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Abstract

This thesis is concerned about ensemble controllability. We give an overview of the

notions of ensemble controllability, in particular, L2-ensemble controllability, and

uniform ensemble controllability. We review the results presented in [7] on uniform

ensemble controllability of one-parameter time-invariant linear systems and in [11] on

L2-ensemble controllability. In contrast to the notions in [7] and [11], we investigate

on the possibility to steer an ensemble using constrained control signals in the unit

interval, which we call uniform null ensemble controllability for one-parameter time-

invariant linear systems using constrained control signals in the unit interval. We give

a necessary as well as a sufficient condition for uniform null ensemble controllability

of one-parameter time-invariant linear systems using constrained control signals in

the unit interval. Using tools from complex approximation theory, we show that in

the discrete-time scenario, the problem of uniform null ensemble controllability of

one-parameter time-invariant linear systems using control signals in the unit interval

is equivalent to polynomial approximation problem.
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Chapter 1

Introduction

The task of controlling a continuum of structurally similar systems has received great

interest in recent years. In practice, systems exhibit variations in parameter. For

example, in the experiment of magnetic resonance, the spin of a continuum of sys-

tems is likely to show dispersions in the coupling strength between coupled spins [15].

Also, systems in aircraft, manufacturing processes, spacecraft, communication sys-

tems and many more are parameter-dependent. Applications such as the control of

platoons in [16], the control of large number of networks of systems, controlling of the

flock system in [3], and control of some classes of biological systems motivates the

investigation of the possibility of controlling a large number of parameter-dependent

systems. Although in practice, there are often a finite number of such structurally

similar systems, it is also reasonable, and mathematically interesting, to study a con-

tinuum of such parameters which we term ensemble of systems. Indeed, our main

objective is to control such an ensemble. Given that the characteristics of the pa-

rameter that differentiates these systems is often unknown, our main objective is

to design a parameter-independent control signal that steers an ensemble of control

system from a given initial states to any desired states.
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The possibility to control a continuum of systems have being investigated in dif-

ferent frameworks. In [11], ensemble controllability is investigated in the L2 sense.

However the conditions derived in [11] depends heavily on the singular decomposition

of the input-to-state operator. In [7], necessary as well as sufficient conditions for uni-

form ensemble controllability of one-parameter of time-invariant linear systems are

derived. It should be pointed out that, although the conditions in [11] do not apply

to the framework used in [7], comparing the conditions in [7] to [11], the conditions

in [7] are easily checkable, although the framework in [7] is restrictive compared to

the framework in [11].

Statement of contribution. The main objective of this current project is to provide

a summary of the results on ensemble controllability given in [11] and [7]. We proceed

with this objective by investigating notions of ensemble controllability both in uniform

and L2 sense. Moreover, inspired by [18], we study controllability of ensemble control

systems for scenarios where the control set is constrained, by introducing the notion

of uniform null ensemble controllability. In particular, we provide necessary and

sufficient conditions for uniform null ensemble controllability.

Organization

The thesis is organized as follows. In Chapter 2, we give a general problem statement

of ensemble controllability. In Chapter 3, the problem of L2-ensemble controllability

is investigated. In Chapter 4, the problem of uniform ensemble controllability of

one-parameter time-invariant linear systems is investigated. In Chapter 5, we extend

Chapter 4 by considering uniform ensemble controllability of one-parameter time-

invariant linear systems to the origin using constrained control signals. In Chapter 6,
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we state the conclusion and future research directions. In Chapter 7, the thesis closes

by proving some propositions in the appendix.
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Chapter 2

Problem Statement

2.1 Definitions and problem statement

In this thesis, we study a continuum of linear systems, which we later call an ensemble

of linear systems. In order to define these family of systems formally, we consider both

continuous-time and discrete-time scenarios. In continuous-time, we consider a family

of systems of the form

∂x

∂t
(t, θ) = A(t, θ)x(t, θ) +B(t, θ)u(t), (2.1)

where x(t, θ) ∈ Rn, A(t, θ) ∈ Rn×n, B(t, θ) ∈ Rn×m and u(t) ∈ Rm, with t ≥ 0 and

θ ∈ P := [θ−, θ+] ⊂ R.

In discrete-time, we consider a family of control systems of the form

x(t+ 1, θ) = A(θ)x(t, θ) +B(θ)u(t), (2.2)

where A(θ) ∈ Rn×n, B(θ) ∈ Rn×m and u(t) ∈ Rm with θ ∈ P := [θ−, θ+] ⊂ R.

We will often identify an ensemble of control systems given by (2.1), or (2.2) with
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ΣC(P, A,B) and ΣD(P, A,B), respectively. Given initial states x(0, θ), for all θ ∈ P

and a finite time T > 0, using the variation of constants formula, the general solution

for (2.1) is given by,

x(T, θ) = Φ(T, 0, θ)x(0, θ) +

∫ T

0

Φ(T, τ, θ)B(τ, θ)u(τ)dτ, (2.3)

where Φ(T, t, θ) is the transition matrix of the uncontrolled ensemble of the form

∂x

∂t
(t, θ) = A(t, θ)x(t, θ),

where θ ∈ P. Similarly, in (2.2) we have

x(T, θ) = AT (θ)x(0, θ) +
T−1∑
r=1

Ar(θ)B(θ)u(T − 1− r). (2.4)

Let x(T, θ) and xd(θ) denote the final and desired states, respectively. We say that

a control signal u steers the trajectories in (2.1) or (2.2) between x1(θ) and x2(θ),

for all θ ∈ P, if and only if its corresponding trajectory x(., θ) for all θ ∈ P in (2.3)

or (2.4) induced by u satisfies the conditions x(t1, θ) = x1(θ) and x(t2, θ) = x2(θ),

for all θ ∈ P, respectively. Let us denote the set of n-tuples entries are real-valued

continuous functions defined on P by C(P,Rn) and the set of n-tuple whose entries

are real-valued measurable functions defined on P such that its Lp-norm is bounded

by Lp(P,Rn), where n, p ∈ N. We proceed to give formal definitions of the notions

of ensemble controllability.

Definition 2.1.1. An ensemble ΣC(P, A,B) is Lp-ensemble controllable in Lp(P;Rn)

if and only if, for all x0 and xd in Lp(P;Rn) and ε > 0, there exists a finite time T > 0
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and a control signal u ∈ Lq([0, T ];Rm) that steers the trajectories of ΣC(P, A,B), for

all θ ∈ P from x(0, θ) to x(T, θ), where x(T, θ) satisfies the relation

(∫
P
‖xd(θ)− x(T, θ)‖pdθ

) 1
p

< ε, (2.5)

where 1
p

+ 1
q

= 1.

We introduce another notion for ensemble controllability.

Definition 2.1.2. An ensemble ΣC(P, A,B) is uniformly ensemble controllable in

C(P;Rn) if and only if, for all x0 and xd in C(P;Rn), and ε > 0, there exists a finite

time T > 0 and a control signal u ∈ L1([0, T ];Rm) that steers the trajectories of

ΣC(P, A,B), for all θ ∈ P from x(0, θ) to x(T, θ) ,where x(T, θ) satisfies the relation

sup
θ∈P
‖xd(θ)− x(T, θ)‖ < ε. (2.6)

We describe later as to why the controls are chosen from Lq([0, T ];Rm) in this

definition. It is worth pointing out that in Chapter 5, we will consider a special case

of Definition 2.1.2 where the control set is constrained. We also point out that, the

definitions hold for discrete-time scenario.
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Chapter 3

L2-Ensemble Controllability of Finite-Dimensional

Time-Varying Linear Systems

3.1 L2-Ensemble Controllability

In this chapter, for reasons that will become clear later, we find it convenient to

consider the system parameters over C. We let M := [0, T ] × P and we consider

the ensemble of control systems ΣC(P, A,B) introduced in (2.1), where (A,B) ∈

L∞(M ;Cn×n)× L2(M ;Cn×m). That is, Aij ∈ L∞(M ;C) and Bij ∈ L2(M ;C), where

Aij and Bij are the ijth entries of A and B, respectively, and i, j ∈ {1, ..., n}. In this

chapter, we assume that u ∈ L2([0, T ];Cm).

