
Stat 463/853-2020 Lecture 21 11.06.20

Asymptotic theory of the MLE. Fisher information

Let X1, ..., Xn i.i.d. ∼ f(x|θ), where θ is real. We will assume that the pdf/pmf
f(x|θ) has continuous derivatives with respect to θ. As usual, we have the data:
X1 = x1, ..., Xn = xn. Recall that the likelihood function is the joint pdf/pmf,
which is due to independence

lik(θ) = f(x1, ..., xn|θ) =
n∏

i=1

f(xi|θ).

To find the MLE θ̂n of θ, we maximize the likelihood, of the log-likelihood:

ln lik(θ) =
n∑

i=1

ln f(xi|θ) → max
θ

.

Since, by our assumption, the likelihood is differentiable, we can set up the ML
equation:

∂

∂θ

n∑
i=1

ln f(xi|θ) =
n∑

i=1

∂

∂θ
ln f(xi|θ) = 0.

From that, we can see that an important role is played by the function ∂
∂θ

ln f(xi|θ).
Later, we will see that an equally important role is played by the second derivative
∂2

∂θ2
ln f(xi|θ). Fisher – the pioneer of studying the MLE – proposed to call

∂

∂θ
ln f(xi|θ) = the 1st score,

∂2

∂θ2
ln f(xi|θ) = the 2nd score.

These two functions have some important properties, which are from obvious. Here
are some of these properties, without proofs, but with some illustrating examples.

Rule 1: The expected value of the first score is 0.

E

(
∂

∂θ
ln f(Xi|θ)

)
= 0.

Definition 2. The variance of the first score is denoted

I(θ) = Var

(
∂

∂θ
ln f(Xi|θ)

)
and is called the Fisher information about the unknown parameter θ, con-
tained in a single observation Xi.
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Rule 2: The Fisher information can be calculated in two different ways:

I(θ) = Var

(
∂

∂θ
ln f(Xi|θ)

)
= −E

(
∂2

∂θ2
ln f(Xi|θ)

)
. (1)

These definitions and results lead to the following main

Theorem.

θ̂n
d
≈ N

(
θ,

1

nI(θ)

)
= N

(
θ,

AVML(θ)

n

)
.

Corollary. An approximate (1 − α)100% for θ CI based on the MLE θ̂n is given
by

θ̂n ± z(α/2)

√
1

nI(θ̂n)
.

In the examples given below, note the specific order in which the calculations are
performed to find the MLE.

Example 1. Independent Bernoulli trials: X1, ..., Xn i.i.d.
d
= X ∼ B(p).

Here the common pmf is given by

f(x|p) = px(1− p)1−x,

so that the log-likelihood is

ln f(x|p) = x ln p+ (1− x) ln(1− p).

It is convenient to start by calculating the 1st and 2nd scores. In this case,

∂

∂p
ln f(x|p) = x

p
− 1− x

1− p
,

∂2

∂p2
ln f(x|p) = − x

p2
− 1− x

(1− p)2
.

Note that the first score allows to set up the ML equation. Denote as usual

n∑
i=1

xi = nx̄.

By the rules of summation,

n∑
i=1

∂

∂p
ln f(xi|p) =

n∑
i=1

(
xi

p
− 1− xi

1− p

)
=

nx̄

p
− n− nx̄

1− p
=

n

(
x̄

p
− 1− x̄

1− p

)
= n

x̄− p

p(1− p)
= 0,

from which p̂ = x̄. Of course, this result is already known to us!
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Next we will check Rule 1:

E

(
∂

∂p
ln f(X|p)

)
= E

(
X

p
− 1−X

1− p

)
=

p

p
− 1− p

1− p
= 1− 1 = 0.

Note that, although in this case Rule 1 is satisfied trivially, in other, less trivial
cases, it can be a useful source of additional information!

