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Abstract

This thesis introduces a unifying parameterized generator loss function for generative

adversarial networks (GANs). We establish an equilibrium theorem for our result-

ing GAN system under a canonical discriminator in terms of the so-called Jensen-

f -divergence, a natural generalization of the Jensen-Shannon divergence to the f -

divergence. We also show that our result recovers as special cases several GANs from

the literature, including the original GAN, least square GAN (LSGAN), α-GAN and

others. Finally, we systematically conduct experiments on three image datasets for

different manifestations of our GAN system to illustrate their performance and sta-

bility.
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Chapter 1

Introduction

Generative adversarial networks (GANs) were devised by Ian Goodfellow et al. in

2014 [11] as a novel unsupervised learning technique to generate synthetic data. A

GAN consists of two components. The generator neural network generates data from

stochastic noise. The discriminator neural network assigns the generated data and

real data a score between 0 and 1, with a score closer to 1 corresponding to a higher

belief that the data is real as opposed to synthetic. The adversarial component arises

in the GAN’s minimax game, which aims to maximize the discriminator’s loss, dimin-

ishing its performance capabilities and allowing for the discriminator to confuse real

data with synthetic data. Deep Convolutional GAN (DCGAN) [26] was subsequently

introduced to use convolutional layers to extract higher-dimensional feature represen-

tations that are prevalent in more complex image datasets. DCGAN improves on the

baseline GAN’s ability to capture an underlying data distribution.

The GAN’s competing objectives render it notoriously difficult to train. Partic-

ularly, GANs tend to exhibit mode collapse, which occurs when the generator finds

a single output that can fool the discriminator, thus only producing that one out-

put. As a result, there has been an increased focus on designing GANs that improve
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stability and encourage sample diversity. InfoGAN [6] modifies the generator’s input

to include a latent code in addition to the noise component. The generated images

are fed into a recognition network, which guesses the value of the latent code the

generator used for the image. The objective function includes a mutual information

term to maximize the mutual information between generated data and latent codes,

thus encouraging diverse samples. Least Squares GAN (LSGAN) uses a squared-error

based loss function to penalize outputs that deviate from their correct labels, creating

more gradients for the generator and improving stability [25]. LSGAN has also been

shown to generate better quality data than the original GAN. LSGAN was generalized

through LkGAN [5], replacing the squared error loss for the generator’s loss function

with the absolute error distortion measure of order k ≥ 1. Finally, RényiGAN [5] uses

Rényi cross-entropy-based loss functions of order α > 0, α ̸= 1. It has been shown

that RényiGANs exhibit stable performance for α ≥ 2 [5].

GANs have also been studied in the context of f -divergences [23]. The original

GAN problem reduces to minimizing the Jensen-Shannon divergence (JSD), which is

itself an f -divergence. In [31], f -GAN is introduced using a class of loss functions

parameterized by a lower semicontinuous function f , with the resulting problem re-

ducing to minimizing an f -divergence. The f -GAN’s loss function requires comput-

ing the Fenchel conjugate of a function f , resulting in a more involved computation.

α-GAN [20,21] uses a class-probability estimation (CPE)-based loss function param-

eterized by α > 0. The resulting minimax game reduces to the minimization of the

Arimoto divergence, itself an f -divergence. Both f -GAN and α-GAN can interpolate

between various well-known GANs, including VanillaGAN, HellingerGAN, LSGAN

and total variation GAN (TVGAN). The α-GAN work was expanded on in [41] with



1.1. CONTRIBUTIONS 3

the (αD, αG)-GAN, which utilizes a distinct α parameter for the generator and dis-

criminator, thus posing a dual-objective optimization problem.

1.1 Contributions

The motivation of this thesis is to utilize a GAN system with a network of generators

whose outputs are simultaneously judged by a single (centralized) discriminator. The

network of generators is unified under a family of parameterized loss functions, from

which each generator selects a loss function suited to its own problem. The novel

contributions to this thesis are as follows. We introduce the Jensen-f -divergence, a

generalization of the Jensen-Shannon divergence applied to f -divergences. We expand

on the α-GAN work of [20,21,41], introducing a theoretical framework classifying the

set of α-parameterized CPE-based loss functions. We then introduce Lα-GAN, which

uses a generator loss function from this class, and a discriminator loss function that

achieves the same maximum as the original GAN of [11] (also known as Vanilla-

GAN). We prove that the minimax game played by the two loss functions results in

the minimization of a Jensen-fα-divergence, with the generating function fα directly

computed from the generator’s loss function. We provide examples of existing GANs

that are recovered by Lα-GAN and determine their equilibrium points. Finally, we

conduct experiments on various realizations of Lα-GAN on three image datasets.1

1.2 Organization of Thesis

This thesis is organized as follows. We conduct a review of information measures,

machine learning, and neural networks in Chapter 2. Notably, we introduce the

1Our simulation codes can be found at https://github.com/justin-veiner/MASc.

https://github.com/justin-veiner/MASc
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Jensen-f -divergence as a generalization of the Jensen-Shannon divergence. In Chap-

ter 3, we present VanillaGAN and RényiGAN and derive their solutions. We also

present InfoGAN, and reproduce the original work’s results on the MNIST dataset.

In Chapter 4, we present the theoretical basis for Lα-GAN. We provide examples of

existing GANs that are encapsulated under this framework, and conduct experiments

for different Lα-GAN manifestations. We provide a summary and avenues of further

research in Chapter 5.
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Chapter 2

Information Measures and Deep Learning

Fundamentals

2.1 Information Measures

We begin by defining the information measures that will be used throughout this

thesis. We follow the treatment in [1] unless otherwise stated. We also work in the

standard probability space (R,B(R), µ), where B(R) is the Borel σ-algenra on R and

µ is the Lebesgue measure. Finally, we use the short-form
∫
f dµ =

∫
f(x) dµ(x) for

any measurable function f .

2.1.1 Entropies

Entropy measures the amount of information gained in an experiment after observing

one of its outcomes. The definition was first devised by Claude Shannon in 1948 [38],

which we recall below.

Definition 1. Let R be a discrete set. The Shannon entropy of a discrete random
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variable X with probability mass function (pmf) PX and support R is given by

H(X) = EA∼PX
[− logPX(A)] = −

∑
a∈R

PX(a) logPX(a), (2.1)

assuming the sum exists.

Another notation for entropy H(X) is H(PX). The units used to measure entropy

depends on the base of the logarithm used in (2.1). The most commonly used units

are bits (base 2) and nats (base e). For an arbitrary D > 1, we measure entropy

in D-ary units. We can convert the units in (2.1) to D-ary units using the formula

HD(X) = H(X)
logD

. The Shannon entropy is nonnegative, and bounded above by log |R|

(when R is finite).

We now present the conditional Shannon entropy, which measures the entropy of a

random variable X given that we know the value of another random variable Y .

Definition 2. Let X and Y be two random variables with probability mass functions

PX and PY , respectively. Then the conditional Shannon entropy of X given Y

is denoted by H(X|Y ) and is given by

H(X|Y ) = E(A,B)∼PX,Y
[− logPX|Y (A|B)], (2.2)

where PX|Y (·|·) denotes the conditional pmf of X given Y .

It can be shown that conditioning on another random variable never increases

entropy, i.e.,, for random variables X and Y , we have that H(X|Y ) ≤ H(X). In-

tuitively this makes sense, as obtaining additional information about an experiment

will not increase the uncertainty of its outcome. We now present the chain rule for
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entropy, which states that the joint entropy of n random variables can be expressed

as a sum of conditional entropies.

Proposition 1. Let X = (X1, ..., Xn) be a tuple of n ≥ 2 random variables, i.e., a

random vector of size n. Then the Shannon entropy of X can be written as

H(X) = H(X1, ..., Xn) = H(X1) +
n∑

i=2

H(Xi|Xi−1), (2.3)

where Xi−1 = (X1, ..., Xi−1) is the tuple consisting of the first i− 1 random variables

of the collection.

Proof. We first prove that (2.3) holds, assuming that n = 2, and then generalize it

to an arbitrary collection of random variables; let X and Y be two random variables

with marginal pmfs PX and PY respectively, and joint pmf PX,Y . Then by (2.2) we

have that

H(Y |X) = E(A,B)∼PX,Y
[− logPY |X(B |A)]

= E(A,B)∼PX,Y

[
− log

PX,Y (A,B)

PX(A)

]
= E(A,B)∼PX,Y

[− logPX,Y (A,B)]− E(A,B)∼PX,Y
[− logPX(A)]

= H(X, Y )−H(X).

Rearranging this expression we get that

H(X, Y ) = H(X) +H(Y |X). (2.4)

This shows that the entropy chain rule holds for two random variables. We now
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obtain the chain rule in (2.3) by applying (2.4) recursively; for a collection of random

variables X1, ..., Xn, we have that

H(X1, ..., Xn) = H(X1, (X2, ..., Xn))

= H(X1) +H(X2, ..., Xn|X1)

= H(X1) + (H(X2|X1) +H(X3, ..., Xn|X2))

= H(X1) +H(X2|X1) +H(X3|X2) +H(X4, ..., Xn|X3)

= · · ·

= H(X1) +
n∑

i=2

H(Xi|Xi−1).

The entropy chain rule states that joint entropy can be written as the sum of

conditional entropies. Since conditioning never increases entropy, we have for X =

(X1, ..., Xn) that H(X) ≤
∑n

i=1 H(Xi), with equality if and only if (iff) X1, ..., Xn are

independent.

Definition 3. The differential Shannon entropy of a continuous random variable

X with probability density function (pdf) fX and support R ⊆ R is denoted by h(X)

and given by

h(X) = EA∼fX [− log fX(A)] = −
∫
R
fX log fX dµ, (2.5)

assuming the integral exists.

The conditional differential Shannon entropy formula is analagous to the discrete

setup in Defintion 2. The chain rule presented in Proposition 1 also applies in the
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continuous case. Unlike the discrete Shannon entropy, differential Shannon entropy

can be negative, which we demonstrate with an example.

Example 1. Let X be a uniform random variable on the interval [0, 0.5]. The pdf of

X is given by

fX(a) =


2, 0 ≤ a ≤ 0.5

0, otherwise.

Then the differential Shannon entropy (measured in bits) is

h(X) = −
∫
R
fX(x) log2 fX(x) dx

= −
∫ 0.5

0

2 log2 2 dx

= −1 bit.

Alfred Rényi expanded on Shannon’s definitions of entropy in 1961 as a way to

generalize the original definition while retaining the additivity property for indepen-

dent random variables from Shannon [34]. We now present the notions of Rényi’s

entropy.

Definition 4. Let α > 0 such that α ̸= 1, and let R be a discrete set. The Rényi

entropy of a discrete random variable X with probability mass function PX and

support R is given by

Hα(X) =
1

1− α
log

(∑
a∈R

PX(a)
α

)
. (2.6)
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Definition 5. Let α > 0 such that α ̸= 1. The Rényi differential entropy of a

continuous random variable X with pdf fX and support R ⊆ R is given by

hα(X) =
1

1− α
log

(∫
R
fα
X dµ

)
. (2.7)

It can be shown that the Rényi entropy approaches the Shannon entropy as α

goes to 1. We state this result, providing its proof for completeness.

Proposition 2. We have the following statements:

(i) For a discrete random variable X with pmf PX , we have that

lim
α→1

Hα(X) = H(X). (2.8)

(ii) For a continuous random variable Y with pdf fY , we have that

lim
α→1

hα(Y ) = h(Y ). (2.9)

Proof. Let X be a discrete random variable with support R and pmf PX . Then we

have that

lim
α→1

Hα(X) = lim
α→1

1

1− α
log

(∑
a∈R

PX(a)
α

)
(a)
= lim

α→1

∂
∂α

(
log
(∑

a∈R PX(a)
α
))

∂
∂α
(1− α)

= lim
α→1

∑
a∈R PX(a)α logPX(a)∑

a∈R PX(a)α

−1

= − lim
α→1

∑
a∈R PX(a)

α logPX(a)∑
a∈R PX(a)α
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(b)
= −

∑
a∈R

PX(a) logPX(a)

= H(X),

where L’Hôpital’s rule is applied in (a), and (b) holds since
∑

a∈R PX(a) = 1.

The proof of the differential entropy case is similar.

2.1.2 Cross-Entropies

Cross-entropy measures the difference between two probability distributions p and

q when conducting an experiment. We assume the true data distribution for the

experiment is p, and that q is some approximation of p. Cross-entropies are useful in

generative models, where we aim to measure the similarity between the real data with

distribution p, and the generated data with distribution q. We begin by presenting

the Shannon cross-entropy and its continuous analogue.

Definition 6. The Shannon cross-entropy between two pmfs p and q with com-

mon discrete support R is given by

H(p; q) = EA∼p[− log q(A)] = −
∑
a∈R

p(a) log q(a). (2.10)

It can easily be shown that H(p; q) = H(p) iff p = q almost everywhere (a.e.).

Definition 7. The differential Shannon cross-entropy between two pdfs p and

q with common support R ⊆ R is given by

h(p; q) = EA∼p[− log q(A)] = −
∫
R
p log q dµ. (2.11)
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We next present Rényi’s formulations of cross-entropy [34].

Definition 8. Let α > 0 such that α ̸= 1, and let R be a discrete set. The Rényi

cross-entropy between two pmfs p and q with common support R is given by

Hα(p; q) =
1

1− α
log

(∑
a∈R

p(a)qα−1(a)

)
. (2.12)

Definition 9. Let α > 0 such that α ̸= 1. The Rényi differential cross-entropy

of two pdfs p and q with common support R ⊆ R is given by

hα(p; q) =
1

1− α
log

(∫
R
pqα−1 dµ

)
. (2.13)

As is the case with entropies, it can be shown that the Rényi cross-entropy of

order α converges to the Shannon cross-entropy as α goes to 1. The Rényi cross-

entropy as well as the Rényi divergence (which will be defined in the next section)

were recently used in [13] within an information bottleneck framework for designing

fair classification algorithms.

We conclude by stating that the second argument of cross-entropy does not have

to be restricted to a distribution, but can be a non-negative function. When using a

functional argument, we use the notation H(· ; ·).

2.1.3 Divergences

Like cross-entropy, divergence is also a measure of similarity between two distributions

p and q. It also measures the inefficiency of conducting an experiment assuming the

data’s distribution is q when the true data distribution is actually p.
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Definition 10. Let R be a discrete set. The Kullback-Leibler divergence between

two pmfs p and q with common support R is given by

KL(p||q) = EA∼p

[
log

p(A)

q(A)

]
=
∑
a∈R

p(a) log
p(a)

q(a)
. (2.14)

Definition 11. Let p and q be two probability density functions with supports Sp and

Sq respectively, where Sp ⊆ Sq ⊆ R. The differential Kullback-Leibler diver-

gence between p and q is denoted by KL(p||q) and given by

KL(p||q) = EA∼p

[
log

p(A)

q(A)

]
=

∫
Sp

p log
p

q
dµ. (2.15)

We clearly have that KL(p||q) = 0 iff p = q (a.e.). We now present the Jensen-

Shannon divergence, which is the arithmetic average of two Kullback-Leiber diver-

gences, where each individual distribution is compared to the mixture of the two.