Note that if it happens that x(T, .) = xd, then, from (2.3) we have that,

ϑ(θ) =

∫ T

0

Φ(0, τ, θ)B(τ, θ)u(τ)dτ, (3.1)

where ϑ ∈ L2[P;Cn] is defined as

ϑ(θ) = Φ(0, T ; θ)xd(θ)− x0(θ).
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We need to recall a few mathematical notions. Recall that the space, L2([a, b];Ck), a, b ∈

R, k ∈ N has an inner product defined by

〈f, g〉 =

∫ b

a

f †(t)g(t)dt,

for all f, g ∈ L2([a, b];Ck), where † denote the conjugate transpose. Let H1 =

L2([0, T ];Cm) and H2 = L2(P;Cn). We define an operator L : H1 → H2 by

(Lu)(θ) =

∫ T

0

Φ(0, τ, θ)B(τ, θ)u(τ)dτ. (3.2)

From (3.1) and (3.2) we have that

(Lu)(θ) = ϑ(θ), (3.3)

for all θ ∈ P. With this new formulation at hand, ensemble controllability is equivalent

to solving the operator equation (3.3). That is, we wish to find u ∈ H1 that solves

Lu = ϑ. (3.4)

It is shown in [11] that, the operator L defined in (3.2) is bounded and compact.

We include a proof of this fact in the appendix for completeness (see Theorem 7.1.2

and Proposition 7.1.3). Hence L is a bounded compact linear operator. Under these

conditions on L, it is well-known in [8] that L has an adjoint operator L∗ which is

also a bounded compact linear operator such that, for all f ∈ H2 and u ∈ H1, L∗

satisfy the relation

〈f, Lu〉H2 = 〈L∗f, u〉H1 , (3.5)
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where 〈., .〉H1 and 〈., .〉H2 are inner products defined on the space H1 and H2, respec-

tively. From (3.5) one can show that, for all f ∈ H2, L∗ is given by

(L∗f)(t) =

∫
P
B†(τ, θ)Φ†(0, τ, θ)f(θ)dθ. (3.6)

Now, since compact operators are not invertible (see Proposition 7.1.5), the operator

equation (3.4) does not have a unique solution. For this, we state a result and refer

the reader to [12] for the proof.

Theorem 3.1.1. [12, Theorem 6.10]: Let H1 and H2 be Hilbert space and let L ∈

B(H1, H2) with range space of L denoted by R(L), closed in H2. Then, for ϑ ∈ R(L),

the vector of minimum norm u satisfying Lu = ϑ is given by u = L∗z, where z is any

solution of LL∗z = ϑ.

Using (3.2) and (3.6), one can show that the operator LL∗ : H2 → H2 takes the

form

(LL∗z)(θ) =

∫
P

∫ T

0

Φ(0, τ, θ)B(τ, θ)B†(τ, θ′)Φ†(0, τ, θ′)z(θ′)dτdθ′. (3.7)

Before we proceed to state and prove the main results, we give the following definition.

Definition 3.1.2. [11]: Let H1 and H2 be Hilbert spaces and L : H1 → H2 be

compact operator. If (λ2
j , ψj) is an eigensystem of LL∗ and (λ2

j , φj) is an eigensystem

of L∗L, namely LL∗ψj = λ2
jψj, ψj ∈ H2 and L∗Lφj = λ2

jφj, φj ∈ H1, where λj > 0

(j ≥ 1), then, the two systems are related by the equations

Lφj = λjψj and L∗ψj = λjφ. (3.8)

We say that the triple (λj, φj, ψj) is a singular system of L.
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Now we proceed to state and prove the main result of this chapter.

Theorem 3.1.3. [11] An ensemble ΣC(P, A,B) is L2-ensemble controllable in L2(P;Rn)

if and only if, for any given initial and desired states x0 and xd ∈ L2(P;Rn) and for

ϑ(θ) = Φ(0, T ; θ)xd(θ)− x0(θ), the conditions

1.
∑∞

j=1
|〈ϑ,ψj〉|2

λ2j
<∞

2. ϑ ∈ R(L)

hold, where R(L) denotes the closure of the range space of L. Furthermore, the control

law

u =
∞∑
j=1

1

λj
〈ϕ, ψj〉φj (3.9)

satisfies

〈u, u〉 ≤ 〈u0, u0〉,

for all u0 ∈ F and u 6= u0, where

F = {u ∈ L2([0, T ];Rm) | Lu = ϑ with conditions 1 and 2 of Theorem 3.1.3 satisfied}.

In addition, for a given ε > 0,

ur =
r∑
j=1

〈ϑ, ψj〉φj
λj

is such that

‖ϑ− Lum‖ < ε, (3.10)
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for all m ≥ r, where r ∈ N and depends on ε, where

um =
m∑
j=1

〈ϑ, ψj〉φj
λj

. (3.11)

Proof. We start by proving the necessity. Suppose there exist u ∈ H1 that satis-

fies (3.4). Then,

〈ϑ, ψj〉 =〈Lu, ψj〉, (3.12)

which implies

1

λj
〈ϑ, ψj〉 =〈u, φj〉. (3.13)

Since LL∗ is a self-adjoint compact operator, the sequences {φj}j≥1 ⊂ H1 and

{ψj}j≥1 ⊂ H2 are orthonormal sequences (see [6, pp. 248]). Using Bessel’s inequality,

we have that,
∞∑
j=1

|〈ϑ, ψj〉|2

λ2
j

≤ ‖u‖2
2 <∞.

This ends the proof of the first statement. Also, for any α ∈ N(L∗), we have that

α ∈ H2 such that

L∗α = 0.

It follows that,

〈ϑ, α〉 = 〈Lu, α〉 = 〈u, L∗α〉 = 0.

Hence,

ϑ ∈ N(L∗)⊥ = R(L∗).
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This ends the proof of the second statement. Conversely, suppose the first and second

conditions hold. Then, let

βj =
〈ϑ, ψj〉
λj

. (3.14)

From the first condition, we have that

∞∑
j=1

|βj|2 <∞. (3.15)

By Proposition 7.1.6, there exist u ∈ H1 such that

u =
∞∑
j=1

βjφj. (3.16)

In [11], it has been shown that {φj}j≥1 and {ψj}j≥1 are an orthonormal basis for

R(L∗) and R(L), respectively, and since u ∈ R(L∗) ⊂ H1, we have that

u =
∞∑
j=1

〈u, φj〉φj. (3.17)

Now, since {φj}j≥1 is an orthonormal basis its coefficients are unique. Hence, from (3.16)

and (3.17) we have that,

〈u, φj〉 =
〈ϑ, ψj〉
λj

.

We claim that u ∈ H1 in (3.17) is not in N(L). We prove this by a contradiction

argument.

Suppose u ∈ N(L), then Lu = 0. Now, by linearity and continuity of L we obtain,

Lu =
∞∑
j=1

βj(Lφj) =
∞∑
j=1

〈ϑ, ψj〉ψj = 0. (3.18)
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Now, since {ψj}j≥1 is an orthonormal basis, it follows that 〈ϑ, ψj〉 = 0 for j ∈

{1, 2, ...}. This implies that ϑ = 0, which is a contradiction. Hence the assumption

u ∈ N(L) is false.

Now, since ϑ ∈ R(L) and {ψj}j≥1 is an orthonormal basis in R(L), we see that

the right hand side of equation (3.18) is

∞∑
j=1

〈ϑ, ψj〉ψj = ϑ.

Hence u in (3.17) solves the operator equation (3.4). Furthermore, let

uN =
N∑
j=1

〈ϑ, ψj〉
λj

φj, (3.19)

where N ∈ N. Using the fact that {φj}j≥1 is an orthonormal sequence, we obtain

‖u− uN‖2
2 =

∞∑
j=N+1

1

λ2
j

|〈ϕ, ψj〉|2 → 0 as N →∞. (3.20)

This implies that

‖ϑ− LuN‖2
2 =

∞∑
j=N+1

λ2
j |〈u, φj〉|2 → 0 as N →∞. (3.21)

This completes the proof.

3.1.1 Optimal control of an Ensemble of Harmonic Oscillators

We include an example from [11] to illustrate the construction of the ensemble con-

troller. We consider a fixed endpoint optimal control problem of an ensemble of
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harmonic oscillators. Consider

∂x

∂t
(t, θ) = A(θ)x(t, θ) +B(θ)u(t), (3.22)

where θ ∈ P ⊂ R, x(t, θ) = (x1(t, θ), x2(t, θ))T ∈ R2, u(t) = (u1(t), u2(t))T ∈ R2 such

that each ui ∈ L2([0, T ];R) for i ∈ {1, 2},

A(θ) =

 0 −θ

θ 0

 and B(θ) =

 1 0

0 1

 .

Given x0, xd ∈ L2([0, T ];R2), we wish to find u ∈ L2([0, T ];R2) that steers the trajec-

tories of (3.22) from x(0, θ) to x(T, θ) ∈ R2 in the sense of L2-ensemble controllability

such that, u minimizes the cost functional

min
u∈L2([0,T ];R2)

J(u) =

∫ T

0

‖u(t)‖2dt.