The next step is to find the Fisher information. Our equation (1) gives two differ-
ent formulas for the Fisher information. Here, we will just verify that they produce
the same result. However, in other less trivial cases, it is highly recommended to
calculate both formulas, as it can provide a valuable further information!
Usually, the second formula, i.e., the right-hand side of (1), is numerically easier.

Using the property of the variances Var(a+ bX) = b2VarX, we get

I(p) = Var

(
∂

∂p
ln f(X|p)

)
= Var

(
X

p
− 1−X

1− p

)
=

Var

(
X

(
1

p
+

1

1− p

))
= Var

(
X

p(1− p)

)
=

VarX

(p(1− p))2
=

p(1− p)

(p(1− p))2
=

1

p(1− p)
.

Now, let us check that the second formula in Rule 2 gives the same result, only
somewhat easier, as it uses simpler properties of expectations, not variances:

I(p) = −E

(
∂2

∂p2
ln f(X|p)

)
= E

(
X

p2
+

1−X

(1− p)2

)
=

p

p2
+

1− p

(1− p)2
=

1

p(1− p)
.

Finally, having found the MLE p̂ and the Fisher information I(p). we can construct
the (1− α)100% CI in the usual way:

p̂± z(α/2)

√
1

nI(p̂)
= p̂± z(α/2)

√
p̂(1− p̂)

n
.

Our next example will bee dealing with the statistical model already discussed in
the last Example 8 of the previous Lecture. Please, review it before reading the
next example!

Example 2. Hardy-Weinberg equilibrium. Recall that in this model we are
dealing with the data X1 = x1, X2 = x2, X2 = x3 having trinomial distribution,
with the probabilities p1, p2, p2 of corresponding outcomes satisfying the following
equations:

p1(θ) = (1− θ)2, p2(θ) = 2θ(1− θ), p3(θ) = θ2.
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Based on the data we need to find the MLE, θ̂, and construct a confidence interval.
We have done this, but in a somewhat complicated manner. Now we will see how
our new methods can greatly simplify the solution.

Note that in the previous the example of i.i.d. Bernoulli random variables, it
was sufficient to deal mostly with the marginal pmf f(x|p). That was the con-
venience provided by the i.i.d. structure. Since in the trinomial model, the re-
sponses x1, x2, x3 are not i.i.d., we will deal with their joint pmf, or the likelihood,
f(x1, x2, x3|p1(θ), p2(θ), p3(θ)). For the rest, the methods will be very similar to the
previous example.

For briefness, denote x = (x1, x2, x3). As we know, the likelihood function is given
by

f(x|θ) = n!

x1!x2!x3!
p1(θ)

x1p2(θ)
x2p3(θ)

x3 .

The corresponding log-likelihood is therefore

ln f(x|θ) = ln
n!

x1!x2!x3!
+ x1 ln(1− θ)2 + x2 ln 2θ(1− θ) + x3 ln θ

2 =

ln
n!

x1!x2!x3!
+ x2 ln 2 + (2x1 + x2) ln(1− θ) + (2x3 + x2) ln θ.

Let us calculate the 1st score,

∂

∂θ
ln f(x|θ) = −2x1 + x2

1− θ
+

2x3 + x2

θ
.

Since x1+x2+x3 = n, it can be simplified (by excluding variable x1 = n−x2−x3)
as

∂

∂θ
ln f(x|θ) = −2n− (2x3 + x2)

1− θ
+

2x3 + x2

θ
=

(2x3 + x2)− 2nθ

θ(1− θ)
. (2)

By differentiating one more time the log-likelihood, we get the 2-nd score:

∂2

∂θ2
ln f(x|θ) = −2n− (2x3 + x2)

(1− θ)2
− 2x3 + x2

θ2
=

− 2n

(1− θ)2
− (2x3 + x2)

(
1

θ2
− 1

(1− θ)2

)
. (3)

Now we can set up the ML equation. By (2), it becomes

∂

∂θ
ln f(x|θ) = (2x3 + x2)− 2nθ

θ(1− θ)
= 0,
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from which we easily find that the MLE equals

θ̂ =
2x3 + x2

2n
.

