
STAT 269 – Winter 2009

Midterm Test 1

1. Method of moments, maximum likelihood, best unbiased estimators. Let
x1, ..., xn be an independent sample from a population with probability density

f(x|θ) =
1

θ
x

1
θ
−1, 0 ≤ x ≤ 1,

depending on an unknown parameter θ > 0.

a) Find a method of moments estimator θ̄ of the unknown parameter θ.

b) Find the maximum likelihood estimator θ̂ of θ.

c) Show that θ̂ is the best unbiased estimator of θ.

d) Give a 100(1−α)% confidence interval for the unknown parameter θ, based on the
maximum likelihood estimator θ̂, where α is any small number.

Solution: a) Since

µ =

∫ 1

0

xf(x|θ) dx =
1

θ

∫ 1

0

x
1
θ dx =

1

θ

x
1
θ
+1

1
θ

+ 1

∣∣∣∣∣

1

0

=
1

θ

1
1
θ

+ 1
=

1

1 + θ
,

we can express θ in terms of µ as

θ =
1

µ
− 1.

Thus the method of moments estimator of θ is

θ̄ =
1

x̄
− 1.

b) Following the steps of the what-to-do list, we find

ln f(x|θ) = − ln θ +

(
1

θ
− 1

)
ln x;

∂

∂θ
ln f(x|θ) = −1

θ
− 1

θ2
ln x.

From expected score is aero, it follows that

E(ln X) = −θ. (1)

The maximum likelihood equation

n∑
i=1

∂

∂θ
ln f(x|θ) =

n∑
i=1

(
−1

θ
− 1

θ2
ln xi

)
= 0,
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the maximum likelihood equation is

θ̂ = − 1

n

n∑
i=1

ln xi. (2)

By (1), this is an unbiased estimator of θ.

The second score is
∂2

∂θ2
ln f(x|θ) =

1

θ2
+

2

θ3
ln x.

Using (1) again, we find the Fisher information:

I(θ) = E

(
− ∂2

∂θ2
ln f(x|θ)

)
= −

(
1

θ2
+

2

θ3
E(ln X)

)
= −

(
1

θ2
− 2

θ2

)
=

1

θ2
. (3)

By the alternative formula for the Fisher information,

1

θ2
= I(θ) = E

(
∂

∂θ
ln f(X|θ)

)2

= E

(
−1

θ
− 1

θ2
ln X

)2

=
E(ln X + θ)2

θ4
=

V (ln X)

θ4
,

i.e.
V (ln X) = θ2. (4)

c) From (2) and (4),

V (θ̂) =
V (ln X)

n
=

θ2

n
≡ 1

nI(θ)
.

Thus θ̂ is the best unbiased estimator of θ.

d) Using (3), a 100(1− α)% confidence interval for θ is given by

θ̂ ± zα/2√
nI(θ̂)

= θ̂ ± zα/2θ̂√
n

= θ̂

(
1± zα/2√

n

)
.

2. Confidence intervals for the differences in means, standard deviations. The
following data represents oxygen consumption in millimeters3 per hour by fish (trout)
in a rapidly flowing river (sample 1) and in slow moving waters (sample 2).

High 105 108 86 103 103 107 124 105
Low 89 92 84 97 103 107 111 97

a) Give a 95% confidence interval for the difference between means.

b) Is the null hypothesis about equality of the means acceptable, at the significance
level of 5%?

c) Give a 90% confidence interval for the ratio of standard deviations.

d) Is the null hypothesis about equality of the standard deviations acceptable, at the
significance level of 10%?
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Solution: a) Let x1, ..., x8 be sample 1 (high data), and y1, ..., y8 – sample 2 (low data).
The sample sizes are n1 = n2 = 8. A 100(1−α)% confidence interval for the difference
µx − µy is given by

x̄− ȳ ± tα
2

,n1+n2−2

√
s2

p

(
1

n1

+
1

n2

)
.

Here
x̄ = 105.1, ȳ = 97.5, s2

1 = 106.1, s2
2 = 84.

The pooled unbiased variance estimator is

s2
p = (s2

1 + s2
2)/2 = 95.1.

From Table 4,
t0.025,14 = 2.15.