We use the fact that R2 is isomorphic to C and let

x(t, θ) =x1(t, θ) + ix2(t, θ),

u(t) =u1(t) + iu2(t).

Hence (3.22) can be written as

∂x

∂t
(t, θ) = iθx(t, θ) + u(t).
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From the variation of constants formula we obtain

x(T, θ) = eiθx(0, θ) +

∫ T

0

eiθ(t−s)u(s)ds.

As a result,

ϑ(θ) =

∫ T

0

e−iθsu(s)ds, (3.23)

where

ϑ(θ) = e−iθTx(T, θ)− x(0, θ).

Let H1 = L2([0, T ];C) and H2 = L2(P;C). We define an operator L : H1 → H2 by

(Lu)(θ) =

∫ T

0

e−iθsu(s)ds. (3.24)

From (3.23) and (3.24) we obtain

(Lu)(θ) = ϑ(θ), (3.25)

for all θ ∈ P. Now, since u ∈ H1 and the kernel k(t, θ) = e−iθT is bounded, it implies

that the operator L defined in (3.24) is a bounded compact linear operator and hence

it has an adjoint. Note that, for all f ∈ H2 we have

〈f, Lu〉H2 =

∫ T

0

∫ θ+

θ−
e−iθsf(θ)†d(θ)u(s)ds. (3.26)

Hence the adjoint operator satisfies

(L∗f)(s) =

∫ θ+

θ−
eiθsf(θ)dθ. (3.27)
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From Theorem 3.1.1, we have that

L∗z =u,

where z satisfies

LL∗z =ϑ.

Substituting (3.27) into (3.24), the operator LL∗ : H2 → H2 is of the form

(LL∗z)(θ1) =

∫ T

0

∫ θ+

θ−
ei(θ

′−θ1)sz(θ′)dθ′ds. (3.28)

Using Fubini’s Theorem, we obtain

(LL∗z)(θ1) =

∫ θ+

θ−

(∫ T

0

ei(θ
′−θ1)sds

)
z(θ′)dθ′. (3.29)

By direct calculation, we have

(LL∗z)(θ1) =

∫ θ+

θ−

(
ei(θ

′−θ1)T − 1

i(θ′ − θ1)

)
z(θ′)dθ′. (3.30)
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We have that:

ei(θ
′−θ1)T − 1

i(θ′ − θ1)
=

cos((θ′ − θ1)T )− 1 + i sin((θ′ − θ1)T )

i(θ′ − θ1)
,

=
(cos2((θ′ − θ1)T

2
)− 1

)
− sin2((θ′ − θ1)T

2
) + i(2 sin((θ′ − θ1)T

2
) cos((θ′ − θ1)T

2
))

i(θ′ − θ1)
,

=
−2 sin2((θ′ − θ1)T

2
) + i(2 sin((θ′ − θ1)T

2
) cos((θ′ − θ1)T

2
))

i(θ′ − θ1)
,

=
2π sin((θ′ − θ1)T

2
)

π(θ′ − θ1)

(
cos

(
(θ′ − θ1)

T

2

)
+ i sin

(
(θ′ − θ1)

T

2

))
,

= 2πei(θ
′−θ1)T

2

(
sin((θ′ − θ1)T

2
)

π(θ′ − θ1)

)
.

Let ω′ = θ′

θ
, ω = θ1

θ
and α = Tθ

2
, then ω′, ω ∈ [−1, 1]. Using this observation,

equation (3.30) can be rewritten as

(LL∗z)(ω) =

∫ 1

−1

2πei(ω
′−ω)α

(
sin((ω′ − ω)α)

π(ω′ − ω)

)
z(ω′)dω′. (3.31)

We consider the equation

∫ 1

−1

(
sin((ω′ − ω)α)

π(ω′ − ω)

)
βj(ω

′, α)dω′ = υj(α)βj(ω, α), (3.32)

where βj(ω, α) is the jth eigenfunction and υj is its corresponding eigenvalue of a

well-known prolate spheroidal wave function [14], [4], [19], [9] and [10]. Similarly,

consider

(LL∗ψj)(ω, α) =

∫ 1

−1

2πei(ω
′−ω)α

(
sin((ω′ − ω)α)

π(ω′ − ω)

)
ψj(ω

′, α)dω′ = ρj(α)ψj(ω, α).

(3.33)
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Rearranging (3.33) we have that

∫ 1

−1

eiω
′α

(
sin((ω′ − ω)α)

π(ω′ − ω)

)
ψj(ω

′, α)dω′ =
1

2π
eiωαρj(α)ψj(ω, α). (3.34)

Let

eiω
′αψj(ω

′, α) = βj(ω
′, α). (3.35)

Then,

υj(α)βj(ω, α) =
1

2π
eiωαρj(α)ψj(ω, α). (3.36)

By evaluating (3.36) at ω′, we obtain

υj(α)βj(ω
′, α) =

1

2π
eiω
′αρj(α)ψj(ω

′, α). (3.37)

By comparing equations (3.35) and (3.37), we have

ρj = 2πυj. (3.38)

Therefore from (3.35) and (3.38) the eigenvectors and eigenvalues of the operator

LL∗ can be represented in terms of υj and βj, respectively. It is well-known (see for

example in [14]) that βj’s are orthogonal and complete on L2[−1, 1]. Now, let

z =
∞∑
j=1

1

ρj
〈ϑ, ψ̃j〉ψ̃j, (3.39)

where

ψ̃j = e−iωα
βj
‖βj‖

. (3.40)
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Then, we have that

LL∗z =
∞∑
j=1

〈ϑ, ψ̃j〉ψ̃j = ϑ.

By applying Theorem 3.1.1 to LL∗ with respect to the orthonormal basis {ψ̃j}j≥1 in

R(L). We can easily observe that

u =
∞∑
j=1

1

λj
〈ϑ, ψ̃j〉φ̃j, (3.41)

where

λj =
√
ρj. (3.42)

We can also express the control signal only in terms on ψ̃j, noting that φ̃j can be

obtained by the same reasoning using the operator L∗L. The control signal can also

be written as

u(t) =

∫ θ

−θ
eiθ̃t

∞∑
j=1

1

ρj
〈ϑ(θ̃), ψ̃j(θ̃)〉ψ̃j(θ̃)d(θ̃). (3.43)

Let

zN =
N∑
j=1

1

ρj
〈ϑ, ψ̃j〉ψ̃j,

where N ∈ N. As a result,

LL∗zN =
N∑
j=1

ρj〈z, ψ̃j〉ψ̃j.

We have that

‖ϑ− LL∗zN‖2
2 =

∞∑
j=N+1

|〈ϑ, ψ̃j〉|2 (3.44)
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goes to zero as N →∞. Hence, for every ε > 0, there exists n ∈ N such that, for all

N ∈ N such that for N > n, we have

‖ϑ− LL∗zN‖2 < ε. (3.45)

Now, since LL∗zN approximates ϑ in this sense, it follows that

‖LL∗z − LL∗zN‖2 =‖L(L∗z − L∗zN)‖2,

≤‖L‖2‖L∗z − L∗zN‖2,

≤‖L‖2
2‖z − zN‖2 < ε.

Now since zN → z as N → ∞, it implies that, for every ε > 0, there exists n ∈ N

such that, for all N ∈ N such that N > n, we have

‖L∗z − L∗zN‖ < ε.

Hence, for every ε > 0, there exists n ∈ N such that, for all N ∈ N such that for

N > n, we have

‖u− uN‖2 < ε,

where uN = L∗z. Therefore, the best approximation of the control signal u that

achieves a minimum norm is given by the sequence of control inputs

uN = L∗zN .

.
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Chapter 4

Uniform Ensemble Controllability of

One-parameter Time-invariant Linear Systems

4.1 Uniform Ensemble Controllability

In this Chapter, we let ΣC(P, A,B) be an ensemble of continuous time-invariant

linear systems, where the pair (A,B) ∈ C(P;Rn×n) × C(P;Rn×m). We also assume

that u ∈ L1([0, T ];Rm). Let x(0, θ) = 0, for all θ ∈ P. Let us define the reachable set

R(T ) ⊂ Rn at time t = T for the time-invariant scenario of (2.1), with the constraint

control set L1([0, T ];Rm), to be the set

R(T ) ={x(T, θ) ∈ Rn | x is the solution to the time-invariant scenario of (2.1)

for some u ∈ L1([0, T ];Rm)};

we denote by R the union of all the reachable sets over time T ≥ 0. As usual, we

define the spectra of A(θ) to be the set σ(A(θ)) of all eigenvalues of A(θ), where
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θ ∈ P. For a given controllable pair (A(θ), B(θ)), we let

C(A(θ),B(θ)) = (B(θ), A(θ)B(θ), ..., An−1(θ)B(θ)) (4.1)

be the corresponding controllability matrix for the pair (A(θ), B(θ)), where θ ∈ P.

