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Abstract

In this thesis, we introduce random differential equations in an abstract framework

and study their well-posedness. We study average controllability properties of a

random heat equation when the diffusivity is a random variable. We show that the

solutions of such random heat equations are both null and approximately controllable

in average from an arbitrary open set of the domain and in an arbitrarily small time,

recovering the known result when the random diffusivity is uniformly or exponentially

distributed.
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Chapter 1

Introduction

A control system is a dynamical system, modelled by ordinary or partial differen-

tial equations (ODEs or PDEs), that one can act on using controls. The ability

to steer the system from any given state to any other state is a desirable property

of control systems. If this property holds, the system is called controllable. This

type of problem is known as the controllability problem. When studying such control

problems, it is useful to distinguish between finite-dimensional systems, modelled by

ODEs, and infinite-dimensional systems, modelled by PDEs. The importance behind

this distinction lies in the differences between the behaviour of finite and infinite-

dimensional systems. For example, by the well-known Kalman rank condition, if a

finite-dimensional system is controllable during some time, then it is controllable for

all time (see e.g. [2]). This, however, is not true for an infinite-dimensional system

modelled by the transport equation. In this case, the system is not controllable unless

enough time is provided to allow for the effect of the control to propagate throughout

the entire domain (see e.g. [2]). These drastic differences have lead to a separation in

the studies of ODEs and PDEs. The focus of this thesis will be on control systems

modelled by PDEs. This focus is motivated by the various physical phenomena that
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PDEs are used to model. Examples include heat conduction, wave propagation, fluid

dynamics, electromagnetism, and quantum mechanics [5].

In particular, this thesis will focus on what are known as parameter dependent

control systems. A parameter dependent control system is a system whose dynam-

ics are governed by parameter dependent operators. Each unique parameter value

corresponds to a specific realization of the system. The usefulness of such systems

becomes clear when considering the problem of modelling physical processes. Due

to the uncertainties and complexities involved, it is difficult to perfectly model phys-

ical processes; thus it becomes natural to model them using parameter dependent

coefficients. In particular, equations whose parameters are random can be used to

model many uncertain physical processes [15]. An example of such a process is heat

diffusion through an inhomogeneous material. Generally speaking, in order to control

such systems one must use controls dependent on the parameter (see e.g. [12], [11], [6]

and references therein). However, in the cases where the value of the parameter is

unknown, it is not always possible to control every realization of the system using a

control independent of the parameter (c.f. Remark 2.3.4); one can instead make a ro-

bust compromise to controlling every realization of the system by controlling instead

the average of the state with respect to the unknown parameter. This problem was

first introduced in [16]. There, the problem was formulated and solved in the set-

ting of finite-dimensional systems. In [10] the problem of averaged controllability was

studied in the context of PDEs. There, the authors focused on heat and Schrödinger

equations with random parameters. Due to the recency of the averaged control prob-

lem, there are many open problems. The aim of this thesis is not to address all of

these problems, but to explore how we can apply existing results on control of PDEs
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to the averaged control problem. Our focus will be on averaged controllability of the

heat equation where the diffusivity coefficient is unknown, i.e., the diffusivity is a

random variable where only its probability density function is known. The treatment

of this problem will follow the treatment presented in [10].

1.1 Contribution of Thesis

The contribution of this thesis is twofold: first, we extend the result of [10] to show

both null and approximate controllability in average for a random heat equation when

the diffusivity is a random variable with a general probability distribution. Secondly,

we characterize the necessity of a non-zero diffusivity for achieving average control

properties.

1.2 Organization of Thesis

The rest of this thesis is organized as follows: in Chapter 2 we will introduce some

notation. We introduce abstract parameter dependent control systems and discuss

their well-posedness. We also define what it means for such systems to be exactly,

null, and approximately controllable/observable in average. In Chapter 3 we state

the main problem addressed in this thesis. In Chapter 4 we present a proof for the

main result. In Chapter 5 we summarize the main result, and indicate interesting

directions for future work. Finally, in the Appendix, Chapter 6, we include several

classical results that are used throughout the thesis.
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Chapter 2

Mathematical Preliminaries

2.1 Basic Notation

Throughout this thesis, we denote the set of real numbers by R, non-negative real

numbers by R≥0, positive real numbers by R>0, non-negative integers by Z≥0, positive

integers by Z>0, and complex numbers by C. Given numbers a, b ∈ R, we denote by

[a, b) an interval inclusive of a and non-inclusive of b. We denote the real part of

a number a ∈ C by Re(a). We will denote a norm on a vector space V by ‖ · ‖V ,

and an inner product on a vector space H by 〈·, ·〉H . We will denote the space of

linear operators from a vector space U to a vector space V by L(U, V ) and from

V to itself by L(V ). We will denote by C(U ;V ) the space of continuous functions

from topological space U to topological space V and Ck(U ;V ) the space of k-times

continuously differentiable functions from U to V . We denote by χE(·) the indicator

function on E. We will often denote the partial derivative of multi-variable function

y : (x, t) 7→ y(x, t) with respect to its second variable by yt(x, t).
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2.2 Well-Posedness of Abstract Cauchy Problem

In this section we introduce an abstract Cauchy problem that can be used to model

PDEs. After studying the well-posedness of this equation, we will further generalize

to abstract parameter dependent control systems and discuss the averaged control

problem.

Let T > 0, let V and U be separable Hilbert spaces. Let A : D(A) ⊂ V → V ,

where D(A) is the domain of A. Let B ∈ L(U, V ), and consider the following abstract

Cauchy problem: 
yt(t) = Ay(t) +Bu(t), t ∈ (0, T ],

y(0) = y0,

(2.1)

where y0 ∈ V and u(t) ∈ U . Our goal in this section is to provide conditions under

which a solution to (2.1) exists and is unique. Before defining what it means to be a

solution, we first present a formal example that will motivate the need for so-called

semigroup theory.

Example 2.2.1. Consider a one-dimensional bar of length 1 that is heated along its

length according to the following equation:


yt(x, t) = yxx(x, t) + u(x, t), (x, t) ∈ (0, 1)× (0, T ],

y(x, 0) = y0(x), x ∈ (0, 1),

yx(0, t) = yx(1, t) = 0, t ∈ [0, T ],

(2.2)

where y(x, t) is the temperature of the bar at position x and time t, y0 is the initial

temperature profile, and u(x, t) is the addition of heat along the bar. We can repose

this problem in the sense of an abstract Cauchy problem. To do this, we choose state
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space V = L2(0, 1) where the state at time t is y(·, t). Choose U = L2(0, 1), B = I

and 
Ah = hxx with

D(A) = {h ∈ L2(0, 1) : h, hx are absolutely continuous,

hxx ∈ L2(0, 1), hx(0) = hx(1) = 0}.

It is well-known (see e.g. [3]) that for sufficiently smooth functions y0 and u, the

solution to (2.2) is given by

y(x, t) =

∫ t

0

g(t, x, y)y0(y)dy +

∫ t

0

∫ 1

0

g(t− τ, x, y)u(y, s)dydτ,

where g(t, x, y) = 1 +
∑∞

n=1 2e−n
2π2t cos(nπx) cos(nπy). To formulate this solution in

an abstract sense, define for each t ∈ [0, T ] the operator S(t) ∈ L(L2(0, 1)) by

S(t)y0(x) =

∫ 1

0

g(t, x, y)y0(y)dy.

Then, the solution becomes

y(t) = S(t)y0 +

∫ t

0

S(t− τ)u(τ)dτ.

This is analogous to the variation of constants formula for finite-dimensional systems.

•

This example motivates the following definition:
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Definition 2.2.2. A strongly continuous semigroup (C0-semigroup) is an operator-

valued function, S : R≥0 → L(V ), satisfying

S(t+ s) = S(t)S(s) for s, t ≥ 0,

S(0) = I,

‖S(t)y0 − y0‖V → 0 as t→ 0+, ∀ y0 ∈ V.

Note that ‖S(t)‖L(V ) is bounded on every finite subinterval of [0,∞) (see e.g. [3,

Theorem 2.1.6]). One can associate with each C0-semigroup, a linear operator.

Definition 2.2.3. The infinitesimal generator A of a C0-semigroup on a Hilbert

space V is defined by

Ay = lim
t→0+

1

t
(S(t)− I)y,

whenever the limit exists. The domain of A, D(A), is the subset of V for which the

limit exists.

Next we introduce the adjoint operator of A.

Definition 2.2.4. Let A be a linear operator on a Hilbert space V that is densely

defined, i.e., D(A) is dense in V . The adjoint operator of A is the linear operator

A∗ : D(A∗) ⊂ V → V , where D(A∗) consists of all y ∈ V such that there exists y∗ ∈ V

satisfying

〈Ax, y〉H = 〈x, y∗〉H , ∀ x ∈ D(A).