Definition 12. The Jensen-Shannon divergence between two distributions p and

q is denoted by JSD(p||q) and given by

JSD(p||q) = 1

2
KL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+

1

2
KL

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
. (2.16)

Definition 13. Let α > 0 such that α ̸= 1, and let R be a discrete set. The Rényi

divergence between two pmfs p and q with common support R is denoted by Dα(p||q)

and given by

Dα(p||q) =
1

α− 1
log

(∑
a∈R

pα(a)q1−α(a)

)
. (2.17)



2.1. INFORMATION MEASURES 14

Definition 14. Let α > 0 such that α ̸= 1. The differential Rényi divergence

between two pdfs p and q with common support R ⊆ R is denoted by Dα(p||q) and

given by

Dα(p||q) =
1

α− 1
log

(∫
R
pαq1−α dµ

)
. (2.18)

We next present the Jensen-Rényi divergence, which is the Rényi analogue of the

Jensen-Shannon divergence [5].

Definition 15. Let α > 0 such that α ̸= 1. The Jensen-Rényi divergence between

two distributions p and q with common support R ⊆ R is denoted by JRα(p||q) and

given by

JRα(p||q) =
1

2
Dα

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+

1

2
Dα

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
. (2.19)

Definition 16. [29] The Pearson χ2 divergence between two pdfs p and q with

common support R ⊆ R is denoted by χ2(p||q) and given by

χ2(p||q) =
∫
R

(q − p)2

p
dµ. (2.20)

Definition 17. [29] For a fixed k > 1, the Pearson-Vajda divergence of order

k between two pdfs p and q with common support R ⊆ R is denoted by |χ|k(p||q) and

given by

|χ|k(p||q) =
∫
R

|q − p|k

pk−1
dµ. (2.21)

It directly follows from the above definitions that the Pearson-Vajda divergence
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recovers the Pearson χ2 divergence when k = 2.

Definition 18. [2, 23, 32] Let α > 0 such that α ̸= 1. The Arimoto divergence

of order α between two pdfs p and q with common support R ⊆ R, is denoted by

Aα(p||q), and is given by

Aα(p||q) =
α

α− 1

(∫
R
(pα + qα)

1
α dµ− 2

1
α

)
. (2.22)

Definition 19. [15, 23] Let α > 0 such that α ̸= 1. The Hellinger divergence

of order α between two pdfs p and q with common support R ⊆ R is denoted by

Hα(p||q) and given by

Hα(p||q) =
1

α− 1

(∫
R
pαq1−α dµ− 1

)
. (2.23)

We next discuss f -divergences, a class of divergences that encompasses a large

number of defined divergences.

Definition 20. [23] Let f : [0,∞) → R be a continuous convex function such that

f(1) = 0. The f-divergence between two probability densities p and q with common

support R ⊆ R is denoted by Df (p||q), and given by

Df (p||q) = EA∼q

[
f

(
p(A)

q(A)

)]
=

∫
R
q f

(
p

q

)
dµ. (2.24)

We require that f(1) = 0 to satisfy the definiteness property of divergences, i.e.,

Df (p||q) = 0 iff p = q (a.e.).

Lemma 1. The Kullback-Leibler divergence and Pearson χ2 divergence are both f -

divergences.
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Proof. First, let p and q be two distributions with common support R. Next, define

f1 : [0,∞) → R as f1(x) = x log x, with the convention that 0 log 0 = 0. f is clearly

continuous on [0,∞). Furthermore, f ′′
1 (x) =

1
x
> 0 for every x ∈ [0,∞). Therefore,

f1 is also a convex function. We now compute the required expectation:

Eq

[
f1

(
p

q

)]
=

∫
R
q f1

(
p

q

)
dµ (2.25)

=

∫
R
q

(
p

q
log

p

q

)
dµ (2.26)

=

∫
R
p log

p

q
dµ (2.27)

= KL(p||q). (2.28)

Since f1 is a continuous convex function with f(1) = 0, and we have shown we can

write the KL divergence according to Definition 20, we have that KL(·||·) is an f -

divergence.

We now show that the Pearson χ2 divergence is an f -divergence. Define f2 : [0,∞)→

R as f2(x) = 1
x
− 2 + x =

(√
x− 1√

x

)2
. Note that f2 is continuous on [0,∞) (by

convention, we take f2(0) = +∞). Furthermore, we have that f ′′
2 (x) = 2

x3 > 0 for

every x ∈ [0,∞). Therefore, f2 is a convex function. Proceeding as we did before, we

have that

Eq

[
f2

(
p

q

)]
=

∫
R
qf

(
p

q

)
dµ (2.29)

=

∫
R
q

(
q

p
− 2 +

p

q

)
dµ (2.30)

=

∫
R

(
q2

p
− 2q + p

)
dµ (2.31)
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=

∫
R

p(q2/p− 2q + p)

p
dµ (2.32)

=

∫
R

q2 − 2pq + p2

p
dµ (2.33)

=

∫
R

(q − p)2

p
dµ (2.34)

= χ2(p||q). (2.35)

Since f2 is a continuous convex function with f2(1) = 0, and we have shown we

can write the KL divergence according to Definition 20, we have that χ2(·||·) is an

f -divergence.

We summarize more examples of f -divergences under various choices of their gen-

erating function f in Table 2.1. We will be invoking these divergence measures in

different parts of this thesis.

f -Divergence Symbol Formula f(u)

Kullback-Leibler [19] KL
∫
R p log

(
p
q

)
dµ u log(u)

Jensen-Shannon [28] JSD 1
2
KL

(
p
∣∣∣∣p+q

2

)
+ 1

2
KL

(
q
∣∣∣∣p+q

2

)
1
2

(
−(u+ 1) log

(
u+1
2

)
+ u log(u)

)
Pearson χ2 [29] χ2

∫
R

(q−p)2

p
dµ

(√
x− 1√

x

)2
Pearson-Vajda (k ≥ 1) [29] |χ|k

∫
R

|q−p|k
pk−1 dµ u1−k|1− u|k

Arimoto (α > 0, α ̸= 1) [32] [23] Aα
α

α−1

(∫
R(p

α + qα)
1
α dµ− 2

1
α

)
α

α−1

(
(1 + u)

1
α − (1 + u)− 2

1
α + 2

)
Hellinger (α > 0, α ̸= 1) [15,23] Hα

1
α−1

(∫
R pαq1−α dµ− 1

)
uα−1
α−1

Table 2.1: Examples of f -divergences.

Note that the Rényi divergence in Definition 14 is not an f -divergence; however, it can

be expressed as a transformation of the Hellinger divergence (presented in Definition

19), which itself is an f -divergence.

Lemma 2. The Rényi divergence is a transformation of the Hellinger divergence.

Proof. Let p and q be two probability distributions with common support R. We
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define the transformation T on the set of f -divergences as T (D) = 1
α−1

log(1 + (α −

1)D). Applying this transformation to the Hellinger divergence, we have that

T (Hα(p||q)) =
1

α− 1
log(1 + (α− 1)Hα(p||q)) (2.36)

=
1

α− 1
log

(
1 + (α− 1)

(
1

α− 1

(∫
R
pαq1−α dµ− 1

)))
(2.37)

=
1

α− 1
log

(∫
X
pαq1−α dµ

)
(2.38)

= Dα(p||q). (2.39)

Therefore, we have shown that the Rényi divergence is a transformation of the

Hellinger divergence, which itself is an f -divergence.

We now introduce a new measure, the Jensen-f -divergence, which is analagous to

the Jensen-Shannon and Jensen-Rényi divergences [39].

Definition 21. Let f : [0,∞) → R be a continuous convex function with f(1) =

0, and let Df (·||·) be its respective f -divergence. Then, the Jensen-f-divergence

between two probability distributions p and q with common support R ⊆ R is denoted

by JDf (p||q), and given by

JDf (p||q) =
1

2
Df

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+

1

2
Df

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
. (2.40)

Remark 3. Examining (2.40), we note that the Jensen-f -divergence between p and

q involves the f -divergences between either p or q and their mixture (p + q)/2. In

other words to determine JDf (p||q), we only need f
(

2p
p+q

)
and f

(
2q
p+q

)
when taking

the expectations in (2.24). Thus, it is sufficient to restrict the domain of the convex

function f to the interval [0, 2].
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The next result shows that the Jensen-Shannon divergence is a Jensen-f -divergence.

Lemma 3. Let p and q be two densities with common support R ⊆ R, and let

f : [0,∞)→ R be given by f(u) = u log u. Then we have that

JDf (p||q) = JSD(p||q). (2.41)

Proof. We first note that f is continuous on [0,∞) and that f(1) = 0. Furthermore,

we have that f ′′(u) = 1
u
, which is positive for u > 0. Therefore, f is also convex, and

is a suitable function to construct a Jensen-f -divergence. We then have that

JSD(p||q) = 1

2
KL

(
p

∣∣∣∣∣∣∣∣p+ q

2

)
+

1

2
KL

(
q

∣∣∣∣∣∣∣∣p+ q

2

)
=

1

2

∫
R
p log

(
2p

p+ q

)
dµ+

1

2

∫
R
q log

(
2q

p+ q

)
dµ

=
1

2

∫
R

p+ q

2

(
2p

p+ q
log

(
2p

p+ q

))
dµ

+
1

2

∫
R

p+ q

2

(
2q

p+ q
log

(
2q

p+ q

))
dµ

= JDf (p||q).

2.1.4 Mutual Informations

Mutual information is a measure of how much information two distributions share, in

turn quantifying the dependence between them. We first present the original Shan-

non mutual information, then present its generalizations. We assume herein discrete

random variables, but the definitions also apply to continuous random variables (with
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the usual modifications).

Definition 22. The Shannon mutual information between two random variables

X and Y with respective marginal distributions PX and PY and joint distribution PX,Y

is denoted by I(X;Y ) and given by

I(X;Y ) = KL(PX,Y ||PXPY ) = E(A,B)∼PX,Y

[
PX,Y (A,B)

PX(A)PY (B)

]
. (2.42)

From (2.42), we clearly have that I(X;Y ) = I(Y ;X) (i.e., the Shannon mutual

information is symmetric). Furthermore, if X and Y are independent random vari-

ables, then I(X;Y ) = 0, since PX,Y = PXPY , and KL(p||q) = 0 iff p = q (a.e.).

We now present an alternative formula for Shannon mutual information, expressed

in terms of Shannon entropies.

Proposition 4. Let X and Y be random variables with respective marginal distribu-

tions PX and PY and joint distribution PX,Y . Then we have that

I(X;Y ) = H(X)−H(X|Y ), (2.43)

where H(·) is the Shannon entropy and H(·|·) is the Shannon conditional entropy.

Proof. We have that

I(X;Y ) = E(A,B)∼PX,Y

[
log

PX,Y (A,B)

PX(A)PY (B)

]
(∗)
= E(A,B)∼PX,Y

[
log

PX|Y (A|B)

PX(A)

]
= E(A,B)∼PX,Y

[− logPX(A)] + E(A,B)∼PX,Y

[
logPX|Y (A|B)

]
= EA∼PX

[− logPX(A)] + E(A,B)∼PX,Y

[
logPX|Y (A|B)

]
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= H(X)−H(X|Y ),

where (∗) holds since PX|Y (a|b) = PX,Y (a,b)

PY (b)
.

From Proposition 4, we can derive two more identities:

(i) By symmetry of (2.42), we have that

I(X;Y ) = I(Y ;X) = H(Y )−H(Y |X).

(ii) Applying the chain rule for entropies to (2.43), we have that

I(X;Y ) = H(X)−H(X|Y )

= H(X)− (H(X, Y )−H(Y ))

= H(X) +H(Y )−H(X, Y ).

We now present three definitions of α-mutual information, which are formulated using

Rényi information measures [40].

Definition 23. Let α > 0 such that α ̸= 1. The Arimoto mutual information

between two random variables X and Y with respective supports RX and RY , marginal

distributions PX and PY and joint distribution PX,Y = PY |X PX is denoted by Iaα(X;Y )

and given by

Iaα(X;Y ) = Hα(X)−Ha
α(X|Y ) (2.44)
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where

Ha
α(X|Y ) =

α

1− α
log E||PY |X(·|X)||α (2.45)

is the Arimoto Conditional Rényi entropy, and ||x||α = (
∑

i x
α
i )

1
α is the α-

norm.

The Arimoto mutual information can also be expressed in closed form as

Iaα(X;Y ) =
α

1− α
E0

(
1

α
− 1, PXα

)
, (2.46)

where PXα and E0 are given by the following expressions:

PXα(a) = −α logPX(a)− (1− α)Hα(X), (2.47)

E0(ρ, PX) = − log

∑
b∈RY

(∑
a∈RX

PX(a)P
1

1+ρ

Y |X (b|a)

)1+ρ
 . (2.48)

Definition 24. [40] The Csiszár mutual information between two random

variables X and Y is given by the following optimization:

Icα(X;Y ) = min
QY

E[Dα(PY |X(·|X) ||QY ]. (2.49)

The minimization in (2.49) is over all possible distributions of Y . This optimiza-

tion is complicated to solve; so the Cziszár mutual information is difficult to compute

even in more trivial scenarios.
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We next present Sibson’s formulation of α-mutual information. Sibson wanted to

quantify the dissimilarity between a finite number of probability measures in order

to place a prior distribution on them.

Definition 25. The Sibson mutual information between two random variables

X and Y with respective marginal distributions PX and PY and joint distribution

PX,Y = PY |XPX is given by the following optimization:

Isα(X;Y ) = min
QY

Dα(PY |X ||QY |PX) (2.50)

Remark 5. All above information measures can be similarly defined for random vec-

tors with common support in Rd.

2.2 Machine Learning

Machine learning is a subfield of artificial intelligence that aims to learn trends in

datasets without human assistance [27]. In this section, we provide an overview of

dataset structures and training objectives often used in machine learning algorithms,

and briefly review supervised and unsupervised learning.

Definition 26. Let X ⊆ Rn and Y ⊆ Rm. A dataset, denoted by D is the set of

tuples

D = {(x,y)}Mi=1 (2.51)

where (xi,yi) ∈ X × Y for i = 1, ...,M . We call xi ∈ X a feature (or covariate),

and yi ∈ Y a response (or label).
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Definition 27. The training data, is the subset T ⊂ D of the dataset

T = {(xi1 ,yi1), (xi2 ,yi2), . . . , (xiN ,yiN )} (2.52)

where (i1, ..., iN) is an N-permutation of (1, ...,M) for N < M . Furthermore, we

denote S ⊂ D as the testing data, where

S = D \ T (2.53)

has size |S| = M −N .

