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Abstract

Two Rényi-type generalizations of the Shannon cross-entropy, the Rényi cross-entropy

and the Natural Rényi cross-entropy, were recently used as loss functions for the im-

proved design of deep learning generative adversarial networks. In this work, we

analyse the properties of the Rényi and Natural Rényi differential cross-entropy

measures and derive their expressions in closed form for a wide class of common

continuous distributions belonging to the exponential family. We also establish the

Rényi-type cross-entropy rates between stationary Gaussian processes and between

finite-alphabet time-invariant Markov sources.
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A.1.1 Rényi Differential Cross-Entropy . . . . . . . . . . . . . . . . 30
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A.8.1 Rényi Cross-Entropy . . . . . . . . . . . . . . . . . . . . . . . 41
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A.13.1 Rényi Differential Cross-Entropy . . . . . . . . . . . . . . . . 47
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Chapter 1

Introduction

In 1948, Claude Shannon published his seminal work [16] where he introduced a core

information measure for a distribution with probability mass function (pmf) p over

a support set S:

H(p) = −
∑
x∈S

p(x) ln p(x), (1.1)

as well as a variant for a continuous distribution with a probability density function

(pdf) p over a support S ⊂ R:

h(p) = −
∫
S
p(x) ln p(x)dx. (1.2)

The above measures are called the entropy and differential entropy, respectively,

of distribution p. Much like physical entropy,1 it represents an unavoidable cost one

must pay when losslessly encoding information distributed in a given way.

Shannon’s paper laid the groundwork for the modern-day field of Information

Theory, and gave way to many information measures over one or more probability

1As noted by Shannon, the equation for entropy is similar to that of Gibb’s entropy, derived
earlier for statistical mechanics.
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distributions. These include the Kullback-Leibler divergence between two distribu-

tions p and q with common discrete support S:

D(p∥q) =
∑
x∈S

p(x) ln
p(x)

q(x)
, (1.3)

as well as the Shannon cross-entropy between p and q,

H(p; q) = −
∑
x∈S

p(x) ln q(x). (1.4)

The above two measures admit natural extensions for continuous distributions, given

by

D(p∥q) =
∫
S
p(x) ln

p(x)

q(x)
dx, (1.5)

and

h(p; q) = −
∫
S
p(x) ln q(x)dx, (1.6)

respectively. These measures, in broad terms, characterise the cost of assuming that

information with distribution p has distribution q. This characterisation makes these

measures of interest to the field of machine learning (ML). This can be seen in the

use of the cross-entropy in generative adversarial networks [2], an ML system where a

deep neural network trained to generate data is set to compete against another deep

neural network trained to differentiate real data from generated data.

Introduced in 1961 by Alfréd Rényi, [13], the Rényi entropy of order α for pmf p,

given by

Hα(p) =
1

1− α
ln
∑
x∈S

p(x)α (1.7)
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and the Rényi differential entropy for pdf p, given by

hα(p) =
1

1− α
ln

∫
S
p(x)αdx (1.8)

for α > 0, α ̸= 1, are generalisations of the Shannon entropy and differential entropy,

respectively, in the sense that

lim
α→1

Hα(p) = H(p)

and

lim
α→1

hα(p) = h(p).

The same paper also introduces a similar generalisation of the Kullback-Leibler di-

vergence, the Rényi Divergence of order α between two distributions p and q with

common support S:

Dα(p∥q) =
1

α− 1
ln
∑
x∈S

p(x)αq(x)1−α, (1.9)

in the discrete case, and by

Dα(p∥q) =
1

α− 1
ln

∫
S
p(x)αq(x)1−αdx. (1.10)

in the continuous case.

The aforementioned use of the cross-entropy in ML systems lends justification

towards developing a Rényi-style generalisation of the cross-entropy; the additional

parameter α can allow one to fine-tune a model further than using the Shannon
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cross-entropy. As such, this thesis examines two such Rényi cross-entropies and their

logical differential counterparts. These are described in Chapter 2, alongside certain

properties of them. In Chapter 3 we derive closed-form expressions for the Rényi

differential cross-entropy for continuous distributions belonging to an exponential

family, and in Chapter 4 we consider the Rényi cross-entropy rate for two sets of

sources with memory: Gaussian sources and Markov sources. Finally, we conclude

the thesis in Chapter 5. Parts of this work appeared in [18] and [19].
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Chapter 2

Rényi Cross-Entropy: Definitions and Properties

2.1 Two definitions for Rényi Cross-Entropy

A quick calculation will show that H(p; q) = H(p) + D(p∥q), and the same is true

for the differential cross-entropy. Owing to this, [14] defines the Rényi differential

cross-entropy of order α between p and q as

h̃α(p; q) := Dα(p||q) + hα(p), (2.1)

with a trivial discrete analogue given by

H̃α(p; q) := Dα(p||q) +Hα(p). (2.2)

We will refer to the measures in (2.1) and (2.2) as the Natural Rényi differential

cross-entropy and Natural Rényi cross-entropy, respectively.

For an information measure to be deemed a viable candidate for a Rényi cross-

entropy, it should satisfy limα→1Hα(p; q) = H(p; q). In [2], it was proven that this

condition holds for a variation of the shifted Rényi differential entropy (introduced in
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[20]):

hα(p; q) =
1

1− α
ln

∫
S
p(x)q(x)α−1 dx. (2.3)

Indeed, the same can be shown for its discrete analogue:

Hα(p; q) =
1

1− α
ln
∑
x∈S

p(x)q(x)α−1 (2.4)

We will refer to the measures in (2.4) and (2.3) as the Rényi cross-entropy and

Rényi differential cross-entropy, respectively. As the thorough examinations of the

Rényi entropy and divergence by various authors, in particular [7] and [17], make

derivations of the Rényi Natural cross-entropy and its properties much simpler, the

majority of this thesis’s focus will be on the Rényi cross-entropy.

2.2 Basic Properties

Lemma 1. Given α > 0, and pdfs p and q, h̃α(p; q) and hα(p; q) can each be undefined

even if the other is well-defined.

Proof. This can be illustrated by an example: as shown in Table 3.2, the Rényi differ-

ential cross-entropy between two Exponential distributions with parameters λ1 and

λ2, respectively, is affine with respect to lnλh, where λh = λ1+(α−1)λ2. Meanwhile,

as shown in Table 3.3, the Natural Rényi differential cross-entropy between the same

two Exponential distributions is proportional to lnλα, where λα = αλ1 + (1− α)λ2.

Suppose λ1 = 1 and λ2 = 2. If α = 0.5, then λh = 0 and λα = 1.5. At the

same time, if α = 2, then λh = 3 and λα = 0. As ln 0 is undefined, the Rényi

differential cross-entropy in the first scenario is undefined, likewise for the Natural

Rényi differential cross-entropy in the second scenario.
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Lemma 2. The Rényi cross-entropy is non-increasing with respect to α:

dHα(p; q)

dα
=

−D(p̃||p)
(1− α)2

≤ 0,

where

p̃ (x) =
p (x) q (x)α−1∑
S p (x

′) q (x′)α−1 , x ∈ S

and D(·∥·) is the Kullback-Leibler divergence.

Proof. We have the following sequence of identities:

d

dα

1

1− α
ln
∑
S

p (x) q (x)α−1

=
1

(1− α)2
ln
∑
S

p (x) q (x)α−1 +
1

1− α

∑
S p (x) ln (q (x)) q (x)

α−1∑
S p (x) q (x)

α−1

=
1

(1− α)2

(
ln
∑
S

p (x) q (x)α−1 + (1− α)
∑
S

p̃(x) ln q

)

=
1

(1− α)2

(∑
S

p̃(x) ln
∑
S

p(x)q(x)α−1 +
∑
S

p̃(x) ln q − α
∑
S

p̃(x) ln q

)

=
1

(1− α)2

(∑
S

p̃(x) ln

∑
S p(x

′)q(x′)α−1

qα
+
∑
S

p̃(x) ln q

)

=
1

(1− α)2

(∑
S

p̃(x) ln
p(x)q(x)α−1

p̃(x)qα
+
∑
S

p̃(x) ln q

)

=
1

(1− α)2

(∑
S

p̃(x) ln
p(x)

p̃(x)q
+
∑
S

p̃(x) ln q

)

=
1

(1− α)2

(∑
S

p̃(x) ln
p(x)

p̃(x)
−
∑
S

p̃(x) ln q +
∑
S

p̃(x) ln q

)

=
1

(1− α)2

(∑
S

p̃(x) ln
p(x)

p̃(x)

)
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=
−D(p̃||p)
(1− α)2

≤ 0,

where the inequality follows from the non-negativity of the Kullback-Leibler diver-

gence.

