
1

Distributed online convex optimization on

time-varying directed graphs
Mohammad Akbari Bahman Gharesifard Tamás Linder

Abstract—This paper introduces a class of discrete-time dis-
tributed online optimization algorithms, with a group of agents
whose communication topology is given by a uniformly strongly
connected sequence of time-varying networks. At each time, a
private locally Lipschitz strongly convex objective function is
revealed to each agent. In the next time step, each agent updates
its state using its own objective function and the information
gathered from its immediate in-neighbors at that time. Under
the assumption that the sequence of communication topologies is
uniformly strongly connected, we design an algorithm, distributed
over the sequence of time-varying topologies, which guarantees
that the individual regret, the difference between the network cost
incurred by the agent’s states estimation and the cost incurred
by the best fixed choice, grows only sublinearly. This algorithm
consists of a subgradient flow along with a push-sum step to
adjust for the directed nature of the network topologies. We
implement the proposed algorithm on a sensor network and the
results show the proper performance of the algorithm.

I. INTRODUCTION

Many scenarios concerning the coordination of multi-agent

systems can be modeled as optimization problems in which

individual agents cooperatively try to minimize a common cost

function. The main feature of any implementable coordination

protocol is that the agents only use the information from their

neighbouring agents, where the neighbourhood structure is

cast as a graph, often directed and time-varying, to update

their states. One well-studied class of such optimization prob-

lems is the so-called consensus-based distributed optimization

problem, where the objective is for the aggregate states of the

agents to converge to the set of minimizers of the common cost

function [2], [3], [4]. The problem has a variety of applications

including localization and robust estimation [5], formation

control [6], and energy dispatch in power distribution net-

works [7], and has been extensively studied in recent years [2],

[3], [8], [9], [10], [4].

Many practical scenarios of distributed optimization, how-

ever, are in highly dynamic environments, e.g., scheduling

of renewable energy systems, where uncertainty plays a cen-

tral role, and estimation using sensor networks, where the

observations of each sensor change with time due to noise.

Some of these issues can be addressed within the framework

of online optimization, where the functions allocated to each

agent possibly change with time, and this change is seen by

the agents only in hindsight. In this sense, this is inherently

different from distributed time-varying optimization, or dy-

namic consensus [11]. The objective is to bound the so-called

The authors are with the Department of Mathematics
and Statistics at Queen’s University, Kingston, ON, Canada.
{13mav1,gharesb,linder}@queensu.ca. Parts of this work
were presented at the 2014 Allerton Conference on Communication, Control,
and Computing. [1]

regret function, which measures the difference between the

accumulated collective cost and the cost obtained by the best

fixed decision, made by a hypothetical decision maker that

knows the objective functions in advance.

There is a vast literature on online optimization, all of which

we are unable to review here. This work builds on gradient-

descent methods that have been used extensively for online

convex optimization; see [12], [13] and [14] for a recent sur-

vey. In particular, it is well-known that gradient-descent proto-

cols achieve regret bound of O(
√
T) on convex functions, and

O(ln (T)) on twice differentiable strongly convex functions,

where T denotes the time horizon, see for example [13]. With

the interest in decentralized architectures and motivated by

the problem of distributed convex optimization, a distributed

version of online optimization is proposed in [15], [16]. In [17]

and [18], [19] consensus-based gradient-descent algorithms for

distributed online optimization are proposed. In this setting,

each agent aims at driving its individual average regret, which

is the average over time of the regret function evaluated at

this agent’s estimation for the choice that the whole network

should make, to zero. Given that the agents do not have access

to the local cost functions of other agents, these individual

regrets are not computable. Nevertheless, the agents can use a

consensus-based gradient-descent protocol to collaboratively

achieve their objectives. A consensus-based dual averaging

discrete-time protocol for online optimization on undirected

networks is proposed in [17], and is extended in [20] to

accommodate for time-varying weights, but on a fixed di-

rected graph. In [18], [19], motivated by the saddle-point

dynamics in [21], a discrete-time distributed online convex

optimization algorithm on weight-balanced network topologies

is introduced; in particular, the suggested protocol in [19]

works on jointly connected weight-balanced digraphs. Other

recent work includes [22], where under the assumption of

doubly stochasticity, a gossip-based protocol is developed for

distributed online convex optimization. In contrast, we develop

an algorithm that achieves a sublinear regret over any sequence

of uniformly strongly connected time-varying directed graphs.

The idea behind our protocol is the push-sum algorithm, which

was originally used for consensus [23], [24] on directed graphs

with imbalanced nodes. In particular, some of our main results

rely on an extension of this class of algorithms to the so-called

perturbed push-sum protocol, which works on any uniformly

strongly connected digraph and has recently been used for

distributed convex optimization [25], [26]. In contrast, here

we are interested in distributed online optimization.

Statement of contributions: The contributions of this paper

are the following. We consider a group of agents communi-

cating over a sequence of time-varying directed graphs. At

each time instance, each agent uses the information about the

2

states of its neighboring agents and makes a decision about

its next state. After that, the agent receives a locally Lipschitz

strongly convex cost function and incurs a cost for its state

estimation. Following the framework of [17] and [19], the

regret for each individual agent at each time is defined as the

difference between the network cost incurred by the agent’s

state estimation and the cost incurred by the best fixed choice,

made by a decision maker that has access to the objective func-

tions. Assuming that the individual cost functions are strongly

convex on a compact neighbourhood of their minimizers and

have bounded subgradients, we design a distributed discrete-

time algorithm which achieves sublinear regret, logarithmic up

to a square, i.e., O((ln(T))2), on any sequence of time-varying

uniformly strongly connected digraphs. In this sense, and in

contrast to the known consensus-based gradient-descent proto-

cols for distributed online optimization, our proposed strategy

does not rely on having weight-balanced or doubly stochastic

network topologies, and accommodates time-varying directed

graphs. The proposed algorithm can be thought of as an

extension of the subgradient push-sum strategy, recently used

for distributed convex optimization in [25], to online settings.

Our proof strategy is to provide a sublinear network regret and

then a sublinear bound on the difference between network and

agent regret. For the special class of Ramanujan graphs, we

make the dependency of our upper bound for the regret on

the number of agents explicit and show that for a sufficiently

large time, this upper bound grows linearly with the size of the

network. Finally, we discuss an application of the proposed

algorithm to a sensor network estimation problem, where a

group of sensors with independent observations cooperatively

and by communicating over a time-varying graph estimate a

target.

Organization: Section II contains mathematical prelimi-

naries on linear algebra, convex analysis, and graph theory.

Section III introduces the distributed online convex optimiza-

tion problem under study. In Section IV, we propose our

distributed online discrete-time convex optimization algorithm

which achieves sublinear regret. Section V contains our main

contribution. We demonstrate the results by a simulation on

a sensor network in Section VI. Section VII gathers our

conclusions and ideas for future work.

II. MATHEMATICAL PRELIMINARIES

We start with some notational conventions that we use

throughout the paper. Let R, R≥0, R>0, Z, Z>0 denote the

set of real, nonnegative real, positive real, integer, and positive

integer numbers, respectively. We denote by ‖.‖2 and ‖.‖1 the

Euclidean norm and 1-norm on R
d, d ∈ Z>0, respectively, and

also denote by B̄(x, r) = {y ∈ R
d : ‖y−x‖2 ≤ r}, the closed

ball of radius r centered at x ∈ R
d. We use the short-hand

notation 1d = (1, . . . , 1)T ∈ R
d. We let Id denote the identity

matrix in R
d×d. For matrices A ∈ R

d1×d2 and B ∈ R
e1×e2 ,

d1, d2, e1, e2 ∈ Z>0, we let A ⊗ B denote their Kronecker

product. We say matrix A is column stochastic (resp. row

stochastic) if 1
T

d1
A = 1

T

d2
(resp. A1d2

= 1d1
). We also let

σi(A) denote the ith largest singular value of matrix A.

