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Abstract. This paper is the second of two parts which together study the null controllability of
a system of coupled parabolic PDEs. Our work specializes to an important subclass of these control
problems which are coupled by first and zero-order couplings and are, additionally, underactuated.
In the first part of our work [11], we posed our control problem in a framework which divided the
problem into interconnected components: the algebraic control problem, which was the focus of the
first part; and the analytic control problem, whose treatment was deferred to this paper. We use
slightly non-classical techniques to prove null controllability of the analytic control problem by means
of internal controls appearing on every equation. We combine our previous results in [11] with the
ones derived below to establish a null controllability result for the original problem.
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1. Introduction. We begin with defining some notation and conventions.

1.1. Notation and conventions. Throughout this work, we define N∗ := N \
{0}, and similarly, R∗ := R \ {0}. For n, k ∈ N∗, we denote the set of n× k matrices
with real-valued entries by Mn×k(R), and we denote the set of n × n matrices with
real-valued entries by Mn(R). We denote the set of linear maps from a vector space
U to a vector space V by L (U ;V ). For (X, TX) a topological space and U ⊂ X, we
denote the closure of U by Ū . We now recall the coupled parabolic system of interest.

1.2. A system of interest. In this second part of this two-part work, the
primary objective is maintained from the first part: that is, for QT := (0, T )×Ω and
ΣT := (0, T )× ∂Ω for some T > 0, we wish to study the controllability properties of
the system of coupled parabolic PDEs given by

(1.1)


∂ty = div(D∇y) +G · ∇y +Ay + r, in QT ,

y = 0, on ΣT ,

y(0, ·) = y0(·), in Ω,

whereD := diag(d1, . . . , dm), G := (gpk)1≤p,k≤m ∈Mm(Rn) andA := (apk)1≤p,k≤m ∈
Mm(R). We associate to this system the differential operator

(1.2) Ly =

m∑
p=1

(
−div(dp∇yp)−

m∑
k=1

gpk · ∇yk −
m∑
k=1

apkyk

)
ep,

where gpk := (g1
pk, . . . , g

n
pk) ∈ Rn, dp ∈ Mn(R) is symmetric and ep is the p-th

canonical basis vector in Rm, for p ∈ {1, . . . ,m}. We call gpk the first-order coupling
coefficients and apk the zero-order coupling coefficients, which are constant in space
and time.
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In this work, we assume that L satisfies the uniform ellipticity condition: that is,
there exists C > 0 such that,

(1.3)

n∑
i,j=1

dijp ξiξj ≥ C|ξ|2, ∀ ξ ∈ Rn.

Suppose r ∈ L2(QT )m, y0 ∈ L2(Ω)m. For u, v ∈ H1
0 (Ω)m, we define the bilinear

form

B[u, v] :=

∫
Ω

m∑
p,k=1

 n∑
i,j=1

dijp (∂xiup)(∂xjvp)−
n∑
i=1

gipk(∂xiuk)vp − apkukvp

 epdx.

One has the following definition.
Definition 1.1. Suppose r ∈ L2(QT )m, y0 ∈ L2(Ω)m. A function

y ∈ L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m

is said to be a weak solution of system (1.1) provided that for every v ∈ H1
0 (Ω)m and

almost every t ∈ [0, T ]
(i) 〈 ddty, v〉+B[y, v] =

∫
Ω
rT vdx, and;

(ii) y(0) = y0,
where 〈·, ·〉 denotes the appropriate duality pairing.

It can be deduced, for example, from [6, Theorems 3 and 4, Section 7.1.2], that for
any initial condition y0 ∈ L2(Ω)m and r ∈ L2(QT )m, system (1.1) admits a unique
solution. From now on, we mean by “solution to a coupled parabolic system” the
weak solution in the sense of Definition 1.1.

1.3. A parabolic regularity result. We state a regularity result for the solu-
tion of system (1.1) which is essential in the work to follow.

Theorem 1.2. [6, Theorem 6, Subsection 7.1.3] For d ∈ N, assume y0 ∈
H2d+1(Ω)m, r ∈ L2((0, T );H2d(Ω))m ∩ Hd((0, T );L2(Ω))m, and assume that y ∈
L2((0, T );H1

0 (Ω))m ∩ H1((0, T );H−1(Ω))m is the solution of system (1.1). Suppose
also that the following compatibility conditions hold:

g0 := y0 ∈ H1
0 (Ω)m;

g1 := r(0)− Lg0 ∈ H1
0 (Ω)m;

...

gd := dd−1r
dtd−1 (0)− Lgd−1 ∈ H1

0 (Ω)m.

Then y ∈ L2((0, T );H2d+2(Ω))m ∩Hd+1((0, T );L2(Ω))m and we have the estimate

||y||L2((0,T );H2d+2(Ω))m∩Hd+1((0,T );L2(Ω))m ≤ C
(
||r||L2((0,T );H2d(Ω))m∩Hd((0,T );L2(Ω))m

+||y0||H2d+1(Ω)m
)
.(1.4)

1.4. The control problem. This work specializes to the case of internal (or
distributed) control: that is, for ω ⊂ Ω nonempty and open, we study the case where

r = 1ωBu, for B =
(
Idc 0c×(m−c)

)T ∈ Mm×c(R) and 1 ≤ c ≤ m, and henceforth,

2



we denote by qT the set (0, T )× ω.
An interesting control problem that arises in many engineering applications is

underactuation, that is, when c < m. Our work will further specialize to this case,
where there are currently few results for first and zero-order couplings, for arbitrary
m and c < m−1 (even for the case of constant coefficients). We focus on a particular
type of controllability property, which is defined next.

Definition 1.3. We say that (1.1) is null controllable in time T if for every
initial condition y0 ∈ L2(Ω)m, there exists u ∈ L2(QT )c such that the solution y ∈
L2((0, T );H1

0 (Ω))m ∩H1((0, T );H−1(Ω))m to (1.1) satisfies y(T ) = 0 in Ω.
This work’s main objective that we aim to achieve by selecting appropriate control

inputs is null controllability of system (1.1). Next, we recall the method which we
introduced in [11]; we employ this method to achieve our main objective.

1.5. Fictitous control method. We first described following control problem,
referred to as the analytic control problem: for any ỹ0 ∈ L2(Ω)m, proving the existence
of (ỹ, ũ) a solution of

(1.5)


∂tỹ = div(D∇ỹ) +G · ∇ỹ +Aỹ +N (1ωũ) , in QT ,

ỹ = 0, on ΣT ,

ỹ(0, ·) = ỹ0(·), in Ω,

such that ỹ(T, ·) = 0, where N is a differential operator that was chosen to be the
identity in [11], ũ acts on all equations in (1.5), and we denote by 1ω a smooth version
of the indicator function (this can be constructed via mollification; cf. relation (4.2)
for its exact definition).

We next consider a different control problem, referred to as the algebraic control
problem: proving the existence of a solution (ŷ, û) of

(1.6)


∂tŷ = div(D∇ŷ) +G · ∇ŷ +Aŷ +Bû+N (1ωũ) , in QT ,

ŷ = 0, on ΣT ,

ŷ(0, ·) = ŷ(T, ·) = 0, in Ω,

where û acted only on the first c equations.
We defined the notion of algebraic solvability of (1.6) in [11], which is a property

that enabled us to algebraically “invert” the differential operator associated to (1.6)
and recover the solution to this control problem locally. We recovered the following
result.

Proposition 1.4. Given m,n and c in N∗ with bm2 c+ 1 ≤ c ≤ m, if the matrix
C ∈Mc×(m−c)(n+1)(R) given by

C :=


a(c+1)1 . . . am1 g1

(c+1)1 . . . g1
m1 . . . gn(c+1)1 . . . gnm1

a(c+1)2 . . . am2 g1
(c+1)1 . . . g1

m1 . . . gn(c+1)1 . . . gnm1

...
...

...
...

