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Abstract

This thesis studies the null controllability of a system of coupled parabolic PDEs.

Moreover, our work specializes to an important subclass of these control problems,

where systems are underactuated and are coupled by first and zero-order couplings.

We pose our control problem in a fairly new framework which divides the problem

into interconnected parts: we refer to the first part as the analytic control problem,

where we use slightly non-classical techniques to prove null controllability by means

of internal controls appearing on every equation; we refer to the second part as the

algebraic control problem, where we use an algebraic method to invert a linear partial

differential operator that describes our system, which allows us to recover null con-

trollability by means of internal controls which appear on only a few of the equations.

By solving these control problems concurrently, we resolve the original problem (after

some technical verifications on the regularity of the controls in the analytic system).
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Chapter 1

Introduction

1.1 Motivation and literature review

In recent years, problems concerning the controllability of coupled parabolic PDEs

have received much interest from the mathematical control community (see [4] and

references therein). One classification of these numerous control problems is into prob-

lems with zero-order couplings between equations (i.e., the reaction term in a usual

parabolic PDE is now replaced with terms which couple the evolution of the solution

with the solutions to other PDEs in the system) and problems with first-order cou-

plings between equations (i.e., the advection term is now replaced with terms which

couple the evolution of the solution with the gradient of the solutions to other PDEs

in the system). The applications of such control problems are ubiquitous: zero-order

couplings arise in engineering problems modelled by reaction-diffusion equations, such

as [8, 15, 29]; whereas first-order couplings arise in engineering problems modelled by

reaction-advection-diffusion equations, such as [12, 26, 27, 30].

For systems of several coupled parabolic equations, an important problem is to

establish their controllability with reduced the number of controls; we refer to such
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systems with reduced controls as underactuated systems of coupled parabolic PDEs.

For the case of zero-order couplings and with internal controls, this control problem

has been studied extensively in [2, 3]. In [3], a necessary and sufficient condition

for exact controllability (similar to the Kalman rank condition for finite-dimensional

systems) is proved for a system of m equations with constant coupling coefficients.

In [2], some results similar to the Silverman-Meadows condition are obtained for

time-varying coefficients.

General conditions for controllability of systems with first and zero-order couplings

and internal controls have proven to be more elusive. In [21], a system of n+1 coupled

heat equations with constant couplings and with one underactuation is studied, and

a sufficient condition for null controllability is given under some restrictions on the

controls. In [6], a system of three parabolic equations coupled by (time and space)

varying coefficients is studied for two underactuations. The authors were able to

recover a null controllability condition under some technical restrictions on the control

domain and the coupling terms. In [14], a necessary and sufficient condition for null

controllability is given for a system of m equations with one underactuation and

constant coupling coefficients; furthermore, the authors study the case of (time and

space) varying coupling coefficients and prove a sufficient controllability condition for

a system of two equations with one underactuation, under some technical conditions.

1.2 Statement of contributions

This work has three main contributions. The first contribution is Theorem 3.1.5,

which partially generalizes [14, Theorem 1]. In particular, our result gives a sufficient

condition for the null and approximate controllability of an underactuated system
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of coupled parabolic PDEs, with constant first and zero-order couplings, when more

than half of the equations are actuated. This controllability condition, which is the

non-singularity of a matrix containing the coupling coefficients (and possibly zeros)

as entries, is generic in most cases. The technique used to prove this result is adapted

from [12], where it was first introduced.

Secondly, in the cases where this controllability condition may not be generic, we

characterize precisely why these non-generic conditions arise in our treatment. At the

end of Section 4.4, we demonstrate the technical nature of these non-generic cases

and show how they are artifacts of our treatment.

Our final contribution is Proposition 5.2.1, which is an extension of [14, Proposi-

tion 2.2]. Specifically, our Carleman estimate contains higher differential order terms

on the lefthand side of (5.14), which allows us to construct very regular controls

in Proposition 6.2.1. Importantly, these highly regular controls may be necessary

when applying Theorem 3.1.5 to engineering problems with many underactuations,

as discussed Remark 4.4.5.

1.3 Organization

This work is organized as follows: in Chapter 2, foundational mathematical prelimi-

naries, such as Sobolov space theory, existence and uniqueness of solutions for coupled

parabolic PDEs, parabolic regularity and sparse matrix theory are presented; one fa-

miliar with PDE theory can easily skip this chapter and refer to it as necessary.

In Chapter 3, a general coupled parabolic PDE is posed as a control system with

internal controls, and the usual notions of controllability are presented. Furthermore,

this work’s main result, Theorem 3.1.5, is stated here.
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Chapter 4 introduces two coupled parabolic control problems related to the origi-

nal one, which we call the analytic and algebraic control problems. This chapter gives

details on the treatment we employ to prove this work’s main controllability result.

Furthermore, this chapter specializes to studying the algebraic control problem, and

we pose this problem under a fairly new framework which has the goal of algebraically

inverting a linear partial differential operator describing our algebraic problem. This

algebraic inversion allows us to construct a solution to the algebraic control problem.

One assumption made here is that the controls for the analytic problem be highly

regular.

In Chapter 5, a Carleman estimate is established for solutions to the adjoint of the

analytic control problem, and this estimate is used to prove a weighted observability

inequality for this control problem in Proposition 5.0.9. Importantly, this Carleman

estimate contains many higher-order derivative terms on the lefthand side of the

inequality, which will allow us to construct highly regular controls for the analytic

problem.

Chapter 6 employs the weighted observability inequality established in Chapter 5

and a well-known optimal control result to construct a solution to the analytic control

problem satisfying ỹ(T, ·) = 0. Moreover, the Carleman estimate proved in Chapter

5 is utilized to verify the necessary regularity on the controls in the analytic problem.

We conclude this chapter by proving Theorem 3.1.5.

Chapter 7 presents closing remarks for this work and possible future works, and

Chapter 8 contains some proofs of technical results stated in Chapter 5 that were

omitted from the main body of this work.
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Chapter 2

Mathematical Preliminaries

2.1 Notation and motivation

In this chapter, we introduce some notational conventions and present some mathe-

matical background that we utilize throughout this thesis.

Throughout this work, we define N∗ := N \ {0}, and similarly, R∗ := R \ {0}. For

n, k ∈ N∗, we denote the set of n× k matrices with real-valued entries by Mn×k(R),

and we denote the set of n × n matrices with real-valued entries by Mn(R). We

denote the set of linear maps from a space U to a space V by L (U ;V ).

In most fields of engineering, equations which describe the conservation of physical

quantities are paramount. Among these conservation equations, the heat equation can

be used to model (among many other diffusive quantities) the evolution in time of

the distribution of heat in a given region. Let Ω ⊂ Rn open and bounded, t > 0 and

x ∈ Ω. The homogeneous heat equation is given as

∂ty −∆y = 0, (2.1)



2.1. NOTATION AND MOTIVATION 6

whereas the nonhomogeneous heat equation is given as

∂ty −∆y = r, (2.2)

where r : [0,∞)× Ω → R is given in (2.2), y : [0,∞)× Ω → R is the unknown, and

each equation is subject to initial and boundary conditions. Important behaviours of

the solutions to these types of diffusion equations are captured by their classification

as parabolic PDEs. For demonstration purposes, we discuss one of these behaviours

when n = 1; its counterpart for a generalized parabolic system when n ≥ 1 is stated

and utilized below. To this end, we first define a parabolic PDE for n = 1.

Definition 2.1.1. Let x ∈ R, t ∈ [0,∞) and consider the second-order nonhomoge-

neous PDE given by

d∂xxy + e∂xty + f∂tty + g∂xy + h∂ty + ay = r (2.3)

where d, e, f, g, h, a and r are functions of t and x. The general linear PDE (2.3) is

said to be parabolic at (t, x) if λ1(t, x) = 0 and λ2(t, x) ∈ R∗, where λi denotes the

i-th eigenvalue of

D :=

 d e/2

e/2 f

 .

Remark 2.1.2. For n = 1, an equivalent condition for a PDE to be parabolic at

(t, x) is that its discriminant, e2− 4df , equal zero at (t, x). Indeed, the characteristic

polynomial of D is

λ2 − (d+ f)λ+

(
4df − e2

4

)
,
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and hence one must have e2−4df = 0 for 0 to be an eigenvalue of D. It is immediate,

then, that (2.1) and (2.2) are parabolic PDEs in [0,∞)×Ω. Our study will focus on

the case where e = f = 0 and d > 0 in [0,∞) × Ω (i.e., typical forward diffusion

equations). •

Remark 2.1.3. (Parabolic smoothing on a 1-D bar): An important behaviour

of parabolic diffusion equations which will be consequential in the work to follow is the

parabolic smoothing effect. With the help of formal calculations, the smoothing effect

is demonstrated for a 1-D parabolic equation with g = a = 0 and h = d = 1, i.e., the

nonhomogeneous heat equation (2.2).

For T > 0, let Ω = (0, l) and Γ := (0, T )×∂Ω; consider the solution to (2.2), where

we additionally require y(t, x) = 0 on Γ and y(0, x) = y0(x) in Ω. We multiply (2.2)

by y and integrate by parts over Ω to obtain

1

2

d

dt

∫ l

0

y2(t, x)dx+

∫ l

0

(∂xy(t, x))2dx =

∫ l

0

y(t, x)r(t, x)dx.

Integrating now over [0, T ] and applying Cauchy-Schwarz and Young’s inequalities

with ε > 0 yields

1

2

∫ l

0

y2(t, x)dx− 1

2

∫ l

0

(y0(x))2dx+

∫ T

0

∫ l

0

(∂xy(t, x))2dxdt (2.4)

=

∫ T

0

∫ l

0

y(t, x)r(t, x)dxdt

≤
(

2ε

∫ T

0

∫ l

0

y2(t, x)dxdt

)1/2(
1

2ε

∫ T

0

∫ l

0

r2(t, x)dxdt

)1/2

≤ ε

∫ T

0

∫ l

0

y2(t, x)dxdt+
1

4ε

∫ T

0

∫ l

0

r2(t, x)dxdt

≤ Tε sup
t∈[0,T ]

∫ l

0

y2(t, x)dxdt+
1

4ε

∫ T

0

∫ l

0

r2(t, x)dxdt
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Choosing ε = 1
4T

and taking the supremum of (2.4) over t ∈ [0, T ] gives

1

4
sup
t∈[0,T ]

∫ l

0

y2(t, x)dx+

∫ T

0

∫ l

0

(∂xy(t, x))2dxdt

≤ T

∫ T

0

∫ l

0

r2(t, x)dxdt+
1

2

∫ l

0

(y0(x))2dx.

This last inequality demonstrates the parabolic smoothing effect: the L2-norm of the

spacial derivative of the solution y is bounded by the L2-norm of its initial condition

and the forcing function. Hence, for regular enough initial condition and forcing

function, one can ascertain higher spacial regularity of the solution to (2.2). These

formal calculations can be adapted for any parabolic diffusion equation given by (2.3)

for e = f = 0 in (0, T )× Ω and, importantly, d 6= 0 for all (t, x) ∈ (0, T )× Ω. •

We return to the case of arbitrary n ≥ 1 and study a generalized heat equation.

Let QT := (0, T )×Ω and ΣT := (0, T )×∂Ω for some T > 0; consider the second-order

PDE 
∂ty + Ly = r in QT

y = 0 on ΣT

y(0, ·) = y0(·) in Ω

(2.5)

where r : QT → R and y0 : Ω → R are given, y : Q̄T → R is the unknown, and for

each t ∈ (0, T ), L denotes the second-order linear differential operator given by

Ly = −
n∑

i,j=1

∂xj
(
dij(t, x)∂xiy

)
+

n∑
i=1

gi(t, x)∂xiy + a(t, x)y (2.6)

for given coefficients dij, gi, a, for i, j ∈ {1, . . . , n}. Equation (2.5) can be used to

describe the evolution in time of the distribution of some quantity y, where the
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second-order term models diffusion, the first-order term models advection, the zero-

order term models linear generation or depletion, and the forcing function accounts

for external heat sources or sinks. As we will see, the qualitative properties of (2.5)

(e.g., smoothing) are very similar to those of (2.2). Let us first give some definitions

that help us classify (2.5).

Definition 2.1.4. Let α = (α1, . . . , αn) be a multi-index and denote ∂α1 · · · ∂αny by

∂αy. For k, l ∈ N and (dα)α coefficients depending on α, where dα : QT → R, a

linear time-variant differential operator of order l = 2k on Ω given by

Ly =
∑
|α|≤l

dα(t, x)∂αy

satisfies the uniform ellipticity condition if and only if there exists C > 0 such that,

∑
|α|=l

dα(t, x)ξα ≥ C|ξ|m ∀ ξ ∈ Rn,∀(t, x) ∈ QT , (2.7)

where ξα = ξα1
1 · · · ξαnn .

Remark 2.1.5. Suppose n = 1. If L satisfies the uniform ellipticity condition,

then (2.5) is parabolic in QT . Indeed, if (2.7) is satisfied (where l = 2), then we have

that ∃ C > 0 such that

d(t, x)ξ2 ≥ Cξ2 ∀ ξ ∈ R,∀ (t, x) ∈ QT ,

and hence we have that d(t, x) > 0 ∀ (t, x) ∈ QT . Since e = f = 0 in QT , λ1(x, t) = 0

and λ2(x, t) = d(x, t) > 0. For n > 1 and r = 2, the uniform ellipticity condition is

equivalent to the eigenvalues of (dα1,α2)1≤α1,α2≤n being bounded below by zero uniformly
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in x and t. This motivates the following definition. •

Definition 2.1.6. A partial differential operator ∂t +L is (uniformly) parabolic if L

satisfies the uniform ellipticity condition.

Of greater interest in many areas of engineering is the study a system of second-

order parabolic PDEs (e.g., [23], [31]). We express systems consisting of m equations

in vector form as 
∂ty + Ly = r in QT

y = 0 on ΣT

y(0, ·) = y0(·) in Ω,

(2.8)

where y0 := (y1, . . . , ym) and r := (r1, . . . , rm) are given, y := (y1, . . . , ym) are the

unknowns, and the differential operator L is now defined as

Ly =
m∑
k=1

(
−

n∑
i,j=1

∂xj
(
dijk (t, x)∂xiyk

)
+

n∑
i=1

gik(t, x)∂xiyk + ak(t, x)yk

)
ek

where ek is the k-th canonical basis vector in Rm. Yet another very practical exten-

sion of this system of second-order PDEs is when the equations within the system of

parabolic PDEs are coupled (e.g., [4, 22, 29]): denoting the p-th entry of Ly as Lpy

for p ∈ {1, . . . ,m}, we now have

Lpy =
m∑
k=1

(
−

n∑
i,j=1

∂xj
(
dijpk(t, x)∂xiyk

)
+

n∑
i=1

gipk(t, x)∂xiyk + apk(t, x)yk

)
. (2.9)

When p 6= k, we call dijpk the second-order coupling coefficients, gipk the first-order

coupling coefficients, and apk the zero-order coupling coefficients. This work studies

a particular case of first and zero order constant coupling coefficients, where for δij
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denoting the kronecker delta function, dijpk(t, x) = dijp δpk ∈ R, gipk(t, x) = −gipk ∈ R

and apk(t, x) = −apk ∈ R, for i, j ∈ {1, . . . , n} and p ∈ {1, . . . ,m}. Additionally, we

study the case where dijp = djip , for i, j ∈ {1, . . . , n} and p ∈ {1, . . . ,m}. Hence, we

can write Ly as

Ly =
m∑
p=1

(
−div(dp∇yp)−

m∑
k=1

gpk · ∇yk −
m∑
k=1

apkyk

)
ep (2.10)

where gpk := (g1
pk, . . . , g

n
pk) ∈ Rn, dp ∈Mn(R) is symmetric and ep is the pth canonical

basis vector in Rm, for p ∈ {1, . . . ,m}. With these choices of coefficients, system (2.8)

becomes 
∂ty = div(D∇y) +G · ∇y + Ay + r in QT

y = 0 on ΣT

y(0, ·) = y0(·) in Ω

(2.11)

where D := diag(d1, . . . , dm), G := (gpk)1≤p,k≤m ∈ Mm(Rn) and A := (apk)1≤p,k≤m ∈

Mm(R). Prior to studying such a system parabolic PDEs, we recall some notions

from Sobolev space theory.

2.2 Sobolev space theory

We denote the space of infinitely differentiable and compactly supported test functions

on Ω by C∞c (Ω), and we denote the space of locally integrable functions on Ω by

L1
loc(Ω). To study systems such as (2.11), we need to weaken our notion of partial

derivatives.

Definition 2.2.1. Suppose u, v ∈ L1
loc(Ω) and α a multi-index of length n. We call v



2.2. SOBOLEV SPACE THEORY 12

the α-th weak partial derivative of u provided that

∫
Ω

u∂αφdx = (−1)|α|
∫

Ω

vφdx,

for all φ ∈ C∞c (Ω). We write v = ∂αu.

The notion of weak derivatives allows us to define Sobolev spaces.

Definition 2.2.2. The Sobolev space W k,p(Ω) consists of all locally integrable func-

tions u : Ω→ R such that for each multi-index α of length n with |α| ≤ k, ∂αu exists

in the weak sense and belongs to Lp(Ω).

In this work, we mainly use the Sobolev space W k,2(Ω), and we denote this space

by Hk(Ω). The next definition concerns the closure of the space of test functions in

Sobolev spaces.

Definition 2.2.3. We denote by Hk
0 (Ω) the closure of C∞c (Ω) in Hk(Ω).

For the multi-index α of length n, we interpret Hk
0 (Ω) as the space of u ∈ Hk(Ω)

such that ∂αu = 0 on ∂Ω for all |α| ≤ k− 1. We now define the dual space to Hk
0 (Ω),

which will be instrumental in our construction of a solution to system (2.11).

Definition 2.2.4. We denote by H−1(Ω) the dual space to H1
0 (Ω). That is, f ∈

H−1(Ω) if and only if f is a bounded linear functional on H1
0 (Ω). Denoting the

duality pairing as 〈·, ·〉, the norm on H−1(Ω) is taken to be the dual norm:

||f ||H−1(Ω) = sup
{
〈f, y〉 : y ∈ H1

0 (Ω) and ||y||H1(Ω) ≤ 1
}
.

Next, we present a very practical theorem that characterizes functions in H−1(Ω).
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Theorem 2.2.5. [16, Theorem 1, Subsection 5.9.1] Assume that f ∈ H−1(Ω). Then

there exists functions f 0, . . . , fn ∈ L2(Ω) such that for v ∈ H1
0 (Ω),

〈f, v〉 =

∫
Ω

(
f 0v +

n∑
i=1

f i∂xiv

)
dx. (2.12)

Furthermore,

||f ||H−1(Ω) = inf


(∫

Ω

n∑
i=0

|f i|2dx

)1/2

: f satisfies (2.12) for f 0, . . . , fn ∈ L2(Ω)

 .

(2.13)

The so-called Gagliardo-Nirenberg interpolation inequality is stated next.