For each y ∈ D(A∗), we define A∗ as

A∗y = y∗.
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Definition 2.2.5. We say that a densely defined linear operator A is symmetric if

for all x, y ∈ D(A)

〈Ax, y〉H = 〈x,Ay〉H .

A symmetric operator is self-adjoint if D(A∗) = D(A).

We have the following semigroup result concerning the adjoint operator A∗ of A:

Theorem 2.2.6. ([3, Theorem 2.2.6]): If S(t) is a C0-semigroup with infinitesimal

generator A on a Hilbert space V , then S∗(t) is a C0-semigroup with infinitesimal

generator A∗ on V .

Conversely, A is not always the generator of a C0-semigroup. We will give a

sufficient condition for when A is the infinitesimal generator of a C0-semigroup.

Theorem 2.2.7. ([3, Corollary 2.2.3]): Let A be a densely defined closed operator,

i.e., D(A) is dense in V and the graph of A is a closed subset of V × V . If there

exists β ∈ R such that

Re (〈Av, v〉V ) ≤ β‖v‖V , ∀ v ∈ D(A)

Re (〈A∗v, v〉V ) ≤ β‖v‖V , ∀ v ∈ D(A∗)

then A is the infinitesimal generator of a C0-semigroup on V with ‖S(t)‖L(V ) ≤ eβt.

Throughout the rest of this section, we will assume that A : D(A) ⊂ V → V is

the infinitesimal generator of a C0-semigroup S(t). We are now in position to define

what it means to be a solution to (2.1).

Definition 2.2.8. The function y(t) is a classical solution to (2.1) on [0, T ] if y ∈

C1([0, T ];V ), y(t) ∈ D(A), for all t ∈ [0, T ] and y(t) satisfies (2.1) for all t ∈ [0, T ].
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Lemma 2.2.9. ([3, Lemma 3.1.2]): Assume that Bu(·) ∈ C([0, T ];V ) and that

y(t) is a classical solution of (2.1) on [0, T ]. Then Ay(·) ∈ C([0, T ];V ) and

y(t) = S(t)y0 +

∫ t

0

S(t− τ)Bu(τ)dτ. (2.3)

It is important to note that (2.3) does not always give a classical solution to (2.1).

However, under certain conditions a classical solution can be obtained.

Theorem 2.2.10. ([3, Theorem 3.1.3]): If A is the infinitesimal generator of a C0-

semigroup S(t) on a Hilbert space V , Bu(·) ∈ C1([0, T ];V ) and y0 ∈ D(A), then (2.3)

is continuously differentiable and it is the unique classical solution of (2.1).

The condition that Bu(·) ∈ C1([0, T ];V ) is generally too strong for control pur-

poses. Instead, we wish to choose u such that Bu(·) ∈ Lp([0, T ];V ) for some p. This

relaxation allows us to choose controls from a larger class of functions, thereby in-

creasing the likelihood of finding a control that steers the system to the desired end

state. Thus, we must introduce a weaker notion of a solution to (2.1).

Definition 2.2.11. If Bu(·) ∈ Lp([0, T ];V ) for some p ≥ 1 and y0 ∈ V then we

call (2.3) a mild solution of (2.1).

Note that in this context, the integral in (2.3) is well-defined since ‖S(t)‖L(V ) is

bounded on [0, t] and if Bu(·) ∈ Lp([0, T ];V ) then necessarily Bu(·) ∈ L1([0, T ];V ).

It turns out that the mild solution coincides with the notion of weak solution used in

the study of PDEs.

Definition 2.2.12. Let Bu(·) ∈ Lp([0, T ];V ) for some p ≥ 1. We call y(t) a weak
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solution of (2.1) on [0, T ] if y ∈ C([0, T ];V ) and for all g ∈ C([0, T ];V )

∫ T

0

〈y(t), g(t)〉V dt−
∫ T

0

〈
Bu(t),

∫ T

t

S∗(τ − t)g(τ)dτ

〉
V

dt

−
〈
y0,

∫ T

0

S∗(τ)g(τ)dτ

〉
V

= 0.

Theorem 2.2.13. ([3, Theorem 3.1.7]): Let y0 ∈ V and Bu(·) ∈ Lp([0, T ];V )

for some p ≥ 1. Then there exists a unique weak solution of (2.1) that is the mild

solution given by (2.3).

2.3 Parameter Dependent Control Systems

In this section we introduce a more general class of Cauchy problem with parameter

dependence and describe the notions of averaged controllability and observability.

Let T > 0, E ⊂ [0, T ] a Lebesgue measurable set with positive Lebesgue measure.

Let H and U be separable Hilbert Spaces. Let V ⊂ H be a Hilbert space dense in

H. Let V ′ denote the dual space of V with respect to the pivot space H, i.e.,

V ⊂ H ⊂ V ′.

Let (Ω,F ,P) be a probability space. Let {A(ω)}ω∈Ω be a family of linear operators

under the following three assumptions:

(A1) A(ω) ∈ L(D(A(ω)), H), for all ω ∈ Ω;

(A2) A(ω) : D(A(ω))→ H generates a C0-semigroup S(t, ω) on H and V , a.e. ω ∈ Ω;

(A3) S(t, ·)y ∈ L1(Ω;V ), for all y ∈ V and t ∈ [0, T ].
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Let B ∈ L2(Ω;L(U, V )), and consider the following control system:


yt(t) = A(ω)y(t) + χE(t)B(ω)u(t) in (0, T ],

y(0) = y0,

(2.4)

where y0 ∈ V and u ∈ L2(E;U) is the control. Note that the state of the system at

time t, denoted by y(t, ω; y0), depends on ω nonlinearly. According to Theorem 2.2.13,

for a.e. ω ∈ Ω, there exists a weak solution y(·, ω; y0) ∈ C([0, T ];V ). Moreover, the

averaged state
∫

Ω
y(·, ω; y0)dP(ω) is in C([0, T ];V ). Indeed, this follows from the fact

that for a.e. ω ∈ Ω, y(·, ω; y0) ∈ C([0, T ];V ) and

∫
Ω

y(t, ω; y0)dP(ω) =

∫
Ω

S(t, ω)y0dP(ω) +

∫
Ω

∫ t

0

S(t− τ, ω)B(ω)u(τ)dτdP(ω).

Note that the integrals above make sense by assumption (A3).

2.3.1 Average Controllability and Observability

We now introduce the following three notions of average controllability:

Definition 2.3.1. System (2.4) is exactly controllable in average in E with cost C if

for all y0, y1 ∈ V , there exists u ∈ L2(E;U) such that

‖u‖L2(E;U) ≤ C(‖y0‖V + ‖y1‖V )

and the average of the solution to (2.4) satisfies

∫
Ω

y(T, ω; y0)dP(ω) = y1.
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Definition 2.3.2. System (2.4) is null controllable in average in E with cost C if for

all y0 ∈ V , there exists u ∈ L2(E;U) such that

‖u‖L2(E;U) ≤ C‖y0‖V

and the average of the solution to (2.4) satisfies

∫
Ω

y(T, ω; y0)dP(ω) = 0.

Definition 2.3.3. System (2.4) is approximately controllable in average in E if for

all y0, y1 ∈ V , for all ε > 0, there exists uε ∈ L2(E;U) such that the average of the

solution to (2.4) satisfies

∥∥∥∥∫
Ω

y(T, ω; y0)dP(ω)− y1

∥∥∥∥
V

< ε.

Remark 2.3.4. A different notion of controllability is simultaneous controllability.

For an introduction to this notion see [7]. For simultaneous controllability, we are con-

cerned with choosing a controller, independent of the random parameter, that makes

every realization of the system controllable. Clearly this notion is much stronger

than controllability in average. However, as one can imagine, there are many systems

where simultaneous controllability is impossible to achieve but that are controllable

in average; a simple example is provided in [10] which we present here. Consider the
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following linear, finite-dimensional system:


yt(t) = Ay(t) +B(ω)u(t) in (0, T ],

y(0) = y0 ∈ R2,

where

A =

 0 1

0 1

 , B(ω) ∈ {B, 2B} for B =

 0

1

 .

By Theorem 1 in [16], we have that the above system is null controllable in average.

However, this system is not null simultaneous controllable. Otherwise, there would

exist u ∈ L2(0, T ) such that

eATy0 +

∫ T

0

eA(T−t)Bu(t)dt = eATy0 + 2

∫ T

0

eA(T−t)Bu(t)dt = 0.