Convex analysis: A function f : Rd → R is convex if for

all x, y ∈ R
d and for all λ ∈ [0, 1], we have

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Given a convex function f and x ∈ R
d, we call gx ∈ R

d a

subgradient of f at x, if

f(y)− f(x) ≥ gTx (y − x),

for all y ∈ R
d. It is well-known that the set of subgradients

of a convex function is a nonempty, convex, compact for all

x ∈ R
d, see [27, Proposition 4.2.1]. We denote by ∂f(x) the

set of subgradients of f at x. We say ∂f(x) is L-bounded if

there exists L ∈ R≥0 such that ‖gx‖1 ≤ L for all gx ∈ ∂f(x)
and x ∈ R

d. The function f : Rd → R is called Lipschitz,

if for all x, y ∈ R
d, |f(x) − f(y)| ≤ C‖x − y‖2 for some

C ∈ R≥0. Note that a function with L-bounded subgradients

is Lipschitz. The function f is µ-strongly convex, for some

µ ∈ R>0, if for each x ∈ R
d and gx ∈ ∂f(x), we have

f(y)− f(x) ≥ gTx (y − x) +
µ

2
‖y − x‖22,

for all y ∈ R
d. We let argmin(f) denote the set of minimizers

of a convex function f in its domain. The convex function

f is locally strongly convex if it is strongly convex on a

compact set containing argmin(f). For β ∈ [0, 1], a convex

function f : R
n → R with argmin(f) 6= ∅ is β-central

on Z ⊂ R
n\ argmin(f) if for each x ∈ Z , there exists

y ∈ argmin(f) such that

−gTx (y − x) ≥ β‖gx‖2‖y − x‖2,
for all gx ∈ ∂f(x).

Graph theory: A weighted directed graph (or digraph) G =
(V , E ,A) consists of a vertex set V , an edge set E ⊆ V×V , and

an adjacency matrix A ∈ R
n×n
≥0 with aij > 0 iff (vi, vj) ∈ E .

We assume each agent has a self-loop, so aii > 0 for all i ∈ V .

A path is a sequence of distinct vertices connected by edges.

The graph G is strongly connected if there is a path between

any pair of distinct vertices. We define in-neighbors and out-

neighbors of node vi, respectively, as N in
i = {vj |(vj , vi) ∈

E} ∪ {vi} and Nout
i = {vj |(vi, vj) ∈ E} ∪ {vi}. The in- and

out-degree of vi are, respectively, dini = |N in
i | and douti =

|Nout
i |. A regular (undirected) graph is a graph where every

vertex has the same number of neighbours. A regular graph

with vertices of degree d is a d-regular graph. A Ramanujan

graph is a d-regular graph satisfying σ2(A) ≤ 2
√
d− 1, where

A = [aij] is the unweighted adjacency matrix of the graph, i.e.,

aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise, see [28].

III. PROBLEM STATEMENT

We begin with describing the problem of online convex

optimization. Suppose we have a sequence of convex cost

functions {f1, f2, · · · , fT }, where f t : R
d → R for each

t ∈ {1, · · · , T } (T ∈ Z>0 is the time horizon). At each

time step t ∈ {1, · · · , T }, a decision maker chooses an action

z(t) ∈ R
d and after committing to this decision, a convex cost

function f t : Rd → R is revealed and the decision maker is

faced with a loss of f t(z(t)). In this scenario, due to lack of

access to the cost functions before the decision is made, the

decision does not necessarily correspond to the minimizers and

3

the decision maker faces a so-called regret. Regret is defined as

the difference between the accumulated cost over time and the

cost incurred by the best fixed decision, when all the functions

are known in advance, see [12], [13]. Formally, the regret is

R(T) =

T
∑

t=1

f t(z(t))−
T
∑

t=1

f t(z⋆),

where

z⋆ ∈ argmin
z∈Rd

T
∑

t=1

f t(z).

Throughout the paper, we assume that the minimizer set is

nonempty. The objective here is to design a strategy for the

decision maker so that it achieves a regret that is sublinear

in T , i.e., lim supT→∞
R(T)
T = 0, which guarantees that the

average regret over time goes to zero.

Let us now review the setup for a distributed version of

the online optimization problem [17], [19]. Consider a group

of agents communicating with each other over a time-varying

network, modeled by a directed graph at each time step, with

properties that will be described shortly. At each time step

t ∈ {1, 2, · · · , T }, an agent i ∈ V = {1, · · · , n} chooses

its state zi(t) ∈ R
d. After this, a locally strongly convex cost

function f t
i : Rd → R is revealed, and the agent incurs the cost

f t
i (zi(t)); in fact, agent i will not necessarily see the whole

function, but can see its value and compute its subgradient at

zi(t). In this scenario, at each time t, the whole network aims

to minimize the cost function

f t(z) =

n
∑

i=1

f t
i (z),

which is distributed among agents and is revealed when agents

have chosen their states. Therefore, each agent guesses its state

based on what it thinks the whole network would choose.

The regret of agent j ∈ V , see [17], [18], is now defined as

R
j(T) :=

T
∑

t=1

n
∑

i=1

f t
i (zj(t)) −

T
∑

t=1

n
∑

i=1

f t
i (z

⋆); (1)

where

z⋆ ∈ argmin
z∈Rd

T
∑

t=1

n
∑

i=1

f t
i (z). (2)

Note that, since f t is locally strongly convex, z⋆ is unique.

This individual regret function for agent j computes the

difference between the network cost incurred by the agent’s

states estimation and the cost incurred by the best fixed choice,

when all functions are known in advance.

It is essential to note that, at each time, each agent has

only access to the value of its own (past) cost functions,

and their subgradients, and has only partial information about

the other agents’ states. Therefore, agents cannot compute

their own regret. However, at each time step, agents have

access to a communication network over which they can share

information. In particular, at time t ∈ {1, 2, ..., T }, agent

i ∈ V receives information about the states of its in-neighbour

via a time-varying directed graph G(t) = (V , E(t),A(t)). We

assume that the sequence G(t), t ∈ {1, · · · , T } is uniformly

strongly connected (or B-strongly-connected), which means it

is strongly connected in a period of time, see [25]; specifically,

there exists B ∈ Z>0 such that for each k ∈ Z≥0, the

digraph with vertices V and edge set EB(k) =
⋃(k+1)B

t=kB+1 E(t)
is strongly connected. Finally, similar to most distributed

optimization algorithms, we assume throughout that every

node knows its out-degree.

The main objective of this paper is to design a distributed

algorithm over the prescribed time-varying network topology

which allows the agents to asymptotically drive the average

individual regret over time to zero, even though limited

information is available to the agents. More specifically, the

distributed algorithm must have the property that the individual

regret is upper bounded sublinearly of time T .