Theorem 2.2.6. [25] For q, r ∈ R such that 1 ≤ q, r ≤ ∞ and for m ∈ N, let

u : Ω→ R such that u ∈ Lq(Ω) ∩Wm,r(Ω). For 0 ≤ j ≤ m, we have

||u||W j,p(Ω) ≤ C||u||αWm,r(Ω)||u||1−αLq(Ω), (2.14)

where p satisfies

1

p
=
j

n
+ α

(
1

r
− m

n

)
+

1− α
q

for all α in the interval j
m
≤ α ≤ 1, where C := C(n,m, j, q, r, α), with the following

exceptional assumptions:

(i) if j = 0, rm < n, q =∞, then we require u→ 0 at infinity, and;

(ii) if 1 < r <∞ and m− j − n
r

a nonnegative integer, then (2.14) only holds for α

satisfying j
m
≤ α < 1.

Next, we present the Poincaré inequality.
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Theorem 2.2.7. [16, Theorem 1, Subsection 5.8.1] Let Ω ⊂ Rn be open, bounded,

connected and of class C1. There exists a constant C := C(Ω) such that

||y||L2(Ω) ≤ C||∇y||L2(Ω),

for each y ∈ H1
0 (Ω).

Let X be a Banach space; for reasons that will become apparent, it is convenient

to denote Banach-space valued functions u : [0, T ]→ X by u := [u(t)].

Definition 2.2.8. The Sobolev space Lp((0, T );X) consists of all functions u : [0, T ]→ X

with

1. ||u||Lp((0,T );X) :=
(∫ T

0
||u(t)||pdt

)1/p

<∞, for 1 ≤ p ≤ ∞, and;

2. ||u||L∞((0,T );X) := ess sup0≤t≤T ||u(t)|| <∞,

where || · || is the norm associated to X.

The above definition gives the framework to study evolution equation. Next, we

state a regularity theorem concerning an important Sobolev space involving time.

Theorem 2.2.9. [16, Theorem 3, Subection 5.9.2] Suppose u ∈ L2((0, T );H1
0 (Ω)) ∩

H1((0, T );H−1(Ω)), where u := [u(t)](x). Then

(i) u ∈ C([0, T ];L2(Ω)) (after possibly being redefined on a set of measure zero);

(ii) the mapping

t 7→ ||u(t)||2L2(Ω)
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is absolutely continuous, with

d

dt
||u(t)||2L2(Ω) = 2

〈
d

dt
u(t),u(t)

〉
,

for almost every 0 ≤ t ≤ T , and;

(iii) we have the estimate

max
0≤t≤T

||u(t)||L2(Ω) ≤ C||u||L2((0,T );H1
0 (Ω))∩H1((0,T );H−1(Ω)).

2.3 Well-posedness results for parabolic systems

We state existence and uniqueness of solution results for system (2.11). To adapt

existing well-posedness results to a system of coupled parabolic PDEs such as in

system (2.11), one can follow the treatment, for example, in [16, Section 7] but write

all intermediary results for a system of solutions (rather than for a single solution).

For completeness, we sketch the steps of this treatment. From now on, we assume

that L satisfies (2.7). Suppose r ∈ L2(QT )m, y0 ∈ L2(Ω)m. For u, v ∈ H1
0 (Ω)m, we

define a bilinear form

B[u, v] :=

∫
Ω

m∑
p,k=1

(
n∑

i,j=1

dijp (∂xiup)(∂xjvp)−
n∑
i=1

gipk(∂xiuk)vp − apkukvp

)
epdx.

As before, we associate with y the mapping

y :[0, T ]→ H1
0 (Ω)m

[y(t)](x) := y(t, x),
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for (t, x) ∈ QT , and similarly for r, we associate the mapping

r :[0, T ]→ H1
0 (Ω)m

[r(t)](x) := r(t, x).

for (t, x) ∈ QT . Fixing v ∈ H1
0 (Ω)m, we multiply system (2.11) by v and integrate

the divergence term by parts to get

∫
Ω

(
d

dt
y

)T
vdx+B[y, v] =

∫
Ω

rTvdx, ∀ t ∈ (0, T ) (2.15)

and hence, defining q0 :=
∑m

p=1

(
rp −

∑m
k=1

(∑n
i=1 g

i
pk∂xiyk − apkyk

))
ep and qj :=∑m

p=1

(∑n
i=1 d

ij
p (∂xiyp)

)
ep for j ∈ {1, . . . , n}, we have

∂ty = q0 +
n∑
j=1

∂xjq
j in QT .

Hence, by (2.12) and (2.13) in Theorem 2.2.5, we have that ∂ty ∈ H−1(Ω)m. Further-

more, using (2.13), we have

||∂ty||H−1(Ω)m ≤

(
n∑
i=0

||qi||2L2(Ω)m

)1/2

≤ C
(
||y||H1

0 (Ω)m + ||r||L2(Ω)m

)
,

for C := C(D,G,A) > 0, where D,G and A are given in (2.11). This allows us to

express (2.15) as 〈
d

dt
y, v

〉
+B[y, v] =

∫
Ω

rTvdx,

and motivates the following definition.

Definition 2.3.1. Suppose r ∈ L2(QT )m, y0 ∈ L2(Ω)m. A function y ∈ L2((0, T );H1
0 (Ω))m∩
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H1((0, T );H−1(Ω))m is said to be a weak solution of system (2.11) provided that for

every v ∈ H1
0 (Ω)m and almost every t ∈ [0, T ]

(i) 〈 d
dt

y, v〉+B[y, v] =
∫

Ω
rTvdx, and

(ii) y(0) = y0,

where the second equality makes sense thanks to Theorem 2.2.9.

We follow the so-called Galerkin method to state existence of a weak solution. We

begin by constructing a sequence of weak solutions.

Theorem 2.3.2. [16, Theorem 1, Section 7.1.2] For k ∈ N, assume the functions

wk := wk(x) are smooth, {wk}∞k=1 is an orthogonal basis for H1
0 (Ω)m and furthermore

assume {wk}∞k=1 is an orthonormal basis for L2(Ω)m. Then, for each i ∈ N, there

exists a unique yi : [0, T ]→ H1
0 (Ω) of the form

yi(t) :=
i∑

k=1

dki (t)wk

for t ∈ [0, T ] and k ∈ {1, . . . , i}, where

dki (0) =

∫
Ω

(y0)Twkdx

and ∫
Ω

(
d

dt
yi

)T
wkdx+B[yi, wk] =

∫
Ω

rTwkdx, (2.16)

for t ∈ [0, T ] and k ∈ {1, . . . , i}.

Similarly to the energy estimate derived formally in (2.4), we have the following

result concerning the above sequence of weak solutions.
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Theorem 2.3.3. [16, Theorem 2, Section 7.1.2] There exists C := C(Ω, T,D,G,A) > 0

such that

max
0≤t≤T

||yi(t)||L2(Ω)m + ||yi||L2((0,T );H1
0 (Ω))m∩H1((0,T );H−1(Ω))m

≤ C
(
||r||L2((0,T );L2(Ω))m + ||y0||L2(Ω)m

)
for m ∈ N.

Thanks to Theorems 2.3.2 and 2.3.3, one can explicitly construct a weak solution

to system (2.11).

Theorem 2.3.4. [16, Theorem 3, Section 7.1.2] There exists a weak solution to

system (2.11).

Owing to Theorem 2.2.9 and Grönwall’s integral inequality, the following is en-

sured.

Theorem 2.3.5. [16, Theorem 4, Section 7.1.2] A weak solution of system (2.11) is

unique.

2.4 Higher parabolic regularity

Next, we state regularity results for the weak solution of system (2.11) which will be

essential in the work to follow (cf. Chapter 5).

Theorem 2.4.1. [16, Theorem 5, Subsection 7.1.3] Assume y0 ∈ H1
0 (Ω)m and r ∈

L2(QT )m; suppose that y ∈ L2((0, T );H1
0 (Ω))m ∩ H1((0, T );H−1(Ω))m is the weak

solution of system (2.11). Then in fact

y ∈ L2((0, T );H2(Ω))m ∩ L∞((0, T );H1
0 (Ω))m ∩H1((0, T );L2(Ω))m
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and we have the estimate

||y||L2((0,T );H2(Ω))m∩L∞((0,T );H1
0 (Ω))m∩H1((0,T );L2(Ω))m ≤ C

(
||r||L2((0,T );L2(Ω))m + ||y0||H1

0 (Ω)m

)
,

where C := C(Ω, T,D,G,A). If, in addition, y0 ∈ H2(Ω)m and r ∈ H1((0, T );L2(Ω))m,

then

y ∈ L∞((0, T );H2(Ω))m ∩H2((0, T );H−1(Ω))m

and

d

dt
y ∈ L∞((0, T );L2(Ω))m ∩ L2((0, T );H1

0 (Ω))m,

with the estimate

ess sup
0≤t≤T

(
||y||H2(Ω)m +

∥∥∥∥ ddty
∥∥∥∥
L2(Ω)m

)
+ ||y||H1((0,T );H1

0 (Ω))m∩H2((0,T );H−1(Ω))m

≤ C
(
||r||L2((0,T );L2(Ω))m + ||y0||H2(Ω)m

)
.

Under certain conditions, one can expect an even higher regularity for the weak

solutions of system (2.11). We have the following regularity result.

Theorem 2.4.2. [16, Theorem 6, Subsection 7.1.3] For d ∈ N, assume y0 ∈ H2d+1(Ω)m,

r ∈ L2((0, T );H2d(Ω))m∩Hd((0, T );L2(Ω))m, and assume that y ∈ L2((0, T );H1
0 (Ω))m∩



2.5. SOME SPARSE MATRIX THEORY 20

H1((0, T );H−1(Ω))m is the weak solution of system (2.11). Suppose also that the fol-

lowing compatibility conditions hold:



g0 := y0 ∈ H1
0 (Ω)m

g1 := r(0)− Lg0 ∈ H1
0 (Ω)m

...

gd := dd−1r
dtd−1 (0)− Lgd−1 ∈ H1

0 (Ω)m.

Then y ∈ L2((0, T );H2d+2(Ω))m ∩Hd+1((0, T );L2(Ω))m and we have the estimate

||y||L2((0,T );H2d+2(Ω))m∩Hd+1((0,T );L2(Ω))m ≤ C
(
||r||L2((0,T );H2d(Ω))m∩Hd((0,T );L2(Ω))m

+||y0||H2d+1(Ω)m
)
. (2.17)

2.5 Some sparse matrix theory

When studying the invertibility of certain linear operators of interest, we are faced

with studying the invertibility of matrices associated to coupled parabolic PDEs of

interest (cf. Section 4.4). By nature of their construction, these matrices are sparse.

In this section, we describe an algorithm that can be used to decompose a sparse

matrix into block triangular form. Importantly, this algorithm can be applied to

matrices with symbolic entries as it only makes use of the placement of zero entries

in the matrix.

Given a matrix P ∈Mq×r(R), consider the bipartite graph associated to P given

by the triple G(P ) := (R,C,E), where R := {r1, . . . , rq} is the set of row vertices

associated to P , C := {c1, . . . , cr} is the set of column vertices associated to P , and
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E denotes the set the edges (ri, cj) associated to every nonzero entry pij of P , for

i ∈ {1, . . . , q} and j ∈ {1, . . . , r}. We have the following definitions, as in [7].

Definition 2.5.1. A matching M ⊂ E in G(P ) is such that the edges in M have

no common vertices. We define the cardinality of M as the number of edges in M .

A maximum matching is a matching with maximum cardinality. Furthermore, M

is said to be column-perfect if every column vertex in C is matched; it is said to be

row-perfect if every row vertex in R is matched; and it is said to be perfect if it is both

column-perfect and row-perfect. A vertex vi is said to be matched with respect to M

if there exists (vi, vj) ∈M for appropriate indices i, j.

Definition 2.5.2. The structural rank of a matrix P ∈ Mq×r(R) is the cardinality

of a maximum matching M ⊂ E in G(P ).

Definition 2.5.3. For an appropriate index i, let either vi = ri or vi = ci. For

k ∈ N∗, a walk is a sequence of (possibly repeated) vertices (vi)
k
i=0 such that (vi, vi+1)

is an edge for i ∈ {1, . . . , k−1}. An alternating walk is a walk with every second edge

belonging to M . An alternating path is an alternating walk with no repeated vertices.

Definition 2.5.4. Let M be a maximum matching in G(P ) with row set R and

column set C. We define the following sets of vertices with respect to M :

(i) V R := {row vertices reachable by alternating paths from some unmatched row};

(ii) HR := {row vertices reachable by alternating paths from some unmatched column};

(iii) V C := {column vertices reachable by alternating paths from some unmatched row};

(iv) HC := {column vertices reachable by alternating paths from some unmatched column};
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(v) SR := R \ (V R ∪HR), and;

(vi) SC := C \ (V C ∪HC).

It was proven in [13] that V R, HR and SR are pairwise disjoint, and also that V C,

HC and SC are pairwise disjoint. We demonstrate these definitions on an example.

Example 2.5.5. Consider the matrix P ∈ M4×3(R) and its bipartite graph G(P )

given by

P =



a11 a12 0

0 0 a23

0 a32 0

a41 0 a43



R

C

Let M1 := {(r1, c1), (r2, c3), (r3, c2)} and M2 := {(r1, c1), (r3, c2), (r4, c3)} be two match-

ings in G(P ). Note that these are maximal matchings.

R

C

Maximum matching M1

R

C

Maximum matching M2

Hence, M1 and M2 are column-perfect, and the structural rank of A is 3. Note that

the structural rank is independent of the weights of the edges. For matching M1, an
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alternating path is given by the sequence r4, c1, r1, c2, r3. Furthermore, for matching

M1, we have V R := {r1, r2, r3, r4} and V C := {c1, c2, c3}. •

In the above example, the structural rank of P is equal to the rank of P . It is

easily deduced that the structural rank of a matrix inMq,r(R) is an upper bound on

the rank of that matrix, and is never greater than min{q, r}. We arrive at the fol-

lowing important result, which is identified in literature as the Dulmage-Mendelsohn

decomposition, which can be deduced from [13, 28].

Theorem 2.5.6. Let P ∈ Mq×r(R), and let M be a maximum matching in G(P ).

Then, one can permute the rows and columns of P to obtain the following block-

triangular form (which we refer to as coarse decomposition):



P11 P12 P13 P14

0 0 P23 P24

0 0 0 P34

0 0 0 P44


,

where

(i) (P11, P12) is the underdetermined part of the matrix (i.e., more rows than columns),

is generated by (ri, ci) ∈ HR×HC, and has row-perfect matching;

(ii)

(
P34

P44

)
is the overdetermined part of the matrix (i.e., more columns than

rows), is generated by (ri, ci) ∈ V R× V C, and has column-perfect matching;

(iii) P23 is generated by (ri, ci) ∈ SR× SC, and;
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(iv) P12, P23, P34 are square matrices with nonzero diagonal, and hence have perfect

matchings (i.e., they are of maximal structural rank).

Moreover, P12, P23, P34 can be further decomposed into block-triangular form with

nonzero diagonal (which we refer to as fine decomposition). The structural rank of P

is given by the sum of the structural ranks of P12, P23, P34.

Remark 2.5.7. If P is overdetermined, then (P11, P12) will be present only if P

does not have a column-perfect matching. Similarly, if P is underdetermined, then

(P34, P44) will appear only if P does not have a row-perfect matching. In both of these

cases, the presence of P23 depends on the nonzero structure of P . If P is square,

non-symmetric and has a perfect maximum matching, then its coarse decomposition

will consist only of P23. •

Remark 2.5.8. It was proven in [13] that the Dulmage-Mendelsohn decomposition

is independent of the choice of maximum matching in G(P ). •

We are now ready to study system (2.11) under the framework of control systems,

in the sense that we “select” the forcing term r to drive the system to a desired final

state in some time T .
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Chapter 3

Problem Statement

For QT := (0, T ) × Ω and ΣT := (0, T ) × ∂Ω, we revisit the system consisting of m

second-order parabolic PDEs given by system (2.11). In Theorem 2.3.4, it was stated

that for any initial condition y0 ∈ L2(Ω)m and r ∈ L2(QT )m, system (2.11) admits a

weak solution in L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m.

3.1 The control problem

We now recast system (2.11) as a control system, where r = Bu with u ∈ L2(QT )c

being control inputs to be chosen, and B ∈Mm×c(R), with 0 < c ≤ m, yielding


∂ty = div(D∇y) +G · ∇y + Ay +Bu in QT

y = 0 on ΣT

y(0, ·) = y0(·) in Ω.

(3.1)

We associate to the control system (3.1) the operator

L(y) := − (div(D∇) +G · ∇+ A) (y), (3.2)
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Let us now introduce our objectives that we aim to achieve by selecting appropriate

control inputs. We have the following notions of controllability for system (3.1).

Definition 3.1.1. We say that system (3.1) is null controllable in time T if for

every initial condition y0 ∈ L2(Ω)m, there exists a control u ∈ L2(QT )c such that the

solution y ∈ L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m to (3.1) satisfies

y(T ) = 0 in Ω.

Definition 3.1.2. We say that system (3.1) is approximately controllable in time T

if for every ε > 0, for every initial condition y0 ∈ L2(Ω)m and for every yT ∈ L2(Ω)m,

there exists a control u ∈ L2(QT )c such that the solution y ∈ L2((0, T );H1
0 (Ω))m ∩

H1((0, T );H−1(Ω))m to (3.1) satisfies

||y(T )− yT ||2L2(Ω)m ≤ ε.

In the theory of control of PDEs, one encounters two prominent types of control:

internal (or distributed) control; and boundary control. As the names suggest, dis-

tributed control refers to the case where supp(u) ⊂ Ω which is nonempty, whereas

boundary control refers to the case where supp(u) ⊂ ∂Ω, and hence the controls are

defined via the boundary conditions of the PDE. Our work specializes to the for-

mer case: for ω ⊂ Ω nonempty and open, we study the case where r = 1ωBu, and

henceforth, we denote by qT the set (0, T )× ω.

An interesting control problem that arises in many engineering applications

is underactuation, that is, when c < m. Our work will further specialize to this case,

where there are currently very few results for zeroth and first order couplings, for
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arbitrary m and c < m− 1 (even for the case of constant coefficients).

Since we treat the particular case of a system of linear parabolic PDEs with

constant coefficients (constant in space and time), we are easily able to ascertain

approximate controllability of system (3.1) from its null controllability.

Theorem 3.1.3. [10, Theorem 2.45] Assume that for every T > 0, the control sys-

tem (3.1) is null controllable in time T . Then, for every T > 0, system (3.1) is

approximately controllable in time T .

Proof. For t ≥ 0, we associate to (3.1) the one-parameter family S(t) of continuous

linear operators from L2(Ω)m into L2(Ω)m which verify



S(0) = Id;

S(t1 + t2) = S(t1) ◦ S(t2), ∀ t1, t2 ∈ [0,∞);

lim
t→0+

S(t)x = x, ∀ x ∈ L2(Ω)m, and;

y(t, ·) = S(t)y0(·) +

∫ t

0

S(t− τ)Bu(τ, ·)dτ, ∀ y0 ∈ L2(Ω)m

(3.3)

When (3.3) is verified, we call S(t) a strongly continuous semigroup of continuous

linear operators on L2(Ω)m associated to L. The existence of such an S associated to L

is shown, for example, in [16, Theorem 5, Subection 7.4.3]. Let T > 0, y0, y1 ∈ L2(Ω)m

and ε > 0. By the third property of S(t) in (3.3), there exists η ∈ (0, T ) such that

||S(η)y1 − y1||L2(Ω)m ≤ ε. (3.4)

We assume (3.1) is null controllable in time η; then, for ȳ satisfying (3.1) with initial
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condition ȳ(0, ·) = S(T − η)y0(·), there exists ū ∈ L2((0, η);L2(Ω))c such that

ȳ(η, ·) = S(η)y1(·).