But this implies that y0 = 0. •

Next, we introduce the adjoint system to (2.4):


−zt(t) = A∗(ω)z(t) in [0, T ),

z(T ) = z0,

(2.5)

where z0 ∈ V ′. We will denote the solution at time t to (2.5) by z(t, ω; z0).

Similar to average controllability, we introduce three notions of average observ-

ability:

Definition 2.3.5. System (2.5) is exactly observable in average in E if there exists
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C > 0 such that for all z0 ∈ V ′,

‖z0‖2
V ′ ≤ C

∫ T

0

χE(t)

∥∥∥∥∫
Ω

B∗(ω)z(t, ω; z0)dP(ω)

∥∥∥∥2

U

dt.

Definition 2.3.6. System (2.5) is null observable in average in E if there exists C > 0

such that for all z0 ∈ V ′,

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥2

V ′
≤ C

∫ T

0

χE(t)

∥∥∥∥∫
Ω

B∗(ω)z(t, ω; z0)dP(ω)

∥∥∥∥2

U

dt. (2.6)

Definition 2.3.7. System (2.5) is said to satisfy the averaged unique continuation

property in E if

χE(t)

∫
Ω

B∗(ω)z(·, ω; z0)dP(ω) = 0 ∈ L2([0, T ];U)

implies z0 = 0.

Note that there is no natural evolution equation to describe the dynamics of∫
Ω
y(·, ω; y0)dP(ω), the average of the solution to (2.4). Similarly, there is no natural

evolution equation to describe the behaviour of
∫

Ω
z(·, ω; z0)dP(ω), the average of

the solution to (2.5). Because of this, we cannot directly employ existing results or

techniques to prove average controllability results. However, one can still prove the

classical duality between controllability and observability in the averaged sense.

Theorem 2.3.8. ([10, Theorem A.1]): System (2.4) is exactly controllable in

average in E if and only if system (2.5) is exactly observable in average in E.

Theorem 2.3.9. ([10, Theorem A.2]): System (2.4) is null controllable in average

in E if and only if system (2.5) is null observable in average in E.
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Theorem 2.3.10. ([10, Theorem A.3]): System (2.4) is approximately control-

lable in average in E if and only if system (2.5) satisfies the averaged unique contin-

uation property in E.

We prove Theorem 2.3.9 and Theorem 2.3.10. The proof for Theorem 2.3.8 is very

similar to that of Theorem 2.3.9.

Proof of Theorem 2.3.9. (⇐): Define a linear subspace X ⊂ L2(E;U) as

X =

{
χE(·)

∫
Ω

B∗(ω)z(·, ω; z0)dP(ω) : z0 ∈ V ′
}
,

and a linear functional F on X as

F

(
χE(·)

∫
Ω

B∗(ω)z(·, ω; z0)dP(ω)

)
= −

〈
y0,

∫
Ω

z(0, ω; z0)dP(ω)

〉
V,V ′

.

We have by (2.6),

F

(
χE(·)

∫
Ω

B∗(ω)z(·, ω; z0)dP(ω)

)
≤ ‖y0‖V

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥
V ′

≤
√
C‖y0‖V

∥∥∥∥χE(·)
∫

Ω

B∗(ω)z(·, ω; z0)dP(ω)

∥∥∥∥
L2(E;U)

.

Hence, F is a bounded linear functional on X with norm,

‖F‖L(X ,R) ≤
√
C‖y0‖V .

By Hahn–Banach theorem, F can be extended to a bounded linear functional on

L2(E;U) with the same norm. With abuse of notation, we will denote this extension
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also by F . By Riesz representation theorem, there exists u ∈ L2(E;U) such that for

all v ∈ L2(E;U),

F (v) = 〈v, u〉L2(E;U),

and

‖u‖L2(E;U) = ‖F‖L(X ,R) ≤
√
C‖y0‖V .

By definition of F ,

−
〈
y0,

∫
Ω

z(0, ω; z0)dP(ω)

〉
V,V ′

=

〈
u, χE(·)

∫
Ω

B∗(ω)z(·, ω; z0)dP(ω)

〉
L2(E;U)

=

∫
E

〈
u,

∫
Ω

B∗(ω)z(·, ω; z0)dP(ω)

〉
U

dt.

Note that for a strongly measurable function f : Ω→ U , we can write

〈
u,

∫
Ω

f(ω)dP(ω)

〉
U

=

〈
u,
∞∑
j=1

fjµ(Aj)

〉
U

=

〈
u, lim

N→∞

n∑
j=1

fjµ(Aj)

〉
U

= lim
N→∞

〈
u,

n∑
j=1

fjµ(Aj)

〉
U

=
∞∑
j=1

〈u, fj〉U µ(Aj)

=

∫
Ω

〈u, f(ω)〉UdP(ω),

where fj ∈ U with support on Aj, for all j ∈ Z>0. Hence,

−
〈
y0,

∫
Ω

z(0, ω; z0)dP(ω)

〉
V,V ′

=

∫
E

∫
Ω

〈u,B∗(ω)z(t, ω; z0)〉U dP(ω)dt. (2.7)
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Also,

∫
E

∫
Ω

〈u,B∗(ω)z(·, ω; z0)〉U dP(ω)dt

=

∫ T

0

∫
Ω

〈χE(t)B(ω)u, z(·, ω; z0)〉V,V ′ dP(ω)dt

=

∫ T

0

∫
Ω

〈yt(t, ω; y0), z(·, ω; z0)〉V,V ′ dP(ω)dt

−
∫ T

0

∫
Ω

〈A(ω)y(t, ω; y0), z(·, ω; z0)〉V,V ′ dP(ω)dt

=

∫ T

0

∫
Ω

〈yt(t, ω; y0), z(·, ω; z0)〉V,V ′ dP(ω)dt

−
∫ T

0

∫
Ω

〈y(t, ω; y0), A∗(ω)z(·, ω; z0)〉V,V ′ dP(ω)dt.

By Fubini–Tonelli theorem and integration by parts,

∫
E

∫
Ω

〈u,B∗(ω)z(t, ω; z0)〉U dP(ω)dt

=

∫
Ω

(
〈y(T, ω; y0), z(T, ω; z0)〉V,V ′ − 〈y(0, ω; y0), z(0, ω; z0)〉V,V ′

−
∫ T

0

〈y(t, ω; y0), zt(t, ω; z0)〉V,V ′ dt

−
∫ T

0

〈y(t, ω; y0), A∗(ω)z(t, ω; z0)〉V,V ′ dt
)
dP(ω)

=

∫
Ω

(
〈y(T, ω; y0), z0〉V,V ′ − 〈y0, z(0, ω; z0)〉V,V ′

)
dP

=

〈∫
Ω

y(T, ω; y0)dP, z0

〉
V,V ′
−
〈
y0,

∫
Ω

z(0, ω; z0)dP
〉
V,V ′

. (2.8)
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Hence from the above and (2.7),

〈∫
Ω

y(T, ω; y0)dP, z0

〉
V,V ′

= 0, ∀ z0 ∈ V ′,

which shows that
∫

Ω
y(T, ω; y0)dP = 0.

(⇒): Let z0 ∈ V ′. Choose y0 ∈ V such that

−
〈
y0,

∫
Ω

z(0, ω; z0)dP(ω)

〉
V,V ′

=

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥
V ′
. (2.9)

Since the system is null averaged controllable in E, there exists u ∈ L2(E;U) such

that

‖u‖L2(E;U) ≤ C‖y0‖V ≤ C̃,

and ∫
Ω

y(T, ω; y0)dP(ω) = 0.

From (2.7) and (2.9), we know that

∫
E

〈
u(t),

∫
Ω

B∗(ω)z(t, ω; z0)dP(ω)

〉
U

dt =

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥
V ′
.

By Cauchy-Schwarz,

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥
V ′
≤ ‖u‖L2(E;U)

∥∥∥∥∫
Ω

B∗(ω)z(t, ω; z0)dP(ω)

∥∥∥∥
L2(E;U)

≤ C̃

∥∥∥∥∫
Ω

B∗(ω)z(t, ω; z0)dP(ω)

∥∥∥∥
L2(E;U)

.
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Proof of Theorem 2.3.10. By linearity of (2.4), we can assume y0 = 0. Indeed, if

y0 6= 0 then redefine the state to be ỹ = y − y0.

(⇐): Assume that (2.5) satisfies the averaged unique continuation property in E. We

must prove that the set

AT =

{∫
Ω

y(T, ω; 0)dP(ω) : y solves (2.4) with some control u

}

is dense in V . Assume by contradiction that AT is not dense in V . Then, we can find

φ ∈ V ′ with ‖φ‖V ′ = 1 such that

〈ψ, φ〉V,V ′ = 0, ∀ ψ ∈ AT .