...
...

a(c+1)c . . . amc g1
(c+1)c . . . g1

mc . . . gn(c+1)c . . . gnmc


has full rank, then (1.6) is algebraically solvable in qT .

Importantly, the “inverse” differential operator that we recovered in [11], denoted
by B, was of differential order at most p + 2 in space. This differential order is of
consequence in Section (4), where we require the controls in the analytic system (1.5)
to be regular enough to withstand these p + 2 spacial derivatives. This regularity
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on the controls is necessary for the solution that was constructed for the algebraic
problem to be well-defined.

With the algebraic problem resolved, solving the analytic problem is this paper’s
secondary objective. Achieving this secondary objective will allow us to attain this
work’s main objective, as will be shown in Section 4.

1.6. Statement of contributions. The first contribution is a partial general-
ization of [5, Theorem 1]. In particular, our result gives a sufficient condition for the
null and approximate controllability of an underactuated system of coupled parabolic
PDEs, with constant first and zero-order couplings, when more than half of the equa-
tions are actuated. Importantly, this controllability condition applies to systems with
multiple underactuations. Furthermore, this condition, which requires the rank of
a matrix containing some of the coupling coefficients as entries to be full rank, is
generic. The technique used to prove this result is adapted from [4].

Our second contribution is Proposition 3.7, which is an extension of [5, Proposition
2.2]. Specifically, our Carleman estimate contains higher differential order terms on
its lefthand side, which allows us to construct very regular controls in Proposition 4.2.
Importantly, these highly regular controls are necessary when applying Theorem 2.1
to problems with many underactuations.

2. Main result. The main controllability theorem of this work is stated next,
where we assume that more than half of the equations in system (1.1) are actuated.

Theorem 2.1. For a fixed m, suppose Ω ⊂ Rn nonempty, open and bounded.
Furthermore, suppose Ω is connected and of class Cp+2. For bm2 c+ 1 ≤ c ≤ m, if the
matrix C ∈Mc×(m−c)(n+1)(R) given by

C :=


a(c+1)1 . . . am1 g1

(c+1)1 . . . g1
m1 . . . gn(c+1)1 . . . gnm1

a(c+1)2 . . . am2 g1
(c+1)1 . . . g1

m1 . . . gn(c+1)1 . . . gnm1

...
...

...
...

...
...

a(c+1)c . . . amc g1
(c+1)c . . . g1

mc . . . gn(c+1)c . . . gnmc


has full rank, then the system (1.1) is null controllable in time T .

The rest of this work is devoted to proving the above result. First, we will
resolve the analytic control problem in Section 4; next, we will utilize the solutions
to the algebraic and analytic control problems to solve our original control problem
in Section 3, which is the null controllability of the underacted system (1.1).

3. A Carleman estimate for the analytic problem. In this section, we
study the analytic system:

(3.1)


∂tỹ = div(D∇ỹ) +G · ∇ỹ +Aỹ + 1ωũ, in QT ,

ỹ = 0, on ΣT ,

ỹ(0, ·) = ỹ0(·), in Ω.

The goal of this section is to prove that the solution (ỹ, ũ) to the analytic control
system (3.1) satisfies the following so-called weighted observability inequality, which
will help us deduce its null controllability. To this end, we consider the adjoint system
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to system (3.1) given by

(3.2)


−∂tψ̃ = div(D∇ψ̃)−G∗ · ∇ψ̃ +A∗ψ̃, in QT ,

ψ̃ = 0, on ΣT ,

ψ̃(T, ·) = ψ̃0(·), in Ω,

where ψ̃0 ∈ L2(Ω)m.
We state the weighted observability inequality we aim to establish.
Proposition 3.1. For every ψ̃0 ∈ L2(Ω)m, the solution ψ̃ of system (3.2) satis-

fies

(3.3)

∫
Ω

∥∥∥ψ̃(0, x)
∥∥∥2

1
dx ≤ Cobs

∫∫
(0,T )×ω0

e−2s1αξ2p+7
∥∥∥ψ̃(t, x)

∥∥∥2

1
dxdt,

where Cobs := CT 9eC(1+3T/4+1/T 5) > 0 and ‖ · ‖1 denotes the Euclidean norm. We
call (3.3) a weighted observability inequality with weight ρ := e−2s1αξ2p+7, for α and
ξ defined below in (3.5) and (3.6), respectively, where s1 := σ(T 5 + T 10) for σ > 0
depending on Ω and ω0.

We utilize the Carleman estimate technique to develop an estimate which will
help us establish the observability inequality stated above; the proof of Proposition 3.1
follows from Proposition 3.7 and is given in the Appendix. This section builds upon
the technique developed in [5, Section 2.2]: in particular, it incorporates the higher-
order terms found on the lefthand side of (3.12) which allow us to construct highly
regular controls for system (3.1). Constructing a solution (ỹ, ũ) to system (3.1) with
highly regular controls and satisfying ỹ(T, ·) = 0 is treated in Section 4.

3.1. Some notation and technical results. We begin by introducing some
notation. For the multi-index β of length l consisting of multi-indices, consider the
lth-order tensor given by C := (Cβ)β , where βi has length ni, for ni ∈ N∗, for
i ∈ {1, . . . , l}. We associate to C the element-wise norm:

‖ · ‖l :=

 n1,...,nl∑
i1=1,...,il=1

C2
β1(i1),...,βl(il)

1/2

.

An equivalent interpretation of ‖ · ‖l is the following: given a lth-order tensor C, one

vectorizes C into a vector of length
∑l
i=1 ni and then applies the Euclidean norm to

recover ‖ · ‖l. Fix a sequence (ωi)
p+2
i=0 of nonempty open subsets of ω such that{

ω̄i ⊂ ωi−1, for i ∈ {1, . . . , p+ 2},
ω̄0 ⊂ ω.

The next result is an adaptation of [8, Lemma 1.1] (see also [2, Lemma 2.68]).
Lemma 3.2. Assume that Ω is of class Cp+2 and connected. Then there exists

η0 ∈ Cp+2(Ω̄) such that

(3.4)


∥∥∇η0

∥∥
1
≥ κ, in Ω \ ωp+2,

η0 > 0, in Ω,

η0 = 0, on ∂Ω,
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for some κ > 0.
Remark 3.3. In (4.17), we require η0 to be (p + 2)–times differentiable; this is

why we require spatial domain boundary regularity in Theorem 2.1.
For (t, x) ∈ QT we define

(3.5) α(t, x) :=
e12λ||η0||∞ − eλ(10||η0||∞+η0(x))

t5(T − t)5

and

(3.6) ξ(t, x) :=
eλ(10||η0||∞+η0(x))

t5(T − t)5
.

Additionally, for t ∈ (0, T ) we define

(3.7) α∗(t) := max
x∈Ω̄

α(t, x)

and

(3.8) ξ∗(t) := min
x∈Ω̄

ξ(t, x).

For s, λ > 0 and u ∈ L2((0, T );H1
0 (Ω)) ∩H1((0, T );H−1(Ω)), let us define

(3.9) I(s, λ;u) := s3λ4

∫∫
QT

e−2sαξ3|u|2dxdt+ sλ2

∫∫
QT

e−2sαξ ‖∇u‖21 dxdt.

In the work to follow, for u ∈ L2((0, T );H1
0 (Ω))m ∩ H1((0, T );H−1(Ω))m, we use a

slight abuse of notation and define I(s, λ;u) as above but with | · | replaced by ‖ · ‖1,
and with ‖ · ‖1 replaced by ‖ · ‖2.

We now state a Carleman estimate result for the heat equation; the proof is quite
technical and is omitted here.

