
Push-sum Algorithm on Time-varying Random

Graphs

by

Pouya Rezaeinia

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

August 2017

Copyright c© Pouya Rezaeinia, 2017



Abstract

In this thesis, we study the problem of achieving average consensus over a random

time-varying sequence of directed graphs by extending the class of so-called push-

sum algorithms to such random scenarios. Provided that an ergodicity notion, which

we term the directed infinite flow property, holds and the auxiliary states of nodes

are uniformly bounded away from zero infinitely often, we prove the almost sure

convergence of the evolutions of this class of algorithms to the average of initial

states. Moreover, for a random sequence of graphs generated using a time-varying

B-irreducible sequence of probability matrices, we establish convergence rates for the

proposed push-sum algorithm.
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Chapter 1

Introduction

Many distributed algorithms, executed with limited information over a network of

nodes, rely on estimating the average value of the initial state of the individual nodes.

These include the distributed optimization protocols [22, 16, 26, 14, 23, 15, 11, 24, 25,

7, 13], distributed regret minimization algorithms in machine learning [1], and dynam-

ics for fusion of information in sensor networks [21]. There is a large body of work

devoted to the average consensus problem, starting with the pioneering work [12],

where the so-called push-sum algorithm is first introduced. The key differentiating

factor of the push-sum algorithm from consensus dynamics is that it takes advan-

tage of a paralleled scalar-valued agreement dynamics, initiated uniformly across the

nodes, that tracks the imbalances of the network and adjusts for them when estimat-

ing the consensus value.

In addition to the earlier work [12], several recent papers have studied the problem

of average consensus, see for example [5], where other classes of algorithms based

on weight adaptation are considered, ensuring convergence to the average on fixed

directed graphs. The study of convergence properties of push-sum algorithms on time-

varying deterministic sequences of directed graphs, to the best of our knowledge, was
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initiated in [3] and extended in [13], where push-sum protocols are intricately utilized

to prove the convergence of a class of distributed optimization protocols on a sequence

of time-varying directed graphs. The key assumption in [13] is the B-connectedness of

the sequence, which means that in any window of size B the union of the underlying

directed graphs over time is strongly connected. As we demonstrate, a by product

of our work in deterministic settings is the generalization of the sequences on which

the convergence of the push-sum algorithms is valid to the ones which satisfy the

infinite flow property; in this sense, this extension mimics the properties required for

the convergence of consensus dynamics, along the lines of [18].

1.1 Contribution

This thesis is concerned with the problem of average consensus for scenarios where

communication between nodes is time-varying and possibly random. The convergence

properties of consensus dynamics on random sequences of directed graphs are by this

time well-established, see for example [18, 19, 20]. Average consensus on random

graphs has also been studied in [3], under the assumption that the corresponding

random sequence of stochastic matrices is stationary and ergodic with positive diago-

nals and irreducible expectation. One of our main objectives in this work is to extend

these results to more general sequences of random stochastic matrices, in particular,

beyond stationary. More importantly, to the best of our knowledge, we establish for

the first time convergence rates for the push-sum algorithm on random sequences of

directed graphs.
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1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 contains mathematical

preliminaries. In Chapter 3, we give a formal description of our consensus problem

and then we describe the push-sum algorithm. Chapter 4 studies the convergence

of products of matrices, and Chapter 5 contains our main convergence results. In

Chapter 6, we derive convergence rates for the push-sum algorithm for a class of

random column-stochastic matrices. Finally, we gather our conclusions and ideas for

future directions in Chapter 7.
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Chapter 2

Mathematical Preliminaries

We start with introducing some notational conventions.

2.1 Basic Notions

Let R and Z denote the set of real and integer numbers, respectively, and let R≥0 and

Z≥0 denote the set of non-negative real numbers and integers, respectively. For a set

A, we write S ⊂ A if S is a proper subset of A, and we call the empty set and A trivial

subsets of A. The complement of S is denoted by S̄. Let |S| denote the cardinality of

a finite set S. We view all vectors in Rn as column vectors, where n ∈ Z≥0−{0}. We

denote by ‖ · ‖, ‖ · ‖1 and ‖ · ‖∞, the standard Euclidean norm, the 1-norm, and the

infinity norm on Rn, respectively. The ith unit vector in Rn, whose ith component

is 1 and all other components are 0, is denoted by ei. The notation A′ and v′ will

refer to the transpose of the matrix A and the vector v, respectively. We will use

the short-hand notation 1n = (1, . . . , 1)′ and 0n = (0, . . . , 0)′ ∈ Rn. A vector v is

stochastic if its elements are nonnegative real numbers that sum to 1. We use Rn×n
≥0

to denote the set of n × n non-negative real-valued matrices. A matrix A ∈ Rn×n
≥0

is row-stochastic (column-stochastic) if each of its rows (columns) sums to 1. For a
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given A ∈ Rn×n
≥0 and any nontrivial S ⊂ [n] = {1, . . . , n}, we let ASS̄ =

∑
i∈S,j∈S̄ Aij.

A positive matrix is a real matrix all of whose elements are positive. Finally, Ai

denotes the ith row of matrix A and Aj denotes the jth column of A.

2.2 Graph theory

A (weighted) directed graph G = (V , E , A) consists of a node set V = {v1, v2, . . . , vn},

an edge set E ⊆ V×V , and a weighted adjacency matrix A ∈ Rn×n
≥0 , with Aji > 0 if and

only if (vi, vj) ∈ E , in which case we say that vi is connected to vj. Similarly, given a

matrix A ∈ Rn×n
≥0 , one can associate to A a directed graph G = (V , E), where (vi, vj) ∈

E if and only if Aji > 0, and hence A is the corresponding adjacency matrix for G. The

in-neighbors and the out-neighbors of vi are the set of nodes N in
i = {j ∈ [n] : Aij > 0}

and N out
i = {j ∈ [n] : Aji > 0}, respectively. The out-degree of vi is dout

i = |N out
i |. A

path is a sequence of nodes connected by edges. A directed graph is strongly connected

if there is a path between any pair of nodes. A directed graph is complete if every

pair of distinct vertices is connected by an edge. If the directed graph G = (V , E , A)

is strongly connected, we say that A is irreducible.