On the other hand, from (2.8), we have

∫ T

0

χE(t)

〈
u(t),

∫
Ω

B∗(ω)z(t, ω; z0)dP(ω)

〉
U

dt =

〈∫
Ω

y(T, ω; 0)dP(ω), z0

〉
V,V ′

.

Let z0 = φ in the above. Then,

∫ T

0

χE(t)

〈
u(t),

∫
Ω

B∗(ω)z(t, ω;φ)dP(ω)

〉
U

dt = 0, ∀ u ∈ L2([0, T ];U).

Hence,

χE(·)
∫

Ω

B∗(ω)z(·, ω;φ)dP(ω) = 0 ∈ L2([0, T ];U),

which implies by the averaged unique continuation property that φ = 0. Thus we

have a contradiction.

(⇒): Assume that (2.4) is approximately controllable in average in E. Assume by
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contradiction that (2.5) does not satisfy the unique continuation property in E, i.e.,

that there is a z0 ∈ V ′ with ‖z0‖V ′ = 1 such that

χE(·)
∫

Ω

B∗(ω)z(·, ω; z0)dP(ω) = 0 ∈ L2([0, T ];U).

With (2.8), this implies

〈∫
Ω

y(T, ω; 0)dP(ω), z0

〉
V,V ′

= 0, ∀ u ∈ L2(E;U). (2.10)

Now choose y1 ∈ V such that 〈y1, z0〉V,V ′ = 1. On the other hand,

〈∫
Ω

y(T, ω; 0)dP(ω), z0

〉
V,V ′

=

〈∫
Ω

y(T, ω; 0)dP(ω)− y1, z0

〉
V,V ′

+ 〈y1, z0〉V,V ′ .

By approximate controllability, there exists u ∈ L2(E;U) such that

∥∥∥∥∫
Ω

y(T, ω; 0)dP(ω)− y1

∥∥∥∥2

V

<
1

2
.

By Cauchy-Schwarz,

∣∣∣∣∣
〈∫

Ω

y(T, ω; 0)dP(ω)− y1, z0

〉
V,V ′

∣∣∣∣∣ < 1

2
‖z0‖V ′ =

1

2
.

Thus, 〈∫
Ω

y(T, ω; 0)dP(ω), z0

〉
V,V ′

>
1

2
,

which contradicts (2.10).
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Chapter 3

Problem Statement

In this section, we will introduce the controllability problem that will be the focus

for the rest of the thesis.

Let (Ω,F ,P) be a probability space. Let T > 0, G ⊂ Rn (n ∈ Z>0) be an

open bounded and connected domain with C2 boundary, ∂G. Consider the following

random heat equation:


yt(x, t)− α(ω)∆y(x, t) = χG0×E(x, t)u(x, t) in G× (0, T ),

y(x, t) = 0 on ∂G× (0, T ),

y(x, 0) = y0(x) in G,

(3.1)

where y0 ∈ L2(G), G0 ⊂ G is a non-empty open subset, E ⊂ [0, T ] is a Lebesgue

measurable set with positive measure, and u ∈ L2(E;L2(G0)) is the control. The

diffusivity α : Ω→ R>0 is assumed to be a random variable depending on an unknown

parameter ω ∈ Ω. The goal is to steer the average of the solution to the system from

its initial state, y0, to any other state y1 ∈ L2(G) using a control that is independent

of the unknown parameter ω ∈ Ω.
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3.1 Well-Posedness

System (3.1) can be viewed as an abstract parameter dependent control system with

V = H = L2(G), U = L2(G0), B(ω) = I, for all ω ∈ Ω and


A(ω) = α(ω)∆,

D(A(ω)) = H2(G) ∩H1
0 (G),

for all ω ∈ Ω. We now wish to verify the assumptions from Section 2.3. It is easy

to see that Assumption (A1) is satisfied. To show that assumption (A2) is satisfied,

we first note that D(A(ω)) is dense in L2(G) for all ω ∈ Ω. This follows from the

fact that C∞c (G) is dense in L2(G) and the inclusion C∞c (G) ⊂ (H2(G)∩H1
0 (G)). By

integration by parts twice, for all y, ỹ ∈ D(A(ω))

〈A(ω)y, ỹ〉L2(G) =

∫
G

α(ω)ỹ∆ydx =

∫
G

α(ω)y∆ỹdx = 〈y, A(ω)ỹ〉L2(G).

Note also that D(A∗(ω)) = D(A(ω)) for all ω ∈ Ω. Hence, A(ω) is a self-adjoint

operator for all ω ∈ Ω. Thus, A(ω) is closed for all ω ∈ Ω since the adjoint of an

operator is always closed. Additionally, for all y ∈ D(A(ω))

〈A(ω)y, y〉L2(G) =

∫
G

α(ω)y∆ydx = −α(ω)

∫
G

‖∇y‖2dx ≤ 0.
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Hence from Theorem 2.2.7, A(ω) generates a C0-semigroup on L2(G) satisfying

‖S(t, ω)‖L(L2(G)) ≤ 1, for all ω ∈ Ω. This verifies assumption (A2). Finally, as-

sumption (A3) follows from the fact that for all y ∈ L2(G)

∫
Ω

‖S(t, ω)y‖L2(G)dP(ω) ≤ P(Ω)‖y‖L2(G) ≤ ‖y‖L2(G) <∞.

Thus, from Theorem 2.2.13, we know that (3.1) admits a unique weak solution

y(·, ω; y0) in C([0, T ];L2(G)) for a.e. ω ∈ Ω and
∫

Ω
y(·, ω; y0)dP(ω) ∈ C([0, T ];L2(G)).

In fact, the solution to the heat equation enjoys higher regularity. Given a suffi-

ciently smooth initial condition, control function and control domain G0, we obtain

y ∈ C∞((0, T ] × G) (see [5, Chapter 7, Theorem 7]). Due to this smoothing effect

of the heat equation, it is not always possible to steer the average of the solution

to any state y1 ∈ L2(G). Thus, we focus on the problems of null and approximate

controllability, as defined in Definitions 2.3.2 and 2.3.3. For later use, let us state

these problems.

Problem 3.1.1. (Null Controllability in Average): Given T > 0, y0 ∈ L2(G),

and any distribution of α : Ω→ R>0, does there exist u ∈ L2(E;L2(G0)) such that

‖u‖L2(E;L2(G0)) ≤ C‖y0‖L2(G)

and the average of the solution to system (3.1) satisfies

∫
Ω

y(T, ω; y0)dP(ω) = 0 ?

Problem 3.1.2. (Approximate Controllability in Average): Given T > 0,
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ε > 0, y0, y1 ∈ L2(G), and any distribution of α : Ω → R>0, does there exist u ∈

L2(E;L2(G0)) such that the average of the solution to system (3.1) satisfies

∥∥∥∥∫
Ω

y(T, ω; y0)dP(ω)− y1

∥∥∥∥
L2(G)

< ε ?
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Chapter 4

Averaged Control

In this chapter, we present our main results regarding average controllability of the

heat equation. Section 4.1 contains a novel result which provides a technical inequal-

ity, c.f. Theorem 4.1.2, that will be used to build the desired average observability

inequality for our random heat equation. Section 4.2 contains the proofs of the main

results on average null and approximate controllability of the heat equation.

4.1 Technical Inequality

Consider system (3.1). Let N ∈ (Z>0∪{+∞}). Let {ai}N+1
i=1 ⊂ R>0 and {bi}Ni=1 ⊂ R≥0

be chosen such that a1 < a2 < · · · , bi 6= 0 for at least one i ∈ {1, . . . , N}, and the

function ρN : R→ R≥0 defined as

ρN(α) =
N∑
i=1

biχAi
(α) (4.1)

is in L1(R), where Ai ∈ {(ai, ai+1), [ai, ai+1], [ai, ai+1), (ai, ai+1]}. It is important to

note that the above sum could be infinite.

Remark 4.1.1. If we require further that
∑N

i=1 bi(ai+1−ai) = 1 then
∫
R ρN(α)dα = 1.
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Hence, ρN may serve as a valid probability density function for some random variable.

In this case, ρN is just a perturbation of the probability density function corresponding

to a uniform distribution. •

The adjoint equation to (3.1) is


zt(x, t) + α(ω)∆z(x, t) = 0 in G× (0, T ),

z(x, t) = 0 on ∂G× (0, T ),

z(x, T ) = z0(x) in G,

(4.2)

where z0 ∈ L2(G). We will write the solution to (4.2) as a Fourier series in terms of

the basis of eigenfunctions of the Dirichlet Laplacian. To this end, consider the linear

operator A∆ given by


D(A∆) = H2(G) ∩H1

0 (G),

A∆f = −∆f, ∀f ∈ D(A∆).