The training data T is used as the reference for the neural network to learn. The

testing data S is used to evaluate the neural network’s performance after training.

A common partition of the dataset is to use 80% of the data for training and 20%

for testing [37]. A portion of the training data can also be set aside as the validation

data. The validation set is used to evaluate a model’s performance during training.

It is important to leave a part of the dataset for testing to observe how well the model

generalizes to data samples it was not trained on.

A loss function quantifies how well a model performs its designated task, by computing

some function of the label for a feature, and the label the model predicts for a feature

[12]. Ideally, the value of a loss function is high for a poor prediction, and low for a

good prediction.

Definition 28. A loss function is a function V : Y × Ŷ → R+

(y, ŷ) 7→ V (y, ŷ) (2.54)
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where y is a real label, and ŷ is a predicted label.

We can rewrite Definition 28 in terms of a statistical model fθ: if ŷ = fθ(x) is

the model’s prediction, we can redefine the loss function as V : X × Y → R:

(x,y) 7→ V (y, fθ(x)). (2.55)

This reformulation is useful for stating the mathematical problem behind a neural

network, which will be discussed later in this section.

One commonly-used loss function is the 0-1 loss. This loss function is ideal for

classification problems, where there are a finite number of classes. The loss function’s

value is zero for a correct prediction, and one for an incorrect prediction, mathemat-

ically stated as

V0,1(y, ŷ) =


0, y = ŷ

1, y ̸= ŷ.

(2.56)

If we have a batch of real and predicted labels {(y1, ŷ1), . . . , (yN , ŷN)}, then we can

obtain the model’s error rate on this batch by computing the average 0-1 loss value

amongst all pairs of labels:

% Error =
1

N

N∑
i=1

V0,1(yi, ŷi).

Example 2. Suppose we want to build a neural network that aims to classify emails

as legitimate or spam. After training the neural network, we feed a batch of 7 emails
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to the neural network. The network’s predictions are summarized in the following

table:

# Label Prediction V0,1(y, ŷ)

1 Legitimate Legitimate 0
2 Spam Spam 0
3 Legitimate Legitimate 0
4 Legitimate Spam 1
5 Legitimate Legitimate 0
6 Spam Spam 0
7 Spam Legitimate 1

Table 2.2: Summary of spam classification network

The error rate of this batch is

% Error =
1

7

7∑
i=1

V0,1(y, ŷ)

=
1

7
(0 + 0 + 0 + 1 + 0 + 0 + 1)

=
2

7
.

Another popular choice of loss function for binary classification problems is the

binary cross-entropy loss (BCE loss): if y ∈ {0, 1}N is a label vector, and ŷ ∈ [0, 1]N

is the vector of predicted labels, the BCE loss is given by

VBCE(y, ŷ) =
1

N

N∑
i=1

VBCE(yi, ŷi) =
1

N

N∑
i=1

(−yi log(ŷi)− (1− yi) log(1− ŷi)). (2.57)

Note that VBCE(yi, ŷi) = H(pi; qi) given in Definition 6, where R = {0, 1}, pi(0) =
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1− pi(1) = yi and qi(0) = 1− qi(1) = ŷi. For regression problems, we cannot use the

0-1 loss function, as we are now working in a continuous space, and cannot apply a

discrete metric to such a problem. One popular loss function applied to regression

problems is the mean squared error loss (MSE) [27], defined as

VMSE(y, ŷ) =
1

N
||y − ŷ||22, y, ŷ ∈ RN , (2.58)

where || · ||2 denotes the 2-norm. The MSE loss computes the squared difference be-

tween a real and predicted label, therefore rewarding a prediction close to the actual

value with a low loss value.

Often in generative models, the goal is to generate output resembling data in

a dataset by building a network that approximates the probability distribution of

the dataset. Therefore, we need a loss function that can compare two distributions.

One such loss function is the KL loss [27]: in this case, we assume that our real

data is normally distributed, i.e.,, y ∼ N (µ,Σ). Then, the neural network aims to

predict µ and Σ by making a prediction (µ̂, Σ̂), and then constructing a distribution

ŷ ∼ N (µ̂, Σ̂). We then compute the KL loss:

VKL(y, ŷ) = KL(fy||fŷ), (2.59)

where KL(·||·) is the Kullback-Leibler divergence. The closer the two distributions,

the lower the value of the loss.
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2.2.1 Supervised Learning

Supervised learning utilizes the dataset to answer specific questions given the data

[27]. An example of this might be predicting one’s future income given past census

data. The inputs to the model are called covariates (or features), and the model’s

output is called the response variable. Supervised learning requires labelled data;

without such data there is no way to evaluate the model’s accuracy. Supervised

learning problems can be divided into two subcategories: classification and regression.

In a classification problem, there is a finite number of values the response variable

can take. For example, when training a classification model on the MNIST dataset

(consisting of handwritten digits) [8], the model’s covariates are the 784 pixels of

each image. The model is then only able to predict the image being one of ten digits

between 0 and 9.

In contrast, a regression problem has a continuous response variable. For example,

we can build a model to predict a student’s final grade (a decimal number between

0 and 100) leveraging a dataset that includes past students’ grades and education

history. A supervised learning model uses a metric called a loss function to assess the

model’s prediction accuracy. We then use numerical methods to adjust the model’s

parameters based on the loss. We discuss these concepts in more detail in Section 2.3.

2.2.2 Unsupervised Learning

Unsupervised learning aims to uncover trends in the data without posing any specific

question about the data [30]. It is often used for exploratory purposes to observe if

anything of significance can be uncovered from the dataset. One common unsuper-

vised learning algorithm is clustering, which aims to separate the data into a given
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number of groups. If the clusters are distinct (i.e., have little overlap), then one

can build a supervised learning model with the data that can predict some response

variable with a high degree of accuracy (e.g. see Figure 2.1).

Figure 2.1: A clustering algorithm performed on a Gaussian dataset [7].
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Unsupervised learning algorithms can also be applied to generative modelling. For

instance, a generative adversarial network (GAN) aims to approximate the distribu-

tion of a real dataset to generate images that closely resemble the real data.

The choice of features is important for a model’s performance. We want meaning-

ful features that influence the outcome of the response variable. Redundant features

can result in overfitting. This occurs when the model fits the noise in the training

data. Consequently, the model fails to generalize to the testing data, and therefore

performs poorly with samples it was not trained on. In contrast, too few features

or lack of quality features can result in underfitting. This occurs when the lack

of quality features results in too simple of a model. This increases the difficulty of

training the model, and increases the probability of the model failing to generalize to

the testing data.

2.3 Deep Learning and Neural Networks

We introduce the building blocks of neural networks and discuss the training process

of a neural network. We follow the theory outlined in [12], [27] and [30].

Definition 29. [22] An activation function is a continuous function σ : X ⊆

Rn → Y ⊆ Rm.

When we have a non-constant bounded activation function and a neural network

with a sufficient number of hidden layers (to be defined next), a neural network can

approximate any continuous function [22]. Furthermore, if we drop the continuity con-

dition, a neural network can approximate any Lp function [22]. Common activation
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functions include the sigmoid activation S(x) = 1
1+e−x , tanh(x), the ReLU (Rectified

Linear Unit), and the LeakyReLU (Leaky Rectified Linear Unit) [42], respectively

defined as

ReLU(x) = x1{x≥0}, (2.60)

and

LeakyReLUα(x) = αx1{x≥0} (2.61)

respectively, where α ∈ R>0.

Definition 30. Let x ∈ X ⊆ Rn be an input (column) vector, w ∈ X be a weight

(column) vector, and b ∈ R be a bias. A neuron is a function f : X ×X ×R→ Y ⊆

Rm defined by

f(x,w, b) = σ(w⊤x+ b) (2.62)

where ⊤ denotes transposition and σ is an activation function.

A neural network organizes neurons into layers, with each layer connecting to the

next. The first layer is called the input layer, and the last layer is called the output

layer. The middle layers are referred to as hidden layers, as we are only able to

observe the output layer given the input to the input layer; see Figure 2.2.

We now discuss how the neurons from one layer feeds forward to the next layer.

We denote Ni ∈ Z>0 as the number of neurons in layer ℓ ∈ {1, 2, ..., k}.
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Figure 2.2: A neural network with three inputs, two outputs, and two hidden layers.

Definition 31. The weight matrix of layer i is a matrix w(i) ∈ RNi−1×Ni. We

denote b(i) ∈ RNi as the bias vector of layer i, where i ∈ {2, 3, ..., k}.

Note that layer 1 does not have an associated weight matrix or bias vector, as we

set the first layer as the input.

The entries of the weight matrix w(i) are w
(i)
j,k = w

(i)
j,k, which represents the weight of

the connection between neuron j in layer i − 1 to neuron k in layer i. The weights

and biases are the parameters we update when we train a neural network.

Definition 32. [12] Let X ⊆ RN1 be the input space, and Y ⊆ RNk be the output

space. A k-layer neural network is a function fθ : X → Y defined by

fθ(x) = σk(w
(k)σk−1(w

(k−1)(σk−2(w
(k−2)( . . . σ2(w

(2)x+ b(2)))+ (2.63)

b(k−2)) + b(k−1)) + b(k))) (2.64)
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where σi is the activation of layer i for i = 1, ..., k, applied identically to each input

component, i.e.,, σ(x) = (σi(x1), ..., σi(xNi
)). Furthermore,

θ = (w(2), ...,w(k),b(2), ...,b(k))

denotes the collection of weights and biases of all k layers, called the parameters

of the neural network. Furthermore, for a loss function V and a dataset D with

distribution PD, the neural network problem is

inf
θ∈Θ

E(x,y)∼PD
[V (y, fθ(x))]. (2.65)

The layers of neurons in (2.63) are referred to as fully connected layers. We can

rewrite Definition 32 recursively: we denote the activation of layer 1 by a(1) = x (the

input). From there, we can define subsequent activations recursively: for i ∈ {2, ..., k},

we have that

a(i) = σi−1(w
(i)a(i−1) + b(i)). (2.66)

We can write the argument of σ in vector form as follows:

z(i) =


x, i = 1

w(i)a(i−1) + b(i) i ∈ {2, ..., k}.
(2.67)

This recursion is also referred as forward propagation. After obtaining the neural

network’s output through forward propagation, we compute the value of the loss

function and compute the gradients of the loss function with respect to the weights
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and biases. We do this through backpropagation, which works as follows [36]:

(i) After receiving the neural network’s output for an input x, compute the gradi-

ents of the loss function at the output layer with respect to its activations.

(ii) Starting at the second-last layer, compute the gradients of the loss function

at each subsequent layer using the gradient computations from the successive

layers.

(iii) Use the computations from the previous step to compute the gradients of the

loss function with respect to each weight and bias.

We proceed by providing the equations for each step of backpropagation, following

the treatment in [30].

Proposition 6. (Step (i)) Let fθ be a k-layer neural network with loss function V .

Then the gradient of V at the output layer with respect to the layer’s inputs is given

by

∇z(k)V = ∇a(k)V ⊙ σ′(z(k)), (2.68)

where for vectors s = (s1, ..., sd)
⊤ and t = (t1, ..., td)

⊤ ∈ Rd, ⊙ is the Hadamard

product given by (s⊙ t)i = siti.

Proof. Assume that the output layer hasNk ∈ Z>0 neurons. Then for j ∈ {1, 2, ..., Nk},

we have that

∂V

∂z
(k)
j

=
∂V

∂a
(k)
j

∂a
(k)
j

∂z
(k)
j

(2.69)
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=
∂V

∂a
(k)
j

∂

∂z
(k)
j

σ(z
(k)
j ) (2.70)

=
∂V

∂a
(k)
j

σ′(z
(k)
j ). (2.71)

Putting this into vector form, we get that

∇z(k)V = ∇a(k)V ⊙ σ′(z(k)).

Proposition 7. (Step (ii)) Let fθ be a k-layer neural network with loss function V .

Then for ℓ ∈ {1, 2, ..., k − 1}, we have that

∇z(ℓ)V = ((w(ℓ+1))⊤∇z(ℓ+1)V )⊙ σ′(z(ℓ)). (2.72)

Proof. Let fθ be a k-layer neural network with loss function V . Let ℓ ∈ {2, ..., k− 1}

and assume that layer ℓ has Nℓ layers. Then for j ∈ {1, 2, ..., Nℓ} we have that

∂V

∂z
(ℓ)
j

=

Nℓ∑
k=1

∂V

∂z
(ℓ+1)
k

∂z
(ℓ+1)
k

∂z
(ℓ)
j

(2.73)

=

Nℓ∑
k=1

∂V

∂z
(ℓ+1)
k

∂

∂z
(ℓ)
j

(
Nℓ+1∑
i=1

w
(ℓ+1)
k,i σ(z

(ℓ)
i ) + b

(ℓ+1)
j

)
(2.74)

(∗)
=

Nℓ∑
k=1

∂V

∂z
(ℓ+1)
k

w
(ℓ+1)
k,j σ′(z

(ℓ)
j ), (2.75)

where (∗) holds since ∂

∂z
(ℓ)
j

(w
(ℓ+1)
k,i σ(z

(ℓ)
i ) + b

(ℓ+1)
i ) can only be non-zero for i = j.
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Putting this in vector form, we have that

∇z(ℓ)V = ((w(ℓ+1))⊤∇z(ℓ+1)V )⊙ σ′(z(ℓ)).

Now that we have the gradients of V with respect to the z(i), we can compute the

gradients of the V with respect to each weight and bias with the following proposition.

Proposition 8. (Step (iii)) Let fθ be a k-layer neural network with loss function

V . Let ℓ ∈ {2, ..., k − 1} and assume that layer ℓ has Nℓ layers. Then for j ∈

{1, 2, ..., Nℓ−1} and p ∈ {1, 2, ..., Nℓ} we have that

∂V

∂w
(ℓ)
j,p

= a(ℓ−1)
p

∂V

∂z
(ℓ)
j

, (2.76)

and

∂V

∂b
(ℓ)
j

=
∂V

∂z
(ℓ)
j

. (2.77)

Note that we already obtain the quantities ∂V

∂z
(ℓ)
j

from the previous step.