IV. DISTRIBUTED ONLINE SUBGRADIENT PUSH-SUM

ALGORITHM

In this section, we introduce a distributed online subgra-

dient push-sum algorithm motivated by [25], [23], which

allows the agents to have a sublinear average individual

regret. To this end, let us consider a group of agents V =
{1, · · · , n} with the communication topology prescribed by

a sequence of B-strongly-connected time-varying digraph

G(t) = (V , E(t),A(t)) as before. The distributed online

subgradient push-sum algorithm is a discrete-time dynamical

system, which is described next. We assume that at each time

t ∈ {1, · · · , T }, each agent has four states: xi(t) ∈ R
d,

yi(t) ∈ R, wi(t) ∈ R
d and zi(t) ∈ R

d, which the agent

computes locally. Here, zi(t) is the agent’s primary state which

incurs the cost f t
i (zi(t)). The parameters xi(t) and wi(t)

are used to estimate zi(t) by using other agents’ states and

properties of cost function f t
i . Finally, yi(t) is a scalar used to

determine the influence of the agent’s neighbours on its states

over a directed graph.

We are now in a position to introduce our distributed

online subgradient push-sum algorithm. At each iteration

t ∈ {1, · · · , T }, the agent i ∈ V computes its next time state

values by

wi(t+ 1) =
∑

j∈N in

i
(t)

xj(t)

doutj (t)
,

yi(t+ 1) =
∑

j∈N in

i
(t)

yj(t)

doutj (t)
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xi(t+ 1) =wi(t+ 1)− α(t+ 1)gt+1
i (zi(t+ 1)),

where gt+1
i (zi(t+1)) is the subgradient of the function f t+1

i at

zi(t+1) and α : Z>0 → R>0 is the learning rate. Throughout

the rest of this paper, for simplicity, we write gi(t+1) instead

of gt+1
i (zi(t + 1)). We set the initial value yi(0) = 1 for all

i ∈ V , and xi(0) ∈ R
d where i ∈ V . Note that f t

i is available

only after agent i selects the state zi(t).
We now briefly describe how each agent computes its state

values. At each time t, all in-neighbor agents j ∈ N in
i (t) of

agent i share
xj(t)
dout

j
(t)

and
yj(t)
dout

j
(t)

with this agent; hence i can

compute wi(t + 1), yi(t + 1), zi(t + 1), xi(t + 1) using this

information.

4

It is useful to represent the discrete-time dynamical system

described above in matrix form. To this end, let us define the

matrix A(t) = [aij(t)]n×n and A(t) = A(t)⊗ Id, where

aij(t) =

{

1/doutj (t) whenever j ∈ N in
i (t)

0 otherwise.

The algorithm described above can now be written as

w(t + 1) =A(t)x(t),

y(t+ 1) =A(t)y(t),

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
, for all i ∈ V ,

x(t + 1) =w(t+ 1)− α(t+ 1)g(t+ 1), (3)

where w(t) = (wT
1 (t), . . . , w

T
n(t))

T, x(t) =
(xT

1 (t), . . . , x
T

n(t))
T, y(t) = (y1(t), . . . , yn(t))

T, and

g(t) = (gT1 (t), . . . , g
T

n(t))
T.

V. MAIN RESULT

In this section, we show how the distributed online sub-

gradient push-sum algorithm (3) can be used to bound the

individual regret defined in (1). Before stating our main result,

we specify the sequence of cost functions {f t
1, f

t
2, ..., f

t
n}Tt=1

that we consider throughout this paper.

Assumption 5.1: {f t
1, f

t
2, ..., f

t
n}Tt=1 is a sequence of convex

functions with nonempty set of minimizers, where for each

i ∈ {1, . . . , n}, the function f t
i :

(i) has Li-bounded subgradients, where Li ∈ R>0, and

(ii) is µ-strongly convex on B̄(0, H(µK1

2L)) for some µ ∈
R>0, K1 ∈ R>0 independent of T , and L =

∑n
i=1 Li,

where H(·) is defined in equation (19) in the Appendix,

and ∪n
i=1 ∪T

t=1 argminf t
i ⊂ B̄(0,K1/2).

The following theorem is the main result of this paper.

Theorem 5.2: (Sublinear agent’s regret bound): Con-

sider a group of agents V = {1, · · · , n} over a sequence

of B-strongly connected graphs, where T, n ∈ Z>0. Let

{f t
1, f

t
2, ..., f

t
n}Tt=1 be a sequence of convex cost functions

that satisfies Assumption 5.1. Suppose that the learning rate is

given by α(t) = 1
µt and that the agents use (3) to generate the

sequence {z(t) = (z1(t), z2(t), ..., zn(t))}Tt=1. Then for each

agent j ∈ V , we have

R
j(T) ≤ C1 + C2(1 + ln(T)) + C3(1 + ln(T))2, (4)

where

C1 =
8L

δ(1− λ)

n
∑

i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z⋆‖22

+
8µn

δ(1 − λ)

n
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
16nLj

δ(1 − λ)

n
∑

i=1

‖xi(0)‖1,

C2 =
8L2

µδ(1− λ)
+

8L

δ(1 − λ)

n
∑

i=1

‖xi(0)‖1 +
16nLj

δ(1− λ)

L

µ

+
8n

δ(1 − λ)
L‖x̄(0)− z⋆‖2 +

L2

2nµ
,

C3 =
8

δ(1− λ)

L2

µ
,

z⋆ is defined in (2), δ ∈ R>0 and λ ∈ R>0 depend on the

network topology, c.f. Lemma 5.5,

L =

n
∑

i=1

Li, and

x̄(t) =
1

n
(x1(t) + x2(t) + · · ·+ xn(t))

=
1

n
(1n ⊗ Id)

T[xT

1 (t), x
T

2 (t), ..., x
T

n(t)]
T. (5)

Before we prove this result, we make a few remarks on the

comparison of our results with previous works. The distributed

online subgradient push-sum algorithm (3) and the result pre-

sented by Theorem 5.2 do not rely on fixed graph topologies,

or on the fact that the underlying network is weight-balanced.

In this sense, this result is more general than the existing

results in the literature [18], [17], [19]. On the other hand,

the bound obtained is of order (ln(T))2, rather than ln(T),
which is slightly worse than the known regret bounds in the

centralized scenarios, or the known cases on weight-balanced

directed graphs. This may be due to the estimates that we have

used for some of our upper bounds, or can be due to the nature

of the distributed online subgradient push-sum algorithm.

A. Proof of the main result

In order to prove this result, we need to define a so-called

network regret. The network regret of agents (for the sequence

of functions {f t
i }Tt=1) using {zi(t)}Tt=1, i ∈ V with respect to

a best fixed offline decision z⋆ ∈ R
d is defined as

R(T) :=

T
∑

t=1

n
∑

i=1

f t
i (zi(t))−

T
∑

t=1

n
∑

i=1

f t
i (z

⋆), (6)

where

z⋆ ∈ argmin
z∈Rd

T
∑

t=1

n
∑

i=1

f t
i (z).

This regret function captures the difference between the col-

lective accumulated cost over time and the cost resulting from

the best offline fixed choice, selected by assuming that the

information about the cost functions is available in advance.

