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Abstract

Let G be a graph on n vertices with Laplacian matrix L and let b be a binary
vector of length n. The pair (L,b) is controllable if the smallest L-invariant
subspace containing b is of dimension n. The graph G is called essentially
controllable if (L,b) is controllable for every b /∈ ker(L), completely uncon-
trollable if (L,b) is uncontrollable for every b, and conditionally controllable
if it is neither essentially controllable nor completely uncontrollable. In this
paper, we completely characterize the graph controllability classes for thresh-
old graphs. We first observe that the class of threshold graphs contains no
essentially controllable graph. We prove that a threshold graph is completely
uncontrollable if and only if its Laplacian matrix has a repeated eigenvalue.
In the process, we fully characterize the set of conditionally controllable
threshold graphs.
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1. Introduction

Consider the single-input linear control system

ẋ(t) = Fx(t) + bu(t) (1)

where F ∈ R
n×n, b ∈ R

n, x(t) ∈ R
n, and u(t) ∈ R. If for each x0 ∈ R

n

there exists a control signal u : R → R such that the trajectory of (1) with
initial condition x(0) = x0 reaches the origin in finite time, then the pair
(F,b) is called controllable. It is well-known that (F,b) is controllable if
and only if the the smallest F-invariant subspace containing b, denoted by
〈F;b〉, has full dimension n (Kalman et al., 1963). Although controllability
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of linear systems is a well developed subject, the problem has drawn recent
interest due to applications in networked dynamical systems and distributed
control. Specifically, the case where F is the Laplacian matrix L of a graph
G = (V, E), and b ∈ {0, 1}n is a binary vector, has drawn a great deal of
attention in recent years (Tanner, 2004; Rahmani et al., 2009; Ji et al., 2009,
2012; Parlangeli and Notarstefano, 2012; Notarstefano and Parlangeli, 2013).
In engineering applications, the vertices Vb := {vi ∈ V | (b)i = 1} are seen as
leader agents and influence the remaining follower agents V\Vb through the
control signal u : R → R and the connectivity of the communication network
defined by the graph G. A major problem of interest is to characterize the
controllability properties of (L,b) in terms of the topological properties of G
as b is allowed to vary within the set {0, 1}n of binary vectors. The reason for
studying (1) with the Laplacian matrix is that it serves as a benchmark for
studying consensus algorithms (Olfati-Saber et al., 2007), and moreover, the
problem is of independent interest since its characterization reveals valuable
information about the eigenvectors of the Laplacian and adjacency matrices
of graphs (Godsil, 2012; Farrugia and Sciriha, 2014; Cvetković et al., 2011).

In this paper, we study the topological obstructions to controllability via
the notion of graph controllability classes, recently introduced in (Aguilar
and Gharesifard, 2014).

Definition 1.1. Let G be a connected graph with Laplacian matrix L. Then
G is called
(i) essentially controllable on {0, 1}n if (L,b) is controllable for every b ∈

{0, 1}n\ ker(L);
(ii) completely uncontrollable on {0, 1}n if (L,b) is uncontrollable for every

b ∈ {0, 1}n; and
(iii) conditionally controllable on {0, 1}n if it is neither essentially control-

lable nor completely uncontrollable on {0, 1}n.

For each integer n ≥ 2, let an be the number of asymmetric connected
graphs and let en be the number of essentially controllable graphs, of order
n. It is known that an essentially controllable graph of order larger than
two must be asymmetric. On the other hand, the block graphs of Steiner
triple systems generate asymmetric graphs of arbitrarily large order that are
completely uncontrollable. However, it is conjectured that limn→∞ en/an = 1.

In this paper, we consider threshold graphs and show that the presence
of a repeated eigenvalue is a necessary condition for complete uncontrolla-
bility and in the process completely classify the set of conditionally control-
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lable threshold graphs. Threshold graphs were introduced in (Chvátal and
Hammer, 1977) and in (Henderson and Zalcstein, 1977), and their interest-
ing properties has led to a large body of literature, see (Golumbic, 2004)
and (Mahadev and Peled, 1995), and references therein. In applications,
threshold graphs appear as models of social networks (S.Saha et al., 2014),
in the problem of synchronizing parallel computer processes, cyclic schedul-
ing problems, and problems in psychology (Mahadev and Peled, 1995). The
results of this paper rely on the spectral properties of the Laplacian for thresh-
old graphs characterized in (Hammer and Kelmans, 1996; Merris, 1998) in
terms of the degree sequence and which enables us to explicitly determine
the only threshold graphs with simple eigenvalues.

