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Asymptotic theory of the MLE. Fisher information

Let X1, ..., Xn be i.i.d. random variables, with a common pdf/pmf f(x|θ), where
θ is an unknown real parameter. We will assume that f(x|θ) has two continuous
derivatives with respect to θ. As usual, assume that the data is given, X1 =
x1, ..., Xn = xn. Recall that likelihood function is the joint pdf/pmf of X1, ..., Xn

viewed as a function of θ. Due to independence,

lik(θ) = f(x1, ..., xn|θ) =
n∏

i=1

f(xi|θ).

To find the MLE θ̂n of θ, we maximize the likelihood or, equivalently, the log-
likelihood,

ln lik(θ) =
n∑

i=1

ln f(xi|θ) → max
θ

.

Since, by our assumption, the likelihood is differentiable, we can set up the ML
equation:

∂

∂θ

n∑
i=1

ln f(xi|θ) =
n∑

i=1

∂

∂θ
ln f(xi|θ) = 0.

Obviously, an important role here is played by the function ∂
∂θ

ln f(xi|θ). Later,
we will see that an equally important role is played by the second derivative,
∂2

∂θ2
ln f(xi|θ). Fisher – the famous English statistician who pioneered the study

of MLE – proposed to call

∂

∂θ
ln f(xi|θ) = the 1st score,

∂2

∂θ2
ln f(xi|θ) = the 2nd score.

These two functions have some important properties, which are far from obvious.
Here are some of these properties, without proofs, but with some illustrating exam-
ples.

Rule 1: The expected value of the first score is 0.

E

(
∂

∂θ
ln f(Xi|θ)

)
= 0.

Definition 2. The variance of the first score is denoted

I(θ) = Var

(
∂

∂θ
ln f(Xi|θ)

)
,

and is called Fisher information about the unknown parameter θ, contained
in a single observation Xi.
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Rule 2: The Fisher information can be calculated in two different ways:

I(θ) = Var

(
∂

∂θ
ln f(Xi|θ)

)
= −E

(
∂2

∂θ2
ln f(Xi|θ)

)
. (1)

The theory of MLE established by Fisher results in the following main

Theorem 1. For large n, the MLE θ̂ is asymptotically normally distributed,

θ̂n
d
≈ N

(
θ,

1

nI(θ)

)
.

Corollary 1. An approximate (1−α)100% confidence interval (CI) for θ based on
the MLE θ̂n is given by

θ̂n ± z(α/2)

√
1

nI(θ̂n)
.

In the examples presented below, one should pay attention to the specific order in
which the calculations are performed to find the MLE and the corresponding CI.

Example 1. Independent Bernoulli trials. Let X1 = x1, ..., Xn = xn be
observed values of i.i.d. random variables, each with the same distribution as a
single Bernoulli trial, X ∼ B(p). Here the common pmf is given by

f(x|p) = px(1− p)1−x,

so that
ln f(x|p) = x ln p+ (1− x) ln(1− p).

It is convenient to start by calculating the 1st and 2nd scores. In this case,

∂

∂p
ln f(x|p) = x

p
− 1− x

1− p
,

∂2

∂p2
ln f(x|p) = − x

p2
− 1− x

(1− p)2
.

Denote

x̄ =
1

n

n∑
i=1

xi.

The first score allows one to set up the ML equation. By the rules of summation,
it becomes

n∑
i=1

∂

∂p
ln f(xi|p) =

n∑
i=1

(
xi

p
− 1− xi

1− p

)
=

nx̄

p
− n− nx̄

1− p
=

n

(
x̄

p
− 1− x̄

1− p

)
= n

x̄− p

p(1− p)
= 0,

from which the MLE p̂ = x̄ can be found. Of course, this result is already known
to us!
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Next, we can check Rule 1:

E

(
∂

∂p
ln f(X|p)

)
= E

(
X

p
− 1−X

1− p

)
=

p

p
− 1− p

1− p
= 1− 1 = 0.