2.3 Sequences of random stochastic matrices

Let S+
n be the set of n × n column-stochastic matrices that have positive diago-

nal entries, and let FS+n denote the Borel σ-algebra on S+
n . Given a probability

space (Ω,B, µ), a measurable function W : (Ω,B, µ)→ (S+
n ,FS+n ) is called a random

column-stochastic matrix, and a sequence {W (t)} of such measurable functions on

(Ω,B, µ) is called a random column-stochastic matrix sequence; throughout, we as-

sume that t ∈ Z≥0. Note that for any ω ∈ Ω, one can associate a sequence of directed
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graphs {G(t)(ω)} to {W (t)(ω)}, where (vi, vj) ∈ E(t)(ω) if and only if Wji(t)(ω) > 0.

This in turn defines a sequence of random directed graphs on V = {v1, . . . , vn}, which

we denote by {G(t)}.
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Chapter 3

Problem Statement

In this chapter we describe the consensus problem.

3.1 Average Consensus

Consider a network of nodes V = {v1, v2, . . . , vn}, where node vi ∈ V has an ini-

tial state (or opinion) xi(0) ∈ R; the assumption that this initial state is a scalar is

without loss of generality, and our treatment can easily be extended to the vector

case. The objective of each node is to achieve average consensus ; that is to compute

the average x̄ = 1
n

∑n
i=1 xi(0) with the constraint that only limited exchange of in-

formation between nodes is permitted. The communication layer between nodes at

each time t ≥ 0 is specified by a sequence of random directed graphs {G(t)}, where

G(t) = (V , E(t),W (t)). Specifically, at each time t, node vi updates its value based on

the values of its in-neighbors vj ∈ N in
i (t), where N in

i (t) = {vj ∈ V : Wij(t) > 0}. One

standing assumption throughout this thesis is that each node knows its out-degree

at every time t; this assumption is indeed necessary, as shown in [10]. Our main

objective is to show that the class of so-called push-sum algorithms can be used to
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achieve average consensus at every node, under the assumption that the communi-

cation network is random. This key point distinguishes our work from the existing

results in the literature [12], [13], [5]. Another key objective that we pursue in this

thesis is to obtain rates of convergence for such algorithms. We start our treatment

with reviewing the push-sum algorithm.

3.2 Random Push-Sum

Consider a network of nodes V = {v1, v2, . . . , vn}, where node vi ∈ V has an initial

state (or opinion) xi(0) ∈ R. The push-sum algorithm, proposed originally in [12], is

defined as follows. Each node vi maintains and updates, at each time t ≥ 0, two state

variables xi(t) and yi(t). The first state variable is initialized to xi(0) and the second

one is initialized to yi(0) = 1, for all i ∈ [n]. At time t ≥ 0, node vi sends xi(t)
douti (t)

and

yi(t)
douti (t)

to its out-neighbors in the random directed graph G(t) = (V , E(t),W (t)), which

we assume to contain self-loops at each node for all t ≥ 0. At time (t + 1), node vi

updates its state variables according to

xi(t+ 1) =
∑

j∈N in
i (t)

xj(t)

dout
j (t)

,

yi(t+ 1) =
∑

j∈N in
i (t)

yj(t)

dout
j (t)

. (3.1)

It is useful to define another auxiliary variable zi(t+ 1) = xi(t+1)
yi(t+1)

; as we will show

later, zi(t + 1) is the estimate by node vi of the average x̄. One can rewrite this

algorithm in a vector form; let the column-stochastic matrix W (t) to be a function
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of E(t) with entries

Wij(t) =


1

doutj (t)
if j ∈ N in

i (t),

0 otherwise.

(3.2)

Using these weighted adjacency matrices, for every t ≥ 0, we can rewrite the dynam-

ics (3.1) as

x(t+ 1) = W (t)x(t),

y(t+ 1) = W (t)y(t), (3.3)

where

x(t) = (x1(t), . . . , xn(t))′,

y(t) = (y1(t), . . . , yn(t))′.

Note that in the push-sum algorithm the weights are not necessarily defined as

in (3.1) and (3.2). The results in this thesis can easily be extended to the case where

the W (t) are column-stochastic and there exists a scalar γ > 0 such that Wij(t) ≥ γ

whenever Wij(t) > 0. Metropolis weights [27], for instance, satisfy the mentioned

conditions.

3.3 Implications to Distributed Optimization

As we mentioned in Chapter 1, estimating the average of the (initial) value of the

individual nodes is an essential part of many distributed algorithms. Distributed

optimization, for instance, has recently received a lot of interest. Here the problem
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is to distributively minimizing the sum of the cost functions of a network of nodes

with the constraint that each node has only access to its own cost function. In the

following we describe the subgradient-push algorithm, a broadcast-based algorithm

that was introduced in [13], to steer every node to an optimal value.

Consider a set of nodes V = {v1, v2, ..., vn} such that each node has a convex cost

function fi : Rd → R for some d ∈ Z≥0 − {0}, where i ∈ [n]. The goal is to minimize

the sum of the cost functions fi:

min
∑
i∈[n]

fi(x)

with the constraint that node vi has only access to fi and assuming that the set of

optimal solutions is not empty. Every node vi maintains vector variables xi(t) ∈ Rd

and wi(t) ∈ Rd, and a scalar variable yi(t), initiated arbitrarily at xi(0) ∈ Rd, and

with yi(0) = 1. At each time t, node vi sends xi(t)
douti

and yi(t)
douti

to its out-neighbors in

some directed graph G(t). Node vi at time (t+ 1) updates its variables according to

wi(t+ 1) =
∑

j∈N in
i (t)

xj(t)

dout
j (t)

,

yi(t+ 1) =
∑

j∈N in
i (t)

yj(t)

dout
j (t)

,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xj(t+ 1) = wi(t+ 1)− θ(t+ 1)gi(t+ 1), (3.4)

where wi(t) ∈ Rd is an auxiliary variable used for computations, gi(t + 1) is the

subgradient of the function fi(z) at z = zi(t + 1) and θ(t + 1) is the step-size. For
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all i ∈ [n] the subgradients gi are assumed to be uniformly bounded, i.e., there exists

Li <∞ such that for all z ∈ Rd, ‖gi‖ ≤ Li for all subgradients gi of fi at z. Moreover,

the step-sizes θ(t) satisfy

∞∑
t=1

θ(t) =∞,

∞∑
t=1

θ2(t) <∞,

and θ(t+ 1) ≤ θ(t) for all t ≥ 1.