Notation

In this section we establish some notation used throughout the paper. Let
G = (V, E) be a graph (undirected, unweighted, no loops or multiple edges)
with vertex set V = {v1, v2, . . . , vn}. The set of vertices adjacent to v ∈ V
will be denoted by N (v) := {w ∈ V | {v, w} ∈ E} and the degree of v will
be denoted by dv := |N (v)|. Accepting a slight abuse of notation, we denote
an edge by (v, w) with the understanding that this pair is unordered. The
adjacency matrix of G will be denoted byA, the diagonal degree matrix byD,
and the Laplacian matrix of G by L = D−A. The Laplacian L is symmetric
and positive semi-definite, and thus its eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are
real and non-negative. The all ones vector 1n := [1 1 · · · 1]T is an eigenvector
of L with eigenvalue λ1 = 0, and if G is connected then λ1 = 0 is a simple
eigenvalue. We assume throughout that G is connected so that 0 < λ2. For
our purposes, by the eigenvalues (eigenvectors) of a graph G we mean the
eigenvalues (eigenvectors) of its Laplacian matrix L.

Finally, we denote by {e1, e2, . . . , en} the standard basis of Rn, and if
v ∈ R

n we denote by (v)a the a-th component of v.

2. Threshold graphs

We recall the definition of threshold graphs from (Hammer and Kelmans,
1996). We start with a single vertex v1 and let G1 = ({v1}, ∅). Suppose
now that Gk = (Vk, Ek) has been defined for some k ≥ 1. Then Gk+1 is
obtained from Gk by adding a new vertex vk+1 and defining the new edge
set as either Ek+1 = Ek ⊕ {vk+1} := Ek or Ek+1 = Ek ⊗ {vk+1} := Ek ∪
{(v1, vk+1), . . . , (vk, vk+1)}. In other words, the ⊕ operation simply adds the
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vertex vk+1 to the graph Gk without connecting it to any vertex of Gk and
the ⊗ operation connects vk+1 to each vertex of Gk. Henceforth, we assume
that the vertex set V = {v1, . . . , vn} of a threshold graph is labeled according
to the above inductive construction. Following (Hagberg et al., 2006), we
associate to a threshold graph G of order n a binary creation sequence TG ∈
{0, 1}n defined as TG(i) = 0 (respectively TG(i) = 1) if the ⊕ operation
(respectively ⊗) was used when adding vertex vi, for all i ∈ {1, . . . , n}. We
note that a threshold graph is connected if and only if TG(n) = 1.

Let G be a threshold graph of order n and let D(G) = (d1, . . . , dn) be
the degree sequence of G, i.e., |N (vi)| = di. Let δ1 < δ2 < · · · < δs, where
s ≤ n, be the distinct degrees appearing in D(G) and let ni be the number of
times δi appears in D(G). With a slight abuse of notation we write D(G) =
(δn1

1 , . . . , δns

s ). Similarly, by Λ(G) = (µm1

1 , . . . , µmh

h ) we denote the spectrum
sequence of L where µ1 < µ2 < · · · < µh are the distinct non-zero eigenvalues
of L, where mi is the algebraic multiplicity of µi. With this notation we have
the following theorem (Hammer and Kelmans, 1996).

Theorem 2.1. Let G be a connected threshold graph with degree and spec-
trum sequences D(G) = (δn1

1 , . . . , δns

s ) and Λ(G) = (µm1

1 , . . . , µmh

h ), respec-
tively. Then s = h and:

1. If h is odd, say h = 2r + 1, then

µi =

{

δi, i = 1, . . . , r,

δi + 1, i = r + 1, . . . , h
and mi =

{

ni − 1, i = r + 1,

ni, otherwise.