We denote by {λj}∞j=1 the eigenvalues of A∆ and {ej}∞j=1 the corresponding sequence

of orthonormal eigenfunctions in L2(G). Note that 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · (the

existence of such eigenvalues and eigenfunctions satisfying this is classical and can be

found in, e.g., [5, Chapter 6.5, Theorem 1]). Assume that the final data to (4.2) is

written as z0 =
∑∞

j=1 z0,jej, where z0,j = 〈z0, ej〉L2(G). Proceeding with separation of

variables, we assume that the solution to (4.2) is written as

z(x, t, ω; z0) =
∞∑
j=1

fj(t, ω)ej(x),
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for some sequence {fj}∞j=1. Substituting this into (4.2) gives

0 =
∞∑
j=1

∂

∂t
fj(t, ω)ej(x) + α(ω)

∞∑
j=1

fj(t, ω)∆ej(x)

=
∞∑
j=1

∂

∂t
fj(t, ω)ej(x)−

∞∑
j=1

α(ω)λjfj(t, ω)ej(x).

Hence,
∞∑
j=1

∂

∂t
fj(t, ω)ej(x) =

∞∑
j=1

α(ω)λjfj(t, ω)ej(x).

Since {ej}∞j=1 forms an orthonormal basis for L2(G),

∂

∂t
fj(t, ω) = α(ω)λjfj(t, ω), ∀ j ∈ Z>0.

Thus,

fj(t) = Cje
α(ω)λjt.

Using the final data for (4.2), we conclude that Cj = z0,je
−α(ω)λjT and hence,

fj(t, ω) = z0,je
−α(ω)λj(T−t).

Thus, the solution to (4.2) is

z(x, t, ω; z0) =
∞∑
j=1

z0,je
−α(ω)λj(T−t)ej(x).

We can now state the technical inequality needed to show both null and approximate

controllability in average for the heat equation.
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Theorem 4.1.2. There exists C > 0 such that

∥∥∥∥∥
∫
R
ρN(α)

∞∑
j=1

z0,je
−αλjT ejdα

∥∥∥∥∥
L2(G)

≤ C

∫
E

∥∥∥∥∥
∫
R
ρN(α)

∞∑
j=1

z0,je
−αλj(T−t)ejdα

∥∥∥∥∥
L2(G0)

dt.

(4.3)

Note that if ρN is the probability density function associated to the random vari-

able α, the integrals above are expectations of the solution to (4.2).

In order to prove Theorem 4.1.2, we will need the following technical results

from [13] and [9]:

Lemma 4.1.3. ([13, Proposition 2.1]): Let E ⊂ [0, T ] be a Lebesgue measurable set

of positive measure, µ(E). Let ` be a density point of E, i.e., limε→0
µ(E∩(`−ε,`+ε))
µ((`−ε,`+ε)) = 1.

Then for each d > 1, there exists `1 ∈ (`, T ) such that the sequence {`k}∞k=1 given by

`k+1 = `+
`1 − `
dk

(4.4)

satisfies

µ(E ∩ (`k+1, `k)) ≥
`k − `k+1

3
. (4.5)

Lemma 4.1.4. ([9, Theorem 1.2]): There exists a constant C1 > 0 such that for

all r > 0 and {cj}λj≤r ⊂ C,

∑
λj≤r

|cj|2
 1

2

≤ C1e
C1
√
r

∥∥∥∥∥∥
∑
λj≤r

cjej

∥∥∥∥∥∥
L2(G0)

. (4.6)

We are now ready to prove Theorem 4.1.2, which is an adaptation of the result

of [10] to our setting.
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Proof of Theorem 4.1.2. Let z̃(x, t) =
∫
R ρN(α)

∑∞
j=1 z0,je

−αλjtej(x)dα. We have

z̃(·, t) =

∫
R

lim
n→∞

ρN(α)
n∑
j=1

z0,je
−αλjtejdα.

In order to bring the limit outside of the integral, we will use dominated conver-

gence theorem for Banach space-valued functions. Since L2(G) is separable, by

Lemma 6.2.5, strong measurability is equivalent to weak measurability. Thus it is

sufficient to check weak measurability of ρN(α)
∑n

j=1 z0,je
−αλjtej as a function of α,

for all t ∈ [0, T ]. Indeed, let f ∈ L2(G) and write f =
∑∞

j=1 fjej. Then,

〈
ρN(α)

n∑
j=1

z0,je
−αλjtej,

∞∑
j=1

fjej

〉
L2(G)

= ρN(α)
n∑
j=1

z0,jfje
−αλjtej,

which is clearly measurable. Also,

∥∥∥∥∥ρN(α)
n∑
j=1

z0,je
−αλjtej

∥∥∥∥∥
2

L2(G)

= ρN(α)2

n∑
j=1

z2
0,je
−2αλjtej ≤ ρN(α)2‖z0‖2

L2(G),

which is integrable. Hence, by dominated convergence theorem for Banach space-

valued functions (Theorem 6.2.8 in the Appendix),

z̃(·, t) =
∞∑
j=1

∫
R
ρN(α)z0,je

−αλjtejdα

=
∞∑
j=1

1

λjt
z0,j

N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)ej.
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It is easy to verify that z̃(·, t) ∈ L2(G) for all t ∈ [0, T ]. Indeed,

∥∥∥∥∥
∞∑
j=1

z0,j

(∫
R
ρN(α)e−αλjtdα

)
ej

∥∥∥∥∥
2

L2(G)

=
∞∑
j=1

z2
0,j

(∫
R
ρN(α)e−αλjtdα

)2

≤
∞∑
j=1

z2
0,j

(∫
R
ρN(α)dα

)2

= ‖z0‖2
L2(G)

(∫
R
ρN(α)dα

)2

<∞,

since ρN ∈ L1(R).

We wish to prove (4.3), which is equivalent to proving

‖z̃(·, T )‖L2(G) ≤ C

∫
Ẽ

‖z̃(·, t)‖L2(G0)dt, (4.7)

where

Ẽ = {t : T − t ∈ E}. (4.8)

Note that Ẽ is also a Lebesgue measurable set with positive measure. For all ξ ∈

L2(G), let

S(t, ξ) =
∞∑
j=1

1

λjt
ξj

N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)ej.

Note that

‖S(t, ξ)‖2
L2(G) =

∞∑
j=1

(
1

λjt
ξj

N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)

)2

.

We claim that the following inequality holds:

‖S(t, ξ)‖L2(G) ≤ ‖S(s, ξ)‖L2(G), for 0 ≤ s ≤ t ≤ T. (4.9)
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Indeed, let 0 ≤ s ≤ t ≤ T . It can be easily checked that 1
t
(e−aλjt − e−bλjt) is a

monotonically decreasing function in t, for all a, b ∈ R with 0 ≤ a < b. Hence,

‖S(t, ξ)‖2
L2(G) =

∞∑
j=1

1

λ2
j

ξ2
j

(
N∑
i=1

bi
1

t
(e−aiλjt − e−ai+1λjt)

)2

≤
∞∑
j=1

1

λ2
j

ξ2
j

(
N∑
i=1

bi
1

s
(e−aiλjs − e−ai+1λjs)

)2

= ‖S(s, ξ)‖2
L2(G),

giving (4.9).

Let Xr = span{ej}λj≤r for r > 0. Then, we claim that

‖S(t, ξ)‖L2(G) ≤ e−rc(t−s)‖S(s, ξ)‖L2(G), ∀ ξ ∈ X⊥r and 0 ≤ s ≤ t ≤ T, (4.10)

where 0 < c ≤ a1. Indeed, let k ∈ Z>0 be such that λk ≤ r and λk+1 > r. Set

gj(a1, a2, s, t) =
s

t

(e−a1λjt − e−a2λjt)
(e−a1λjs − e−a2λjs)

, for all a1, a2, s, t ∈ R.

We have

‖S(t, ξ)‖2
L2(G)

=
∞∑

j=k+1

1

λ2
j

ξ2
j

(
N∑
i=1

bi
1

s
(e−aiλjs − e−ai+1λjs)gj(ai, ai+1, s, t)

)2

=
∞∑

j=k+1

1

λ2
j

ξ2
j

(
e−cλj(t−s)

N∑
i=1

bi
1

s
(e−aiλjs − e−ai+1λjs)gj(ai − c, ai+1 − c, s, t)

)2

.
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Since λk+1 < λk+2 < λk+3 < . . . we obtain

‖S(t, ξ)‖2
L2(G)

≤ e−2cr(t−s)
∞∑

j=k+1

1

λ2
j

ξ2
j

(
N∑
i=1

bi
1

s
(e−aiλjs − e−ai+1λjs)gj(ai − c, ai+1 − c, s, t)

)2

.