As mentioned in [13], without the subgradient term in (3.4), the subgradient-push

protocol would be equivalent to (3.3). The averaging term is to ensure that every

node receives an equal weighting after all the linear combinations and ratios have been

taken. The subgradient terms are to steer the consensus point towards the optimal

set, while the push-sum updates steer the vectors zi(t+ 1) towards each other.

In order to solve this optimization problem, the subgradient term is considered to

be a perturbation to the push-sum algorithm (3.1) as follows:

wi(t+ 1) =
∑

j∈N in
i (t)

xj(t)

dout
j (t)

,

yi(t+ 1) =
∑

j∈N in
i (t)

yj(t)

dout
j (t)

,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xj(t+ 1) = wi(t+ 1) + εi(t+ 1), (3.5)

where εi(t+1) = θ(t+1)gi(t+1) is the perturbation at time (t+1). In the perturbed
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push-sum algorithm, for a sequence G(t) that is B-strongly-connected, the l’th com-

ponents of the sequences zi(t + 1) track the average of the l’th components of the

xi(t)’s increasingly well as t increases and the nodes reach a consensus which is proven

to be an optimal point of the aforementioned optimization problem. A sequence of

deterministic graphs {G(t)} is called B-strongly-connected if for some integer B > 0

and all t ≥ 0, ∪(t+1)B−1
t′=tB G(t′) is strongly connected.

In [13], the communication layer is deterministic. In large networks the communi-

cation links between nodes occur at random, which raises the question, whether the

subgradient-push algorithm can find an optimal value of the optimization problem

when the communication layer occurs at random. An special case of this problem is

when fi(t) = 0 for all i ∈ [n] and t ∈ R, which boils down to our problem, ”Push-sum

Algorithm on Time-varying Random Graphs.”
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Chapter 4

Ergodicity

In this chapter, we establish some important auxiliary results regarding the conver-

gence of products (ergodicity) of matrices which satisfy the so-called directed infinite

flow property (c.f. Definition 4.1.4). We study the products of a class of matrices in

a deterministic setting, which we then use to study the push-sum algorithm in the

next chapter.

We start by some definitions.

4.1 Ergodicity of Row-stochastic Matrices

We start with the definitions of consensus and ergodicity of a sequence of matrices

that are based on the asymptotic behavior of the products of these matrices.

Definition 4.1.1 (Consensus [18]). Let {A(t)} be a sequence of row-stochastic ma-

trices, and for t ≥ s ≥ 0, let A(t : s) denote the product

A(t : s) = A(t)A(t− 1) · · ·A(s), (4.1)

where A(s : s) = A(s). The sequence {A(t)} is said to admit consensus if
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limk→∞A(t : 0) = 1nv
′ for some stochastic vector v ∈ Rn.

Definition 4.1.2 (Ergodicity [4], [18]). Let {A(t)} be a sequence of row-stochastic

matrices. The sequence {A(t)} is said to be weakly ergodic, if for all i, j, l ∈ [n] and

any s ≥ 0, limt→∞ (Ail(t : s)− Ajl(t : s)) = 0. The sequence is said to be strongly

ergodic if limt→∞A(t : s) = 1nv
′(s) for any s ≥ 0, where v(s) ∈ Rn is a stochastic

vector.

It can be shown that weak ergodicity and strong ergodicity are equivalent [4,

Theorem 1]. We will simply call such a sequence of row-stochastic matrices ergodic.

It is worth mentioning that ergodicity of a sequence of matrices has a close relationship

with the theory of ergodic Markov chains [18, Section 5.2].

Note that a sequence of matrices that is ergodic admits consensus; however, a

sequence of matrices that admits consensus is not necessarily ergodic.

We first establish a sufficient condition for ergodicity of a sequence of row-stochastic

matrices, Proposition 4.1.6, which we subsequently use in our convergence result for

the push-sum algorithm. For this reason, we consider the following dynamical system:

x(t+ 1) = A(t)x(t), for all t ≥ 0. (4.2)

Let us start by two key definitions.

Definition 4.1.3 (Strong Aperiodicity [18]). We say that a sequence of matrices

{A(t)} is strongly aperiodic if there exists γ > 0 such that Aii(t) ≥ γ, for all t ≥ 0

and i ∈ [n].

Motivated by the infinite flow property [18, Definition 3.2.], we provide the fol-

lowing definition.
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Definition 4.1.4 (Directed Infinite Flow Property). We say that a sequence of ma-

trices {A(t)} has the directed infinite flow property if for any non-trivial S ⊂ [n],∑∞
t=0 ASS̄(t) =∞.

Consider now a sequence of matrices {A(t)} that is strongly aperiodic and has the

directed infinite flow property. Let k0 = 0, and for any q ≥ 1, define

kq = argmint′>kq−1

min
S⊂[n]

t′−1∑
t=kq−1

ASS̄(t) > 0

 . (4.3)

Note that kq is the minimal time instance after kq−1, such that there is nonzero infor-

mation flow between any non-trivial subset of V and its complement; consequently, the

directed graph associated with the product A(kq − 1)A(kq − 2) · · ·A(kq−1) is strongly

connected; otherwise, one can find a non-trivial S ∈ [n] such that
∑t′−1

t=kq−1
ASS̄(t) = 0,

which contradicts the definition of kq.

Proposition 4.1.5. If a sequence of matrices {A(t)} has the directed infinite flow

property, kq is finite for all q ≥ 0.

Proof. Suppose that kq is not finite for some q ≥ 0. Then, using (4.3), there ex-

ists a non-trivial subset S ⊂ [n] such that
∑∞

t=kq−1
ASS̄(t) = 0. This implies that∑∞

t=0ASS̄(t) < ∞, which contradicts the assumption that {A(t)} has the directed

infinite flow property.

To establish convergence results for the products of row-stochastic matrices sat-

isfying Definition 4.1.4, we argue that in each time window where the underlying

directed graph becomes strongly connected for n times, i.e., after kqn − k(q−1)n time

steps for some q, significant mixing will occur. To formalize this statement, let `0 = 0



4.1. ERGODICITY OF ROW-STOCHASTIC MATRICES 16

and

`q = kqn − k(q−1)n, (4.4)

for q ≥ 1. For t > s ≥ 0, we also define

Qt,s = {q : s ≤ k(q−1)n, kqn ≤ t}.

We are now ready to state our first result.

