1 General definitions and results

Before we proceed with our incremental treatment of orthonormal bases, let us
give the definitions that apply to all inner product spaces.

7.3.1 Definition (Orthonormal set) Let F ∈ {R,C} and let (V, 〈·, ·〉) be an F-inner product
space.

(i) An orthogonal set is a collection {ei}i∈I of nonzero vectors in V such that
〈ei1 , ei2〉 = 0 for all distinct i1, i2 ∈ I.

(ii) An orthonormal set is an orthogonal set {ei}i∈I such that ‖ei‖ = 1 for all i ∈ I. •

Sometimes we will talk about orthonormal and orthogonal families rather than
sets. In this case we shall use the notation (ei)i∈I. The idea is the same, however.

Let us first indicate a useful construction for constructing orthonormal sets from
linearly independent sets.

7.3.2 Theorem (Gram–Schmidt3 orthonormalisation) Let F ∈ {R,C}, let (V, 〈·, ·〉) be an
F-inner product space, and let J be either the set {1, . . . ,n} for some n ∈ Z>0 or the set
Z>0. For a family (vj)j∈J of nonzero vectors in V define a family (u′j )j∈J in V recursively by

3Jorgen Pedersen Gram (1850–1916) was a Danish mathematician whose principal employer
was the Hafnia Insurance Company. Much of Gram’s mathematical work was devoted to using
mathematical and statistical methods in forestry management. Despite being somewhat outside
the main circle of activity in mathematics, Gram made real contributions to algebra, number theory,
probability theory, and numerical analysis. Erhard Schmidt (1876–1959) was born in what is now
Estonia. His principal mathematical contributions were to the areas of integral equations and
functional analysis.
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u′1 = v1 and

u′j = vj −

j−1∑
k=1

〈vj,u′k〉
‖u′k‖

2 u′k, j ∈ J \ {1}.

If the family (vj)j∈J is linearly independent then the family (u′j )j∈J is orthogonal. Moreover,

if we additionally define uj =
u′j
‖u′j ‖

, j ∈ J, then (uj)j∈J is orthonormal.

Proof Let us prove that for any m ∈ J the set {u′1, . . . ,u
′
m} is orthogonal. We prove this

by induction on m. The claim is clearly true for m = 1. Suppose that the claim is true
for m = r so that {u′1, . . . ,u

′
r} is orthogonal. If J = {1, . . . ,n} and if r = n then the claim

is established. Otherwise we can carry on to show that {u′1, . . . ,u
′

r+1} is orthogonal as
follows. For any j ∈ {1, . . . , r},

〈u′r+1,u
′

j〉 =
〈
vr+1 −

r∑
k=1

〈vr+1,u′k〉

‖u′k‖
2 u′k,u

′

j

〉
= 〈vr+1,u′j〉 − 〈vr+1,u′j〉 = 0.

Thus u′r+1 is orthogonal to the set {u′1, . . . ,u
′
r}. We claim that u′r+1 is nonzero. Indeed,

by Exercise 7.3.1 we know that {u′1, . . . ,u
′
r} is linearly independent. Therefore,

spanF(v1, . . . , vr) = spanF(u′1, . . . ,u
′

r).

Therefore, we have
u′r+1 = vr+1 + c1v1 + · · · + crvr

for c1, . . . , cr ∈ F. If u′r+1 = 0V then linear independence of {v1, . . . , vr+1} gives c1 = · · · =
cr = 0 and 1 = 0. This last assertion is absurd, and so we must have u′r+1 , 0V. This
shows that {u′1, . . . ,u

′

r+1} is indeed orthogonal.
Next we claim that orthogonality of {u′1, . . . ,u

′
m} for any m ∈ J suffices to establish

orthogonality of (u′j) j∈J. If J is finite this is obvious, so we consider the case where
J = Z>0. In this case the family (u′j) j∈Z>0 could not be orthonormal in two ways.

1. One of the vectors u′j, j ∈ Z>0, could be nonzero. This cannot happen, however,
since for any j ∈ Z>0 the set {u1, . . . ,u j} is orthogonal.

2. For distinct j1, j2 ∈ Z>0 it could hold that 〈u j1 ,u j2〉 , 0. This cannot happen,
however, since for any distinct j1, j2 ∈ Z>0 the set {u1, . . . ,um} is orthogonal for
m > max{ j1, j2}.
The last assertion of the theorem is obvious. �

7.3.3 Notation (Orthogonal sets) Generally we will use the notion of orthonormal set
and not of an orthogonal set. However, in practice it is sometimes convenient to be
able to talk about orthogonal sets as the objects which naturally present themselves
are orthogonal, but not orthonormal. Note, however, that the two notions differ
only in the trivial (but sometimes annoying) manner of nonzero constants. •

The following properties of orthonormal sets will be important to us in this
section, and indeed in the study of inner product spaces in general.
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7.3.4 Definition (Maximal, total, and basic orthonormal sets) Let F ∈ {R,C}, let
(V, 〈·, ·〉) be an F-inner product space, and let {ei}i∈I be an orthogonal (resp. or-
thonormal) set.

(i) The orthogonal (resp. orthonormal) set {ei}i∈I is maximal if, for any orthogonal
(resp. orthonormal) set { f j} j∈J such that {ei}i∈I ⊆ { f j} j∈J, { f j} j∈J ⊆ {ei}i∈I.

(ii) The orthogonal (resp. orthonormal) set {ei}i∈I is total if cl(spanF({ei}i∈I)) = V.
(iii) An orthogonal (resp. orthonormal) set {ei}i∈I is basic if, for any v ∈ V, there

exist constants ci ∈ F, i ∈ I, for which the series∑
i∈I

ciei

converges to v in the sense of Definition 6.4.16. •

For convenience, let us recall here the definition of convergence used in the
above definition for basic orthonormal sets. Convergence of the series∑

i∈I

ciei (7.8)

to v means that, for every ε ∈ R>0, there exists a finite set J ⊆ I such that∥∥∥∥∑
j∈J

c je j − v
∥∥∥∥ < ε.

By Proposition 6.4.18 it follows that a convergent sum of the form (7.8) is such
that only countable many of the coefficients ci, i ∈ I, are nonzero. Moreover, by
Theorem 6.4.20, if the index set I is countable, say I = Z>0, then a sum∑

j∈Z>0

c je j

converges to v in the sense of Definition 6.4.16 if and only if it converges uncon-
ditionally to v. In particular, if this series converges to v in the sense of Defini-
tion 6.4.16 then it converges in the usual sense. It is usually the case that one deals
with countable orthonormal sets.

Before we begin to explore properties of orthonormal sets of various flavours,
let us give a few useful general results. First let us give the character of coefficients
in any convergent series of orthonormal vectors.

7.3.5 Proposition (Coefficients in a convergent series of orthonormal vectors) Let
F ∈ {R,C}, let (V, 〈·, ·〉) be an F-inner product space, and let {ei}i∈I be an orthonormal set.
If the series ∑

i∈I

ciei

converges to v ∈ V then the coefficients must satisfy ci = 〈v, ei〉, i ∈ I.
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Proof If I is finite then this is Exercise 7.3.4. Let us suppose, therefore, that I is infinite.
Since the series converges, by Proposition 6.4.18 it follows that there exists an injection
φ : Z>0 → I such that ci = 0 for i < image(φ) and such that

v =

∞∑
j=1

cφ( j)eφ( j).

Then, using Proposition 7.2.1 and Theorem 6.5.2, we deduce that for j0 ∈ Z>0 we have

〈v, eφ( j0)〉 =
〈 ∞∑

j=1

c jeφ( j), eφ( j0)

〉
=

∞∑
j=1

c j〈eφ( j), eφ( j0)〉 = cφ( j0),

giving ci = 〈v, ei〉 for i ∈ image(φ). For i < image(φ) a similar computation gives
〈v, ei〉 = 0¡ and so gives the result. �

The following result is also useful.

7.3.6 Theorem (Bessel’s4 inequality) If F ∈ {R,C}, if (V, 〈·, ·〉) is an F-inner product space,
if {ei}i∈I is an orthonormal set, and if v ∈ V, then∑

i∈I

|〈v, ei〉|
2
≤ ‖v‖2;

in particular, the sum on the left converges.
Proof By Exercise 7.3.5 we have

n∑
j=1

|〈v, ei j〉|
2
≤ ‖v‖2

for every finite subset {i1, . . . , in} ⊆ I. If I is finite this immediately gives the result. Let
us consider the case where I is not finite. We claim that in this case 〈v, ei〉 = 0 for all but
countably many i ∈ I. To see this, define

I0 = {i ∈ I | |〈v, ei〉| > 0}

and suppose that I0 is not countable. For k ∈ Z>0 define

Ik = {i ∈ I | |〈v, ei〉|
2
≥

1
k }.

Note that I0 = ∪k∈Z>0Ik, implying by Proposition ?? that for at least one k ∈ Z>0 the set
Ik must be infinite (uncountable, actually, although this is not necessary). Let N ∈ Z>0
be such that N > k‖v‖2. Then, for any finite subset {i1, . . . , iN} ⊆ Ik we have

N∑
j=1

|〈v, ei j〉|
2
≥

N∑
j=1

1
k

=
N
k
> ‖v‖2,

which gives a contradiction. Thus I0 must indeed be countable.