Remark. In [2], the Rényi differential cross-entropy hα(p; q) is proven to be non-

increasing in α by similarly showing (via a different approach) that its derivative with

respect to α is non-positive.

Lemma 3. The limit of the Rényi cross-entropy as α → ∞ is given by − ln qM , where

qM := maxx∈S q(x).

Proof. From [10, Section 5], we know that for finite or countably infinite supports,

the Rényi entropy satisfies

lim
β→∞

Hβ(q) = − ln qM .

In light of this result, for any positive constant c̃, we have

lim
α→∞

1

1− α
ln
∑
x∈S

c̃q (x)α−1

= lim
α→∞

1

1− α
ln c̃+ lim

α→∞

1

1− α
ln
∑
x∈S

q (x)α−1

= 0 + lim
β→∞

1

−β
ln
∑
x∈S

q (x)β (β = α− 1)

= lim
β→∞

1− β

−β

1

1− β
ln
∑
S

q (x)β

= lim
β→∞

1

1− β
ln
∑
S

q (x)β

= lim
β→∞

Hβ(q) = − ln qM . (2.5)
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Let S be finite, and denote the minimum and maximum values of p(x) over S by

pm and pM , respectively. Then,

1

1− α
ln
∑
x∈S

pMq (x)α−1 ≤ 1

1− α
ln
∑
x∈S

p(x)q (x)α−1 (2.6)

and

1

1− α
ln
∑
x∈S

p(x)q (x)α−1 ≤ 1

1− α
ln
∑
x∈S

pmq (x)
α−1 (2.7)

for α > 1. Hence

lim
α→∞

Hα (p; q) = − ln qM . (2.8)

If S is countably infinite the proof becomes harder, as pm does not exist. Assume

without loss of generality that S = N and q(0) = qM . For n ≥ 1, we have

∑
x∈N

p(x)q(x)α−1 ≥
n∑

x=1

p(x)q(x)α−1,

and hence for α > 1,

Hα(p; q) ≤
1

1− α
ln

n∑
x=1

p(x)q(x)α−1.

Thus for all n ≥ 1,

lim sup
α→∞

Hα(p; q) ≤ lim
α→∞

1

1− α
ln

n∑
x=1

p(x)q(x)α−1 = − ln qM .

As pM exists, we can use the inequality (2.6) and the argument in (2.5) to conclude

that limα→∞ Hα(p; q) = − ln qM .
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The previous two lemmas directly imply that Hα(p; q) ≥ 0. In addition, the Natu-

ral Rényi cross-entropy, being the sum of two non-negative measures, is non-negative.

Similarly, the lack of non-negativity in the Rényi differential entropy demonstrates

that the Rényi and Natural Rényi differential cross-entropies can be negative. Finally,

using the expressions of limα→∞ Hα(p) and limα→∞Dα(p∥q) (e.g., see [5, 10, 21]), we

readily obtain the limit of the Natural Rényi cross-entropy as α → ∞ as follows.

Remark. The limit of the Natural Rényi cross-entropy H̃α(p; q) as α → ∞ is given

by

lim
α→∞

H̃α(p; q) = lim
α→∞

Hα(p) + lim
α→∞

Dα(p∥q)

= − ln max
{x∈S}

(p(x))− ln max
{x∈S}

(
p(x)

q(x)

)
.
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Chapter 3

Rényi Differential Cross-Entropy for Continuous

Memoryless Sources

In this chapter we derive the Rényi cross-entropy measures for continuous memoryless

sources belonging to an exponential family.

3.1 Exponential Family

An exponential family is a class of probability distributions over a support S ⊆ Rn

defined by a parameter space Θ ⊆ Rj and functions b : S 7→ R, c : Θ 7→ R≥0,

T : S 7→ Rm, and η : Θ 7→ Rm such that the pdf of distributions in a family have the

form

f(x) = c(θ)b(x) exp (η(θ) · T (x)) , x ∈ S (3.1)

where · denotes the standard inner product in Rm. Alternatively, by using the pa-

rameter η = η(θ)1, the pdf can also be written

f(x) = b(x) exp (η · T (x) + A(η)), (3.2)

1η is known as the natural parameter.
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where A(η) : η(Θ) 7→ R with A(η) = ln c(θ).2

Many common distributions belong to an exponential family. Many more have

subsets that belong to an exponential family. The set of Pareto distributions, for

example, is not an exponential family; however the set of Pareto distributions where

m = 1 is, as is the set of Pareto distributions where m = 2, and so on. Table 3.1 lists

the pdfs of certain distributions that form exponential families. Parameters that are

required to be constant for the family to count as an exponential family are marked

with the † symbol. Finally, by Σ ≻ 0, we mean that the matrix Σ is positive-definite.

Table 3.1: List of PDFs from Exponential Families

Name PDF

Parameters (Θ) Support

Beta3 1

B(a, b)
xa−1(1− x)b−1

(a > 0, b > 0) S = (0, 1)

χ

(scaled)

21−k/2xk−1e−x2/2σ2

σkΓ
(
k
2

)
(k > 0, σ > 0) S = R+

χ

(non-scaled)

21−k/2xk−1e−x2/2

Γ
(
k
2

)
(k > 0) S = R+

χ2 1

2
ν
2Γ
(
ν
2

)x ν
2
−1e−

x
2

(ν > 0) S = R+

2Most literature on exponential families defines A(η) as − ln c(θ).
3B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx = Γ(a)Γ(b)

Γ(a+b) .
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Exponential λe−λx

(λ > 0) S = R+

Gamma
1

θkΓ (k)
xk−1e−

x
θ

(k > 0, θ > 0) S = R+

Gaussian

(univariate)

1√
2πσ2

e−
1
2(

x−µ
σ )

2

(µ, σ2 > 0) S = R

Gaussian

(multivariate)

1√
(2π)n|Σ|

e−
1
2
(x−µ)TΣ−1(x−µ)

(µ ∈ Rn, Σ ∈ Rn×n ≻ 0) S = Rn

Half-Normal

√
2

πσ2
e−

1
2(

x
σ )

2

(σ2 > 0) S = R+

Gumbel
1

β
exp−

(
x− µ

β
+ e−

x−µ
β

)
(µ†, β > 0) S = R

Pareto amax−(1+m)

(m† > 0, a > 0) S = (m,∞)

Maxwell Boltzmann
2x2

√
πσ6

e−
1
2(

x
σ )

2

(σ > 0) S = R+

Rayleigh
x

σ2
e−

1
2(

x
σ )

2

(σ2 > 0) S = R+

Laplace
1

2b
e−

|x−µ|
b

(µ†, b2 > 0) S = R
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Log-Normal
1

x
√
2πσ2

e−
1
2(

ln x−µ
σ )

2

(µ > 0, σ2 > 0) S = R

3.2 Rényi Cross-Entropies for Distributions from the Same Exponential

Family

Lemma 4. Let f1 and f2 be pdfs in the same exponential family with common support

S and with natural parameters η1 and η2, respectively. Define fh as being in the same

family but with natural parameter ηh = η1+(α−1)η2.
4 Then the Rényi cross-entropy

between f1 and f2 is given by

hα (f1; f2) =
A (η1)− A (ηh) + lnEh

1− α
− A (η2) , (3.3)

α ̸= 1, where Eh = Efh [b(X)α−1] =
∫
b(x)α−1fh(x) dx.

Proof. For x ∈ S, we have

f1 (x) f2 (x)
α−1

= b (x) exp
(
η1 · T (x) + A (η1)

)(
b (x) exp

(
η2 · T (x) + A (η2)

))α−1

= b (x)α exp ((η1 + (α− 1)η2)) · T (x) exp (A (η1) + (α− 1)A (η2))

= b (x)α exp (ηh · T (x) + A (ηh)) exp (A (η1) + (α− 1)A (η2)− A (ηh))

= b (x)α−1 fh (x) exp (A (η1) + (α− 1)A (η2)− A (ηh)) .