Proposition 4.1.6. Consider the dynamics (4.2), where the sequence of row-stochastic

matrices {A(t)} is such that A′(t) satisfies (3.2). Suppose, additionally, that {A(t)}

is strongly aperiodic and has the directed infinite flow property. Then,

(i) there is a vector φ(s) ∈ Rn such that, for all i, j ∈ [n] and t ≥ s,

∣∣∣∣[A(t : s)]ij − φj(s)
∣∣∣∣≤ Λt,s,

where Λt,s =
∏

q∈Qt,s λq and λq =
(
1− 1

n`q

)
∈ (0, 1);

(ii) if, for the sequence {`q} associated with {A(t)}, we have

∞∑
q=1

1

n`q
=∞, (4.5)

then the sequence {A(t)} is ergodic.

Proof. We start by proving the first statement. By definition of kq, we know that

for all q ≥ 0, A(kq+1 − 1 : kq) is irreducible. Since each A(t) is strongly aperiodic, by
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Lemma A.2, the matrix

A(kn(q+1) − 1 : knq)

= A(kn(q+1) − 1 : kn(q+1)−1)× · · · × A(knq+2 − 1 : knq+1)× A(knq+1 − 1 : knq),

which is the product of n irreducible matrices, is positive for all q ≥ 0. Hence, by

Lemma A.1 (ii) in the Appendix, for all i, j ∈ [n], we have

[A(kn(q+1) − 1 : knq)]ij ≥
1

nkn(q+1)−knq
=

1

nlq+1
.

Now, since A(t : s) = A(t : s)In and for all j ∈ [n], maxi∈[n][In]ij −mini∈[n][In]ij = 1,

using Lemma A.3, we obtain

max
i∈[n]

[A(t : s)]ij −min
i∈[n]

[A(t : s)]ij ≤ Λt,s. (4.6)

Note that if we let φj(s) = mini∈[n] Aij(t : s) for all j ∈ [n], we have

∣∣∣∣[A(t : s)]ij − φj(s)
∣∣∣∣≤ max

i∈[n]
[A(t : s)]ij −min

i∈[n]
[A(t : s)]ij. (4.7)

Using (4.6) and (4.7), we conclude that

∣∣∣∣[A(t : s)]ij − φj(s)
∣∣∣∣≤ Λt,s,

for all i, j ∈ [n].

We next prove part (ii); since λq ∈ (0, 1) for all q ≥ 1, we have that ln (λq) ≤ −1
n`q

,



4.2. PRODUCT OF COLUMN-STOCHASTIC MATRICES 18

where we have used the fact that ln(ζ) ≤ ζ − 1 for all ζ > 0. This implies

∞∑
q=1

ln (λq) ≤ −
∞∑
q=1

1

n`q
. (4.8)

On the other hand, we have

lim
t→∞

Λt,0 = lim
t→∞

∏
q∈Qt,0

λq = lim
t→∞

exp

∑
q∈Qt,0

ln (λq)

 .

The definition of the sets Qt,s implies that we can write the right hand side as

exp
(∑∞

q=1 ln (λq)
)

, which gives

lim
t→∞

Λt,0 = exp

(
∞∑
q=1

ln (λq)

)
= 0,

where the last equality follows from (4.8) and the assumption
∑∞

q=0
1
n`q

=∞. Using

the fact that limt→∞ Λt,0 = 0, we have that limt→∞ Λt,s = 0, for any s > 0. Hence,

by Proposition 4.1.6, part (i), we conclude that {A(t)} is weakly (and thus strongly)

ergodic.

4.2 Product of Column-stochastic Matrices

Following similar steps as in Proposition 4.1.6 we obtain the following result for

sequences of column-stochastic matrices of the form (3.2).

Proposition 4.2.1. Consider the dynamics (4.2) and assume that sequence of ma-

trices {A(t)} is strongly aperiodic and has the directed infinite flow property, where

the A(t) are weighted adjacency matrices in the form of (3.2). Then,
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(i) there is a vector φ(t) ∈ Rn such that, for all i, j ∈ [n] and t ≥ s,

∣∣∣∣[A(t : s)]ij − φi(t)
∣∣∣∣≤ Λt,s,

where Λt,s =
∏

q∈Qt,s λq and λq =
(
1− 1

n`q

)
;

(ii) for the sequence {`q} associated with {A(t)}, if

∞∑
q=1

1

n`q
=∞,

then for all j ∈ [n], limt→∞

∣∣∣∣[A(t : s)]ij − φi(t)
∣∣∣∣= 0.

It is worth pointing out that in Proposition 4.1.6, since the A(t) are row-stochastic,

x(t) approaches a vector with identical entries. However, in Proposition 4.2.1 the x(t)

does not necessarily approach a fixed vector.
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Chapter 5

Convergence of Push-Sum

With all the pieces in place, we are now ready to study the behavior of the push-sum

algorithm in a random setting.

5.1 Convergence of the Push-sum Algorithm

In the following theorem we investigate the behavior of the push-sum algorithm when

the communication layer is time-varying with random changes.

Theorem 5.1.1. Consider the push-sum algorithm (3.3) and suppose that the se-

quence of random column-stochastic matrices {W (t)} has the directed infinite flow

property, almost surely. Then, we have

|zi(t+ 1)− x̄| ≤ 2‖x(0)‖1

yi(t+ 1)
Λt,0,

almost surely, where Λt,0 =
∏

q∈Qt,0 λq and λq =
(
1− 1

n`q

)
∈ (0, 1).
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Proof. Define

D(t : s) , W (t : s)− φ(t)1′n,

where φ(t) is a (random) vector from part (i) of Proposition 4.2.1. In addition, under

the push-sum algorithm we have that

x(t+ 1) = W (t : 0)x(0),

y(t+ 1) = W (t : 0)y(0),

for all t ≥ 0. Hence, for every t ≥ 0 and all i ∈ [n], we have

zi(t+ 1)− x̄ =
xi(t+ 1)

yi(t+ 1)
− 1′nx(0)

n

=
[W (t : 0)x(0)]i
[W (t : 0)y(0)]i

− 1′nx(0)

n

=
[D(t : 0)x(0)]i + φi(t)1

′
nx(0)

[D(t : 0)y(0)]i + φi(t)1′ny(0)
− 1′nx(0)

n
.