Lemma 3.4. [7, Theorem 1] Assume that d > 0, u0 ∈ L2(Ω), f1 ∈ L2(QT ) and
f2 ∈ L2(ΣT ). Then there exists a constant C := C(Ω, ωp+2) > 0 such that the solution
to 

−∂tu = div(d∇u) + f1, in QT ,

∂u

∂n
= f2, on ΣT ,

u(T, ·) = u0(·), in Ω,

satisfies

I(s, λ;u) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3|u|2dxdt +

∫∫
QT

e−2sα|f1|2dxdt

+sλ

∫∫
ΣT

e−2sα∗ξ∗|f2|2dσdt
)

for all λ ≥ C and s ≥ C(T 5 + T 10).
We can adapt the Carleman estimate in Lemma 3.4 to system (3.2) with Neumann

boundary condition; this adapted Carleman estimate will be used later (cf. (A.5)).
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Lemma 3.5. Assume that ψ̃0 ∈ L2(Ω)m and u ∈ L2(ΣT )m. Then there exists a
constant C := C(Ω, ωp+2) > 0 such that the solution to

(3.10)


−∂tψ̃ = div(D∇ψ̃)−G∗ · ∇ψ̃ +A∗ψ̃, in QT ,

∂ψ̃

∂n
= u, on ΣT ,

ψ̃(T, ·) = ψ̃0(·), in Ω,

satisfies

I(s, λ; ψ̃) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥ψ̃∥∥∥2

1
dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗ ‖u‖21 dσdt

)(3.11)

for all λ ≥ C and s ≥ C(T 5 + T 10).
The proof of Lemma 3.5 can be deduced from Lemma 3.4 and the definitions of

ξ and α (one can absorb the integral with coupling terms appearing as the integrand
into I(s, λ; ψ̃) on the lefthand side).

We will also use the following estimate in the ensuing treatment (cf. (A.18)
and (A.19)).

Lemma 3.6. [3, Lemma 3] Let r ∈ R. There exists a C := C(Ω, ωp+2, r) > 0
such that for every T > 0 and every u ∈ L2((0, T );H1(Ω)),

sr+2λr+3

∫∫
QT

e−2sαξr+2|u|2dxdt ≤C

(
srλr+1

∫∫
QT

e−2sαξr ‖∇u‖21 dxdt

+ sr+2λr+3

∫∫
(0,T )×ωp+2

e−2sαξr+2|u|2dxdt

)

for every λ ≥ C and s ≥ C(T 5 + T 10).
Finally, one can establish the following Carleman estimate for system (3.2), which

is an extension of [5, Proposition 1].
Proposition 3.7. There exists a constant C := C(Ω, ω0) > 0 such that for every

ψ̃0 ∈ L2(Ω)m, the solution ψ̃ to system (3.2) satisfies∫∫
QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

≤ Cs2p+7λ2p+8

∫∫
(0,T )×ω0

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt(3.12)

for every λ ≥ C and s ≥ C(T 5 + T 10).

Remark 3.8. It is worth pointing out to the fact that (3.12) contains spa-
tial derivatives past order one, since ψ̃0 is assumed to be in L2(Ω)m, and hence
ψ̃ ∈ L2((0, T );H1

0 (Ω))m ∩ H1((0, T );L2(Ω))m. However, due to inequalities (A.15)
and (A.16) and since the weight e−2sα absorbs the singularity of ξ at t = 0, one can
deduce that these integrals exist.
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4. Proof of main theorem. Recall from Section 2 that our principal goal was to
prove null controllability of system (1.1) with multiple underactuations. To this end,
we studied an algebraic system and an analytic system both related to system (1.1).
In [11], we developed an algebraic method which allowed us to solve the algebraic
control problem under the assumption that the source term 1ωũ be regular enough so
that our algebraic solution B(1ωũ) be well-defined, where B is a differential operator
of order zero in time and at most p + 2 in space. In Section 3, we established the
weighted observability inequality (3.3) for the analytic system (3.1).

The goal of this section is to solve the analytic control problem (1.5) with regular
enough controls 1ωũ so that the algebraic control problem (1.6) also be solved. The
treatment presented in this section is an extension of that used in [5, Section 2.3].
In particular, since the right inverse B of L derived implicitly in [11] is in general of
order at most p + 2 in space, we require higher regularity of controls in the analytic
problem than in [5].

4.1. An optimal control result. We do not use the weighted observability
inequality to directly deduce null controllability of system (3.1). Instead, we use a
method developed in [8] to construct controls with high regularity which will help
us deduce controllability results; to do this, we rely on the following unconstrained
optimal control result.

Theorem 4.1. [9, Section 3, Theorem 2.2] Let y0 ∈ L2(Ω)m, u ∈ L2(QT )m,
B ∈ L (L2(QT )m;L2(QT )m), and suppose L given in (1.2) satisfies the uniform ellip-
ticity condition (1.3). Let N ∈ L (L2(QT )m;L2(QT )m) such that (Nu, u)L2(QT )m ≥
ν‖u‖2L2(QT )m for ν > 0 and for all u ∈ L2(QT )m, and let D ∈ L (H1

0 (Ω))m;H1
0 (Ω))m).

Consider the optimal control problem associated to system (1.1) with cost functional
J(u) : L2(QT )m → R+ given by

(4.1) J(u) := (Nu, u)L2(QT )m + (Dyu(T, ·)− zd)2
L2(Ω)m ,

for some zd ∈ H1
0 (Ω)m. This problem has a unique solution, and the optimal control

is characterized by the following relations:
∂tyu = div(D∇yu) +G · ∇yu +Ayy +Bu, in QT ,

yu = 0, on ΣT ,

yu(0, ·) = y0(·), in Ω,


−∂tψu = div(D∇ψu)−G∗ · ∇ψu +A∗ψu, in QT ,

ψu = 0, on ΣT ,

ψu(T, ·) = D∗ (Dyu(T, ·)− zd) , in Ω,

and

B∗ψu +Nu = 0.

Hence, for this unconstrained optimal control problem, the second term in (4.1) has
no dependence on u (nor do the primal/adjoint systems).

4.2. Null controllability of the analytic problem. Recall that in [11], we
fixed a p large enough such that we recovered algebraic solvability of (1.6). In this
section, we establish the following proposition.
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Proposition 4.2. Consider θ ∈ Cp+2(Ω̄) such that

(4.2)


Supp(θ) ⊆ ω,
θ = 1, in ω0,

0 ≤ θ ≤ 1, in Ω.

Then there exists v ∈ L2(QT )m such that

(ỹ, θv) ∈ L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m × L2(QT )m

is a solution to the analytic control problem (1.5) satisfying ỹ(T, ·) = 0 in Ω. More-
over, for every K ∈ (0, 1), we have

eKs1α
∗
v ∈ L2((0, T );Hp+2(Ω) ∩H1

0 (Ω))m ∩H1((0, T );L2(Ω))m, and

‖eKs1α
∗
v‖L2((0,T );Hp+2(Ω)∩H1

0 (Ω))m∩H1((0,T );L2(Ω))m ≤ C‖ỹ0‖L2(Ω)m .(4.3)

Proof. Let ỹ0 ∈ L2(Ω)m, ρ := e−2s1αξ2p+7 and C := C(Ω, ω0, T ) > 0. Let k ∈ N∗
and denote by L2(QT , ρ

−1/2)m the space of functions which, when multiplied by ρ−1/2,

are L2-integrable (i.e., for u ∈ L2(QT , ρ
−1/2)m, we require

∫∫
QT

ρ−1 ‖u‖21 dxdt <∞).