4Friedrich Wilhelm Bessel (1784–1846) was born in what is now Germany and made mathemat-
ical contributions to analysis. His primary scientific activities were directed towards astronomy.
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Thus we have an injection φ : Z>0 → I such that 〈v, ei〉 = 0 for i < image(φ) and
such that

∞∑
j=1

|〈v, eφ( j)〉|
2 = lim

n→∞

n∑
j=1

|〈v, eφ( j)〉|
2
≤ ‖v‖2.

Thus we have ∑
i∈I

|〈v, ei〉|
2
≤ ‖v‖2

for every index set I. Since this is a sum of positive terms, the series∑
i∈I

|〈v, ei〉|
2

converges for arbitrary index sets I. �

Bessel’s inequality makes the following definition reasonable.

7.3.7 Definition (Orthonormal expansion) Let F ∈ {R,C}, let (V, 〈·, ·〉) be an F-inner
product space, and let {ei}i∈I be an orthonormal set. The orthonormal expansion of
v ∈ V with respect to {ei}i∈I is the series∑

i∈I

〈v, ei〉ei,

disregarding convergence. •

Let us give some examples of orthonormal sets.

7.3.8 Examples (Orthonormal sets)
1. In Fn with the standard inner product, one can check that the standard basis,

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1),

is orthonormal. That is to say, the set {e1, . . . , en} is orthonormal. Moreover, the
set {λ1e1, . . . , λnen} is orthogonal for any collection of constantsλ1, . . . , λn ∈ F\{0}.
Orthonormality of this set occurs precisely when λ j = 1, j ∈ {1, . . . ,n}.
It is easy to see that {e1, . . . , en} is a maximal orthonormal set. Indeed, let us
consider an orthonormal set {e1, . . . , en, en+1, . . . , ek} containing {e1, . . . , en}. We
claim that k = n. Suppose otherwise. Since {e1, . . . , en} is a basis for Fn it follows
that for each a ∈ {n + 1, . . . , k},

ea = ca1e1 + · · · + canen

for some constants ca1, . . . , can. Since 〈ea, e j〉 = 0 it follows that caj = 0 for
a ∈ {n + 1, . . . , k} and j ∈ {1, . . . ,n}. Thus en+1 = · · · = ek = 0, contradicting the
orthonormality of {e1, . . . , ek}. Thus k = n.
Moreover, since {e1, . . . , en} is a basis for Fn it follows that spanF(e1, . . . , en) = Fn,
and so the orthonormal set is total and basic.
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2. Next let us consider the inner product space (F∞0 , 〈·, ·〉2). We note that the
standard basis {e j} j∈Z>0 , which we recall is defined by

e j(k) =

1, j = k,
0, j , k,

is orthonormal; this is straightforward to verify. Moreover, the set (λ je j) j∈Z>0

is orthogonal for every collection of constants λ j ∈ F \ {0}, j ∈ Z>0, and is
orthonormal if and only if λ j = 1, j ∈ Z>0.
We leave it to the reader to show in Exercise 7.3.2 to show that {e j} j∈Z>0 is a
maximal orthonormal family.
Moreover, since {e j} j∈Z>0 is a basis for F∞0 it follows that spanF({e j} j∈Z>0) = F∞0 ,
and so the orthonormal set is total and basic.

3. The preceding examples might make one believe that the notions of maxi-
mal, total, and basic orthonormal sets are equivalent for general inner product
spaces. They are not. Let us give an example to illustrate this. We consider the
Hilbert space (`2(F), 〈·, ·〉2) with {e j} j∈Z>0 the orthonormal set from the preceding
example, i.e., the standard (Hamel) basis for F∞0 ⊆ `2(F). We then take the
subspace

U = spanF
( ∞∑

j=1

e j

j
, e2, e3, . . .

)
and consider (U, 〈·, ·〉2) as an inner product space. We claim that B = {e2, e3, . . . }
is a maximal orthonormal set in U that is neither total nor basic.
To show that it is maximal, suppose that u ∈ U is orthogonal to B. Since u ∈ U
we can write

u = c1

( ∞∑
j=1

e j

j

)
+ c2e2 + · · · + ckek

for some k ∈ Z>0 and for c1, . . . , ck ∈ F. Since〈
u,

∞∑
j=1

e j

j

〉
= 0, 〈u, e j〉 = 0, j ∈ {2, 3, . . . },

it follows that c j = 0, j ∈ {1, . . . , k}, and so u = 0F∞0 . Thus there can be no
orthonormal subset of U containing B.
That B is not basic is plain since

∑
∞

j=1
e j

j is in U but is not a sum of the form∑
∞

j=2 c je j (this follows from Proposition 7.3.5).
That B is not total follows since the subspace spanF(e2, e3, . . . ) is a closed sub-
space containing B but is a strict subspace of V. •

The preceding examples illustrate that the notions of maximal, total, and basic
need not be equivalent for an orthonormal set. Let us explore the relationships
between these concepts in a general setting.
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7.3.9 Theorem (Relationship between maximal, total, and basic orthonormal sets)
Let F ∈ {R,C}, let (V, 〈·, ·〉) be an F-inner product space, and let B = {ei}i∈I be an
orthonormal set. The following four statements are equivalent:

(i) B is basic;
(ii) B is total;
(iii) for every v ∈ V the equality

‖v‖2 =
∑
i∈I

|〈v, ei〉|
2

holds, where convergence of the sum on the right is interpreted as in Definition 2.4.31
(Parseval’s equality);

(iv) for all u,v ∈ V we have
〈u,v〉 =

∑
i∈I

〈u, ei〉〈v, ei〉,

where convergence of the sum on the right is interpreted as in Definition 2.4.31.
Also, the following two statements are equivalent:

(v) B⊥ = {0V};
(vi) B is maximal.

Finally, if V is a Hilbert space, the first four equivalent statements are equivalent to the
last two equivalent statements.

Proof (i) =⇒ (ii) Let B = {ei}i∈I be basic and let v ∈ V. We can then write

v =
∑
i∈I

ciei

for some coefficients ci ∈ F, i ∈ I. If I is finite this immediately implies that v ∈
cl(spanF(B)). If I is not finite, by Proposition 6.4.18 and Theorem 6.4.20 there exists
an injection φ : Z>0 → I such that ci = 0 for i < image(φ) and such that

v =

∞∑
j=1

c jeφ( j).

If we define

vk =

k∑
j=1

c je j

then the sequence (vk)k∈Z>0 converges to v. Thus v ∈ cl(spanF(B)) and so B is total.
(ii) =⇒ (iii) Let v ∈ V. Since B is total there exists a sequence (v j) j∈Z>0 in spanF(B)

such that v = lim j→∞ v j. For each j ∈ Z>0 write

v j = c j1ei j1 + · · · + c jk jei jk j

for k j ∈ Z>0, coefficients c j1, . . . , c jk j ∈ F, and distinct i j1, . . . , i jk j ∈ I. By Exer-
cise 7.3.4 it follows that c jl = 〈v j, ei jl〉 for each j ∈ Z>0, l ∈ {1, . . . , k j}. Note that
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the set ∪ j∈Z>0{i j1, . . . , i jk j} is countable by Proposition ??. This means that there exists a
countable set K ⊆ I such that

v j =
∑
k∈K

〈v j, ek〉ek

for each j ∈ Z>0, with the sum being finite. We claim that 〈v, ei〉 = 0 for i < K. Indeed,
for i ∈ I,

〈v, ei〉 = lim
j→∞
〈v j, ei〉 = lim

j→∞

∑
k∈K

〈v j, ek〉〈ek, ei〉 = 0,

using continuity of the inner product and Theorem 6.5.2.
We now have

‖v j‖
2 =

〈∑
k∈K

〈v j, ek〉ek,
∑
k′∈K

〈v j, ek′〉ek′
〉

=
∑
k∈K

∑
k′∈K

〈v j, ek〉〈v j, ek′〉〈ek, ek′〉

=
∑
k∈K

|〈v j, ek〉|
2,

using the fact that the inner product commutes with finite sums. Now, using continuity
of the norm and inner product, along with Theorem 6.5.2, gives

‖v‖2 = lim
j→∞
‖v j‖

2 = lim
j→∞

∑
k∈K

|〈v j, ek〉|
2 =

∑
k∈K

|〈v, ek〉|
2 =

∑
i∈I

|〈v, ei〉|
2,

as desired.
(iii) =⇒ (iv) For u, v ∈ V we have

‖u + v‖2 =
∑
i∈I

|〈u + v, ei〉|
2

=⇒ ‖u‖2 + ‖v‖2 + 〈u, v〉 + 〈u, v〉

=
∑
i∈I

|〈u, ei〉|
2 +

∑
i∈I

|〈v, ei〉|
2 +

∑
i∈I

(〈u, ei〉〈v, ei〉 + 〈u, ei〉〈v, ei〉)

=⇒ Re(〈u, v〉) =
∑
i∈I

Re(〈u, ei〉〈v, ei〉).

If F = R this establishes the result. If F = C, a similar computation using the equality

‖u + iv‖2 =
∑
i∈I

|〈u + iv, ei〉|
2

gives
Im(〈u, v〉) =

∑
i∈I

Im(〈u, ei〉〈v, ei〉).