Using the fact that y(0) = 1n and by bringing the fractions to a common denominator,

we have

zi(t+ 1)− x̄ =
[D(t : 0)x(0)]i + φi(t)1

′
nx(0)

[D(t : 0)1n]i + nφi(t)
− 1′nx(0)

n

=
n[D(t : 0)x(0)]i + nφi(t)1

′
nx(0)

n([D(t : 0)1n]i + nφi(t))
− [D(t : 0)1n]i1

′
nx(0) + nφi(t)1

′
nx(0)

n([D(t : 0)1n]i + nφi(t))

=
n[D(t : 0)x(0)]i − [D(t : 0)1n]i1

′
nx(0)

n([D(t : 0)1n]i + nφi(t))
.

Note that the denominator in the last equation is equal to nyi(t + 1). Hence, for all
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i ∈ [n] and t ≥ 1 we have

|zi(t+ 1)− x̄| ≤ ‖x(0)‖1

yi(t+ 1)

(
max
j
|[D(t : 0)]ij|

)
+
|1′nx(0)|
nyi(t+ 1)

(
max
j
|[D(t : 0)]ij|

)
n

=
|1′nx(0)|+ ‖x(0)‖1

yi(t+ 1)

(
max
j
|[D(t : 0)]ij|

)
,

where the inequality follows from the triangle inequality. Since |1′nx(0)| ≤ ‖x(0)‖1,

we have that

|zi(t+ 1)− x̄| ≤ 2‖x(0)‖1

yi(t+ 1)

(
max
j
|[D(t : 0)]ij|

)
.

Using the upper bound in part (i) of Proposition 4.2.1, we obtain

|zi(t+ 1)− x̄| ≤ 2‖x(0)‖1

yi(t+ 1)
Λt,0. (5.1)

The upper bound for the deviation from the initial average at each time, derived

in Theorem 5.1.1, not only depends on the 1-norm of the initial states vector x(0),

but also on Λt,0, which is an indicator of the sparsity of communication links. In

addition, the bound also depends on the inverse of yi(t), which can decrease to zero

if the outgoing information flow dramatically exceeds the incoming flow for a set of

nodes.

Proposition 5.1.2. Consider the push-sum algorithm (3.3) and suppose that the

sequence of random column-stochastic matrices {W (t)} has the directed infinite flow

property, almost surely. Moreover, suppose that the sequence {`q} associated with

{W (t)} satisfies (4.5), almost surely. If there exists δ > 0, such that for any t ≥ 0,
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there is t′ ≥ t such that yi(t
′) ≥ δ for all i ∈ [n], then

lim
t→∞
|zi(t+ 1)− x̄| = 0, almost surely.

Remark 5.1.3. In the next chapter we exhibit a class of random matrix sequences

{W (t)} that satisfy the conditions of Proposition 5.1.2 and thus admit average con-

sensus almost surely.

Proof. Proof of this proposition is similar to the proof of Theorem 4.1 in [3], where

the sequence {W (t)} is assumed to be stationary; however, since we do not assume

stationarity, we provide a proof. By Proposition 4.2.1 part (ii), for any ε > 0 there is

a time tε such that for all t ≥ tε and i ∈ [n],

n∑
j=1

∣∣∣∣[W (t : 0)]ij −
1

n

n∑
k=1

[W (t : 0)]ik

∣∣∣∣ < δε.

By assumption, there exists t′ε ≥ tε such that y(t′ε) ≥ δ, which implies that f(t′ε) < ε,

where f(t) is defined as in Lemma A.5. Since by Lemma A.5, f(t) is non-increasing,

f(t) < ε for all t ≥ t′ε, meaning that f(t) converges to zero as t → ∞ and hence,

limt→∞ |zi(t+ 1)− x̄| = 0, almost surely.
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Chapter 6

B-Irreducible Sequences

In this chapter we characterize a class of random column-stochastic matrices that

admits average consensus and we provide a rate of convergence of the push-sum

algorithm for this class. To achieve this, we restrict the class of random matrices

that we consider; as we will point out later, this restricted class still includes many

interesting sequences of random matrices.

6.1 B-irreducible Sequences of Column-stochastic Matrices

In the following discussion, we assume that the push-sum dynamics is generated by

a column-stochastic matrix sequence {W (t)} where

Wij(t) =
Rij(t)∑n
i=1Rij(t)

, (6.1)

for all i, j ∈ [n], where Rij(t) is 1 with probability Pij(t), and is 0 with probability

1 − Pij(t) such that {Rij(t) : i, j ∈ [n], t ≥ 0} are independent random variables. In

other words, there is a random communication link between node vj and vi at time

t with probability Pij(t). Note that {W (t)} is a sequence of independent random
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column-stochastic matrices.

Furthermore, for the probability matrix sequence {P (t)}t≥0, we assume that the

following holds.

Assumption 6.1.1. {P (t)}t≥0 is a sequence of n × n matrices with Pij(t) ∈ [0, 1].

Additionally, we assume that Pii(t) = 1, for all vi ∈ V. Also, for some constant ε > 0,

we assume that Pij(t) ≥ ε for all i, j ∈ [n] and all t ≥ 0 such that Pij(t) 6= 0. Finally,

we assume that the sequence {P (t)}t≥0 is B-irreducible, i.e. for some integer B > 0,

(t+1)B−1∑
t′=tB

P (t)

is irreducible for all t ≥ 0.

We next state the main result of this chapter.

6.2 Main Results

Theorem 6.2.1. Consider the push-sum algorithm (3.3) and let {W (t)} be a se-

quence of random column-stochastic matrices defined by (6.1), where {P (t)} satisfies

Assumption 6.1.1. Let p = ε2(n−1). Then, for any t ≥ B + 2nB
p

, where n ≥ 2

E [ln (|zi(t+ 1)− x̄|)] ≤ c0 − c1t

where

c0 = ln (2‖x(0)‖1) + ln(n)

(
nB

p
+B

)
+ ln(15),

c1 =− p

2nB
ln

(
1− 1

n
4nB
p

)
.



6.2. MAIN RESULTS 26

The proof relies on the following results.

Lemma 6.2.2. Let {W (t)} be a sequence of random column-stochastic matrices de-

fined by (6.1), where {P (t)} satisfies Assumption 6.1.1. Let {kq} and {`q} be the

sequences defined, respectively, in (4.3) and (4.4) along each sample path. Then

(i) the sequence {W (t)} has the directed infinite flow property almost surely, and

(ii) for the sequence {`q}, we have

∞∑
q=0

1

n`q
=∞, almost surely.