Consider the following optimal control problem:

(4.4)

{
minimize Jk(v) := 1

2

∫∫
QT

ρ−1 ‖v‖21 dxdt+ k
2

∫
Ω
‖ỹ(T, ·)‖21 dx,

subject to v ∈ L2(QT , ρ
−1/2)m,

where ỹ ∈ L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m. The functional Jk is differen-

tiable, coercive and strictly convex on L2(QT , ρ
−1/2)m. By Theorem 4.1 (for D =

√
k,

N = ρ−1 and zd = 0 in QT ), there exists a unique solution to this problem, and the
optimal control is characterized by the solution ỹk to the analytic system

(4.5)


∂tỹk = div(D∇ỹk) +G · ∇ỹk +Aỹk + θvk, in QT ,

ỹk = 0, on ΣT ,

ỹk(0, ·) = ỹ0(·), in Ω,

the solution ψ̃k to its adjoint system

(4.6)


−∂tψ̃k = div(D∇ψ̃k)−G∗ · ∇ψ̃k +A∗ψ̃k, in QT ,

ψ̃k = 0, on ΣT ,

ψ̃k(T, ·) = kỹ(T, ·), in Ω,

and the relation

(4.7)

{
vk = −ρθψ̃k, in QT ,

vk ∈ L2(QT , ρ
−1/2)m.
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From (4.5) and (4.6), we calculate∫ T

0

(
(ỹk, ∂tψ̃k)L2(Ω)m + (∂tỹk, ψ̃k)L2(Ω)m

)
dt

=
d

dt

∫ T

0

(ỹk, ψ̃k)L2(Ω)mdt

= (ỹk(T, ·), kỹk(T, ·))L2(Ω)m − (ỹ0, ψ̃k(0, ·))L2(Ω)m ,(4.8)

and

(ỹk, ∂tψ̃k)L2(Ω)m + (∂tỹk, ψ̃k)L2(Ω)m

= (ỹk,−div(D∇ψ̃k) +G∗ · ∇ψ̃k −A∗ψ̃k)L2(Ω)m

+ (div(D∇ỹk) +G · ∇ỹk +Aỹk + θvk, ψ̃k)L2(Ω)m

= (θvk, ψ̃k)L2(Ω)m .(4.9)

It follows from (4.7), (4.8) and (4.9) that

Jk(vk) = −1

2

∫ T

0

(θψ̃k, vk)L2(Ω)mdt+
1

2
(ỹk(T, ·), ψ̃k(T, ·))L2(Ω)m

= −1

2

∫ T

0

(ψ̃k, θvk)L2(Ω)mdt+
1

2

∫ T

0

(
(ỹk, ∂tψ̃k)L2(Ω)m + (∂tỹk, ψ̃k)L2(Ω)m

)
dt

+
1

2
(y0, ψ̃k(0, ·))L2(Ω)m=

1

2
(y0, ψ̃k(0, ·))L2(Ω)m .(4.10)

Moreover, employing the weighted observability inequality (3.3) along with (4.2),
(4.7), (4.4), (4.10) and the Cauchy-Schwarz inequality successively, we have

‖ψ̃k(0, ·)‖2L2(Ω)m ≤ Cobs
∫∫

(0,T )×ω0

ρθ2
∥∥∥ψ̃k∥∥∥2

1
dxdt

≤ Cobs
∫∫

QT

ρθ2
∥∥∥ψ̃k∥∥∥2

1
dxdt

= Cobs

∫∫
QT

ρ−1 ‖vk‖21 dxdt

≤ 2CobsJk(vk)

≤ 2Cobs‖ψ̃k(0, ·)‖L2(Ω)m‖y0‖L2(Ω)m ,

from which we deduce

(4.11) ‖ψ̃k(0, ·)‖L2(Ω)m ≤ 2Cobs‖y0‖L2(Ω)m .

Furthermore, by (4.10), (4.11) and the Cauchy-Schwarz inequality, we obtain

(4.12) Jk(vk) ≤ Cobs‖y0‖2L2(Ω)m .
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One can deduce from parabolic regularity, (4.2) and (4.12) that

‖ỹk‖L2((0,T );H1
0 (Ω))m∩H1((0,T );H−1(Ω))m ≤ C

(
‖θvk‖L2(QT )m + ‖ỹ0‖L2(Ω)m

)
≤ C

(
‖vk‖L2(QT )m + ‖ỹ0‖L2(Ω)m

)
≤ C(1 +

√
2Cobs)‖ỹ0‖L2(Ω)m ,(4.13)

since for our choice of s1 (which depends on p; see (A.33)) and by (3.5) and (3.6), ρ ≤ 1
in QT . Owing to the well-known result that in Hilbert spaces, bounded sequences
have weakly convergent subsequences (see, for example, [1]), along with (4.4) (4.12),
and (4.13), one can extract subsequences of (vk)k and (ỹk)k (which we still denote by
vk and ỹk) such that

vk ⇀ v in L2(QT , ρ
−1/2)m,

ỹk ⇀ ỹ in L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m,

ỹk(T, ·) ⇀ 0 in L2(Ω)m.

Hence, (ỹ, θv) is the solution to the analytic control problem (1.5) with θv ∈ L2(QT , ρ
−1/2).

Furthermore, we deduce from (4.4) by taking k →∞ that ỹ(T, ·) = 0 (in the sense of
Definition 1.1). In addition, by (4.12) and since ρ ≤ 1 in QT for our choice of s1,

‖v‖2L2(QT ) ≤
√

2Cobs‖y0‖2L2(Ω)m ,

as claimed. It is left to show that (4.3) is verified. Note that for every K ∈ (0, 1),
there exists a CK := CK(Ω) such that

(4.14) e2Ks1α
∗
≤ CKξ−2p−7e2s1α,

for all (t, x) ∈ QT . Hence, utilizing (4.14), (4.4) and then (4.12), we obtain

‖e2Ks1α
∗
vk‖2L2(QT )m ≤ CK

∫∫
QT

ρ−1 ‖vk‖21 dxdt

≤ CK‖ỹ0‖2L2(Ω)m .(4.15)

For a > 0, one has (see (A.9))

(4.16) |∂t(ξae−2s1α)| ≤ CTξa+6/5e−2s1α.

Furthermore, for r = {0, . . . , p+ 2} one has

(4.17)
∥∥∇r(ξae−2s1α)

∥∥
r
≤ Cξa+re−2s1α.

Indeed,

∇(ξae−2s1α) = aξa−1λ∇η0ξe−2s1α − 2s1ξ
ae−2s1α

(
−λ∇η0ξ

)
= λ∇η0

(
a

ξ
+ 2s1

)
ξa+1e−2s1α,

and since C := C(Ω, ω0, T ), (4.17) is verified for r = 1. The same reasoning can be
used for the r-th derivative, where we have fixed η0 ∈ Cp+2(Ω̄). Hence, by (4.7), the
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triangle inequality and then (4.17) for a = 2p+ 7, we obtain

‖eKs1α
∗
∇vk‖2L2(QT )m

=

∫∫
QT

e2Ks1α
∗
‖∇vk‖22dxdt

=

∫∫
QT

e2Ks1α
∗
‖∇(−ξ2p+7e−2s1αθψ̃k)‖22dxdt

≤ C
∫∫

QT

e2Ks1α
∗
(∥∥∇(ξ2p+7e−2s1α)

∥∥2

1

∥∥∥ψ̃k∥∥∥2

1
+
∥∥∥ξ2p+7e−2s1α∇ψ̃k

∥∥∥2

2

)
dxdt

≤ C
∫∫

QT

e2Ks1α
∗−4s1α

(
ξ4p+16

∥∥∥ψ̃k∥∥∥2

1
+ ξ4p+14‖∇ψ̃k‖22

)
dxdt,(4.18)

and similarly, for r ∈ {1, . . . , p+ 2}, we obtain
(4.19)

‖eKs1α
∗
∇rvk‖2L2(QT )m ≤ C

∫∫
QT

e2Ks1α
∗−4s1α

(
r∑
l=0

ξ4p+14+2l‖∇r−lψ̃k‖2r−l+1

)
dxdt.