Indeed, by assuming (3.1) is null controllable in time η, we have that for initial

condition y(0, ·) = S(T − η)y0(·)− y1(·), there exists a control u ∈ L2([0, T ];L2(Ω))c

such that

S(η) ◦ S(T − η)y0(·)− S(η)y1(·) +

∫ η

0

S(η − τ)Bu(τ, ·)dτ = 0. (3.5)

If we set

u(t, ·) =


0 for t ∈ [0, T − η];

ū(t−T + η, ·) for t ∈ (T − η, T ),

then we have from (3.5) that

ȳ(η, ·) = S(η) ◦ S(T − η)y0(·) +

∫ η

0

S(η − t)Bu(t, ·)dt

= S(η) ◦ S(T − η)y0(·) + S(η)y1(·)− S(T )y0(·)

= S(η)y1(·).

With this choice of control u, let y be the solution to (3.1) with initial condition

y0 ∈ L2(Ω)m. Then


y(t, ·) = S(t)y0(·) ∀ t ∈ [0, T − η]

y(t, ·) = ȳ(t− T + η) ∀ t ∈ (T − η, T ],
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and as claimed, we have that the solution to (3.1) satisfies

||y(T, ·)− y1(·)||L2(Ω)m ≤ ε

for any y1 ∈ L2(Ω)m.

Remark 3.1.4. For the case where D,G and A are not constant in time, a strongly

continuous semigroup associated to L does not exist. However, one can use a back-

ward uniqueness result for linear parabolic PDEs stated in [19] to arrive at the same

conclusion.

The main controllability theorem of this work is stated next.

Theorem 3.1.5. Suppose Ω ⊂ Rn nonempty, open and bounded. Furthermore, sup-

pose Ω is of class Cr and connected. If

(i) c ≥ max
{⌊

m
2

⌋
+ 1, h

}
, where h := (m− c)(n+ 1), and;

(ii) the matrix C ∈Mh(R) given by

C :=



a(m−c)α1 . . . amα1 g1
(m−c)α1

. . . g1
mα1

. . . gn(m−c)α1
. . . gnmα1

a(m−c)α2 . . . amα2 g1
(m−c)α1

. . . g1
mα1

. . . gn(m−c)α1
. . . gnmα1

...
...

...
...

...
...

a(m−c)αh . . . amαh g1
(m−c)αh . . . g1

mαh
. . . gn(m−c)αh . . . gnmαh


is nonsingular for any {α1, . . . , αh} ⊆ {1, . . . , c} with α1 6= · · · 6= αh, where gkij

is the k-th component of gij, for k ∈ {1, . . . , n} and for i, j ∈ {1, . . . ,m},

then the system (3.1) is null (and hence approximately) controllable in time T .
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Remark 3.1.6. The invertibility of C is not a necessary condition for null controlla-

bility of (3.1), as will become apparent in Lemma 4.4.2. However, the non-singularity

condition above is generic. Furthermore, we have derived a similar null controllability

condition for when c < h: in this case, the condition becomes to verify the invertibil-

ity of a sparse matrix C̃ which contains a block along its diagonal that is identical to

the entries of C, but with size c × c. For example, for m = 5, c = 3 and n = 1, the

sufficient condition for null controllability is that the following matrix be non-singular:

C̃ :=



a41 a51 g41 g51 0 0

a42 a52 g42 g52 0 0

a43 a53 g43 g53 0 0

0 0 a41 a51 g41 g51

0 0 a42 a52 g42 g52

0 0 a43 a53 g43 g53


.

This condition becomes more complicated for larger systems in higher spacial dimen-

sions and, given its sparsity, it is more difficult to conclude that it is generic. We

will discuss this in greater detail in Chapter 4.

The rest of this thesis is devoted to proving the above result.
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Chapter 4

Fictitious control method

This chapter presents a technique that can be used to prove the null controllabil-

ity of the coupled system (3.1) with possibly multiple underactuations (i.e., when

c ≤ m − 1). We first introduce the so-called fictitious control method, developed

in [12], which allows one to bifurcate the null controllability problem into intercon-

nected problems: an analytic control problem, where fictitious controls act on every

equation in the coupled system (3.1); and an algebraic control problem, where there

are possibly many underactuations. For the analytic problem, one can prove a so-

called weighted observability inequality which will help deduce null controllability of

the analytic system. For the algebraic problem, one can pose this underactuated

control problem as an underdetermined system involving differential operators, and,

under some conditions, “invert” one of these operator algebraically. This chapter

focuses on the latter treatment (cf. Chapter 5 for the presentation of a method to

solve the analytic problem).

4.1 Definitions

We begin with some definitions.
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Definition 4.1.1. For n ∈ N∗, let α be a multi-index of length n+ 1. For k, l ∈ N∗,

a linear map B : C∞(qT )k → C∞(qT )l is called a linear partial differential operator

in qT if for every m ∈ N and for every α verifying |α| ≤ m, there exists Aα ∈

C∞(qT ; L (Rk;Rl)) such that for all φ ∈ C∞(qT )k and (t, x) ∈ qT ,

(Bφ)(t, x) =
∑
|α|≤m

Aα(t, x)∂αφ(t, x). (4.1)

If (4.1) is only verified for a fixed m, then we way say that B is of order m. If n = 0

and the above is satisfied, then B is called a linear ordinary differential operator.

Let c,m, k ∈ N and consider the linear partial differential operators


L : C∞(qT )m+c → C∞(qT )m,

N : C∞(qT )k → C∞(qT )m.

Suppose that for (ŷ û)T ∈ C∞(qT )m+c and ũ ∈ C∞(qT )k, the linear equation

L
(
(ŷ û)T

)
= N (ũ) (4.2)

is of interest, where ũ is given and (ŷ û)T are the unknowns. We characterize the

solvability of (4.2).

Definition 4.1.2. We say that the linear equation (4.2) is algebraically solvable in

qT if there exists a linear partial differential operator B : C∞(qT )k → C∞(qT )m+c such

that

L ◦ B = N , (4.3)
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that is, B(ũ) is a solution to (4.2) for every ũ ∈ C∞(qT )k. If k = m and N =

IdC∞(qT )m, then we call B the right inverse of L. For L and N linear ordinary differen-

tial operators, if there exists a linear ordinary differential operator B satisfying (4.3),

then we say that (4.2) is algebraically solvable.

In other words, we wish to find B such that the following diagram is commutative:

C∞(qT )m+c L // C∞(qT )m

C∞(qT )k
N

77

B

OO
.

4.2 Motivation: the linear-time-varying example

An illuminating example of an algebraically solvable equation is the general linear

time-variant ordinary control system under the so-called Silverman-Meadows (con-

trollability) condition.

Example 4.2.1. For times 0 < T0 < T1, consider the linear time-varying control

system given by

ẋ = A(t)x+B(t)u, t ∈ [T0, T1] (4.4)

where A : (T0, T1) → Mm(R) denotes an element of L∞((T0, T1);Mm(R)), B :

(T0, T1) → Mm×c(R) denotes an element of L∞((T0, T1);Mm×c(R)), and the state

and control at a time t ∈ [T0, T1] are x(t) ∈ Rm and u(t) ∈ Rc, respectively. We

define by induction on i a sequence of maps Bi ∈ C∞([T0, T1];Mm×c(R)) by


B0(t) := B(t),

Bi(t) := Ḃi−1(t)− A(t)Bi−1(t).

(4.5)
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Regarding the algebraic solvability of (4.4), we have the following theorem, which is

a reformulation of [10, Theorem 1.18].

Theorem 4.2.2. Assume that, for some t̄ ∈ [T0, T1],

Span{Bi(t̄)u : u ∈ Rc, i ∈ N} = Rm, (4.6)

which is called the Silverman-Meadows condition for (4.4). Then, there exists ε > 0

and [t0, t1] := [T0, T1] ∩ [t̄− ε, t̄+ ε] such that the linear ordinary differential operator

L : C∞([t0, t1];Rm+c)→ C∞([t0, t1];Rm)

(x, u) 7→ ẋ− A(t)x−B(t)u (4.7)

has a right inverse in [t0, t1], which we denote by B. That is, for any q ∈ C∞([t0, t1];Rm),

(L ◦ B)q = q.

Proof. Let p ∈ N be such that

Span{Bi(t̄)u : u ∈ Rc, i ∈ {0, . . . , p}} = Rm.

By lower-semicontinuity of rank, there exists ε > 0 such that for [t0, t1] = [T0, T1] ∩

[t̄− ε, t̄+ ε],

Span{Bi(t)u : u ∈ Rc, i ∈ {0, . . . , p}} = Rm ∀ t ∈ [t0, t1].

It follows that
∑p

i=0Bi(t)B
T
i (t) is invertible for every t ∈ [t0, t1]. Hence, for j ∈
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{0, . . . , p}, one can define Qj ∈ C∞([t0, t1];Mc×m(R)) by

Qj(t) := BT
j (t)

(
p∑
i=0

Bi(t)B
T
i (t)

)−1

.

One has
p∑
i=0

Bi(t)Qi(t) = IdRm , ∀ t ∈ [t0, t1]. (4.8)

Let x0, x1 ∈ Rm, and let γ0, γ1 ∈ C∞([T0, T1];Rm) be the solution of


γ̇0 = A(t)γ0

γ0(T0) = x0

and 
γ̇1 = A(t)γ1

γ0(T1) = x1,

respectively. Let d ∈ C∞(T0, T1]) be such that


d = 1 on a neighbourhood of [T0, t0] ∈ [T0, T1],

d = 0 on a neighbourhood of [t1, T1] ∈ [T0, T1].

Let Γ ∈ C∞([T0, T1];Rm) be defined by

Γ(t) := d(t)γ0(t) + (1− d(t))γ1(t), ∀ t ∈ [T0, T1].

By construction of Γ, one has

Γ(T0) = x0, Γ(T1) = x1. (4.9)
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Next, define q ∈ C∞([T0, T1];Rm) by

q(t) := −Γ̇(t) + A(t)Γ(t), ∀ t ∈ [T0, T1] (4.10)

= −ḋ(t)γ0(t) + ḋ(t)γ1(t). (4.11)

It follows that q = 0 on a neighbourhood of [T0, t0]∪ [t1, T1] ∈ [T0, T1]. We now define

a sequence of (ui)i∈{0,...,p−1} ⊂ C∞([t0, t1];Rc) by decreasing induction on i:


up−1 := Qp(t)q(t) ∀ t ∈ [t0, t1],

ui−1 := −u̇i(t) +Qi(t)q(t),∀ i ∈ {1, . . . , p− 1}, ∀ t ∈ [T0, T1].

(4.12)

We define

x(t) :=

p−1∑
i=0

Bi(t)ui(t)

and

u(t) := u̇0(t)−Q0(t)q(t),

for all t ∈ [t0, t1]. For these constructions, the right inverse of L in [t0, t1] is given by

B(q) := (x, u). (4.13)

Indeed, for t ∈ [t0, t1] we have
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L(x, u) = ẋ− Ax−Bu

=

p−1∑
i=0

(
Ḃiui +Biu̇i − ABiui

)
−B (u̇0 −Q0q)

=

p−1∑
i=1

(
Ḃiui +Biu̇i − ABiui

)
+ Ḃ0u0 − AB0u0 +BQ0q.

By (4.5), we have
p−1∑
i=1

Ḃiui =

p−1∑
i=1

(Bi+1 + ABi)ui.

Hence, by (4.12) and since B0 := B, we have

L(x, u) =

p−1∑
i=1

(Bi+1ui +Biu̇i) + Ḃ0u0 − AB0u0 +B0Q0q

=

p−1∑
i=1

(Bi+1ui −Biui−1 +BiQiq) + Ḃ0u0 − AB0(t)u0 +B0Q0q

=

p−1∑
i=1

BiQiq +Bpup−1 −B1u0 + Ḃ0u0 − AB0u0 +B0Q0q.

Once again employing (4.5), we have

L(x, u) =

p−1∑
i=1

BiQiq +Bpup−1 +B0Q0q,

and it follows from (4.8) that

p−1∑
i=1

BiQiq = q −BpQpq −B0Q0q.
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Hence, using (4.12), we arrive at

L(x, u) = q.

Remark 4.2.3. An important consequence of the algebraic solvability of (4.7) for

N = IdC∞([t0,t1])m is the controllability of (4.4): that is, for every x0, x1 ∈ Rm, there

exists u ∈ L∞((T0, T1);Rc) such that the solution to (4.4) with x(T0) = x0 satisfies

x(T1) = x1. To show this, we extend the solution of (4.7) by zero to [T0, T1]: that is,

we define


u := 0 on [T0, t0] ∪ [t1, T1] and u(t) := u̇0(t)−Q0(t)q(t) ∀ t ∈ (t0, t1)

r := 0 on [T0, t0] ∪ [t1, T1] and r(t) :=

p−1∑
i=0

Bi(t)ui(t) ∀ t ∈ (t0, t1).
(4.14)

Defining the solution of (4.4) as

x(t) := Γ(t) + r(t) ∀ t ∈ [T0, T1],

one has by (4.9) and (4.14) that x(T0) = x0 and x(T1) = x1. Furthermore, by (4.10), (4.14)

and the fact that q = 0 on a neighbourhood of [T0, t0] ∪ [t1, T1] ∈ [T0, T1], it follows

that

ẋ = A(t)x+B(t)u on [T0, t0] ∪ [t1, T1]. (4.15)

Next, we verify that (4.15) is satisfied on (t0, t1). Since (4.7) is algebraically solvable
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for N = IdC∞([t0,t1])m, then we have that for B defined in (4.13),

(L ◦ B) q = q;

hence for t ∈ (t0, t1) and r, u defined in (4.14), we have that L ((r, u) q) = q. It follows

from (4.10) that for t ∈ (t0, t1),

L(x, u) = L ((Γ + r, u) q)

= Γ̇− AΓ + q

= 0.

Hence, we arrive at the following controllability result for linear time-variant systems.

Corollary 4.2.4. Consider the linear time-variant control system (4.4). Suppose

that there exists an interval [t0, t1] ⊂ [T0, T1] nonempty such that the linear partial

differential operator L given in (4.7) has a right inverse in [t0, t1]. Then (4.4) is

controllable.

•

Remark 4.2.5. The algebraic solvability of the control system (4.4) is related to the

fact that generic underdetermined linear (ordinary and partial) differential operators

have right inverses [20, (B), pg. 150; Theorem, pg. 156]. •

4.3 The fictitious control method

Our goal is to prove null controllability in time T for the control system (3.1), where

there are m coupled parabolic equations and less than m controls. To accomplish this
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for an arbitrary number of controls c ≤ m − 1, our strategy is to divide this control

problem into two separate parts as was done in [12, 14].

4.3.1 Analytic control problem

We consider following control problem: for any ỹ0 ∈ L2(Ω)m, prove the existence of

(ỹ, ũ) a solution of


∂tỹ = div(D∇ỹ) +G · ∇ỹ + Aỹ +N (1ωũ) in QT

ỹ = 0 on ΣT

ỹ(0, ·) = ỹ0(·) in Ω

(4.16)

such that ỹ(T, ·) = 0, where N is a differential operator that is to be determined (cf.

Section 4.4), ũ acts on all equations in (4.16), and we denote by 1ω a smooth version

of the indicator function. Note that (ỹ, ũ) has to be in a suitable space: in particular,

depending on our choice of differential operator N , ũ has to be regular enough and in

the range of N . While these restrictions make solving control system (4.16) slightly

nonclassical, there is hope to finding such a solution since controls appear on every

equation in (4.16). We elaborate on our technique for solving this control problem in

Chapter 5.
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4.3.2 Algebraic control problem

We next consider a different control problem: prove the existence of a solution (ŷ, û)

of 
∂tŷ = div(D∇ŷ) +G · ∇ŷ + Aŷ +Bû+N (1ωũ) in QT

ŷ = 0 on ΣT

ŷ(0, ·) = ŷ(T, ·) = 0 in Ω

(4.17)

where û acts only on the first c equations and B ∈ Mm×c(R) (this should be the

identity matrix, but is not square). The notions of algebraic solvability, as described

in Section 4.1, will be used to resolve this control problem in the next section.

Solving both the analytic and algebraic problems will prove the null controllability

of system (3.1). Indeed, defining

(y, u) := (ỹ − ŷ,−û),

one notices that (y, u) is the solution to (3.1) in a suitable space with y(T, ·) = 0. We

will elaborate on this construction of (y, u) in Chapter 6.

4.4 Algebraic solvability

In this section, we study the algebraic solvability of differential operators correspond-

ing system (4.17) which contains m equations and c controls, for c ∈ {1, . . . ,m− 1}.

To this end, we consider the linear partial differential operator defined by

L
(
(ŷ, û)T

)
:= ∂tŷ − div(D∇ŷ)−G · ∇ŷ − Aŷ −Bû, (4.18)
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which is an underdetermined operator, and we consider N (1ωũ) as a source term,

where N is to be chosen later. One can write system (4.17) as

L
(
(ŷ, û)T

)
= N (1ωũ) ; (4.19)

we study the algebraic solvability of (4.19) in qT . Recall from Definition 4.1.2 that

this is equivalent to proving the existence of a linear partial differential operator

B : C∞(qT )k → C∞(qT )m such that (ŷ, û) = B (1ωũ) for any 1ωũ ∈ C∞(qT )m, and

hence by reason of B being a local operator, (ŷ, û) will have support in qT . With a

slight abuse of notation, from now on we denote the extension by zero of (ŷ, û) to QT

also by (ŷ, û), so that ŷ = 0 on ΣT and ŷ(0, ·) = ŷ(T, ·) = 0 in Ω.

Remark 4.4.1. For simplicity, we formulated the notions of algebraic solvability for

controls in the analytic problem 1ωũ ∈ C∞(qT ), which dictates the regularity of (ŷ, û);

however, we will need to expand the space of controls that we may access to recover

null controllability results for system (4.16). For controls with weaker regularity, we

must additionally show that these controls vanish at times t = 0 and t = T . This

will be explained in detail in Chapter 6. For the time being, assume (ŷ, û) are regular

enough such that L
(
(ŷ, û)T

)
is well-defined. •

As we will see, for our choice of k it is easier to solve the adjoint equation of (4.19).

To this end, we study the adjoint system associated to system (4.17):


−∂tψ̂ = div(D∇ψ̂)−G∗ · ∇ψ̂ + A∗ψ̂ in QT

ψ̂ = 0 on ΣT

ψ̂(T, ·) = ψ̂0(·) in Ω,

(4.20)
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for ψ̂0 ∈ L2(Ω)m.

4.4.1 One underactuation

This section follows the treatment in [14, Subsection 2.1] and is presented here to

contrast the existing technique to treat the null controllability of system (4.17) with

one underactuation and the proposed technique in Subsection 4.4.2, which treats

the case of multiple underactuations. The method presented here succeeds in alge-

braically solving (4.19) by utilizing the first and zeroth order couplings to isolate for

the unknown, and is henceforth referred to as the isolation technique.