Proof. We start by proving (i). For any t ≥ 0, let us define the sequence of events

At =
{(t+1)B−1∑

t′=tB

W (t′) is irreducible
}
. (6.2)

Note that for all t ≥ 0, the events {At}t≥0 are independent and that At implies∑(t+1)B−1
t′=tB WSS̄(t′) > 0, for any non-trivial S ⊂ [n]. Since mini,j∈[n]:Pij(t)>0 Pij(t) >

ε > 0, for all t ≥ 0, we have

P(At) ≥ ε2(n−1).

This follows from Lemma A.4 and the fact that {P (t)} is B-irreducible and hence,

there is at least a subset of size 2(n − 1) of the edges (vj, vi) that form a strongly

connected graph and Pij(t
′) ≥ ε for some t′ ∈ [tB, (t+ 1)B − 1].

Since the eventsAt are independent, hence, by the second Borel-Cantelli lemma [6,

Theorem 2.3.6],
∑(t+1)B−1

t′=tB WSS̄(t′) > 0 infinitely often, almost surely. Moreover, since
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every positive entry of W (t) is bounded below by 1
n
, for any non-trivial S ⊂ [n],∑∞

t=0 WSS̄(t) =∞, almost surely, implying that {W (t)} has the directed infinite flow

property, almost surely. This also implies that kq and `q are finite for all q, almost

surely. This completes the proof of (i).

To prove (ii), let us define, for all t ≥ 0, the sequence of events

Ct =

(t+1)n−1⋂
t′=tn

At′ , (6.3)

whereAt is defined in (6.2). Since theAt are independent, P(Ct) =
∏(t+1)n−1

t′=tn P(At′) ≥

ε2n(n−1) for all t ≥ 0. This implies that
∑∞

t=0 P(Ct) =∞. Again, since the Ct are

independent, by the Borel-Cantelli lemma, Ct occurs infinitely often, almost surely.

This implies that `q ≤ nB infinitely often, almost surely. Hence,
∑∞

q=1
1
n`q

= ∞,

almost surely.

Lemma 6.2.3. In the push-sum algorithm (3.3), let {W (t)} be a sequence of random

column-stochastic matrices corresponding to the sequence {P (t)} satisfying Assump-

tion 6.1.1. Then for all t ≥ 0 there exists t′ ≥ t such that for all i ∈ [n], yi(t
′) ≥ 1

nnB
.

Proof. Consider the event Ct defined in (6.3). At any time Ct occurs, by Lemma A.2,

the product W (tnB + nB − 1 : tnB) is positive; moreover, by Lemma A.1, Wij(tnB+

nB − 1 : tnB) ≥ 1
nnB

for all i, j ∈ [n]. Since W (t) is column-stochastic, we have

Wij(tnB + nB − 1 : 0) ≥ 1
nnB

. By Lemma 6.2.2, Ct occurs infinitely often, almost

surely; therefore, for all t ≥ 0 there exists t′ ≥ t such that for all i ∈ [n], yi(t
′) ≥

1
nnB

.

The preceding two lemmas and Proposition 5.1.2 imply the following.
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Corollary 6.2.4. Let {W (t)} be a sequence of random column-stochastic matrices

corresponding to the sequence {P (t)} satisfying Assumption 6.1.1. Then {W (t)}

admits average consensus, almost surely.

Lemma 6.2.5. Let {W (t)} be a sequence of random column-stochastic matrices corre-

sponding to the sequence {P (t)} satisfying Assumption 6.1.1. Let {`q} be the sequence

defined in (4.4) along each sample path. For all t ≥ B + 2nB
p

, we have

E [Λt,0] ≤ exp

(
−β2

t

(
t

B
− 2

))
+ 2

(
1− 1

n
4nB
p

) pt
2nB

,

where Λt,0 =
∏

q∈Qt,0(1−
1
nlq

), βt = p
2
− 2pB

t
, and p = ε2(n−1).

Proof. Let XB(t) be the indicator of the event At, i.e.,

XB(t) =


1 if

∑(t+1)B−1
t′=tB W (t′) is irreducible,

0 otherwise.

By the preceding argument, we have P(XB(t) = 1) ≥ p = ε2(n−1) > 0. Note that the

XB(t) are independent. We let HB(T ) =
∑T

t=0XB(t) for all T ≥ 0, and define

qt , max{q : kq ≤ t}.

By definition of HB(·) and qt, we have that

qt ≥ HB

(⌊
t

B

⌋
− 1

)
. (6.4)



6.2. MAIN RESULTS 29

Now, we have that

E [Λt,0] = E
[
Λt,0

∣∣∣∣ qt ≤ pt

2B

]
P
(
qt ≤

pt

2B

)
+ E

[
Λt,0

∣∣∣∣ qt > pt

2B

]
P
(
qt >

pt

2B

)
.

Since all terms on the right-hand side are less than or equal to 1, we have

E [Λt,0] ≤ P
(
qt ≤

pt

2B

)
+ E

[
Λt,0

∣∣∣∣ qt > pt

2B

]
.

Using (6.4), we have

E [Λt,0] ≤ P
(
HB

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)
+ E

[
Λt,0

∣∣∣∣ qt > pt

2B

]
.

Let us consider the second term on the right-hand side. When qt >
pt
2B

, we have

|Qt,0| ≥
⌊

pt
2nB

⌋
. Using Lemma A.7 to maximize the second term on the right-hand

side over the choices of `q, we obtain

E
[
Λt,0

∣∣∣∣ qt > pt

2B

]
≤

1− 1

n

t

b pt
2nBc

b
pt

2nBc

≤2

1− 1

n

t

b pt
2nBc


pt

2nB

. (6.5)

To further simplify the above inequality, we show that t

b pt
2nBc

≤ 4nB
p

. To show

this, we note that for all t ≥ 2nB
p

+ B, we have pt
2nB

> 1 and hence,
⌊

pt
2nB

⌋
≥ 1. Now,

assume that ξ =
⌊

pt
2nB

⌋
≥ 1. We have 2nBξ ≤ pt ≤ 2nB(ξ + 1). Therefore,

t⌊
pt

2nB

⌋ ≤ 2nB

p

(
ξ + 1

ξ

)
≤ 4nB

p
,
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where the last inequality follows from the fact that ξ ≥ 1.