By (4.16) and since ψ̃k satisfies system (4.6), we obtain

‖∂t(eKs1α
∗
vk)‖2L2(QT )m(4.20)

≤ C
∫∫

QT

e2Ks1α
∗−4s1α

(
ξ(20p+82)/5

∥∥∥ψ̃k∥∥∥2

1
+ ξ2p+14

∥∥∥∂tψ̃k∥∥∥2

1

)
dxdt

≤ C
∫∫

QT

e2Ks1α
∗−4s1α

(
ξ(20p+82)/5

∥∥∥ψ̃k∥∥∥2

1

+ ξ2p+14

(
‖∇∇ψ̃k‖23 + ‖∇ψ̃k‖22 +

∥∥∥ψ̃k∥∥∥2

1

))
dxdt.(4.21)

Note that for every a, b > 0 and K ∈ (0, 1), there exists Ca,b,K := Ca,b,K(Ω) > 0 such
that

(4.22)
∣∣∣ξae2Ks1α

∗−4s1α
∣∣∣ ≤ Ca,b,Kξbe2s1α.

From (4.15), (4.18), (4.19), (4.20) and utilizing (4.22) for appropriate a and b,

‖eKs1α
∗
vk‖L2((0,T );Hp+2(Ω)∩H1

0 (Ω))m∩H1((0,T );L2(Ω))m

≤ Cmax,K
∫∫

QT

e−2s1α

p+4∑
k=2

ξ2k−1‖∇p+4−kψ̃k‖2p+5−kdxdt,

where Cmax,K := max{maxa,b{Ca,b,K}, CK}. Owing to (4.2), Proposition 3.7 and (4.7),
we deduce

‖eKs1α
∗
vk‖L2((0,T );Hp+2(Ω)∩H1

0 (Ω))m∩H1((0,T );L2(Ω))m

≤ Cmax,KCobs
∫∫

QT

e−2s1αξ2p+7
∥∥∥θψ̃k∥∥∥2

1
dxdt = Cmax,KCobs‖vk‖2L2(QT )m .
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Lastly, for C̄K := C̄K(Ω, ω0, T ), (4.12) yields the inequality

‖eKs1α
∗
vk‖L2((0,T );Hp+2(Ω)∩H1

0 (Ω))m∩H1((0,T );L2(Ω))m ≤ C̄K‖ỹ0‖L2(Ω)m ,

from which (4.3) is verified by taking a convergent subsequence and k →∞.
With algebraic solvability of the algebraic control problem (1.6) and null con-

trollability of the analytic control problem (1.5) established for highly regular con-
trols, we can now prove null controllability of the system (1.1) with internal controls
û ∈ L2(qT )c, where c < m− 1.

In Proposition 4.2, we showed the existence of (ỹ, θv) ∈ L2((0, T );H1
0 (Ω))m ∩

H1((0, T );H−1(Ω))m × L2(QT )m satisfying

(4.23)


∂tỹ = div(D∇ỹ) +G · ∇ỹ +Aỹ + θv, in QT ,

ỹ = 0, on ΣT ,

ỹ(0, ·) = y0(·), in Ω,

such that ỹ(T, ·) = 0 in Ω. Furthermore, we established the following higher regularity
for v:

(4.24) eKs1α
∗
v ∈ L2((0, T );Hp+2(Ω) ∩H1

0 (Ω))m ∩H1((0, T );L2(Ω))m,

for all k ∈ (0, 1). Notice that (4.24) implies that v is exponentially decaying as t→ 0
and t→ T . For the linear partial differential operator B (of order zero in time and at
most p+ 2 in space) constructed implicitly in [11], let us define(

ŷ
û

)
:= B (θv) ,

which is well-defined by (4.24). By virtue of B being a linear partial differential
operator of the stated orders with constant coefficients, we conclude that

(4.25) (ŷ, û) ∈ L2(qT )× L2(qT )c;

we then extend (ŷ, û) by zero to QT . Since v decays exponentially as t → 0 and
t → T , ŷ(0, ·) = ŷ(T, ·) = 0 in Ω. Furthermore, it follows from the discussions in
Subsection 1.5 that (ŷ, û) is the solution to

(4.26)


∂tŷ = div(D∇ŷ) +G · ∇ŷ +Aŷ +Bû+ θv, in QT ,

ŷ = 0, on ΣT ,

ŷ(0, ·) = ŷ(T, ·) = 0, in Ω,

where, by (4.25) and by parabolic regularity, (ŷ, û) satisfies Definition 1.1. Defining
(y, u) := (ỹ− ŷ,−û), it is immediate that (y, u) is the solution to (1.1) with y(T, ·) = 0
in Ω. This finishes the proof of Theorem 2.1.

5. Conclusion. Using the powerful fictitious control technique, which has al-
lowed us to pose our controllability problem as two interconnected problems, we
have derived a sufficient condition for the null controllability of a system of cou-
pled parabolic PDEs, where the couplings were constant in space and time and of
first and zero-order and more than half of the equations in the system were actuated.
This controllability condition is generic.
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Appendix. In a proof to follow, we rely on the so-called Gagliardo-Nirenberg
interpolation inequality, which is stated next.

Theorem A.1. [10] For Ω ⊂ Rn open, for q, r ∈ R such that 1 ≤ q, r ≤ ∞ and
for m ∈ N, let u : Ω→ R such that u ∈ Lq(Ω) ∩Wm,r(Ω). For 0 ≤ j ≤ m, we have

(A.1) ||u||W j,p(Ω) ≤ C||u||αWm,r(Ω)||u||
1−α
Lq(Ω),

where p satisfies

1

p
=
j

n
+ α

(
1

r
− m

n

)
+

1− α
q

for all α in the interval j
m ≤ α ≤ 1, where C := C(n,m, j, q, r, α), with the following

exceptional assumptions:
(i) if j = 0, rm < n, q =∞, then we require u→ 0 at infinity, and;

(ii) if 1 < r <∞ and m− j − n
r a nonnegative integer, then (A.1) only holds for

α satisfying j
m ≤ α < 1.

Proof. (Proof of Proposition 3.7): We denote by C various positive constants
which depend on Ω and ω0. We define the operator

(A.2) L∗ := (−div(D∇) +G∗ · ∇ −A∗) .

By density of Hk(Ω)m∩H1
0 (Ω)m in L2(Ω)m for k ∈ N (this follows from the inclusion

C∞c (Ω)m ⊂ Hk(Ω)m ∩H1
0 (Ω)m ⊂ L2(Ω)m and since C∞c (Ω)m dense in L2(Ω)m), we

assume without loss of generality that ψ̃0 ∈ H2p+5(Ω)m and
(

(L∗)kψ̃0
)p+2

k=0
⊂ H1

0 (Ω).
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Hence by Theorem 1.2, the solution ψ̃ to system (3.2) is an element of

(A.3) L2((0, T );H2p+6(Ω))m ∩Hp+3((0, T );L2(Ω))m.

We apply the differential operator ∇p+2 to system (3.2) and, for β a multi-index with
|β| = p+ 2, we denote ∂βψ̃ by φβ so that φβ satisfies

(A.4)


−∂tφβ = div(D∇φβ)−G∗ · ∇φβ +A∗φβ , in QT ,

∂φβ
∂n

= ∇φβ · n, on ΣT ,

φβ(T, ·) = ∂βψ̃
0(·), in Ω.

Indeed, since D, G∗ and A∗ are constant, ∇p+2 commutes with all the terms in
system (3.2). We define the (p+ 3)-th order tensor φ := (φβ)1≤β1,...,βp+2≤n; applying
Lemma 3.5 to system (A.4), we have a Carleman inequality for φ:

I(s, λ;φ)

≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3‖φ‖2p+3dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2p+3dσdt

)(A.5)

for every λ ≥ C and s ≥ C(T 5 + T 10). The rest of this proof follows three steps:
(i) We will estimate the boundary term on the righthand side of (A.5) with a

global interior term involving ψ̃, which will be absorbed into the lefthand
side;

(ii) we will relate I(s, λ;φ) with the lefthand side of (3.12);
(iii) we will estimate the local term on the righthand side of (A.5) with a local

term of zero differential order (as appearing in (3.12)) and some other local
terms which will be absorbed into the lefthand side.