2. If h is even, say h = 2r, then

µi =

{

δi, i = 1, . . . , r,

δi + 1, i = r + 1, . . . , h
and mi =

{

ni − 1, i = r,

ni, otherwise.

3. Controllability classes for threshold graphs

We start by proving the following straightforward consequence of the
definition of threshold graphs.

Lemma 3.1. Any threshold graph has at least one non-trivial graph auto-
morphism.
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Proof. The result is trivial if the order of the graph is n = 2 so assume
that n > 2. Consider the vertices v1 and v2. By the inductive construction
of threshold graphs, any vertex v ∈ V\{v1, v2} is adjacent to v1 if and only
if it is adjacent to v2. Hence, the element of the automorphism group that
interchanges v1 and v2 and fixes the rest of the graph vertices is a nontrivial
graph automorphism. �

We next prove that there exists no essentially controllable graphs but first
we need the following (Aguilar and Gharesifard, 2014).

Theorem 3.1. Let G be a connected graph with Laplacian matrix L and let
b be a binary vector not equal to the zero or all ones vector. Suppose that
that there are positive integers α, β such that for each vi ∈ Vb, we have
α = |N (vi) ∩ V\Vb|, and for each vj ∈ V\Vb we have β = |N (vj) ∩ Vb|.
Then

L2b = (α + β)Lb,

and in this case, dim〈L;b〉 = 2. In particular, α+β is an integer eigenvalue
of L with corresponding eigenvector Lb.

Proposition 3.1. For any connected threshold graph of order n ≥ 2 we have

dim〈L; en〉 = 2.

In particular, there exists no essentially controllable threshold graph of order
n > 2.

Proof. Using the notation in Theorem 3.1, if b = en, then clearly α =
n − 1 and β = 1, and therefore 〈L, en〉 = span{en,Len}. Hence, if n > 2
then (L, en) is uncontrollable. �

We now state one of our main results.

Theorem 3.2. Let G be a connected threshold graph of order n > 2. Then
G is completely uncontrollable if and only if L has a repeated eigenvalue.

Before proving Theorem 3.2, we make the following remark.

Remark 3.1. It is well-known that for a diagonalizable matrix M ∈ R
n×n

with distinct eigenvalues µ1, . . . , µh, its minimal polynomial is m(x) = (x−
µ1)(x−µ2) · · · (x−µh). Consequently, dim〈M;b〉 ≤ h for every b ∈ R

n, and
thus one direction of Theorem 3.2 is immediate. However, it is not difficult
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to construct a symmetric matrix M having distinct eigenvalues such that
dim〈M;b〉 < n for every b ∈ {0, 1}n. For example,

M =









2 0 −1 −1
0 2 −1 −1

−1 −1 5 −3
−1 −1 −3 5









has distinct eigenvalues λ1 = 0, λ2 = 2, λ3 = 4, λ4 = 8, and it is readily
verified that (M,b) is uncontrollable for every b ∈ {0, 1}4.

The proof of Theorem 3.2 relies on the following sequence of results.

Proposition 3.2. Let G be a connected threshold graph with creation se-
quence TG. Then G has simple eigenvalues if and only if one of the following
holds:

(i) TG = (0, 1, 0, 1, 0, 1, . . . , 0, 1), or

(ii) TG = (0, 0, 1, 0, 1, 0, . . . , 0, 1).

Proof. We claim that if G satisfies one of the following conditions

a) TG(i) = TG(i+ 1) = 0, or

b) TG(i) = TG(i+ 1) = 1,

for some i ≥ 2, then G has a repeated eigenvalue. To prove the claim, it is
enough to show that in the degree sequence D(G) = (δn1

1 , δn2

2 , . . . , δns

s ) there
are distinct k, ℓ ∈ {1, 2, . . . , s} such that nk, nℓ > 1, for then by Theorem 2.1
we have that either mk > 1 or mℓ > 1, that is, the eigenvalue µk or µℓ

is repeated. Note that, for any threshold graph G, d1 = d2; hence in the
sequence D(G), there exists k∗ ∈ {1, 2, . . . , s} such that nk∗ > 1.