Using this inequality in (6.5), we get

E
[
Λt,0

∣∣∣∣ qt > pt

2B

]
≤2

1− 1

n

t

b pt
2nBc


pt

2nB

≤2

(
1− 1

n
4nB
p

) pt
2nB

. (6.6)

On the other hand, since E[XB(t)] ≥ p for all t ≥ B, we have

P
(
H

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)

= P

bt/Bc−1∑
t′=0

XB(t′)− p
(⌊

t

B

⌋
− 1

)
≤ −αt

(⌊
t

B

⌋
− 1

)
≤ P

bt/Bc−1∑
t′=0

(XB(t′)− E[XB(t′)]) ≤ −αt
(⌊

t

B

⌋
− 1

) ,

where

αt =
p
(⌊

t
B

⌋
− 1
)
− pt

2B⌊
t
B

⌋
− 1

. (6.7)

When t ≥ B + 2nB
p

, αt > 0 and hence, by Lemma A.6, we obtain

P
(
H

(⌊
t

B

⌋
− 1

)
≤ pt

2B

)
≤ exp

(
−α2

t

(⌊
t

B

⌋
− 1

))
≤ exp

(
−α2

t

(
t

B
− 2

))
.

(6.8)
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From (6.7), we have

αt >
p
(
t
B
− 2
)
− pt

2B
t
B

=
p

2
− 2pB

t
.

If we let βt = p
2
− 2pB

t
, using (6.6) and (6.8), we conclude that

E [Λt,0] ≤ exp

(
−β2

t

(
t

B
− 2

))
+ 2

(
1− 1

n
4nB
p

) pt
2nB

,

finishing the proof.

Lemma 6.2.5 (to the best of our knowledge) for the first time explicitly presents on

expectation convergence rate for the ergodicity of the product of random stochastic

matrices.

Lemma 6.2.6. In the push-sum algorithm (3.3) let {W (t)} be a sequence of random

column-stochastic matrices corresponding to the sequence {P (t)} satisfying Assump-

tion 6.1.1. We have, for all i ∈ [n] and t ≥ 0,

E
[
ln

(
1

yi(t)

)]
≤ ln(n)

(
B
n

p
+B

)
.

Proof. By Lemma A.1, for all t < Bn
p

+B and i ∈ [n] we have

[W (t : 0)]ii ≥
1

nB
n
p

+B
,
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almost surely. This implies that

E
[
ln

(
1

yi(t)

)]
≤ ln(n)

(
B
n

p
+B

)
,

for all t < Bn
p

+ B and i ∈ [n]. If t ≥ Bn
p

+ B, let t = aB + b, where a, b ∈ Z≥0 and

b < B. Define

τt =


min{T :

∑a−1
t=a−T XB(t) = n}, if

∑a−1
t=0 XB(t) ≥ n

a otherwise.

When τt = a, Wij(t : 0) ≥ 1
nτtB+B , for all i, j ∈ [n]. When τt 6= a, by Lemma A.2,

W (aB − 1 : (a− τt)B) is a positive matrix and consequently by Lemma A.1

Wij(t : (a− τt)B) ≥ 1

nτtB+B
,

for all i, j ∈ [n]; in addition, since theW (t) are column-stochastic, we haveWij(t : 0) ≥ 1
nτtB+B .

Therefore, for all t ≥ 0 we have

ln

(
1

Wij(t : 0)

)
≤ ln(n)(τtB +B) for all i, j ∈ [n].

Consider a sequence of independent Bernoulli trials Yt, where in each trial the prob-

ability of success is p. The number of trials until n successes occur is a negative

binomial random variable Z having parameters n and p. Since P(τt ≤ i) ≥ P(Z ≤ i)

for all i ≥ n, we have E[τt] ≤ E[Z]. Since E[Z] = n
p
, we obtain E[τt] ≤ n

p
, and hence,

E
[
ln

(
1

yi(t)

)]
≤ ln(n)

(
B
n

p
+B

)
.



6.2. MAIN RESULTS 33

We are now in a position to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. In (5.1), since both sides are positive, we have

ln (|zi(t+ 1)− x̄|) ≤ ln

(
2‖x(0)‖1

yi(t+ 1)
Λt,0

)
= ln (2‖x(0)‖1) + ln

(
1

yi(t+ 1)

)
+ ln (Λt,0) .

By taking expectations and using Lemma 6.2.6, we obtain

E [ln (|zi(t+ 1)− x̄|)] ≤ ln (2‖x(0)‖1) + ln(n)

(
nB

p
+B

)
+ E [ln (Λt,0)]

≤ ln (2‖x(0)‖1) + ln(n)

(
nB

p
+B

)
+ ln (E [Λt,0]) , (6.9)

where the last inequality follows from Jensen’s inequality. Now by Lemma 6.2.5, we

have

E [Λt,0] ≤ exp

(
−β2

t

(
t

B
− 2

))
+ 2

(
1− 1

n
4nB
p

) pt
2nB

,

where βt = p
2
− 2pB

t
. Let us consider the first term on the right hand side; since βt ≤ 1

2
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we have

exp

(
−β2

t

(
t

B
− 2

))
≤ exp

(
−β2

t

t

B
+

1

2

)
= exp

(
−p

2t

4B
+ 2p2 +

1

2
− 4p2B

t

)
≤ exp

(
−p

2t

4B
+

5

2

)
≤13 exp

(
−p

2t

4B

)
=13

(
exp

(
−pn

2

)) pt
2nB

.

Since n ≥ 2, exp
(
−pn

2

)
≤ exp (−p). On the other hand,

(
1− 1

n
4nB
p

)
≥
(

1− 1

2
8
p

)
for

all n ≥ 2 and B ≥ 1. It can be seen the for p ∈ [0, 1], exp (−p) ≤
(

1− 1

2
8
p

)
, and

consequently exp
(
−pn

2

)
≤
(

1− 1

n
4nB
p

)
. Hence

E [Λt,0] ≤ 15

(
1− 1

n
4nB
p

) pt
2nB

. (6.10)

Using (6.9) and (6.10) we conclude that

E [ln (|zi(t+ 1)− x̄|)] ≤ ln (2‖x(0)‖1) + ln(n)

(
nB

p
+B

)
+ ln(15) +

pt

2nB
ln

(
1− 1

n
4nB
p

)
.