In this particular case, Rule 1 is obvious. In other less trivial cases it will be a
source of useful information!

The next step is to find the Fisher information. Our equation (1) gives two
different formulas for the Fisher information. Usually, the second formula, i.e.,
the right-hand side of (1), is numerically easier. Here, we will verify that both
formulas produce the same result. It is highly recommended to use both formulas,
as it may provide a valuable further information!

Using the well known property of the variance Var(a+ bX) = b2VarX, we get

I(p) = Var

(
∂

∂p
ln f(X|p)

)
= Var

(
X

p
− 1−X

1− p

)
= Var

X

p(1− p)
=

1

p(1− p)
.

Let us check next that the second formula in Rule 2 gives the same result – only
easier – as it only uses properties of expectations:

I(p) = −E

(
∂2

∂p2
ln f(X|p)

)
= E

(
X

p2
+

1−X

(1− p)2

)
=

p

p2
+

1− p

(1− p)2
=

1

p(1− p)
.

Finally, having found the MLE, p̂ = x̄, and the Fisher information I(p), we can
construct the (1− α)100% CI using the Corollary 1:

p̂± z(α/2)

√
1

nI(p̂)
= p̂± z(α/2)

√
p̂(1− p̂)

n
.

Our next example will be dealing with the statistical model already discussed in the
Example 8 of the previous Lecture. It is recommended to review it before reading
the following.

Example 2. Hardy-Weinberg equilibrium. In this model, the observed data
X1 = x1, X2 = x2, X2 = x3 comes from trinomial distribution, with probabilities
p1, p2, p3 of corresponding outcomes satisfying the following equations:

p1(θ) = (1− θ)2, p2(θ) = 2θ(1− θ), p3(θ) = θ2.

Based on the data, we need to find the MLE θ̂ and construct a confidence interval
for the unknown parameter θ. We will see how the above discussed methods can
significantly simplify the solution.

Note that in the previous example of i.i.d. Bernoulli random variables, it was
sufficient to deal with the marginal pmf f(x|p). This convenience was provided by
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the i.i.d. structure. Since in the trinomial model, the responses X1, X2, X3 are not
independent, we will deal with their joint pmf, or the likelihood, f(x1, x2, x3|θ). For
the rest, the methods are similar to the previous example.

For briefness, denote x = (x1, x2, x3). As we know, the likelihood function is given
by

f(x|θ) = n!

x1!x2!x3!
p1(θ)

x1p2(θ)
x2p3(θ)

x3 .

Therefore, the corresponding log-likelihood is

ln f(x|θ) = ln
n!

x1!x2!x3!
+ x1 ln(1− θ)2 + x2 ln 2θ(1− θ) + x3 ln θ

2 =

ln
n!

x1!x2!x3!
+ x2 ln 2 + (2x1 + x2) ln(1− θ) + (2x3 + x2) ln θ.

Let us calculate the 1st score,

∂

∂θ
ln f(x|θ) = −2x1 + x2

1− θ
+

2x3 + x2

θ
.

Since x1 + x2 + x3 = n, the 1st score can be simplified, by excluding the variable
x1 = n− x2 − x3:

∂

∂θ
ln f(x|θ) = −2n− (2x3 + x2)

1− θ
+

2x3 + x2

θ
=

(2x3 + x2)− 2nθ

θ(1− θ)
. (2)

By differentiating the log-likelihood once more, we get the 2-nd score:

∂2

∂θ2
ln f(x|θ) = −2n− (2x3 + x2)

(1− θ)2
− 2x3 + x2

θ2
=

− 2n

(1− θ)2
− (2x3 + x2)

(
1

θ2
− 1

(1− θ)2

)
. (3)

Now we can set up the ML equation. By (2), it becomes

∂

∂θ
ln f(x|θ) = (2x3 + x2)− 2nθ

θ(1− θ)
= 0,

from which we easily find the MLE:

θ̂ =
2x3 + x2

2n
.