Choose k = m; we wish to find a linear partial differential operator B such that

L ◦ B = N , (4.21)

where L is given in (4.18) and N is to be chosen. Note that this is equivalent to

solving the adjoint problem: that is, finding a linear partial differential operator B∗

such that

B∗ ◦ L∗ = N ∗. (4.22)
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We calculate the adjoint of differential operator L: for ψ̂ ∈ L2(QT )m, we have

(
L
(
(ŷ, û)T

)
, ψ̂
)
L2(QT )m

=

(∫∫
QT

m∑
k=1

(
∂tŷψ̂k − div(dk∇ŷk)ψ̂k −

m∑
i=1

(gki · ∇ŷk + akiŷk)ψ̂k

)

+
c∑
l=1

ûlψ̂ldxdt

)

=

∫∫
QT

m∑
k=1

ŷkL∗kψ̂ +
c∑
l=1

ûlL∗m+lψ̂

=
(

(ŷ, û)T ,L∗ψ̂
)
L2(QT )m+c

,

where c = m− 1, and hence

L∗ψ̂ =



− (∂t + div(d1∇)) ψ̂1 +
∑m

j=1 (gj1 · ∇ − aj1) ψ̂j

− (∂t + div(d2∇)) ψ̂2 +
∑m

j=1 (gj2 · ∇ − aj2) ψ̂j
...

− (∂t + div(dm∇)) ψ̂m +
∑m

j=1 (gjm · ∇ − ajm) ψ̂j

ψ̂1

...

ψ̂m−1



. (4.23)

We state the following lemma, which is a reformulation of [14, Theorem 1].

Lemma 4.4.2. The linear partial differential equation (4.22) is algebraically solvable

if there exists an index i0 ∈ {1, . . . ,m− 1} such that

gmi0 6= 0 or ami0 6= 0. (4.24)
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Proof. One need only look at the i0-th entry of L∗ to verify this assertion:

L∗i0ψ̂ = − (∂t + div(di0∇)) ψ̂i0 +
m∑
j=1

(gji0 · ∇ − aji0) ψ̂j

= − (∂t + div(di0∇))L∗m+i0
ψ̂ +

m−1∑
j=1

(gji0 · ∇ − aji0)L∗m+jψ̂

+ (gmi0 · ∇ − ami0) ψ̂m,

which one can use to isolate for the unknown ψ̂m and its spacial derivative:

(gmi0 · ∇ − ami0) ψ̂m = L∗i0ψ̂ + (∂t + div(di0∇))L∗m+i0
ψ̂ −

m−1∑
j=1

(gji0 · ∇ − aji0)L∗m+jψ̂.

(4.25)

Hence, a careful choice of N ∗ yields the desired result: choosing

N ∗ψ̂ :=



ψ̂1

ψ̂2

...

ψ̂m−1

(gmi0 · ∇ − ami0) ψ̂m


,

one can define for φ ∈ C∞(QT )2m−1

B∗φ :=



φm+1

φm+2

...

φ2m−1

φi0 + (∂t + div(di0∇))φm+i0 −
∑m−1

j=1 (gji0 · ∇ − aji0)φm+j
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so that

(B∗ ◦ L∗) ψ̂ = N ∗ψ̂

is verified for every ψ̂ ∈ C∞(QT )m.

4.4.2 Multiple underactuations

We specialize to the case where system (4.17) has more than one underactuations

(i.e., when c < m− 1).

Isolation technique

We begin by employing the technique presented in Subsection 4.4.1 to reveal the

obstructions that limit our ability to deduce algebraic solvability of (4.17). For the

moment, we focus on the simplest case, when c = m− 2. We have

L∗ψ̂ =



− (∂t + div(d1∇)) ψ̂1 +
∑m

j=1 (gj1 · ∇ − aj1) ψ̂j

− (∂t + div(d2∇)) ψ̂2 +
∑m

j=1 (gj2 · ∇ − aj2) ψ̂j
...

− (∂t + div(dm∇)) ψ̂m +
∑m

j=1 (gjm · ∇ − ajm) ψ̂j

ψ̂1

...

ψ̂m−2



.

We define a natural necessary condition for algebraic solvability of (4.17) as in

Lemma (4.4.2): without loss of generality, suppose there exists indices i0 ∈ {1, . . . ,m−
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2} and i1 ∈ {1, . . . ,m− 1} such that


g(m−1)i0 6= 0 or a(m−1)i0 6= 0,

gmi1 6= 0 or ami1 6= 0.

One immediately encounters the issue that none of the entries of L∗ can be used

to isolate for the individual unknowns ψ̂m−1 and ψ̂m (and their spacial derivatives).

Instead, we recover the system of equations



(
g(m−1)i0 · ∇ − a(m−1)i0

)
ψ̂m−1 + (gmi0 · ∇ − ami0) ψ̂m

= L∗i0ψ̂ + (∂t + div(di0∇))L∗m+i0
ψ̂

−
m−2∑
j=1

(gji0 · ∇ − aji0)L∗m+jψ̂,

(
g(m−1)i1 · ∇ − a(m−1)i1

)
ψ̂m−1 + (gmi1 · ∇ − ami1) ψ̂m

= L∗i1ψ̂ + (∂t + div(di1∇))L∗m+i1
ψ̂

−
m−2∑
j=1

(gji1 · ∇ − aji1)L∗m+jψ̂.

(4.26)

While one can define an appropriate N ∗ using (4.26) such that (4.17) is algebraically

solvable, in general this N ∗ will have entries involving both ψ̂m−1 and ψ̂m (and their

spacial derivatives). Such an N ∗ introduces an unresolvable issue in Chapter 5 (see,

for example, the proof of Proposition 5.0.9, where ψ̃ would be replaced by N ∗ψ̃

in (5.42); hence, one would need to use a Poincaré-type inequality similar to the one

in Theorem 2.2.7 involving the differential operator N ∗, but with the righthand side

replaced by C||N ∗y||Lp(Ω), for p = 2). Alas, we are not aware of a procedure through

which one can hope to recover a generic sufficient condition for algebraic solvability
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of (4.17) using this technique.

Prolongation technique

Inspired by [12, Section 3], we present a new method to prove the algebraic solvability

of (4.22) by means of prolongation: that is, since L∗ψ̂ = N ∗ψ̂ is an overdetermined

system (i.e., there are m + c equations and only m unknowns), we can expect to

differentiate each equation a sufficient amount of times with respect to all of the

spacial variables in order to gain more equations than “algebraic unknowns”, which

we make more precise in what follows. An inversion technique, which is motivated

by [20, Section 2.3.8], is then used to recover the unknowns from the overdetermined

system.

We consider system (4.17) for an arbitrary c ∈ {1, . . . ,m−2} and define the linear

partial differential operator

N ζ :=



ζ1

ζ2

...

ζm


,

for ζ ∈ C∞(QT )m. With this choice of N , it suffices to consider differential operators

L̄ : C∞(QT )m → C∞(QT )m−c and N̄ : C∞(QT )m−c → C∞(QT )m−c defined by

L̄ζ :=



(∂t − div(dc+1∇)) ζc+1 −
∑m

i=1

(
g(c+1)i · ∇+ a(c+1)i

)
ζi

(∂t − div(dc+2∇)) ζc+2 −
∑m

i=1

(
g(c+2)i · ∇+ a(c+2)i

)
ζi

...

(∂t − div(dm∇)) ζm −
∑m

i=1 (gmi · ∇+ ami) ζi
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and

N̄ ζ :=


ζc+1

...

ζm


to prove algebraic solvability of (4.21). Indeed, with our choice of N we can write

system (4.17) as

L(ŷ, û) = 1ωũ, (4.27)

where û acts on the first c equations; also, finding a partial linear differential operator

B satisfying (4.21) is equivalent to finding B such that



ŷ1 = B1(1ωũ),

...

ŷm = Bm(1ωũ),

û1 = Bm+1(1ωũ),

...

ûc = Bm+c(1ωũ).

(4.28)

Hence, from (4.18), (4.27) and (4.28), we have for l ∈ {1, . . . , c} that the last c entries

of B must satisfy

Bm+l(1ωũ) = (∂t − div(dl∇)) ŷl −
m∑
i=1

(gli · ∇ − ali) ŷi − 1ωũl

= (∂t − div(dl∇))Bl(1ωũ)−
m∑
i=1

(gli · ∇ − ali)Bi(1ωũ)− 1ωũl,

(negatives are off) if (4.21) is to be verified. Thus, one need only to find a B̄ :
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C∞(QT )c → C∞(QT )m to satisfy the first m lines of (4.28), as the last c lines of (4.28)

are completely determined by the first m lines and the respective entry of ũ; conse-

quentially, for our choice of N , the algebraic solvability of (4.21) is equivalent to the

algebraic solvability of

L̄ ◦ B̄ = N̄ . (4.29)

We study the adjoint equation of (4.29),

B̄∗ ◦ L̄∗ = N̄ ∗, (4.30)

and we call B̄∗ the left inverse of L̄∗. Similar to (4.23), we have for ψ̂ ∈ C∞(QT )m−c

that

L̄∗ψ̂ =



∑m
j=c+1 (gj1 · ∇ − aj1) ψ̂j

...∑m
j=c+1 (gjc · ∇ − ajc) ψ̂j

(−∂t − div(dc+1∇)) ψ̂c+1 +
∑m

j=c+1

(
gj(c+1) · ∇ − aj(c+1)

)
ψ̂j

...

(−∂t − div(dm∇)) ψ̂m +
∑m

j=c+1 (gjm · ∇ − ajm) ψ̂j


and

N̄ ∗ψ̂ =


ψ̂c+1

...

ψ̂m

 .

Hence, the algebraic solvability of (4.29) is equivalent to proving the existence of a

differential operator B̄∗ : C∞(QT )m → C∞(QT )c such that for every φ ∈ C∞(QT )m,
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if ψ̂ ∈ C∞(QT )m−c is a solution of



m∑
j=c+1

(gj1 · ∇ − aj1) ψ̂j = φ1

...

m∑
j=c+1

(gjc · ∇ − ajc) ψ̂j = φc

(−∂t − div(dc+1∇)) ψ̂c+1 +
m∑

j=c+1

(
gj(c+1) · ∇ − aj(c+1)

)
ψ̂j = φc+1

...

(−∂t − div(dm∇)) ψ̂m +
m∑

j=c+1

(gjm · ∇ − ajm) ψ̂j = φm

(4.31)

then

B̄∗φ =


ψ̂c+1

...

ψ̂m

 . (4.32)

An examination of (4.31) reveals that, in general, there are m distinct equations

and only m − c unknowns, them being ψ̂c+1, . . . , ψ̂m. Let us call ψ̂c+1, . . . , ψ̂m the

analytic unknowns. If we view (4.31) as a linear algebraic system by treating every

(time and spacial) derivative of ψ̂l as an independent algebraic unknown, for l ∈

{c+1, . . . ,m}, then there are many more algebraic unknowns than distinct equations.

Under this algebraic viewpoint, one can hope to prolong (or differentiate with respect

to every spacial variable) each equation of (4.31) to introduce many new equations

and a few new algebraic unknowns (owing to the symmetry property of mixed partial

derivatives). Repeating this process a sufficient amount of times, one can hope that
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the linear algebraic system eventually becomes overdetermined, that is, the number of

distinct equations eventually exceeds the number of algebraic unknowns. Proceeding

this way, we begin by counting the number of derivatives up to the highest order

contained in a prolonged version of system (4.31), which is an adaptation of the

method used in [12, Subection 3.2.2].

Lemma 4.4.3. Let p ∈ N denote the number of prolongations of (4.31), and let F (p)

denote the distinct number of derivatives of order less than or equal to p for smooth

enough functions having n variables. Then

F (p) =

(
p+ n

n

)
. (4.33)

Furthermore, denoting by U(p) and by E(p) the number of algebraic unknowns and

the number of equation contained in the prolonged system (4.31), respectively, we have

U(p) = (m− c) (F (p+ 2) + F (p)) , (4.34)

and

E(p) = mF (p). (4.35)

Proof. Let α be a multi-index of length n such that |α| ≤ p: that is, α = (α1, . . . , αn) ∈

Nn, where
∑n

i=1 αi ≤ p. Note that

(α1, . . . , αn) 7→

{
α1 + 1, α1 + α2 + 2, α1 + α2 + α3 + 3, . . . ,

n∑
i=1

αi + n

}

defines a bijection between the set of tuples (α1, . . . , αn) ∈ Nn such that |α| ≤ p and

the set of subsets of {1, 2, . . . , p+n} having n elements. Furthermore, attributing the
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multi-index α to the partial derivative operator ∂α = ∂α1 · · · ∂αn takes into account

the symmetry of mixed partial derivatives, and thus only counts the distinct number

of derivatives of order less than or equal to p. Since the cardinality of the set of

subsets of {1, 2, . . . , p+ n} having n elements is
(
p+n
n

)
, we have (4.33).

Since each analytic unknown contained in system (4.31) has corresponding alge-

braic unknowns of order up to two in space and one time derivative unknown, and

there are m− c analytic unknowns, (4.34) follows.

Since there are m equations, each of which is prolonged p times, and F (p) can be

used to represent the number of distinct equations differentiated with respect to the

multi-index α, (4.35) follows.

Concerning our system (4.31), we have the following lemma.

Lemma 4.4.4. For all m ∈ N>1, n ∈ N∗ and c ∈ {1, . . . ,m − 2} such that c > m
2

,

there exists p ∈ N∗ such that

E(p) > U(p).

Proof. We claim that ∃ p ∈ N∗ such that

c

(
p+ n

n

)
> (m− c)

(
p+ n+ 2

n

)
.

Indeed, we have

(m− c)
(
p+ n+ 2

n

)
= (m− c)(p+ n+ 2)(p+ n+ 1)

(p+ 2)(p+ 1)

(p+ n)!

p!n!

and

c

(
p+ n

n

)
= c

(p+ n)!

p!n!
.
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First, we show that for fixed m and n, ∃ p and c such that

(p+ n+ 2)(p+ n+ 1)

(p+ 2)(p+ 1)
<

c

(m− c)
; (4.36)

Indeed, since m ∈ N>1, we can choose c > m
(p+2)(p+1)

(p+n+2)(p+n+1)
+1

to verify (4.36). Note

that (p+2)(p+1)
(p+n+2)(p+n+1)

→ 1 from below as p → ∞, and thus c > m
2

is necessary for

E(p) > U(p). Since m ∈ N∗ and c ∈ {1, . . . ,m− 2}, c > m
2

is also sufficient since one

can always choose p ∈ N large enough to verify (4.36) when c =
⌊
m
2

⌋
+ 1.

Remark 4.4.5. Lemma 4.4.4 shows that for a sufficiently regular solution ψ̂ to sys-

tem (4.20), if c ≥
⌊
m
2

⌋
+ 1, then there exists p ∈ N such that we can prolong sys-

tem (4.31) p times and study the resulting overdetermined linear algebraic system.

One can argue the appropriate regularity of ψ̂ as follows: without loss of generality,

we can take ψ̂0 ∈ Hp+1(Ω)m by a classical density argument; then, ones applies The-

orem 2.4.2. As we will see, under certain conditions, one may hope to extract the

analytic unknowns ψ̂c+1, . . . , ψ̂m from the overdetermined algebraic system. Hence,

one can expect the left inverse of the differential operator associated to the prolonged

algebraic version of (4.31) to be of maximum differential order p+2 in space and 1 in

time. Thus, by (4.28) we require the analytic system’s controls, 1ωũ, to accommodate

p+ 2 spacial differentiations. These highly regular 1ωũ are constructed in Chapter 6

(cf. Proposition 6.2.1). •

We finish this chapter by proving the following important result.

Proposition 4.4.6. Given m,n and c in N∗ with c ≤ m, if

(i) c ≥ max
{⌊

m
2

⌋
+ 1, h

}
, where h := (m− c)(n+ 1), and;
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(ii) the matrix C ∈Mh(R) given by

C :=



a(m−c)α1 . . . amα1 g1
(m−c)α1

. . . g1
mα1

. . . gn(m−c)α1
. . . gnmα1

a(m−c)α2 . . . amα2 g1
(m−c)α1

. . . g1
mα1

. . . gn(m−c)α1
. . . gnmα1

...
...

...
...

...
...

a(m−c)αh . . . amαh g1
(m−c)αh . . . g1

mαh
. . . gn(m−c)αh . . . gnmαh


is nonsingular for any {α1, . . . , αh} ⊆ {1, . . . , c} with α1 6= · · · 6= αh, where gkij

is the k-th component of gij, for k ∈ {1, . . . , n} and for i, j ∈ {1, . . . ,m},

then (4.21) is algebraically solvable in qT .

Proof. Without loss of generality, for a given m, n and c, we fix a p large enough

such that E(p) > U(p). Consider the overdetermined matrix L̄∗ ∈ ME(p)×U(p)(R)

with entries equal to the coefficients multiplying the algebraic unknowns generated

by prolonging system (4.31) p times. We denote the vector containing the p-times

prolonged unknowns by ẑ ∈MU(p)×1(L2(QT )), where the necessary regularity of ψ̂ is

discussed in Remark 4.4.5. Similarly, we denote the p-times prolonged version of φ by

Φ ∈ ME(p)×1(C∞(QT )). Hence, we can write the algebraic version of the prolonged

system (4.31) as

L̄∗ẑ = Φ. (4.37)

The counterpart of solving (4.31) and (4.32) simultaneously for (4.37) is to find a

P ∈M(m−c)×E(p) such that

PL̄∗ẑ =


ψ̂c+1

...

ψ̂m

 , (4.38)
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with P being the algebraic version of B̄∗. We apply Theorem 2.5.6 to L̄∗ so that for Sσ̃

and Sσ the left and right permutation matrices generated by the Dulmage-Mendelsohn

decomposition, respectively, we have

Sσ̃L̄
∗Sσ =



L̄∗11 L̄∗12 L̄∗13 L̄∗14

0 0 L̄∗23 L̄∗24

0 0 0 L̄∗34

0 0 0 L̄∗44


, (4.39)

where L̄∗34 is square and perfectly matched (i.e., it is of maximal structural rank). We

must also permute ẑ by S−1
σ .

Our next steps are as follows. First, we study the structure of L̄∗ to argue that

under Sσ̃ and Sσ, every row of C (which appear in L̄∗) is permuted to block L̄∗34

(possibly with some zero entries to the right), for every {α1, . . . , αh} ⊆ {1, . . . , c}

with α1 6= · · · 6= αh. Then, we argue that the unknowns ψ̂c+1, . . . , ψ̂m contained in ẑ

are being multiplied by the block L̄∗34 (and in particular, the rows of C). Immediately

following the end of this proof, we supplement our explanations with Example 4.40.

Furthermore, in Remark 3.1.6 we give some insight into the (possibly non-generic)

null controllability condition for the case where c < h.

By construction of L̄∗, we have that the columns of L̄∗ corresponding to any

algebraic unknown involving a time derivative are very sparse. Indeed, each of these

columns has only one nonzero entry (which is−1). This occurs since we do not prolong

system (4.31) with respect to time, and hence each time derivative term appears in one

(and only one) equation within the prolonged version of system (4.31). Furthermore,

the row associated to any one of these nonzero column entries must correspond to
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the j-th equation (or its prolonged version) in system (4.31), for j ∈ {c + 1, . . . ,m}.

Hence, the coefficients corresponding to the j-th equation (or its prolonged version)

in system (4.31) lie in this row, for j ∈ {c+ 1, . . . ,m}.