We define Hermite indices as in [20]: we let the matrix HC(A(θ),B(θ))
be

HC(A(θ),B(θ))
= (b1(θ), A(θ)b1(θ), ..., An−1(θ)b1(θ), ..., bm(θ), ..., An−1(θ)bm(θ)), (4.2)

where bi(θ) is the ith column vector of B(θ); we then choose from the left to the right

of (4.2) the first linearly independent columns to obtain a list of basis vectors

b1(θ), ..., AK1−1(θ)b1(θ), ..., bm(θ), ..., AKm−1(θ)bm(θ). (4.3)

We call the set {K1, ..., Km}, which may depend on θ and, where Ki = 0 when bi is not

selected, the Hermite indices. One can easily check that if the system is controllable,

then, the sum of the Hermite indices will be equal to the rank of the controllability

matrix. Following [5, pp. 508], we consider

∂xj
∂t

(t, θ) = Aj(θ)xj(t, θ) +Bj(θ)u(t), j ∈ {1, 2, ..., r} (4.4)

with (Aj(θ), Bj(θ)) ∈ Rn×n × Rn×m. As usual, we denote the set of all real-valued

polynomial with parameter y by R[y], the set of n × m polynomial matrices whose

entries are univariate polynomials in λ ∈ R by R[λ]n×m, and the set of n ×m poly-

nomial matrices whose entries are rational function in λ ∈ R by R(λ)n×m. As usual,

we will define the state space of the system to be the Euclidean space whose axes are
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the variables of the system.

We proceed to state the main result.

Theorem 4.1.1. [7]: An ensemble ΣC(P, A,B) is uniformly ensemble controllable

provided the following are satisfied:

1. The pair (A(θ), B(θ)) is controllable, for all θ ∈ P.

2. The input Hermite indices K1(θ), ..., Km(θ) of (A(θ), B(θ)) are independent of

θ ∈ P.

3. We have σ(A(θ)) ∩ σ(A(θ
′
)) = ∅, for any pair of distinct parameters θ, θ

′ ∈ P.

4. The eigenvalues of A(θ) have algebraic multiplicity of one, for all θ ∈ P.

Before we proceed with the proof of this sufficient condition, we also state a nec-

essary condition for uniform ensemble controllability. For this, we need to introduce

some notions.

Definition 4.1.2. [5, Definition 2.26]: The polynomial matrices Pi(λ, θ) ∈ R[λ]n×mi,

where θ ∈ P and i ∈ {1, ...r} are left coprime if there exists a matrix X(λ, θ) ∈

R[λ]k×n such that D(λ, θ) = gcld(P1(λ, θ), ..., Pr(λ, θ)) satisfies D(λ, θ)X(λ, θ) = In,

for all θ ∈ P where gcld abbreviates greatest common left divisor. The right coprime

polynomial matrices are defined similarly.

Theorem 4.1.3. [5, Theorem 2.29]: Let G(λ, θ) ∈ R(λ)n×m, where θ ∈ P. There

exist left coprime polynomial matrices N1(λ, θ) ∈ R[λ]n×m, D1(λ, θ) ∈ R[λ]n×n, with

det(D1(λ, θ)) 6= 0, such that G(λ, θ) = D(λ, θ)−1N(λ, θ).
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Using the right coprime factorization given by Theorem 4.1.3, one can conclude

that

(λI − A(θ))−1B(θ) = K(λ, θ)R(λ, θ)−1 (4.5)

where R(λ, θ) ∈ R[λ]m×m is a non-singular polynomial matrix and K(λ, θ) ∈ R[λ]n×m

is a polynomial matrix. We proceed to state and prove a necessary condition for

uniform ensemble controllability.

Theorem 4.1.4. [7]: Assume ΣC(P, A,B) is uniformly ensemble controllable. Then,

1. For each θ ∈ P, the pair (A(θ), B(θ)) is controllable.

2. For any finite number of parameters θ1, θ2, . . . , θr ∈ P, the m × m polynomial

matrices R(λ, θ1), R(λ, θ2), . . . , R(λ, θr) are mutually left coprime.

3. For any finite number r ≥ m+1 of distinct parameters θ1, θ2, . . . , θr, the spectra

of A(θ) satisfies σ(A(θ1)) ∩ σ(A(θ2)) ∩ · · · ∩ σ(A(θr)) = ∅.

4. For the case where m = 1, and for any pair of distinct parameter θ, θ
′ ∈ P, we

have σ(A(θ)) ∩ σ(A(θ
′
)) = ∅.

Proof. Let θ be fixed in P, xd(θ) ∈ Rn. For ε > 0, by assumption of uniform ensemble

controllability, there exists a finite time t = T and a control signal u ∈ L1([0, T ];Rm)

such that

sup
θ∈P
‖xd(θ)− x(T, θ)‖ < ε. (4.6)

This implies

‖xd(θ)− xT (θ)‖ < ε. (4.7)

Thus, xd(θ) is in a neighborhood of xT (θ). Now, since R(T ) is a closed set, we have

that xd(θ) ∈ R(T ). Hence, the pair (A(θ), B(θ)) is controllable.
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Secondly, we observe that uniform ensemble controllability of ΣC(P, A,B) im-

plies uniform ensemble controllability of ΣC(P, A,B) for finitely many θ ∈ P. Con-

sider (4.4), where Aj(θ) = A(θj) and Bj(θ) = B(θj), for all i ∈ {1, ..., r}. Then, we

have that

A =


A(θ1) . . . 0

...
. . .

...

0 . . . A(θr)

 and B =


B(θ1)

...

B(θr)

 . (4.8)

We observe that, each controllable pair (A(θi), B(θi)) can be associated to a non-

singular m×m polynomial matrix R(λ, θi), for i ∈ {1, ..., r}. With this observation,

we let (λI − A(θi))
−1B(θi) = K(λ, θi)R(λ, θi)

−1, for each i ∈ {1, ..., r}. Then, using

Theorem 10.2 in [5], we have that (4.8) is controllable if and only if the m × m

polynomial matrices R(λ, θ1), ..., R(λ, θr) are mutually left coprime. This proves the

second statement.

The controllability of (4.8) implies that there is at most m Jordan blocks in A for

each eigenvalues of A. This means, there exists no eigenvalues of A after m. Hence,

for r ≥ m+ 1, we have σ(A(θ1)) ∩ σ(A(θ2)) ∩ ... ∩ σ(A(θr)) = ∅.

Taking the case where m = 1, it follows that the spectra of A(θ1) and A(θ2) are

disjoint.

We now focus on discrete-time single-input scenarios.

Proposition 4.1.5. A family ΣD(P, A,B) of discrete-time single-input systems is

uniformly ensemble controllable if and only if, for all ε > 0, and xd ∈ C(P;Rn), there

exists a real-valued polynomial χ(y) ∈ R[y] such that

sup
θ∈P
‖xd(θ)− χ(A(θ))B(θ)‖ < ε, (4.9)
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where χ(A(θ)) is an n×n matrix-valued continuous function in θ ∈ P induced by the

real-valued polynomial χ(y) ∈ R[y] evaluated at A(θ) for all θ ∈ P.

Proof. Note that (2.4) can be written as

x(T, θ) = χ(A(θ))B(θ), (4.10)

where

χ(y) =
N∑
r=1

zN−ry
r.

Thus, by assumption of uniformly ensemble controllability of discrete-time single-

input systems, we have that

sup
θ∈P
‖xd(θ)− χ(A(θ))B(θ)‖ < ε. (4.11)

By the definition of uniform ensemble controllability, the converse is true.

Assume

C(A(θ),B(θ)) = (B(θ), A(θ)B(θ), ..., An−1(θ)B(θ)) (4.12)

is an n×n invertible controllability matrix, for all θ ∈ P. Then, for any xd ∈ C(P;Rn),

we define a polynomial χθ(y) ∈ R[y] by

χθ(y) := (1, y, ..., yn−1)C−1
(A(θ),B(θ))xd(θ). (4.13)

The next result focuses on the case where all the systems in ΣD(P, A,B) are control-

lable.

Proposition 4.1.6. [7]: Assume the pair (A(θ), B(θ)) is controllable for all θ ∈ P.
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Then the following are equivalent:

1. The ensemble ΣD(P, A,B) is uniformly ensemble controllable.

2. For any xd ∈ C(P;Rn) there exists a real-valued polynomial χ(y) ∈ R[y] such

that, for all ε > 0 the relation

‖(χθ − χ)(A(θ))B(θ)‖ < ε (4.14)

holds, for all θ ∈ P.

