STAT 269 – Winter 2009

Homework Assignment 3

Assignment 3 — due Friday, January 30 (in the class or in the mail-box for office 511 during the day)

- 1. Problems 11.20–11.21.
- 2. Problems 11.24. Hint: standard deviation = S.

How different would the answers be when using

- a) Table on the back of the book;
- b) *R*.
- 3. Among 100 fish caught in a certain lake, 18 were inedible as a result of the chemical pollution of the environment. Construct an approximate 99% confidence interval for the corresponding proportion.
- 4. Exhibit two-sided $100(1-\alpha)\%$ confidence intervals based on the MLE for the unknown parameters of
 - a) geometric distribution;
 - b) Poisson distribution;
 - c) exponential distribution;
 - d) Laplace distribution.
- 5. The growth model. Suppose the size of a plant is measured at time periods $t_1, t_2, ..., t_n$, and the measurements are described by

$$y_i = \theta t_i + e_i$$

where θ is the unknown speed of growth and $e_1, ..., e_n$ are independent measurement errors having normal distribution $\mathcal{N}(0, \sigma^2)$, with a given variance σ^2 . The following estimator of θ was derived in the class:

$$\hat{\theta} = \frac{\sum_{i=1}^{n} t_i y_i}{\sum_{i=1}^{n} t_i^2}.$$

- a) What is the distribution of the random measurements y_i , i = 1, ..., n?
- b) Is $\hat{\theta}$ an unbiased estimator of θ ? Explain.
- c) What is the variance of $\hat{\theta}$?
- d) What is the distribution of $\hat{\theta}$?
- e) Exhibit a two-sided $100(1-\alpha)\%$ confidence interval for θ based on the estimator $\hat{\theta}$.
- f) Exhibit a one-sided $100(1 \alpha)\%$ upper confidence interval for θ .
- g) Exhibit a one-sided $100(1 \alpha)\%$ lower confidence interval for θ .

6. (Optional) a) For n = 3, 5, 10, 20, plot probability density of the *t*-distribution with n degrees of freedom vs. the standard normal density. Hint:

```
m=100
x=-4+8*(0:m)/m
par(mfrow=c(2,2))
plot(x,dnorm(x),type="l",ylab="pdf")
lines(x,dt(x,3))
title("pdf t3 vz normal")
```

b) For n = 3, 5, 10, 20, plot cumulative distribution function of the *t*-distribution with n degrees of freedom vs. the standard normal cdf. **Hint:**

```
m=100
x=-4+8*(0:m)/m
par(mfrow=c(2,2))
plot(x,pnorm(x),type="l",ylab="cdf")
lines(x,pt(x,3))
title("cdf t3 vz normal")
```