Proof. We begin by showing that (2.76) holds. We have that

∂V

∂w
(ℓ)
j,p

=
∂V

∂z
(ℓ)
j

∂z
(ℓ)
j

∂w
(ℓ)
j,p

(2.78)

=
∂V

∂z
(ℓ)
j

∂

∂w
(ℓ)
j,p

(
Nℓ∑
i=1

w
(ℓ)
j,i a

(ℓ−1)
j + b

(ℓ)
j

)
(2.79)

(∗)
=

∂V

∂z
(ℓ)
j

a(ℓ−1)
p (2.80)
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= a(ℓ−1)
p

∂V

∂z
(ℓ)
j

(2.81)

where (*) holds since the only non-zero term of the sum’s derivative is the pth term.

We now prove (2.77) in a similar fashion:

∂V

∂b
(ℓ)
j

=
∂V

∂z
(ℓ)
j

∂z
(ℓ)
j

∂b
(ℓ)
j

(2.82)

=
∂V

∂z
(ℓ)
j

∂

∂b
(ℓ)
j

(
Nℓ∑
i=1

w
(ℓ)
j,i a

(ℓ−1)
i + b

(ℓ)
j

)
(2.83)

=
∂V

∂z
(ℓ)
j

∂

∂b
(ℓ)
j

(b
(ℓ)
j ) (2.84)

=
∂V

∂z
(ℓ)
j

. (2.85)

2.3.1 Training a Neural Network

We aim to find the parameters θ∗ in (2.63) of the neural network that will minimize

the expected value of the loss function. We use numerical methods to find a local

minimum for (2.65). We discuss some gradient descent algorithms to obtain a critical

point of a function.

2.3.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) finds the parameters θ by updating them in the

opposite direction of the gradient of the loss function V with respect to θ [35]. If

the difference between successive updates of θ becomes arbitrarily small, it means we

have reached a critical point of our loss function. We initialize a learning rate η > 0,
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which determines the step size of the descent. Too large a learning rate can result in

the SGD algorithm skipping over a critical point entirely, while too small a learning

rate can result in a slower algorithm convergence or converging to a non-critical point.

The SGD algorithm is outlined below.

Algorithm 1 Overview of Neural Network training using SGD

Require Loss function V , Learning rate η > 0, Number of epochs ne, Training
data T = {(xi,yi)}ni=1

Initialize Parameters θ, Neural network fθ
for i = 1 to ne do

for j = 1 to n do
Feed xj through neural network fθ to retrieve fθ(xj)
Compute the loss V (yj, fθ(xj))
Compute the gradient ∇θV (yj, fθ(xj))
θ ← θ − η∇θV (yj, fθ(xj))

end for
end for
θ∗ ← θ
Return fθ∗

One significant shortcoming of the SGD algorithm is its large computational cost; we

update the weights and biases for each one of the n samples in the training set, and

therefore compute the gradient of the loss n times. Many applications of neural net-

works utilize very large training sets, and the resulting additional gradient computa-

tions increases overall computation time. To remedy this, the mini-batch stochas-

tic gradient descent was proposed. We divide our training data into batches of

equal size, and update the parameters for each batch. Note that a batch size of 1

reduces to SGD. The Mini-Batch SGD algorithm is outlined below.

The Adam optimization algorithm [17] was introduced as a way to improve the
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Algorithm 2 Overview of Neural Network training using MiniBatch-SGD.

Require Loss function V , Learning rate η > 0, Number of epochs ne, Training
data T = {(xi,yi)}ni=1, Batch size B ∈ {1, ..., n}
Initialize Parameters θ, Neural network fθ
for i = 1 to ne do

for j = 1 to
⌊
n
B

⌋
do

Sample a mini-batch (x,y) of size B from T , and yield a prediction fθ(x)
Compute the loss V (y, fθ(x))
Compute the gradient ∇θV (y, fθ(x))
θ ← θ − η∇θV (y, fθ(x))

end for
end for
θ∗ ← θ
Return fθ∗

SGD algorithm for higher-dimensional datasets. Unlike the SGD algorithm, which

uses a constant learning rate to update θ, the Adam optimizer derives the learning

rate for each timestep using the first and second moments of the objective function’s

gradients with exponential moving averages, which are controlled by hyperparameters

β1 and β2 ∈ [0, 1). We present the Adam optimization algorithm for a neural network

below.

The bias-corrected terms m̂t and v̂t are necessary to avoid the first and second moment

esimates mt and vt being biased towards zero in earlier iterations (since we initial-

ize m0 and v0 as zero vectors). The recommended hyperparameter initialization for

Algorithm 3 are α = 10−3, β1 = 0.9, β2 = 0.999, and ϵ = 10−8 [17].
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Algorithm 3 Overview of the Adam optimization algorithm.

Require Step size α > 0, exponential decay rates β1, β2 ∈ [0, 1), Stopping
parameter δ > 0, Objective function L(θ), initial parameters (weights/biases)
θ0 ∈ Rd

Initialize First and second moment vectors, m0 ← 0, v0 ← 0
Initialize Initial time step t← 0
while ||θt − θt−1|| > δ (i.e., θt has not converged) do

t← t+ 1
gt ← ∇θL(θt−1) (gradient of L with respect to θt−1)
mt ← β1mt−1 + (1− β1)gt (estimation of the mean of the gradient of L)
vt ← β2vt−1 + (1 − β2)gt ⊙ gt (estimation of the uncentered variance of the

gradient of L)
m̂t ← mt

1−βt
1
(bias correction of mt)

v̂t ← vt
1−βt

2
(bias correction of vt)

θt ← θt−1 − α m̂t√
v̂t+ϵ

end while
θ∗ ← θt

Return θ∗

2.3.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network mainly used

for data that can be structured as a grid. They are mainly used in computer vision

problems (image or video data), which can be visualized respectively as two- or three-

dimensional grids, but also applies to time series data, which can be thought of as a

one-dimensional grid of points. For image data, CNNs apply convolution operations

to images using matrices called kernels to extract key visual features from the images.

A CNN is trained in order to find the optimal kernels to minimize a given loss function.

We begin by defining the convolution operation, then present the components of the

convolutional layer that is the foundation for a CNN.
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Kernels and Convolutions

Definition 33. For m,n, k ∈ Z>0, an m × n × k image I = (I0, ..., Ik−1) is a

collection of k superimposed m×n matrices in [0, 1]m×n, where m and n is the length

and width of the image respectively (in pixels), and k is the number of channels. We

denote the pixel of image I at position (i, j) and channel p by Ip(i, j).

We usually work with images with one channel (k = 1, black and white images),

or three channels (k = 3, RGB images). For a fixed channel, a pixel value closer to

0 corresponds to a darker-coloured pixel, while a value closer to 1 corresponds to a

lighter-colored pixel. For an RGB image, the three colour channels (red, green, and

blue) are superimposed to create a colour.

Definition 34. [9] A kernel of size m×n×k, K = (K1, ...,Kk−1), is a collection

of k m×n matrices in Rm×n. We denote the entry of matrix p of K at position (i, j)

by Kp(i, j).

Kernels are applied to images using a convolution operation, which we present

next.

Definition 35. Let I be an m× n× k image and K be a kernel of size M ×N × k.

Then for a single channel p ∈ {0, ..., k − 1}, the convolution of I and K at

channel p is denoted by (I ∗K)p, and given by the matrix

[(I ∗K)p]i,j =
∑
a

∑
b

Ip(i− a, j − b)Kp(a, b) (2.86)

=
∑
a

∑
b

Ip(a, b)Kp(i− a, j − b), (2.87)

where the sums are over all values of a and b such that they are well-defined.
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The convolution in (2.86) is an operation between the image and the kernel ro-

tated 180◦ [9]. In practice, the convolution operation is often replaced by the cross-

correlation operation [12], which uses a non-rotated kernel, given by

[(I ∗K)p]i,j =
∑
a

∑
b

Ip(i+ a, j + b)Kp(a, b). (2.88)

If Kp is a symmetric matrix, then convolution and correlation are equivalent. Con-

volutions (and correlations) use the kernel to extract features from an image. These

features vary by the choice of kernel. For example, kernels can be used to detect

object edges, sharpen and blur an image. For a CNN, we aim to learn the kernels

that will extract the most useful features from an image for the network to make an

accurate prediction. The use of kernels in a CNN render them less computationally

expensive than a standard neural network: a regular neural network would give each

individual pixel its own weights and biases, while a kernel allows for its entries to

be used across many pixels, significantly reducing the number of parameters. This

notion is referred to as parameter sharing [12].

Padding

When convolving an image I with a kernelK at some channel p, we usually want every

entry of Ip to interact with the center of Kp, so that we do not lose any information

about the image around its edges [9]. To accomplish this, we need to apply padding

to the image. If I is an m × n × k image and K is an M × N × k kernel, then it is

sufficient to pad each channel matrix Ip of I with at least M−1
2

rows of and N−1
2

of

zeros around the edges of the matrix. This is referred to as same convolution [12],

as the size of the resulting convolution matrix will match Ip to have size m × n. [9].



2.3. DEEP LEARNING AND NEURAL NETWORKS 43

One might also want every entry of Ip and Kp to interact so that the border pixels

of an image have equal influence on the convolution operation, which requires Ip to

be padded with M rows and N columns of zeros around the edges. This is referred

to as full convolution [12], and the resultant convolution matrix will have size

(m+M − 1)× (n+N − 1) [9]. For simplicity’s sake, we assume that all convolutions

are same convolutions.

Downsampling and Strides

To decrease the computational cost of the convolution operation, we can have the

kernel skip over some groups of pixels, which is referred to as downsampling [9].

If the kernel skips over every s pixels, then we refer to s ∈ Z>0 as the stride [12].

We can also define a two-dimensional stride (s1, s2) ∈ Z>0 × Z>0 to determine how

many of the image’s pixels are sampled by the kernel both horizontally and vertically.

The significant tradeoff to downsampling is a lower quality feature extraction, as the

kernel does not sample every region of pixels.

Definition 36. [12] Let I be an m×n× k image, K be a kernel of size M ×N × k

and s = (s1, s2) ∈ Z>0 × Z>0. Then for a single channel p ∈ {0, ..., k − 1}, the

downsampled convolution of I and K at channel p with strides s is denoted

by (I ∗s K)p, and given by the matrix

[(I ∗s K)p]i,j =
∑
a

∑
b

Ip(s1i− a, s2j − b)Kp(a, b). (2.89)
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Pooling

After a convolution is performed on an image, the linear activations produced by

the operation undergoes another activation function (usually a ReLU or LeakyReLU

activation). From there, a CNN uses a pooling function ρ : Rn → R to further

transform the image. A pooling function replaces the output produced by a layer

with some summary statistic of neighbouring outputs. A common pooling function

is the max pooling function, which obtains the maximum value amongst a region of

pixels. Other pooling functions include the Lp distance between neighbouring pixels,

min pooling, or a weighted average amongst a region of pixels [12]. We now present

the convolutional neural network.

Definition 37. Let X ⊆ Rm×n×k be the input space and Y ⊆ RNp be the output space.

Let s2, ..., sp ∈ Z>0 × Z>0 be fixed, where si = (s
(1)
i , s

(2)
i ). Let ρ : Rn → R be a pooling

function. A p-layer convolutional neural network is a function fθ : X → Y

given by

fθ(x) = rp(K
(p) ∗sp rp−1(K

(p−1)(. . . r2(K
(2) ∗s2 x+ b(2))) + b(p−2)) + b(p−1)) + b(p))),

(2.90)

where σi : RNi → R is an activation function ri = ρ ◦ σi,

θ = (K(2), ...,K(p), ...,b(2), ...,b(p))

denotes the parameters, K(i) is a kernel, and b(i) is a bias.

The experiments conducted in this thesis are based on DCGAN [33], and we

therefore do not use pooling, (i.e., we can assume that ρi is the identity map).
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Chapter 3

Generative Adversarial Networks

3.1 Generative Adversarial Networks

GANs were first devised by Goodfellow et al. in [10]. A GAN is comprised of two

neural networks, a generator and a discriminator. The generator aims to produce data

that mimics data from a dataset D. The generator takes in random noise to output

a generated data point. That data point is then fed into the discriminator, which

outputs a score or label (varying from 0 to 1) for whether the data point belongs to

the dataset. Note than an extreme score of 1 means that the discriminator is certain

about a data point belonging to the real dataset (while a score of 0 means that the

discriminator is certain that the data point is generated). The discriminator is also

given samples from the real dataset. The generator aims to fool the discriminator by

having the discriminator label points from the real dataset as generated. This chapter

focuses on the application of GANs to image data, however, GANs can also be used

to generate synthetic tabular or text data. We next present the notion of GANs.

Let (X ,B(X ), µ) be the measure space of n×n×m images (where m = 1 for black

and white images and m = 3 for RGB images), and let (Z,B(Z), µ) be a measure
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space such that Z ⊆ Rd. The generator’s noise input is sampled from a multivariate

Gaussian distribution Pz : Z → [0, 1]. We denote the probability distribution of the

real data by Px : X → [0, 1] and the probability distribution of the generated data by

Pg : X → [0, 1]. We also set Px and Pg as the densities corresponding to Px and Pg.

We follow the treatment of the original GAN paper [11] unless otherwise specified.

Definition 38. The generator network is a neural network Gθ : Z → X

z 7→ Gθ(z), (3.1)

where θ denotes the generator’s parameters.

Definition 39. The discriminator network is a neural network Dθ : X → [0, 1]

x 7→ Dθ(x), (3.2)

where θ denotes the discriminator’s parameters.

For simplicity’s sake, we denote the generator and discriminator by G := Gθ and

D := Dθ respectively.

Definition 40. Let G be a generator and D be a discriminator. The GAN’s loss

function is denoted by V (D,G), and is given by

V (D,G) = −H(Px;D)−H(Pz; 1−D ◦G), (3.3)
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where H(· ; ·) denotes the (differential) cross-entropy functional introduced after Def-

inition 3 in the previous chapter. The GAN problem is the minimax problem

inf
G

sup
D

V (D,G). (3.4)

We can rewrite the loss function of (3.3) in terms of expectations:

V (D,G) = −H(Px;D)−H(Pz; 1−D ◦G) (3.5)

= EA∼Px [logD(A)] + EZ∼Pz [log(1−D(G(Z)))] (3.6)

= EA∼Px [logD(A)] + EB∼Pg [log(1−D(B))]. (3.7)

We now present the solution to the GAN problem stated in (3.4), with its proof

adopted from [4].

Proposition 9. Consider the maximization over D in (3.3). The discriminator D∗

that maximizes V (D,G) is given by

D∗ =
Px

Px + Pg

. (3.8)

Furthermore, when D = D∗, joint optimization of V reduces to the minimization of

the Jensen-Shannon divergence:

V (D∗, G) = 2JSD(Px||Pg)− 2 log 2 ≥ 2 log 2, (3.9)

where the minimum is obtained iff Px = Pg (a.e.).

