Parameter estimation: method of moments

In Statistics, one always starts with observed values of random variables, or data,
\[X_1 = x_1, \ldots, X_n = x_n. \]

(1)

Based on these data, a statistician often wants to fit a distribution to the given sample. A rough preliminary idea about what kind of distribution could be used, may be based on the histogram, or block plot, of the data.

For instance, if the block plot of the data looks roughly symmetric, one may think of a fitting a normal distribution, with some parameters \(\mu \) and \(\sigma^2 \). After a normal distribution has been chosen, one would have to estimate its parameters.

If the data is positive and skewed to the right, one could go for an exponential distribution \(\mathcal{E}(\lambda) \), or a gamma \(\Gamma(\alpha, \beta) \).

If data are supported by a bounded interval, one could opt for a uniform distribution \(\mathcal{U}[a, b] \), or more generally, for a beta distribution \(\mathcal{B}(\alpha, \beta) \).

If data were discrete, one could think of a Poisson distribution \(\mathcal{P}(\lambda) \), or a geometric distribution \(\mathcal{G}(p) \). Sometimes, the data can make us think of fitting a Bernoulli, or a binomial, or a multinomial, distributions.

In each case, there will be some parameters to estimate based on the available data. Depending on the type of distribution, these parameters may have different meaning, like in following distributions
\[\mathcal{N}(\mu, \sigma^2), \; \mathcal{E}(\lambda), \; \Gamma(\alpha, \lambda), \; \mathcal{B}(\alpha, \beta), \; \mathcal{U}[a, b], \; \mathcal{B}(p), \; \mathcal{M}(p_1, p_2, p_3), \; \mathcal{P}(\lambda), \; \mathcal{G}(p), \; etc. \]

So, the problem arises as to how to select these parameters; or, as statisticians say, estimate them, based on the available data. There are two classical methods of estimation, each of them having their own advantages. We will first discuss the so-called method of moments for estimation of unknown parameters.

The method of moments. Assume for simplicity, first, that there is only one unknown parameter to be estimated. Generically, let us call the unknown parameter \(\theta \). Thus, our data comes from i.i.d. random variables, with a given pdf/pmf,

\[X_1, \ldots, X_n \text{ i.i.d. } \sim f(x|\theta), \]

where \(\theta \) is a single unknown parameter, and we want an estimator for \(\theta \) based on the given data (1). By an estimator, we mean any function of the data,

\[\bar{\theta}_n = \bar{\theta}_n(x_1, \ldots, x_n). \]
When the data is given, the value of such a function is fixed, or non-random. However, often we are interested in its expectation, or its mean squared error. In all such cases, we view our estimator as a realization of the corresponding random variable,

\[\hat{\theta}_n = \hat{\theta}_n(x_1, ..., x_n) = \hat{\theta}_n(X_1, ..., X_n). \]

In some cases, the parameter \(\theta \) may coincide with the mean value \(\mu = \mathbb{E}X_i \), like in the cases of normal, exponential, Bernoulli, or Poisson distributions. For all such cases, we have already discussed in the previous lecture how to construct an estimator and a corresponding confidence interval. Indeed, a consistent and unbiased estimator of \(\mu = \theta \) is given by

\[\bar{\theta}_n = \bar{X}_n = \frac{X_1 + \cdots + X_n}{n} \xrightarrow{p} \mu = \theta, \]

and a (1 - \(\alpha \))100% CI for \(\mu = \theta \) is given by

\[\bar{\theta}_n \pm z(\alpha/2)\sqrt{\frac{\hat{\sigma}^2}{n}}, \]

where \(\hat{\sigma}^2 \) is any consistent estimator of the variance \(\sigma^2 \) (when it is unknown, which is typically the case).

Although, generally, \(\mu \) does not necessarily coincide with parameter \(\theta \), it is always a function of \(\theta \),

\[\mu = \mathbb{E}X_i = h(\theta), \]

which can be found explicitly. For instance, we know that in the case of geometric distribution, with unknown parameter \(\theta = p \),

\[\mu = h(\theta) = \frac{1}{\theta} = \frac{1}{p}. \]

Then, we can express the unknown parameter \(\theta \) in terms of the mean,

\[\theta = h^{-1}(\mu) := g(\mu). \]

For instance, in the case of geometric distribution,

\[\theta = g(\mu) = \frac{1}{\mu}. \]