4We assume that ηh is in the natural parameter space.
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Thus,

∫
S
f1 (x) f2 (x)

α−1 dx

= exp (A (η1) + (α− 1)A (η2)− A (ηh))

∫
S
b (x)α−1 fh (x) dx

= exp (A (η1) + (α− 1)A (η2)− A (ηh))Eh,

and therefore,

hα (f1; f2) =
A (η1)− A (ηh) + lnEh

1− α
− A (η2) .

Corollary. The Natural Rényi differential cross-entropy between f1 and f2 is given

by

h̃α (f1; f2) =
A (ηα)− A (αη1) + lnEα

1− α
− A (η2) , (3.4)

α ̸= 1, where ηα = αη1 + (1− α)η2,
5 and

Eα = Efα1

[
b(X)α−1

]
=

∫
b(x)α−1fα1(x) dx

where fα1 refers to a distribution in the exponential family of interest with natural

parameter αη1.

Proof. When η2 = η1, (3.3) reduces to

hα(f1) =
αA (η1)− A (αη1) + lnEα

1− α
.

5We assume that ηα and αη1 are in the natural parameter space.
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By adding the result with the formula for the Rényi divergence found in [7],

Dα(f1∥f2) =
A (ηα)− αA (η1)

1− α
− A (η2)

one obtains (3.4).

Remark. The Natural Rényi differential cross-entropy can also be found by summing

the Rényi differential entropy found in [17] with the Rényi divergence found in [7].

3.3 Tables of Rényi and Natural Rényi Differential Cross-Entropies

Applying (3.3) to the distributions in Table 3.1 yields their Rényi Cross-Entropy, and

these are listed in Table 3.2. The derivations are detailed in Appendix A. In this

table, the subscript i is used to denote that a parameter belongs to pdf fi, i = 1, 2.

Table 3.2: Rényi Differential Cross-Entropies

Name hα(f1; f2)

Beta lnB(a2, b2) +
1

α− 1
ln

B(ah, bh)

B(a1, b1)

ah := a1 + (α− 1)(a2 − 1), ah > 0

bh := b1 + (α− 1)(b2 − 1), bh > 0

χ

(scaled)

1

2

(
k2 lnσ

2
2σ

2
h − ln 2σ2

h

)
+ lnΓ

(
k2
2

)
+

1

α− 1

(
ln Γ

(
kh
2

)
− ln Γ

(
k1
2

)
− k1

2
lnσ2

1σ
2
h

)
σ2
h := 1

σ2
1
+ α−1

σ2
2
, σ2

h > 0

kh := k1 + (α− 1)(k2 − 1), kh > 0
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χ

(non-scaled)

1

2
(k2 lnα− ln 2α) + ln Γ

(
k2
2

)
+

1

α− 1

(
ln Γ

(
kh
2

)
− ln Γ

(
k1
2

)
− k1

2
lnα

)
kh := k1 + (α− 1)(k2 − 1), kh > 0

χ2 1

1− α

(ν1
2
ln (α)− ln Γ

(ν1
2

)
+ lnΓ

(νh
2

))
+
2− ν2

2
ln (α) + ln 2Γ

(ν2
2

)
νh := ν1 + (α− 1)(ν2 − 2), νh > 0

Exponential
1

1− α
ln

λ1

λh

− lnλ2

λh := λ1 + (α− 1)λ2, λh > 0

Gamma ln Γ(k2) + k2 ln θ2 +
1

1− α

(
ln

Γ(kh)

Γ(k1)
− kh ln θh − k1 ln θ1

)
θh := θ1+(a−1)θ2

(α−1)θ1θ1
, θh > 0

kh := k1 + (α− 1)k2, kh > 0

Gaussian

(univariate)

1

2

(
ln(2πσ2

2) +
1

1− α
ln

(
σ2
2

(σ2)h

)
+

(µ1 − µ2)
2

(σ2)h

)
(σ2)h := σ2

2 + (α− 1)σ2
1, (σ2)h > 0

Gaussian

(Multivariate)

1

2− 2α

(
− ln |A||Σ1|+ (1− α) ln (2π)n |Σ2| − d

)
A := Σ−1

1 + (α− 1)Σ−1
2 , A ≻ 0

d := µT
1Σ

−1
1 µ1 + (α− 1)µT

2Σ
−1
2 µ2

−(µT
1Σ

−1
1 + (α− 1)µT

2Σ
−1
2 )A−1(Σ−1

1 µ1 + (α− 1)Σ−1
2 µ2)

Gumbel

(β1 = β2 = β)

1

1− α

(
ln

Γ(2− α)

β
− µ1

β
− α ln ηh

)
+

µ2

β

ηh := e−µ1/β + (α− 1)e−µ2/β, ηh > 0
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Half-Normal
1

2

(
ln(

πσ2
2

2
) +

1

1− α
ln

(
σ2
2

(σ2)h

))
(σ2)h := σ2

2 + (α− 1)σ2
1, (σ2)h > 0

Laplace

(µ1 = µ2 = 0)
ln(2b2) +

1

1− α
ln

(
b2
2bh

)
bh := b2 + (1− α)b1, bh > 0

Log-normal
1

2

(
ln(2πσ2

2) +
1

1− α
ln

(
σ2
2

(σ2)h

)
+
(µ1 − µ2)

2 + µ1σ
2
2 + (α− 1)σ2

1(µ2 + 2σ2
2)

(σ2)h

)
(σ2)h := σ2

2 + (α− 1)σ2
1, (σ2)h > 0

Maxwell

Boltzmann

1

2

(
ln 2π + 3 lnσ2

2

)
+ lnσ2

h +
1

1− α

(
ln

Γ(2α)

Γ(α)
− 3

2
lnσ2

1σ
2
h

)
σ2
h := σ−2

1 + (α− 1)σ−2
2 , σ2

h > 0

Pareto

(m1 = m2 = m)
− lnm− lnλ2 +

1

1− α
ln

λ1

λh

λh := λ1 + (α− 1) (λ2 + 1), λh > 0

Rayleigh
lnσ2

1 − α lnσ2
h + lnΓ(1−α

2
)

1− α
+ ln 2σ2

2

σ2
h := σ−2

1 + (α− 1)σ−2
2 , σ2

h > 0

Similarly, applying (3.4) to the aforementioned distributions yields their Natural

Rényi Cross-Entropy, summarised in Table 3.3.6

6The same notation regarding the subscripts of the parameters seen in Table 3.2 is used here.
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Table 3.3: Natural Rényi Differential Cross-Entropies

Name h̃α(f1; f2)

Beta lnB(a2, b2) +
1

α− 1
ln

B(aα, bα)

B (α (a1 − 1) + 1, α (b1 − 1) + 1)

aα := αa1 + (1− α)a2, aα > 0

bα := αb1 + (1− α)b2, bα > 0

χ

(scaled)

1

2

(
− ln

2σ2
1

α
+ k2 lnσ

2
2σ

2
α

)
+ lnΓ

(
k2
2

)

+
1

1− α

(
αk1 ln

σ2
ασ

2
1

α

2
− ln Γ(

kα
2
) + ln Γ

(
α(k1 − 1) + 1

2

))
σ2
α := α

σ2
1
+ 1−α

σ2
2
, σ2

α > 0

kα := αk1 + (1− α)k2, kα > 0

χ

(non-scaled)

− ln 2α
2

+ lnΓ(k2
2
)

+
1

1− α

(
− ln Γ(

kα
2
)− αk1 lnα

2
+ ln Γ(

α(k1 − 1) + 1

2
)

)
kα := αk1 + (1− α)k2, kα > 0

χ2 1

1− α

(
− ln Γ

(να
2

)
+ α ln Γ

(ν1
2

))
+ lnΓ

(ν2
2

)
να := αν1 + (1− α)k, να > 0

Exponential
1

1− α
ln

λ1

αλα

− lnλ2

λα := αλ1 + (1− α)λ2, λα > 0

Gamma ln Γ(k2) + k2 ln θ2

+
1

1− α

(
ln

Γ(k1)