Next, let us now check out Rule 1. Since it deals with the expectation of the 1st
score, we need to view it as a random variable. (Recall that the observed counts xi

are realizations of the corresponding random variable Xi). According to Rule 1,
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E

(
∂

∂θ
ln f(X|θ)

)
= E

(
(2X3 +X2)− 2nθ

θ(1− θ)

)
= 0.

It follows that

E(2X3 +X2) = 2nθ, (4)

or equivalently

Eθ̂ = E

(
2X3 +X2

2n

)
= θ.

Thus, in a simpler way, we found again that the MLE θ̂ is an unbiased estimator of
θ.

Next, let us calculate the Fisher information using the right-hand side of Rule 2.

I(θ) = −E

(
∂2

∂θ2
ln f(X|θ)

)
.

By (3)–(4),

I(θ) =
2n

(1− θ)2
+ 2nθ

(
1

θ2
− 1

(1− θ)2

)
=

2n

θ
+

2n(1− θ)

(1− θ)2
=

2n

θ(1− θ)
. (5)

This results in the same (1− α)100% CI for θ, as in the previous Lecture.
Let us check out Rule 2 in (1). Using the just found expression (5) and the

formula (2) for the 1st score, we get

I(θ) =
2n

θ(1− θ)
= Var

(
2X3 +X2 − 2nθ

θ(1− θ)

)
=

Var(2X3 +X2)

θ2(1− θ)2
.

Equivalently,
Var(2X3 +X2) = 2nθ(1− θ).

This gives also the mean squared error of the MLE θ̂:

E(θ̂ − θ)2 = Varθ̂ = Var
2X3 +X2

2n
=

Var (2X3 +X2)

(2n)2
=

θ(1− θ)

2n
. (6)

Example 3. Double exponential, or Laplace distribution. Let X1, ..., Xn be
i.i.d., with the common pdf

f(x|θ) = 1

2θ
e−

|x|
θ , θ > 0.

With the i.i.d. data, it is always sufficient to look at the marginal pdf/pmf f(x|θ).
Here

ln f(x|θ) = − ln 2− ln θ − |x|
θ
.
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Thus, the 1st and 2nd scores are, respectively

∂

∂θ
ln f(x|θ) = −1

θ
+

|x|
θ2

, and
∂2

∂θ2
ln f(x|θ) = 1

θ2
− 2|x|

θ3
.

We can set up the MLE equation:
n∑

i=1

(
−1

θ
+

|xi|
θ2

)
= −n

θ
+

∑n
i=1 |xi|
θ2

= 0 =⇒ θ̂ =
1

n

n∑
i=1

|xi|.

Next, by checking out Rule 1,

E

(
− ∂

∂θ
ln f(X|θ)

)
= E

(
−1

θ
+

|X|
θ2

)
= 0,

we find that
E|X| = θ. (7)

From this relation, it immediately follows that the MLE,

θ̂ =
1

n

n∑
i=1

|Xi|,

is an unbiased estimator of θ.

Next, we can find the Fisher information. By using (7) again, we get

I(θ) = −E

(
∂2

∂θ2
ln f(X|θ)

)
= −E

(
1

θ2
− 2|X|

θ3

)
= −

(
1

θ2
− 2θ

θ3

)
=

1

θ2
.

Thus, an approximate (1− α)100% CI for θ is given by

θ̂ ± z(α/2)√
nI(θ̂)

= θ̂ ± z(α/2)θ̂√
n

= θ̂

(
1± z(α/2)√

n

)
.

We can also find the variance of the MLE. Note that by the definition of I(θ),

1

θ2
= I(θ) = Var

(
∂

∂θ
ln f(X|θ)

)
= Var

(
−1

θ
+

|X|
θ2

)
=

Var

(
|X|
θ2

)
=

Var |X|
θ4

.

This tells us that

Var|X| = θ2.

Thus, the variance and the mean squared error of the unbiased MLE θ̂ is

E(θ̂ − θ)2 = Var θ̂ = Var

(
1

n

n∑
i=1

|Xi|

)
=

Var|X|
n

=
θ2

n
. (8)
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