(iv) =⇒ (i) Since part (iv) obviously implies part (iii), we shall prove that (iii)
implies (i). Thus we have

‖v‖2 =
∑
i∈I

|〈v, ei〉|
2
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for every v ∈ V. By Proposition 2.4.33, for v ∈ V, it follows that there exists a bijection
φ : Z>0 → I such that 〈v, ei〉 = 0 for i < image(φ) and such that

‖v‖2 =

∞∑
j=1

|〈v, eφ( j)〉|
2.

For k ∈ Z>0 let us define

vk =

k∑
j=1

〈v, eφ( j)〉eφ( j).

Note that

〈v − vk, vk〉 =
〈
v −

k∑
j=1

〈v, eφ( j)〉eφ( j),
k∑

l=1

〈v, eφ(l)〉eφ(l)

〉
=

〈
v,

k∑
l=1

〈v, eφ(l)〉eφ(l)

〉
−

〈 k∑
j=1

〈v, eφ( j)〉eφ( j),
k∑

l=1

〈v, eφ(l)〉eφ(l)

〉
=

k∑
l=1

|〈v, eφ(l)〉|
2
−

k∑
j=1

|〈v, eφ( j)〉|
2 = 0

for every k ∈ Z>0. By the Pythagorean equality,

‖v‖2 = ‖v − vk + vk‖
2 = ‖v − vk‖

2 + ‖vk‖
2 =⇒ ‖v − vk‖

2 = ‖v‖2 − ‖vk‖
2.

By assumption,
lim
k→∞
‖vk‖

2 = ‖v‖2

and so
lim
k→∞
‖v − vk‖ = 0,

implying that
v =

∑
i∈I

〈v, ei〉ei,

and so in particular implying that B is basic.
(v) =⇒ (vi) Suppose that B is not maximal. Then there exists an orthonormal set

B′ such that B ⊂ B′. Let v ∈ B′ \ B. Then, clearly, v ∈ B⊥ and v , 0V. Thus
B⊥ , {0V}.

(vi) =⇒ (v) Suppose that B⊥ , {0V} and let v ∈ B⊥ have unit length. Then the set
B ∪ {v} is an orthonormal set that strictly contains B. Thus B is not maximal.

(ii) =⇒ (v) By Proposition 7.1.13(iv) we have B⊥ = cl(spanF(B))⊥. From this fact,
if B is total it immediately follows that B⊥ = {0V}.

(vi) =⇒ (i) (assuming V is a Hilbert space) Let v ∈ V. Bessel’s inequality gives∑
i∈I

|〈v, ei〉|
2
≤ ‖v‖2,
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and this implies that the series on the right converges and so is Cauchy. Let ε ∈ R>0
and let J ⊆ I be a finite set for which∑

j∈J′
|〈v, e j〉|

2 < ε

for every finite subset J′ ⊆ I such that J ∩ J′ = ∅ (see Definition 6.4.16). A direct
computation using properties of inner products then gives∥∥∥∥∑

j∈J′
〈v, e j〉e j

∥∥∥∥2
=

∑
j∈J′
|〈v, e j〉|

2 < ε,

which shows that the series ∑
i∈I

〈v, ei〉ei

is Cauchy. By Theorem 6.4.17 this series converges, implying that B is basic. �

The following result records the fact that completeness is essential if all six of
the statements in the preceding theorem are to be equivalent.

7.3.10 Theorem (Maximal orthonormal sets are not generally Hilbert bases for non-
Hilbert spaces) For F ∈ {R,C} and for a F-inner product space (V, 〈·, ·〉), the following
statements are equivalent:

(i) V is a Hilbert space;
(ii) every maximal orthonormal set is a Hilbert basis.

Proof The implication of part (ii) from part (i) follows from Theorem 7.3.9, so we prove
the converse implication. Let U be a proper closed subspace of V. By Theorem 7.1.23, to
show that V is a Hilbert space it suffices to show that U⊥ , {0V}. So suppose otherwise.
Now let B = {ei}i∈I be a maximal orthonormal set in U and let B′ = B ∪ { f j} j∈J be a
maximal orthonormal set in V that extends that B (that such a set exists may be proved
just as one proves Theorem 4.3.26). Let j0 ∈ J. Since f j0 , 0V it follows that f j0 < U⊥.
Thus there exists u ∈ U such that 〈u, f j0〉 , 0. By hypothesis, B′ is a basic orthonormal
set and so we may write

u =
∑
i∈I

aiei +
∑
j∈J

b j f j

for some coefficients ai ∈ F, i ∈ I, b j ∈ F, j ∈ J. Then∑
j∈J

b j f j = u −
∑
i∈I

aiei ∈ U.

We also have ∑
j∈J

b j f j ∈ B⊥.

Since B is a maximal orthonormal set in U it follows that∑
j∈J

b j f j = 0V
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and so
〈u, f j0〉 =

〈∑
i∈I

aiei, f j0

〉
=

∑
i∈I

ai〈ei, f j0〉 = 0,

where we have used Proposition 7.2.1. This is a contradiction. Thus it must be the
case that U⊥ , {0V}. �

Now that we have a clear understanding of the relationships between basic,
total, and maximal orthonormal sets, let us introduce some useful terminology.

7.3.11 Definition (Hilbert basis) Let F ∈ {R,C}. A Hilbert basis for an F-inner product
space (V, 〈·, ·〉) is a basic (or, equivalently, total) orthonormal set in V. •

As we shall see, the notion of a Hilbert basis and a basis (sometimes also called
a Hamel basis, cf. Remark 4.3.21) can be different in a potentially confusing way.
In particular, we refer to missing stuff to clarify some aspects of the relationship
between the two notions of basis.

We have already seen in Example 7.3.8–3 that not every inner product space
possesses a Hilbert basis. This, however, is where the value of the notion of a
maximal orthonormal set arises.

7.3.12 Theorem (Every inner product spaces possesses a maximal orthonormal set)
If F ∈ {R,C} and if (V, 〈·, ·〉) is a F-inner product space, then there exists a maximal
orthonormal set in V.

Proof The proof goes very much like that for existence of a (Hamel) basis. Let O be
the collection of orthonormal subsets of V. This set is nonempty since, if V is not the
trivial vector space, {v} ∈ O for any vector v of unit length. Place a partial order �
on O by asking that S1 � S2 if S1 ⊆ S2. Let S ⊆ O be a totally ordered subset. Note
that ∪S∈S S is an element of O . Indeed, let {v1, . . . , vk} ⊆ ∪S∈S S. Then v j ∈ S j for some
S j ∈ S . Let j0 ∈ {1, . . . , k} be chosen such that S j0 is the largest of the sets S1, . . . ,Sk
according to the partial order �, this being possible since S is totally ordered. Then
{v1, . . . , vk} ⊆ S j0 and so {v1, . . . , vk} is orthonormal since S j0 is orthonormal. It is also
evident that ∪S∈S S is an upper bound for S . Thus every totally ordered subset of
O possesses an upper bound, and so by Zorn’s Lemma possesses a maximal element.
Let B be such a maximal element. By construction B is orthonormal. We claim that
it is also a maximal orthonormal set. Indeed, let B′ be an orthonormal set such that
B ⊆ B′. This immediately contradicts the fact that B is a maximal element of O , and
so we can conclude that B is a maximal orthonormal set. �

For Hilbert spaces this leads to the following important result.

7.3.13 Corollary (Hilbert spaces possess a Hilbert basis) If F ∈ {R,C} and if (V, 〈·, ·〉)
is an F-Hilbert space, then there exists a Hilbert basis for V.

Proof By Theorem 7.3.12 V possesses a maximal orthonormal set. By Theorem 7.3.9
every maximal orthonormal set is a Hilbert basis. �

Note that it is not necessary for an inner product space to be a Hilbert space in
order that it possess a Hilbert basis, cf. Example 7.3.8–2.

Now we consider a few important special cases of inner product spaces with
orthonormal bases. While many of the result we give in the next two sections are
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actually special cases of the results above, we give independent proofs that are not
dependent on the notion of a sum with an arbitrary index set. The relieves some
of the complication present in the general setup.

7.3.2 Finite orthonormal sets and finite Hilbert bases

In this section we essentially generalise Example 7.3.8–1 to arbitrary finite-
dimensional inner product spaces. The starting point is the following result. Note
that we independently prove the existence of a Hilbert basis in this case, although
this actually follows from Theorem 7.3.12.

7.3.14 Theorem (Characterisation of existence of finite Hilbert bases) If F ∈ {R,C}
and if (V, 〈·, ·〉) is an inner product space of dimension n ∈ Z≥0, then there exists a Hilbert
basis for V. Moreover, every Hilbert basis for V is a basis and so has cardinality n.

Proof If V = {0V} then there is nothing to prove, so let us suppose that n ∈ Z>0. By
Theorem 4.3.22 V possesses a basis and by Theorem 4.3.25 the cardinality of any two
bases are the same. Let {v1, . . . , vn} be a basis for V and by Gram–Schmidt orthonor-
malisation construct an orthonormal set {u1, . . . ,un}. This set is linearly independent
by Exercise 7.3.1 and so forms a basis for an n-dimensional subspace of V. By Propo-
sition 4.3.19 this subspace must be V. That is to say, {u1, . . . ,un} is a basis for V.
We claim that this implies that {u1, . . . ,un} is a Hilbert basis. Since finite-dimensional
inner product spaces are Hilbert spaces, it suffices to show that B is maximal. To
prove maximality, suppose that {u1, . . . ,un,un+1, . . . ,uk} is an orthonormal set contain-
ing {u1, . . . ,un}. By Exercise 7.3.1 it follows that {u1, . . . ,uk} is linearly independent. By
Lemma 1 from the proof of Theorem 4.3.25 it follows that k = n, so proving maximality.
This gives the existence of a Hilbert basis.