Theorem 5.3: (Sublinear network regret bound): Con-

sider a group of agents V = {1, . . . , n} over a sequence

5

of B-strongly connected graphs, where T, n ∈ Z>0. Let

{f t
1, f

t
2, ..., f

t
n}Tt=1 be a sequence of convex cost functions

that satisfies Assumption 5.1. Then the sequence {z(t) =
(z1(t), z2(t), ..., zn(t))}Tt=1 generated by (3) with the learning

rate α(t) = 1
µt satisfies the network regret bound

R(T) ≤ C̃1 + C̃2(1 + ln(T)) + C̃3(1 + ln(T))2,

where

C̃1 =
8L

δ(1− λ)

n
∑

i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z⋆‖22

+
8µn

δ(1− λ)

n
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2,

C̃2 =
8L2

µδ(1− λ)
+

8L

δ(1− λ)

n
∑

i=1

‖xi(0)‖1

+
8nL

δ(1− λ)
‖x̄(0)− z⋆‖2 +

L2

2nµ
,

C̃3 =
8

δ(1− λ)

L2

µ
,

z⋆ is defined in (2), δ ∈ R>0 and λ ∈ R>0 depend on the

network topology, and L and x̄(0) are given by (5).

The proof relies on a sequence of results, which we present

next. Throughout the rest of this section, we adopt the notation

introduced in Theorem 5.2.

Lemma 5.4: Let {f t
1, f

t
2, ..., f

t
n}Tt=1 be a sequence of con-

vex cost functions that satisfies Assumption 5.1. Then the

sequence {z(t)}Tt=1 generated by (3) with the learning rate

α(t), over a sequence of B-strongly connected graphs, satisfies

R(T) ≤
T
∑

t=1

n
∑

i=1

Li‖zi(t)− x̄(t− 1)‖2 +
n

2α(1)
‖x̄(0)− z⋆‖22

+
n

2

T−1
∑

t=1

‖x̄(t)− z⋆‖22
(

1

α(t+ 1)
− 1

α(t)
− µ

)

−
T
∑

t=1

n
∑

i=1

µ(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆)

+
L2

2n

T
∑

t=1

α(t),

where L and x̄(t) are given by (5).

Proof: Using Theorem A.2 of the Appendix and As-

sumption 5.1, for any given initial condition and any agent

i ∈ V , we have that zi(t) stays in B̄(0, H(µK1

2L)) for all

t ∈ {1, 2, · · · , T }, where the modulus of strong convexity

of f is µ. Using (6) and since {{f t
i }ni=1}Tt=1 is a sequence of

µ-strongly convex functions, we have that

R(T) =

T
∑

t=1

n
∑

i=1

(f t
i (zi(t))− f t

i (z
⋆))

≤
T
∑

t=1

n
∑

i=1

(gi(t)
T(zi(t)− z⋆)− µ

2
‖zi(t)− z⋆‖22),

By adding and subtracting x̄(t− 1), we obtain

R(T) ≤
T
∑

t=1

N
∑

i=1

(gi(t)
T(zi(t)− x̄(t− 1) + x̄(t− 1)− z⋆)

− µ

2
‖zi(t)− x̄(t− 1) + x̄(t− 1)− z⋆‖22),

=

T
∑

t=1

n
∑

i=1

(

gi(t)
T(zi(t)− x̄(t− 1))

+ gi(t)
T(x̄(t− 1)− z⋆)

− µ

2

(

‖zi(t)− x̄(t− 1)‖22 + ‖x̄(t− 1)− z⋆‖22
+ 2(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆)

)

)

(7)

Using (3), we have

x(t) = A(t− 1)x(t− 1)− α(t)g(t),

for all t ∈ {1, . . . , T }. Multiplying the equation by 1
n (1n ⊗

Id)
T and using the fact that A(t− 1) is column stochastic, we

obtain

x̄(t) = x̄(t− 1)− α(t)

n

n
∑

i=1

gi(t), (8)

where x̄(t) is given by (5). Subtracting z⋆ and taking the norm

square, we get

‖x̄(t)− z⋆‖22 = ‖x̄(t− 1)− z⋆‖22 +
α2(t)

n2

∥

∥

∥

n
∑

i=1

gi(t)
∥

∥

∥

2

2

− 2α(t)

n

[

n
∑

i=1

gi(t)
]T

(x̄(t− 1)− z⋆).

As a result, since ‖gi(t)‖2 ≤ Li, we have

[

n
∑

i=1

gi(t)
]T

(x̄(t− 1)− z⋆) ≤ n

2α(t)
(‖x̄(t− 1)− z⋆‖22

− ‖x̄(t)− z⋆‖22) +
α(t)

2n
L2,

where L =
∑n

i=1 Li. Using this, we have

T
∑

t=1

[

n
∑

i=1

gi(t)
]T

(x̄(t− 1)− z⋆)

≤
T
∑

t=1

n

2α(t)
(‖x̄(t− 1)− z⋆‖22 − ‖x̄(t)− z⋆‖22)

+
L2

2n

T
∑

t=1

α(t)

≤ n

2α(1)
‖x̄(0)− z⋆‖22

+
n

2

T−1
∑

t=1

‖x̄(t)− z⋆‖22
(1

α(t + 1)
− 1

α(t)

)

+
L2

2n

T
∑

t=1

α(t).

(9)

The proof then follows immediately using (7) and (9), along

with the fact that gi(·) is Li-bounded over Rd.

We also recall the following result from [26], without stating

its proof.

6

Lemma 5.5: ([26, Corollary 1]): Consider the sequences

{zi(t)}Tt=1, for all i ∈ V , generated by (3) on a sequence of

B-strongly-connected digraphs. Then we have

‖zi(t+ 1)− x̄(t)‖2 (10)

≤8

δ

(

λt
n
∑

i=1

‖xi(0)‖1 +
t
∑

s=1

λt−s
n
∑

i=1

‖α(s)gi(s)‖1
)

,

where δ and λ ∈ R>0 satisfy

δ ≥ 1

nnB
and λ ≤ (1 − 1

nnB
)1/(nB).

Additionally, if each of the graphs G(t) is regular, then δ = 1
and

λ ≤ min
{

(1 − 1

4n3
)1/(B), max

t∈{1,··· ,T}
σ2(A(t))

}

.

The constant δ measures the imbalance of the network and

λ is a measure of connectivity, see [25] for more details.We

state a corollary of this result, which plays a key role in the

proof of our main result.

Corollary 5.6: Under the assumption of Theorem 5.3,

where the learning rate is chosen as α(t) = 1
µt , we have

T
∑

t=1

n
∑

i=1

Li‖zi(t)− x̄(t− 1)‖2

≤ 8L

δ(1− λ)

(

n
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

. (11)

The proof follows immediately from the fact that

n
∑

i=1

‖gi(s)‖1 ≤ L and

T
∑

t=1

α(t) ≤ 1

µ
(1 + ln(T)).

The final stepping stone in the proof of Theorem 5.3 is

stated next.

Lemma 5.7: Under the assumption of Theorem 5.3, where

the learning rate is chosen as α(t) = 1
µt , we have

T
∑

t=1

n
∑

i=1

−µ(zi(t)− x̄(t− 1))(x̄(t− 1)− z⋆)

≤µ
8n

δ(1− λ)

n
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
8

δ(1 − λ)

n
∑

i=1

‖xi(0)‖1L(1 + ln(T))

+
8n

δ
L‖x̄(0)− z⋆‖2

1 + ln(T)

1− λ

+
8

δ(1 − λ)

L2

µ
(1 + ln(T))2.

Proof: Using the Cauchy-Schwarz inequality, we have

−
T
∑

t=1

n
∑

i=1

µ(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆)

≤
T
∑

t=1

n
∑

i=1

µ‖zi(t)− x̄(t− 1)‖2‖x̄(t− 1)− z⋆‖2.