Our approach and results also provide the (known) geometric convergence rate

when the push-sum algorithm is considered for a B-strongly-connected deterministic

sequence of column-stochastic matrices. A sequence of deterministic matrices {A(t)}
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is B-strongly-connected if for some integer B > 0 and all t ≥ 0,
∑(t+1)B−1

t′=tB A(t′)

is irreducible. For a B-strongly-connected sequence of column-stochastic matrices,

yi(t) ≥ 1
nnB

. In addition, if we let p = 1 in (6.10), we have

Λt,0 ≤ 15

(
1− 1

n4nB

) t
2nB

.

Using (5.1), we obtain

|zi(t+ 1)− x̄| ≤ 30‖x(0)‖1

nnB

(
1− 1

n4nB

) t
2nB

,

which shows the geometric convergence for B-strongly-connected sequences.
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Chapter 7

Conclusions

7.1 Summary

We have studied the convergence properties of the push-sum algorithm for average

consensus on sequences of random directed graphs. We have proved that this dynam-

ics is convergent almost surely when some mild connectivity assumptions are met and

the auxiliary states of nodes are uniformly bounded away from zero infinitely often.

We have shown that the latter assumption holds for sequences of random matrices

constructed using a sequence of time-varying B-irreducible probability matrices. We

have also obtained convergence rates for the proposed push-sum algorithm.

7.2 Future Work

Future work includes studying the behavior of the push-sum algorithm when the ran-

dom graphs are dependent, or with a different weight allocation method, and the

implications of our results in scenarios with link-failure and in distributed optimiza-

tion on random time-varying graphs. One can also consider the average consensus

problem when the number of nodes is time-varying.
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Chapter 8

Appendix

Lemma A.1 (Lemma 1 [14]). Consider a sequence of directed graphs {G(t)}, which

we assume to contain all the self-loops, with a corresponding sequence of weighted

adjacency matrices {A(t)}. In addition, assume that Aij(t) ≥ γ whenever Aij(t) > 0,

for some γ > 0. Then the following statements hold:

(i) [A(t : s)]ii ≥ γt−s+1, for all i ∈ [n] and t ≥ s ≥ 0;

(ii) if [A(r)]ij > 0 for some t ≥ r ≥ s ≥ 0 and i, j ∈ [n], then [A(t : s)]ij ≥ γt−s+1;

(iii) if [A(s)]ik > 0 and [A(r)]kj > 0 for some t ≥ r > s ≥ 0, then [A(t : s)]ij ≥

γt−s+1.

Lemma A.2. For n ≥ 2, let {A(i)}n−1
i=1 be a sequence of weighted adjacency matri-

ces associated with the strongly connected directed graphs {G(i)}n−1
i=1 on the node set

V = {v1, v2, . . . , vn}, where G(i) = (V , E(i), A(i)) and A(i) ∈ S+
n for all i ∈ [n − 1].

Then the matrix product A(n− 1 : 1) is positive.

Proof. Let G(k : 1) = (V , E(k : 1)) indicate the directed graph associated with the

product A(k : 1), where k ∈ [n− 1]. Let N out
i (k : 1) and dout

i (k : 1) indicate the set of
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out-neighbors and out-degree of node i ∈ [n] in directed graph G(k : 1), respectively.

Consider an arbitrary but fixed node i ∈ [n]. Since A(1) ∈ S+
n and G(1) is strongly

connected, we have

dout
i (1) ≥ 2. (8.1)

Now consider the directed graph G(k : 1) and assume that dout
i (k : 1) ≤ n − 1 for

some k ∈ [n − 1]; we show that dout
i (k + 1 : 1) > dout

i (k : 1). By Lemma A.1(ii), we

have N out
i (k : 1) ⊆ N out

i (k + 1 : 1). Moreover, since G(k + 1) is strongly connected

and dout
i (k : 1) ≤ n − 1, there is l /∈ N out

i (k : 1) such that l ∈ N out
j (k + 1) for some

j ∈ N out
i (k : 1); otherwise, there is no path between i and l in G(k+ 1), contradicting

the strong connectivity of G(k + 1). Hence, by Lemma A.1 (iii) l ∈ N out
i (k + 1 : 1),

implying that

dout
i (k + 1 : 1) > dout

i (k : 1).

This along with (8.1) imply that

dout
i (k : 1) ≥ k + 1, ,

for all k ∈ [n− 1], which implies that dout
i (n− 1 : 1) = n. Since this statement holds

for any i ∈ [n], the matrix product A(n− 1 : 1) is positive.

Lemma A.3 (Lemma 3 [9]). For row-stochastic matrices A,B and C = AB, we
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have:

max
j∈[n]

(max
i∈[n]

Cij −min
i∈[n]

Cij) ≤

1− min
i,i′∈[n]

∑
j∈[n]

min (Aij, Ai′j)

max
j∈[n]

(max
i∈[n]

Bij −min
i∈[n]

Bij).

Lemma A.4 (Corollary 5.3.6 [2]). Let G = (V , E) be a strongly connected directed

graph with n vertices. Then, there exists a subset Ẽ ⊆ E with at most 2(n− 1) edges

such that the graph G̃ = (V , Ẽ) is strongly connected.

Lemma A.5 (Lemma 4.3 [3]). Consider the push-sum algorithm (3.3). Define

f(t) = max
i∈[n]

∑n
j=1 |[W (t : 0)]ij − 1

n

∑n
k=1[W (t : 0)]ik|

yi(t)
.

Then, f(t) is non-increasing and

‖z(t)− x̄1n‖∞ ≤ ‖x(0)‖∞f(t).

Lemma A.6 (Hoeffding’s inequality [8]). If X1, X2, . . . , Xn are independent random

variables and 0 ≤ Xi ≤ 1, for all i ∈ [n], then for any α > 0, we have

P

(
n∑
i=1

(Xi − E[Xi]) ≤ −αn

)
≤ exp

(
−2α2n

)
.

Lemma A.7. For n > 1 and for all l1, l2, . . . , lq ∈ Z≥0, q > 0, we have

q∏
i=1

(
1− 1

nli

)
≤
(

1− 1

n
t
q

)q
,

where t = l1 + l2 + · · ·+ lq.
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Proof. It suffices to show that

1

q

q∑
i=1

ln

(
1− 1

nlq

)
≤ ln

(
1− 1

n
t
q

)
,

which simply follows from Jensen’s inequality, since the function g(ζ) = ln
(
1− 1

nζ

)
is concave.
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