Suppose that (a) holds for some i ≥ 2. Then clearly di = di+1 and thus
there exists an index ℓ 6= k∗ such that nℓ > 1. Hence, by Theorem 2.1,
regardless of the fact that h is odd or even, either µℓ or µk∗ is a repeated
eigenvalue of G.
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Now suppose that (b) holds. Then we have that

di = (i− 1) + 1 +

n
∑

j=i+2

TG(j),

di+1 = i+
n

∑

j=i+2

TG(j),

since vi is adjacent to all vertices in {v1, . . . , vi−1}, to vi+1, and to any vertex
in {vi+2, . . . , vn} that has a corresponding 1 in TG , and similar reasoning
holds for computing di+1. As a result, di = di+1, and a similar argument as
in case (a) establishes that G has a repeated eigenvalue.

Clearly, the binary creation sequences TG = (0, 1, 0, 1, 0, 1, . . . , 0, 1) and
TG = (0, 0, 1, 0, 1, 0, 1, . . . , 0, 1) are the only sequences that do not satisfy (a)
and (b). Hence, it is enough to prove that the threshold graphs associ-
ated to these sequences have distinct eigenvalues. Consider first, TG =
(0, 1, 0, 1, 0, 1, . . . , 0, 1), of even length n. It is straightforward to verify that
the degree sequence is

D(G) =
(

1, 2, . . . ,
n

2
− 1,

n

2
,
n

2
,
n

2
+ 1, . . . , n− 1

)

and therefore there are h = n − 1 distinct degrees. From Theorem 2.1, the
number of non-zero distinct eigenvalues is n−1, and hence all the eigenvalues
of TG = (0, 1, . . . , 0, 1) are distinct. From Theorem 2.1 with h = 2r + 1 odd,
where r = n

2
− 1, we have

Λ(G) =
(

1, 2, . . . ,
n

2
− 1,

n

2
+ 1, . . . , n

)

.

Finally, consider TG = (0, 0, 1, 0, 1, 0, 1, . . . , 0, 1) of odd length n. In this case
the degree sequence is

D(G) =

(

1, 2, . . . ,
n− 1

2
− 1,

n− 1

2
,
n− 1

2
,
n− 1

2
+ 1, . . . , n− 1

)

and therefore there are h = n − 1 distinct degrees and the same number of
distinct non-zero eigenvalues. From Theorem 2.1 with h = 2r odd, where
r = n−1

2
, we have

Λ(G) =

(

1, 2, . . . ,
n− 1

2
,
n− 1

2
+ 2, . . . , n

)

.
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This completes the proof. �

Next, we construct the set of eigenvectors of the two classes of threshold
graphs given in Proposition 3.2. To that end, it is straightforward to verify
that for TG = (0, 1, 0, 1, . . . , 0, 1) of even length n we have

L =































d1 −1 0 −1 0 −1 · · · 0 −1
−1 d2 0 −1 0 −1 · · · 0 −1
0 0 d3 −1 0 −1 · · · 0 −1
−1 −1 −1 d4 0 −1 · · · 0 −1
0 0 0 0 d5 −1 · · · 0 −1
−1 −1 −1 −1 −1 d6 · · · 0 −1
...

...
...

...
...

. . .
...

0 0 0 0 0 0 · · · dn−1 −1
−1 −1 −1 −1 −1 −1 · · · −1 dn































and the degree sequence d = (d1, d2, . . . , dn) is

dj =
n− j

2
+ (j − 1) =

n + j

2
− 1

if j is even, and

di =
n− (i+ 1)

2
+ 1 =

n− i+ 1

2
if i is odd.

For each ℓ ∈ {2, 3, . . . , n}, let uℓ = −
∑ℓ−1

i=1 ei + (ℓ − 1)eℓ ∈ R
n be the

vector whose entries from 1 through (ℓ− 1) are all equal to −1 and the ℓ-th
entry is equal to (ℓ− 1), and all other entries are equal to zero, that is,

uℓ =
[

−1 −1 · · · −1 (ℓ− 1) 0 · · · 0
]T

. (2)

For example, for n = 8, if U = [18 u2 u3 · · · u8] then

U =

























1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1
1 0 2 −1 −1 −1 −1 −1
1 0 0 3 −1 −1 −1 −1
1 0 0 0 4 −1 −1 −1
1 0 0 0 0 5 −1 −1
1 0 0 0 0 0 6 −1
1 0 0 0 0 0 0 7

























Clearly, 1T
n · uℓ = 0 for ℓ ∈ {2, 3, . . . , n}.