Since 0 < c ≤ a1, we have gj(ai − c, ai+1 − c, s, t) ≤ 1, for all i ∈ {1, . . . , N}, for all

j ∈ Z>0, and for all 0 ≤ s ≤ t ≤ T . Hence, (4.10) holds.

Let ` be a density point for Ẽ, where Ẽ is as in (4.8). By Lemma 4.1.3, for a given

d > 1, there exists a sequence {`k}∞k=1 satisfying (4.4) and (4.5). Define a sequence

of subsets {Ẽk}∞k=1 of (0, T ) as follows:

Ẽk :=

{
t− `k − `k+1

6
: t ∈ Ẽ ∩

(
`k+1 +

`k − `k+1

6
, `k

)}
, for k ∈ Z>0.

Note that Ẽk ⊂ (`k+1, `k+1 + 5
6
(`k − `k+1)). From (4.5) we have that

µ(Ẽk) = µ

(
Ẽ ∩

(
`k+1 +

`k − `k+1

6
, `k

))
= µ

(
Ẽ ∩

[
(`k+1, `k) \

(
`k+1, `k+1 +

`k − `k+1

6

)])
≥ µ(Ẽ ∩ (`k+1, `k))−

`k − `k+1

6

≥ `k − `k+1

6
. (4.11)

For all k ∈ Z>0 set rk = m2k, where m ∈ R>0 will be chosen later. From (4.9) we
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have for all ξ ∈ Xrk ,

∫ `k+1+ 5
6

(`k−`k+1)

`k+1

χẼk
(t)

∥∥∥∥S (`k+1 +
5

6
(`k − `k+1), ξ

)∥∥∥∥
L2(G)

dt

≤
∫ `k+1+ 5

6
(`k−`k+1)

`k+1

χẼk
(t)‖S(t, ξ)‖L2(G)dt.

Hence, using (4.11), for all ξ ∈ Xrk

`k − `k+1

6

∥∥∥∥S (`k+1 +
5

6
(`k − `k+1), ξ

)∥∥∥∥
L2(G)

≤ µ(Ẽk)

∥∥∥∥S (`k+1 +
5

6
(`k − `k+1), ξ

)∥∥∥∥
L2(G)

≤
∫ `k+1+ 5

6
(`k−`k+1)

`k+1

χẼk
(t)‖S(t, ξ)‖L2(G)dt.

Using the above and (4.6), for all ξ ∈ Xrk

`k − `k+1

6

∥∥∥∥S (`k+1 +
5

6
(`k − `k+1), ξ

)∥∥∥∥
L2(G)

≤
∫
Ẽk

∑
λj≤rk

(
1

λjt
ξj

N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)

)2
 1

2

dt

≤ C1e
C1
√
rk

∫
Ẽk

∥∥∥∥∥∥
∑
λj≤rk

1

λjt
ξj

N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)ej

∥∥∥∥∥∥
L2(G0)

dt

= C1e
C1
√
rk

∫ `k+1+ 5
6

(`k−`k+1)

`k+1

χẼk
(t)‖S(t, ξ)‖L2(G0)dt.

Now write z0 = z1
0 + z2

0 , where z1
0 ∈ Xrk and z2

0 ∈ X⊥rk . Similarly, since for all t ∈ Ẽk,
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we have t+ `k−`k+1

6
≤ `k then,

`k − `k+1

6
‖S(`k, z

1
0)‖L2(G)

≤
∫ `k+1+ 5

6
(`k−`k+1)

`k+1

χẼk
(t)

∥∥∥∥S (t+
`k − `k+1

6
, z1

0

)∥∥∥∥
L2(G)

dt

≤ C1e
C1
√
rk

∫ `k+1+ 5
6

(`k−`k+1)

`k+1

χẼk
(t)

∥∥∥∥S (t+
`k − `k+1

6
, z1

0

)∥∥∥∥
L2(G0)

dt

= C1e
C1
√
rk

∫ `k

`k+1+
`k−`k+1

6

χẼk

(
t− `k − `k+1

6

)
‖S(t, z1

0)‖L2(G0)dt.

By definition of Ẽk, we have that

χẼk

(
t− `k − `k+1

6

)
= χẼ(t), ∀ t ∈

(
`k+1 +

`k − `k+1

6
, `k

)
.

Hence,

`k − `k+1

6
‖S(`k, z

1
0)‖L2(G) ≤ C1e

C1
√
rk

∫ `k

`k+1+
`k−`k+1

6

χẼ(t)‖S(t, z1
0)‖L2(G0)dt.

Note that by linearity in its second argument, S(t, z1
0) = S(t, z0) − S(t, z2

0). Using

this fact and triangle inequality, we obtain

`k − `k+1

6
‖S(`k, z

1
0)‖L2(G)

≤ C1e
C1
√
rk

∫ `k

`k+1+
`k−`k+1

6

χẼ(t)(‖S(t, z0)‖L2(G0) + ‖S(t, z2
0)‖L2(G))dt.
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By (4.9) and (4.10),

C1e
C1
√
rk

∫ `k

`k+1+
`k−`k+1

6

χẼ(t)(‖S(t, z0)‖L2(G0) + ‖S(t, z2
0)‖L2(G))dt

≤ C1e
C1
√
rk

∫ `k

`k+1+
`k−`k+1

6

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ C1e
C1
√
rk(`k − `k+1)

∥∥∥∥S (`k+1 +
`k − `k+1

6
, z2

0

)∥∥∥∥
L2(G)

≤ C1e
C1
√
rk

∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ C1e
C1
√
rk(`k − `k+1)e−

`k−`k+1
6

rkc‖S
(
`k+1, z

2
0

)
‖L2(G).

Combining the above two inequalities yields

`k − `k+1

6
‖S(`k, z

1
0)‖L2(G)

≤ C1e
C1
√
rk

∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ C1e
C1
√
rk(`k − `k+1)e−

`k−`k+1
6

rkc‖S
(
`k+1, z

2
0

)
‖L2(G).

Hence, by triangle inequality

`k − `k+1

6
‖S(`k, z0)‖L2(G)

≤ C1e
C1
√
rk

∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ C1e
C1
√
rk(`k − `k+1)e−

`k−`k+1
6

rkc‖S
(
`k+1, z

2
0

)
‖L2(G)

+
`k − `k+1

6
‖S(`k, z

2
0)‖L2(G).
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From (4.10),

`k − `k+1

6
‖S(`k, z0)‖L2(G)

≤ C1e
C1
√
rk

∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ C1e
C1
√
rk(`k − `k+1)e−

`k−`k+1
6

rkc‖S
(
`k+1, z

2
0

)
‖L2(G)

+
`k − `k+1

6
e−rkc(`k−`k+1)‖S(`k+1, z

2
0)‖L2(G)

≤ C1e
C1
√
rk

∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ (`k − `k+1)e−
`k−`k+1

6
rkc(C1e

C1
√
rk + 1)‖S

(
`k+1, z

2
0

)
‖L2(G).

We claim that ‖S(t, z0)‖2
L2(G) = ‖S(t, z1

0)‖2
L2(G) + ‖S(t, z2

0)‖2
L2(G). Indeed,

‖S(t, z0)‖2
L2(G) =

∥∥∥∥∥
∞∑
j=1

1

λjt
〈z1

0 + z2
0 , ej〉L2(G)

N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)ej

∥∥∥∥∥
2

L2(G)

= ‖S(t, z1
0)‖2

L2(G) + ‖S(t, z2
0)‖2

L2(G)

+ 2
∞∑
j=1

1

λ2
j t

2
〈z1

0 , ej〉L2(G)〈z2
0 , ej〉L2(G)

(
N∑
i=1

bi(e
−aiλjt − e−ai+1λjt)

)2

.

However, 〈z1
0 , ej〉L2(G)〈z2

0 , ej〉L2(G) = 0, for all j ∈ Z>0, proving the claim. Thus, we

clearly have ‖S(t, z2
0)‖L2(G) ≤ ‖S(t, z0)‖L2(G). Hence,

`k − `k+1

6
‖S(`k, z0)‖L2(G) ≤ C1e

C1
√
rk

∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt

+ (`k − `k+1)e−
`k−`k+1

6
rkc(C1e

C1
√
rk + 1)‖S(`k+1, z0)‖L2(G).
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Rearranging the above yields

`k − `k+1

6C1eC1
√
rk
‖S(`k, z0)‖L2(G) −

C1e
C1
√
rk + 1

C1eC1
√
rk

(`k − `k+1)e−
`k−`k+1

6
rkc‖S(`k+1, z0)‖L2(G)

≤
∫ `k

`k+1

χẼ(t)‖S(t, z0)‖L2(G0)dt.