Let X =
∑T

t=1

∑n
i=1 µ‖zi(t) − x̄(t− 1)‖2‖x̄(t− 1)− z⋆‖2.

From equation (8), we can write

‖x̄(t− 1)− z⋆‖2 ≤ ‖x̄(0)− z⋆‖2 +
∥

∥

∥

t−1
∑

s=1

α(s)

n

n
∑

i=1

gi(s)
∥

∥

∥

2
.

(12)

Using (10) and (12), we can write

X ≤
T
∑

t=1

n
∑

i=1

µ
8

δ

λt−1
n
∑

j=1

‖xj(0)‖1

+
t−1
∑

s=1

λt−1−s
n
∑

j=1

‖α(s)gj(s)‖1

×

‖x̄(0)− z⋆‖2 + ‖
t−1
∑

s=1

α(s)

n

n
∑

j=1

gj(s)‖2

≤
T
∑

t=1

n
∑

i=1

µ
8

δ

(

λt−1
n
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2

+ λt−1
n
∑

j=1

‖xj(0)‖1
(

t−1
∑

s=1

α(s)

n
L
)

+ L‖x̄(0)− z⋆‖2
t−1
∑

s=1

λt−1−sα(s)

+
L2

n

t−1
∑

s=1

λt−1−sα(s)
t−1
∑

s=1

α(s)

)

. (13)

In the last inequality we used the subgradient bound. Letting

α(s) = 1
µs , we have

T
∑

t=1

n
∑

i=1

µ
8

δ
λt−1

n
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2

= µ
8n

δ

n
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2
T
∑

t=1

λt−1

≤ µ
8n

δ(1 − λ)

n
∑

j=1

‖xj(0)‖1‖x̄(0)− z⋆‖2, (14)

where we used the fact that
∑T

t=1 λ
t−1 ≤ 1

1−λ . We also have

that

T
∑

t=1

n
∑

i=1

µ
8

δn

n
∑

j=1

‖xj(0)‖1Lλt−1
t−1
∑

s=1

1

µs

=
8

δ

n
∑

j=1

‖xj(0)‖1L
T
∑

t=1

λt−1
t−1
∑

s=1

1

s

≤ 8

δ

n
∑

j=1

‖xj(0)‖1L
T
∑

t=1

λt−1(1 + ln(t))

≤ 8

δ(1 − λ)

n
∑

j=1

‖xj(0)‖1L(1 + ln(T)), (15)

7

where we used the fact that
∑T

t=1 λ
t−1(1+ln(t)) ≤ (1+ln(T))

1−λ .

Also, we have that

T
∑

t=1

n
∑

i=1

µ
8

δ
L‖x̄(0)− z⋆‖2

t−1
∑

s=1

λt−1−s 1

µs

= n
8

δ
L‖x̄(0)− z⋆‖2

T
∑

t=1

t−1
∑

s=1

λt−1−s

s

≤ n
8

δ
L‖x̄(0)− z⋆‖2

1 + ln(T)

1− λ
. (16)

Finally,

T
∑

t=1

n
∑

i=1

µ
8

δ

L2

n

t−1
∑

s=1

(λt−1−s

µs

)

t−1
∑

s=1

1

µs

≤ 8

δ

L2

µ

T
∑

t=1

(1 + ln(t))
t−1
∑

s=1

λt−1−s

s

≤ 8

δ(1− λ)

L2

µ
(1 + ln(T))2. (17)

In (16) and (17), by rearranging the summation, we have
∑T

t=1

∑t−1
s=1

λt−1−s

s ≤ 1+ln(T)
1−λ . Using (14)-(17) in (13) then

yields the result.

We are now in a position to prove Theorem 5.3.

Proof of Theorem 5.3: Using Lemma 5.4 and the

assumption that the learning rate is chosen as α(t) = 1
µt ,

we have that

R(T) ≤
T
∑

t=1

n
∑

i=1

Li‖zi(t)− x̄(t− 1)‖2 +
n

2α(1)
‖x̄(0)− z⋆‖22

−
T
∑

t=1

n
∑

i=1

µ(zi(t)− x̄(t− 1))T(x̄(t− 1)− z⋆)

+
L2

2n

T
∑

t=1

α(t),

where we have used the fact that

n

2

T−1
∑

t=1

‖x̄t − z⋆‖22
(1

α(t+ 1)
− 1

α(t)
− µ

)

= 0.

Using Corollary 5.6 and Lemma 5.7, we have

R(T) ≤ 8L

δ(1− λ)

(

n
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

+
n

2α(1)
‖x̄(0)− z⋆‖22

+ µ
8n

δ(1− λ)

n
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
8

δ(1− λ)

n
∑

i=1

‖xi(0)‖1L(1 + ln(T))

+
8n

δ(1− λ)
L‖x̄(0)− z⋆‖2(1 + ln(T))

+
8

δ(1− λ)

L2

µ
(1 + ln(T))2 +

L2

2nµ
(1 + ln(T)).

The proof then follows from rearranging the right-hand side.

In order to establish the proof of Theorem 5.2, using the

previous result about the network regret, we provide an upper

bound on the individual regrets.

Proposition 5.8: Let {f t
1, f

t
2, ..., f

t
n}Tt=1 be a sequence of

convex cost functions that satisfies Assumption 5.1. Suppose

that the learning rate is chosen as α(t) = 1
µt , and the agents

use (3), over a sequence of B-strongly connected graphs, to

generate their states. Then for agent j ∈ V , we have

R
j(T)−R(T) ≤ 16nLj

δ(1 − λ)

(

n
∑

i=1

‖xi(0)‖1 +
L

µ
(1 + ln(T))

)

.

Proof: First, note that

R
j(T)− R(T) =

T
∑

t=1

n
∑

i=1

f t
i (zj(t))−

T
∑

t=1

n
∑

i=1

f t
i (zi(t))

=

T
∑

t=1

n
∑

i=1

(

f t
i (zj(t))− f t

i (zi(t))
)

≤
T
∑

t=1

n
∑

i=1

gj(t)
T(zj(t)− zi(t))

≤
T
∑

t=1

n
∑

i=1

Lj‖zj(t)− zi(t)‖2.

the last inequality follows from the convexity of cost functions

and boundedness of subgradients. We also have that

‖zj(t+ 1)− zi(t+ 1)‖22
= ‖zj(t+ 1)− x̄(t)‖22 + ‖zi(t+ 1)− x̄(t)‖22

− 2(zj(t+ 1)− x̄(t))T(zi(t+ 1)− x̄(t))

≤ ‖zj(t+ 1)− x̄(t)‖22 + ‖zi(t+ 1)− x̄(t)‖22
+ 2‖zj(t+ 1)− x̄(t)‖2‖zi(t+ 1)− x̄(t)‖2

≤ 4
[8

δ

(

λt
n
∑

i=1

‖xi(0)‖1 +
t
∑

s=1

λt−s
n
∑

i=1

‖α(s)gi(s)‖1
)]2

,

where we used Cauchy-Schwarz inequality and the last in-

equality follows from Lemma 5.5. As a result

‖zj(t)− zi(t)‖2 ≤16

δ

(

λt−1
n
∑

i=1

‖xi(0)‖1+

t−1
∑

s=1

λt−1−s
n
∑

i=1

‖α(s)gi(s)‖1
)

Now by choosing α(t) = 1
µt , we have

T
∑

t=1

n
∑

i=1

Lj‖zj(t)− zi(t)‖2 ≤
T
∑

t=1

nLj

(16

δ
λt−1

n
∑

i=1

‖xi(0)‖1

+

t−1
∑

s=1

λt−1−s L

µs

)

≤ 16nLj

δ(1− λ)

(

n
∑

i=1

‖xi(0)‖1

+
L

µ
(1 + ln(T))

)

,

which establishes the result.