We claim that there exists a maximum matching M in G(L̄∗) that contains all

of the edges (ri, ci) corresponding to these −1 entries. Indeed, for any matrix P , a

matching in G(P ) is a subset of nonzero entries of P such that no two of which belong

to the same row or column. Hence, since the columns of L̄∗ corresponding to any

algebraic unknown involving a time derivative contain only one nonzero entry, it is

easy to deduce that there exists a maximum matching M in G(L̄∗) that be chosen

to include these nonzero entries. Importantly, this choice will omit any other edges

associated to coefficients corresponding to the j-th equation (or its prolonged version)

in system (4.31), for j ∈ {c+ 1, . . . ,m}, from the matching, and the rows containing

these coefficients will be matched (see Example 4.4.7). Furthermore, we can choose at

random enough edges which make M maximal; due to the structure of L̄∗, all of these

edges will correspond to coupling coefficients of the j-th equation (or its prolonged

version) in system (4.31), for j ∈ {1, . . . , c}. Without loss of generality, we associate

Sσ̃ and Sσ to this choice of maximum matching.

With our choice of M , we now study vertex sets V R and V C. Recall from Sec-

tion 2.5 that

V R := {row vertices reachable by alternating paths from some unmatched row},

V C := {column vertices reachable by alternating paths from some unmatched row},

where an alternating path is a sequence of (row or column) vertices (vi)
k
i=0 such that

(v2i, v2i+1) ∈ E and, additionally, (v2i+1, v2(i+1)) ∈M and no vertices are repeated, for
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k ∈ N∗. By our choice of M and since L̄∗ is overdetermined, there exists unmatched

rows, and any unmatched row must correspond to the j-th equation (or its prolonged

version) in system (4.31), for j ∈ {1, . . . , c}. One deduces from the structure of L̄∗ that

these unmatched rows have nonzero entries which lie in matched columns, and hence

V R and V C are not empty. Furthermore, these matched columns cannot be those

corresponding to algebraic unknowns involving a time derivative. By the structure of

L̄∗, all row vertices corresponding to the j-th equation in system (4.31) are reachable

by an alternating path, for all j ∈ {1, . . . , c}. This is a consequence of equations in

system (4.31) having first and zero-order coupling coefficients and since L̄∗ is gener-

ated by prolongations with respect to spacial variables. Hence, rows corresponding

to the j-th equation (or its prolonged version) in system (4.31) have corresponding

row vertices contained in V R, for j ∈ {1, . . . , c}. It follows that columns containing

coupling coefficients have corresponding column vertices contained in V C (the same

search yields the column vertices in V C). Hence, the coefficients that appear in the

j-th equation (or its prolonged version) in system (4.31) are permuted to the blocks

L̄∗34 and L̄∗44, for j ∈ {1, . . . , c}.

By examining system (4.31), one easily deduces that the unknowns ψ̂c+1, . . . , ψ̂m

are being multiplied by either L̄∗34 or L̄∗44. By permuting the rows contained in C (the

ones from the original – and not a prolonged – system (4.31), and hence have the same

number of zero entries appearing only to their right) to the top of L̄∗34, we have that

ψ̂c+1, . . . , ψ̂m are multiplied by L̄∗34. We denote this row permutation on Sσ̃L̄
∗Sσ by

Sσ̃0 . Finally, with a slight abuse of notation, we denote by I various identity matrices
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with appropriate dimensions; with the permutations

Sσ̃1 :=



0 0 I 0

0 0 0 I

I 0 0 0

0 I 0 0


and

Sσ1 :=



0 I 0 0

0 0 I 0

0 0 0 I

I 0 0 0


which permute Sσ̃0Sσ̃L̄Sσ into upper-block triangular form with L̄∗34 being the top

leftmost block, we define

P := C−1I(m−c)×E(p)Sσ̃1Sσ̃0Sσ̃,

which verifies (4.38).

Example 4.4.7. In this example, we consider the algebraic control system given

by (4.17), where we choose m = 5, c = 3, and for simplicity, n = 1. In solving the

algebraic version of (4.30), which is given by (4.38), we study the linear algebraic
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operator obtained by prolonging system (4.31) 3 times given by

L̄∗ =



−a41 −a51 0 0 g41 g51 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−a42 −a52 0 0 g42 g52 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−a43 −a53 0 0 g43 g53 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−a44 −a54 0 −1 g44 g54 d1 0 0 0 0 0 0 0 0 0 0 0 0 0

−a45 −a55 −1 0 g45 g55 0 d2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −a41 −a51 g41 g51 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −a42 −a52 g42 g52 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −a43 −a53 g43 g53 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −a44 −a54 g44 g54 0 −1 d1 0 0 0 0 0 0 0 0 0

0 0 0 0 −a45 −a55 g45 g55 −1 0 0 d2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −a41 −a51 0 0 g41 g51 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −a42 −a52 0 0 g42 g52 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −a43 −a53 0 0 g43 g53 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −a44 −a54 0 0 g44 g54 0 −1 d1 0 0 0 0 0

0 0 0 0 0 0 −a45 −a55 0 0 g45 g55 −1 0 0 d2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −a41 −a51 0 0 g41 g51 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −a42 −a52 0 0 g42 g52 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −a43 −a53 0 0 g43 g53 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −a44 −a54 0 0 g44 g54 0 −1 d1 0

0 0 0 0 0 0 0 0 0 0 −a45 −a55 0 0 g45 g55 −1 0 0 d2



.

(4.40)

In (4.40), we’ve circled a subset of nonzero entries of L̄∗ whose corresponding edges

make up a maximum matching M in G(L̄∗). We’ve chosen M such that it contains

every edge corresponding to a −1 entry of L̄∗.

We now populate the set of edges V R and V C. Note that r13 and r18 are the

only unmatched row vertices; hence, we search for row vertices that are reachable

from r13 and r18 via an alternating path. A crucial observation is that there exists

no alternating paths from these row vertices to the row vertices corresponding to rows

containing −1 entries: indeed, for a walk starting from row 13, since (r13, ci) 6∈ M ,

for i ∈ {7, 8, 11, 12}, the next row vertex rk in the walk must be such that (ci, rk) ∈M ,

for k ∈ {1, . . . , 12, 14, . . . , 20}, hence rk 6= rj for j ∈ {4, 5, 9, 10, 14, 15, 19, 20}; the
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exact same argument holds for a walk starting from row 18. One can easily deduce by

the same reasoning that rj will never be reachable by a (longer) alternating path, for

j ∈ {4, 5, 9, 10, 14, 15, 19, 20}. Furthermore, every other row vertex is reachable by an

alternating path from either r13 or r18! Hence,

V R = {r1, r2, r3, r6, r7, r8, r11, r12, r13, r16, r17, r18},

and it follows that

V C = {c1, c2, c5, c6, c7, c8, c11, c12, c15, c16}.

Hence, we arrive at (possibly after a row permutation)

(
P34

P44

)
=



−a41 −a51 g41 g51 0 0 0 0 0 0

−a42 −a52 g42 g52 0 0 0 0 0 0

−a43 −a53 g43 g53 0 0 0 0 0 0

0 0 −a41 −a51 g41 g51 0 0 0 0

0 0 −a42 −a52 g42 g52 0 0 0 0

0 0 −a43 −a53 g43 g53 0 0 0 0

0 0 0 0 −a41 −a51 g41 g51 0 0

0 0 0 0 −a42 −a52 g42 g52 0 0

0 0 0 0 −a43 −a53 g43 g53 0 0

0 0 0 0 0 0 −a41 −a51 g41 g51

0 0 0 0 0 0 −a42 −a52 g42 g52

0 0 0 0 0 0 −a43 −a53 g43 g53



,
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from which we deduce the null controllability condition stated in Remark 3.1.6. •

Remark 4.4.8. For the case where c < h, one does not have enough equations in

system (4.31) to permute the rows of L̄∗34 and L̄∗44 and construct a square block in

the diagonal of L̄∗34 with zeros only to the right. In this case, we have to expand C

to the next smallest candidate, which will contain zeros (see Example 4.4.7). One

would hope for any m, n and c > m
2

that this expanded C, denoted by C̃, be nonsin-

gular generically. However, due to the fact that L̄∗34 can only be further decomposed

into a block diagonal matrix with nonzero diagonal (see fine decomposition in Theo-

rem 2.5.6), we were not able to prove that this is true in general. Nevertheless, for

small systems with not too severe underactuation in low dimensions (e.g., for m ≤ 20,

(m − c) ≤ 4 and n ≤ 3), we have observed that C̃ be nonsingular generically. Note

that for c ≥ h, we have shown that B will be of differential order 1 in space and

0 in time, so higher regularity of 1ωũ than was proved in [14] is no longer needed.

Although the null controllability condition that C̃ be nonsingular for c < h may not be

generic in some cases, it may still be useful in many engineering applications. Hence,

we continue our treatment for an operator B that is of differential order 0 in time

and at most p+ 2 in space. •
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Chapter 5

A Carleman estimate for the analytic problem

In this chapter, we study the analytic system:


∂tỹ = div(D∇ỹ) +G · ∇ỹ + Aỹ + 1ωũ in QT

ỹ = 0 on ΣT

ỹ(0, ·) = ỹ0(·) in Ω.

(5.1)

The goal of this chapter is to prove that the solution (ỹ, ũ) to the analytic control

system (5.1) satisfies the following so-called weighted observability inequality, which

will help us deduce its null controllability. To this end, we consider the adjoint system

to system (5.1) given by


−∂tψ̃ = div(D∇ψ̃)−G∗ · ∇ψ̃ + A∗ψ̃ in QT

ψ̃ = 0 on ΣT

ψ̃(T, ·) = ψ̃0(·) in Ω,

(5.2)

where ψ̃0 ∈ L2(Ω)m. We state the weighted observability inequality we aim to estab-

lish.
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Proposition 5.0.9. For every ψ̃0 ∈ L2(Ω)m, the solution ψ̃ of system (5.2) satisfies

∫
Ω

∥∥∥ψ̃(0, x)
∥∥∥2

1
dx ≤ Cobs

∫∫
(0,T )×ω0

e−2s1αξ2p+7
∥∥∥ψ̃(t, x)

∥∥∥2

1
dxdt, (5.3)

where Cobs := CT 9eC(1+3T/4+1/T 5) > 0 and ‖ · ‖1 denotes the Euclidean norm. We

call (5.3) a weighted observability inequality, with weight ρ := e−2s1αξ2p+7, for α and

ξ defined below in (5.5) and (5.6), respectively, where s1 := σ(T 5 + T 10) for σ > 0

depending on Ω and ω0.

We utilize the Carleman estimate technique to develop an estimate which will

help us establish the observability inequality stated above. This chapter builds upon

the technique developed in [14, Section 2.2]; in particular, it incorporates higher-

order terms on the lefthand side of (5.14) which allow us to construct highly regular

controls for system (5.1) (see Remarks 4.4.1 and 4.4.5 for more details). Constructing

a solution (ỹ, ũ) to system (5.1) with highly regular controls and satisfying ỹ(T, ·) = 0

is treated in Chapter 6.

Carleman estimates are weighted energy estimates for solutions to PDEs with

exponential weights. These types of estimates for parabolic operators are derived,

for example, in [1, Section 4.7]. Carleman estimates were initially introduced in [9]

to obtain uniqueness and stability results for a particular first-order initial-boundary

value problem; they have since been used to derive results in many applications,

including exact, approximate and null controllability results for partial differential

equations with internal or boundary control.
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5.1 Some notation and technical results

We begin with introducing some notation. For the multi-index β of length l consisting

of l multi-indices, consider the lth-order tensor given by C := (Cβ)β, where βi has

length ni, for ni ∈ N∗, for i ∈ {1, . . . , l}. We associate to C the element-wise norm

given by

‖ · ‖l :=

(
n1,...,nl∑

i1=1,...,il=1

C2
β1(i1),...,βl(il)

)1/2

An equivalent interpretation of ‖ · ‖l is the following: given a lth-order tensor C, one

vectorizes C into a vector of length
∑l

i=1 ni and then applies the Euclidean norm to

recover ‖ · ‖l. Fix a sequence (ωi)
p+2
i=0 of nonempty open subsets of ω such that


ω̄i ⊂ ωi−1 for i ∈ {1, . . . , p+ 2},

ω̄0 ⊂ ω.

We have the following lemma, which is an adaptation of [18, Lemma 1.1] (see also [10,

Lemma 2.68]). Its proof is included in the Appendix.

Lemma 5.1.1. Assume that Ω is of class Cr and connected. Then, for r ≥ 2, there

exists η0 ∈ Cr(Ω̄) such that



∥∥∇η0
∥∥

1
≥ κ in Ω \ ωp+2

η0 > 0 in Ω

η0 = 0 on ∂Ω,

(5.4)

for some κ > 0.
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For r = p+ 2, fix such an η0 ∈ Cp+2(Ω̄). For (t, x) ∈ QT we define

α(t, x) :=
e12λ||η0||∞ − eλ(10||η0||∞+η0(x))

t5(T − t)5
(5.5)

and

ξ(t, x) :=
eλ(10||η0||∞+η0(x))

t5(T − t)5
. (5.6)

Additionally, for t ∈ (0, T ) we define

α∗(t) := max
x∈Ω̄

α(t, x) (5.7)

and

ξ∗(t) := min
x∈Ω̄

ξ(t, x). (5.8)

For s, λ > 0 and u ∈ L2((0, T );H1
0 (Ω)) ∩H1((0, T );H−1(Ω)), let us define

I(s, λ;u) := s3λ4

∫∫
QT

e−2sαξ3|u|2dxdt+ sλ2

∫∫
QT

e−2sαξ ‖∇u‖2
1 dxdt. (5.9)

In the work to follow, for u ∈ L2((0, T );H1
0 (Ω))m ∩ H1((0, T );H−1(Ω))m, we use a

slight abuse of notation and define I(s, λ;u) as above but with | · | replaced by ‖ · ‖1,

and with ‖ · ‖1 replaced by ‖ · ‖2. We now state a Carleman estimate result for the

heat equation; the proof is quite technical and is omitted here.

Lemma 5.1.2. [17, Theorem 1] Assume that d > 0, u0 ∈ L2(Ω), f1 ∈ L2(QT ) and

f2 ∈ L2(ΣT ). Then there exists a constant C := C(Ω, ωp+2) > 0 such that the solution
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to 
−∂tu = div(d∇u) + f1 in QT

∂u

∂n
= f2 on ΣT

u(T, ·) = u0(·) in Ω,

satisfies

I(s, λ;u) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3|u|2dxdt +

∫∫
QT

e−2sα|f1|2dxdt

+sλ

∫∫
ΣT

e−2sα∗ξ∗|f2|2dσdt
)

for all λ ≥ C and s ≥ C(T 5 + T 10).

We can adapt the Carleman estimate in Lemma 5.1.2 to system (5.2) with Neu-

mann boundary condition.

Lemma 5.1.3. Assume that ψ̃0 ∈ L2(Ω)m and u ∈ L2(ΣT )m. Then there exists a

constant C := C(Ω, ωp+2) > 0 such that the solution to


−∂tψ̃ = div(D∇ψ̃)−G∗ · ∇ψ̃ + A∗ψ̃ in QT

∂ψ̃

∂n
= u on ΣT

ψ̃(T, ·) = ψ̃0(·) in Ω,

(5.10)

satisfies

I(s, λ; ψ̃) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥ψ̃∥∥∥2

1
dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗ ‖u‖2
1 dσdt

)
(5.11)
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for all λ ≥ C and s ≥ C(T 5 + T 10).

Proof. We denote by C various positive constants depending on Ω and ωp+2. Lemma 5.1.2

can be extended to a system of parabolic PDEs resembling (5.10) by replacing | · |

with ‖ · ‖1; furthermore, if this system has first and zero-order coupling as in (5.2),

then (5.11) is still verified since D is diagonal, and hence f1 absorbs all coupling

terms. Indeed, for k ∈ {1, . . . ,m} we let

fk1 =
m∑
j=1

(−gjk · ∇+ ajk) ψ̃j;

redefining f1 now as f1 := (f 1
1 , . . . , f

m
1 ) yields

I(s, λ; ψ̃) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥ψ̃∥∥∥2

1
dxdt +

∫∫
QT

e−2sα ‖f1‖2
1 dxdt

+sλ

∫∫
ΣT

e−2sα∗ξ∗ ‖u‖2
1 dσdt

)
.

(5.12)

By (5.6), we have that

min
t∈(0,T )

ξ(t, x) = ξ

(
T

2
, x

)
=

210eλ(10||η0||∞+η0(x))

T 10
(5.13)
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and hence using (5.9),

I(s, λ; ψ̃) ≥ C7

(
min
x∈Ω̄

{
eλ(10||η0||∞+η0(x))

})3(
1 +

1

T 5

)3 ∫∫
QT

e−2sα
∥∥∥ψ̃∥∥∥2

1
dxdt

+ C3 min
x∈Ω̄

{
eλ(10||η0||∞+η0(x))

}(
1 +

1

T 5

)∫∫
QT

e−2sα‖∇ψ̃‖2
2dxdt

≥ C

(∫∫
QT

e−2sα
∥∥∥ψ̃∥∥∥2

1
dxdt+

∫∫
QT

e−2sα‖∇ψ̃‖2
2dxdt

)

since λ ≥ C and s ≥ C(T 5 + T 10). One can employ the triangle inequality to obtain

I(s, λ; ψ̃) ≥ C

∫∫
QT

e−2sα ‖f1‖2
1 dxdt,

and hence one can absorb the term C
∫∫

QT
e−2sα ‖f1‖2

1 dxdt into the lefthand side

of (5.12) to obtain the desired Carleman estimate.

We will also use the following estimate in the ensuing treatment. Its proof is

included in the Appendix.

Lemma 5.1.4. [11, Lemma 3] Let r ∈ R. There exists a C := C(Ω, ωp+2, r) > 0

such that for every T > 0 and every u ∈ L2((0, T );H1(Ω)),

sr+2λr+3

∫∫
QT

e−2sαξr+2|u|2dxdt ≤ C (srλr+1

∫∫
QT

e−2sαξr ‖∇u‖2
1 dxdt

+sr+2λr+3

∫∫
(0,T )×ωp+2

e−2sαξr+2|u|2dxdt

)

for every λ ≥ C and s ≥ C(T 5 + T 10).
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5.2 Carleman estimate

The goal of this section is to establish the following inequality.

Proposition 5.2.1. There exists a constant C := C(Ω, ω0) > 0 such that for every

ψ̃0 ∈ L2(Ω)m, the solution ψ̃ to system (5.2) satisfies

∫∫
QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

≤ Cs2p+7λ2p+8

∫∫
(0,T )×ω0

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt (5.14)

for every λ ≥ C and s ≥ C(T 5 + T 10).

Remark 5.2.2. It should be surprising that (5.14) contains spacial derivatives past

order one, since ψ̃0 is assumed to be in L2(Ω)m, and hence by Theorem 2.3.4, ψ̃ ∈

L2((0, T );H1
0 (Ω))m∩H1((0, T );L2(Ω))m. However, due to inequalities (5.28) and (5.29)

and by the fact that the weight e−2sα absorbs the singularity of ξ at t = 0, one can

deduce that these integrals exist. •

Proof. We denote by C various positive constants which depend on Ω and ω0. We

define the operator

L∗ := (−div(D∇) +G∗ · ∇ − A∗) . (5.15)

By density of Hk(Ω)m ∩H1
0 (Ω)m in L2(Ω)m for k ∈ N (this follows from the inclusion

C∞c (Ω)m ⊂ Hk(Ω)m ∩ H1
0 (Ω)m ⊂ L2(Ω)m and since C∞c (Ω)m dense in L2(Ω)m), we

assume without loss of generality that ψ̃0 ∈ H2p+5(Ω)m and
(

(L∗)kψ̃0
)p+2

k=0
⊂ H1

0 (Ω).