Summing the above from k = 2 to k =∞ gives

`2 − `3

6C1eC1
√
r2
‖S(`2, z0)‖L2(G) +

∞∑
k=2

fk‖S(`k+1, z0)‖L2(G) ≤
∫ T

0

χẼ(t)‖S(t, z0)‖L2(G0)dt,

where

fk =
`k+1 − `k+2

6C1e
C1
√
rk+1
− C1e

C1
√
rk + 1

C1eC1
√
rk

(`k − `k+1)e−
`k−`k+1

6
rkc, ∀ k ∈ {2, 3, . . . }.

Note that

`k − `k+1 =
(`1 − `)(d− 1)

dk
.

Since rk = m2k,

fk =
(`1 − `)(d− 1)

6C1dk+1eC1mk+1 −
C1e

C1mk
+ 1

C1eC1mk

(`1 − `)(d− 1)

dk
e−

(`1−`)(d−1)

6dk
cm2k

.

By picking m large enough, we obtain

fk ≥ 0,
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for all k ∈ {2, 3, . . . }. Indeed,

fk ≥ 0

⇔ (`1 − `)(d− 1)

6C1dk+1eC1mk+1 ≥
C1e

C1mk
+ 1

C1eC1mk

(`1 − `)(d− 1)

dk
e−

(`1−`)(d−1)

6dk
cm2k

⇔ 1

6deC1mk+1 ≥
C1e

C1mk
+ 1

eC1mk e−
(`1−`)(d−1)

6dk
cm2k

⇔ e−C1mk+1 ≥ 6d
(
C1 + e−C1mk

)
e−

(`1−`)(d−1)

6dk
cm2k

⇔ 1 ≥ 6d
(
C1 + e−C1mk

)
e−

(`1−`)(d−1)

6dk
cm2k+C1mk+1

⇔ 1 ≥ 6d

(
C1e

−mk
(

(`1−`)(d−1)
6

cm
k

dk
−C1m

)
+ e

−mk
(

(`1−`)(d−1)
6

cm
k

dk
−C1m+C1

))
. (4.12)

Since c > 0, we can pick m large enough to ensure that the above holds. Hence,

‖S(`2, z0)‖L2(G) ≤
6C1e

C1m2

`2 − `3

∫
Ẽ

‖S(t, z0)‖L2(G0)dt. (4.13)

Recall that we wish to prove (4.7) which is equivalent to showing that there exists

C > 0 such that

‖S(T, z0)‖L2(G) ≤ C

∫
Ẽ

‖S(t, z0)‖L2(G0)dt.

Since by (4.9) we have ‖S(T, z0)‖L2(G) ≤ ‖S(`2, z0)‖L2(G), the statement of the theo-

rem follows.

Remark 4.1.5. Note that in (4.13), the constant depends on a1, which is the left

most endpoint of supp(ρN). This can be seen because them we choose to satisfy (4.12)

increases as c decreases. Recall that 0 < c ≤ a1. Hence, as a1 → 0+, m → ∞ and

thus, the constant on the right side of (4.13) goes unbounded. Hence, it is crucial to

the proof technique that the left most endpoint of supp(ρN) be bounded away from 0.
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This can be thought of as assigning no probability to the diffusivity being 0. This is

important in showing controllability since in the case that system (3.1) has diffusivity

equal to 0, the control has no effect on G \G0. •

4.2 Average Null and Approximate Controllability for General Density

Function

We now wish to prove average controllability results for system (3.1) when the ran-

dom diffusivity, α : Ω→ R>0 has any probability density function. This recovers the

null and approximate controllability results proved in [10] when α is uniformly or ex-

ponentially distributed. Our technique will be to use simple functions to approximate

the density function and invoke the result of Theorem 4.1.2.

Theorem 4.2.1. Let system (3.1) be such that α is a random variable with Riemann

integrable probability density function ρ. Assume supp(ρ) ⊂ R>0. Then (3.1) is null

controllable in average in E with cost C.

Proof. Since ρ is a measurable function, there exists a sequence of functions {ρN}∞N=1

such that

ρ(α) = lim
N→∞

ρN(α),

where

ρN(α) =
N2N∑
i=1

i2−NχAN
i

(α),

and

ANi =


{i2−N ≤ ρ(α) < (i+ 1)2−N} for i 6= N2N ,

{ρ(α) ≥ N} for i = N2N .
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Note that the ANi are possibly countably infinite unions of disjoint intervals, for all

i ∈ {1, . . . , N2N}. By definition of ρN , we clearly have ρN ∈ L1(R). Since ρ is

Riemann integrable, ρN can be written in the same form as (4.1) in Section 4.1. Let

z̃N(·, t) =

∫
R
ρN(α)

∞∑
j=1

z0,je
−αλjtejdα.

From Theorem 4.1.2, we have that

‖z̃N(·, T )‖L2(G) ≤ C

∫
E

‖z̃N(·, t)‖L2(G0)dt,

where C depends on ANi for some i (see Remark 4.1.5). Since we assume that

supp(ρ) ⊂ R>0, then there exists ε > 0 such that supp(ρN) ⊂ (ε,∞), for all N ∈ Z>0.

Hence, C = C(ε) is independent of N . Taking the limit to both sides yields

‖ lim
N→∞

z̃N(·, T )‖L2(G) ≤ C

∫
E

‖ lim
N→∞

z̃N(·, t)‖L2(G0)dt. (4.14)

We claim that limN→∞ z̃N(·, t) =
∫

Ω
z(T − t, ω; z0)dP(ω) ∈ L2(G), for all t ∈ [0, T ],

where z(t, ω; z0) is the state at time t of (4.2). To prove this claim, we use dominated

convergence theorem for Banach space-valued functions. Since L2(G) is separable, we

check that ρN(α)
∑∞

j=1 z0,je
−αλjtej is weakly measurable in α. Indeed, let f ∈ L2(G)

and write f =
∑∞

j=1 fjej. Then,

〈
ρN(α)

∞∑
j=1

z0,je
−αλjtej, f

〉
L2(G)

= ρN(α)
∞∑
j=1

z0,jfje
−αλjt,

which is clearly measurable. Thus, by Lemma 6.2.5, ρN(α)
∑∞

j=1 z0,je
−αλjtej is a
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strongly measurable function of α. Now let t ∈ [0, T ]. Then

∥∥∥∥∥ρN(α)
∞∑
j=1

z0,je
−αλjtej

∥∥∥∥∥
2

L2(G)

= ρN(α)2

∞∑
j=1

z2
0,je
−2αλjt

≤ ρ(α)2

∞∑
j=1

z2
0,j.

Since z0 ∈ L2(G) we have,

‖z0‖2
L2(G) =

∞∑
j=1

z2
0,j <∞.

Hence, ∥∥∥∥∥ρN(α)
∞∑
j=1

z0,je
−αλjtej

∥∥∥∥∥
L2(G)

≤ ρ(α)‖z0‖L2(G),

which is clearly integrable since
∫∞

0
ρ(α)dα = 1. Thus by Theorem 6.2.8 in the

appendix,

lim
N→∞

z̃N(·, t) =

∫
R
ρ(α)

∞∑
j=1

z0,je
−αλjtejdα

=

∫
Ω

z(T − t, ω; z0)dP(ω) ∈ L2(G),

where z(t, ω; z0) is the state at time t of (4.2) when α : Ω → R>0 is a random vari-

able with probability density function ρ. Hence from the above, Hölder’s inequality
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and (4.14),

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥
L2(G)

≤ C

∫
E

∥∥∥∥∫
Ω

z(t, ω; z0)dP(ω)

∥∥∥∥
L2(G0)

dt

=
√
µ(E)

(∫
E

∥∥∥∥∫
Ω

z(t, ω; z0)dP(ω)

∥∥∥∥2

L2(G0)

dt

) 1
2

,

which is the desired observability inequality.

Theorem 4.2.2. Let system (3.1) be such that α is a random variable with Riemann

integrable probability density function ρ. Assume supp(ρ) ⊂ R>0. Then (3.1) is

approximately controllable in average in E.

Proof. From Theorem 2.3.10, all we need to prove is the averaged unique continuation

property in E. Assume that

χE(·)
∫

Ω

z(·, ω; z0)dP(ω) = 0 in L2([0, T ];L2(G0)).