8

Proof of Theorem 5.2: The proof of Theorem 5.2 follows

by using the network regret bound in Theorem 5.3 and the

bound on the difference between the network regret and the

individual regret, obtained in Proposition 5.8.

It is worth noting that one can proceed with the proof of

Theorem 5.2 if the learning rate is instead given by α(t) = C
t

where C ≥ 1/µ is a constant.

B. Dependency of the upper bound on the number of agents

for Ramanujan graphs

It is fruitful to make the dependency on number of agents

of the upper bound provided in Theorem 5.2 explicit, at least

for some special cases. Motivated by the second statement of

Lemma 5.5, let us consider the class of regular (undirected)

graphs and in particular, the subclass of Ramanujan graphs.

Proposition 5.9: Suppose that {G(t)}Tt=1 is a B-strongly

connected sequence of Ramanujan d-regular graphs, d ≥ 3,

of order n. Under the conditions of Theorem 5.2, we have

R
j(T) ≤c1

dn2

d− 2
√
d− 1

+ c2
dn

d− 2
√
d− 1

(1 + ln(T))

+ c3
d

d− 2
√
d− 1

(1 + ln(T))2

for some constants c1, c2, c3 ∈ R≥0.

Proof: Suppose G(t) is a Ramanujan d-regular graph

with the unweighted adjacency matrix A(t). Then, using [28,

Definition 2.2], we have that σ2(A(t)) ≤ 2
√
d− 1. We hence

obtain λ ≤ σ2(A(t)) ≤ 2
√
d−1
d , where A(t) = 1

dA(t).
Consider now the distributed online subgradient push-sum

algorithm (3), with A(t) as described. We also have δ = 1
for regular graphs. Using Theorem 5.2, in particular (4), we

have that

C1 =
8L

δ(1− λ)

n
∑

i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z⋆‖22

+
8µn

δ(1− λ)

n
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
16nLj

δ(1− λ)

n
∑

i=1

‖xi(0)‖1

Now, using δ = 1, d ≥ 3, and λ ≤ 2
√
d−1
d , we have that

C1 ≤ 8Ld

d− 2
√
d− 1

n
∑

i=1

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z⋆‖22

+
8µnd

d− 2
√
d− 1

n
∑

i=1

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
16ndLj

d− 2
√
d− 1

n
∑

i=1

‖xi(0)‖1

Finally, using
∑n

i=1 ‖xi(0)‖1 ≤ nmaxi∈V ‖xi(0)‖1, we con-

clude that

C1 ≤ 8Lnd

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1 +
n

2α(1)
‖x̄(0)− z⋆‖22

+
8µn2d

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1‖x̄(0)− z⋆‖2

+
16n2dLj

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1

≤c1
n2d

d− 2
√
d− 1

,

where

c1 =max
i∈V

‖xi(0)‖1
(8L

n
+ 8µ‖x̄(0)− z⋆‖2

+ 16Lj

)

+
‖x̄(0)− z⋆‖22

2µn
.

Similarly, we have

C2 =
8L2

µδ(1− λ)
+

8L

δ(1 − λ)

n
∑

i=1

‖xi(0)‖1 +
16nLj

δ(1− λ)

L

µ

+
8n

δ(1 − λ)
L‖x̄(0)− z⋆‖2 +

L2

2nµ

Using δ = 1 and λ ≤ 2
√
d−1
d , we have that

C2 ≤ 8dL2

µ(d− 2
√
d− 1)

+
8Ld

d− 2
√
d− 1

n
∑

i=1

‖xi(0)‖1

+
16ndLj

d− 2
√
d− 1

L

µ

+
8nd

d− 2
√
d− 1

L‖x̄(0)− z⋆‖2 +
L2

2nµ
,

Hence, using
∑n

i=1 ‖xi(0)‖1 ≤ nmaxi∈V ‖xi(0)‖1, we con-

clude that

C2 ≤ 8dL2

µ(d− 2
√
d− 1)

+
8Lnd

d− 2
√
d− 1

max
i∈V

‖xi(0)‖1

+
16ndLj

d− 2
√
d− 1

L

µ

+
8nd

d− 2
√
d− 1

L‖x̄(0)− z⋆‖2 +
L2

2nµ
,

≤c2
nd

d− 2
√
d− 1

,

where

c2 =
8L2

µn
+8Lmax

i∈V
‖xi(0)‖1+

16LLj

µ
+8L‖x̄(0)−z⋆‖2+

L2

2n2µ

Finally, we have

C3 =
8

δ(1 − λ)

L2

µ
≤ c3

d

d− 2
√
d− 1

,

where

c3 =
8L2

µ
,

which yields the result.

Note that, using this result, for large values of T , the upper

bound grows linearly with the size of the network n.

9

VI. SENSOR NETWORKS

We provide an example using our results for localization in

sensor networks, motivated by [20]. Consider a network of n
sensors, which is used to observe a vector s ∈ R

d. Each sensor

i ∈ V , at each time t ∈ {1, · · · , T }, receives an observation

vector qti ∈ R
di , which is time-varying due to, say, observation

noise. Each sensor i is assumed to have a linear model of the

form pi(s) = Pis, where Pi ∈ R
di×d and Piv = 0 if and only

if v = 0. The best estimation for s is the vector ŝ ∈ R
d that

minimizes the cost function

f(ŝ) =

T
∑

t=1

n
∑

i=1

1

2
‖qti − Piŝ‖22.

The observation vector is modeled as qti = Pis+wt
i where

wt
i is assumed to be white noise. In the offline setting, we have

all the information to compute the optimal estimate, which is

given by

s⋆ =
1

T

T
∑

t=1

(

n
∑

i=1

PT

i Pi

)−1(n
∑

i=1

PT

i q
t
i

)

.

As we describe shortly, when the noise characteristics are

not known, or in some cases where some sensors fail to work

properly, we can use a distributed online algorithm to find

an estimate for the state s. Here, we consider a scenario

in which d = 1 and a network of 100 sensors is used to

observe. At each time step t ∈ {1, · · · , T }, a random directed

graph is generated, describing the sensor communication. This

random directed graph, denoted by G(n, p, r), where r is an

even number and is generated as follows: First, we label each

vertex a number from 1 to n and we generate an r-regular

directed graph of order n, which has rn edges by imposing

that vertex i and vertex j are connected by two directed edges

if |i−j| ≤ r/2 or |i−j| ≥ n−r/2. Then we delete each edge,

independently of others, with probability p. Next, among all

the vertices that are incident to the set of deleted edges, say

N edges, we randomly choose N ordered pairs and connect

each pair with a directed edge. Now we have a random directed

graph of order n with rn edges.

In our model, sensor i observes qti = atis + bti, where

ati ∈ [amin, amax] and bti ∈ [bmin, bmax] are chosen at random

from a uniform distribution. The cost function for sensor i
at each time t is given by the mapping f t

i : R → R, where

f t
i (ŝ) = 1

2 (q
t
i − Piŝ)

2 and Pi ∈ R. We use the distributed

online subgradient push-sum algorithm to estimate the state s.