3. For any xd ∈ C(P;Rn) there exists a real-valued polynomial χ(y) ∈ R[y] such

that, for all ε > 0 the relation

‖χθ(A(θ))− χ(A(θ))‖ < ε (4.15)

holds, for all θ ∈ P.

Assume that for all θ ∈ P, the eigenvalues of A(θ) are distinct. Let

W := {(λ, θ) ∈ C× P | det(λI − A(θ)) = 0}.

Then, any of the first three statements of the Proposition is equivalent to:

4. For any xd ∈ C(P;Rn) there exists a real-valued polynomial χ(y) ∈ R[y] such

that, for all ε > 0

|χθ(λ)− χ(λ)| < ε, (4.16)

for all (λ, θ) ∈ W and for any xd ∈ C(P;Rn).
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Proof. Suppose the first statement of holds. Then, from equation (4.13), we have

that χθ(A(θ))B(θ) = xd(θ). Thus, by Proposition 4.1.5, we conclude that

‖(χθ − χ)(A(θ))B(θ)‖ < ε. (4.17)

The converse is true. Therefore, first and second statement are equivalent. Sup-

pose third statement holds. Then, by Cauchy-Schwarz inequality, we have that

‖(χθ − χ)(A(θ))B(θ)‖ ≤ ‖(χθ − χ)(A(θ))‖‖B(θ)‖.

Thus, since B ∈ C(P;Rn), there exists a real number g such that ‖B(θ)‖ ≤ g.

Therefore,

‖(χθ − χ)(A(θ))‖ < ε. (4.18)

Hence, the third statement implies the second statement. Suppose the second state-

ment holds. Let χ′ = χθ − χ. Then,

‖χ′(A(θ))B(θ)‖ < ε.

Let

χ′(A(θ)) = C−1
(A(θ),B(θ))C(A(θ),B(θ))χ

′(A(θ)).
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Then,

‖χ′(A(θ))‖ =‖C−1
(A(θ),B(θ))C(A(θ),B(θ))χ

′(A(θ))‖,

=‖C−1
(A(θ),B(θ))(I, A(θ), ..., A(θ)n−1)(χ′(A(θ))B(θ))‖,

≤‖C−1
(A(θ),B(θ))(I, A(θ), ..., A(θ)n−1)‖‖χ′(A(θ))B(θ)‖ < cε,

where

c = n sup
θ∈P
‖C−1

(A(θ),B(θ))‖ sup
0≤k≤n−1

‖A(θ)‖k.

Thus,

‖χ′(A(θ))‖ < ε.

By substituting back χ′ = χθ − χ, we have

‖(χθ − χ)A(θ)‖ < ε.

Finally, the equivalence between third and forth statement follows from Cayley-

Hamilton Theorem.

The proof of Theorem 4.1.1 depends on the so-called Mergelyan Theorem, which

we state next; we refer the reader to [17] for a proof.

Theorem 4.1.7. [17, Theorem 20.5] Suppose K is a compact set in C and comple-

ment of K is connected. Suppose further that f is continuous on K and analytic in

the interior of K. Then, for all ε > 0, there exists a polynomial h such that for all

z ∈ K,

|f(z)− h(z)| < ε. (4.19)
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We are now in a position to give a proof of Theorem 4.1.1. We start with single-

input systems and then generalize to multi-input scenarios.

Proof of Theorem 4.1.1. We begin with the discrete-time scenario.

Case 1 (single-input systems)

Given ΣD = (P, A,B), by the fourth statement of Theorem 4.1.4, we consider

the set

W := {(λ, θ) ∈ C× P | det(λI − A(θ)) = 0}.

We define a map π : W → C to be

π(λ, θ) = λ. (4.20)

Clearly, the function (4.20) is continuous . Let {λ1, ..., λn} be the spectra of

A(θ), where θ ∈ P. Then, each mapping λi : P → C, for all i ∈ {1, ..., n} is

a continuous mapping and injective, by the third statement of Theorem 4.1.4.

Hence, λi is a homeomorphism, for all i ∈ {1, ..., n}. Let M = M1 ∪ ... ∪Mn,

where Mi = λi(P), for all i ∈ {1, ..., n}. Then, Mi is homeomorphic to P, for

all i ∈ {1, ..., n}. Hence, the union M is homeomorphic to P. Therefore, M is

simply connected in C since P is simply connected in R. This implies that, the

complement of M is connected. Now, for all xd ∈ C(P,Rn), we consider (4.13)

and define a map f : M → C by

f(λ) = χθ(λ). (4.21)

Clearly, f is analytic in the interior of M . Hence, by Theorem 4.1.7, for all
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ε > 0, there exists a polynomial p(λ) such that

|f(λ)− p(λ)| < ε (4.22)

for all z ∈M . Equivalently, we have that

|χθ(λ)− p(λ)| < ε. (4.23)

Now, since p(λ) is complex-valued polynomial, its conjugate p†(λ) will also

satisfy Theorem 4.1.7. Thus, since χθ(λ) is real-valued, we replace p(λ) in (4.23)

by s(λ) = 1
2
(p(λ) + p†(λ)). Hence, we have that, for all ε > 0, there exists a

real-valued polynomial s(λ) ∈ R[λ] such that

|χθ(λ)− s(λ)| < ε. (4.24)

From Proposition 4.1.6, we conclude that, ΣD(P, A,B) is uniform ensemble

controllable. This ends the proof in discrete-time single-input case.

In the proceeding case, we will identify ΣD = (P, A,B) as multiple-input

•• Case 2 (multi-input systems)

Given ΣD = (P, A,B), by the first and second statements of Theorem 4.1.1 and,

since the Hermite indices are independent of θ ∈ P, without loss of generality,

we assume they are constants. Under this assumption, it is well-known (for

example in [1]) that, there exists D ∈ C(P;Gln(C)), where Gln(C) is a general
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linear group of degree n whose entries are complex numbers, such that

(D(θ)A(θ)D−1(θ), D(θ)B(θ)) = (AD(θ), BD),

where

AD(θ) =



A11(θ) A12(θ) . . . A1m(θ)

0 A22(θ) . . . A2m(θ)

...
...

. . .
...

0 0 . . . Amm(θ)


and BD =



b1 0 . . . 0

0 b2 . . . 0

...
...

. . .
...

0 0 . . . bm


,

(4.25)

with each (Aii(θ), bi) ∈ Rni×ni × Rni . Let xd = (xd1 , ..., xdm)T, where xdi ∈

C(P;Rni). For any integer N , let CNi(Aii(θ),bi) denote the ni × N controllability

matrix of the pair (Aii(θ), bi) and CNm(AD(θ),BD) be the controllability matrix of size

n × Nm of the pair (AD(θ), BD), then CNm(AD(θ),BD) is a block-upper triangular

matrix of the form

CNm(A(θ),BD) =


CN1(A11(θ),b1) . . . CN1m(A1m(θ),b1)

...
. . .

...

0 . . . CNm(Amm(θ),bm)

 . (4.26)

We observe that, for u(T ) = (γ(T ), ..., γ(1))T ∈ RT , the solution to a system

induced by ΣD(P, Aii, bi) at time T will be of the form

xi(T, θ) =
T−1∑
r=0

biA
r
ii(θ)γ(T − r).
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This sum can be rewritten as

T−1∑
r=0

biA
r
ii(θ)uT−r =[bi biAii(θ) ... biA

T−1
ii (θ)]


γ(T )

...

γ(1)

 ,
=CTi(Aii(θ),bi)u(T ).

Hence, we have that

xi(T, θ) = CTi(Aii(θ),bi)u(T ). (4.27)

By Proposition 4.1.5, we see that (4.27) can also be expressed as

χ(Aii(θ))bi = CTi(Aii(θ),bi)u(T ) (4.28)

where θ ∈ P, for all i ∈ {1, ...,m}. Now, since m is finite, we consider the case

where m = 2. The general case follows from the same argument. We consider

the equation

x2(t+ 1, θ) = A22(θ)x2(t, θ) + b2u(t). (4.29)

We have already proved, in case 1, that systems of the form (4.29) is uniform

ensemble controllable . This means that, for all xd ∈ C(P;Rn) and ε > 0,

there exists a sequence of control signals u(T ) and a real-valued polynomial

χ(z) ∈ R[z] be such that,

sup
θ∈P
‖CT2(A22(θ),b2)u(T )− xd2(θ)‖ < ε, (4.30)
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where

χ(A22(θ))b2 = CT2(A22(θ),b2)u(T ). (4.31)

We repeat similar argument to the system

x1(t+ 1, θ) = A11(θ)x1(t, θ) + b1u(t) (4.32)

but consider family of desired states of the form xd1(θ)−CT12(A12(θ),b1)u(T ). Then,

by assumption there exists a sequence of control signals v(T ) = (η(T ), ..., η(1))T

such that

sup
θ∈P
‖CT1(A11(θ),b1)v(T )− xd1(θ) + CT12(A12(θ),b1)u(T )‖ < ε.