For the last assertion of the theorem, suppose that we have a Hilbert basis
{u1, . . . ,um} for V. Since {u1, . . . ,um} is linearly independent by Exercise 7.3.1 it fol-
lows that m ≤ n by Lemma 1 from the proof of Theorem 4.3.25. To see that m = n
suppose otherwise so that n > m. Then spanF(u1, . . . ,um) is a subspace of V of di-
mension m < n. By Theorem 4.3.26 there exists um+1, . . . ,un ∈ V such that {u1, . . . ,un}

is a basis for V. Applying the Gram–Schmidt orthonormalisation procedure gives a
set {u′1, . . . ,u

′
m,u′m+1, . . . ,u

′
n} where, by Exercise 7.3.3, u′j = u j for j ∈ {1, . . . ,m}. This

contradicts the maximality of {u1, . . . ,um} and so shows that we must have m = n. Thus
every Hilbert basis is a linearly independent set of vectors having the same cardinality
as the dimension of V, i.e., a basis. �

A companion to the preceding result is the following more or less obvious fact.

7.3.15 Proposition (Necessary conditions for a finite Hilbert basis) If F ∈ {R,C} and
if (V, 〈·, ·〉) is an F-inner product space having a finite Hilbert basis, then V is finite-
dimensional.

Proof Let {e1, . . . , en} be a finite Hilbert basis for V. We claim that dim(V) = n.
Suppose otherwise. Then, by Theorem 4.3.26, there exists a basis B for V such that
{e1, . . . , en} ⊂ B. Let v ∈ B\{e1, . . . , en}. By applying Gram–Schmidt orthonormalisation
procedure to {e1, . . . , en, v} we arrive at an orthonormal set {e1, . . . , en, en+1}; by virtue
of Exercise 7.3.3 the first n vectors remain unchanged. This, however, contradicts the
maximality of {e1, . . . , en}, and so we must have dim(V) = n. �
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Having established the existence of a Hilbert basis for a finite-dimensional inner
product space, let us examine the set of all such bases. To motivate how one does
this, recall from Section ?? that there is a 1–1 correspondence between bases and
invertible matrices. That is to say, if one chooses a basis B = {e1, . . . , en} for V, then
any other basis B′ = {e′1, . . . , e

′

n} is uniquely determined by the invertible change of
basis matrix PB′

B ∈Matn×n(F) which is defined by its satisfying the equality

e j0 =

n∑
j=1

PB′

B ( j, j0)e′j

for each j0 ∈ {1, . . . ,n}. We wish to understand the character of the change of basis
matrix in the case where B and B′ are both Hilbert bases.

The following result tells the story. In the statement, 〈·, ·〉2 denotes the standard
inner product on Fn and ‖·‖2 denotes the corresponding norm. Also, for a matrix A
we denote by Ā the matrix obtained by applying ·̄ to the entries of A.

7.3.16 Theorem (Change of basis matrices for finite Hilbert bases) For F ∈ {R,C}, for
an n-dimensional F-inner product space (V, 〈·, ·〉), for a Hilbert basis B = {e1, . . . , en} for
V, and for U ∈Matn×n(F) the following statements are equivalent:

(i) there exists a Hilbert basis B′ = {e′1, . . . , e
′

n} for V such that U = PB′

B ;
(ii) ‖Ux‖2 = ‖x‖2 for all x ∈ Fn;
(iii) 〈Ux,Uy〉2 = 〈x,y〉2 for all x,y ∈ Fn;
(iv) UŪT = ŪTU = In;
(v) U is invertible and U−1 = ŪT.

Proof (i) =⇒ (ii) By hypothesis we have

e j0 =

n∑
j=1

U( j, j0)e′j, j0 ∈ {1, . . . ,n},

so that, for every j1, j2 ∈ {1, . . . ,n},

〈e j1 , e j2〉 =
〈 n∑

k=1

U(k, j1)e′k,
n∑

l=1

U(l, j2)e′l
〉

=

n∑
k=1

U(k, j1)Ū(k, j2). (7.9)

That is,
n∑

k=1

U(k, j1)Ū(k, j2) =

1, j1 = j2,
0, j1 , j2.

(7.10)

Now, for x ∈ Fn, a direct computation gives

‖Ux‖22 =

n∑
i=1

n∑
j=1

n∑
k=1

U(i, j)Ū(i, k)x( j)x(k)

which gives ‖Ux‖22 = ‖x‖22 after using (7.10). This part of the result now follows by
taking square roots.
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(ii) =⇒ (iii) We are assuming that ‖Ux‖2 = ‖x‖2 which implies that

‖Ux‖22 = ‖x‖22 =⇒ 〈Ux,Ux〉2 = 〈x, x〉2,

this holding for all x ∈ Fn. Thus, for every x, y ∈ Fn,

〈U(x + y),U(x + y)〉2 = 〈x + y, x + y〉2
=⇒ 〈Ux,Ux〉2 + 〈Uy,Uy〉2 + 2 Re(〈Ux,Uy〉2) = 〈x, x〉2 + 〈y, y〉2 + 2 Re(〈x, y〉2)
=⇒ Re(〈Ux,Uy〉2) = Re(〈x, y〉2).

If F = R then this gives this part of the result. If F = C, a computation entirely similar
to the preceding one shows that

〈U(x + iy),U(x + iy)〉2 = 〈x + iy, x + iy〉2 =⇒ Im(〈Ux,Uy〉2) = Im(〈x, y〉2),

which gives this part of the result.
(iii) =⇒ (iv) Letting {e1, . . . , en} be the standard basis for Fn we have

〈Ue j,Uek〉2 = 〈e j, ek〉2, j, k ∈ {1, . . . ,n}.

We have

〈e j, ek〉2 = In( j, k) =

1, j = k,
0, j , k

and a direct calculation shows that

〈Ue j,Uek〉2 =

n∑
i=1

U(i, j)Ū(i, k) = (UTŪ)( j, k).

Thus UTŪ = In which, upon conjugation, gives ŪTU = In. From Theorem ?? this
means that U is invertible with inverse ŪT. This means that we also have UŪT = In.

(iv) =⇒ (v) This was proved in the preceding part of the proof.
(v) =⇒ (i) By hypothesis we have

ŪTU = In =⇒ U−1Ū−T = In.

By Theorem ?? this implies that U−1 is invertible with inverse Ū−T. Thus

Ū−TU−1 = In =⇒ U−TŪ−1 = In.

Let us define a basis {e′1, . . . , e
′
n} for V by asking that

e′j0 =

n∑
j=1

U−1( j, j0)e j. (7.11)

The computation (7.9), but using U−1 in place of U, gives

〈e′j1 , e
′

j2
〉 =

n∑
k=1

U−1(k, j1)Ū−1(k, j2) = (U−TŪ−1)( j1, j2) = In( j1, j2).
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Thus

〈e′j1 , e
′

j2
〉 =

1, j1 = j2,
0, j1 , j2,

showing that {e′1, . . . , e
′
n} is a Hilbert basis. Since (7.11) implies that

e j0 =

n∑
j=1

U( j, j0)e′j,

this part of the result follows. �

In the case where F = R the previous result, along with Theorem ??, shows that
the change of basis matrices between Hilbert bases are precisely the orthogonal
matrices. The set of n × n orthogonal matrices were denoted by O(n). In the case
where F = C the matrices of the preceding result are called unitary matrices and
the set of n × n unitary matrices are denoted by U(n).

One of the interesting features of Hilbert bases is that it is easy to determine the
components of a vector relative to the basis. The following result records this.

7.3.17 Proposition (Components relative to a finite orthonormal set) Let F ∈ {R,C},
let (V, 〈·, ·〉2) be a (not necessarily finite-dimensional) F-inner product space, and let
{e1, . . . , en} be a finite orthonormal set. If v ∈ spanF(e1, . . . , en) then

v = 〈v, e1〉e1 + · · · + 〈v, en〉en.

Proof This is Exercise 7.3.4. �

The preceding result has the following obvious corollary.

7.3.18 Corollary (Components relative to a finite Hilbert basis) Let F ∈ {R,C}, let
(V, 〈·, ·〉2) be a finite-dimensional F-inner product space, and let {e1, . . . , en} be a finite
Hilbert basis for V. For v ∈ V the components of v are 〈v, ej〉, j ∈ {1, . . . ,n}.

We shall now give some properties of Hilbert bases for finite-dimensional inner
product spaces that may, at first glance, seem obvious and/or silly. However, they
arise in the infinite-dimensional setting in a rather less obvious and hopefully less
silly way. Therefore, it is worth recording them in the present setup.

The first result is the finite-dimensional version of Bessel’s inequality.