Γ(kα)
− kα ln θα − α2k1 ln θ1

)
θα := αθ−1

1 + (1− α)θ−1
2 , kα := αk1 + (1− α)k2, θα > 0
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Gaussian

(Univariate)

1

2

(
ln(2πσ2

2) +
(µ1 − µ2)

2

(σ2)α
+

1

1− α
ln

(
ασ2

2

(σ2)α

))
(σ2)α := ασ2

2 + (1− α)σ2
1, (σ2)α > 0

Gaussian

(Multivariate)

1

2− 2α
(− ln |α|+ ln |A||Σ1|+ d) +

1

2
ln

(2π)n|Σ1|2

|Σ2|

A := αΣ−1
1 + (1− α)Σ−1

2 , A ≻ 0

d := (µ1 − µ2)
TΣ1AΣ2(µ1 − µ2)

Gumbel

(β1 = β2 = β)

µ2 + αµ1

β
+

1

1− α

(
ln

Γ(2− α)ηα
αβ

+
µ1

β

)
ηα := αe−µ1/β + (1− α)e−µ2/β, ηα > 0

Half-Normal
1

2

(
ln(

πσ2
2

2
) +

1

1− α
ln

(
ασ2

2

(σ2)α

))
(σ2)α := ασ2

2 + (1− α)σ2
1 , (σ2)α > 0

Laplace

(µ1 = µ2 = 0)

ln bα + lnαb1
1− α

+ ln 2b2

bα :=
α

b1
+

1− α

b2
, bα > 0

Log-Normal
1

2

(
1− α

α
σ2
1 + ln(2πσ2

2) +
(µ1 − µ2)

2

(σ2)α
+

1

1− α
ln

(
ασ2

2

(σ2)α

))
+ µ1

(σ2)α := ασ2
2 + (1− α)σ2

1, (σ2)α > 0

Maxwell Boltzmann
− ln 2 + 3 lnσ2

2

2
+ ln

α

σ2
1

+
1

1− α

(
3

2
ln

σασ
2
1

α
− α ln

√
π

2
+ ln Γ

(
α +

1

2

))
σ2
α := α

σ2
1
+ 1−α

σ2
2
, σ2

α > 0
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Pareto

(m1 = m2 = m)

1

1− α

(
lnλα − ln (1− α(λ1 − 1))

)
− lnλ2m

λα := αλ1 + (1− α)λ2, λα > 0

Rayleigh
lnσ2

1(σ
2)α + lnα + lnΓ(1−α

2
)

1− α
+ ln 2σ2

1

(σ2)α := ασ−2
1 + 1

2
ln

2σ4
1σ

4
2

α
, (σ2)α > 0

Remark. While Tables 3.2 and 3.3 focused exclusively on continuous distributions,

it should be noted that (3.3) and (3.4) also hold for discrete exponential family dis-

tributions. In this case, we note that

Efh

[
b(X)α−1

]
=
∑
x∈S

b(x)α−1fh(x)

and

Efα1

[
b(X)α−1

]
=
∑
x∈S

b(x)α−1fα1(x).
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Chapter 4

Rényi Cross-Entropy Rate for Sources with

Memory

4.1 Rényi Differential Cross-Entropy Rate for Stationary Gaussian Pro-

cesses

In this section, we consider the Rényi differential cross-entropy rate, limn→∞
1
n
Hα(p; q),

between two stationary zero-mean Gaussian processes, {Xj}∞j=1 and {Yj}∞j=1, respec-

tively. That is to say, given n ∈ Z+, Xn := (X1, X2, ..., Xn) and Y n := (Y1, Y2, ..., Yn)

are multivariate Gaussian random vectors with mean 0 and invertible covariance ma-

trices ΣXn and ΣY n , respectively. These covariance matrices are obtained via the

inverse Fourier transforms of the power spectral densities associated with {Xj} and

{Yj}, denoted by f̃(λ) and g̃(λ) respectively: the element in the rth row and cth

column of ΣXn is ([9])

1

2π

∫ 2π

0

f̃(λ)e−i2π(r−c) dλ. (4.1)

One will note that this formula for the covariance matrix depends entirely on the

difference between indices r and c, due to the stationarity of the Gaussian processes.
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As a result of this, the covariance matrices of {Xj} and {Yj} are Toeplitz. One can

also remark that Bn := ΣY n + (α− 1)ΣXn will likewise be Toeplitz.

Lemma 5. Let f̃(λ), g̃(λ) and h̃(λ) be the power spectral densities of {Xj}, {Yj}

and the zero-mean Gaussian process with covariance matrix Bn, respectively. For the

range of α such that Bn is positive-definite, the Rényi differential cross-entropy rate

between {Xj} and {Yj}, limn→∞
1
n
hα(X

n;Y n), is given by

lim
n→∞

1

n
hα(X

n;Y n) =
ln 2π

2
+

1

4π(1− α)

∫ 2π

0

[
(2− α) ln g̃(λ)− ln h̃(λ)

]
dλ.

Remark. Note that h̃(λ) = g̃(λ) + (α− 1)f̃(λ).

Proof. As shown in Table 3.2, the Rényi cross-entropy between two zero-mean mul-

tivariate Gaussian random variables is given by

ln |ΣXn||A|
2(α− 1)

+
1

2
ln |ΣY n|+ n

2
ln 2π. (4.2)

Noting that A = Σ−1
XnBnΣ−1

Y n , we rewrite (4.2) and normalise by n as:

1

n

(
ln |ΣXn||Σ−1

XnBnΣ−1
Y n|

2(α− 1)
+

1

2
ln |ΣY n|+ n

2
ln 2π

)
=

ln 2π

2
+

1

2n

(
ln |ΣXn||Σ−1

Xn||Bn||Σ−1
Y n|

(α− 1)
+ ln |ΣY n|

)
=

ln 2π

2
+

1

2n

(
ln |Bn| − ln |ΣY n|

(α− 1)
+ ln |ΣYn|

)
=

ln 2π

2
+

1

2n(1− α)
((2− α) ln |ΣY n| − ln |Bn|) .

It was proven in [8, Lemma 4.4] that for the sequence of n × n Hermitian Toeplitz

matrices {Tn} with spectral density t(λ) such that ln t(λ) is Riemann integrable, one
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has

lim
n→∞

1

n
ln |Tn| =

1

2π

∫ 2π

0

ln t(λ) dλ.

Therefore,

lim
n→∞

1

n
hα(X

n;Y n) =
ln 2π

2
+

1

4π(1− α)

∫ 2π

0

[
(2− α) ln g̃(λ)− ln h̃(λ)

]
dλ,

where h̃(λ) is the spectral density associated with the sequence of matrices generated

by Bn.

The above Rényi differential cross-entropy rate, alongside with the Shannon and

Natural Rényi differential cross-entropy rates,1 are summarised in Table 4.1. Here,

j̃(λ) = αf̃(λ) + (1− α)g̃(λ).

4.2 Rényi Cross-Entropy Rate for Markov Sources

Markov sources are sources that exhibit the Markov property; the value of the source

at the next time unit is dependent solely on its value at the present. In more formal

terms, for a Markov source {Xn}∞n=1 with alphabet S, we have

P (Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1) = P (Xn = xn|Xn−1 = xn−1)

1These latter two measures are calculated via manipulating the Shannon and Rényi Divergence
rates between two stationary zero-mean Gaussian processes as detailed in [7].
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Table 4.1: Differential Cross-Entropy Rates for Stationary Zero-Mean Gaussian
Sources

Information

Measure
Rate Constraint

Shannon

Differential

Cross-Entropy

1

2
ln 2π +

1

4π

∫ 2π

0

[
ln g̃(λ) +

f̃(λ)

g̃(λ)

]
dλ g̃(λ) > 0

Natural Rényi

Differential

Cross-Entropy

1

2
ln 4π2α

1
α−1 +

1

4π(1− α)

∫ 2π

0

ln
j̃(λ)

g̃(λ)α
dλ

j̃(λ)

g̃(λ)
> 0

Rényi

Differential

Cross-Entropy

ln 2π

2
+

1

4π(1− α)

∫ 2π

0

[
(2− α) ln g̃(λ)− ln h̃(λ)

]
dλ

g̃(λ)

h̃(λ)
> 0

for all x1, x2...xn ∈ S. The Markov source {Xn} may be time-invariant:

P (Xn = i|Xn−1 = j) = P (Xn+k = i|Xn+k−1 = j)

for all i, j ∈ S, k ≥ 2 and n ≥ 1. In this case, the Markov source may be charac-

terised by an |S| × |S| matrix P , where the element in the ith row and jth column

equals P (Xn = xi|Xn−1 = xj), xi, xj ∈ S. In practice, many information sources are

modelled as Markov chains.