We consider three scenarios:

1) sensors have the same observation model, i.e., the

model we use for qti is the same for all sensors, and can

communicate over a sequence of time-varying directed

graphs;

2) sensors have the same observation model, but they

cannot communicate with each other;

3) sensors have different observation models and they

can communicate over a sequence of time-varying di-

rected graphs.

In what follows, we simulate the sensors’ state estimation

over time and study the sensors’ regret for each of these

scenarios.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(T)

S
en

so
r’s

S
ta

te
(z

)

Fig. 1. Sensors’ state estimation vs. time for four of the sensors are shown.
The network consists of 100 sensors communicating over a sequence of
G(100, 0.2, 3) random directed graph. The ith sensor observes qt

i
= at

i
s+bt

i
,

where at
i

and bt
i

are random variables chosen from [0, 2] and [− 1

2
, 1

2
],

respectively, with a uniformly probability distribution. We use distributed
online subgradient push-sum algorithm to estimate ŝ which minimizes the

cost function f(ŝ) =
∑T

t=1

∑n
i=1

1

2
(qt

i
− Piŝ)2. The result demonstrates

consensus among sensors.

0 20 40 60 80 100
0

5

10

15

20

25

Time(T)

A
ve

ra
ge

R
eg

re
t

R
(T

)/
T

max individual regret
min individual regret

Fig. 2. Average regrets over time (Rj(T)/T) vs. T for two sensors with
the maximum and minimum average regrets are shown, where the same
assumptions as the ones in Figure 1 hold.

1) Same observation model with communication: We

assume the actual value s = 1/4 which is unavailable to

sensors. Each sensor i ∈ V , at each time t ∈ {1, · · · , T }
observes qti . In this model, we assume qti = atis+bti, where ati
and bti are chosen at random from a uniform distribution on

[0, 2] and [− 1
2 ,

1
2], respectively. We also have Pi = 1, for all

i ∈ {1, . . . , n}, which is the expected value of random variable

ati. The communication topology is given by a time-varying

G(100, 0.2, 2) random directed graph.

Figure 1 shows the states of four sensors over 100 time

iterations. By using the distributed online subgradient push-

sum algorithm (3), the subgradient of cost functions and the

communication between sensors result in a consensus between

sensors as shown in the figure. The consensus value is 1
4 ,

the expected value of sensor observations. Figure 2 shows the

average individual regret of the two sensors with the maximum

and minimum average regrets over time.

In the previous example, the expected value of the min-

imizer of the cost functions for each sensor is the same.

Therefore, if each sensor uses an online algorithm without

communicating with other sensors, they converge to the same

value; however, the communication might accelerate this con-

vergence, as demonstrated next.

2) Same observation model without communication:

10

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(T)

S
en

so
r’s

S
ta

te
(z

)

Fig. 3. Sensors’ state estimation vs. time for four of the sensors are shown.
The network consists of 100 sensors with no communications. The ith sensor
observes qti = atis + bti , where ati and bti are chosen at random from a
uniform distribution on [0, 2] and [−0.5, 0.5], respectively. We use distributed
online subgradient push-sum algorithm to estimate ŝ which minimizes the cost

function f(ŝ) =
∑T

t=1

∑n
i=1

1

2
(qti − Piŝ)

2.

0 50 100 150 200
0

2

4

6

8

10

12

14

Time(T)

A
ve

ra
ge

R
eg

re
t

R
(T

)/
T

with communication
without communication

Fig. 4. Average individual regrets vs. time for one sensor, picked at random
among 100 sensors, in the presence and absence of communications over
time are shown, where the same assumptions as the ones in Figure 3 hold.
and we consider two cases: First, there is communication between sensors
and second, there is no communication between them. The results shows that
communication gives a better regret.

Consider a scenario with the assumptions as before, with the

exception that there is no communication between sensors.

Figure 3 and Figure 4 show, respectively, the estimates of four

sensors and the average individual regret of one sensor, picked

at random, in the presence and absence of communications

over time.

3) Different observation model with communication:

Consider a scenario with the same assumptions as above, with

the exception that the observation vector qti = atis+bti is avail-

able to sensor i, where ati and bti are chosen at random from

a uniform distribution on [0, 2] and [−0.5+ i−50
100 , 0.5+ i−50

100],
respectively. In this sense, and in contrast to the previous case,

sensors do not use the same observations model. The com-

munication network is a time-varying G(100, 0.2, 2) random

directed graph. We use the distributed online subgradient push-

sum algorithm to estimate ŝ. The consensus among sensors

is shown in Figure 5, where the sensors’ estimates approach

the expected value of sensor observation. Figure 6 shows the

individual regret goes to zero as time increases without bound.

0 100 200 300 400 500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(T)

S
en

so
r

S
ta

te
(z

)

Fig. 5. Sensors’ state estimation vs. time for four of the sensors are shown.
The network consists of 100 sensors communicating through a sequence of
G(100, 0.2, 2) random directed graph. The ith sensor observes qti = atis+bti
where at

i
and bt

i
are chosen at random from a uniform distribution on

[0, 2] and [−0.5 + i−50

100
, 0.5 + i−50

100
], respectively. We use distributed

online subgradient push-sum algorithm to estimate ŝ which minimizes the

cost function f(ŝ) =
∑T

t=1

∑n
i=1

1

2
(qti − Piŝ)

2. The result demonstrates
consensus among sensors.

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

Time(T)

A
ve

ra
ge

R
eg

re
t

R
(T

)/
T

max individual regret
min individual regret

Fig. 6. Average individual regret over time Rj(T)/T vs. time for two
sensors is shown, one has the maximum average regret and the other one
has the minimum average regret, where the same assumptions as the ones in
Figure 5 hold.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced a subgradient-push discrete-dynamical

system for distributed online convex optimization, where

agents can communicate their state estimates over a sequence

of time-varying directed graphs. Under the assumption that

agents’ cost functions are locally Lipschitz and locally strongly

convex, we have proved that the proposed algorithm achieves

sublinear worst-case regret bound on any sequence of uni-

formly strongly connected time-varying directed graphs. In

particular, by choosing a suitable learning rate, we have

shown that the network regret bound is logarithmic, up to a

square. Although, this bound is slightly worse than the known

regret bounds in the centralized case, the algorithm works

for general time-varying network topologies. We also showed

that the individual regret bound grows linearly by the size of

network for Ramanujan graphs. Improving the regret bound,

considering scenarios with constraints, extending the results to

general convex functions, investigating other application areas,

and studying the regret bound on special classes of graphs are

among the avenues for future work.

11

REFERENCES

[1] M. Akbari, B. Gharesifard, and T. Linder, “Distributed subgradient-
push online convex optimization on time-varying directed graphs,” in
2014 52nd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 264–269, Sept 2014.

[2] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Symposium on Information Processing of Sensor Networks, (Berkeley,
CA), pp. 20–27, Apr. 2004.

[3] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[4] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms,”
IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
1986.

[5] J. W. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion
without global localization via local frontiers,” Autonomous Robots,
vol. 32, no. 1, pp. 81–95, 2012.

[6] J. How, R. Twiggs, D. Weidow, K. Hartman, and F. Bauer, “Orion -
a low cost demonstration of formation flying in space using GPS,” in
AIAA/AAS Astrodynamics Specialist Conf. and Exhibit, (Reston, VA),
pp. 276–286, 1998.