7.3.19 Proposition (Bessel’s inequality for finite orthonormal sets) If F ∈ {R,C},
(V, 〈·, ·〉) is a (not necessarily finite-dimensional) F-inner product space, and if {e1, . . . , en}

is a finite orthonormal set, then, for any v ∈ V,
n∑

j=1

|〈v, ej〉|
2
≤ ‖v‖2.

Proof This is Exercise 7.3.5. �

Our final result gives several conditions equivalent to that of being a Hilbert
basis. These are more or less “obvious” in finite-dimensions, but are a little less so
in infinite-dimensions.
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7.3.20 Theorem (Characterisations of finite Hilbert bases) Let F ∈ {R,C}, let (V, 〈·, ·〉)
be a finite-dimensional F-inner product space, and let B = {e1, . . . , en} be an orthonormal
set. The following statements are equivalent:

(i) B is basic;
(ii) B is total;
(iii) for all v ∈ V we have

‖v‖2 =

n∑
j=1

|〈v, ej〉|
2

(Parseval’s equality);
(iv) for all u,v ∈ V we have

〈u,v〉 =

n∑
j=1

〈u, ej〉〈v, ej〉;

(v) B⊥ = {0V};
(vi) B is a maximal.

Proof We leave this to the reader as Exercise 7.3.6. �

7.3.3 Countable orthonormal sets and countable Hilbert bases

In the finite-dimensional case we see that Hilbert bases are always bases in the
usual sense. Thus a Hilbert basis for a finite-dimensional inner product space is
simply an instance of something we are already familiar with. This is no longer
true in infinite-dimensions. Complications can arise in multiple ways. From
Theorem 7.3.12 we know that every inner product space possesses a maximal
orthonormal subset. For Hilbert spaces, these maximal orthonormal sets are neces-
sarily Hilbert bases by Corollary 7.3.13. However, in infinite-dimensions it is not
necessarily the case that a Hilbert basis is a basis. It can be the case that a Hilbert
basis is a basis (see Example 7.3.8–2), but it is also true that countable Hilbert bases
for Hilbert spaces are never bases. Also, for non-Hilbert spaces it can happen that
they do not possess a Hilbert basis (see Example 7.3.8–3).

What we do in this section is consider the special case of inner product spaces
that admit a countable Hilbert basis. Thus we consider the case where we have a
countable orthonormal set (e j) j∈Z>0 for an inner product space and we assume that
for any v ∈ V we can write

v =

∞∑
j=1

c je j. (7.12)

Note that this sum is infinite, not finite as for a Hamel basis. The definition of
convergence we use for this sum is made exactly as with the discussion of series in
Banach spaces in Definition 6.4.1. That is to say, the existence of the infinite sum
in (7.12) means that, for every ε ∈ R>0, there exists N ∈ Z>0 such that∥∥∥∥v −

k∑
j=1

c je j

∥∥∥∥ < ε
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for every k ≥ N. Note that it is not obvious that this coincides with the notion of
convergence used in our general discussion in Section 7.3.1. Indeed, convergence
for series using general index sets as used in Section 7.3.1 is equivalent to uncon-
ditional convergence for series using the index set Z>0. This sort of convergence
implies convergence in the usual sense, but is not equivalent to it. This notwith-
standing, we shall see that the usual definition of convergence for series is the
appropriate one to use in the setting of countable Hilbert bases.

First we establish the appropriate condition under which an inner product space
admits a countable Hilbert basis. In Theorem 7.3.14 we saw that the appropriate
condition for the existence of a finite Hilbert basis was that the inner product space
be, not surprisingly, finite-dimensional. For countable Hilbert bases, the condition
turns out to be that the inner product space be separable (see Definition 6.6.12).

7.3.21 Theorem (Characterisation of existence of countable Hilbert bases) If F ∈
{R,C} and if (V, 〈·, ·〉) is a separable, infinite-dimensional F-inner product space, then the
following statements hold:

(i) if V is a Hilbert space then it possesses a countably infinite Hilbert basis;
(ii) every Hilbert basis for V is countably infinite.

Proof By Corollary 7.3.13 we know that if V is a Hilbert space then it possesses a
Hilbert basis and by Proposition 7.3.15 we know that every Hilbert basis is infinite. It
remains to show that every Hilbert basis is countable. Suppose otherwise and so there
exists an uncountable Hilbert basis B = {ei}i∈I. If i1, i2 ∈ I then

‖ei1 − ei2‖ = (〈ei1 − ei2 , ei1 − ei2〉)
1/2 = (‖ei1‖

2 + ‖ei2‖
2)1/2 =

√

2. (7.13)

since ei1 and ei2 are orthogonal. For each i ∈ I define Ui = B( 1
4 , ei) and note that

Ui1 ∩Ui2 = ∅ by (7.13). Now let S ⊆ V be countable. Then there exists an uncountable
set J ⊆ I such that S ∩ (∪ j∈JU j) = ∅. Thus S ⊆ V \ (∪ j∈JU j) and so cl(S) ⊆ V \ (∪ j∈JU j).
Thus cl(S) , V and so V is not separable. �

The companion result to this is that countable Hilbert bases exist only for sepa-
rable inner product spaces.

7.3.22 Theorem (Necessary conditions for a countable Hilbert basis) If F ∈ {R,C} and
if (V, 〈·, ·〉) is an F-inner product space having a countably infinite Hilbert basis, then V is
separable and infinite-dimensional.

Proof That V is infinite-dimensional follows from Proposition 7.3.15. To show that
V is separable we let B = {e j} j∈Z>0 be a countably infinite Hilbert basis and let V0 =
spanF(B). By Theorem 7.3.9 we know that B is total and so cl(V0) = V. Now define

FQ =

Q, F = R,

qr + iqi, F = C

and consider the set

SB = {q1e j1 + · · · + qke jk | k ∈ Z>0, q1, . . . , qk ∈ FQ}
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of finite linear combinations of elements from B with coefficients in FQ. Using Propo-
sition ?? we may conclude that SB is countable. We claim that SB is dense in V. From
Exercise 6.6.2 it suffices to show that SB is dense in V0. Let v ∈ V0 so that we may write

v = c1e j1 + · · · + cke jk

for some j1, . . . , jk ∈ Z>0 and c1, . . . , ck ∈ F. Let ε ∈ R>0 and choose qa ∈ FQ such that
|ca − qa| < ε

k , a ∈ {1, . . . , k}. Then

‖v − q1e j1 − · · · − qke jk‖ ≤ |c1 − q1|‖e j1‖ + · · · + |ck − qk|‖e jk‖ < ε

by the triangle inequality. Thus v ∈ cl(SB) by Proposition 6.6.8. We have thus shown
that the countable set SB is dense in V, as desired. �

First let us determine the form of the coefficients in the summation (7.12) if it does
indeed converge. The reader should compare this result to Proposition 7.3.17.

7.3.23 Proposition (Components relative to a countable orthonormal set) Let F ∈
{R,C}, let (V, 〈·, ·〉) be an F-inner product space, and let {ej}j∈Z>0 be an orthonormal set in
V. If the sum

∞∑
j=1

cjej

converges to v ∈ V, then for each j ∈ Z>0, cj = 〈v, ej〉.
Proof By Proposition 7.2.1 and Theorem 6.5.2 we have

〈v, ek〉 =
〈 ∞∑

j=1

c je j, ek

〉
=

〈
lim
n→∞

n∑
j=1

c je j, ek

〉
= lim

n→∞

n∑
j=1

c j〈e j, ek〉 = ck

for every k ∈ Z>0. �

The reader should be sure to appreciate that, while the formula for the coeffi-
cients is exactly as given in the finite-dimensional case in Proposition 7.3.17, one
must be a little more careful in arriving at this formula as there are issues with
swapping limits with the inner product that must be accounted for.

The following result holds even for orthonormal sets that are not basic and
should be compared to Proposition 7.3.19.

7.3.24 Theorem (Bessel’s inequality for countable orthonormal sets) Let F ∈ {R,C},
let (V, 〈·, ·〉) be a F-inner product space, and let B = {ej}j∈Z>0 be a countably infinite
orthonormal set. Then, for any v ∈ V, the sum

∞∑
j=1

|〈v, ej〉|
2 (7.14)

converges and satisfies
∞∑

j=1

|〈v, ej〉|
2
≤ ‖v‖2.



783 7 Hilbert spaces 2016/11/26

Proof Let vk denote the kth partial sum:

vk =

k∑
j=1

〈v, e j〉e j.

We claim that for j ∈ {1, . . . , k}, e j is orthogonal to v − vk. Indeed,

〈v − vk, e j〉 = 〈v, e j〉 − 〈vk, e j〉.

We also have, by a direct computation, 〈vk, e j〉 as the jth term in the sum, i.e., 〈vk, e j〉 =
〈v, e j〉. Thus 〈v − vk, e j〉 = 0 as claimed. From this, since vk is a linear combination of
{e1, . . . , ek}, it follows that v − vk and vk are orthogonal. By the Pythagorean identity
(Exercise 7.1.12) we then have

‖v‖2 = ‖v − vk + vk‖
2 = ‖v − vk‖

2 + ‖vk‖
2,

giving
‖vk‖

2
≤ ‖v‖2. (7.15)

Since the vectors {e1, . . . , ek} are orthonormal we compute

‖vk‖
2 =

〈 k∑
j=1

〈v, e j〉e j,
k∑

l=1

〈v, el〉el

〉
=

k∑
j=1

k∑
l=1

〈v, e j〉〈v, el〉〈e j, el〉 =

k∑
j=1

|〈v, e j〉|
2. (7.16)

Thus, combining (7.15) and (7.16), we have shown that the inequality

k∑
j=1

|〈v, e j〉|
2
≤ ‖v‖2

holds for any k ∈ Z>0. Thus the sum (7.14) is a sum of positive terms with each partial
sum being bounded above by ‖v‖2. It follows that the sequence of partial sums must
converge to a number being at most ‖v‖2. �

We also have the following result which should be compared to Theo-
rem 7.3.20.