Consider two time-invariant Markov sources {Xj}∞j=1 and {Yj}∞j=1 with common

finite alphabet S and with transition kernels P (·|·) and Q(·|·), respectively. Then for
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any vector in = (i1, . . . , in) ∈ Sn, its n-dimensional joint distributions are given by

p(n)(in) = P (in|in−1)P (in−1|in−2)...P (i2|i1)p(i1)

and

q(n)(in) = Q(in|in−1)Q(in−1|in−2)...Q(i2|i1)q(i1),

respectively, with arbitrary initial distributions, p(i1) and q(i1), i1 ∈ S. For simplicity,

we assume that p(i), q(i), Q(j|i) > 0 for all i, j ∈ S. Define the Rényi cross-entropy

rate between {Xj} and {Yj} as

lim
n→∞

1

n
Hα(X

n;Y n) = lim
n→∞

1

n

1

1− α
ln

(∑
in∈Sn

p(n)(in)q(n)(in)α−1

)
.

Note that by defining the matrix R using the formula

Rij = P (j|i)Q(j|i)α−1

and the row vector s as having components si = p(i)q(i)α−1, the Rényi cross-entropy

rate can be written as

lim
n→∞

1

n

1

1− α
ln sRn−11, (4.3)

where 1 is a column vector whose dimension is the cardinality of the alphabet S and

with all its entries equal to 1.

A result derived by [12] for the Rényi divergence between Markov sources can thus

be used to find the Rényi cross-entropy rate for Markov sources.
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Lemma 6. Define P , Q, s and R as above. If R is irreducible, then

lim
n→∞

1

n
Hα(X

n;Y n) =
lnλ

1− α
, (4.4)

where λ is the largest positive eigenvalue of R.

Proof. Since the non-negative matrix R is irreducible, by the Frobenius theorem (e.g.,

cf. [15, 6]), it has a largest positive eigenvalue λ with associated positive eigenvector

b. Let bm and bM be the minimum and maximum elements, respectively, of b. Then

due to the non-negativity of s,

λn−1s · b = sRn−1b ≤ sRn−11bM ,

where · denotes the Euclidean inner product. Similarly, λn−1s · b ≥ sRn−11bm. As a

result,

1

n
ln

λn−1s · b
bM

≤ 1

n
ln sRn−11 ≤ 1

n
ln

λn−1s · b
bm

.

Note that for all n, s·b
bM

is a constant. Thus

lim
n→∞

1

n
ln

λn−1s · b
bM

= lim
n→∞

n− 1

n
lnλ+ lim

n→∞

1

n
ln

s · b
bM

= lnλ.

Similarly, we have limn→∞
1
n
ln λn−1s·b

bm
= lnλ. Hence,

lim
n→∞

1

n
Hα(X

n;Y n) = lim
n→∞

1

n
ln

λn−1s · b
(1− α)bm

=
lnλ

1− α
. (4.5)

Another technique can be borrowed from [12] to generalize Lemma 6 to the case



4.2. RÉNYI CROSS-ENTROPY RATE FOR MARKOV SOURCES 28

where R is reducible. First R is rewritten in the canonical form detailed in Propo-

sition 1 of [12]. Let λk be the largest positive eigenvalue of each self-communicating

sub-matrix of R, and let λ̃ be the maximum of these λk’s. For each inessential class Ci,

let λj be the largest positive eigenvalue of the sub-matrix of each class Cj that is reach-

able from Ci, and let λ† be the maximum of these λj’s. Define λ(R) = max{λ̃, λ†}.

Then (4.4) holds.

The Rényi cross-entropy rate, alongside the Shannon and Natural Rényi cross-

entropy rates, is summarised in Table 4.2. For simplicity, we assume that the initial

distribution vectors, p and q, of both Markov chains also have positive entries (p > 0

and q > 0).2 Moreover, πT
p denotes the stationary probability row vector associated

with the first Markov chain and 1 is an m-dimensional column vector where each

element equals one. Furthermore, ⊙ denotes element-wise multiplication (i.e., the

Hadamard product operation) and ˙ln is the element-wise natural logarithm.

Table 4.2: Cross-Entropy Rates for Time-Invariant Markov Sources

Information Measure Rate

Shannon

Cross-Entropy
−πT

p

(
P ⊙ ˙lnQ

)
1

Natural Rényi

Cross-Entropy

1

α− 1
ln

λ(Pα ⊙Q1−α)

λ(Pα)

Rényi

Cross-Entropy

1

1− α
lnλ(P ⊙Qα−1)

2This condition can be relaxed via the approach used to prove [12, Theorem 1].
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Chapter 5

Conclusion

In this thesis, a gap in the literature on information measures was filled by the deriva-

tion of properties of the Rényi and Natural Rényi cross-entropies. Having been given

the equations for the Rényi and Natural Rényi cross-entropies, we chose to explore

how these formulae would evaluate when applied to commonly used distributions. We

were able to derive general expressions for the Rényi and Natural Rényi differential

cross-entropies for an exponential family. We used these to derive closed-form formu-

lae for commonly used exponential families. In addition, we built upon the work of

[7] and [17] to derive cross-entropy rates for stochastic processes with memory: Gaus-

sian sources and Markov sources. Further work upon this topic includes investigating

cross-entropy measures based on the f -divergences [1, 3, 4, 11].
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Appendix A

Derivations of Rényi Differential and Natural

Rényi Differential Cross-Entropies

A.1 Univariate Gaussian

A.1.1 Rényi Differential Cross-Entropy

For x ∈ R, we have

f1(x)f2(x)
α−1 =

1

σ1

√
2π

(
1

σ2

√
2π

)α−1 exp(
−(x− µ1)

2

2σ2
1

+
−(x− µ2)

2

2σ2
2

(α− 1))

=
σ2

(σ2

√
2π)ασ1

exp(
−x2 + 2xµ1 − µ2

1

2σ2
1

+
−x2(1− α) + 2xµ2(α− 1)− µ2

2(α− 1)

2σ2
2

).

Define a =
1

2σ2
1

+
α− 1

2σ2
2

, b =
µ1

σ2
1

+
(α− 1)µ2

σ2
2

, c =
−µ2

1

2σ2
1

− (α− 1)µ2
2

2σ2
2

.

Note that a will be positive as long as α ≥ 1, since σ1, σ2 > 0.
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Therefore,

∫
R

f1(x)f2(x)
α−1dx =

σ2

(σ2

√
2π)ασ1

√
2πσ2

1σ
2
2

σ2
2 + σ2

1(α− 1)

× exp

((µ1

σ2
1
+ (α−1)µ2

σ2
2

)2

4( 1
2σ2

1
+ α−1

2σ2
2
)

− µ2
1

2σ2
1

− (α− 1)µ2
2

2σ2
2

)

=
σ2

(σ2

√
2π)α−1

√
1

σ2
2 + σ2

1(α− 1)

× exp

(
1

2σ2
1σ

2
2

((µ1σ
2
2 + (α− 1)µ2σ

2
1)

2

σ2
2 + (α− 1)σ2

1

− µ2
1σ

2
2 − (α− 1)µ2

2σ
2
1

))
.

Thus,

(1− α)hα(f1; f2) = ln σ2 − (α− 1) lnσ2

√
2π − ln (σ2

2 + σ2
1 (α− 1))

2

+
1

2σ2
1σ

2
2

(
(µ1σ

2
2 + (α− 1)µ2σ

2
1)

2

σ2
2 + (α− 1)σ2

1

− µ2
1σ

2
2 − (α− 1)µ2

2σ
2
1

)

= lnσ2 + (1− α) lnσ2

√
2π − ln (σ2

2 + σ2
1 (α− 1))

2

+
1

2σ2
1σ

2
2

(
2µ1σ

2
2 (α− 1)µ2σ

2
1 − (α− 1)σ2

1σ
2
2 (µ

2
2 + µ2

1)

σ2
2 + (α− 1)σ2

1

)
.