Step (i): Consider a function θ ∈ C2(Ω̄) such that ∇θ · n = θ = 1 in Ω̄, where n is
the outward pointing normal of ∂Ω. With this construction, ∇θ = n. Indeed, for any
q ∈ ∂Ω and for any parametrized curve γ : R→ Ω passing through point q at time 0,
we have

d

dt
θ(γ(t))

∣∣
t=0

= ∇θ
∣∣
q

dγ(t)

dt

∣∣∣∣∣
t=0

= 0,

since θ = 1 in Ω̄. Hence, since ∇θ is orthogonal to the tangent of any curve passing
through any arbitrary point q ∈ ∂Ω at t = 0, it must be equal to n. Let β and γ be
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multi-indices of length n; we integrate the boundary term by parts to obtain

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2p+3dσdt

= sλ
∑
|β|=p+3

∫∫
ΣT

e−2sα∗ξ∗ (∂βψ · ∇θ) (∂βψ · n) dσdt

=
∑
|β|=p+3
|γ|=p+4

(
sλ

∫∫
QT

e−2sα∗ξ∗ (∂γψ) (∂βψ · ∇θ) dxdt

+ sλ

∫∫
QT

e−2sα∗ξ∗∇(∂βψ · ∇θ) · ∂βψdxdt
)
.

Next, we employ Cauchy-Schwarz and Young’s inequalities to obtain

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2p+3dσdt

≤ Cλ

(∫ T

0

e−2sα∗(sξ∗)2k||ψ̃||2Hp+4(Ω)mdt+

∫ T

0

e−2sα∗(sξ∗)2−2k||ψ̃||2Hp+3(Ω)mdt

)
,

(A.6)

for k ∈ (0, 1) to be chosen later. We define
ˆ̃
ψ := ρψ̃, with ρ ∈ C∞([0, T ]) defined

by ρ := (sξ∗)ae−sα
∗

for some a ∈ R to be chosen later. Note that
ˆ̃
ψ(T, ·) = 0 in Ω,

since ρ decays exponentially to zero as t → T . Similarly, di

dti ρ(0) = 0, for all i ∈ N.

Furthermore,
ˆ̃
ψ is the solution to

(A.7)


−∂t ˆ̃

ψ = div(D∇ ˆ̃
ψ)−G∗ · ∇ ˆ̃

ψ +A∗
ˆ̃
ψ − d

dt
ρψ̃, in QT ,

ˆ̃
ψ = 0, on ΣT ,

ˆ̃
ψ(T, ·) = 0, in Ω.

Hence, by (A.3), one can utilize Theorem 1.2 to get the estimate

‖ ˆ̃
ψ‖L2((0,T );H2d+2(Ω))m∩Hd+1((0,T );L2(Ω))m

≤ C
∥∥∥∥ ddtρψ̃

∥∥∥∥
L2((0,T );H2d(Ω))m∩Hd((0,T );L2(Ω))m

(A.8)

for d ∈ {0, . . . , p+ 2}. Owing to (3.5) and (3.6), we have the bound

(A.9)

∣∣∣∣ ddtρ
∣∣∣∣ ≤ CT (sξ∗)a+6/5e−sα

∗
.
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Indeed, for c̄ := minx∈Ω̄{eλ(10‖η0‖∞+η0(x))} and and c̃ := maxx∈Ω̄{e12‖η0‖∞−eλ(10‖η0‖∞+η0(x))},
we have ∣∣∣∣ ddtρ

∣∣∣∣ =

∣∣∣∣as(sξ∗)a−1e−sα
∗ d

dt
ξ∗ − s(sξ∗)ae−sα

∗ d

dt
α∗
∣∣∣∣

= e−sα
∗
∣∣∣∣s(sξ∗)a−1 5(2t− T )

t6(T − t)6
(ac̄− (sξ∗)c̃)

∣∣∣∣
= (sξ∗)ae−sα

∗
∣∣∣∣10t− 5T

t(T − t)

(
a− (sξ∗)c̃

c̄

)∣∣∣∣
= (sξ∗)a+6/5e−sα

∗
∣∣∣∣ (10t− 5T )

c̄6/5

(
at5(T − t)5

s6/5
− c̃

s1/5

)∣∣∣∣ ,
and since s ≥ C(T 5 + T 10), one can obtain (A.9). Similarly, we have

(A.10)

∣∣∣∣ drdtr ρ
∣∣∣∣ ≤ CT r(sξ∗)a+6r/5e−sα

∗
,

for r ∈ N. We apply (A.8) to
ˆ̃
ψ for a = 1− k and d =

⌊
p+1

2

⌋
to obtain∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2
H

2b p+3
2 c(Ω)m

dt

≤ C

(∫ T

0

∥∥∥∥ ddt (e−sα∗(sξ∗)1−k
)
ψ̃

∥∥∥∥2

H
2b p+1

2 c(Ω)m
dt

+

b p+1
2 c∑

r=1

∫ T

0

∥∥∥∥ drdtr
(
d

dt

(
e−sα

∗
(sξ∗)1−k

)
ψ̃

)∥∥∥∥2

L2(Ω)m
dt

 .(A.11)

We now apply (A.8) to
ˆ̃
ψ = d

dtρψ̃ (which satisfies a system similar to (A.7) and verifies

the compatibility conditions in Theorem 1.2) for a = 1−k and d =
⌊
p+1

2

⌋
−1 to obtain∫ T

0

∥∥∥∥ ddt (e−sα∗(sξ∗)1−k
)
ψ̃

∥∥∥∥2

H
2b p+1

2 c(Ω)m
dt

+

b p+1
2 c∑

r=1

∫ T

0

∥∥∥∥ drdtr
(
d

dt

(
e−sα

∗
(sξ∗)1−k

)
ψ̃

)∥∥∥∥2

L2(Ω)m
dt

≤ C
∫ T

0

∥∥∥∥ d2

dt2

(
e−sα

∗
(sξ∗)1−k

)
ψ̃

∥∥∥∥2

H
2b p+1

2 c−2
(Ω)m

dt

+

b p+1
2 c−1∑
r=1

∫ T

0

∥∥∥∥ drdtr
(
d2

dt2

(
e−sα

∗
(sξ∗)1−k

)
ψ̃

)∥∥∥∥2

L2(Ω)m
dt.(A.12)
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Repeating this way
⌊
p+1

2

⌋
− 1 more times and utilizing (A.10) yields the inequality∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2
H

2b p+3
2 c(Ω)m

dt

≤ C
∫ T

0

∥∥∥∥∥ db
p+1
2 c+1

dtb
p+1
2 c+1

(
e−sα

∗
(sξ∗)1−k

)
ψ̃

∥∥∥∥∥
2

L2(Ω)m

dt

≤ CT 2b p+1
2 c+2

∫ T

0

e−2sα∗(sξ∗)2−2k+ 12
5 (b p+1

2 c+1)‖ψ̃‖2L2(Ω)mdt.(A.13)

We can get very similar estimates (A.11) and (A.12) for a = 3k − 1, d =
⌈
p+2

2

⌉
, and

by using (A.10), we obtain∫ T

0

e−2sα∗(sξ∗)6k−2‖ψ̃‖2
H

2d p+4
2 e(Ω)m

dt

≤ C
∫ T

0

∥∥∥∥∥ dd
p+2
2 e+1

dtd
p+2
2 e+1

(
e−sα

∗
(sξ∗)3k−1

)
ψ̃

∥∥∥∥∥
2

L2(Ω)m

dt

≤ CT 2d p+2
2 e+2

∫ T

0

e−2sα∗(sξ∗)6k−2+ 12
5 (d p+2

2 e+1)‖ψ̃‖2L2(Ω)mdt.(A.14)

Suppose for the moment that p is odd. By applying Theorem A.1 to the appropriate
spatial derivative of ψ̃ with j = 1, m = q = p = r = 2 and α = 1/2, and then
employing the Cauchy-Schwarz inequality, we obtain∫ T

0

e−2sα∗(sξ∗)2k‖ψ̃‖2Hp+4(Ω)mdt

≤ C
∫ T

0

‖e−sα
∗
(sξ∗)3k−1ψ̃‖

H
2d p+4

2 e(Ω)m
‖e−sα

∗
(sξ∗)1−kψ̃‖

H
2b p+3

2 c(Ω)m
dt

≤ C

(∫ T

0

e−2sα∗(sξ∗)6k−2‖ψ̃‖2
H

2d p+4
2 e(Ω)m

dt

) 1
2
(∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2
H

2b p+3
2 c(Ω)m

dt

) 1
2

.