Of course, here \(\mu \) is unknown, just as the parameter \(\theta \). However, for \(\mu \) we always have a consistent estimator, \(\bar{X}_n \). By replacing the mean value \(\mu \) in (3) by its consistent estimator \(\bar{X}_n \), we obtain the method of moments estimator (MME) of \(\theta \).
\[\bar{\theta}_n = g(\bar{X}_n). \]

Function \(\mu = h(\theta) \) and its inverse function \(\theta = g(\mu) \), connecting the mean value \(\mu \) to the unknown parameter \(\theta \), will be central in our discussion. In the discrete case,

\[\mu = h(\theta) = \sum_x x f(x|\theta), \]

while in the continuous case,

\[\mu = h(\theta) = \int x f(x|\theta) \, dx. \]

In most cases of interest, the function \(h(\theta) \) is invertible. This is guaranteed if, for instance, \(h'(\theta) > 0 \) (i.e., \(h(\theta) \) is strictly increasing), or if \(h'(\theta) < 0 \) (\(h(\theta) \) is strictly decreasing). Then, by the so-called inverse function theorem, there is a function \(g(\mu) \) such that

\[\theta = g(\mu) \quad \text{and} \quad \mu = h(\theta) = h(g(\mu)). \]

Moreover, function \(g(\mu) \) is differentiable and

\[g'(\mu) = \frac{1}{h'(\theta)}. \tag{5} \]

Indeed, one has

\[1 = \frac{d\mu}{d\mu} = h'(g(\mu)) \cdot g'(\mu) = h'(\theta) \cdot g'(\mu). \]

Let us take a closer look at our MME estimator (4). In studying it, we will use everything what we have learned so far about different modes of convergence of random variables.

1. The MME estimator \(\bar{\theta}_n \) is always consistent. Indeed, since \(g(\mu) \) is a continuous function, by the Service theorem 1,

\[\bar{\theta}_n = g(\bar{X}_n) \xrightarrow{p} g(\mu) = \theta. \]

2. Denote \(\text{Var}X_i = \sigma^2 = \sigma^2(\theta) \). By the CLT,

\[\bar{X}_n \xrightarrow{d} \mathcal{N} \left(\mu, \frac{\sigma^2(\theta)}{n} \right). \]

Hence, by the \(\delta \)-method and (5),

\[\hat{\theta}_n = g(\bar{X}_n) \xrightarrow{d} \mathcal{N} \left(g(\mu), \frac{(g'(\mu))^2 \sigma^2(\theta)}{n} \right) = \mathcal{N} \left(\theta, \frac{\sigma^2(\theta)}{(h'(\theta))^2 n} \right). \]
We see that the asymptotic variance of our MME $\bar{\theta}_n$ essentially is determined by the function

$$AV(\theta) = \frac{\sigma^2(\theta)}{(h'(\theta))^2},$$

so that

$$\bar{\theta}_n \overset{d}{\approx} N\left(\theta, AV(\theta) \right).$$

Precisely, this means that

$$\frac{\bar{\theta}_n - \theta}{\sqrt{\frac{\sigma^2(\theta)}{n(h'(\theta))^2}}} \overset{d}{\to} Z.$$

3. In order to construct corresponding confidence intervals, one can use the plug-in method.

Assuming that both functions $\sigma^2(\theta)$ and $h'(\theta)$ are continuous, by the Slutsky theorem and Service theorem 2,

$$\frac{\bar{\theta}_n - \theta}{\sqrt{\frac{\sigma^2(\theta)}{n(h'(\theta))^2}}} \overset{d}{\to} Z.$$

This leads, in the usual way, to the approximate $(1 - \alpha)100\%$ CI,

$$P \left(\bar{\theta}_n + z(\alpha/2) \sqrt{\frac{\sigma^2(\bar{\theta}_n)}{n(h'(\bar{\theta}_n))^2}} \leq \theta \leq \bar{\theta}_n + z(\alpha/2) \sqrt{\frac{\sigma^2(\bar{\theta}_n)}{n(h'(\bar{\theta}_n))^2}} \right) \to 1 - \alpha,$$

where, as always $z(\alpha)$ is the critical value such that

$$P(Z \geq z(\alpha)) = \alpha.$$

The above confidence interval can be written in shorter forms as

$$\left[\bar{\theta}_n - z(\alpha/2) \sqrt{\frac{AV(\bar{\theta}_n)}{n}}, \bar{\theta}_n + z(\alpha/2) \sqrt{\frac{AV(\bar{\theta}_n)}{n}} \right] = \bar{\theta}_n \pm z(\alpha/2) \sqrt{\frac{AV(\bar{\theta}_n)}{n}}.$$