From Theorem 4.1.2 and Hölder’s inequality, we obtain

∥∥∥∥∫
Ω

z(0, ω; z0)dP(ω)

∥∥∥∥
L2(G)

≤ C

∫
E

∥∥∥∥∫
Ω

z(t, ω; z0)dP(ω)

∥∥∥∥
L2(G0)

dt,

=
√
µ(E)

∥∥∥∥∫
Ω

z(t, ω; z0)dP(ω)

∥∥∥∥
L2(E;L2(G0))

.

Hence, ∫
Ω

z(0, ω; z0)dP(ω) = 0 in L2(G).
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On the other hand,

∫
Ω

z(0, ω; z0)dP(ω) =

∫
R
ρ(α)

∞∑
j=1

z0,je
−αλjT ejdα.

Note that ρ(α)
∑n

j=1 z0,je
−αλjT ej is weakly measurable as a function of α, for all

n ∈ Z>0. Since L2(G) is separable then ρ(α)
∑n

j=1 z0,je
−αλjT ej is strongly measurable.

Also, ∥∥∥∥∥ρ(α)
n∑
j=1

z0,je
−αλjT ej

∥∥∥∥∥
L2(G)

≤ ρ(α)‖z0‖L2(G).

Thus, by dominated convergence theorem for Banach space-valued functions

∫
Ω

z(0, ω; z0)dP(ω) =
∞∑
j=1

(∫
R
ρ(α)e−αλjTdα

)
z0,jej.

Since {ej}∞j=1 forms an orthonormal basis for L2(G) then it follows that

z0,j = 0, ∀ j ∈ Z>0.

Hence, z0 = 0.
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Chapter 5

Conclusions and future work

5.1 Summary

In this thesis, we have studied the average controllability properties of random heat

equations whose positive diffusivity is a random variable. We have shown that such

systems are both null and approximately controllable in average from arbitrary open

sets of the domain and in an arbitrarily small time. The proof technique relies on

the spectral decomposition of the average of the solutions. The desired averaged

null observability inequality was built iteratively by decomposing the time set where

the control acts into an infinite union of subsets. On these sets, we constructed an

inequality observing an increasing number of Fourier components of the average of the

solution. As a consequence of the averaged null observability equality, approximate

controllability in average is shown.

5.2 Future Research Directions

The problem of averaged controllability has only been recently introduced in [16].

Consequently, there are many interesting open problems in this field; especially when
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the systems of interest are modelled by PDEs. Listed below are some open problems

of interest:

• Connection between average controllability and simultaneous control-

lability.

We have shown that under certain conditions, random evolution equations can

be controlled in an averaged sense to a desired state. However, this does not

indicate that any realization of the system will be steered to the desired state

using this controller. The connection between average and simultaneous con-

trollability for finite-dimensional systems is studied in [8]. This connection for

general infinite-dimensional systems is still open.

• Average controllability of random heat equations with general oper-

ators.

We have studied a small subclass of random heat equations whose randomness

is introduced in a multiplicative manner to the Laplacian operator. In this case

we were able to obtain eigenfunctions of the operator that were independent of

the random parameter. This was crucial in constructing the desired observabil-

ity inequality. It would be interesting to study a more general class of random

operators.

• Averaged controllability for nonlinear random evolution equations.

We have restricted ourselves to the study of a specific class of linear heat equa-

tions. One could pose the same average controllability problems for nonlinear

equations.
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Chapter 6

Appendix

6.1 Sobolev Spaces

Let n ∈ Z>0. Let U ⊂ Rn open. Denote x = (x1, . . . , xn) ∈ U . We denote the

space of infinitely differentiable functions φ : U → R, with compact support in U

by C∞c (U). Let k ∈ Z≥0. Let β = (β1, . . . , βn) ∈ Zn≥0 be a multi-index such that

|β| = β1 + · · ·+ βn = k. We now define a weak derivative.

Definition 6.1.1. Suppose f, g ∈ L1
loc(U). We say that g is the weak β-th partial

derivative of f , written

∂β1

∂xβ11

· · · ∂
βn

∂xβnn
f = g

provided that

∫
U

f(x)

(
∂β1

∂xβ11

· · · ∂
βn

∂xβnn
φ

)
(x)dx = (−1)k

∫
U

g(x)φ(x)dx, ∀ φ ∈ C∞c (U).

Next we present a result on the uniqueness of weak derivatives.

Lemma 6.1.2. ([5, Chapter 5.2, Lemma 1]): A weak β-th partial derivative of f

is uniquely defined up to a set of measure zero, if it exists.
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We are now ready to define a special class of functions whose members belong to

L2(U) and have weak derivatives.

Definition 6.1.3. The Sobolev space Hk(U) consists of all f ∈ L1
loc(U) such that for

each multi-index β with |β| ≤ k,

∂β1

∂xβ11

· · · ∂
βn

∂xβnn
f

exists in the weak sense and belongs in L2(U).

Definition 6.1.4. Let f ∈ Hk(U). We define its norm to be

‖f‖Hk(U) =

∑
|β|≤k

∫
U

∣∣∣∣( ∂β1

∂xβ11

· · · ∂
βn

∂xβnn
f

)
(x)

∣∣∣∣2 dx
 1

2

.

We denote the closure of C∞c (U) in Hk(U) by Hk
0 (U). Roughly speaking, a func-

tion f ∈ Hk
0 (U) “vanishes on ∂U”. Since, ∂U has Lebesgue measure zero in U , we

cannot assign meaning to the statement “f restricted to ∂U”. Hence, we make this

more precise using the following theorems:

Theorem 6.1.5. ([5, Chapter 5.5, Theorem 1]): Assume U is bounded and ∂U

is C1. Then there exists a bounded linear operator T : H1(U)→ L2(∂U) such that

(i) Tf = f |∂U if f ∈ H1(U) ∩ C(Ū),

and

(ii) ‖Tf‖L2(∂U) ≤ C‖f‖H1(U) for each f ∈ H1(U).

Theorem 6.1.6. ([5, Chapter 5.5, Theorem 2]): Assume U is bounded and ∂U

is C1. Suppose f ∈ H1(U). Then f ∈ H1
0 (U) if and only if Tf = 0 on ∂U .
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6.2 Classical Analysis Results

We have the following classical theorems from analysis:

Theorem 6.2.1. ([14, Theorem 5.16]): If M is a subspace of a normed linear

space X and if f is a bounded linear functional on M , then f can be extended to a

bounded linear functional F on X so that ‖F‖L(X;R) = ‖f‖L(M ;R).

Theorem 6.2.2. ([5, Chapter D.3, Theorem 2]): Let H be a Hilbert space with

dual space H ′. For every F ∈ H ′, ∃ a unique u ∈ H, such that

F (v) = 〈v, u〉H , ∀ v ∈ H.

Definition 6.2.3. Let (X,A , µ) be a measure space, let E be a real or complex

Banach space. A function f : X → E is called simple if there exists f1, . . . , fn ∈ E

and A1, . . . , An ∈ A such that f =
∑n

j=1 fjχAj
.

Definition 6.2.4. A function f : X → E is called strongly measurable if there exists

a sequence of simple functions, {fj}∞j=1 such that

lim
j→∞

fj(x) = f(x), a.e. x ∈ X.

Lemma 6.2.5. ([3, Lemma A.5.2]): A function f : X → V where V is a separable

Hilbert space is strongly measurable if and only if 〈f, v〉V is measurable ∀ v ∈ V (i.e.,

f is weakly measurable).

Definition 6.2.6. A strongly measurable function f : X → E is Bochner integrable
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if there exists a sequence of integrable simple functions {fj}∞j=1 such that

lim
j→∞

∫
X

‖fj − f‖Edµ = 0.

In this case,
∫
X
fdµ is defined by

∫
X

fdµ = lim
j→∞

∫
X

fjdµ.

Theorem 6.2.7. ([4, Chapter 2.2, Theorem 2]): A strongly measurable function

f : X → E is Bochner integrable if and only if

∫
X

‖f‖Edµ <∞.

Theorem 6.2.8. ([1, Theorem E.6]): Let (X,A , µ) be a measure space, let E be a

real or complex Banach space, and let g : X → R≥0 be an integrable function. Suppose

that {fn}∞n=1 is a sequence of strongly measurable E-valued functions on X such that

f(x) = lim
n→∞

fn(x), a.e. x ∈ X,

where f is a strongly measurable E-valued function on X. Assume also that

‖fn(x)‖E ≤ g(x), ∀ n ∈ Z>0, a.e. x ∈ X.

Then f is Bochner integrable, and

∫
X

fdµ = lim
n→∞

∫
X

fndµ.
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