Choosing k = 1
2 + 3

10

(⌊
p+1

2

⌋
−
⌈
p+2

2

⌉)
verifies

2− 2k +
12

5

(⌊
p+ 1

2

⌋
+ 1

)
= 6k − 2 +

12

5

(⌈
p+ 2

2

⌉
+ 1

)
,

and hence by utilizing (A.13) and (A.14), we obtain∫ T

0

e−2sα∗(sξ∗)2k‖ψ̃‖2Hp+4(Ω)mdt

≤ CT d
p+2
2 e+b p+1

2 c+2

∫ T

0

e−2sα∗(sξ∗)
17
5 + 9

5b p+1
2 c+ 3

5d p+2
2 e‖ψ̃‖2L2(Ω)mdt.(A.15)
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Identical steps can be followed for the case when p is even to obtain∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2Hp+3(Ω)mdt

≤ CT d
p+2
2 e+b p+1

2 c+2

∫ T

0

e−2sα∗(sξ∗)
17
5 + 3

5b p+1
2 c+ 9

5d p+2
2 e‖ψ̃‖2L2(Ω)mdt.(A.16)

It follows from (A.6), (A.13) and (A.15) that

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2p+3dσdt

≤ Cλ
(
T 2b p+1

2 c+2 + T d
p+2
2 e+b p+1

2 c+2
)∫ T

0

e−2sα∗(sξ∗)
17
5 + 9

5b p+1
2 c+ 3

5d p+2
2 e‖ψ̃‖2L2(Ω)mdt,

for p odd, and it follows from (A.6), (A.14) and (A.16)

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2p+3dσdt

≤ Cλ
(
T 2d p+2

2 e+2 + T d
p+2
2 e+b p+1

2 c+2
)∫ T

0

e−2sα∗(sξ∗)
17
5 + 3

5b p+1
2 c+ 9

5d p+2
2 e‖ψ̃‖2L2(Ω)mdt,

for p even. In what follows, we choose p even without loss of generality (the exact
same technique can be used for p odd), and since(

T 2d p+2
2 e+2 + T d

p+2
2 e+b p+1

2 c+2
)
≤ Cs2p− 3

5b p+1
2 c− 9

5d p+2
2 e+ 17

5 ,

for s ≥ C(T 5 + T 10), we use (3.7) and (3.8) to obtain

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2p+3dσdt

≤ Cs2p+34/5λ

∫ T

0

e−2sα∗(ξ∗)
17
5 + 9

5b p+1
2 c+ 3

5d p+2
2 e‖ψ̃‖2L2(Ω)mdt

≤ Cs2p+34/5λ

∫∫
QT

e−2sαξ
17
5 + 9

5b p+1
2 c+ 3

5d p+2
2 e
∥∥∥ψ̃∥∥∥2

1
dxdt.

Denoting by l(p) the exponent 17
5 + 9

5

⌊
p+1

2

⌋
+ 3

5

⌈
p+2

2

⌉
, we arrive at the end of Step (i)

to conclude that

I(s, λ;φ)

≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3‖φ‖2p+3dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)(A.17)

for every λ ≥ C and s ≥ C(T 5 + T 10).
Step (ii): In this step, we relate I(s, λ;φ) to the lefthand side of (3.12). We apply
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Lemma 3.6 to ψ̃ for r = 2p+ 5 to obtain

s2p+7λ2p+8

∫∫
QT

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt

≤ C

(
s2p+5λ2p+6

∫∫
QT

e−2sαξ2p+5
∥∥∥∇ψ̃∥∥∥2

2
dxdt

+s2p+7λ2p+8

∫∫
(0,T )×ωp+2

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,(A.18)

for every λ ≥ C and s ≥ C(T 5 + T 10). Similarly, for k ∈ {0, . . . , p}, we apply
Lemma 3.6 to ∇p+1−kψ̃ for r = 2k + 3 to obtain

s2k+5λ2k+6

∫∫
QT

e−2sαξ2k+5‖∇p+1−kψ̃‖2p+2−kdxdt

≤ C

(
s2k+3λ2k+4

∫∫
QT

e−2sαξ2k+3
∥∥∥∇p+2−kψ̃

∥∥∥2

p+3−k
dxdt

+s2k+5λ2k+6

∫∫
(0,T )×ωp+2

e−2sαξ2k+5‖∇p+1−kψ̃‖2p+2−kdxdt

)
,(A.19)

for every λ ≥ C and s ≥ C(T 5 + T 10). One can upper bound the first term in the
righthand side of (A.18) by (A.19) for k = p and continue this way by backwards
iteration on k. The global terms on the righthand side of (A.19) can be absorbed in
the exact same way. Hence, a combination of (A.17), (A.18) and (A.19) gives∫∫

QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+ s3λ4

∫∫
QT

e−2sαξ3‖∇p+2ψ̃‖2p+3dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

for every λ ≥ C and s ≥ C(T 5 + T 10). By utilizing (A.17) once more, we arrive at
the inequality∫∫

QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,(A.20)

which is verified for every λ ≥ C and s ≥ C(T 5 + T 10).
Step (iii): In this final step, we absorb the higher-order local terms in the righthand
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side of (A.20). Consider the function θp+1 ∈ C2(Ω̄) satisfying

(A.21)


Supp(θp+1) ⊆ ωp+1,

θp+1 = 1, in ωp+2,

0 ≤ θp+1 ≤ 1 in Ω.

Let β be a multi-index of length n. Since ω̄p+2 ⊂ ωp+1, where ωp+1 is an open
subset of Ω, we integrate the rightmost term in (A.20) by parts and employ the the
Cauchy-Schwarz inequality to obtain

s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt

≤ s3λ4

∫∫
(0,T )×ωp+1

θp+1e
−2sαξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
dxdt

= −s3λ4

∫∫
(0,T )×ωp+1

n∑
i=1

|β|=p+1

(
∂i(θp+1e

−2sαξ3)∂i∂βψ̃ + θp+1e
−2sαξ3∂2

i ∂βψ̃
)(

∂βψ̃
)
dxdt

≤ s3λ4

∫∫
(0,T )×ωp+1

(∥∥∇ (θp+1e
−2sαξ3

)∥∥
1

∥∥∥∇p+2ψ̃
∥∥∥
p+3

∥∥∥∇p+1ψ̃
∥∥∥
p+2

+θp+1e
−2sαξ3

∥∥∥∇p+3ψ̃
∥∥∥
p+4

∥∥∥∇p+1ψ̃
∥∥∥
p+2

)
dxdt.

(A.22)

By (3.5) and (3.6), we have that

(A.23)
∥∥∇ (θp+1e

−2sαξ3
)∥∥

1
≤ Csλe−2sαξ4.