The generalized method of moments. The ideas and methods leading to the MME are, in fact, much more general, than what immediately meets the eye. Suppose that – for any reason – we don’t want or can’t use the observations X_i themselves, but prefer to use instead some other random variables based on them, say $Y_i = u(X_i)$. Then we define

$$\mu = \mathbb{E}Y_i = \mathbb{E}u(X_i) = h(\theta), \quad \text{Var}Y_i = \text{Var}u(X_i) = \sigma^2(\theta), \quad \theta = h^{-1}(\mu) = g(\mu).$$
Most of the standard textbooks, consider only the case \(Y_i = u(X_i) = X_i^k \), for which \(h(\theta) = EX_i^k \) is the so-called \(k \)-th order moment of \(X_i \). This is the classical method of moments. However, we can allow any function \(Y_i = u(X_i) \), and call \(h(\theta) = EU(X_i) \) a generalized moment.

Of course, in that case, the sample mean \(\bar{X}_n \) will be replaced by the generalized sample moment

\[
\bar{Y}_n = \frac{u(X_1) + \cdots + u(X_n)}{n}.
\]

Of course, if \(u(X_i) = X_i^k \), \(\bar{Y}_n \) coincides with the \(k \)-th order sample moment

\[
\bar{Y}_n = \frac{X_1^k + \cdots + X_n^k}{n}.
\]

Notice, that nothing significant has changed really, only instead of \(X_i \) we have used transformed random variables \(Y_i = u(X_i) \). Of course, now \(\sigma^2 = \text{Var} u(X_i) \). The corresponding generalized MME is then

\[
\hat{\theta}_n = g(\bar{Y}_n).
\]

One of the advantages of the generalized method of moments is that we can choose any function \(u(x) \) which is more convenient, or easier to deal with. The method always works, with the only exception when \(h'(\theta) = 0 \), or \(\mu = h(\theta) = \text{const} \). The meaning of this limitation is clear. Indeed, if \(\mu = h(\theta) = \text{const} \), then, even if we knew the value of \(\mu \) precisely, it would tell us nothing about the true value of \(\theta \).

Later on, we will touch on the issue of the most “efficient” choice of function \(u(x) \). For now, consider two illustrating examples. In both of them, we will have an i.i.d. sample \(X_i \) from the so-called double exponential, or Laplace, distribution.

Example: double exponential distribution. Let

\[
f(x|\lambda) = \frac{\lambda}{2} e^{-\lambda|x|},
\]

where \(\lambda > 0 \) if the unknown parameter. Here, due to the symmetry of the pdf,

\[
\mu = h(\lambda) = EX = \frac{\lambda}{2} \int_{-\infty}^{\infty} xe^{-\lambda|x|} dx = 0.
\]

(Recall the geometric meaning of the definite integral as the algebraic sum – with signs – of the areas contained between the integrand and the real axis!) So, we cannot use the first moment \(h(\lambda) = EX_i \), since it does not tell us anything about the true value of \(\lambda \! \! \! \). However, there are plenty of other choices, for instance,

\[
u_1(x) = |x|, \quad \text{or} \quad u_2(x) = x^2.
\]
We will derive MME for these two functions, and then decide which of the two resulting MME’s is actually better. The corresponding (generalized) sample moments are

\[
\bar{Y}_1 = \frac{\sum_{i=1}^n |X_i|}{n} \quad \text{and} \quad \bar{Y}_2 = \frac{\sum_{i=1}^n X_i^2}{n}.
\]

We will need the familiar gamma integral,

\[
\int_0^\infty x^{\alpha-1} e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^\alpha},
\]

In particular,

\[
\int_0^\infty x^{n-1} e^{-\lambda x} dx = \frac{\Gamma(n)}{\lambda^n} = \frac{(n-1)!}{\lambda^n}.
\]

First, let us calculate the corresponding means \(\mu = h(\lambda)\) and their derivatives \(h'(\lambda)\).

\[
h_1(\lambda) = EY_1 = E|X| = \frac{\lambda}{2} \int_{-\infty}^\infty |x| e^{-\lambda |x|} dx = \lambda \int_0^\infty x^{2-1} e^{-\lambda x} dx = \lambda \cdot \frac{\Gamma(2)}{\lambda^2} = \frac{1}{\lambda},
\]