Hence by Theorem 2.4.2, the solution ψ̃ to system (5.2) is an element of

L2((0, T );H2p+6(Ω))m ∩Hp+3((0, T );L2(Ω))m. (5.16)



5.2. CARLEMAN ESTIMATE 71

We apply the differential operator ∇p+2 to system (5.2) and, for β a multi-index with

|β| = p+ 2, we denote ∂βψ̃ by φβ so that φβ satisfies


−∂tφβ = div(D∇φβ)−G∗ · ∇φβ + A∗φβ in QT

∂φβ
∂n

= ∇φβ · n on ΣT

φβ(T, ·) = ∂βψ̃
0(·) in Ω.

(5.17)

Indeed, since D, G∗ and A∗ are constant, ∇p+2 commutes with all the terms in

system (5.2). We define the (p + 3)-th order tensor φ := (φβ)1≤β1,...,βp+2≤n; applying

Lemma 5.1.3 to system (5.17), we have a Carleman inequality for φ:

I(s, λ;φ) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3‖φ‖2
p+3dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2
p+3dσdt

)
(5.18)

for every λ ≥ C and s ≥ C(T 5 + T 10). The rest of this proof follows three steps:

(i) We will estimate the boundary term on the righthand side of (5.18) with a global

interior term involving ψ̃, which will be absorbed into the lefthand side later;

(ii) we will relate I(s, λ;φ) with the lefthand side of (5.14);

(iii) we will estimate the local term on the righthand side of (5.18) with a local term

of zero differential order (as appearing in (5.14)) and some other local terms

which will be absorbed into the lefthand side.

Step (i): Consider a function θ ∈ C2(Ω̄) such that ∇θ · n = θ = 1 in Ω̄, where n is

the outward pointing normal of ∂Ω. With this construction, ∇θ = n. Indeed, for any

q ∈ ∂Ω and for any parametrized curve γ : R→ Ω passing through point q at time 0,
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we have

d

dt
θ(γ(t))

∣∣
t=0

= ∇θ
∣∣
q

dγ(t)

dt

∣∣∣∣∣
t=0

= 0,

since θ = 1 in Ω̄. Hence, since ∇θ is orthogonal to the tangent of any curve passing

through any arbitrary point q ∈ ∂Ω at t = 0, it must be equal to n. Let β be a

multi-index of length n; we integrate the boundary term by parts to obtain

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2
p+3dσdt = sλ

∑
|β|=p+3

∫∫
ΣT

e−2sα∗ξ∗ (∂βψ · ∇θ) (∂βψ · n) dσdt

= sλ

∫∫
QT

e−2sα∗ξ∗ (∆φ) (∇φ · ∇θ) dxdt

+ sλ

∫∫
QT

e−2sα∗ξ∗∇(∇φ · ∇θ) · ∇φdxdt.

(the last equality should have a sum and appropriate index lengths) Next, we employ

Cauchy-Schwarz and Young’s inequalities to obtain

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2
p+3dσdt

≤ λ

∫ T

0

e−2sα∗

((∫
Ω

‖(sξ∗)k∆φ‖2
p+5dx

)1/2(∫
Ω

‖(sξ∗)1−k∇φ · ∇θ‖2
p+3dx

)1/2

+

(∫
Ω

‖(sξ∗)k∇(∇φ · ∇θ)‖2
p+4dx

)1/2(∫
Ω

‖(sξ∗)1−k∇φ‖2
p+4dx

)1/2
)
dt

≤ Cλ

∫ T

0

e−2sα∗
(
||(sξ∗)kψ̃||Hp+4(Ω)m||(sξ∗)1−kψ̃||Hp+3(Ω)m

)
dt

≤ Cλ

(∫ T

0

e−2sα∗(sξ∗)2k||ψ̃||2Hp+4(Ω)mdt+

∫ T

0

e−2sα∗(sξ∗)2−2k||ψ̃||2Hp+3(Ω)mdt

)
,

(5.19)

for k ∈ (0, 1) to be chosen later. We define ˆ̃ψ := ρψ̃, with ρ ∈ C∞([0, T ]) defined
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by ρ := (sξ∗)ae−sα
∗

for some a ∈ R to be chosen later. Note that ˆ̃ψ(T, ·) = 0 in Ω,

since ρ decays exponentially to zero as t → T . Similarly, di

dti
ρ(0) = 0, for all i ∈ N.

Furthermore, ˆ̃ψ is the solution to


−∂t ˆ̃ψ = div(D∇ ˆ̃ψ)−G∗ · ∇ ˆ̃ψ + A∗ ˆ̃ψ − d

dt
ρψ̃ in QT

ˆ̃ψ = 0 on ΣT

ˆ̃ψ(T, ·) = 0 in Ω.

(5.20)

Hence, by (5.16), one can utilize Theorem 2.4.2 to get the estimate

‖ ˆ̃ψ‖L2((0,T );H2d+2(Ω))m∩Hd+1((0,T );L2(Ω))m ≤ C

∥∥∥∥ ddtρψ̃
∥∥∥∥
L2((0,T );H2d(Ω))m∩Hd((0,T );L2(Ω))m

(5.21)

for d ∈ {0, . . . , p+ 2}. Owing to (5.5) and (5.6), we have the bound

∣∣∣∣ ddtρ
∣∣∣∣ ≤ CT (sξ∗)a+6/5e−sα

∗
. (5.22)

Indeed, for c̄ := minx∈Ω̄{eλ(10‖η0‖∞+η0(x))} and c̃ := maxx∈Ω̄{e12‖η0‖∞−eλ(10‖η0‖∞+η0(x))},

∣∣∣∣ ddtρ
∣∣∣∣ =

∣∣∣∣as(sξ∗)a−1e−sα
∗ d

dt
ξ∗ − s(sξ∗)ae−sα∗ d

dt
α∗
∣∣∣∣

= e−sα
∗
∣∣∣∣s(sξ∗)a−1 5(2t− T )

t6(T − t)6
(ac̄− (sξ∗)c̃)

∣∣∣∣
= (sξ∗)ae−sα

∗
∣∣∣∣10t− 5T

t(T − t)

(
a− (sξ∗)c̃

c̄

)∣∣∣∣
= (sξ∗)a+6/5e−sα

∗
∣∣∣∣(10t− 5T )

c̄6/5

(
at5(T − t)5

s6/5
− c̃

s1/5

)∣∣∣∣ ,
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and since s ≥ C(T 5 + T 10), one can obtain (5.22). Similarly, we have

∣∣∣∣ drdtr ρ
∣∣∣∣ ≤ CT r(sξ∗)a+6r/5e−sα

∗
, (5.23)

for r ∈ N. We apply (5.21) to ˆ̃ψ for a = 1− k and d =
⌊
p+1

2

⌋
to obtain

∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2

H
2b p+3

2 c(Ω)m
dt ≤ C

(∫ T

0

∥∥∥∥ ddt (e−sα∗(sξ∗)1−k) ψ̃∥∥∥∥2

H
2b p+1

2 c(Ω)m
dt

+

b p+1
2 c∑

r=1

∫ T

0

∥∥∥∥ drdtr
(
d

dt

(
e−sα

∗
(sξ∗)1−k) ψ̃)∥∥∥∥2

L2(Ω)m
dt

 .

(5.24)

We now apply (5.21) to ˆ̃ψ = d
dt
ρψ̃ (which satisfies a system very similar to (5.20) and

verifies the compatibility conditions in Theorem 2.4.2) for a = 1−k and d =
⌊
p+1

2

⌋
−1

to obtain

∫ T

0

∥∥∥∥ ddt (e−sα∗(sξ∗)1−k) ψ̃∥∥∥∥2

H
2b p+1

2 c(Ω)m
dt+

b p+1
2 c∑

r=1

∫ T

0

∥∥∥∥ drdtr
(
d

dt

(
e−sα

∗
(sξ∗)1−k) ψ̃)∥∥∥∥2

L2(Ω)m
dt

≤ C

∫ T

0

∥∥∥∥ d2

dt2
(
e−sα

∗
(sξ∗)1−k) ψ̃∥∥∥∥2

H
2b p+1

2 c−2
(Ω)m

dt

+

b p+1
2 c−1∑
r=1

∫ T

0

∥∥∥∥ drdtr
(
d2

dt2
(
e−sα

∗
(sξ∗)1−k) ψ̃)∥∥∥∥2

L2(Ω)m
dt.

(5.25)



5.2. CARLEMAN ESTIMATE 75

Repeating this way
⌊
p+1

2

⌋
− 1 more times and utilizing (5.23) yields the inequality

∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2

H
2b p+3

2 c(Ω)m
dt

≤ C

∫ T

0

∥∥∥∥∥ db
p+1
2 c+1

dtb
p+1
2 c+1

(
e−sα

∗
(sξ∗)1−k) ψ̃∥∥∥∥∥

2

L2(Ω)m

dt

≤ CT 2b p+1
2 c+2

∫ T

0

e−2sα∗(sξ∗)2−2k+ 12
5 (b p+1

2 c+1)‖ψ̃‖2
L2(Ω)mdt. (5.26)

We can get very similar estimates (5.24) and (5.25) for a = 3k − 1, d =
⌈
p+2

2

⌉
, and

by using (5.23), we obtain

∫ T

0

e−2sα∗(sξ∗)6k−2‖ψ̃‖2

H
2d p+4

2 e(Ω)m
dt

≤ C

∫ T

0

∥∥∥∥∥ dd
p+2
2 e+1

dtd
p+2
2 e+1

(
e−sα

∗
(sξ∗)3k−1

)
ψ̃

∥∥∥∥∥
2

L2(Ω)m

dt

≤ CT 2d p+2
2 e+2

∫ T

0

e−2sα∗(sξ∗)6k−2+ 12
5 (d p+2

2 e+1)‖ψ̃‖2
L2(Ω)mdt. (5.27)

Suppose for the moment that p is odd. By applying Theorem 2.2.6 to the appropriate

spacial derivative of ψ̃ with j = 1, m = q = p = r = 2 and α = 1/2, and then

employing the Cauchy-Schwarz inequality, we obtain

∫ T

0

e−2sα∗(sξ∗)2k‖ψ̃‖2
Hp+4(Ω)mdt

≤ C

∫ T

0

‖e−sα∗(sξ∗)3k−1ψ̃‖
H

2d p+4
2 e(Ω)m

‖e−sα∗(sξ∗)1−kψ̃‖
H

2b p+3
2 c(Ω)m

dt

≤ C

(∫ T

0

e−2sα∗(sξ∗)6k−2‖ψ̃‖2

H
2d p+4

2 e(Ω)m
dt

)1/2(∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2

H
2b p+3

2 c(Ω)m
dt

)1/2

.
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Choosing k = 1
2

+ 3
10

(⌊
p+1

2

⌋
−
⌈
p+2

2

⌉)
verifies

2− 2k +
12

5

(⌊
p+ 1

2

⌋
+ 1

)
= 6k − 2 +

12

5

(⌈
p+ 2

2

⌉
+ 1

)
,

and hence by utilizing (5.26) and (5.27), we obtain

∫ T

0

e−2sα∗(sξ∗)2k‖ψ̃‖2
Hp+4(Ω)mdt

≤ CT d
p+2
2 e+b p+1

2 c+2

∫ T

0

e−2sα∗(sξ∗)
17
5

+ 9
5b p+1

2 c+ 3
5d p+2

2 e‖ψ̃‖2
L2(Ω)mdt.

(5.28)

Identical steps can be followed for the case when p is even to obtain

∫ T

0

e−2sα∗(sξ∗)2−2k‖ψ̃‖2
Hp+3(Ω)mdt

≤ CT d
p+2
2 e+b p+1

2 c+2

∫ T

0

e−2sα∗(sξ∗)
17
5

+ 3
5b p+1

2 c+ 9
5d p+2

2 e‖ψ̃‖2
L2(Ω)mdt.

(5.29)

It follows from (5.19), (5.26) and (5.28) that

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2
p+3dσdt

≤ Cλ
(
T 2b p+1

2 c+2 + T d
p+2
2 e+b p+1

2 c+2
)∫ T

0

e−2sα∗(sξ∗)
17
5

+ 9
5b p+1

2 c+ 3
5d p+2

2 e‖ψ̃‖2
L2(Ω)mdt,
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for p odd, and it follows from (5.19), (5.27) and (5.29)

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2
p+3dσdt

≤ Cλ
(
T 2d p+2

2 e+2 + T d
p+2
2 e+b p+1

2 c+2
)∫ T

0

e−2sα∗(sξ∗)
17
5

+ 3
5b p+1

2 c+ 9
5d p+2

2 e‖ψ̃‖2
L2(Ω)mdt,

for p even. In what follows, we choose p even without loss of generality (the exact

same technique can be used for p odd), and since

(
T 2d p+2

2 e+2 + T d
p+2
2 e+b p+1

2 c+2
)
≤ Cs2p− 3

5b p+1
2 c− 9

5d p+2
2 e+ 17

5 ,

for s ≥ C(T 5 + T 10), we use (5.7) and (5.8) to obtain

sλ

∫∫
ΣT

e−2sα∗ξ∗‖∇φ · n‖2
p+3dσdt

≤ Cs2p+34/5λ

∫ T

0

e−2sα∗(ξ∗)
17
5

+ 9
5b p+1

2 c+ 3
5d p+2

2 e‖ψ̃‖2
L2(Ω)mdt

≤ Cs2p+34/5λ

∫∫
QT

e−2sαξ
17
5

+ 9
5b p+1

2 c+ 3
5d p+2

2 e
∥∥∥ψ̃∥∥∥2

1
dxdt.

Denoting by l(p) the exponent 17
5

+ 9
5

⌊
p+1

2

⌋
+ 3

5

⌈
p+2

2

⌉
, we arrive at the end of Step (i)

to conclude that

I(s, λ;φ) ≤ C

(
s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3‖φ‖2
p+3dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
(5.30)

for λ ≥ C and s ≥ C(T 5 + T 10).

Step (ii): In this step, we relate I(s, λ;φ) to the lefthand side of (5.14). We apply
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Lemma 5.1.4 to ψ̃ for r = 2p+ 5 to obtain

s2p+7λ2p+8

∫∫
QT

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt ≤ C

(
s2p+5λ2p+6

∫∫
QT

e−2sαξ2p+5
∥∥∥∇ψ̃∥∥∥2

2
dxdt

+s2p+7λ2p+8

∫∫
(0,T )×ωp+2

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt

)
(5.31)

for every λ ≥ C and s ≥ C(T 5 + T 10). Similarly, for k ∈ {0, . . . , p}, we apply

Lemma 5.1.4 to ∇p+1−kψ̃ for r = 2k + 3 to obtain

s2k+5λ2k+6

∫∫
QT

e−2sαξ2k+5‖∇p+1−kψ̃‖2
p+2−kdxdt

≤ C

(
s2k+3λ2k+4

∫∫
QT

e−2sαξ2k+3
∥∥∥∇p+2−kψ̃

∥∥∥2

p+3−k
dxdt

+s2k+5λ2k+6

∫∫
(0,T )×ωp+2

e−2sαξ2k+5‖∇p+1−kψ̃‖2
p+2−kdxdt

)
, (5.32)

for every λ ≥ C and s ≥ C(T 5 + T 10). One can upper bound the first term in the

righthand side of (5.31) by (5.32) for k = p and continue this way by backwards

iteration on k. The global terms on the righthand side of (5.32) can be absorbed in

the exact same way. Hence, a combination of (5.30), (5.31) and (5.32) gives

∫∫
QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+ s3λ4

∫∫
QT

e−2sαξ3‖∇p+2ψ̃‖2
p+3dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,
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for every λ ≥ C and s ≥ C(T 5 +T 10). By utilizing (5.30) once more, we arrive at the

inequality

∫∫
QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
, (5.33)

which is verified for every λ ≥ C and s ≥ C(T 5 + T 10).

Step (iii): In this final step, we absorb the higher-order local terms in the righthand

side of (5.33). Consider the function θp+1 ∈ C2(Ω̄) satisfying


Supp(θp+1) ⊆ ωp+1

θp+1 = 1 in ωp+2

0 ≤ θp+1 ≤ 1 in Ω.

(5.34)

Let β be a multi-index of length n. Since ω̄p+2 ⊂ ωp+1, where ωp+1 is an open

subset of Ω, we integrate the rightmost term in (5.33) by parts and employ the the
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Cauchy-Schwarz inequality to obtain

s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt

≤ s3λ4

∫∫
(0,T )×ωp+1

θp+1e
−2sαξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
dxdt

= −s3λ4

∫∫
(0,T )×ωp+1

n∑
i=1

|β|=p+1

(
∂i(θp+1e

−2sαξ3)∂i∂βψ̃ + θp+1e
−2sαξ3∂2

i ∂βψ̃
)(

∂βψ̃
)
dxdt

≤ s3λ4

∫∫
(0,T )×ωp+1

(∥∥∇ (θp+1e
−2sαξ3

)∥∥
1

∥∥∥∇p+2ψ̃
∥∥∥
p+3

∥∥∥∇p+1ψ̃
∥∥∥
p+2

+θp+1e
−2sαξ3

∥∥∥∇p+3ψ̃
∥∥∥
p+4

∥∥∥∇p+1ψ̃
∥∥∥
p+2

)
dxdt.