Thus,

sup
θ∈P
‖CT1(A11(θ),b1)v(T ) + CT12(A12(θ),b1)u(T )− xd1(θ)‖ < ε. (4.33)

From equations (4.30) and (4.34), we conclude that

sup
θ∈P
‖CT2

(A(θ),B(θ))ξ(T )− xd(θ)‖ < ε, (4.34)

where

CT2
(A(θ),B(θ)) =

CT1(A11(θ),b1) CT12(A12(θ),b1)

0 CT2(A22(θ),b2)

 , ξ(T ) = (v(T ), u(T ))T,

and

xd(θ) = (xd1(θ), xd2(θ))
T.
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The general case m follows by the same reasoning. This means the ensemble

ΣD(P, A,B) is uniform ensemble controllable.

We now give a proof for the continuous-time case.

• Case 3 (continuous-time system)

Given ΣC(P, A,B), one can obtain the discrete-time ensemble,

x(t+ 1, θ) = G(θ)x(t, θ) +H(θ)u(t), (4.35)

where

G(θ) = eωA(θ) and H(θ) =
(∫ ω

0

esA(θ)ds
)
B(θ), (4.36)

by sampling with a small rate ω > 0. We will show that, this sampled ensemble

satisfies the conditions in Theorem 4.1.1.

For sufficiently small sampling rate ω, if a continuous-time linear system induced

by ΣC(P, A,B) is controllable, by sampling the control signal, we obtain a sequence of

control signals that will steer the trajectories of the discrete-time system that agrees

with the sampled points of the continuous-time system induced by ΣC(P, A,B). With

this observation, we can conclude that, controllability of continuous-time systems

implies controllability of discrete-time systems; therefore, for all θ ∈ P, the pair

(G(θ), H(θ)) is controllable.

Let D(θ) =
∫ ω

0
esA(θ)ds. Then, we observe that, det(esA(θ)) = eTr(sA(θ)) 6= 0

Therefore, we have that, D ∈ C(P;Gln). This implies that

D−1(θ)G(θ)D(θ) =
( ∫ ω

0

esA(θ)ds
)−1

eωA(θ)
( ∫ ω

0

esA(θ)ds
)

= eωA(θ). (4.37)
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We also see that D−1(θ)H(θ) = B(θ). The second statement of Theorem 4.1.1

implies that the Hermite indices are constants. Hence, they are invariant under

non-singular transformation [20]. This implies that, the Hermite indices for the pair

(eωA(θ), B(θ)) and (G(θ), H(θ)) are the same. We also have that the pair (eωA(θ), B(θ))

and (A(θ), B(θ)) are the same. Therefore, the Hermite indices will be the same for

(A(θ), B(θ)) and (G(θ), H(θ)).

Now, since the exponential function is one-to-one, it follows that, σ(A(θ)) ∩

σ(A(θ
′
)) = ∅ if and only if σ(eωA(θ)) ∩ σ(eωA(θ

′
)) = ∅, for all θ 6= θ

′ ∈ P. Also,

A(θ) has algebraic multiplicity of one if and only if eωA(θ) has algebraic multiplicity

of one has for all θ ∈ P. Therefore, statement three and four of Theorem 4.1.1 follow.

Under sampling, discrete-time and continuous-time system agree on the same sam-

pled points. Hence by interpolating over the sampled points, we obtain a piecewise-

continuous control signal that steers the trajectories to the family of continuous-time

linear systems. This complete the proof.
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Chapter 5

Uniform Null Ensemble Controllability for

One-parameter Linear Systems Using Constrained

Control Signals in the Unit Interval.

5.1 Uniform Null Ensemble Controllability.

In this chapter, we study a special scenario of uniform ensemble controllability studied

in the previous chapter. We investigate the possibility to steer the trajectories of an

ensemble to the origin using constrained control signals. We call this notion uniform

null ensemble controllability. We focus our attention on single-input systems with

constrained control set [0, 1] throughout. Let ∂R denote the boundary of R. We

first recall the notion of null controllability for classical linear control systems in [2].

To this end, let Σ = (A,B) be linear control system in continuous-time. Then, Σ is

null-controllable if there exists an open set V ⊂ Rn containing the origin such that,

for any x0 6= 0 ∈ V, there exists a control signal u that steers x(0) = x0 to the origin

in finite time. We proceed to give a definition of uniform null ensemble controllability

using control signals in [0, 1].
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Definition 5.1.1. Let ΣC(P, A,B) be an ensemble of continuous-time single-input

systems. Then, ΣC(P, A,B) is uniformly null ensemble controllable if and only if

there exists an open set V ⊂ Rn containing the origin, a finite time T > 0, and a

control signal u ∈ L1([0, T ]; [0, 1]) such that, for all x(0, θ) 6= 0 ∈ V, u steers x(0, θ)

to x(T, θ) ∈ V, where

sup
θ∈P
‖x(T, θ)‖ < ε. (5.1)

The same definition holds for the discrete-time single-input scenario. We proceed

to state the main result of this chapter.

Theorem 5.1.2. An ensemble ΣC(P, A,B) of continuous-time single-input systems

is uniformly null ensemble controllable if the following condition holds:

1. The eigenvalues of A(θ) has nonzero imaginary part, for all θ ∈ P.

2. The pair (A(θ), B(θ)) is null controllable, for all θ ∈ P.

3. σ(A(θ)) ∩ σ(A(θ
′
)) = ∅, for any pair of distinct parameter θ, θ

′ ∈ P.

4. The eigenvalues of A(θ) have algebraic multiplicity of one, for each θ.

Before we proceed with the proof of Theorem 5.1.2, we also state a necessary

condition for uniform null ensemble controllability. For this, we need the next result.

Lemma 5.1.3. Let x(0, θ) = 0, for all θ ∈ P. Assume the parameter-dependent

matrix A(θ) ∈ Rn×n induced by the ensemble ΣC(P, A,B) has a real eigenvalue λ for

some θ ∈ P. Then, 0 ∈ ∂R.

Proof. Suppose the system matrix A(θ) has a real eigenvalue λ, for some θ ∈ P. Then,

λ will also be an eigenvalue of the matrix A(θ)T. This means, there exists a vector
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v ∈ Rn such that A(θ)Tv = λv. Let φ(t, θ) = vTx(t, θ), where x(t, θ) is the trajectory

of the system at time t induced by ΣC(P, A,B). Then,

∂φ

∂t
(t, θ) = vT(A(θ)x(t, θ) +B(θ)u(t)), (5.2)

∂φ

∂t
(t, θ) = vTA(θ)x(t, θ) + vTB(θ)u(t), (5.3)

and

∂φ

∂t
(t, θ) = λφ(t, θ) + vTB(θ)u(t). (5.4)

Now, since φ(0, θ) = 0, by applying the variation of constants formula on (5.4), we

get

φ(T, θ) =

∫ T

0

eλ(t−s)vTB(θ)u(s)ds. (5.5)

One can observe that vTB(θ) ∈ R. Without loss of generality, we let vTB(θ) ≥ 0.

Then since u(T ) ≥ 0, for all T ≥ 0, we obtain the following relations:

if vTB(θ) > 0 then φ(T, θ) ≥ 0,

and

if vTB(θ) = 0 then φ(T, θ) = 0.

This means that, if x(T, θ) ∈ R(T ) then, for all T ≥ 0, we have vTx(T, θ) ≥ 0,

whenever vTB(θ) > 0, or if x(T, θ) ∈ R(T ) then, for all T ≥ 0, we have vTx(T, θ) = 0,

whenever vTB(θ) = 0. By choosing u := 0, this implies that x(T, θ) = 0 ∈ R(T ) for
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all T > 0 and x(T, θ) = 0 satisfies both relations, for all T ≥ 0. Now, since R(T )

is compact and convex [13] it implies that R(T ) is closed, convex, and bounded, for

all T ≥ 0. Hence there exists a supporting hyperplane to R(T ). Now using the

relation between the normal vector of the supporting hyperplane and the states in

the reachable set, a supporting hyperplane will pass through 0. Hence, 0 ∈ ∂R(T ),

for all T ≥ 0. Hence, 0 ∈ ∂R.

We proceed to give a necessary condition for uniform null ensemble controllability

of single-input systems.

