STAT 269 – Winter 2009

Homework Assignment 6

Assignment 6 — due Friday, March 6 (in the class or in the mail-box for office 511 during the day)

- 1. Convert the following non-linear relationships into linear ones by making transformations and defining new stimulus and response variables.
 - a) y = a/(b + cx)
 b) y = ae^{-bx}
 c) y = ab^x
 d) y = x/(a + bx)
 - e) $y = 1/(1 + e^{bx})$
- 2. a) Plot y versus x for the following pairs:

x	.34	1.38	65	.68	1.40	88	30	-1.18	.50	-1.75
y	.27	1.34	53	.35	1.28	98	72	81	.64	-1.59

- b) Fit a line y = a + bx by the method of least squares, and sketch it on the plot.
- c) Fit a line x = c + dy by the method of least squares, and sketch it on the plot.
- d) Are the lines in parts b) and c) the same? If not, why not?
- 3. Consider fitting a quadratic regression y = α + βx² to points (x_i, y_i), where i = 1, ..., n.
 a) Explain how results for the standard linear model y = α + βx can be applied in this case.
 - b) Find the least squares estimates $\hat{\alpha}$ and $\hat{\beta}$.
- 4. Suppose that $y_i = \alpha + \varepsilon_i$, where i = 1, ..., n and ε_i are independent errors with mean zero and variance σ^2 . Show that \bar{y} is the least squares estimate of α .
- 5. Let $e_1, ..., e_n$ be the *residuals* of a linear regression model $y = \alpha + \beta x_i + \varepsilon_i$ where i = 1, ..., n. Show that

$$\sum_{i=1}^{n} e_i = 0$$

6. Suppose that in the linear regression model $y_i = \alpha + \beta x_i + \varepsilon_i$ where i = 1, ..., n, the stimulus variables x_i satisfy

$$\sum_{i=1}^{n} x_i = 0.$$

a) Simplify the formulas for the least squares estimates $\hat{\alpha}$ and $\hat{\beta}$ in this case.

b) Suppose further that the errors ε_i are independent normal random variables $\mathcal{N}(0, \sigma^2)$. Show that $\hat{\alpha}$ and $\hat{\beta}$ are normal random variables and find their expected values and variances.

c) Conclude that the least squares estimates $\hat{\alpha}$ and $\hat{\beta}$ are unbiased.

d) (optional) Show that random variables $\hat{\alpha}$ and $\hat{\beta}$ are independent.

Hint: Two Gaussian random variables are independent if and only if they are uncorrelated.