(the derivatives should be ∂xi here) By (5.5) and (5.6), we have that

∥∥∇ (θp+1e
−2sαξ3

)∥∥
1
≤ Csλe−2sαξ4. (5.35)

Indeed,

∥∥∇ (θp+1e
−2sαξ3

)∥∥
1

=
∥∥e−2sαξ3

(
∇θp+1 + 2sλθp+1ξ∇η0 + 3λθp+1∇η0

)∥∥
1

= sλe−2sαξ4

∥∥∥∥∇θp+1

sλξ
+ 2θp+1∇η0 +

3θp+1∇η0

sξ

∥∥∥∥
1

,

and since s ≥ C(T 5 + T 10), (5.35) is verified. Hence, by (5.34), (5.35) and using



5.2. CARLEMAN ESTIMATE 81

Young’s inequality with ε > 0, we have

s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt

≤ Cs3λ4

∫∫
(0,T )×ωp+1

(
sλe−2sαξ4

∥∥∥∇p+2ψ̃
∥∥∥
p+3

∥∥∥∇p+1ψ̃
∥∥∥
p+2

+e−2sαξ3
∥∥∥∇p+3ψ̃

∥∥∥
p+4

∥∥∥∇p+1ψ̃
∥∥∥
p+2

)
dxdt

≤ C

∫∫
(0,T )×ωp+1

e−2sα

(
εs3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ εsλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

+
2

ε
s5λ6ξ5

∥∥∥∇p+1ψ̃
∥∥∥2

p+2

)
dxdt. (5.36)

Observe that the first two terms in the righthand side of (5.36) can be bounded above

by employing (5.33) and (5.36) recursively: indeed, by positivity of the integrand in

QT and by (5.33), we obtain

ε

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
dxdt

≤ Cε

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)

= Cε

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+ s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

(5.37)
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for λ ≥ C and s ≥ C(T 5 + T 10). Combining (5.37) and (5.36) yields

ε

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
dxdt

≤ C

(
ε

∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+

∫∫
(0,T )×ωp+1

e−2sα

(
ε2s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ ε2sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4
+ 2s5λ6ξ5

∥∥∥∇p+1ψ̃
∥∥∥2

p+2

)
dxdt

+ εs2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
, (5.38)

for λ ≥ C and s ≥ C(T 5 + T 10). Using the same treatment, one can bound from

above the terms being multiplied by ε2 in (5.38); after k of these recursions, we obtain

ε

∫∫
(0,T )×ωp+1

e−2sα

(
s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

)
dxdt

≤ C
k∑
j=1

(
εj
∫∫

(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+

∫∫
(0,T )×ωp+1

e−2sα

(
εk+1s3λ4ξ3

∥∥∥∇p+2ψ̃
∥∥∥2

p+3
+ εk+1sλ2ξ

∥∥∥∇p+3ψ̃
∥∥∥2

p+4

+2s5λ6ξ5
∥∥∥∇p+1ψ̃

∥∥∥2

p+2

)
dxdt+ εjs2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

(exponential on the εk+1 terms are wrong - needs to be 2k+1 or something) for λ ≥ C
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and s ≥ C(T 5 + T 10). Taking ε sufficiently small, we obtain from (5.36) that

s3λ4

∫∫
(0,T )×ωp+2

e−2sαξ3
∥∥∥∇p+2ψ̃

∥∥∥2

p+3
dxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
, (5.39)

for λ ≥ C and s ≥ C(T 5 + T 10) Note: importantly, by (5.36), if
∥∥∥∇p+1ψ̃

∥∥∥
p+2

= 0,

then so do
∥∥∥∇p+2ψ̃

∥∥∥
p+3

and
∥∥∥∇p+3ψ̃

∥∥∥
p+4

. Hence from (5.39), we obtain

∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=2

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

≤ C

∫∫
(0,T )×ωp+1

e−2sα

p+4∑
k=3

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt, (5.40)

for λ ≥ C and s ≥ C(T 5 + T 10). For r ∈ {1, . . . , p + 1}, consider the functions

θr ∈ C2(Ω̄) satisfying


Supp(θp+1−r) ⊆ ωp+1−r

θp+1−r = 1 in ωp+2−r

0 ≤ θp+1−k ≤ 1 in Ω.
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Using the exact same approach as was used for r = 0, one obtains the estimate

s2r+3λ2r+4

∫∫
(0,T )×ωp+2−r

e−2sαξ2r+3
∥∥∥∇p+2−rψ̃

∥∥∥2

p+3−r
dxdt

≤ C

(∫∫
(0,T )×ωp+2

e−2sα

p+4∑
k=3+r

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

for λ ≥ C and s ≥ C(T 5 + T 10). Hence, it follows that

∫∫
QT

e−2sα

p+4∑
k=1

s2k−1λ2kξ2k−1‖∇p+4−kψ̃‖2
p+5−kdxdt

≤ C

(
s2p+7λ2p+8

∫∫
(0,T )×ω0

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt+ s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt

)
,

(5.41)

for λ ≥ C and s ≥ C(T 5 + T 10). Finally, by (5.6) we have the estimate

s2p+34/5λ

∫∫
QT

e−2sαξl(p)
∥∥∥ψ̃∥∥∥2

1
dxdt ≤ Cs2p+7λ2p+8

∫∫
QT

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt,

for λ ≥ C and s ≥ C(T 5 + T 10) large enough; from now on, we denote this choice of

s by s0. Hence, one can absorb the global term in the righthand side of (5.41) into

its lefthand side, and thus (5.14) is verified.

5.3 Observability inequality

In this section, we prove Proposition 5.0.9.

Proof of Proposition 5.0.9. We denote by C various positive constant depending on



5.3. OBSERVABILITY INEQUALITY 85

Ω and ω0. From (5.14), we deduce

∫∫
QT

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt ≤ C

∫∫
(0,T )×ω0

e−2sαξ2p+7
∥∥∥ψ̃∥∥∥2

1
dxdt, (5.42)

for λ ≥ C and s ≥ s0. Note that for t ∈
[
T
4
, 3T

4

]
, we have

min
t∈[T4 ,

3T
4 ]
{e−2sαξ2p+7} =

(
e−2sαξ2p+7

)(T
4
, ·
)

=
(
e−2sαξ2p+7

)(3T

4
, ·
)

=

(
e
−2s 4

10

35

(
e12λ‖η

0‖∞−eλ(10‖η
0‖∞+η0(x))

T10

))(
410e(2p+7)λ(10‖η0‖∞+η0(x))

35T 10

)
.

(5.43)

We can choose s sufficiently large such that

410

35T 10
e−

Cs
T10 ≤ e−2sαξ2p+7, (5.44)

for all t ∈
[
T
4
, 3T

4

]
. Indeed, choosing

s ≥ s1 := max

{
s0, T

10

(
35(2p+ 7)λ

221

)
max
x∈Ω̄

{
10‖η0‖∞ + η0(x)

e12λ‖η0‖∞ − eλ(10‖η0‖∞+η0(x))

}}

(there should be a C here too, shouldn’t there?) in (5.43) will ensure that (5.44) is

verified. Note that we can write s1 as s1 = σ (T 5 + T 10), where σ > 0 depends only

on Ω and ω0. Fixing s = s1 from now on, we deduce from (5.42) and (5.44) that

∫∫
(T4 ,

3T
4 )×Ω

∥∥∥ψ̃∥∥∥2

1
dxdt ≤ CT 10eC(1+1/T 5)

∫∫
(0,T )×ω0

e−2s1αξ7
∥∥∥ψ̃∥∥∥2

1
dxdt
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for λ ≥ C and s ≥ s1. We claim that

∫
Ω

∥∥∥ψ̃(·, T/4)
∥∥∥2

1
dx ≤ C

T
eCT/2

∫∫
(T4 ,

3T
4 )×Ω

∥∥∥ψ̃∥∥∥2

1
dxdt (5.45)

and ∫
Ω

∥∥∥ψ̃(·, 0)
∥∥∥2

1
dx ≤ eCT/4

∫
Ω

∥∥∥ψ̃(·, T/4)
∥∥∥

1
dx, (5.46)

from which we can deduce (5.3). Indeed, we can multiply system (5.2) by ψ̃, integrate

the resulting equation by parts over Ω and use the Cauchy-Schwarz and Young’s

inequalities to obtain

−1

2

d

dt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx+D

∫
Ω

‖∇ψ̃‖2
2dx = −

∫
Ω

(
∂tψ̃
)
ψ̃dx+

∫
Ω

div(D∇ψ̃)ψ̃dx

= −
∫

Ω

(
G∗ · ∇ψ̃

)
ψ̃dx+

∫
Ω

(
A∗ψ̃

)
ψ̃dx

≤ 1

2

∫
Ω

∥∥∥G∗ · ∇ψ̃∥∥∥2

1
dx+

(
1 +
‖A∗‖∞

2

)∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx.

Hence, since (2.10) satisfies the uniform ellipticity condition (see (2.7)), we obtain

− d

dt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx+

∫
Ω

‖∇ψ̃‖2
2dx ≤ C

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx,

from which we deduce

d

dt

(
eCt
∫

Ω

∥∥∥ψ̃∥∥∥2

1
dx

)
= eCt

(
C

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx+

d

dt

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx

)
≥ eCt

∫
Ω

‖∇ψ̃‖2
2dx

≥ 0, (5.47)
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for all t > 0. We integrate (5.47) over
[
T
4
, t
]

to obtain

∫
Ω

∥∥∥ψ̃∥∥∥2

1
dx ≥ eC(T/4−t)

∫
Ω

∥∥∥ψ̃ (T/4, ·)
∥∥∥2

1
dx

≥ e−CT/2
∫

Ω

∥∥∥ψ̃ (T/4, ·)
∥∥∥

1
dx, (5.48)

for every t ∈
[
T
4
, 3T

4

]
. We integrate (5.48) once more over

[
T
4
, 3T

4

]
to obtain

T

2

∫
Ω

∥∥∥ψ̃ (T/4, ·)
∥∥∥2

1
dx ≤ eCT/2

∫∫
(T4 ,

3T
4 )×Ω

∥∥∥ψ̃∥∥∥2

1
dx,

which verifies (5.45). To show that (5.46) is verified, we integrate (5.47) over t ∈
[
0, T

4

]
and conclude at once that

∫
Ω

∥∥∥ψ̃(0, ·)
∥∥∥2

1
dx ≤ eCT/4

∫
Ω

∥∥∥ψ̃ (T/4, ·)
∥∥∥2

1
dx.
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Chapter 6

Null controllability of the analytic problem and

proof of main theorem

Recall from Chapter 3 that our principal goal was to prove null controllability of sys-

tem (3.1) with multiple underactuations. To this end, we studied an algebraic system

and an analytic system both related to system (3.1). In Chapter 4, we developed

an algebraic method which allowed us to solve the algebraic control problem posed

in (4.17) under the assumption that the forcing function 1ωũ be regular enough so

that our algebraic solution B(1ωũ) be well-defined, where B is a differential opera-

tor of differential order zero in time and at most p + 2 in space. In Chapter 5, we

established the weighted observability inequality (5.3) for the analytic system (5.1).

The goal of this chapter is solve the analytic control problem (4.16) with regular

enough controls 1ωũ so that the algebraic control problem (4.17) also be solved. The

treatment presented in this chapter is an extension of that used in [14, Section 2.3].

In particular, since the right inverse B of L derived implicitly in Chapter 4 is of order

at most p+2 in space, we require much more regular controls for the analytic problem

than in [14].
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6.1 An optimal control result

We do not use the weighted observability inequality to directly deduce null control-

lability of system (5.1). Instead, we use a method developed in [18] to construct

controls with high regularity which will help us deduce controllability results; to do

this, we rely on the following unconstrained optimal control result.

Theorem 6.1.1. [24, Chapter 3, Theorem 2.2] Let y0 ∈ L2(Ω)m, u ∈ L2(QT )m,

B ∈ L (L2(QT )m;L2(QT )m), and suppose L given in (2.10) satisfies the uniform el-

lipticity condition (2.7). Let N ∈ L (L2(QT )m;L2(QT )m) such that (Nu, u)L2(QT )m ≥

ν‖u‖2
L2(QT )m for ν > 0 and for all u ∈ L2(QT )m, and let D ∈ L (H1

0 (Ω))m;H1
0 (Ω))m).

Consider the optimal control problem associated to system (2.11) with cost functional

J(u) : L2(QT )m → R+ given by

J(u) := (Nu, u)L2(QT )m + (Dyu(T, ·)− zd)2
L2(Ω)m , (6.1)

for some zd ∈ H1
0 (Ω)m. This problem has a unique solution, and the optimal control

is characterized by the following relations:


∂tyu = div(D∇yu) +G · ∇yu + Ayy +Bu in QT

yu = 0 on ΣT

yu(0, ·) = y0(·) in Ω,


−∂tψu = div(D∇ψu)−G∗ · ∇ψu + A∗ψu in QT

ψu = 0 on ΣT

ψu(T, ·) = D∗ (Dyu(T, ·)− zd) in Ω,
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and

B∗ψu +Nu = 0,

i.e., u = −N−1B∗ψ. Hence, for this unconstrained optimal control problem, the

second term in (6.1) has no dependence on u (and nor do the primal/adjoint systems).

6.2 Null controllability of the analytic problem

In this section, we establish the following proposition.

Proposition 6.2.1. Consider θ ∈ Cp+2(Ω̄) such that


Supp(θ) ⊆ ω

θ = 1 in ω0

0 ≤ θ ≤ 1 in Ω.

(6.2)

Then there exists v ∈ L2(QT )m such that

(ỹ, θv) ∈ L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m × L2(QT )m

is a solution to the analytic control problem (4.16) satisfying ỹ(T, ·) = 0 in Ω. More-

over, for every K ∈ (0, 1), we have eKs1α
∗
v ∈ L2((0, T );Hp+2(Ω) ∩ H1

0 (Ω))m ∩

H1((0, T );L2(Ω))m and

‖eKs1α∗v‖L2((0,T );Hp+2(Ω)∩H1
0 (Ω))m∩H1((0,T );L2(Ω))m ≤ C‖ỹ0‖L2(Ω)m . (6.3)

Proof. Let ỹ0 ∈ L2(Ω)m, ρ := e−2s1αξ2p+7 and C := C(Ω, ω0, T ) > 0. Let k ∈ N∗

and denote by L2(QT , ρ
−1/2)m the space of functions which, when multiplied by ρ−1/2,
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are L2-integrable (i.e., for u ∈ L2(QT , ρ
−1/2)m, we require

∫∫
QT
ρ−1 ‖u‖2

1 dxdt < ∞).

Consider the following optimal control problem


minimize Jk(v) := 1

2

∫∫
QT
ρ−1 ‖v‖2

1 dxdt+ k
2

∫
Ω
‖ỹ(T, ·)‖2

1 dx,

subject to v ∈ L2(QT , ρ
−1/2)m,

(6.4)

where ỹ ∈ L2((0, T );H1
0 (Ω))m ∩ H1((0, T );H−1(Ω))m. The functional Jk is differ-

entiable, coercive and strictly convex on L2(QT , ρ
−1/2)m. By Theorem 6.1.1 (for

D =
√
k, N = ρ−1 and zd = 0 in QT ), there exists a unique solution to this optimal

control problem, and the optimal control is characterized by the solution ỹk to the

analytic system


∂tỹk = div(D∇ỹk) +G · ∇ỹk + Aỹk + θvk in QT

ỹk = 0 on ΣT

ỹk(0, ·) = ỹ0(·) in Ω,

(6.5)

the solution ψ̃k to its adjoint system


−∂tψ̃k = div(D∇ψ̃k)−G∗ · ∇ψ̃k + A∗ψ̃k in QT

ψ̃k = 0 on ΣT

ψ̃k(T, ·) = kỹ(T, ·) in Ω,

(6.6)

and the relation 
vk = −ρθψ̃k in QT

vk ∈ L2(QT , ρ
−1/2)m.

(6.7)
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From (6.5) and (6.6), we calculate

∫ T

0

(
(ỹk, ∂tψ̃k)L2(Ω)m + (∂tỹk, ψ̃k)L2(Ω)m

)
dt =

d

dt

∫ T

0

(ỹk, ψ̃k)L2(Ω)mdt

= (ỹk(T, ·), kỹk(T, ·))L2(Ω)m − (ỹ0, ψ̃k(0, ·))L2(Ω)m ,

(6.8)

and

(ỹk, ∂tψ̃k)L2(Ω)m + (∂tỹk, ψ̃k)L2(Ω)m = (ỹk,−div(D∇ψ̃k) +G∗ · ∇ψ̃k − A∗ψ̃k)L2(Ω)m

+ (div(D∇ỹk) +G · ∇ỹk + Aỹk + θvk, ψ̃k)L2(Ω)m

= (θvk, ψ̃k)L2(Ω)m . (6.9)

It follows from (6.7), (6.8) and (6.9) that

Jk(vk) = −1

2

∫ T

0

(θψ̃k, vk)L2(Ω)mdt+
1

2
(ỹk(T, ·), ψ̃k(T, ·))L2(Ω)m

= −1

2

∫ T

0

(ψ̃k, θvk)L2(Ω)mdt+
1

2

∫ T

0

(
(ỹk, ∂tψ̃k)L2(Ω)m + (∂tỹk, ψ̃k)L2(Ω)m

)
dt

+
1

2
(y0, ψ̃k(0, ·))L2(Ω)m

=
1

2
(y0, ψ̃k(0, ·))L2(Ω)m . (6.10)

Moreover, employing the weighted observability inequality (5.3) along with (6.2), (6.7),
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(6.4), (6.10) and the Cauchy-Schwarz inequality successively, we have

‖ψ̃k(0, ·)‖2
L2(Ω)m ≤ Cobs

∫∫
(0,T )×ω0

ρθ2
∥∥∥ψ̃k∥∥∥2

1
dxdt

≤ Cobs

∫∫
QT

ρθ2
∥∥∥ψ̃k∥∥∥2

1
dxdt

= Cobs

∫∫
QT

ρ−1 ‖vk‖2
1 dxdt

≤ 2CobsJk(vk)

≤ 2Cobs‖ψ̃k(0, ·)‖L2(Ω)m‖y0‖L2(Ω)m ,

from which we deduce

‖ψ̃k(0, ·)‖L2(Ω)m ≤ 2Cobs‖y0‖L2(Ω)m . (6.11)

Furthermore, by (6.10), (6.11) and the Cauchy-Schwarz inequality, we obtain

Jk(vk) ≤ Cobs‖y0‖2
L2(Ω)m . (6.12)

One can deduce from Theorem 2.3.3, (6.2) and (6.12) that

‖ỹk‖L2((0,T );H1
0 (Ω))m∩H1((0,T );H−1(Ω))m ≤ C

(
‖θvk‖L2(QT )m + ‖ỹ0‖L2(Ω)m

)
≤ C

(
‖vk‖L2(QT )m + ‖ỹ0‖L2(Ω)m

)
≤ C(1 +

√
2Cobs)‖ỹ0‖L2(Ω)m , (6.13)

since for our choice of s1 (which depends on p) and by (5.5) and (5.6), ρ ≤ 1 in

QT . Owing to the well-known result that in Hilbert spaces, bounded sequences have
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weakly convergent subsequences, along with (6.4) (6.12), and (6.13), one can extract

subsequences of (vk)k and (ỹk)k (which we still denote by vk and ỹk) such that


vk ⇀ v in L2(QT , ρ

−1/2)m

ỹk ⇀ ỹ in L2((0, T );H1
0 (Ω))m ∩H1((0, T );H−1(Ω))m

ỹk(T, ·) ⇀ 0 in L2(Ω)m.