[7] A. D. Dominguez-Garcia, S. T. Cady, and C. N. Hadjicostis, “Decen-
tralized optimal dispatch of distributed energy resources,” in IEEE Conf.
on Decision and Control, (Hawaii, USA), pp. 3688–3693, Dec. 2012.

[8] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization
in sensor networks,” in Symposium on Information Processing of Sensor
Networks, (San Francisco, CA), pp. 49–60, 2009.

[9] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Automatic

Control, vol. 55, no. 4, pp. 922–938, 2010.

[10] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked systems,”
SIAM Journal on Control and Optimization, vol. 20, no. 3, pp. 1157–
1170, 2009.

[11] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through
the alternating direction method of multipliers,” in Signal Processing
Advances in Wireless Communications (SPAWC), 2013 IEEE 14th Work-

shop on, pp. 170–174, IEEE, 2013.

[12] M. Zinkevich, “Online convex programming and generalized infinites-
imal gradient ascent,” in Proceedings of the Twentieth International
Conference on Machine Learning, (Washighton, D.C.), pp. 928–936,
2003.

[13] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[14] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[15] M. Raginsky, N. Kiarashi, and R. Willett, “Decentralized online convex
programming with local information,” in American Control Conference,
(San Francisco, CA), pp. 5363–5369, 2011.

[16] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed au-
tonomous online learning: Regrets and intrinsic privacy-preserving
properties,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 25, no. 11, pp. 2483–2493, 2013.

[17] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed opti-
mization via dual averaging,” in Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on, pp. 1484–1489, IEEE, 2013.

[18] D. Mateos-Núñez and J. Cortés, “Distributed online second-order dy-
namics for convex optimization over switching connected graphs,”
in Mathematical Theory of Networks and Systems, (Groningen, The
Netherlands), pp. 15–22, 2014.

[19] D. Mateos-Nunez and J. Cortes, “Distributed online convex optimization
over jointly connected digraphs,” IEEE Transactions on Network Science
and Engineering, vol. 1, pp. 23–37, Jan 2014.

[20] S. Hosseini, A. Chapman, and M. Mesbahi, “Online
distributed optimization on dynamic networks,” 2014.
http://arxiv.org/pdf/1412.7215.pdf.

[21] B. Gharesifard and J. Cortés, “Distributed continuous-time convex opti-
mization on weight-balanced digraphs,” IEEE Transactions on Automatic
Control, vol. 59, no. 3, pp. 781–786, 2014.

[22] K. I. Tsianos and M. G. Rabbat, “Efficient distributed online prediction
and stochastic optimization with approximate distributed mini-batches,”
2014. http://arxiv.org/abs/1406.2075v1.

[23] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of ag-
gregate information,” in IEEE Symposium on Foundations of Computer
Science, (Washington, DC), pp. 482–491, Oct. 2003.

[24] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in IEEE Conf. on Decision and
Control, (Maui, HI), pp. 5453–5458, 2012.

[25] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Transactions on Automatic Control, vol. 60,
no. 3, pp. 601–615, 2015.

[26] A. Nedic and A. Olshevsky, “Stochastic gradient-push for
strongly convex functions on time-varying directed graphs,” 2014.
http://arxiv.org/abs/1406.2075v1.

[27] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and
Optimization. Belmont, MA: Athena Scientific, 1st ed., 2003.

[28] A. Lubotzky, R. Phillips, and P. Sarnak, “Explicit expanders and the
ramanujan conjectures,” in Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, STOC ’86, (New York, NY, USA),
pp. 240–246, ACM, 1986.

APPENDIX

In this section, we study the boundedness of agents’ states,

where agents use (3) to generate the sequence {z(t)}Tt=1

over a sequence of B-strongly connected graphs. We assume

that the sequence of cost functions {f t
1, · · · , fT

n }Tt=1 satisfies

Assumption 5.1.

Lemma A.1: For T ∈ R>0, let {f t
1, · · · , fT

n }Tt=1 be a

sequence of convex functions on R
d with nonempty set of

minimizers, where each f t
i has Li-bounded subgradient set.

Let

∪n
i=1 ∪T

t=1 argmin f t
i ⊂ B̄(0,K1),

for some K1 ∈ R>0 independent of T , and assume

{f t
1, · · · , f t

n}Tt=1 are β-central on R
d\B̄(0,K1), where β ∈

(0, 1]. Then, for any sequence {(z1(t), · · · , zn(t))}Tt=1 and

{x̄(t)}Tt=1 generated by (3) over a sequence of B-strongly con-

nected graphs, and any sequence of learning rates {α(t)}Tt=1,

we have

‖x̄(t)‖2 ≤ rβ +
L

n
max
s≥1

α(s) + ‖x̄(0)‖2, (18)

‖zi(t)‖2 ≤ H(β),

for all t > 0, where L =
∑n

i=1 Li,

rβ = max
{ K1 +K2

β
√
1− ǫ2 − ǫ

√

1− β2
,
L

2nǫ
max
s≥1

α(s)
}

,

H(β) = rβ + ‖x̄(0)‖2 +K2 +
L

n
max
s≥1

α(s), (19)

with ǫ ∈ (0, β) and K2 ∈ R>0.

Proof: First we prove the boundedness of ‖x̄(t)‖2 by

induction on t. Note that the initial condition ‖x̄(0)‖2 sat-

isfies (18). Using (8), we conclude that if x̄(t) ∈ B̄(0, rβ),
then

x̄(t+ 1) ∈ B̄
(

0, rβ + Lmax
s≥1

α(s)/n
)

.

By an argument very similar to the one in the proof [19,

Lemma V.7], we have that if x̄(t) ∈ R
d\B̄(0, rβ), then

‖x̄(t + 1)‖2 ≤ ‖x̄(t)‖2. Next, using Lemma 5.5, for all t,
we have that

‖zi(t+ 1)− x̄(t)‖2 ≤ K2,

for some K2 ∈ R>0. We hence conclude that ‖zi(t)‖2 ≤
H(β), where H(β) is given in (19).

12

Theorem A.2: For T ∈ R>0, let {f t
1, · · · , fT

n }Tt=1 be a

sequence of convex functions on R
d with nonempty set of

minimizers, where each f t
i has Li-bounded subgradient set.

Let

∪n
i=1 ∪T

t=1 argmin f t
i ⊂ B̄(0,K1/2),

for some K1 ∈ R>0 independent of T . Suppose that

{f t
1, · · · , f t

n}Tt=1 is a sequence of µ-strongly convex functions

on B̄(0, H(µK1

2L)), for some µ ∈ R>0, where H(·) is defined

in (19). Then {zi(t)}ni=1, generated by (3) over a sequence of

B-strongly connected graphs, stays in B̄(0, H(µK1

2L)), for all

t.
Proof: By an argument very similar to the one in the

proof [19, Lemma V.6], K1 < rβ < H(µK1

2L) and hence

K1 < H(µK1

2L). Thus, f t
i is µ-strongly convex in B̄(0,K1)

and an application of [19, Lemma V.9] implies that each f t
i

is β′-central on R
d\B̄(0,K1), where β′ ≤ µK1

2L . Hence, the

assumptions of Lemma A.1 are satisfied with β = µK1

2L and

as a result, zi(t) remains in the region B̄(0, H(µK1

2L)).