7.3.25 Theorem (Characterisations of countable Hilbert bases) Let F ∈ {R,C}, let
(V, 〈·, ·〉) be a separable F-inner product space, and let B = {ej}j∈Z>0 be an orthonormal set.
The following four statements are equivalent:

(i) B is basic;
(ii) B is total;
(iii) for every v ∈ V the equality

‖v‖2 =

∞∑
j=1

|〈v, ej〉|
2

holds (Parseval’s equality);
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(iv) for all u,v ∈ V we have

〈u,v〉 =

∞∑
j=1

〈u, ej〉〈v, ej〉;

Also, the following two statements are equivalent:
(v) B⊥ = {0V};
(vi) B is maximal.

Finally, if V is a Hilbert space, the first four equivalent statements are equivalent to the
last two equivalent statements.

Proof (i) =⇒ (ii) Let B = {e j} j∈Z>0 be basic and let v ∈ V. We can then write

v =
∑

j∈Z>0

c je j

for some coefficients c j ∈ F, j ∈ Z>0. If we define

vk =

k∑
j=1

c je j

then the sequence (vk)k∈Z>0 converges to v. Thus v ∈ cl(spanF(B)) and so B is total.
(ii) =⇒ (iii) Let v ∈ V. Since B is total there exists a sequence (vk)k∈Z>0 in spanF(B)

such that v = limk→∞ vk. For each k ∈ Z>0 write

vk = ck1e jk1 + · · · + ckmke jkmk

for mk ∈ Z>0, coefficients ck1, . . . , ckmk ∈ F, and distinct jk1, . . . , jkmk ∈ I. By Proposi-
tion 7.3.23 it follows that ckl = 〈vk, e jkl〉 for each k ∈ Z>0, l ∈ {1, . . . ,mk}. This means that
we can write

vk =

∞∑
j=1

〈vk, e j〉e j

for each k ∈ Z>0, with the sum being finite.
We may also directly compute (cf. the proof of Theorem 7.3.24)

‖vk‖
2 =

∞∑
j=1

|〈vk, e j〉|
2,

using the fact that the inner product commutes with finite sums. Now, using continuity
of the norm and inner product, along with Theorem 6.5.2, gives

‖v‖2 = lim
k→∞
‖vk‖

2 = lim
k→∞

∞∑
j=1

|〈vk, e j〉|
2 =

∞∑
j=1

|〈v, e j〉|
2,

as desired.
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(iii) =⇒ (iv) For u, v ∈ V we have

‖u + v‖2 =

∞∑
j=1

|〈u + v, e j〉|
2

=⇒ ‖u‖2 + ‖v‖2 + 〈u, v〉 + 〈u, v〉

=

∞∑
j=1

|〈u, e j〉|
2 +

∞∑
j=1

|〈v, e j〉|
2 +

∞∑
j=1

(〈u, e j〉〈v, e j〉 + 〈u, e j〉〈v, e j〉)

=⇒ Re(〈u, v〉) =

∞∑
j=1

Re(〈u, e j〉〈v, e j〉).

If F = R this establishes the result. If F = C, a similar computation using the equality

‖u + iv‖2 =

∞∑
j=1

|〈u + iv, e j〉|
2

gives

Im(〈u, v〉) =

∞∑
j=1

Im(〈u, e j〉〈v, e j〉).

(iv) =⇒ (i) Since part (iv) obviously implies part (iii), we shall prove that (iii)
implies (i). Thus we have

‖v‖2 =

∞∑
j=1

|〈v, e j〉|
2

for every v ∈ V. For k ∈ Z>0 let us define

vk =

k∑
j=1

〈v, e j〉e j.

Note that

〈v − vk, vk〉 =
〈
v −

k∑
j=1

〈v, e j〉e j,
k∑

l=1

〈v, el〉el

〉
=

〈
v,

k∑
l=1

〈v, el〉el

〉
−

〈 k∑
j=1

〈v, e j〉e j,
k∑

l=1

〈v, el〉el

〉
=

k∑
l=1

|〈v, el〉|
2
−

k∑
j=1

|〈v, e j〉|
2 = 0

for every k ∈ Z>0. By the Pythagorean equality,

‖v‖2 = ‖v − vk + vk‖
2 = ‖v − vk‖

2 + ‖vk‖
2 =⇒ ‖v − vk‖

2 = ‖v‖2 − ‖vk‖
2.

By assumption,
lim
k→∞
‖vk‖

2 = ‖v‖2
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and so
lim
k→∞
‖v − vk‖ = 0,

implying that

v =

∞∑
j=1

〈v, e j〉e j,

and so in particular implying that B is basic.
(v) =⇒ (vi) Suppose that B is not maximal. Then there exists an orthonormal set

B′ such that B ⊂ B′. Let v ∈ B′ \ B. Then, clearly, v ∈ B⊥ and v , 0V. Thus
B⊥ , {0V}.

(vi) =⇒ (v) Suppose that B⊥ , {0V} and let v ∈ B⊥ have unit length. Then the set
B ∪ {v} is an orthonormal set that strictly contains B. Thus B is not maximal.

(ii) =⇒ (v) By Proposition 7.1.13(iv) we have B⊥ = cl(spanF(B))⊥. From this fact,
if B is total it immediately follows that B⊥ = {0V}.

(vi) =⇒ (i) (assuming V is a Hilbert space) Let v ∈ V. Bessel’s inequality gives

∞∑
j=1

|〈v, e j〉|
2
≤ ‖v‖2,

and this implies that the series on the right converges and so is Cauchy. Let ε ∈ R>0
and let N ∈ Z>0 be such that

l∑
j=k+1

|〈v, e j〉|
2 < ε

for every k, l ≥ N with l > k. A direct computation using properties of inner products
then gives ∥∥∥∥ l∑

j=k+1

〈v, e j〉e j

∥∥∥∥2
=

l∑
j=k+1

|〈v, e j〉|
2 < ε,

which shows that the series
∞∑
j=1

〈v, e j〉e j

is Cauchy. By Theorem 6.4.17 this series converges, implying that B is basic. �

7.3.4 Generalised Fourier series

In our general framework, the notion of a Fourier series is easily discussed.
We shall discuss Fourier series (although we will think of this as being a means
of getting at the inverse of the so-called CDFT) in Chapter 12. In this case, as we
shall see, other issues not present in our general inner product space constructions,
become relevant. Thus we focus our discussion in this section on the generalities.
This will allow us to separate out these general considerations from the more
specific ones in Chapter 12.

We begin with a definition that at this point is simply the giving of a name to
something we already have been talking about.
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7.3.26 Definition (Generalised Fourier series) Let F ∈ {R,C} and let (V, 〈·, ·〉) be a F-
inner product space. If {ei}i∈I is a Hilbert basis for V and if v ∈ V, the generalised
Fourier series for v is the series

v =
∑
i∈I

〈v, ei〉ei,

which converges to v. •

Let us consider some general and, therefore, more or less elementary examples.

7.3.27 Examples (Generalised Fourier series)
1. Let (V, 〈·, ·〉) be a finite-dimensional inner product space with Hilbert basis
{e1, . . . , en}. The generalised Fourier series for v ∈ V is then simply the represen-
tation of v in the (Hamel) basis {e1, . . . , en}, just as prescribed by Corollary 7.3.18:

v = 〈v, e1〉e1 + · · · + 〈v, en〉en.

2. Next consider the inner product space (F∞0 , 〈·, ·〉1) with its standard basis {e j} j∈Z>0 ;
this is a Hilbert basis as we saw in Example 7.3.8–2. In this case the Hilbert
basis is also a basis in the usual sense. Thus the generalised Fourier series for
v ∈ F∞0 ,

v =

∞∑
j=1

v( j)e j,

is simply the representation of v with respect to a basis in the usual sense.
3. Finally, let us consider the completion (`2(F), 〈·, ·〉2) of (F∞0 , 〈·, ·〉2). In this case

the generalised Fourier series for v ∈ `2(F) has the form

v =

∞∑
j=1

v( j)e j.

Note that this is not the representation of v in a basis in the usual sense because
the sum is possibly finite. Indeed, it is quite clear that {e j} j∈Z>0 is not a (Hamel;)
basis. Moreover, we shall see in Theorem 7.3.36 that any (Hamel) basis for `2(F)
has cardinality strictly greater than that of Z>0. •

The preceding two examples illustrate the difference between the purely alge-
braic notion of a Hamel basis and the analytical notion of a Hilbert basis. It is
probably worth understanding the message these examples are trying to pass on.