\(h_1'(\lambda) = -\frac{1}{\lambda^2}; \tag{6}\)

\[
h_2(\lambda) = EY_2 = EX^2 = \frac{\lambda}{2} \int_{-\infty}^\infty x^2 e^{-\lambda |x|} dx = \lambda \int_0^\infty x^{3-1} e^{-\lambda x} dx = \lambda \cdot \frac{\Gamma(3)}{\lambda^3} = \frac{2}{\lambda^2},
\]

\(h_2'(\lambda) = -\frac{4}{\lambda^3}; \tag{7}\)

Next, from equations (6), (7), one can express parameter of interest \(\lambda\) in terms of the generalized moments:

\[
\lambda = \frac{1}{EY_1},
\]

and

\[
\lambda = \sqrt{\frac{2}{EY_2}}.
\]

Replacing the generalized moments by the corresponding sample moment leads to the corresponding generalized MME’s:

\[
\hat{\lambda}_1 = \frac{1}{\bar{Y}_1},
\]

and

\[
\hat{\lambda}_2 = \sqrt{\frac{2}{\bar{Y}_2}}.
\]
As we already know, both estimators are **consistent**! To construct the corresponding CI’s, we need \(\sigma_1^2(\lambda) = \text{Var} Y_1 \) and \(\sigma_2^2(\lambda) = \text{Var} Y_2 \). Note that by (7),

\[
EY_1^2 = EX^2 = \frac{2}{\lambda^2}.
\]

Hence,

\[
\sigma_1^2(\lambda) = EY_1^2 - (EY_1)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.
\]

This also gives

\[
AV_1(\lambda) = \frac{\sigma_1^2(\lambda)}{(h_1'(\lambda))^2} = \frac{1}{\lambda^2} = \lambda^2.
\]

Thus, the approximate \((1 - \alpha)100\%\) CI, based on the MME \(\bar{\lambda}_1 \), is

\[
\bar{\lambda}_1 \pm z(\alpha/2) \sqrt{\frac{AV_1(\bar{\lambda}_1)}{n}} = \bar{\lambda}_1 \pm z(\alpha/2) \sqrt{\frac{\lambda_1^2}{n}} = \bar{\lambda}_1 \pm z(\alpha/2) \frac{\lambda_1}{\sqrt{n}} = \bar{\lambda}_1 \left(1 \pm \frac{z(\alpha/2)}{\sqrt{n}}\right).
\]

Now, let us calculate \(\sigma_2^2(\lambda) = \text{Var} Y_2 \). We have already found \(EY_2 = \frac{2}{\lambda^2} \). Next, from the gamma integral,

\[
EY_2^2 = EX^4 = \frac{\lambda}{2} \int_{-\infty}^{\infty} x^4 e^{-\lambda|x|} dx = \lambda \int_0^{\infty} x^5 e^{-\lambda x} dx = \lambda \cdot \frac{\Gamma(5)}{\lambda^5} = \frac{4!}{\lambda^4} = \frac{24}{\lambda^4}.
\]

Thus,

\[
\sigma_2^2(\lambda) = \text{Var} Y_2 = EY_2^2 - (EY_2)^2 = \frac{24}{\lambda^4} - \frac{4}{\lambda^4} = \frac{20}{\lambda^4},
\]

and

\[
AV_2(\lambda) = \frac{\sigma_2^2(\theta)}{(h_2'(\theta))^2} = \frac{20}{\lambda^4} = \frac{5}{4} \lambda^2.
\]

The approximate \((1 - \alpha)100\%\) CI, based on the MME \(\bar{\lambda}_2 \), is

\[
\bar{\lambda}_2 \pm z(\alpha/2) \sqrt{\frac{AV_2(\bar{\lambda}_2)}{n}} = \bar{\lambda}_2 \pm z(\alpha/2) \sqrt{\frac{5\lambda_2^2}{4n}} = \bar{\lambda}_2 \pm z(\alpha/2) \frac{\sqrt{5}}{2 \sqrt{n}} \bar{\lambda}_2 = \bar{\lambda}_2 \left(1 \pm \frac{\sqrt{5}}{2 \sqrt{n}} z(\alpha/2)\right).
\]

Note that since both estimators are consistent, \(\bar{\lambda}_1 \approx \bar{\lambda}_2 \approx \lambda \). Thus, the relative accuracy of the two estimators is determined by the length of the corresponding confidence intervals. The length of the second CI is approximately \(\sqrt{5}/2 \approx 1.12 \) times that of the first CI. We can conclude that, for large \(n \), the CI based on \(\bar{\lambda}_1 \) is more accurate (by approximately 12\%).