Proof. We first show that V (D,G) is maximized over D when D∗ = Px

Px+Pg
. We have
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that

∂V

∂D
(D,G) = lim

ϵ↓0

∫
X
Px

log(D + ϵ)− log(D)

ϵ
dµ+

∫
X
Pg

log(1−D − ϵ)− log(1−D)

ϵ
dµ

= lim
ϵ↓0

∫
X
Px

log
(
D+ϵ
D

)
ϵ

dµ+

∫
X
Pg

log
(
1−D−ϵ
1−D

)
ϵ

dµ

= lim
ϵ↓0

∫
X
Px

log
(
1 + ϵ

D

)
ϵ

dµ−
∫
X
Pg

log
(

1−D
1−D−ϵ

)
ϵ

dµ

= lim
ϵ↓0

∫
X

Px

D

log
(
1 + ϵ

D

)
ϵ/D

dµ−
∫
X

Pg

1−D

log
(

1−D
1−D−ϵ

)
ϵ/(1−D)

dµ

We now show that the last line is bounded from above and below by
∫
X

Px

D
− Pg

1−D
dµ.

We first show the upper bound, using the bound log(1 + x) ≤ x, x > 0, for the first

term, and the bound log(y) ≥ 1− 1
y
, y > 0, for the second term. This yields

lim
ϵ↓0

∫
X

Px

D

log
(
1 + ϵ

D

)
ϵ/D

dµ−
∫
X

Pg

1−D

log
(

1−D
1−D−ϵ

)
ϵ/(1−D)

dµ ≤
∫
X

Px

D
− Pg

1−D
dµ

We apply the same technique to obtain the lower bound:

∂V

∂D
(D,G) = lim

ϵ↓0

∫
X
Px

log(D + ϵ)− log(D)

ϵ
dµ+

∫
X
Pg

log(1−D − ϵ)− log(1−D)

ϵ
dµ

= lim
ϵ↓0

∫
X
Px

log
(
1 + ϵ

D

)
ϵ

dµ−
∫
X
Pg

log
(

1−D
1−D−ϵ

)
ϵ

dµ

= lim
ϵ↓0

∫
X

Px

D + ϵ

log
(
1 + ϵ

D

)
ϵ/(D + ϵ)

dµ−
∫
X

Pg

1−D − ϵ

log
(

1−D
1−D−ϵ

)
ϵ/(1−D − ϵ)

dµ

≥ lim
ϵ↓0

∫
X

Px

D + ϵ
dµ−

∫
X

Pg

1−D − ϵ
dµ

=

∫
X

Px

D
− Pg

1−D
dµ

where the order of the limit and integral can be swapped by the monotone convergence
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theorem. Therefore, we have that

∂V

∂D
(D,G) =

∫
X

Px

D
− Pg

1−D
dµ.

If Px

D∗ − Pg

1−D∗ = 0 (a.e), then ∂V
∂D

(D,G)|D=D∗ = 0. Now solving for D∗, we obtain

D∗ =
Px

Px + Pg

.

Note that D∗ yields a maximum for V (D,G) as it can be shown (using a similar

procedure) that ∂2V
∂D2 (D,G) < 0. Finally, substituting D∗ = Px

Px+Pg
into (3.3), we have

V (D∗, G) = EA∼Px [logD
∗(A)] + EB∼Pg [log(1−D∗(B))]

= EA∼Px

[
log

Px(A)

Px(A) + Pg(A)

]
+ EB∼Pg

[
log

Pg(B)

Px(B) + Pg(B)

]
= EA∼Px

[
log

2Px(A)

Px(A) + Pg(A)
− log 2

]
+ EB∼Pg

[
log

2Pg(B)

Px(B) + Pg(B)
− log 2

]
= EA∼Px

[
log

(
Px(A)

(Px(A) + Pg(A))/2

)]
+ EB∼Pg

[
log

(
Pg(B)

(Px(B) + Pg(B))/2

)]
− 2 log 2

= 2JSD(Px||Pg)− 2 log 2.

Since JSD(Px||Pg) ≥ 0, we have that V (D∗, G) ≥ 2 log 2, with equality iff Px = Pg

(a.e.).

From now on, we refer to the GAN of (3.4) by the VanillaGAN. The Deep

Convolutional GAN (DCGAN) uses the same loss function as the VanillaGAN, and
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uses convolutional layers in the discriminator and generator architectures to optimize

performance for computer vision problems [33]. A GAN can be evaluated using the

Fréchet Inception Distance (FID) score [16], which we present next.

Definition 41. [16] Assume that Px and Pg have mean µx and covariance matrix

Σx, and µg and Σg, respectively. The Fréchet Inception Distance Score (FID)

is given by

FID = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2 ). (3.10)

The FID score compares the real and generated distributions’ means and covari-

ances. The lower the FID score, the closer the generated images resemble images

from the real dataset. When computing the FID score, we usually assume that Px

and Pg are multivariate Gaussian distributions. The FID score is an implementation

of the Wasserstein-2 distance between the two multivariate Gaussian distributions

and is typically computed using at least 10 000 samples [16].

3.2 RényiGANs

We now present the RényiGAN [5], which replaces the Shannon cross-entropies in the

generator loss function with Rényi cross-entropies, allowing for an additional degree

of freedom by introducing an α parameter that arises from the Rényi cross-entropy.

Definition 42. [5] Let α > 0 such that α ̸= 1. The RényiGAN is characterized

by (VD, VG,α), where VD : X × Z → R is the discriminator loss function and VG,α :
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X × Z → R is the generator loss function such that

VD(D,G) = −H(Px;D)−H(Pz; 1−D ◦G) (3.11)

and

VG,α(D,G) = −Hα(Px;D)−Hα(Pz; 1−D ◦G), (3.12)

whereHα(· . ·) denotes the (differential) Rényi cross-entropy functional. TheRényiGAN

problem is the joint optimization problem

sup
D

VD(D,G) (3.13)

inf
G

VG,α(D,G). (3.14)

We now present the solution to the RényiGAN optimization problem of (3.13).

Proposition 10. [5] Consider the maximization of D in (3.13). The discriminator

D∗ that maximizes VD(D,G) is given by

D∗ =
Px

Px + Pg

. (3.15)

Furthermore, when D = D∗, minimization of VG,α over G reduces to minimizing a

Jensen-Rényi divergence:

VG,α(D
∗, G) = 2JRα(Px||Pg)− 2 log 2 ≥ −2 log 2, (3.16)

where the minimum is obtained iff Px = Pg (a.e.).
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Note that the RényiGAN and VanillaGAN share the same equilibrium point as

α→ 1, since it can be shown that VG,a(D
∗, G) converges to V (D∗, G).

Proof. The proof to show that VD is maximized at D∗ = Px

Px+Pg
follows that of Propo-

sition 9, as the VanillaGAN and RényiGAN utilize the same loss function for the

discriminator. We show that when we fix D = D∗, minimizing VG,α(D
∗, G) reduces

to minimizing a Jensen-Rényi divergence. We have that

Vα,G(D
∗, G) = −Hα(Px;D

∗)−Hα(Pz; 1−D∗ ◦G)

= −Hα(Px;D
∗)−Hα(Pg; 1−D∗)

=
1

α− 1
log

(
EA∼Px

[(
Px(A)

Px(A) + Pg(A)

)α−1
])

+
1

α− 1
log

(
EB∼Pg

[(
Pg(B)

Px(B) + Pg(B)

)α−1
])

=
1

α− 1
log

(
EA∼Px

[(
2Px(A)

Px(A) + Pg(A)

)α−1

− 2

])

+
1

α− 1
log

(
EB∼Pg

[(
2Pg(B)

Px(B) + Pg(B)

)α−1

− 2

])

= 2

(
1

2
Dα

(
Px

∣∣∣∣∣
∣∣∣∣∣Px + Pg

2

)
+

1

2
Dα

(
Pg

∣∣∣∣∣∣∣∣Px + Pg

2

))
− 2 log 2

= 2JRα(Px||Pg)− 2 log 2.

Since JRα(Px||Pg) ≥ 0, we have that VG,α(D
∗, G) ≥ 2 log 2, with equality iff Px = Pg

(a.e.).
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3.3 InfoGAN

In the previous chapter, we discussed the “classic” GAN architecture: the generator

receives a noise vector z ∼ pz as input, and outputs data x ∈ X . The data x is then

given to the discriminator, which assigns the data a value between 0 and 1. The closer

the output to 1, the more confidence the discriminator has that the data belongs to

the real dataset as opposed to the generated set.

While the VanillaGAN architecture can yield quality results, the model lacks explain-

ability. Specifically, we do not know how the generator uses the noise input in the

model to generate the output. To remedy this issue, InfoGAN was proposed. In this

section, we discuss the formulation of the InfoGAN, following the treatment of the

original work [6].

Definition 43. Suppose that the input to the generator is the tuple (z, c) ∈ Z × C.

We call z the incompressible noise and c the latent codes.

We assume that the components of c = (c1, ..., cL) are independent of one another,

i.e.,

pc(c1, ..., cL) =
L∏
i=1

pci(ci). (3.17)

The incompressible noise functions the same way as the generator’s noise input

in VanillaGAN; the noise is unstructured and used as a “black box input” for the

generator. The latent codes target features of the real data distribution px. With

VanillaGAN, our generated output x = G(z, c) is independent of the latent codes,

since we treat the latent codes as unstructured Gaussian noise. To target features of

the real data, we want to increase the mutual information between the latent codes
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and the generated images, i.e., we want I(c;G(z, c)) to be high.

Definition 44. The objective of the InfoGAN problem is the following optimization:

inf
G

sup
D
−H(pX;D)−H(pz; 1−D ◦G)− λI(c;G(z, c)). (3.18)

The third term of the objective function contains a regularization coefficient λ ≥ 0.

A high value of λ penalizes the network if the latent codes are not sufficiently used to

target features of the real data distribution. In contrast, lower values of λ decrease

the influence of the mutual information term on the loss, with λ = 0 being analagous

to the VanillaGAN’s loss function.

The mutual information term is difficult to compute, as it requires the calculation

of the posterior P (c = c |G(z, c) = x). Therefore, we derive a lower bound on the

mutual information term by using an auxiliary distribution to approximate the pos-

terior [6]. Utilizing the non-negativity of the Kullback-Leibler divergence, we have

that

I(c;G(z, c)) = H(c)−H(c|G(z, c)) (3.19)

= H(c) + Ex∼pg [Ec∼pc|x [log p(c|x)]] (3.20)

= H(c) + Ex∼pg

[
Ec∼pc|x

[
log

p(c|x)
Q(c|x)

]
+ Ec∼pc|x [logQ(c|x)]

]
(3.21)

= H(c) + Ex∼pg

[
KL(p(·||x)||Q(·||x)) + Ec∼pc|x [logQ(c|x)]

]
(3.22)

≥ H(c) + Ex∼pg [Ec∼pc|x [logQ(c|x)]] (3.23)

= H(c) + Ex∼pg,c∼pc [logQ(c|x)] (3.24)

:= LI(G,Q), (3.25)
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where the inequality holds by the non-negativity of the KL divergence, and Q is an

auxiliary (conditional) distribution. All random variables in the derivation above are

assumed to be discrete (if they are continuous then the entropies are replaced with

differential entropies).

In practice, the auxiliary distribution is modelled as a neural network, called the

recognition network, which takes in a generated image G(z, c) as input, and out-

puts the probabilities of each latent code being used to generate that image. In

training, the recognition network encourages the generator to produce meaningful

differences its output based on the latent code input.

Definition 45. The InfoGAN problem is given by the following joint optimization:

inf
G,Q

sup
D
H(px;D)−H(pz; 1−D ◦G)− λ(H(c) + Ex∼pg,c∼pc [logQ(c|x)]), (3.26)

where λ ≥ 0 is the regularization coefficient.

3.3.1 Experiments

In the experiments, we aimed to reproduce the results of the original InfoGAN work.

We also aimed to quantify the performance of InfoGAN, as the original work contained

only qualitative results.

Experimental Setup

The MNIST dataset [8] was used to test the InfoGAN architecture. The generated

images were evaluated using the FID score. The results were also examined qualita-

tively, as we aimed to observe the output of the generator as the latent codes were

varied. Ideally, the Intra-FID score [43] would have also been utilized to score the
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images by evaluating the FID score for each unique value of the latent codes. This

was not performed as the algorithm to compute the Intra-FID scores has time com-

plexity O(n3), which is relative slow. Furthermore, as per [16], we require a minimum

of 10 000 samples to reliably compute an FID score to not underestimate the score.

Since there are only 7000 samples of each digit in the MNIST datset, the Intra-FID

score is not a reliable metric. We use a batch size of 128 and an incompressible noise

dimension of 62. We trained InfoGAN on 60 000 images for 800 epochs, for a total

of 48 million images.

InfoGAN was trained using two setups: discrete and continuous. In the discrete

setup, we use a single categorical latent code c1 ∼ Categorical(k = 10). Each code

c ∈ {0, 1, ..., 9} is evenly distributed. For the MNIST dataset, we aim to have each

code correspond to a unique digit between 0 and 9. It is important to note that codes

and digits do not align, as InfoGAN does not use the latent code to recognize digits.

Rather, it uses the categorical latent code to extract features from the dataset that

uniquely identify each digit in order to maximize the mutual information between the

code and the generated images.

In the continuous setup, we retain c1 with the categorical code from the dis-

crete setup, and introduce two continuous codes, c2 ∼ Uniform(−1, 1), and c3 ∼

Uniform(−1, 1). We train the continuous codes separately from the discrete code to

separate the discrete Shannon entropy for c1 from the differential Shannon entropy
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for c2 and c3. Therefore, we aim to solve the following optimization:

inf
G,Q

sup
D
H(px;D)−H(pz; 1−D ◦G)− λd(H(c1) + Ex∼pg,c1∼pc1

[logQ(c1|x)])

− λc(h(c2, c3) + Ex∼pg,c2,c3∼pc2,c3
[logQ(c2, c3|x)]) (3.27)

where λd and λc are the regularization coefficients for the discrete and continuous

latent codes respectively. As per the original work, we set λd = 1.0 and λc = 0.1.

The discrete code c1 is modelled as a ten-dimensional vector (p0, p1, ..., p9) ∈ [0, 1]10.

We generate c1 by first randomly sampling an integer K between 0 and 9 inclusive

from a discrete uniform distribution. We then generate c1 = (p0, p1, ..., p9) using the

formula pi = 1{K=i}. For i = 0, 1..., 9, pi represents the probability of the generated

image having discrete latent code i. If pi = 1 for some i = 0, 1, ..., 9, then c1 = i with

probability one. We generate c2 and c3 by randomly sampling from a Uniform(−1, 1)

distribution.