Let us now give a useful geometric interpretation of the generalised Fourier
series. We recall from Section 7.1.5 the notation dist(v,S) for the distance from
v ∈ V to a subset S ⊆ V.
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7.3.28 Theorem (The best approximation property of generalised Fourier series) Let
F ∈ {R,C}, let (V, 〈·, ·〉) be an F-inner product space, and let {ei}i∈I be a Hilbert basis for V.
For J ⊆ I let us abbreviate

VJ = cl(spanF(ej| j ∈ J)),

and assume that VJ is complete. If v ∈ V and if J ⊆ I, then

vJ ,
∑
j∈J

〈v, ej〉ej

is the unique vector in VJ for which dist(v,VJ) = ‖v − vJ‖.
Proof We first claim that the series vJ converges. Since we are assuming that VJ is
complete, it suffices by Theorem 6.4.17 to show that the series vJ is Cauchy. Let ε ∈ R>0.
Since the series ∑

j∈J

|〈v, c j〉|
2

is convergent by Theorem 7.3.6 it is also Cauchy. Thus there exists a finite subset J ⊆ I
such that ∑

j∈J′
|〈v, e j〉|

2 < ε

for every finite subset J′ ⊆ I for which J′ ∩ J = ∅. Then, by Theorem 7.3.20,∥∥∥∥∑
j∈J′
〈v, e j〉e j

∥∥∥∥2
=

∑
j∈J′
|c j|

2 < ε

for every finite subset J′ ⊆ I for which J′ ∩ J = ∅. This gives convergence of the series
for vJ, as desired.

Now, by Theorem 7.1.26, it suffices to show that v − vJ ∈ V⊥J . By
Proposition 7.1.13(iv) it suffices to show that 〈v − vJ, e j〉 = 0 for every j ∈ J. But
this holds since

〈v − vJ, e j〉 =
〈
v −

∑
j′∈J

〈v, e j′〉e j′ , e j

〉
= 〈v, e j′〉 − 〈v, e j′〉 = 0,

where we swap the sum and inner product by Proposition 7.2.1 and Theorem 6.5.2.�

The preceding discussion has to do with representing a vector in an inner
product space by a generalised Fourier series. The next result tells us that any
“reasonable” collection of coefficients are those of a generalised Fourier series.

7.3.29 Theorem (Riesz–Fischer5 Theorem) Let F ∈ {R,C}, let (V, 〈·, ·〉) be an F-Hilbert
space, and let (ei)i∈I be an orthonormal family. If (ci)i∈I is a family of numbers such that the
series ∑

i∈I

|ci|
2 (7.17)

5Frigyes Riesz (1880–1956) was born in what is now Hungary and was one of the founders of
functional analysis. His younger brother Marcel was also a mathematician of some note. Ernst
Sigismund Fischer (1875–1954) was an Austrian mathematician whose contributions to mathematics
were in the areas of algebra and analysis.
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converges in the sense of Definition 2.4.31, then the series∑
i∈I

ciei (7.18)

converges in the sense of Definition 6.4.16. Moreover, if the series converges to v ∈ V then
ci = 〈v, ei〉, i ∈ I.

Proof We claim that the sum (7.18) is Cauchy. Let ε ∈ R>0. Since the series (7.17) is
convergent and so Cauchy, there exists a finite set J ⊆ I such that∑

j∈J′
|c j|

2 < ε

for every finite subset J′ ⊆ I for which J ∩ J′ = ∅. By Theorem 7.3.20 we then have∥∥∥∥∑
j∈J′

c je j

∥∥∥∥2
=

∑
j∈J′
|c j|

2 < ε

for every finite subset J′ ⊆ I for which J ∩ J′ = ∅. Thus the series (7.18) is Cauchy, and
so convergent by Theorem 6.4.17. The last assertion is simply Proposition 7.3.5. �

7.3.5 Classification of Hilbert spaces

In this section we use the idea of Hilbert bases to characterise all Hilbert spaces.
As we shall see, the classification is actually quite simple, just as with the classifi-
cation of all vector spaces induced by the size of their bases.

First let us assert that the dimension of an inner product space, when it exists,
is well defined.

7.3.30 Theorem (Invariance of cardinality of maximal orthonormal sets) If F ∈ {R,C},
if (V, 〈·, ·〉) is an F-inner product space, and if {ei}i∈I and {fj}j∈J are Hilbert bases for V, then
card(I) = card(J).

Proof If V possesses a finite maximal orthonormal set, then this set is a Hilbert basis
and so also a Hamel basis by Theorem 7.3.14. Moreover, from the same result, every
Hilbert basis for V is a Hamel basis. By Theorem 4.3.25 every Hamel basis for V has the
same cardinality, and so the result follows when V has a finite maximal orthonormal
set.

Next suppose that V has two infinite maximal orthonormal sets {ei}i∈I and { f j} j∈J.
For j ∈ J denote

I j = {i ∈ I | 〈 f j, ei〉 , 0}.

Since, by Theorem 7.3.6, we have∑
i∈I

〈 f j, ei〉 ≤ ‖ f j‖
2 = 1,

it follows from Proposition 2.4.33 that I j is countable for each j ∈ J. We claim that
I = ∪ j∈JI j. It is clear that ∪ j∈JI j ⊆ I. Suppose that the converse inclusion does not hold
and let i ∈ I \ (∪ j∈JI j). This means, by definition of the sets I j, j ∈ J, that 〈 f j, ei〉 = 0
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for every j ∈ J. By Theorem 7.3.9 this means that f j = 0V; from this we conclude that
I ⊆ ∪ j∈JI j. Now we have

card(I) = card(∪ j∈JI j) ≤ card(Z>0) card(J) ≤ card(J) card(J) = card(J),

using Theorem ?? and its Corollary ??. By swapping the rôles of I and J we similarly
prove that card(J) ≤ card(I), and so the theorem follows from Theorem ??. �

The result has the following obvious (by Theorem 7.3.9) corollary.

7.3.31 Corollary (Invariance of cardinality of Hilbert bases) If F ∈ {R,C}, if (V, 〈·, ·〉) is
an F-inner product space, and if {ei}i∈I and {fj}j∈J are Hilbert bases for V, then card(I) =
card(J).

The preceding theorem and corollary make sense of the following definition.

7.3.32 Definition (Hilbert dimension) LetF ∈ {R,C} and let (V, 〈·, ·〉) be aF-inner product
space. The Hilbert dimension of V is the cardinality of any maximal orthonormal
set in V. We denote by hdimF(V) the Hilbert dimension of V. •

For vector spaces we saw in Proposition 4.3.30 that the dimension was an
isomorphism invariant, indeed the only isomorphism. That is to say, two vector
spaces are isomorphic if and only if they have the same dimension. We would like
to establish a similar assertion for inner product spaces, but replacing “dimension”
with “Hilbert dimension” and replacing “isomorphism” with “isomorphism of
inner product spaces.” But such a result is not actually true, as we shall see. The
desired result is true, however, if we restrict ourselves to the most interesting case
of Hilbert spaces.

7.3.33 Theorem (Hilbert dimension characterises Hilbert spaces) If F ∈ {R,C}, and if
(V1, 〈·, ·〉1) and (V2, 〈·, ·〉2) are F-Hilbert spaces, then the following statements are equiva-
lent:

(i) V1 and V2 are isomorphic as inner product spaces;
(ii) hdimF(V1) = hdimF(V2).

Proof (i) =⇒ (ii) Let L : V1 → V2 be an inner product space isomorphism and let B1
be a Hilbert basis for V1. Define

B2 = {L(u) | u ∈ B1};

we claim that B2 is a Hilbert basis for V2. First let us prove that B2 is orthonormal. If
L(u1),L(u2) ∈ B2 we have

〈L(u1),L(u2)〉2 = 〈u1,u2〉2,

using the fact that L is an isomorphism of inner product spaces. Thus L(u1) and L(u2)
are orthogonal if and only if they are distinct. Similarly one computes ‖L(u)‖ = 1
for u ∈ B1. Thus B2 is indeed orthonormal. Now suppose that v0 ∈ B⊥2 and let
u0 = L−1(v). Then, for every u ∈ B1,

〈v0,L(u)〉2 = 〈u0,u〉1 = 0,
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implying that u0 = 0V1 by Theorem 7.3.9, since L is an isomorphism of inner product
spaces, and since B1 is maximal. We conclude that B2 is maximal and so a Hilbert
basis By Theorem 7.3.9.

(ii) =⇒ (i) Let B1 and B2 be Hilbert bases for V1 and V2, respectively. By assumption
there exists a bijection φ : B1 → B2. Note that by Theorem 7.3.9 every vector in V1
can be written as ∑

u∈B1

cuu

for coefficients cu ∈ F, u ∈ B1, such that∑
u∈B1

|cu|
2 < ∞.

Using this fact, let us define L : V1 → V2 by

L
( ∑

u∈B1

cuu
)

=
∑

u∈B1

cuφ(u).