Thus the confidence interval for µx − µy is

105.1− 97.5± 1.15 ·
√

s2
p

4
= [−2.9, 18.1].

b) Since the 95% contains 0, the null hypothesis H0 : µx = µy can be accepted, at the
significance level 5%.

c) Since from the Table 4 f0.05,7,7 = 3.79, the confidence interval for the ratio of standard
deviations σ1/σ2 is

[√
s2
1

s2
2 · f0.05,7,7

,

√
s2
1 · f0.05,7,7

s2
2

]
=

[√
106.1

84 · 3.79
,

√
106.1 · 3.79

84

]
= [0.6, 2.2].

d) Since the confidence interval for σ1/σ2 contains 1, the null hypothesis H0 : σ1 = σ2

can be accepted, at the significance level 10%.

3. Testing two proportions. A random sample of 100 balls is drawn from box I, and
45 of the balls are black. From box II, a random sample of size 200 is taken, and 115
of these balls are black.

a) Test the null hypothesis about proportions of black balls in these boxes

H0 : p1 = p2,

against the alternative
H1 : p1 < p2,

at the (approximate) significance level α = 0.05.

b) Give the (approximate) P -value corresponding to this test. Is there a strong evidence
against the null hypothesis?
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Solution: a) The test statistic of the text has the form

z =
p̂2 − p̂1√

p̂(1− p̂)
(

1
n1

+ 1
n2

) .

Here n1 = 100 n2 = 200 and

p̂1 =
45

100
= 0.45, p̂2 =

115

200
= 0.575, p̂ =

45 + 115

100 + 200
= 0.543.

Therefore

z =
0.575− 0.45√

0.543(1− 0.543)
(

1
100

+ 1
200

) = 2.05.

Since from the Table III,
z0.05 ≈ 1.65,

and z > z0.05, the null hypothesis H0 is rejected.

b) From Table III, the approximate P -value is

P (Z ≥ z) = P (Z ≥ 2.05) = 0.02.

Thus there is a pretty strong evidence against H0.

4. Type I error. Let x1, ..., xn be an independent sample from the normal distribution
N (µ, σ2), with unknown parameter µ and given σ2. Suppose a significance level α is
chosen. As was explained in the class, the uniformly most powerful level-α test of the
null hypothesis

H0 : µ = µ0,

against the one-sided alternative

H1 : µ > µ0,

rejects H0 if and only if
x̄− µ0√

σ2

n

> zα. (1)

Suppose you want to test a more general null hypothesis

H0 : µ ≤ µ0,

against the alternative
H1 : µ > µ0.

Intuitively, the same test will do the job: reject H0 if and only if (1) happens.
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For a given µ ∈ H0 (i.e. µ ≤ µ0), the probability of type I error is defined as

α(µ) = P (the test rejects H0|µ).

a) Express the probability α(µ) of type I error in terms of the parameters µ, µ0, σ, and
n. Hint: standardization

b) Show that α(µ) ≤ α, for all µ ≤ µ0.

c) Find limµ→µ0− α(µ).

d) Find limµ→−∞ α(µ). Interpret your result.

e) Find limσ→∞ α(µ).

f) For µ < µ0, find limσ→0 α(µ). Interpret your result.

g) For µ < µ0, find limn→∞ α(µ). Interpret your result.

Solution: a)

α(µ) = P


 X̄ − µ0√

σ2

n

> zα

∣∣∣∣∣∣
µ


 = P


 X̄ − µ√

σ2

n

+
µ− µ0√

σ2

n

> zα

∣∣∣∣∣∣
µ


 =

P


 X̄ − µ√

σ2

n

>
µ0 − µ√

σ2

n

+ zα

∣∣∣∣∣∣
µ


 = P


Z >

µ0 − µ√
σ2

n

+ zα




b) Since µ0 − µ ≥ 0,
α(µ) ≤ P (Z > zα) = α.

c)
lim

µ→µ0−
α(µ) = P (Z > zα) = α.

d)
lim

µ→−∞
α(µ) = 0.

This means that the more the true value µ becomes separated from the hypothetical
value µ0, the less likely type I error is.

e)
lim

σ→∞
α(µ) = P (Z > zα) = α.

f) For µ < µ0,
lim
σ→0

α(µ) = 0.

Thus, the smaller are errors in observations, the less likely type I error is.

g) For µ < µ0,
lim

n→∞
α(µ) = 0.

Thus, the larger is data set, the less likely type I error is.
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