We input the incompressible noise z ∼ N62(0, I) (sampled from a 62-dimensional

Gaussian distribution) and latent codes to the generator to output an image. The

image is then fed into the recognition network. In the discrete setup, we use a

softmax activation to output a vector (p̂0, p̂1, ..., p̂9) ∈ [0, 1]10, where for i = 0, 1, ..., 9,

p̂i is the probability that the generated image came from discrete latent code i. For

continuous codes c2 and c3, the recognition network outputs the tuple (µk, σ
2
k) for

k = 2, 3, where σ2
k is generated using an exponential transformation of the previous

batch normalization layer to ensure positivity. We then use (µk, σ
2
k) to construct a

random variable Tk ∼ N (µk, σ
2
k), to generate the probability ĉk = P (Tk ≤ ck), which

is used to calculate the differential entropy term of the loss function.
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The generator, discriminator, and recognition network were all trained using Adam

optimizers [16]. For the generator’s and discriminator’s optimizers, we set α = 2 ×

10−4, β1 = 0.5, β2 = 0.999 and ϵ = 10−7. For the recognition network’s optimizer, we

set α = 10−3, β1 = 0.5, β2 = 0.999 and ϵ = 10−7. Four experiments were conducted:

we trained the InfoGAN in the discrete setup with and without a gradient penalty

(GP) using the simplified gradient penalty. The gradient penalty aids in a neural

network’s stability by ensuring its gradients to have unit norm [14]. The same was

done with the continuous setup. A coefficient of 5.0 was used for the gradient penalty.

For each experiment, five trials were conducted, each with a different random seed.

The random seeds used for the experiments were 123, 1600, 60677, 15859, and 79878.

The experiments were run on one 6130 2.1 GHz 1xV100 GPU, 12 CPUs, and 175

GB of memory. The neural network architectures and algorithms used for InfoGAN

training are highlighted in [6].

3.3.2 Results

The results of the reproduction are summarized in Table 3.1. For each experiment,

we report the average best FID score across five trials. The best FID score of a trial

is the lowest score computed across 800 epochs [16]. We report the variance of the

best FID score across the five trials. We record the average epoch the best FID score

occurred in across the five trials, and the variance of the best epoch.

We plot the average FID score of each of the 800 epochs for all experiments. Finally,

we present samples of images with the best FID scores, and plot samples of images

to show how the output changes as the latent code varies.
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Table 3.1: InfoGAN experiments on the MNIST dataset: the average and variance of
the best FID scores and the average and variance of the epoch this occurs taken over
five trials.

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Discrete 1.738 1.614 584.40 2.32× 10−3

Discrete-GP 1.778 1.522 488.75 1.17× 10−2

Continuous 4.149 1.663 258.67 19.565
Continuous-GP 2.967 1.462 259.00 4.790

(a) FID plot for Discrete InfoGANs. (b) FID plot for Continuous InfoGANs.

(c) FID plot for Continuous InfoGAN-GP.
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Figure 3.2: Output of Discrete InfoGAN, plotted on c1.
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Figure 3.3: Output of Discrete InfoGAN, plotted on c1.

Figure 3.4: Output of Continuous InfoGAN, plotted on c2 ∈ [−2, 2] with c1 = 0,
c3 = −2 fixed.

Figure 3.5: Output of Continuous InfoGAN, plotted on c3 ∈ [−2, 2] with c1 = 0,
c2 = −0.9474 fixed.
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3.3.3 Discussion

From Table 3.1, we observe that the discrete InfoGAN does not experience gains in

image quality with the addition of GP. However, GP is essential in improving the

quality of images produced by the continuous InfoGAN; on average, GP improves the

model’s average FID score by approximately 140%.

Figures 3.1b and 3.1c show that the continuous InfoGAN can experience erratic in-

stability during training. This might be due to the addition of the differential entropy

term in the continuous InfoGAN loss function; it could be useful to train the continu-

ous InfoGAN using a lower value of λc to see if decreasing λc improves overall stability.

The discrete InfoGAN does a decent job of achieving its mutual information-maximization

objective. The model has slight difficulty differentiating between twos and threes (see

the fourth and fifth columns of Figure 3.3). Note that 7/10 of the images in column

4 are twos, and 8/10 of images in column 5 are threes.

Finally, we observe the effects of the continuous latent codes on the digit 8 in

Figures 3.4 and 3.5. It appears that varying c2 (Figure 3.4) affects the slant of the

digit, the digit slants more to the left for negative values of c2, and more to the right

for positive values of c2. Varying c3 does a decent job of changing the thickness of

the digit; the InfoGAN tries to produce thicker digits for negative values of c3 and

thinner digits for positive values of c3.

A future direction of this work could be to generalize the InfoGAN using Rényi

information measures [34] [5] (i.e., a hybrid of RényiGAN and InfoGAN), by replacing

the Shannon cross-entropies in the loss function with Rényi cross-entropies, and the

Shannon mutual information term with one of the three α mutual information terms

presented in Chapter 2.
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Chapter 4

Lα-GANs

We now present our main contribution that unifies various generator loss functions

under a CPE-based loss function Lα for a dual-objective GAN, Lα-GAN, with a

canonical discriminator loss function loss function that is optimized as in [11]. When

some regularity conditions are satisfied, we show that under the optimal discriminator,

our generator loss minimizes a Jensen-f -divergence. This chapter is taken from our

preprint [39].

Let (X ,B(X ), µ) be the measure space of n×n×m images (where m = 1 for black

and white images and m = 3 for RGB images), and let (Z,B(Z), µ) be a measure

space such that Z ⊆ Rd. The discriminator neural network is given by D : X → [0, 1],

and the generator neural network is given by G : Z → X . The generator’s noise input

is sampled from a multivariate Gaussian distribution Pz : Z → [0, 1]. We denote the

probability distribution of the real data by Px : X → [0, 1] and the probability

distribution of the generated data by Pg : X → [0, 1]. We also set Px and Pg as

the densities corresponding to Px and Pg, respectively. We begin by introducing the

Lα−GAN system.

Definition 46. For a fixed α ∈ A ⊆ R, let Lα : {0, 1} × [0, 1]→ [0,∞) such that Lα



4.1. MAIN RESULT 64

is symmetric in the sense that

Lα(1, ŷ) = Lα(0, 1− ŷ), ŷ ∈ [0, 1]. (4.1)

The Lα−GAN system is characterized by (VD, VLα,G), where VD : X ×Z → R is

the discriminator loss function, and VLα,G : X ×Z → R is the generator loss function,

given by

VLα,G(D,G) = EA∼Px [−Lα(1, D(A))] + EB∼Pg [−Lα(0, D(B))]. (4.2)

Moreover, the Lα−GAN problem is defined by

sup
D

VD(D,G) (4.3)

inf
G

VLα,G(D,G). (4.4)

4.1 Main Result

Theorem 11. For a fixed α ∈ A ⊆ R and Lα : {0, 1}×[0, 1]→ [0,∞), let (VD, VLα,G)

be the loss functions of a Lα−GAN, and consider the joint optimization in (4.3)-(4.4).

If VD is a canonical loss function in the sense that it is maximized at D = D∗, where

D∗ =
Px

Px + Pg

, (4.5)

then (4.4) reduces to

inf
G

VLα,G(D
∗, G) = inf

G
2aJDfα(Px||Pg)− 2ab, (4.6)
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where JDfα(·||·) is the Jensen-fα-divergence, and fα : [0, 2] → R is a continuous

convex function1 satisfying fα(1) = 0 and

fα(u) = −u
(
1

a
Lα

(
1,

u

2

)
− b

)
, (4.7)

where a, b ∈ R, a ̸= 0. Finally, (4.6) is minimized when Px = Pg (a.e.).

Remark 12. Note that not only D∗ given in (4.5) is an optimal discriminator

of the (original) VanillaGAN discriminator loss function, but it also optimizes the

LSGAN/LkGAN discriminator loss function when their discriminator’s labels for fake

and real data, γ and β, respectively satisfy γ = 1 and β = 0 (see Section 4.2.3).

Proof. Under the assumption that VD is maximized at D∗ = Px

Px+Pg
, we have that

VLα,G(D
∗, G) = EA∼Px [−Lα(1, D

∗(A))] + EB∼Pg [−Lα(0, D
∗(B))]

= −
∫
X
PxLα(1, D

∗) dµ−
∫
X
PgLα(0, D

∗) dµ

= −
∫
X
PxLα

(
1,

Px

Px + Pg

)
dµ−

∫
X
PgLα

(
0,

Px

Px + Pg

)
dµ

= −2
∫
X

(
Px + Pg

2

)
Px

Px + Pg

Lα

(
1,

Px

Px + Pg

)
dµ

− 2

∫
X

(
Px + Pg

2

)
Pg

Px + Pg

Lα

(
0,

Px

Px + Pg

)
dµ

(a)
= −2

∫
X

(
Px + Pg

2

)
Px

Px + Pg

Lα

(
1,

Px

Px + Pg

)
dµ

− 2

∫
X

(
Px + Pg

2

)
Pg

Px + Pg

Lα

(
1,

Pg

Px + Pg

)
dµ

(b)
= −2

∫
X

(
Px + Pg

2

)
Px

Px + Pg

−afα
(

2Px

Px+Pg

)
2Px

Px+Pg

+ ab

 dµ

1It is implicitly implied by (4.7) that Lα(1, u) is itself continuous and convex in u for u ∈ [0, 1].



4.2. APPLICATIONS 66

− 2

∫
X

(
Px + Pg

2

)
Pg

Px + Pg

−afα
(

2Pg

Px+Pg

)
2Pg

Px+Pg

+ ab

 dµ

= 2a

(
1

2

∫
X

Px + Pg

2
fα

(
2Px

Px + Pg

)
dµ

+
1

2

∫
X

Px + Pg

2
fα

(
2Pg

Px + Pg

)
dµ

)
− 2ab

= 2aJDfα(Px||Pg)− 2ab,

where:

• (a) holds since Lα(1, u) = Lα(0, 1 − u), where u = Px

Px+Pg
(symmetry property

of Lα).

• (b) holds by solving for Lα(1, u) in terms of fα(2u) in (4.7), where u = Px

Px+Pg

in the first term, and u = Pg

Px+Pg
in the second term.

4.2 Applications

We next show that the Lα−GAN of Theorem 11 recovers as special cases a number

of well-known GAN generator loss functions and their equilibrium points (under an

optimal classical discriminator D∗).

4.2.1 VanillaGAN

VanillaGAN [11] uses the same loss function VVG for both generator and discriminator,

given by

VVG(D,G) = EA∼Px [logD(A)] + EB∼Pg [log(1−D(B))], (4.8)
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and can be cast as a saddle point optimization problem:

inf
G

sup
D

VVG(D,G). (4.9)

It is shown in [11] that the optimal discriminator for (4.9) is given by D∗ = Px

Px+Pg
, as

in (4.5). When D = D∗, the optimization reduces to minimizing the Jensen-Shannon

divergence:

inf
G

VVG(D
∗, G) = inf

G
2JSD(Px||Pg)− 2 log 2. (4.10)

We next show that (4.10) can be obtained from Theorem 11.

Lemma 4. Consider the optimization of the VanillaGAN given in (4.9). Then we

have that

VVG(D
∗, G) = 2JSD(Px||Pg)− 2 log 2 = VLα,G(D

∗, G),

where Lα(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) for all α ∈ A = R.

Proof. For any fixed α ∈ R, let the function Lα in (4.2) be as defined in the statement:

Lα(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ).

Note that Lα is symmetric, since for ŷ ∈ [0, 1], we have that

Lα(1, ŷ) = − log(ŷ) = Lα(0, 1− ŷ).
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We now derive fα from Lα using (4.7): setting a = 1 and b = log 2, we have that

fα(u) = −u
(
1

a
Lα

(
1,

u

2

)
− b

)
= −u

(
− log

u

2
− log 2

)
= u log u.

Clearly fα is continuous on [0,∞), and fα(1) = 0. Furthermore, we have that

f ′′(u) = 1
u
> 0; hence, fα is convex. By Lemma 3, we know that under the generat-

ing function f(u) = u log(u), the Jensen-f divergence reduces to the Jensen-Shannon

divergence. Therefore, by Theorem 11, we have that

VLα,G(D
∗, G) = 2aJDfα(Px||Pg)− 2ab = 2JSD(Px||Pg)− 2 log 2 = VVG(D

∗, G).

4.2.2 α-GAN

The notion of α-GANs is introduced in [20] as a way to unify several existing GANs

using a parameterized loss function. We begin by describing this notion.

Definition 47. [20] Let y ∈ {0, 1} be a binary label, ŷ ∈ [0, 1], and fix α > 0. The

α-loss between y and ŷ is the map ℓα : {0, 1} × [0, 1]→ [0,∞) given by

ℓα(y, ŷ) =


α

α− 1

(
1− yŷ

α−1
α + (1− y)(1− ŷ)

α−1
α

)
, α ∈ (0, 1) ∪ (1,∞)

−y log ŷ − (1− y) log(1− ŷ), α = 1.

(4.11)
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Definition 48. [20] For α > 0, the α−GAN loss function is given by

Vα(D,G) = EA∼Px [−ℓα(1, D(A))] + EB∼Pg [−ℓα(0, D(B))]. (4.12)

The joint optimization of the α−GAN problem is given by

inf
G

sup
D

Vα(D,G). (4.13)

It is known that α-GAN recovers several well-known GANs by varying the α

parameter, notably, the VanillaGAN (α = 1) [11] and the HellingerGAN (α = 1
2
) [31].

Furthermore, as α→∞, Vα recovers a translated version of the WassersteinGAN loss

function [3]. We now present the solution to the joint optimization problem presented

in (4.13).

Proposition 13. [20] Let α > 0, and consider the joint optimization of the α-GAN

presented in (4.13). The discriminator D∗ that maximizes the loss function is given

by

D∗ =
Px

α

Px
α + Pg

α . (4.14)

Furthermore, when D = D∗ is fixed, the problem in (4.13) reduces to minimizing an

Arimoto divergence (as defined in Table 2.1) when α ̸= 1:

inf
G

Vα(D
∗, G) = inf

G
Aα(Px||Pg) +

α

α− 1

(
2

1
α − 2

)
, (4.15)
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and a Jensen-Shannon divergence when α = 1:

inf
G

V1(D
∗, G) = inf

G
JSD(Px||Pg)− 2 log 2, (4.16)

where (4.15) and (4.16) achieve their minima iff Px = Pg (a.e.).

Recently, α-GAN was generalized in [41] to implement a dual objective GAN,

which we recall next.

Definition 49. [41] For αD > 0 and αG > 0, the (αD, αG)−GAN’s optimiza-

tion is given by

sup
D

VαD
(D,G) (4.17)

inf
G

VαG
(D,G) (4.18)

where VαD
and VαG

are defined in (4.12), with α replaced by αD and αG respectively.

We now recall the solution to the (αD, αG)-GAN’s optimization formulated in

(4.17)-(4.18).