Theorem 5.1.4. Assume a family of continuous-time single-input systems ΣC(P, A,B)

is uniformly null ensemble controllable. Then, the following holds:

1. The pair (A(θ), B(θ)) is null controllable, for all θ ∈ P.

2. We have σ(A(θ)) ∩ σ(A(θ
′
)) = ∅, for any pair of distinct parameter θ, θ

′ ∈ P.

3. All eigenvalues of A(θ) have nonzero imaginary part, for all θ ∈ P.

Proof. By assumption of uniform null ensemble controllability, for all ε > 0 and

x(0, θ) 6= 0 ∈ V, we have that x(T, θ) ∈ V, where

sup
θ∈P
‖x(T, θ)‖ < ε. (5.6)

This implies

‖x(T, θ)‖ < ε, (5.7)

for all θ ∈ P. Hence, x(T, θ) = 0, for all θ ∈ P. Therefore, the first statement holds.

The proof of the second statement follows from a similar argument as the one in the
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proof of the forth statement in Theorem 4.1.4. Lastly, suppose there exists θ ∈ P

such that A(θ) has real eigenvalue. Then by lemma 5.1.3, we have that 0 ∈ ∂R(T ),

for all time T ≥ 0. This implies that, there exists no open set V ⊂ Rn containing

the origin such that ΣC(P, A,B) is uniformly null ensemble controllable. This is a

contradiction.

We next give a proposition about uniform ensemble controllability of interconnec-

tion of systems.

Let (Ai,j, Bi,j) ∈ C(P;Rni×nj) × C(P;Rni), where 1 ≤ i, j ≤ N , n̄ =
∑N

i=1 ni and

M =
∑M

i=1 1. Let now (A,B) ∈ C(P;Rn̄×n̄)× C(P;Rn̄×M) be given by

A(θ) =


A1,1(θ) . . . A1,N(θ)

...
. . .

...

0 . . . AN,N(θ)

 and B(θ) =


B1,1(θ) . . . B1,M(θ)

...
. . .

...

0 . . . BN,M(θ)

 ,

(5.8)

We have the following result.

Proposition 5.1.5. The ensemble ΣC(P,A,B) is uniformly null ensemble control-

lable if and only if each ΣC(P, Ai,j, Bi,j), i, j ∈ {1, ...N}, is uniformly null ensemble

controllable.

Proof. Suppose ΣC(P,A,B) is uniform null ensemble controllable. Then, each ensem-

ble ΣC(P, Ai,j, Bi,j), i, j ∈ {1, ...N} is uniform null ensemble controllable. We prove

the converse. For simplicity, we focus on the case when N = 2; the general case

follows by the exact same reasoning. By construction, we have

∂x1

∂t
(t, θ) = A1,1(θ)x1(t, θ) + A1,2(θ)x2(t, θ) +B1,1(θ)u1(t) +B1,2(θ)u2(t), (5.9)
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and

∂x

∂t
(t, θ) = A2,2,(θ)x2(t, θ) +B2,2(θ)u2(t). (5.10)

By assumption of uniform null ensemble controllability of ΣC(P, A2,2, B2,2), it follows

that, there exists an open set V2 containing the origin such that, for all ε > 0, and

x2(0, θ) 6= 0 ∈ V2, we have that x2(T, θ) ∈ V2 satisfies the relation

sup
θ∈P
‖x2(T, θ)‖ < ε, (5.11)

where

x2(T, θ) = eA22(θ)Tx2(0, θ) +

∫ T

0

e(T−s)A2,2(θ)B2,2(θ)u2(s)ds.

By substituting x2(t, θ) for time t ≤ T into (5.9), we obtain

∂x1

∂t
(t, θ) =A1,1(θ)x1(t, θ) + A1,2(θ)

(
eA22(θ)Tx2(0, θ)

+

∫ t

0

e(t−ν)A2,2(θ)B2,2(θ)u2(ν)dν
)

+B1,1(θ)u1(t)B1,2(θ)u2(t).

Thus, by applying the constants of variation formula, we have that

x1(T, θ) = eA1,1(θ)Tx1(0, θ) +

∫ T

0

e(T−s)A1,1(θ)B1,1(θ)u1(s)ds+ z(T, θ), (5.12)

where

z(T, θ) =

∫ T

0

e(T−s)A1,1(θ)
(
A1,2(θ)eA22(θ)Tx2(0, θ)

+ A1,2(θ)

∫ s

0

e(s−ν)A2,2(θ)B2,2(θ)u2(ν)dν +B1,2(θ)u2(s)
)
ds.
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We observe that, by rearranging (5.12) we obtain

x1(T, θ)− z(T, θ) = eA11(θ)Tx1(0, θ) +

∫ T

0

e(T−s)A1,1(θ)B1,1(θ)u1(s)ds. (5.13)

Let

x̄1(T, θ) = eA11(θ)Tx1(0, θ) +

∫ T

0

e(T−s)A1,1(θ)B1,1(θ)u2(s)ds.

Then, x̄1(., θ) is the solution to a system induced by ΣC(P, A1,1, B1,1). By assumption

of uniform null ensemble controllability on ΣC(P, A1,1, B1,1), there exists an open set

V1 containing the origin such that, for all ε > 0 and x̄1(0, θ) + z0(θ) = x1(0, θ) ∈ V1,

we have that x1(T, θ) = x̄1(T, θ) + z(T, θ) ∈ V1 satisfies the relation

sup
θ∈P
‖x1(T, θ)‖ < ε. (5.14)

Let V = V1×V2. Then, V is an open set containing the origin such that, for all ε > 0

and x(0, θ) = (x1(0, θ), x2(0, θ))T ∈ V, we have that x(T, θ) = (x1(T, θ), x2(T, θ))T ∈

V satisfies the relation

sup
θ∈P
‖x(T, θ)‖ < ε. (5.15)

We conclude that ΣC(P,A,B) given by (5.8) is uniformly null ensemble controllable

for N = 2. This ends the proof.

We now go back to proving Theorem 5.1.2. Our proof relies on a corresponding

discrete-time scenario, which we present next.

Proposition 5.1.6. An ensemble ΣD(P, A,B) of discrete-time single-input systems

is uniformly null ensemble controllable if and only if there exists an open set V ⊂ Rn

containing the origin, a finite time T > 0 and a real-valued polynomial ϕ(z) ∈ R[z]
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such that, for all x(0, θ) 6= 0 ∈ V, we have that x(T, θ) ∈ V satisfies that relation

sup
θ∈P
‖ϕ(A(θ))b(θ)‖ < ε. (5.16)

The proof is the same as the proof of Proposition 4.1.5.

We proceed to next proposition.

Proposition 5.1.7. Assume (A(θ), B(θ)) is null controllable, for all θ ∈ P. Then,

the following are equivalent.

1. The ensemble ΣD(P, A,B) is uniform null ensemble controllable.

2. For all ε > 0, there exists a polynomial χ(y) ∈ R[y] such that, ‖χ(A(θ))B(θ)‖ < ε.

3. For all ε > 0, there exists a polynomial χ(y) ∈ R[y] such that, ‖χ(A(θ))‖ < ε.

Moreover, if for each θ ∈ P, the eigenvalues of A(θ) are distinct.

W := {(z, θ) ∈ C(P;C)× P | det(zI − A(θ)) = 0} (5.17)

Then, any of the first to third statements are all equivalent to:

4. For all ε > 0, there exists a polynomial χ(y) ∈ R[y] such that |χ(z)| < ε, for all

(z, θ) ∈ W .

The proof follows similarly to Proposition 4.1.6.

We now give a prove of Theorem 5.1.2.

Proof of Theorem 5.1.2. We give the proof in two cases. We first prove for the case of

discrete-time single-input and the continuous-time case is reduce to the discrete-time

case by sampling over a sufficiently small rate.
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Case 1 (discrete-time systems): Following the same argument in case 1 of the proof

of Theorem 4.1.1, we let

f(z) = uθ(z) (5.18)

for all z ∈M , where

uθ(z) = (1, z, . . . , zn−1)C−1
(A(θ),B(θ))v, (5.19)

with v ∈ Rn such that ‖v‖ < ε. Then, f(z) ∈ R[z], for all z ∈ M . Hence, f is

continuous and analytic on M . Also, for all ε > 0 we have that

|f(z)| = |uθ(z)| < ε (5.20)

for all z ∈ M , since ‖v‖ < ε for all θ ∈ P. By Theorem 4.1.7, we have that p(z) = 0,

for all z ∈ M . Now, since f is real-valued, we replace p(z) by its real part R(p(z)).

Hence, for all ε > 0, there exists a real-valued polynomial R(p(z)) ∈ R[z] such that

|R(p(z))| < ε, (5.21)

for all z ∈ M and for all θ ∈ P. This implies that (5.21) holds for all (z, θ) ∈ W .