Hence,

hα(f1; f2) =
1

1− α

(
lnσ2 −

ln (σ2
2 + σ2

1 (α− 1))

2

)
+ lnσ2

√
2π

+
(µ1 − µ2)

2

2σ2
2 + 2 (α− 1)σ2

1

= − ln (σ2
2 + σ2

1 (α− 1))

2− 2α
+ lnσ2

√
2π +

lnσ2

1− α
+

(µ1 − µ2)
2

2σ2
2 + 2 (α− 1)σ2

1

.
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A.1.2 Natural Rényi Differential Cross-Entropy

We have

hα(f1) =
1

1− α
(lnσ1 +

ln 2π

2
− lnα

2
− α lnσ1 − α

ln 2π

2
)

= lnσ1 +
ln 2π

2
− lnα

2− 2α

and

Dα(f1∥f2) = ln
σ2

σ1

+
ln

σ2
2

σ2
α

2α− 2
+

α(µ1 − µ2)
2

2σ2
α

where σ2
α = ασ2

1 + (1− α)σ2
2. Therefore,

h̃α(f1; f2) = ln σ2 +
ln 2π

2
− lnα

2− 2α
+

ln
σ2
2

σ2
α

2α− 2
+

α(µ1 − µ2)
2

2σ2
α

.

A.2 Multivariate Gaussian

A.2.1 Rényi Differential Cross-Entropy

The following depends heavily on material in [7], specifically the derivation of the

Rényi divergence. For x ∈ Rn,

f1(x)f2(x)
α−1 = ((2π)n |Σ1|)

−1
2 ((2π)n |Σ2|)

1−α
2

× exp
(
−.5

(
(x− µ1)

T Σ−1
1 (x− µ1) + (α− 1) (x− µ2)

T Σ−1
2 (x− µ2)

))
By being careful to note where there is an α that appears due to the fact that f1 is

raised to the power of α, we can rewrite the term in the exponent (ignoring the -0.5



A.2. MULTIVARIATE GAUSSIAN 33

term for the moment, though taking care to remember to add it in later) as

xT
(
Σ−1

1 + (α− 1)Σ−1
2

)
x− xT

(
Σ−1

1 µ1 + (α− 1)Σ−1
2 µ2

)
−
(
µ1Σ

−1
1 + (α− 1)µT

2Σ
−1
2

)
x+ µT

1Σ
−1
1 µ1 + (α− 1)µT

2Σ
−1
2 µ2

= xTAx− 2xT b+ c,

where

A = Σ−1
1 + (α− 1)Σ−1

2 ,

b = Σ−1
1 µ1 + (α− 1)Σ−1

2 µ2,

and

c = µT
1Σ

−1
1 µ1 + (α− 1)µT

2Σ
−1
2 µ2.

Note that if A is symmetric and positive-definite we can define ν and d in the same

way [7] does, i.e., ν = A−1b and d = c− bTν.

This allows us to rewrite f1(x)f2(x)
α−1 as

((2π)n |Σ1|)
−1
2 ((2π)n |Σ2|)

1−α
2 e

−d
2

× ((2π)n |Σ1|)
−1
2 ((2π)n |Σ2|)

1−α
2 e

−d
2 exp

(
−0.5 (x− ν)T A (x− ν)

)
=(|A||Σ1|)

−1
2 ((2π)n |Σ2|)

1−α
2 e

−d
2

(
|A|−1 (2π)n

)−1
2 exp

(
−0.5 (x− ν)T A (x− ν)

)
=(|A||Σ1|)

−1
2 ((2π)n |Σ2|)

1−α
2 e

−d
2 f (x)),

where f (x) is the pdf of a multivariate Gaussian with mean ν and covariance

matrix A−1. As the integral of f(x) over R will be 1, and none of the other terms
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depend on x, we conclude that

∫
Rn

f1(x)f2(x)
α−1dx = (|A||Σ1|)

−1
2 ((2π)n |Σ2|)

1−α
2 e

−d
2 .

Hence,

hα (f1; f2) =
1

1− α

(
− ln |A||Σ1|

2
+

(1− α) ln (2π)n |Σ2|
2

− d

2

)
=

1

2− 2α
(− ln |A||Σ1|+ (1− α) ln (2π)n |Σ2| − d) .

A.2.2 Natural Rényi Differential Cross-Entropy

Let f2 = f1 in the above equation, i.e., Σ1 = Σ2 := Σ, and µ1 = µ2 := µ. Thus,

A = Σ−1 + (α− 1)Σ−1 = αΣ−1, b = Σ−1µ+ (α− 1)Σ−1µ = αΣ−1µ, and

c = µTΣ−1µ+ (α− 1)µTΣ−1 = αµTΣ−1µ.

Additionally,

d = αµTΣ−1µ−
(
αΣ−1µ

)T (
αΣ−1

)−1
αΣ−1µ = c− c = 0.

Hence,

h̃α (f1) =
1

2− 2α

(
− ln |αΣ−1||Σ|+ (1− α) ln (2π)n |Σ| − 0

)
=

1

2− 2α
(− ln |α|+ (1− α) ln (2π)n |Σ|) ,

and thus

h̃α (f1; f2) =
1

2− 2α

(
− ln |α|+ (1− α) ln (2π)n |Σ1|+ (1− α) ln

|Σ1|
|Σ2|

+ ln |A||Σ1|+ d

)
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=
1

2− 2α
(− ln |α|+ ln |A||Σ1|+ d) +

1

2
ln

(2π)n|Σ1|2

|Σ2|
.

A.3 Exponential distribution

A.3.1 Rényi Differential Cross-Entropy

For x ∈ R+, we have

f1(x)f2(x)
1−α = λ1λ

α−1
2 e−λ1xe−λ2x(α−1) = λ1λ

α−1
2 e−(λ1+λ2(α−1))x.

Thus, ∫ ∞

0

f1(x)f2(x)
1−αdx =

λ1λ
α−1
2

(λ1 + λ2(α− 1))

and

hα(f1; f2) =
lnλ1 − ln(λ1 + λ2(α− 1))

1− α
− lnλ2.

A.3.2 Natural Rényi Differential Cross-Entropy

As shown in [17] , the Rényi differential entropy of an exponential distribution, f1,

is given by

hα(f1) = − ln(αλ1)−
α

1− α
ln(α) =

(α− 1)(lnα + lnλ1)− α lnα

1− α

=
(α− 1)(lnα + lnλ1)− α lnα

1− α

=
− lnα

1− α
− lnλ1.

Similarily, as shown in [7],

Dα(f1∥f2) = ln
λ1

λ2

+
1

1− α
ln

λ1

λα

.
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Thus,

h̃α(f1; f2) =
− lnα

1− α
− lnλ1 + ln

λ1

λ2

+
1

1− α
ln

λ1

λα

= − lnλ2 +
1

1− α
ln

λ1

αλα

.

A.4 Beta Distribution

Rényi Differential Cross-Entropy

For x ∈ S,

f1(x)f2(x)
α−1 =

xa1−1(1− x)b1−1

B(a1, b1)

(
xa2−1(1− x)b2−1

B(a2, b2)

)α−1

=
B(a2, b2)

B(a1, b1)

xah−1(1− x)bh−1

B(a2, b2)α
,

where

ah = a1 + (a2 − 1)(α− 1)

and

bh = b1 + (b2 − 1)(α− 1) =
B(a2, b2)

B(a1, b1)

B(ah, bh)

B(a2, b2)α
xah−1(1− x)bh−1

B(ah, bh)
.

Therefore,

∫
R

f1(x)f2(x)
α−1dx =

B(a2, b2)

B(a1, b1)

B(ah, bh)

B(a2, b2)α

∫ 1

0

xah−1(1− x)bh−1

B(ah, bh)
dx

=
B(a2, b2)

B(a1, b1)

B(ah, bh)

B(a2, b2)α
.
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Hence,

hα(f1; f2) = lnB(a2, b2) +
1

1− α
ln

B(ah, bh)

B(a1, b1)
.