Proposition 14. [41] Consider the joint optimization in (4.17)-(4.18). Let param-

eters αD, αG > 0 satisfy

(
αD ≤ 1, αG >

αD

αD + 1

)
or
(
αD > 1,

αD

2
< αG ≤ αD

)
. (4.19)

The discriminator D∗ that maximizes VαD
is given by

D∗ =
Px

αD

Px
αD + Pg

αD
. (4.20)
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Furthermore, when D = D∗ is fixed, the minimization of VαG
in (4.18) is equivalent

to the following f -divergence minimization:

inf
G

VαG
(D∗, G) = inf

G
DfαD,αG

(Px||Pg) +
α

α− 1

(
2

1
α − 2

)
, (4.21)

where fαD,αG
: [0,∞)→ R is given by

fαD,αG
(u) =

αG

αG − 1

u
αD

(
1− 1

αG

)
+1

+ 1

(uαD + 1)
1− 1

αG

 . (4.22)

We now apply the (αD, αG)-GAN to our main result in Theorem 11 by showing

that (4.6) can recover (4.21) when αD = 1 (which corresponds to a VanillaGAN

discriminator loss function).

Lemma 5. Consider the (αD, αG)−GAN given in Definition 49. Let αD = 1 and

αG = α > 1
2
. Then, the solution to (4.18) presented in Proposition 14 is equivalent

to minimizing a Jensen-fα-divergence: specifically, if D
∗ is the optimal discriminator

given by (4.20), which is equivalent to (4.5) when αD = 1, then Vα,G(D
∗, G) in (4.21)

satisfies

Vα,G(D
∗, G) = 2

1
αJDfα(Px||Pg) +

α

α− 1
(2

1
α − 2) = VLα,G(D

∗, G), (4.23)

where Lα(y, ŷ) = ℓα(y, ŷ) and

fα(u) =
α

α− 1

(
u2− 1

α − u
)
, u ≥ 0. (4.24)

Proof. We want to show that Theorem 11 recovers Proposition 14. We set Lα(y, ŷ) =
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ℓα(y, ŷ). Note that ℓα is symmetric, since we have that

ℓα(1, ŷ) =
α

α− 1
(1− ŷ1−

1
α ) = ℓα(0, 1− ŷ).

From Lemma 4, we know that when α = 1, fα(u) = u log u. For α ∈ (0, 1) ∪ (1,∞),

setting a = 2
1
α
−1 and b = α

α−1

(
21−

1
α − 1

)
in (4.7), we have that

fα(u) = −u
(
1

a
Lα

(
1,

u

2

)
− b

)
= −u

(
21−

1
α

α

α− 1

(
1−

(u
2

)1− 1
α

)
− α

α− 1
(21−

1
α − 1)

)
=

α

α− 1
(−u)[21−

1
α − u1− 1

α − (21−
1
α − 1)]

=
α

α− 1
(u2− 1

α − u).

Clearly fα(1) = 0. Furthermore for α ̸= 1, we have that

f ′′
α(u) =

(2α− 1)u
−1
α

α
, u ≥ 0,

which is positive for α > 1
2
, and fα is convex for α > 1

2
. Therefore, by Theorem 11,

we have that

VLα,G(D
∗, G) = 2aJDfα(Px||Pg)− 2ab

= 2 · 2
1
α
−1JDfα(Px||Pg)− 2

α

α− 1
2

1
α
−1(21−

1
α − 1)

= 2
1
αJDfα(Px||Pg) +

α

α− 1
(2

1
α − 2).

We now show that the above Jensen-fα-divergence is equal to the f1,α-divergence
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originally derived for the (1, α)-GAN problem of Proposition 14 (note from Propo-

sition 14, that if αD = 1, then αG = α > 1
2
, so the range of α concurs with the

range above required for the convexity of fα). For any two distributions p and q with

common support X , we have that

Df1,α(p||q) =
α

α− 1

∫
X
q

(
p
q

)2− 1
α
+ 1(

p
q
+ 1
)1− 1

α

dµ− α

α− 1
2

1
α

=
α

α− 1

∫
X
q

(
p
q

)2− 1
α
+ 1(

p+q
q

)1− 1
α

dµ− α

α− 1
2

1
α

=
α

α− 1

∫
X

(
(p+ q)

(
p

p+ q

)2− 1
α

+ (p+ q)

(
q

p+ q

)2− 1
α

)
dµ

− α

α− 1
2

1
α

=
α

α− 1

2

22−
1
α

∫
X

(
p+ q

2

(
2p

p+ q

)2− 1
α

+
p+ q

2

(
2q

p+ q

)2− 1
α

)
dµ

− α

α− 1
2

1
α

=
α

α− 1
2

1
α
−1

∫
X

(
p+ q

2

((
2p

p+ q

)2− 1
α

− 2p

p+ q

)
+ p

)
dµ

+
α

α− 1
2

1
α
−1

∫
X

(
p+ q

2

((
2q

p+ q

)2− 1
α

− 2q

p+ q

)
+ q

)
dµ

− α

α− 1
2

1
α

=
α

α− 1
2

1
α
1

2

(∫
X

p+ q

2

((
2p

p+ q

)2− 1
α

− 2p

p+ q

)
dµ+ 1

)

+
α

α− 1
2

1
α
1

2

(∫
X

p+ q

2

((
2q

p+ q

)2− 1
α

− 2q

p+ q

)
dµ+ 1

)

− α

α− 1
2

1
α
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= 2
1
αJDfα(p||q) +

α

α− 1
2

1
α
−1(2)− α

α− 1
2

1
α

= 2
1
αJDfα(p||q).

Therefore, VLα,G(D
∗, G) = Vα(D

∗, G).

Note that this lemma generalizes Lemma 4; the VanillaGAN is a special case of

the (1, α)-GAN for α = 1.

4.2.3 Shifted LkGANs and LSGANs

Least Squares GAN (LSGAN) was proposed in [25] to mitigate the vanishing gradi-

ent problem with VanillaGAN and to stabilize training performance. The LSGAN’s

loss function is derived from the squared error distortion measure, where we aim to

minimize the distortion between the data samples and a target value we want the dis-

criminator to assign the samples to. The LSGAN was generalized with the LkGAN

in [5] by replacing the squared error distortion measure with the absolute error dis-

tortion measure of order k ≥ 1, therefore introducing an additional degree of freedom

to the generator’s loss function. We first state the general LkGAN problem. We then

apply the result of Theorem 11 to the loss functions of LSGAN and LkGAN.

Definition 50. [5] Let γ, β, c ∈ [0, 1] and let k ≥ 1. The LkGAN’s loss func-

tions, denoted by VLSGAN,D and Vk,G are given by

VLSGAN,D(D,G) = −1

2
EA∼Px [(D(A)− β)2]− 1

2
EB∼Pg [(D(B)− γ)2] (4.25)

Vk,G(D,G) = EA∼Px [|D(A)− c|k] + EB∼Pg [|D(B)− c|k]. (4.26)
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The LkGAN problem is the joint optimization

sup
D

VLSGAN,D(D,G) (4.27)

inf
G

Vk,G(D,G). (4.28)

We next recall the solution to (4.27), which is a minimization of the Pearson-Vajda

divergence |χ|k(·||·) of order k (as defined in Table 2.1).

Proposition 15. [5] Consider the joint optimization for the LkGAN presented in

(4.27). Then, the optimal discriminator D∗ that maximizes VLSGAN,D in (4.25) is given

by

D∗ =
γPx + βPg

Px + Pg

. (4.29)

Furthermore, if D = D∗, and γ − β = 2(c − β), the minimization of Vk,G in (4.26)

reduces to

inf
G

Vk,G(D,G) = inf
G
|c− β|k|χ|k(Px + Pg||2Pg). (4.30)

Note that the LSGAN [25] is a special case of LkGAN, as we recover LSGAN

when k = 2 [5].

By scrutinizing Proposition 15 and Theorem 11, we observe that the former cannot

be recovered from the latter. However we can use Theorem 11 by slightly modifying

the LkGAN generator’s loss function. First, for the dual objective GAN proposed in

Theorem 11, we need D∗ = Px

Px+Pg
. By (4.29), this is achieved for γ = 1 and β = 0.
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Then, we define the intermediate loss function

Ṽk,G(D,G) = EA∼Px [|D(A)− c1|k] + EB∼Pg [|D(B)− c2|k]. (4.31)

Comparing the above loss function with (4.2), we note that setting c1 = 0 and c2 = 1

in (4.31) satisfies the symmetry property of Lα. Finally, to ensure the generating

function fα satisfies fα(1) = 0, we shift each term in (4.31) by 1. Putting these

changes together, we propose a revised generator loss function, denoted by V̂k,G,

given by

V̂k,G(D,G) = EA∼Px [|D(A)|k − 1] + EB∼Pg [|1−D(B)|k − 1]. (4.32)

We call a system that uses (4.32) as a generator loss function a Shifted LkGAN

(SLkGAN). If k = 2, we have a shifted version of the LSGAN generator loss func-

tion, which we call the Shifted LSGAN (SLSGAN). Note that none of these

modifications alter the gradients of Vk,G in (4.26), since the first term is independent

of G, the choice of c1 is irrelevant, and translating a function by a constant does not

change its gradients. However, from Proposition 15, for γ = 0, β = 1 and c = 1, we

do not have that γ − β = 2(c − β), and as a result, this modified problem does not

reduce to minimizing a Pearson-Vajda divergence. Consequently, we can relax the

condition on k in Definition 50 to just k > 0. We now show how Theorem 11 can be

applied to Lα-GAN using (4.32).

Lemma 6. Let k > 0. Let VD be a discriminator loss function, and let V̂k,G be the
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generator’s loss function defined in (4.32). Consider the joint optimization

sup
D

VD(D,G) (4.33)

inf
G

V̂k,G(D,G) (4.34)

If VD is optimized at D∗ = Px

Px+Pg
(i.e., VD is canonical), then we have that

V̂k,G(D
∗, G) =

1

2k−1
JDfk(Px||Pg) +

1

2k−1
− 1

2
,

where fk is given by

fk(u) = u(uk − 1), u ≥ 0.

Examples of VD(D,G) that satisfy the requirements of Lemma 6 include the

LkGAN discriminator loss function given by (4.25) with γ = 1 and β = 0, and

the VanillaGAN discriminator loss function given by (4.8).

Proof. Let k > 0. We can restate the SLkGAN’s generator loss function in (4.32) in

terms of VLα,G in (4.2): we have that VLα,G(D
∗, G) = V̂k,G(D

∗, G), where α = k and

Lk : {0, 1} × [0, 1]→ [0,∞) is given by

Lk(y, ŷ) = −(y(ŷk − 1) + (1− y)((1− ŷ)k − 1)). (4.35)

We have that Lk is symmetric, since

Lk(1, ŷ) = −(ŷk − 1) = Lk(0, 1− ŷ).
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Furthermore, setting a = 1
2k

and b = 2k − 1 in (4.7), we have that

fk(u) = −u
(
1

a
Lk

(
1,

u

2

)
− b

)
= −u

(
2k
(
1−

(u
2

)k)
− (2k − 1)

)
= −u(2k − uk − 2k + 1)

= u(uk − 1).

We clearly have that fk(1) = 0 and that fk is continuous. Furthermore, we have that

f ′′
k (u) = k(k + 1)u, which is positive for u > 0. Therefore fk is convex. As a result,

by Theorem 11, we have that

V̂k,G(D
∗, G) =

1

2k−1
JDfk(Px||Pg)−

1

2k−1
(2k − 1)

=
1

2k−1
JDfk(Px||Pg) +

1

2k−1
− 1

2
.

We conclude this section by emphasizing that Theorem 11 serves as a unifying

result recovering the existing loss functions in the literature and moreover, provides

a way for generalizing new ones. Our aim in the next section is to demonstrate the

versatility of this result in experimentation.

4.3 Experiments

We perform two experiments on three different image datasets which we describe be-

low.
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Experiment 1. In the first experiment, we compare the (α, α)-GAN with the (1, α)-

GAN, controlling the value of α. Recall that αD = 1 corresponds to the canonical

VanillaGAN (or DCGAN) discriminator. We aim to verify whether or not replacing

an α-GAN discriminator with a VanillaGAN discriminator stabilizes or improves the

system’s performance depending on the value of α. Note that the result of Theorem

11 only applies to the (αD, αG)-GAN for αD = 1.

Experiment 2. We train two variants of SLkGAN, with the generator loss function

as described in (4.32), parameterized by k > 0. We then utilize two different canonical

discriminator loss functions to align with Theorem 11. The first is the VanillaGAN

discriminator loss given by (4.8); we call the resulting dual objective GAN byVanilla-

SLkGAN. The second is the LkGAN discriminator loss, given by (4.25), where we

set α = 0 and β = 1 such that the optimal discriminator is given by (4.5). We call

this system by Lk-SLkGAN. We compare the two variants to analyze how the value

of k and choice of discriminator loss impacts the system’s performance.

4.3.1 Experimental Setup

We run both experiments on three image datasets: MNIST [8], CIFAR-10 [18], and

Stacked MNIST [24]. The MNIST dataset is a dataset of black and white handwritten

digits between 0 and 9 of size 28× 28× 1. The CIFAR-10 dataset is an RGB dataset

of small images of common animals and modes of transportation of size 32× 32× 3.

The Stacked MNIST dataset is an RGB dataset derived from the MNIST dataset,

constructed by taking three MNIST images, assigning each one of the three colour

channels, and stacking the images on top of each other. The resulting images are
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then padded so that each one of them have size 32× 32× 3.

For Experiment 1, we use α values of 0.5, 5.0, 10.0 and 20.0. For each value of

α, we train the (α, α)-GAN and the (1, α)-GAN. We additionally train the DCGAN,

which corresponds to the (1, 1)-GAN. For Experiment 2, we use k values of 0.25, 1.0,

2.0, 7.5 and 15.0. Note that when k = 2, we recover LSGAN. For the MNIST dataset,

we run 10 trials with the random seeds 123, 500, 1600, 199621, 60677, 20435, 15859,

33764, 79878, and 36123, and train each GAN for 250 epochs. For the RGB datasets

(CIFAR-10 and Stacked MNIST), we run 5 trials with the random seeds 123, 1600,

60677, 15859, 79878, and train each GAN for 500 epochs. All experiments utilize an

Adam optimzer for the stochastic gradient descent algorithm, with a learning rate of

2 × 10−4, and parameters β1 = 0.5, β2 = 0.999 and ϵ = 10−7 [17]. We also exper-

iment with the addition of a gradient penalty (GP); we add a penalty term to the

discriminator’s loss function to encourage the discriminator’s gradient to have a unit

norm [14].