We must show that L is well-defined and is an isomorphism of inner product spaces.
To show that L is well-defined, we must show that it defines an element of V2. This,
however, follows from the Riesz-Fischer Theorem. Linearity of L follows from the fact
that L(u) = φ(u) for every u ∈ B1 (why?) and from the calculations

L
( ∑

u∈B1

(auu + buu)
)

=
∑
u∈B

auφ(u) +
∑
u∈B

buφ(u) = L
( ∑

u∈B1

auu
)

+ L
( ∑

u∈B1

buu
)
,

for au, bu ∈ F, u ∈ B1, and

L
( ∑

u∈B1

α(cuu)
)

= α
∑

u∈B1

cuφ(u) = αL
( ∑

u∈B1

cuu
)
,

for α ∈ F and cu ∈ F, u ∈ B1. (Of course, in the above computations we require that∑
u∈B1
|au|

2,
∑

u∈B1
|bu|

2, and
∑

u∈B1
|cu|

2 be finite.) The swapping of sums with addition
and multiplication is justified by Proposition 7.2.1 and Theorem 6.5.2. Finally, we
must show that L preserves the inner product. Using Theorem 7.3.9 we compute〈

L
( ∑

u∈B1

auu
)
,L

( ∑
u′∈B1

bu′u′
)〉

2
=

〈 ∑
u∈B1

auφ(u),
∑

u′∈B1

bu′φ(u′)
〉

2

=
∑

u∈B1

aubu

=
〈 ∑

u∈B1

auu,
∑

u′∈B1

bu′u′
〉

1
,

as desired. �

Now that we have decided that the Hilbert dimension of a Hilbert space is
its only property invariant under isomorphism of inner product spaces, let us
provide for the set of Hilbert spaces with a prescribed Hilbert dimension a simple
representative. It is perhaps useful to remind ourselves how this is done for vector
spaces. If V is a vector space over a field F with dimension card(I), then we showed
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in Theorem 4.3.46 that V is isomorphic to the direct sum
⊕

i∈I F. Thus the direct
sum

⊕
i∈I F serves as a simple representative of all vector spaces with dimension

equal to V. The situation is rather similar for Hilbert spaces.
The following theorem describes the simple representative we are after.

7.3.34 Theorem (A “canonical” Hilbert space of a prescribed Hilbert dimension) For
F ∈ {R,C} and for a set I, define

`2(I;F) =
{
φ : I→ F

∣∣∣∣ ∑
i∈I

|φ(i)|2 < ∞
}

and define an inner product on `2(I;F) by

〈φ,ψ〉2 =
∑
i∈I

φ(i)ψ(i).

Then (`2(I;F), 〈·, ·〉2) is a Hilbert space with Hilbert dimension card(I).
Proof Note that `2(I;F) = `2(

⊕
i∈I F) in the context of Definition 6.7.26. It then

follows from Theorem 6.7.27 that `2(I;F) is a Banach space with respect to the norm
‖·‖2 defined by

‖φ‖2 =
∑
i∈I

|φ(i)|2.

In order to show that it is a Hilbert space we should show that the norm is derived
from the given inner product 〈·, ·〉2. First of all, for φ,ψ ∈ `2(I;F), by Proposition 2.4.33
there exists an injection κ : Z>0 → I such that φ(i) = ψ(i) = 0 for i < image(κ) and such
that ∑

i∈I

|φ(i)|2 =

∞∑
j=1

|φ(κ( j))|2,
∑
i∈I

|ψ(i)|2 =

∞∑
j=1

|ψ(κ( j))|2.

Then, for n ∈ Z>0,∣∣∣∣ n∑
j=1

φ(κ( j))ψ(κ( j))
∣∣∣∣ ≤ ( n∑

j=1

|φ(κ( j))|2
)1/2( n∑

j=1

|ψ(κ( j))|2
)1/2

,

using the Cauchy–Bunyakovsky–Schwarz inequality. Letting n→∞we get∣∣∣∣∑
i∈I

φ(i)ψ(i)
∣∣∣∣2 ≤ ‖φ‖2‖ψ‖2 < ∞.

Thus the sum defining the inner product converges. Completing the proof is now
a matter of verifying the inner product axioms for 〈·, ·〉2, justifying the swapping of
infinite sums and inner products using Proposition 7.2.1 and Theorem 6.5.2. �

From the preceding result and from Theorem 7.3.33 (and its proof) we deduce
the following interesting conclusion.
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7.3.35 Corollary (Characterisation of Hilbert spaces up to isomorphism of inner
product spaces) If F ∈ {R,C}, if (V, 〈·, ·〉) is a Hilbert space, and if {ei}i∈I is a Hilbert
basis for V, then the map L : V→ `2(I;F) defined by

L
(∑

i∈I

ciei

)
=

∑
i∈I

ciei

is an isomorphism of inner product spaces.

It is worth digesting and understanding clearly the difference between the
preceding corollary and its counterpart Theorem 4.3.46 for vector spaces. For a
given set I the “canonical” F-vector space of Hamel dimension card(I) is FI

0 and
the “canonical” F-Hilbert space of Hilbert dimension card(I) is `2(I;F). Both are
subspaces of FI (see Notation 4.3.45 for this notation). Moreover, FI

0 is a subspace
of `2(I;F), and is a strict subspace unless card(I) is finite. Indeed, FI

0 and `2(I;F) are
rather different objects when card(I) is not finite. For example, to make sense of
the vector space `2(I;F) requires some analysis that is not required to make sense
of FI

0. Note, for example, that we have not defined `2(I; F) for a general field F
as a general field does not possess the absolute value structure of R or C that is
needed to make things go. Thus `2(I;F) is, in some sense, a “deeper” object than
FI

0. However, there is a strong connection between FI
0 and `2(I;F) in that the latter

is the completion of the former if one uses the inner product

〈φ,ψ〉2 =
∑
i∈I

φ(i)ψ(i) (sum finite)

on FI
0.

The preceding discussion leads one to the following natural question: “What
is the relationship between the Hamel dimension and the Hilbert dimension of
an inner product space?” For inner product spaces the answer can be, “They are
equal.” For example, FI

0 with the inner product 〈·, ·〉2 defined above has the same
Hilbert and Hamel dimension. The question is deeper for Hilbert spaces. Indeed,
from Theorem 6.6.26 and Theorem 7.3.21 we have the following result.

7.3.36 Theorem (Dimension of separable Hilbert space) If F ∈ {R,C} and if (V, 〈·, ·〉) is
a separable infinite-dimensional F-Hilbert space, then dimF(V) = card(R).

In particular, this shows thatF∞0 and `2(F) have different Hamel dimension, and
so are not isomorphic. The story for Hilbert spaces of general dimension is more
complicated, and we refer to the notes in Section 7.3.6.

7.3.6 Notes

The Riesz–Fischer Theorem was published independently by ESF:07 and
FR:07a, FR:07b.

JWE/RAT:70 study the relationship between the Hamel and Schauder dimen-
sions of a Banach space. Applying their result to Hilbert spaces, their conclu-
sions are that there is a condition on the cardinal numbers that characterise those
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infinite-dimensional Hilbert spaces whose Hamel and Hilbert dimensions agree.
They point out that ℵ0 = card(Z>0) does not satisfy this condition (and so separa-
ble Hilbert spaces necessarily have different Hamel and Hilbert dimension) while
ℵ1 = card(R) does satisfy this condition (and so the Hilbert space `2(R;F) has equal
Hamel and Hilbert dimension). The proof of JWE/RAT:70 assumes the so-called
Generalised Continuum Hypothesis which asserts that 2ℵo = ℵo+1 for every ordinal
o.6

Exercises

7.3.1 Let F ∈ {R,C} and let (V, 〈·, ·〉) be an F-inner product space. Show that an
orthogonal set is linearly independent.

7.3.2 Let F ∈ {R,C}. Show that the standard basis {e j} j∈Z>0 for F∞0 is a maximal
orthonormal family.

7.3.3 Let F ∈ {R,C}, let (V, 〈·, ·〉) be an F-inner product space, and let J be either the
set {1, . . . ,n} for some n ∈ Z>0 or the set Z>0. Show that if (u j) j∈J is orthonor-
mal, then applying the Gram–Schmidt orthonormalisation procedure to this
family gives the same family back again.

7.3.4 Prove Proposition 7.3.17. Point out the parts of your argument that are not
valid in the infinite-dimensional case.

7.3.5 Prove Proposition 7.3.19. Point out the parts of your argument that are not
generally valid for countable orthonormal sets (e j) j∈Z>0 .

7.3.6 Prove Theorem 7.3.20. Point out the parts of your argument that are not
generally valid for countable orthonormal sets (e j) j∈Z>0 .

In the following exercise you will see just how fine is the notion of a maximal
orthonormal set. Taking away any vector, or attempting to add a vector, ruins the
maximality.

7.3.7 Let B = {e j} j∈Z>0 be a maximal orthonormal set in an inner product space
(V, 〈·, ·〉).
(a) Show that for any k ∈ Z>0 the set B \ {ek} is not maximal.
(b) Show that there is no vector e0 ∈ V with the property that {e0} ∪B is a

maximal orthonormal set.
7.3.8 Let F ∈ {R,C} and let (V, 〈·, ·〉2) be an F-Hilbert space. Let {ei}i∈I be a Hilbert

basis. Show that if α ∈ V∗ then the vector vα ∈ V associated with α by
Corollary 7.2.5 satisfies 〈vα, ei〉 = α(ei) for each i ∈ I.

6The cardinals ℵo, defined for ordinals o, are defined using transfinite recursion as follows. Take
ℵ0 to be the cardinality of Z>0. Assuming that ℵo has been defined, one defines ℵo+1 to be the
successor (see Definition ??) of ℵo.