Hence, (ỹ, θv) is the solution to the analytic control problem (4.16) with θv ∈

L2(QT , ρ
−1/2). Furthermore, we deduce from (6.4) by taking k →∞ that ỹ(T, ·) = 0

(in the sense of Definition 2.3.1). In addition, by (6.12) and since ρ ≤ 1 in QT for our

choice of s1, it follows that

‖v‖2
L2(QT ) ≤

√
2Cobs‖y0‖2

L2(Ω)m ,

as claimed. It is left to show that (6.3) is verified. Note that for every K ∈ (0, 1),

there exists a CK := CK(Ω) such that

e2Ks1α∗ ≤ CKξ
−2p−7e2s1α, (6.14)

for all (t, x) ∈ QT . Hence, utilizing (6.14), (6.4) and then (6.12), we obtain

‖e2Ks1α∗vk‖2
L2(QT )m ≤ CK

∫∫
QT

ρ−1 ‖vk‖2
1 dxdt

≤ CK‖ỹ0‖2
L2(Ω)m . (6.15)
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Similar to (5.22), for a > 0, one has

|∂t(ξae−2s1α)| ≤ CTξa+6/5e−2s1α. (6.16)

Furthermore, for r ∈ N one has

∥∥∇r(ξae−2s1α)
∥∥
r
≤ Cξa+re−2s1α. (6.17)

Indeed,

∇(ξae−2s1α) = aξa−1λ∇η0ξe−2s1α − 2s1ξ
ae−2s1α

(
−λ∇η0ξ

)
= λ∇η0

(
a

ξ
+ 2s1

)
ξa+1e−2s1α,

and since C := C(Ω, ω0, T ), (6.17) is verified for r = 1. The same reasoning can be

used for the r-th derivative, where we have fixed η0 ∈ Cr(Ω̄) (the existence of such

an η0 is verified in Section 8.1) for r = p+ 2. Hence, by (6.7), the triangle inequality

and then (6.17) for a = 2p+ 7, we obtain

‖eKs1α∗∇vk‖2
L2(QT )m =

∫∫
QT

e2Ks1α∗‖∇vk‖2
2dxdt

=

∫∫
QT

e2Ks1α∗‖∇(−ξ2p+7e−2s1αθψ̃k)‖2
2dxdt

≤ C

∫∫
QT

e2Ks1α∗
(∥∥∇(ξ2p+7e−2s1α)

∥∥2

1

∥∥∥ψ̃k∥∥∥2

1
+
∥∥∥ξ2p+7e−2s1α∇ψ̃k

∥∥∥2

2

)
dxdt

≤ C

∫∫
QT

e2Ks1α∗−4s1α

(
ξ4p+16

∥∥∥ψ̃k∥∥∥2

1
+ ξ4p+14‖∇ψ̃k‖2

2

)
dxdt,

(6.18)
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and similarly, for r ∈ {1, . . . , p+ 2}, we obtain

‖eKs1α∗∇rvk‖2
L2(QT )m ≤ C

∫∫
QT

e2Ks1α∗−4s1α

(
r∑
l=0

ξ4p+14+2l‖∇r−lψ̃k‖2
r−l+1

)
dxdt.

(6.19)

By (6.16) and since ψ̃k satisfies system (6.6), we obtain

‖∂t(eKs1α
∗
vk)‖2

L2(QT )m (6.20)

≤ C

∫∫
QT

e2Ks1α∗−4s1α

(
ξ(20p+82)/5

∥∥∥ψ̃k∥∥∥2

1
+ ξ2p+14

∥∥∥∂tψ̃k∥∥∥2

1

)
dxdt

≤ C

∫∫
QT

e2Ks1α∗−4s1α

(
ξ(20p+82)/5

∥∥∥ψ̃k∥∥∥2

1
+ ξ2p+14

(
‖∇∇ψ̃k‖2

3 + ‖∇ψ̃k‖2
2 +

∥∥∥ψ̃k∥∥∥2

1

))
dxdt.

(6.21)

Note that for every a, b > 0 and K ∈ (0, 1), there exists Ca,b,K := Ca,b,K(Ω) > 0 such

that ∣∣ξae2Ks1α∗−4s1α
∣∣ ≤ Ca,b,Kξ

be2s1α. (6.22)

From (6.15), (6.18), (6.19), (6.20) and utilizing (6.22) for appropriate a and b, we

obtain

‖eKs1α∗vk‖L2((0,T );Hp+2(Ω)∩H1
0 (Ω))m∩H1((0,T );L2(Ω))m

≤ Cmax,K

∫∫
QT

e−2s1α

p+4∑
k=2

ξ2k−1‖∇p+4−kψ̃k‖2
p+5−kdxdt,

where Cmax,K := max{maxa,b{Ca,b,K}, CK}. Owing to (6.2), Proposition 5.2.1 and (6.7),
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we deduce

‖eKs1α∗vk‖L2((0,T );Hp+2(Ω)∩H1
0 (Ω))m∩H1((0,T );L2(Ω))m

≤ Cmax,KCobs

∫∫
QT

e−2s1αξ2p+7
∥∥∥θψ̃k∥∥∥2

1
dxdt

= Cmax,KCobs‖vk‖2
L2(QT )m .

Lastly, for C̄K := C̄K(Ω, ω0, T ), (6.12) yields the inequality

‖eKs1α∗vk‖L2((0,T );Hp+2(Ω)∩H1
0 (Ω))m∩H1((0,T );L2(Ω))m ≤ C̄K‖ỹ0‖L2(Ω)m ,

from which (6.3) is verified by extracting a convergent subsequence and letting k →

∞.

With algebraic solvability of the algebraic control problem (4.17) and null con-

trollability of the analytic control problem (4.16) both established for highly regular

controls, we can now prove null controllability of the system (3.1) with internal con-

trols û ∈ L2(qT )c, where c < m− 1.

In Proposition 6.2.1, we showed the existence of (ỹ, θv) ∈ L2((0, T );H1
0 (Ω))m ∩

H1((0, T );H−1(Ω))m × L2(QT )m satisfying


∂tỹ = div(D∇ỹ) +G · ∇ỹ + Aỹ + θv in QT

ỹ = 0 on ΣT

ỹ(0, ·) = y0(·) in Ω

(6.23)

such that ỹ(T, ·) = 0 in Ω. Furthermore, we established the following higher regularity
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for v:

eKs1α
∗
v ∈ L2((0, T );Hp+2(Ω) ∩H1

0 (Ω))m ∩H1((0, T );L2(Ω))m, (6.24)

for all k ∈ (0, 1). Notice that (6.24) implies that v is exponentially decaying as t→ 0

and t → T . For the linear partial differential operator B (of order zero in time and

at most p+ 2 in space) constructed implicitly in Proposition 4.4.6, let us define

 ŷ

û

 := B (θv) ,

which is well-defined by (6.24). By virtue of B being a linear partial differential

operator of the stated orders with constant coefficients, we conclude that

(ŷ, û) ∈ L2(qT )× L2(qT )c; (6.25)

we then extend (ŷ, û) by zero to QT . Since v decays exponentially as t → 0 and

t → T , ŷ(0, ·) = ŷ(T, ·) = 0 in Ω. Furthermore, it follows from the discussions in

Chapter 4 that (ŷ, û) is the solution to


∂tŷ = div(D∇ŷ) +G · ∇ŷ + Aŷ +Bû+ θv in QT

ŷ = 0 on ΣT

ŷ(0, ·) = ŷ(T, ·) = 0 in Ω,

(6.26)

where, by (6.25) and by the parabolic regularity discussed in Section 2.3, (ŷ, û) satis-

fies Definition 2.3.1. Defining (y, u) := (ỹ − ŷ,−û), it is immediate that (y, u) is the



6.2. NULL CONTROLLABILITY OF THE ANALYTIC PROBLEM 99

solution to (3.1) with y(T, ·) = 0 in Ω. This finishes the proof of Theorem 3.1.5.
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Chapter 7

Conclusions and future work

7.1 Summary

In this work, we derived a sufficient condition for the null controllability of a system

of coupled parabolic PDEs, where the couplings were constant in space and time

and of first and zero-order, when more than half of the equations in the system were

actuated. This controllability condition is generic for the case of c ≥ h, where c

denotes the number of controls and for h defined in Theorem 3.1.5. Furthermore, we

demonstrated that for c < h, the possibly non-generic nature of this controllability

condition is purely technical and is an artifact of our treatment in Section 4.4. In

the process of deriving our main result, we used a powerful technique, the so-called

fictitious control method, which allowed us to pose our controllability problem as two

interconnected problems.

7.2 Future work

Here are two directions of research which build upon the work in this thesis:

(i) in light of the shortcomings of Theorem 3.1.5 for c < h, one may wish to explore
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other decomposition methods than the one we relied on in Theorem 2.5.6 to

construct a right inverse to the differential operator L defined in (4.18). Fur-

thermore, since the controllability condition stated in Theorem 3.1.5 are only

sufficient, a different sparse matrix decomposition and a different choice of dif-

ferential operator N may yield a milder controllability condition that closes the

gap between sufficiency and necessity (as in Lemma 4.4.2 for one underactua-

tion), and;

(ii) to our knowledge, the fictitious control method has yet to be applied to prob-

lems of stabilizability of control systems at the time of this writing. One could

possibly extend this treatment to stabilizability of control systems by means of

internal controls.



BIBLIOGRAPHY 102

Bibliography

[1] Fatiha Alabau-Boussouira, Roger Brockett, Olivier Glass, Jérôme Le Rousseau,
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Chapter 8

Appendix

8.1 Omitted proofs

Proof of Lemma 5.1.1. Consider a function θ ∈ Cr(Rn) such that Ω = {x ∈ Rn :

θ(x) > 0} and ‖∇θ(x)‖1 > 0 for all x ∈ ∂Ω. In can be deduced from [5, Theorem

5.31] that there exists a sequence of Morse functions (θk)k∈N∗ such that

θk → θ in Cr(Ω̄) as k →∞. (8.1)

We define the set of critical points of θ by C := {x ∈ Rn : ∇θ(x) = 0}. Since

‖∇θ‖1 > 0 on ∂Ω, there exists an open set Θ ⊂ Rn such that

Θ̄ ∩ C = ∅, where ∂Ω ⊂ Θ, (8.2)

that is, the critical points of θ are not limit points in Θ. Let e ∈ C∞(Rn) such that

supp(e) = Θ and e = 1 on ∂Ω. We define a function gk(x) := θk + e(θ − θk). By the
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construction of θ and e, it follows that

gk = 0 on ∂Ω. (8.3)

Indeed, by construction of θ, θ = 0 on ∂Ω. Furthermore, by construction on e,

∇gk =


∇θk in Ω \Θ,

∇θk + e(∇θ −∇θk) +∇e(θ − θk) in Ω ∩Θ.

(8.4)

By (8.4) and then (8.1), for all ε > 0, there exists an integer k0 := k0(ε) such that

|∇gk‖1 ≥ ‖∇θk‖1 − ‖−e(∇θ −∇θk)−∇e(θ − θk)‖1

≥ ‖∇θk‖1 − ‖e(∇θ −∇θk)‖1 − ‖∇e(θ − θk)‖1

≥ ‖∇θk‖1 − sup
x∈Θ
{e} ‖∇θ −∇θk‖1 − sup

x∈Θ
{∇e} |θ − θk|

≥ ‖∇θk‖1 − ‖e‖C1(Θ) (‖∇θ −∇θk‖1 + |θ − θk|)

≥ ‖∇θk‖1 − ε,

for k > k0 and for x ∈ Ω ∩ Θ. It follows from (8.1), (8.2) and the above inequality

that there exists ε > 0 and a k̂ sufficiently large such that

‖∇gk̂‖1
> 0 in Ω ∩Θ.

Hence, defining g := gk̂, we have shown the existence of a Morse function g ∈ Cr(Ω̄)

such that g > 0 in Ω, g = 0 on ∂Ω, ‖∇g‖1 > 0 in ∂Ω. Furthermore, since Ω̄ is

compact, the set of critical points of g is finite (indeed, non-degenerate critical points
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are isolated points, so must be finite in a compact set; see [5, Corollary 5.25] for the

details).

For k ∈ N, let ai denote the ith critical point of g, for i ∈ {1, . . . , k}. Let

γi ∈ C∞([0, 1]; Ω) be such that

γi is one to one for every i ∈ {1, . . . , k}

γi([0, 1]) ∩ γj([0, 1]) = ∅ ∀ (i, j) ∈ {1, . . . , k}2 such that i 6= j

γi(0) = ai, ∀ i ∈ {1, . . . , k}

γi(1) ∈ ω2, ∀ i ∈ {1, . . . , k} (8.5)

The existence f such γi’s follows from the connectedness of Ω: for n > 2, one uses a

transversality argument (two intersecting embedded curves can be perturbed so that

they no longer intersect); for n = 2, one proceeds by induction on k and by noticing

that for Γ a set of k of disjoint embedded paths in Ω, Ω \ Γ is still connected.

Consider the C∞ vector field X ∈ C∞(Rn,Rn) such that

{x ∈ Rn : X(x) 6= 0} ⊂ Ω (8.6)

X(γi(t)) =
dγi(t)

dt
, ∀ i ∈ {1, . . . , k}. (8.7)

Let Φ be the flow associated to X, i.e., Φ : R× Rn → Rn satisfies

dΦ

dt
= X(Φ), Φ(0, x) = x, ∀ x ∈ Rn. (8.8)
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From (8.7) and (8.8), we have

Φ(t, ai) = γi(t), ∀ t ∈ [0, 1],

which follows from uniqueness of solutions to equations of type (8.8). Hence, by (8.5),

it follows that

Φ(1, ai) ∈ ω2. (8.9)

Note that for every τ ∈ R, Φ(τ, ·) is a diffeomorphism (with the inverse Φ(τ, ·)−1 =

Φ(−τ, ·)). Hence, by (8.6), for every τ ∈ R, Φ(τ,Ω) = Ω. Indeed, since Φ−1 is

continuous, we have Φ(τ,Ω) = ω for some ω ⊂ Ω open. Suppose ω 6= Ω; then,

Φ(−τ, ω) = Ω, which yields a contradiction since Φ is a diffeomorphism. Furthermore,

by (8.6) and (8.8), Φ is the identity map in a neighbourhood of ∂Ω. We define

η0(x) := g(Φ(−1, x)), ∀ x ∈ Ω̄,

which satisfies the desired properties. Indeed, η0 ∈ Cr(Ω̄) and η0 inherits from g the

properties that η0 > 0 in Ω, η0 = 0 on ∂Ω and ‖∇η0‖1 > 0 on ∂Ω. Lastly, the critical

points of η0 in Ω are located where Φ(−1, x) = ai = for i ∈ {1, . . . , k}, and hence

by (8.9), they occur for

x = Φ(0, x)

= Φ(1,Φ(−1, x))

= Φ(1, ai) ∈ ω2,

thus ‖∇η0(x)‖1 > 0 for x ∈ Ω \ ω2.
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Proof of Lemma 5.1.4. We denote by C various positive constants depending on Ω, ωp+2

and r. From now on, let n denote the outward-pointing normal associated to ∂Ω.

Since Cm(Ω̄) is dense in Wm,p(Ω) (see, for example, [16, Theorem 3, Subection 5.3.3]),

we can take u ∈ C0([0, T ];C1(Ω̄). Consider the integral

∫
Ω

e−2sαξr+1
(
∇η0 · ∇u

)
udxdt. (8.10)

Using (5.5), we calculate

∇·
(
e−2sαξr+1∇η0u

)
= 2sλe−2sαξr+2

∥∥∇η0
∥∥2

1
u+e−2sα∇·

(
ξr+1∇η0

)
u+e−2sαξr+1∇u·∇η0.

Hence, integrating (8.10) by parts over Ω yields

∫
Ω

e−2sαξr+1
(
∇η0 · ∇u

)
udxdt =

∫
∂Ω

e−2sαξr+1
(
∇η0 · n

)
|u|2dσdt

− 2sλ

∫
Ω

e−2sαξr+2
∥∥∇η0

∥∥2

1
|u|2dxdt

−
∫

Ω

e−2sα∇ ·
(
ξr+1∇η0

)
|u|2dxdt

−
∫

Ω

e−2sαξr+1
(
∇u · ∇η0

)
udxdt.

Multiplying by sλ and integrating over t ∈ (0, T ), one gets

sλ

∫∫
QT

e−2sαξr+1
(
∇η0 · ∇u

)
udxdt =

sλ

2

∫∫
ΣT

e−2sαξr+1
(
∇η0 · n

)
|u|2dσdt

− s2λ2

∫∫
QT

e−2sαξr+2
∥∥∇η0

∥∥2

1
|u|2dxdt

− sλ

2

∫∫
QT

e−2sα∇ ·
(
ξr+1∇η0

)
|u|2dxdt.
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By (5.4), we have that (∇η0 · n) ≤ 0 which gives

s2λ2

∫∫
QT

e−2sαξr+2
∥∥∇η0

∥∥2

1
|u|2dxdt ≤ −sλ

∫∫
QT

e−2sαξr+1
(
∇η0 · ∇u

)
udxdt

− sλ

2

∫∫
QT

e−2sα∇ ·
(
ξr+1∇η0

)
|u|2dxdt.

One can make an even coarser estimate:

s2λ2

∫∫
QT

e−2sαξr+2
∥∥∇η0

∥∥2

1
|u|2dxdt ≤ sλ

∫∫
QT

e−2sαξr+1
∥∥∇η0

∥∥
1
‖∇u‖1 |u|dxdt

+
sλ

2

∫∫
QT

e−2sα|∇ ·
(
ξr+1∇η0

)
||u|2dxdt.

Note that for λ ≥ C,

|∇ ·
(
ξr+1∇η0

)
| ≤ Cλξr+1.

Indeed, from (5.6) we compute ∇ξr+1 = λ(r + 1)ξr+1∇η0; hence

|∇ ·
(
ξr+1∇η0

)
| = ξr+1λ(r + 1)

∣∣∣∣∥∥∇η0
∥∥2

1
+

∆η0

λ(r + 1)

∣∣∣∣
≤ ξr+1λ(r + 1)

∣∣∣∣∥∥∇η0
∥∥2

1
+

∆η0

C(r + 1)

∣∣∣∣
≤ Cλξr+1.

It follows that that

s2λ2

∫∫
QT

e−2sαξr+2
∥∥∇η0

∥∥2

1
|u|2dxdt ≤ sλ

∫∫
QT

e−2sαξr+1
∥∥∇η0

∥∥
1
‖∇u‖1 |u|dxdt

+
sλ2

2

∫∫
QT

Ce−2sαξr+1|u|2dxdt. (8.11)
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We use Cauchy-Schwarz and Young’s inequalities with ε > 0 on the first term in the

righthand of (8.11) along with the fact that η0 is chosen and C depends on Ω:

sλ

∫∫
QT

e−2sαξr+1
∥∥∇η0

∥∥
1
‖∇u‖1 |u|dxdt

=

∫∫
QT

(
ε−1/2e−sαξr/2 ‖∇u‖1 |η

0|
) (
ε1/2sλe−sαξ(r+2)/2|u|

)
dxdt

≤
∫

(0,T )

(∫
Ω

1

ε
e−2sαξr ‖∇u‖2

1 |η
0|2dx

)1/2(
εs2λ2

∫
Ω

e−2sαξr+2|u|2dx
)1/2

dt

≤ C

ε

∫∫
QT

e−2sαξr ‖∇u‖2
1 dxdt+

εs2λ2

2

∫∫
QT

e−2sαξr+2|u|2dxdt.

For s ≥ C(T 5+T 10)
ε

, the second term in the righthand side of (8.11) can be upper

bounded: by (5.6), (5.13) and since eλ(10‖η0‖∞+η0(x)) > 1 for all x ∈ Ω,

sλ2

2

∫∫
QT

Ce−2sαξr+1|u|2dxdt ≤ εs2λ2

2

∫∫
QT

1

(T 5 + T 10)
e−2sαξr+1|u|2dxdt

≤ εs2λ2

2

∫∫
QT

e−2sαξr+2|u|2dxdt. (8.12)

Hence, a coarser bound for (8.11) is

s2λ2

∫∫
QT

e−2sαξr+2
∥∥∇η0

∥∥2

1
|u|2dxdt ≤ C

ε

∫∫
QT

e−2sαξr ‖∇u‖2
1 dxdt

+ εs2λ2

∫∫
QT

e−2sαξr+2|u|2dxdt. (8.13)

We multiply (8.13) by srλr+1 and take ε small enough such that the rightmost term

becomes dominated by Cs2λ2
∫∫

ωp+2
e−2sαξr+2|u|2dxdt (recall that C depends on Ω

and ωp+2). This proves the desired inequality for λ ≥ C and s ≥ C(T 5 + T 10).