Indeed,∥∥∇ (θp+1e
−2sαξ3

)∥∥
1

=
∥∥e−2sαξ3

(
∇θp+1 + 2sλθp+1ξ∇η0 + 3λθp+1∇η0

)∥∥
1

= sλe−2sαξ4

∥∥∥∥∇θp+1

sλξ
+ 2θp+1∇η0 +

3θp+1∇η0

sξ

∥∥∥∥
1

,

and since s ≥ C(T 5 + T 10), (A.23) is verified. Hence, by (A.21), (A.23) and using
Young’s inequality with ε > 0, we have

s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt

≤ Cs3λ4

∫∫
(0,T )×ωp+1

(
sλe−2sαξ4

∥∥∥∇p+2ψ̃
∥∥∥
p+3

∥∥∥∇p+1ψ̃
∥∥∥
p+2

+e−2sαξ3
∥∥∥∇p+3ψ̃

∥∥∥
p+4

∥∥∥∇p+1ψ̃
∥∥∥
p+2

)
dxdt

≤ C
∫∫

(0,T )×ωp+1

e−2sα

(
εs3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ εsλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

+
2

ε
s5λ6ξ5

∥∥∥∇p+1ψ̃
∥∥∥2

p+2

)
dxdt.(A.24)
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Observe that the first two terms in the righthand side of (A.24) can be bounded above
by employing (A.20) and (A.24) recursively: indeed, by positivity of the integrand in
QT and by (A.20), we obtain

ε

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
dxdt

≤ Cε

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)

= Cε

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

(A.25)

for λ ≥ C and s ≥ C(T 5 + T 10). Combining (A.25) and (A.24) yields

ε

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
dxdt

≤ C

(
ε

∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+

∫∫
(0,T )×ωp+1

e−2sαε2
(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
+

∫∫
(0,T )×ωp+1

e−2sα2s5λ6ξ5
∥∥∥∇p+1ψ̃

∥∥∥2

p+2
dxdt

+ εs2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,(A.26)

for λ ≥ C and s ≥ C(T 5 + T 10). Using the same treatment by adapting (A.24), one
can bound the terms with ε2 in (A.26); after r of these recursions,

ε

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
dxdt

≤ C
r∑
j=1

(
εj
∫∫

(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+ ε2(r+1)

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

+2js5λ6ξ5
∥∥∥∇p+1ψ̃

∥∥∥2

p+2

)
dxdt+ εjs2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,
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for λ ≥ C and s ≥ C(T 5 + T 10). Taking ε sufficiently small and using (A.24),

s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,(A.27)

for λ ≥ C and s ≥ C(T 5 + T 10), since by (A.22), if
∥∥∥∇p+2ψ̃

∥∥∥
p+3

= 0, then so does∥∥∥∇p+3ψ̃
∥∥∥
p+4

. Hence from (A.27), we obtain

∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

≤ C
∫∫

(0,T )×ωp+1

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt,(A.28)

for λ ≥ C and s ≥ C(T 5 + T 10). For r ∈ {1, . . . , p + 1}, consider the functions
θr ∈ C2(Ω̄) satisfying

Supp(θp+1−r) ⊆ ωp+1−r,

θp+1−r = 1, in ωp+2−r,

0 ≤ θp+1−k ≤ 1, in Ω.

Using the exact same approach as was used for r = 0, one obtains the estimate

s2r+3λ2r+4

∫∫
(0,T )×ωp+2−r

e−2sαξ2r+3
∥∥∥∇p+2−rψ̃

∥∥∥2

p+3−r
dxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3+r

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

for λ ≥ C and s ≥ C(T 5 + T 10). Hence, it follows that∫∫
QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2p+5−kdxdt

≤ C

(
s2p+7λ2p+8

∫∫
(0,T )×ω0

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,(A.29)
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for λ ≥ C and s ≥ C(T 5 + T 10). Finally, by (3.6) we have the estimate

s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt ≤ Cs2p+7λ2p+8

∫∫
QT

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt,

for λ ≥ C and s ≥ C(T 5 + T 10) large enough; from now on, we denote this choice of
s by s0. Hence, one can absorb the global term in the righthand side of (A.29) into
its lefthand side, and thus (3.12) is verified.

Proof. (Proof of Proposition 3.1): We denote by C various positive constant
depending on Ω and ω0. From (3.12), we deduce

(A.30)

∫∫
QT

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt ≤ C

∫∫
(0,T )×ω0

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt,

for λ ≥ C and s ≥ s0. Note that for t ∈
[
T
4 ,

3T
4

]
, we have

min
t∈[T4 ,

3T
4 ]
{e−2sαξ2p+7}

=
(
e−2sαξ2p+7

)(T
4
, ·
)

=
(
e−2sαξ2p+7

)(3T

4
, ·
)

=

(
e
−2s 410

35

(
e12λ‖η

0‖∞−eλ(10‖η
0‖∞+η0(x))

T10

))(
410e(2p+7)λ(10‖η0‖∞+η0(x))

35T 10

)
.(A.31)

We can choose s sufficiently large such that

(A.32)
410

35T 10
e−

s
T10 ≤ e−2sαξ2p+7,

for all t ∈
[
T
4 ,

3T
4

]
. Indeed, choosing

s ≥ s1 := max

{
s0,

(
35(2p+ 7)λ

410

)
max
x∈Ω̄

{
10‖η0‖∞ + η0(x)

e12λ‖η0‖∞ − eλ(10‖η0‖∞+η0(x))

}}
(A.33)

in (A.31) will ensure that (A.32) is verified. Note that we can write s1 as s1 =
σ
(
T 5 + T 10

)
, where σ > 0 depends only on Ω and ω0. Fixing s = s1 from now on,

we deduce from (A.30) and (A.32) that∫∫
(T4 ,

3T
4 )×Ω

∥∥∥ψ̃∥∥∥2

1
dxdt ≤ CT 10eC(1+1/T 5)

∫∫
(0,T )×ω0

e−2s1αξ7
∥∥∥ψ̃∥∥∥2

1
dxdt

for every λ ≥ C and s ≥ s1. We claim that

(A.34)

∫
Ω

∥∥∥ψ̃(T/4, ·)
∥∥∥2

1
dx ≤ C

T
eCT/2

∫∫
(T4 ,

3T
4 )×Ω

∥∥∥ψ̃∥∥∥2

1
dxdt

and

(A.35)

∫
Ω

∥∥∥ψ̃(0, ·)
∥∥∥2

1
dx ≤ eCT/4

∫
Ω

∥∥∥ψ̃(T/4, ·)
∥∥∥

1
dx,
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from which we can deduce (3.3). Indeed, we can multiply system (3.2) by ψ̃, integrate
the resulting equation by parts over Ω and use the Cauchy-Schwarz and Young’s
inequalities to obtain

−1

2

d

dt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx+D

∫
Ω

‖∇ψ̃‖22dx = −
∫

Ω

(
∂tψ̃
)
ψ̃dx+

∫
Ω

div(D∇ψ̃)ψ̃dx

= −
∫

Ω

(
G∗ · ∇ψ̃

)
ψ̃dx+

∫
Ω

(
A∗ψ̃

)
ψ̃dx

≤ 1

2

∫
Ω

∥∥∥G∗ · ∇ψ̃∥∥∥2

1
dx+

(
1 +
‖A∗‖∞

2

)∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx.

Hence, since (1.2) satisfies the uniform ellipticity condition (see (1.3)), we obtain

− d

dt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx+

∫
Ω

‖∇ψ̃‖22dx ≤ C
∫

Ω

∥∥∥ψ̃∥∥∥2

1
dx,

from which we deduce

d

dt

(
eCt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx

)
= eCt

(
C

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx+

d

dt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx

)
≥ eCt

∫
Ω

‖∇ψ̃‖22dx ≥ 0,

(A.36)

for all t > 0. We integrate (A.36) over
[
T
4 , t
]

to obtain∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx ≥ eC(T/4−t)

∫
Ω

∥∥∥ψ̃ (T/4, ·)
∥∥∥2

1
dx ≥ e−CT/2

∫
Ω

∥∥∥ψ̃ (T/4, ·)
∥∥∥

1
dx,(A.37)

for every t ∈
[
T
4 ,

3T
4

]
. Integrating (A.37) once more over

[
T
4 ,

3T
4

]
now yields (A.34).

Finally, to show (A.35), we integrate (A.36) over t ∈
[
0, T4

]
.
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