8



Lemma 3.2. Let G be the threshold graph with creation sequence

TG = (0, 1, 0, 1, . . . , 0, 1)

of even order n. Let uℓ be defined as in (2) for ℓ ∈ {2, 3, . . . , n}. Then if
j ∈ {2, 3, . . . , n} is even we have

Luj = (dj + 1)uj, (3)

and if i ∈ {2, 3, . . . , n} is odd we have

Lui = diui. (4)

In particular, {1n,u2, . . . ,un} is a set of mutually orthogonal eigenvectors of
L.

Proof. It is clear that for uℓ ∈ {u2,u3, . . . ,un} we have that (Luℓ)a = 0
for a > ℓ, and thus we need only consider (Lu)a when 1 ≤ a ≤ ℓ.

Suppose first that j ∈ {2, 3, . . . , n} is even. We consider three cases:
(i) Suppose that a < j is even. Then, seeing as how the a-th row of L is

[

−1 · · · −1 da 0 −1 · · · 0 −1
]

and that da =
n−a
2

+ (a− 1), a direct computation shows that

(Luj)a = −(dj + 1).

(ii) Suppose that a < j is odd. Then, seeing as how the a-th row of L is

[

0 · · · 0 da −1 0 −1 · · · 0 −1
]

and that da =
n−(a+1)

2
+ 1, a direct computation shows that

(Luj)a = −(dj + 1).

(iii) It is clear that for a = j, we have

(Luj)j = (j − 1) + (j − 1)dj = (dj + 1)(j − 1).

This proves the even case.
Suppose now that i ∈ {2, 3, . . . , n} is odd. As in the even case, we consider

three cases for a:
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(i) If a < i is even then a direct computation shows that

(Lui)a = −di

(ii) If a < i is odd then a direct computation shows that

(Lui)a = −di.

(iii) It is clear that for a = i we have

(Lui)i = di(i− 1).

This proves the odd case. �

Now consider the threshold graph G with creation sequence

TG = (0, 0, 1, 0, 1, . . . , 0, 1)

of odd length n. It is straightforward to verify that

L =



























d1 0 −1 0 −1 · · · 0 −1
0 d2 −1 0 −1 · · · 0 −1
−1 −1 d3 0 −1 · · · 0 −1
0 0 0 d4 −1 · · · 0 −1
−1 −1 −1 −1 d5 · · · 0 −1
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · dn−1 −1
−1 −1 −1 −1 −1 −1 · · · dn



























and the degree sequence d = (d1, d2, . . . , dn) is

dj =
n− j

2
+ (j − 1) =

n− (j − 1)

2
=

n− j + 1

2
,

if j is even, and

di = (i− 1) +
n− i

2
=

n + i

2
− 1,

if i is odd. The proof of the following is very similar to that of Lemma 3.2
and is omitted.
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Lemma 3.3. Let G be the threshold graph with creation sequence

TG = (0, 0, 1, 0, 1, . . . , 0, 1)

of odd order n. Let uℓ be defined as in (2) for ℓ ∈ {2, 3, . . . , n}. Then if
j ∈ {2, 3, . . . , n} is even we have

Luj = djuj

and if i ∈ {2, 3, . . . , n} is odd we have

Lui = (di + 1)ui.

In particular, {1n,u2, . . . ,un} is a set of mutually orthogonal eigenvectors of
L.

The complete classification of the eigenvectors of the threshold graphs
TG = (0, 1, 0, 1, . . . , 0, 1) and TG = (0, 0, 1, 0, 1, . . . , 0, 1) given in Lemma 3.2
and Lemma 3.3, respectively, allows us to completely classify the binary
vectors b rendering (L,b) controllable for threshold graphs. Before we prove
our next main result, we need the following binary invariance controllability
property (Aguilar and Gharesifard, 2014).