Natural Rényi Differential Cross-Entropy

By summing the expressions for hα(f1) and Dα(f1∥f2) found in [17] and [7] respec-

tively, we obtain

h̃α (f1; f2) =
1

1− α
ln

B (α (a1 − 1) + 1, α (b1 − 1) + 1)

B (a1, b1)
α

+ ln
B (a2, b2)

B (a1, b1)
+

1

1− α
ln

B (a1, b1)

B (aα, bα)

=
1

1− α
ln

B (α (a1 − 1) + 1, α (b1 − 1) + 1)

B (aα, bα)

+ ln
B (a2, b2)

B (a1, b1)
+

1

1− α
ln

B (a1, b1)

B (a1, b1)
α

=
1

1− α
ln

B (α (a1 − 1) + 1, α (b1 − 1) + 1)

B (aα, bα)
+ lnB (a2, b2)

where aα = αa1 + (1− α) a2 and bα = αb1 + (1− α) b2.

A.5 Gamma

For a Gamma (k, θ) distribution,

η[1] = k − 1,

η[2] = −θ−1,

and

A (η) = (η[1] + 1) ln (−η[2])− ln Γ (η[1] + 1)

= k ln
(
θ−1
)
− ln Γ (k) .
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A.5.1 Rényi Differential Cross-Entropy

We have

hα (f1; f2) =
k1 ln

(
θ−1
1

)
− ln Γ (k1)− kh ln (θ

−1∗) + ln Γ (kh)

1− α
− k2 ln

(
θ−1
2

)
+ lnΓ (k2)

=
−k1 ln (θ1)− ln Γ (k1)− kh ln (θ

−1∗) + ln Γ (kh)

1− α
+ k2 ln (θ2) + ln Γ (k2)

where θ−1∗ = θ−1
1 + (α− 1) θ−1

2 and kh = k1 + (α− 1) (k2 − 1).

A.5.2 Natural Rényi Differential Cross-Entropy

We have

h̃α (f1; f2) =
kα ln (θ

−1
α )− ln Γ (kα)− α2k1 ln

(
θ−1
1

)
+ lnΓ (αk1)

1− α
− k2 ln

(
θ−1
2

)
+ lnΓ (k2)

=
−kα ln (θ

−1
α )− ln Γ (kα) + α2k1 ln (θ1) + ln Γ (k1)

1− α
+ k2 ln (θ2) + ln Γ (k2)

where θ−1
α = αθ−1

1 + (1− α) θ−1
2 and kα = αk1 + (1− α) k2.

A.5.3 Chi-Squared Distribution

The chi-squared distribution is a special form of the Gamma distribution, in that

χ2 (ν) ∼ Γ (ν/2, 2).

Rényi Differential Cross-Entropy

We have

hα (f1; f2) =
−ν1

2
ln (2)− ln Γ

(
ν1
2

)
+ (ν1

2
+ (α−1)(ν2−2)

2
) ln (2α) + ln Γ

(
νh
2

)
1− α
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+
ν2
2
ln (2) + ln Γ

(ν2
2

)
=

ν1
2
ln (α)− ln Γ

(
ν1
2

)
+ lnΓ

(
νh
2

)
1− α

− ν2 − 2

2
ln (2α) +

ν2
2
ln (2) + ln Γ

(ν2
2

)
=

ν1
2
ln (α)− ln Γ

(
ν1
2

)
+ lnΓ

(
νh
2

)
1− α

+
2− ν2

2
ln (α) + ln 2Γ

(ν2
2

)

where νh = ν1 + (α− 1) (ν2 − 2).

Natural Rényi Differential Cross-Entropy

We have

h̃α (f1; f2) =
− ln Γ

(
να
2

)
+ α ln Γ

(
ν1
2

)
1− α

) + ln Γ
(ν2
2

)
.

A.6 Pareto, Constant Minimum

A.6.1 Rényi Differential Cross-Entropy

For the Pareto distribution:

η = −λ− 1,

and

A (η) = ln (−1− η)− (1 + η) lnm.

Hence,

hα (f1; f2) =
ln (−1− η1)− (1 + η1) lnm− ln (−1− ηh) + (1 + ηh) lnm

1− α

− ln (−1− η2) + (1 + η2) lnm
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=
1

1− α

(
lnλ1 + λ1 lnm− ln (−1− λ2 + λ1 + α (λ2 + 1))

+ (1 + λ2 − λ1 − α (λ2 + 1)) lnm

)
− lnλ2 − λ2 lnm

=
lnλ1 − lnλh

1− α
− lnmλ2,

where λh = λ1 + (α− 1) (λ2 + 1).

A.6.2 Natural Rényi Differential Cross-Entropy

Define λα = αλ1 + (1− α)λ2. Then,

h̃α (f1; f2) =
ln (−1− ηα)− (1 + ηα) lnm− ln (−1− αη1) + (1 + αη1) lnm

1− α

− ln (−1− η2) + (1 + η2) lnm

=
ln (λα)− (λα) lnm− ln (1− α (λ1 − 1))− (1− α (λ1 − 1)) lnm

1− α

− ln (λ2)− λ2 lnm

=
ln (λα)− ln (1− α (λ1 − 1))

1− α
− ln (λ2)− lnm.

A.7 Laplace, Constant Mean

Here,

η = −1

b
,

and

A (η) = ln
−η

2
.
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A.7.1 Rényi Differential Cross-Entropy

We have

hα (f1; f2) =
ln −η1

2
− ln −ηh

2

1− α
− ln

−η2
2

=
− ln 2b1 − ln bh + ln b1 + ln b2

1− α
+ ln 2b2

=
− ln 2− ln bh + ln b2

1− α
+ ln 2b2

where bh = b2 + (1− α)b1.

A.7.2 Natural Rényi Differential Cross-Entropy

We have

h̃α (f1; f2) =
ln −ηα

2
− ln −αη1

2

1− α
− ln

−η2
2

=
ln bα + lnαb1

1− α
+ ln 2b2

where bα = α
b1
+ 1−α

b2
.

A.8 Gumbel, Fixed Scale Parameter

Here, η = e−µ/β and A(η) = ln η. Moreover, b(x) = β−1e−x/β.

A.8.1 Rényi Cross-Entropy

Eh = β−1Efh(e
−x/β).
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One can therefore use the Moment-Generating Function of fh to derive Eh:

Eh = β−1Γ

(
1− β(α− 1)

β

)
e−β ln ηh(α−1)/β

= β−1Γ(2− α)η1−α
h .

Therefore, we have

hα(f1; f2) =
ln η1 − ln ηh + ln β−1Γ(2− α)η1−α

h

1− α
− ln η2

=
−µ1/β − α ln ηh + ln β−1Γ(2− α)

1− α
+ µ2/β,

where ηh = e−µ1/β + (α− 1)e−µ2/β.

A.8.2 Natural Rényi Cross-Entropy

We have

Eα = β−1Efα(e
−x/β)

= β−1Γ(1− β(α− 1)

β
)eαµ1(α−1)/β.

Therefore,

h̃α(f1; f2) =
ln ηα − lnαη1 + ln β−1Γ(2− α)eαµ1(α−1)/β

1− α
− ln η2

=
ln Γ(2−α)ηα

αβ
+ µ1

β

1− α
+

µ2 + αµ1

β
.



A.9. RAYLEIGH 43

A.9 Rayleigh

Here, b(x) = x, η = −1
(2σ2)

, and A(η) ln−2η. Thus, Eh = Efh(x
α−1).

A.9.1 Rényi Differential Cross-Entropy

Using the formula for the raw moments of the Rayleigh distribution, we obtain that

Eh = (−ηh)
1−αΓ(1 + α−1

2
). Therefore,

hα (f1; f2) =
ln−2η1 − ln−2ηh + ln(−ηh)

1−αΓ(1 + α−1
2
)

1− α
− ln−2η2

=
− lnσ2

1 − ln( 1
σ2
1
+ α−1

σ2
2
) + ln Γ(1−α

2
)

1− α
+ lnσ2

2 + ln ηh

=
lnσ2

1 − lnσ2
h + lnΓ(1−α

2
)

1− α
+ ln 2σ2

2 + lnσ2
h

=
lnσ2

1 − α lnσ2
h + lnΓ(1−α

2
)

1− α
+ ln 2σ2

2,

where σ2
h = σ−2

1 + (α− 1)σ−2
2 .