Let now verify Rule 1. Since in it, we want to take the expectation of the score,
we need to view it as a random variable. In other words, we view each count xi as
a realization of the corresponding random variable Xi. According to Rule 1,

E

(
∂

∂θ
ln f(X|θ)

)
= E

(
(2X3 +X2)− 2nθ

θ(1− θ)

)
= 0.

It immediately follows that

E(2X3 +X2) = 2nθ, (4)

or equivalently

Eθ̂ = E

(
2X3 +X2

2n

)
= θ.

Thus, we found again, but much simpler, that the MLE θ̂ is an unbiased estimator
of θ.

Next, let us calculate the Fisher information using the right-hand side of Rule 2.

I(θ) = −E

(
∂2

∂θ2
ln f(X|θ)

)
.

By (3)–(4),

I(θ) =
2n

(1− θ)2
+ 2nθ

(
1

θ2
− 1

(1− θ)2

)
=

2n

θ
+

2n(1− θ)

(1− θ)2
=

2n

θ(1− θ)
. (5)

Next, using the first formula for the Fisher information I(θ), the formula (2) for
the 1st score, and the just found expression (5), we get

I(θ) =
2n

θ(1− θ)
= Var

(
2X3 +X2 − 2nθ

θ(1− θ)

)
=

Var(2X3 +X2)

θ2(1− θ)2
.

Equivalently,
Var(2X3 +X2) = 2nθ(1− θ),

and

Varθ̂ = Var
2X3 +X2

2n
=

Var (2X3 +X2)

(2n)2
=

θ(1− θ)

2n
.

This will results in the same (1− α)100% CI for θ, as in the previous Lecture.

Consider briefly one more example.
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Example 3. Double exponential, or Laplace distribution. Here X1, ..., Xn

are i.i.d., with the common pdf

f(x|θ) = 1

2θ
e−

|x|
θ , θ > 0.

As is often the case with the i.i.d. data, it is sufficient to look at the marginal
likelihood f(x|θ). Here

ln f(x|θ) = − ln 2− ln θ − |x|
θ
.

Thus, the 1st and scores are, respectively

∂

∂θ
ln f(x|θ) = −1

θ
+

|x|
θ2

, and
∂2

∂θ2
ln f(x|θ) = 1

θ2
− 2|x|

θ3
.

We can set the MLE equation:
n∑

i=1

(
−1

θ
+

|xi|
θ2

)
= −n

θ
+

∑n
i=1 |xi|
θ2

= 0 =⇒ θ̂ =
1

n

n∑
i=1

|xi|.

Next, checking out Rule 1,

E

(
− ∂

∂θ
ln f(X|θ)

)
= E

(
−1

θ
+

|X|
θ2

)
= 0,

provides a useful relation
E|X| = θ. (6)

From this relation, it follows directly the MLE,

θ̂ =
1

n

n∑
i=1

|Xi|,

is an unbiased estimator of θ. Next, we can find the Fisher information. By using
(6) again, we get

I(θ) = −E

(
∂2

∂θ2
ln f(X|θ)

)
= −E

(
1

θ2
− 2|X|

θ3

)
= −

(
1

θ2
− 2θ

θ3

)
=

1

θ2
.

On the over hand, by the definition of I(θ),

1

θ2
= I(θ) = Var

(
∂

∂θ
ln f(X|θ)

)
= Var

(
−1

θ
+

|X|
θ2

)
=

Var

(
|X|
θ2

)
=

Var |X|
θ4

.
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This tells us that

Var|X| = θ2,

and therefore

Var θ̂ = Var

(
1

n

n∑
i=1

|Xi|

)
=

nVar|X|
n2

=
θ2

n
.

Finally, an approximate (1− α)100% CI for θ is given by

θ̂ ± z(α/2)√
nI(θ̂)

= θ̂ ± z(α/2)θ̂√
n

= θ̂

(
1± z(α/2)√

n

)
.
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