Proposition 3.3. Let G be a connected graph of order n ≥ 2, let b ∈ {0, 1}n,
and let b = 1n − b be the binary complement of b. Then the pair (L,b) is
controllable if and only if the pair (L,b) is controllable. In fact,

dim〈L;b〉 = dim〈L;b〉,

provided b /∈ {1n, 0n}.

Theorem 3.3. Let G be the threshold graph defined by TG = (0, 1, 0, 1, . . . , 0, 1)
or TG = (0, 0, 1, 0, 1, . . . , 0, 1) of order n > 2. Define the partition

{0, 1}n = B1 ∪B2 ∪ B3 ∪ B4

as follows:

B1 = {b ∈ {0, 1}n | (b)1 = 1, (b)2 = 0}, B3 = {b ∈ {0, 1}n | (b)1 = (b)2 = 0},

B2 = {b ∈ {0, 1}n | (b)1 = 0, (b)2 = 1}, B4 = {b ∈ {0, 1}n | (b)1 = (b)2 = 1}.

The following hold:
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(i) The pair (L,b) is controllable if and only if b ∈ B1 ∪ B2.
(ii) Exactly half of the binary vectors b ∈ {0, 1}n yield a controllable pair

(L,b).
(iii) If b ∈ B3\{0n} and

ℓ1(b) := min {ℓ ∈ {3, . . . , n} | (b)ℓ = 1} ,

then dim〈L;b〉 = n + 2− ℓ1(b).
(iv) If b ∈ B4\{1n} and

ℓ0(b) := min {ℓ ∈ {3, . . . , n} | (b)ℓ = 0} ,

then dim〈L;b〉 = n + 2− ℓ0(b).

Proof. To prove (i) let b ∈ B1. Then clearly uT · b 6= 0 for every
eigenvector u ∈ {1n,u2, . . . ,un}, and therefore (L,b) is controllable. Hence,
every vector b ∈ B1 yields a controllable pair (L,b). Now let b ∈ B2. Then
clearly b ∈ B1, and therefore by invariance of controllability under binary
complements, it follows that (L,b) is also controllable for every b ∈ B2. Now

let b ∈ B3 and consider the eigenvector u2 =
[

1 −1 0 0 · · · 0
]T
. Then

clearly uT
2 ·b = 0, and therefore (L,b) is uncontrollable. If now b ∈ B4 then

clearly also uT
2 · b = 0, and thus (L,b) is uncontrollable.

Part (ii) follows from |B1|+ |B2| = 2n−2 + 2n−2 = 2n−1.
To prove (iii), let b ∈ B3\{0n} and let ℓ1 = ℓ1(b) be as above. Then by

definition of uℓ in (2), we have that uT
2 ·b = · · · = uT

ℓ1−1 ·b = 0 and uT
ℓ ·b 6= 0

for ℓ ∈ {ℓ1, ℓ1+1, . . . , n}. Also, it is clear that 1T
n ·b 6= 0 . Hence, the number

of eigenvectors that b is not orthogonal to is n− (ℓ1 − 1)− 1 = n − ℓ1 + 2.
The result now follows since dim〈L;b〉 is equal to the number of eigenvectors
that b is not orthogonal to.

To prove (iv), if b ∈ B4 then clearly ℓ0(b) = ℓ1(b). Then, by invariance
of controllability under binary complements,

dim〈L;b〉 = dim〈L;b〉 = n+ 2− ℓ1(b) = n + 2− ℓ0(b).

This ends the proof. �

We now prove Theorem 3.2.
Proof of Theorem 3.2. If L has a repeated eigenvalue then (L,b) is

uncontrollable for every b ∈ R
n, and in particular for every b ∈ {0, 1}n.

Now suppose that G is completely uncontrollable. Assume by contradic-
tion that G has simple eigenvalues. Then G is either the threshold graph
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TG = (0, 1, 0, 1, . . . , 0, 1) or TG = (0, 0, 1, 0, 1, . . . , 0, 1). By Theorem 3.3, G
is conditionally controllable, which is a contradiction. This completes the
proof. �
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