A.9.2 Natural Rényi Differential Cross-Entropy

Here,

Eα = σ1−α
1

(
2

α

) 1−α
2

Γ

(
1− α

2

)
.

Hence,

h̃α (f1; f2) =
ln−2ηα − ln−2αη1 + lnσ1−α

1 ( 2
α
)
1−α
2 Γ(1−α

2
)

1− α
− ln−2η2

=
lnσ2

1σα − lnα + lnΓ(1−α
2
)

1− α
+

1

2
ln

2σ4
1σ

4
2

α
.
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A.10 Half-Normal

The Half-Normal distribution’s pdf is similar to that of the normal distribution, albeit

with a zero mean and b(x) multiplied by 2. This means we can use what we found

above, set µ1 = µ2 = 0, and add 0.5 ln 2π:

hα(f1; f2) = − ln (σ2
2 + σ2

1 (α− 1))

2− 2α
+ lnσ2

√
2π − lnσ2

1− α

+
(0− 0)2

2σ2
2 + 2 (α− 1)σ2

1

+ 0.5 ln 2π

= − ln (σ2
2 + σ2

1 (α− 1))

2− 2α
+ lnσ2 −

lnσ2

1− α
+ ln 2π

= − ln (σ2
2 + σ2

1 (α− 1)) + α lnσ2
2

2− 2α
+ ln 2π.

A.11 Chi Distribution

Here η =
[ −1
2σ2 , k − 1

]
, and A(η) = (η[2]+1) ln−2η[1]−(η[2]−1) ln 2

2
− ln Γ(η[2]+1

2
).

A.11.1 Rényi Differential Cross-Entropy

We have

hα (f1; f2) =
1

1− α

(
(η1[2] + 1) ln−2η1[1]− (η1[2]− 1) ln 2

2
− ln Γ

(
η1[2] + 1

2

)
+

(ηh[2]− 1) ln 2− (ηh[2] + 1) ln−2ηh[1]

2
+ ln Γ

(
ηh[2] + 1

2

))
+

(η2[2]− 1) ln 2− (η2[2] + 1) ln−2η2[1]

2
+ ln Γ

(
η2[2] + 1

2

)
=

1

1− α

(
−k1 lnσ

2
1 − (k1 − 2) ln 2

2
− ln Γ

(
k1
2

)
+

(k1 + (α− 1)k2 − α− 1) ln 2− (k1 + (α− 1)(k2 − 1)) lnσ2
h

2

+ ln Γ

(
k1 + (α− 1)(k2 − 1)

2

))
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+
(k2 − 2) ln 2 + k2 lnσ

2
2

2
+ ln Γ

(
k2
2

)
=

1

1− α

−k1 lnσ
2
1σ

2
h

2
− ln Γ

(
k1
2

)
+ lnΓ

(
k1 + (α− 1)(k2 − 1)

2

)
− ln 2σ2

h + k2 lnσ
2
2σ

2
h

2
+ ln Γ

(
k2
2

)

where σ2
h = 1

σ2
1
+ α−1

σ2
2
.

A.11.2 Natural Rényi Differential Cross-Entropy

We have

h̃α (f1; f2) =

kα lnσα−(α(k1−1)+1) ln α

σ2
1

2
− ln Γ(kα

2
) + ln Γ

(
α(k1−1)+1

2

)
1− α

+
− ln 2 + k2 lnσ

2
2

2
+ ln Γ

(
k2
2

)

where σα = α
σ2
1
+ 1−α

σ2
2

and kα = αk1 + (1− α)k2.

A.11.3 Non-scaled case

In the non-scaled case, σ2
1 = σ2

2 = 1, and thus σ2
h = α. Therefore,

hα (f1; f2) =
−k1 lnα

2
− ln Γ

(
k1
2

)
+ lnΓ(k1+(α−1)(k2−1)

2
)

1− α

+
− ln 2 + (k2 − 1) lnα

2
+ ln Γ

(
k2
2

)
.

Furthermore,

h̃α (f1; f2) =
− ln Γ(kα

2
)− αk1 lnα

2
+ lnΓ(α(k1−1)+1

2
)

1− α
+

− ln 2α

2
+ ln Γ

(
k2
2

)
.
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A.11.4 Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution is a special case of the chi distribution where

k1 = k2 = 3. Therefore,

hα (f1; f2) =

−3 lnσ2
1σ

2
h

2
− ln Γ(3

2
) + ln Γ

(
3+(α−1)(3−1)

2

)
1− α

+
− ln 2 + 3 lnσ2

2σ
2
h − lnσ2

h

2
+ ln Γ

(
3

2

)
=

−3 lnσ2
1σ

2
h

2
− α(ln

√
π − ln 2) + ln Γ(α + 1

2
)

1− α

+
− ln 2 + 3 lnσ2

2σ
2
h − lnσ2

h

2

=

−3 lnσ2
1σ

2
h

2
− α(ln

√
π − ln 2) + ln 21−2α

√
πΓ(2α)− ln Γ(α)

1− α

+
− ln 2 + 3 lnσ2

2σ
2
h − lnσ2

h

2

=

−3 lnσ2
1σ

2
h

2
+ lnΓ(2α)− ln Γ(α)

1− α
+

ln 2π + 3 lnσ2
2σ

2
h − lnσ2

h

2
.

Furthermore,

h̃α (f1; f2) =
1

1− α

(
3 lnσα − (2α + 1) ln α

σ2
1

2
− α ln

√
π

2
+ ln Γ

(
α +

1

2

))

+
3 lnσ2

2 − ln 2

2
.

A.12 Uniform

Let aM = max (a1, a2), and bm = min (b1, b2). Then,∫
R

f1(x)f2(x)
α−1dx =

∫ bm

aM

(b2 − a2)
1−α

b1 − a1
dx

=
(bm − aM) (b2 − a2)

1−α

b1 − a1
.
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Therefore,
hα (f1; f2) =

1

1− α
ln

(bm − aM)

b1 − a1
+ ln (b2 − a2) .

A.13 Log-Normal Distribution

The only difference between the pdf of a Normal distribution and a log-normal dis-

tribution is b(x) and T(x). Since T(x) is not a factor of the cross-entropy the only

difference between the cross-entropy of the normal distribution and the log-normal

distribution will be the Eh term.

A.13.1 Rényi Differential Cross-Entropy

The nth moment of X ∼ Log − normal(µ, σ2) is exp(nµ+ 1
2
n2σ2). Thus,

1

1− α
lnEh =

1

1− α
ln

1
√
2π

α−1 + Efh(X
1−α)

=
µ1σ

2
2 + (α− 1)µ2σ

2
1 + (2α− 2)σ2

1σ
2
2

2(σ2)h
+

1

2
ln 2π,

where σ2
h = σ2

2 + (α− 1)σ2
1 As we know lnEh

1−α
= 1

2
ln 2π for the Gaussian distribution,

hα (f1; f2) =
1

2

(
ln(2πσ2

2) +
1

1− α
ln

(
σ2
2

(σ2)h

)
+

(µ1 − µ2)
2

(σ2)h

)
+

µ1σ
2
2 + (α− 1)µ2σ

2
1 + (2α− 2)σ2

1σ
2
2

2(σ2)h

A.13.2 Natural Rényi Differential Cross-Entropy

1

1− α
lnEh = µ1 +

1− α

2α
σ2
1 +

1

2
ln 2π

Thus,

h̃α (f1; f2) =
1

2

(
ln(2πσ2

2) +
(µ1 − µ2)

2

(σ2)α
+

1

1− α
ln

(
ασ2

2

(σ2)α

))
+ µ1 +

1− α

2α
σ2
1
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and Rényi generative adversarial networks. Neural Computation, 33(9):2473–

2510, Aug 2021.

[3] I. Csiszar. Eine Informationstheoretische Ungleichung und ihre Anwendung auf

den Bewis der Ergodizitat on Markhoffschen Ketten. Publications of the Math-

ematical Institute of the Hungarian Academy of Sciences, Series A, 8, 01 1963.

[4] I. Csiszár. Information-type measures of difference of probability distributions

and indirect observations. Studia Sci. Math. Hungarica, 2:299–318, 1967.

[5] I. Csiszár. Generalized cutoff rates and Rényi’s information measures. IEEE
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entropy. Entropy, 21:1–21, 2019.
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