Hence, by Proposition 5.1.7, we have that ΣD(P, A,B) is uniformly null ensemble

controllable. This completes the proof for the discrete-time case.

We now proceed to the countinuous-time scenario

Case 2 (continuous-time): Given ΣC(P, A,B), we can easily verify for G(θ) = eωA(θ),

if A(θ) has nonzero imaginary part then G(θ) has nonzero imaginary part. The rest

follows exactly in the proof of Theorem 4.1.1. This ends the proof.
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Chapter 6

Conclusions and future work

6.1 Summary

In this thesis, we have investigated the problem of controlling a continuum of linear

systems in continuous-time, and discrete-time scenarios. In particular, we reviewed

the notion of L2-ensemble controllability of family of time-varying systems introduced

in [11]. We stated and proved the necessary and sufficient condition for L2-ensemble

controllability presented originally in [11]. We also reviewed the notion of uniform en-

semble controllability of family of one-parameter time-invariant linear systems in [7].

We also proved a necessary, as well as a sufficient condition, for uniform ensemble con-

trollability [7]. In contrast to [7], we looked at a different problem of uniform ensemble

controllability for the case where the control set is constrained to be [0, 1]. We called

this notion uniform null ensemble controllability for one-parameter time-invariant

linear single-input systems using constrained control signals in the unit interval. We

gave a necessary as well as a sufficient condition for uniform null ensemble controlla-

bility for one-parameter family of time-invariant of linear systems. Finally, we showed
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that in discrete-time scenarios, uniform null ensemble controllability of family of one-

parameter time-invariant linear systems is equivalent to a polynomial approximation

problem.

6.2 Future research directions

In the future, one can try to examine the constrained control situations in the case

of L2-ensemble controllability. Furthermore, one can also look at ensemble controlla-

bility using a more general constrained control set than the unit interval.
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Chapter 7

Appendix

7.1 Background material.

Definition 7.1.1. Let H0 = L2(M ;Rn×m) be a vector space of all those matrix-valued

functions f whose ijth entries fij(t, θ), i = {1, ..., n}, j = {1, ...,m}, are complex-

valued measurable function defined on M . We define an inner product 〈, 〉 : H0×H0 →

R to be

〈f, g〉 = tr

∫
P

∫ T

0

f(t, θ)g†(t, θ)dtdθ,

for all f, g ∈ H0 and its corresponding norm

‖f‖2 =

∫
P

∫ T

0

‖f(t, θ)‖2dtdθ. (7.1)

Then, H0 is a Hilbert space.

Theorem 7.1.2. Let ΣC(M,A,B) be an ensemble of continuous-time varying linear

systems and suppose (A,B) ∈ L∞(M ;Rn×n) × L2(M ;Rn×m). Let Φ(t, 0, θ) be the
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transition matrix induced by ΣC(M,A,B) such that, for all θ ∈ P, Φ(t, 0, θ) satisfies

∂Φ

∂t
(t, 0, θ) = A(t, θ)Φ(t, 0, θ), Φ(0, 0, θ) = I.

Then, the operator L : H1 → H2 defined by

(Lu)(θ) =

∫ T

0

Φ(0, τ, θ)B(τ, θ)u(τ)dτ (7.2)

is compact.

To be able to proof this Theorem, we will state and prove two propositions. We

begin by proving that L defined in (7.2) is a bounded linear operator.

Proposition 7.1.3. Assume the operator L defined in (7.2). Then, L ∈ B(H1;H2).

Proof. Clearly L is linear. We proceed to show that it is bounded.

‖Lu‖2
H2

=

∫
P
‖(Lu)(θ)‖2dθ,

=

∫
P
‖
∫ T

0

f(t, θ)u(t)dt‖2dθ,

≤
∫
P

( ∫ T

0

‖f(t, θ)‖2dt
)( ∫ T

0

‖u(t)‖2dt
)
dθ,

=

∫
P

( ∫ T

0

‖f(t, θ)‖2dt
)
dθ‖u‖2

H1
,

=‖f‖2
H0
‖u‖2

H1
.

This implies that,

‖L‖ ≤ ‖f‖H0 <∞. (7.3)
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Next, we will show that the kernel of L is bounded in H0.

Proposition 7.1.4. Assume the operator L defined in (7.2). Let k(t, θ) = Φ(0, t, θ)B(t, θ).

Then, k ∈ H0.

Proof.

‖k‖2 =

∫
P

∫ T

0

‖Φ(0, t, θ)B(t, θ)‖2dtdθ,

≤
∫
P

( ∫ T

0

‖Φ(t, θ)‖2dt
)
×
( ∫ T

0

‖B(t, θ)‖2dt
)
dθ,

≤TK2

∫
P

∫ T

0

‖B(t, θ)‖2dtdθ,

=TK2‖B(t, θ)‖2
H0
<∞.

Therefore, k ∈ H0.

We now give a proof of Theorem 7.1.2.

Proof of Theorem 7.1.2. Now, since H0 is non-empty Hilbert space, it has an or-

thonormal basis [8, pp. 168]. Let {εj}j≥1 be an orthonormal basis in H0. Then, it is

well-known for example in [8] that k ∈ H0 can be written as

k(t, θ) =
∞∑
j=1

〈k(t, θ), εj(t, θ)〉εj(t, θ). (7.4)

Let

kn(t, θ) =
n∑
j=1

〈k(t, θ), εj(t, θ)〉εj(t, θ). (7.5)

Then, kn ∈ H0 and has finite range. For ε > 0, there exist N ∈ N such that for n > N
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we have

‖kn − k‖H0 < ε. (7.6)

We define the operator Ln : H1 → H2 by

(Lnu)(θ) =

∫ T

0

kn(τ, θ)u(τ)dτ. (7.7)

Then, Ln is a bounded linear operator with finite range hence Ln is compact for all

n ∈ N [8]. From (7.3), we conclude that

‖L− Ln‖ ≤ ‖k − kn‖H0 < ε. (7.8)

Therefore, since L is the limit of sequence of compact operators the L is compact [8,

pp. 408], .

Proposition 7.1.5. Compact operators are not invertible on an infinite dimensional

space X.

We will proof this using contradiction argument.

Proof. Let L be a compact operator and suppose L is invertible on X, then there exist

a unique compact operator S such that LS = I where I is the identity operator. This

implies that I is compact on X which is a contradiction. Therefore, our assumption

of L is invertible is false.

Theorem 7.1.6. Riesz-Fischer Theorem: Let {φn} be an orthonormal system in

L2([a, b]) and let {cn} be a sequence of complex number such that
∑∞

n=0 |cn|2 < ∞,

then there exist a function f ∈ L2([a, b]) with the following:
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1.
∑∞

n=0 |cn|2 = ‖f(x)‖2.

2. ck = 〈f, φn〉 for all k ∈ {0, 1, 2, 3...}.

Proof. 1. We define a sequence (sn)∞n=0 as follows:

sn(x) =
n∑
k=0

ckφk(x). (7.9)

We show that {sn} is a cauchy sequence in L2([a, b]). For all ε > 0, there exist an

N ∈ N such that for m,n ≥ N , m > n, we have that:

‖sn(x)− sm(x)‖ =‖
m∑
k=0

ckφk(x)−
n∑
k=0

ckφk(x)‖,

=‖
m∑

k=n+1

ckφk(x)‖,

=
m∑

k=n+1

‖ckφk(x)‖,

=
m∑

k=n+1

|ck| < ε.

Now, since L2([a, b]) is a complete space, there exist an f ∈ L2([a, b]) such that

lim
n→∞

‖f(x)− sn(x)‖ = 0 (7.10)

Now, from the proof of Bessel identity in [8] , we have

n∑
k=0

|ck|2 + ‖f(x)− sn(x)‖2 = ‖f(x)‖2,
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thus, as n→∞, we get that

∞∑
n=0

|cn|2 = ‖f(x)‖2. (7.11)

2. Now for n ∈ {0, 1, 2...}, we observe that

〈sn(x), φk(x)〉 =
n∑
j=0

cj〈φj(x), φk(x)〉 = ck. (7.12)

This means that

|ck − 〈f(x), φk(x)〉| =|〈sn(x), φk(x)〉 − 〈f(x), φk(x)〉|

=|〈sn(x)− f(x), φk(x)〉|

≤‖sn(x)− f(x)‖‖φk(x)‖

=‖sn(x)− f(x)‖.

Taking the limit as n→∞ implies that ‖sn(x)− f(x)‖ < ε, hence

|ck − 〈f(x), φk(x)〉| < ε, (7.13)

thus (2) follows.
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