The MNIST experiments were run on one 6130 2.1 GHz 1xV100 GPU, 8 CPUs,

and 16 GB of memory. The CIFAR-10 and Stacked MNIST experiments were run on

one Epyc 7443 2.8 GHz GPU, 8 CPUs and 16 GB of memory. For each experiment,

we report the best overall Fréchet Inception Distance (FID) score [16], the best av-

erage FID score amongst all trials and its variance, and the average epoch the best

FID score occurs and its variance. The FID score for each epoch was computed over

10 000 images. For each metric, the lowest numerical value corresponds to the model

with the best metric (indicated in bold in the tables). We also report how many trials
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we include in our summary statistics, as it is possible for a trial to collapse and not

train for the full number of epochs. The neural network architectures used in our

experiments are presented in Appendix A.1. The training algorithms are presented

in Appendix A.2.

4.3.2 Experimental Results

We report the FID metrics for Experiment 1 in Tables 4.1, 4.2 and 4.3, and for Experi-

ment 2 in Tables 4.4, 4.5 and 4.6. We report only on those experiments that produced

meaningful results. Models that utilize a simplified gradient penalty have the suffix

“-GP”. We display the output of the best-performing (αD, αG)-GANs in Figure 4.1

and the best-performing SLKGANs in Figure 4.3. Finally, we plot the trajectory of

the FID scores throughout training epochs in Figures 4.2 and 4.4. Additional results

are provided in Appendix A.3.

(αD, αG)-GAN
Best FID
score

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Number of
sucessful

trials (/10)

(1,0.5)-GAN 1.264 1.288 2.979× 10−4 227.25 420.25 4
(0.5,0.5)-GAN 1.209 1.265 0.001 234.5 156.7 6

(1,5)-GAN 1.125 1.17 8.195× 10−4 230.3 617.344 10

(1,10)-GAN 1.147 1.165 7.984× 10−4 225.6 253.156 10
(10,10)-GAN 36.506 39.361 16.312 1.5 0.5 2

(1,20)-GAN 1.135 1.174 0.001 237.5 274.278 10
(20,20)-GAN 33.23 33.23 0.0 1.0 0.0 1

DCGAN 1.154 1.208 0.001 231.3 357.122 10

Table 4.1: (αD, αG)-GAN results for MNIST.
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(αD, αG)-GAN
Best FID
score

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Number of
successful
trials (/5)

(1,0.5)-GAN-GP 10.551 14.938 12.272 326.2 1808.7 5
(0.5,0.5)-GAN-GP 13.734 14.93 0.517 223.6 11378.3 5

(1,5)-GAN-GP 10.772 11.635 0.381 132.0 1233.5 5
(5,5)-GAN-GP 20.79 21.72 0.771 84.8 1527.2 5

(1,10)-GAN-GP 9.465 10.187 0.199 182.6 1096.3 5
(10,10)-GAN-GP 19.99 21.095 0.434 131.8 13374.7 5

(1,20)-GAN-GP 8.466 10.217 1.479 216.2 6479.7 5
(20,20)-GAN-GP 19.378 21.216 2.315 138.2 29824.2 5

DCGAN-GP 25.731 28.378 3.398 158.0 2510.5 5

Table 4.2: (αD, αG)-GAN results for CIFAR-10.

(αD, αG)-GAN
Best FID
score

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Number of
succesful
trials (/5)

(1,0.5)-GAN-GP 4.833 4.997 0.054 311.5 23112.5 2
(0.5,0.5)-GAN-GP 6.418 6.418 0.0 479.0 0.0 1

(1,5)-GAN-GP 7.98 7.988 1.357× 10−4 379.5 11704.5 2
(5,5)-GAN-GP 12.236 12.836 0.301 91.5 387.0 4

(1,10)-GAN-GP 7.502 7.528 0.001 326.5 14280.5 2
(10,10)-GAN-GP 14.22 14.573 0.249 95.0 450.0 2

(1,20)-GAN-GP 8.379 8.379 0.0 427.0 0.0 1
(20,20)-GAN-GP 16.584 16.584 0.0 94.0 0.0 1

DCGAN-GP 7.507 7.774 0.064 303.4 11870.8 5

Table 4.3: (αD, αG)-GAN results for Stacked MNIST.
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(a) (αD, αG)-GAN for MNIST, αD = 1.0,
αG = 5.0, FID: 1.125.

(b) (αD, αG)-GAN-GP for CIFAR-10,
αD = 1.0, αG = 20.0, FID = 8.466.

(c) (αD, αG)-GAN-GP for Stacked MNIST,
αD = 1.0, αG = 0.5, FID = 4.833.

Figure 4.1: Generated images for the best-performing (αD, αG)-GANs.
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(a) (1, α)-GANs for MNIST. (b) (α, α)-GANs for MNIST

(c) (1, α)-GAN-GPs, for CIFAR-10. (d) (α, α)-GAN-GPs for CIFAR-10.

(e) (1, α)-GAN-GPs for Stacked MNIST. (f) (α, α)-GAN-GPs for Stacked MNIST.

Figure 4.2: Average FID scores vs. epochs for various (αD, αG)-GANs.
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Variant-SLkGAN-k
Best FID
score

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Number of
successful
trials (/10)

Lk-SLkGAN-0.25 1.15 1.174 6.298× 10−4 224.3 940.9 10
Vanilla-SLkGAN-0.25 1.112 1.162 0.001 237.0 124.0 10

Lk-SLkGAN-1.0 1.122 1.167 8.857× 10−4 233.0 124.0 10
Vanilla-SLkGAN-1.0 1.126 1.17 9.218× 10−4 226.2 1182.844 10

Lk-SLkGAN-2.0 1.148 1.198 5.248× 10−4 237.2 288.4 10
Vanilla-SLkGAN-2.0 1.124 1.184 8.933× 10−4 237.8 138.4 10

Lk-SLkGAN-7.5 1.455 1.498 4.422× 10−4 229.0 322.222 10
Vanilla-SLkGAN-7.5 1.439 1.511 0.001 212.2 1995.067 10

Lk-SLkGAN-15.0 1.733 1.872 0.005 198.8 1885.733 10
Vanilla-SLkGAN-15.0 1.773 1.876 0.005 171.6 3122.267 10

DCGAN 1.154 1.208 0.001 231.3 357.122 10

Table 4.4: SLkGAN results for MNIST.
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Variant-SLkGAN-k
Best FID
score

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Number of
successful
trials (/5)

Lk-SLkGAN-1.0 4.727 118.242 10914.643 60.8 1897.2 5
Vanilla-SLkGAN-1.0 4.821 5.159 0.092 88.0 506.5 5

Lk-SLkGAN-2.0 4.723 145.565 7492.26 73.2 3904.2 5
Vanilla-SLkGAN-2.0 4.58 5.1 0.261 105.4 740.8 5

Lk-SLkGAN-7.5 6.556 155.497 7116.521 254.6 18605.3 5
Vanilla-SLkGAN-7.5 6.384 48.905 8698.195 72.2 1711.7 5

Lk-SLkGAN-15.0 8.576 145.774 5945.097 263.0 36463.0 5
Vanilla-SLkGAN-15.0 7.431 50.868 8753.002 82.6 3106.8 5

DCGAN 4.753 5.194 0.117 88.6 462.8 5

Lk-SLkGAN-0.25-GP 17.366 18.974 2.627 87.8 1897.2 5
Vanilla-SLkGAN-0.25-GP 16.013 17.912 1.961 189.0 9487.5 5

Lk-SLkGAN-1.0-GP 10.771 12.567 1.083 77.8 239.2 5
Vanilla-SLkGAN-1.0-GP 8.569 9.588 0.749 197.6 2690.3 5

Lk-SLkGAN-2.0-GP 23.11 25.013 1.924 75.4 658.8 5
Vanilla-SLkGAN-2.0-GP 28.215 29.69 1.242 232.0 20438.5 5

Lk-SLkGAN-7.5-GP 33.304 41.48 49.187 82.8 1081.2 5
Vanilla-SLkGAN-7.5-GP 33.085 34.799 1.597 290.8 12714.7 5

Lk-SLkGAN-15.0-GP 9.157 12.504 3.839 310.4 6976.8 5
Vanilla-SLkGAN-15.0-GP 7.283 8.568 1.535 185.6 5978.3 5

DCGAN-GP 25.731 28.378 3.398 158.0 2510.5 5

Table 4.5: SLkGAN results for CIFAR-10.

Variant-SLkGAN-k
Best FID
score

Average
best FID
score

Best FID
scores
variance

Average
epoch

Epoch
variance

Number of
successful
trials (/5)

Lk-SLkGAN-0.25-GP 10.541 11.824 0.678 113.6 356.3 5
Vanilla-SLkGAN-0.25-GP 5.197 5.197 0.0 496.0 0.0 1

Lk-SLkGAN-1.0-GP 11.545 12.046 0.291 89.0 238.5 5
Vanilla-SLkGAN-1.0-GP 7.475 7.626 0.045 177.0 3528.0 2

Lk-SLkGAN-2.0-GP 10.682 12.782 2.12 180.2 28484.7 5
Vanilla-SLkGAN-2.0-GP 6.023 7.096 0.991 416.667 12244.333 3

Lk-SLkGAN-7.5-GP 8.912 9.906 0.577 239.0 35663.5 5
Vanilla-SLkGAN-7.5-GP 6.074 6.43 0.164 238.0 21729.5 5

Lk-SLkGAN-15.0-GP 4.458 4.74 0.029 253.4 11512.3 5
Vanilla-SLkGAN-15.0-GP 3.836 3.873 0.002 485.0 354.667 4

DCGAN-GP 7.507 7.774 0.064 303.4 11870.8 5

Table 4.6: SLkGAN results for Stacked MNIST.
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(a) Vanilla-SLkGAN-0.25 for MNIST, FID
= 1.112.

(b) Vanilla-SLkGAN-2.0 for CIFAR-10,
FID = 4.58.

(c) Vanilla-SLkGAN-15.0-GP for Stacked
MNIST, FID = 3.836.

Figure 4.3: Generated images for best-performing SLkGANs.
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(a) Lk-SLkGANs for MNIST. (b) Vanilla-SLkGANs for MNIST.

(c) Lk-SLkGAN-GPs for CIFAR-10. (d) Vanilla-SLkGAN-GPs for CIFAR-10.

(e) Lk-SLkGAN-GPs for Stacked MNIST. (f) Vanilla-SLkGAN-GPs for Stacked
MNIST.

Figure 4.4: FID scores vs. epochs for various SLkGANs.
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4.3.3 Discussion

Experiment 1

From Table 4.1, we note that 37 of the 90 trials collapse before 250 epochs have passed

without a gradient penalty. The (5,5)-GAN collapses for all 5 trials, and hence it is

not displayed in Table 4.1. This behaviour is expected, as the (α, α)-GAN is more

sensitive to exploding gradients when α does not tend to 0 or +∞ [20]. The addition

of a gradient penalty could mitigate the discriminator’s gradients diverging in the

(5,5)-GAN by encouraging gradients to have a unit norm. Using a VanillaGAN dis-

criminator with an α-GAN generator (i.e., the (1,α)-GAN) produces better quality

images for all tested values of α, compared to when both networks utilize an α-GAN

loss function. The (1,10)-GAN achieves excellent stability, converging in all 10 trials,

and also achieves the lowest average FID score. The (1,5)-GAN achieves the lowest

FID score overall, marginally outperforming DCGAN.

Likewise, for the CIFAR-10 and Stacked MNIST datasets, the (1,α)-GAN pro-

duces lower FID scores than the (α, α)-GAN (see Tables 4.2 and 4.3). However, both

models are more stable with the CIFAR-10 dataset. With the exception of DCGAN,

no model converged to its best FID score for all 5 trials with the Stacked MNIST

dataset. Comparing the trials that did converge, both (α, α)-GAN and (1, α)-GAN

performed better on the Stacked MNIST dataset than the CIFAR-10 dataset. For

CIFAR-10, the (1,10)- and (1,20)-GANs produced the best overall FID score and the

best average FID score respectively. On the other hand, the (1,0.5)-α-GAN produced

the best overall FID score and the best average FID score for the Stacked MNIST

dataset. We also observe a tradeoff between speed and performance for the CIFAR-10

and Stacked MNIST datasets: the (1, α)-GANs arrive at their lowest FID scores later
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than their respective (α, α)-GANs, but achieve lower FID scores overall.

Comparing Figures 4.2c and 4.2d, we observe that the (α, α)-GAN-GP provides

more stability than the (1, α)-GAN for lower values of α (i.e. α = 0.5), while the

(1, α)-GAN-GP exhibits more stability for higher α values (α = 10 and α = 20).

Figures 4.2e and 4.2f show that the two α-GANs trained on the Stacked MNIST

dataset exhibit unstable behaviour earlier into training when α = 0.5 or α = 20.

However, both systems stabilize and converge to their lowest FID scores as training

progresses. The (0.5,0.5)-GAN-GP system in particular exhibits wildly erratic be-

haviour for the first 200 epochs, then finishes training with a stable trajectory that

outperforms DCGAN-GP.

A future direction might be explore how the complexity of an image dataset influ-

ences the best choice of α. For example, the Stacked MNIST dataset might be con-

sidered to be less complex than CIFAR-10, as images in the Stacked MNIST dataset

only contain four unique colours (black, red, green, and blue), while the CIFAR-10

dataset utilizes significantly more colours.

Experiment 2

We see from Table 4.4 that all Lk-LkGANs and Vanilla-SLkGANs have FID scores

comparable to the DCGAN. When k = 15, Vanilla-SLkGAN and Lk-SLkGAN arrive

at their lowest FID scores slightly earlier than DCGAN and other SLkGANs.

The addition of a simplified gradient penalty is necessary for Lk-SLkGAN to

achieve overall good performance on the CIFAR-10 dataset (see Table 4.5). Inter-

estingly, Vanilla-SLkGAN achieves lower FID scores without a gradient penalty for

lower k values (k = 1, 2), and with a gradient penalty for higher k values (k = 7.5, 15).
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When k = 0.25, both SLkGANs collapsed for all 5 trials without a gradient penalty.

Table 4.6 shows that Vanilla-SLkGANs achieve better FID scores than their respec-

tive Lk-LkGAN counterparts. However, Vanilla-SLkGANs are more stable, as no

single trial collapsed, while 10 of the 25 Vanilla-SLkGAN trials collapsed before 500

epochs had passed. While all Vanilla-SLkGANs outperform the DCGAN with gradi-

ent penalty, Lk-SLkGAN-GP only outperforms DCGAN-GP when k = 15. Except for

when k = 7.5, we observe that the Lk-SLkGAN takes less epochs to arrive at its low-

est FID score. Comparing Figures 4.4e and 4.4f, we observe that the Lk-SLkGANs

exhibit more stable FID score trajectories than their respective Vanilla-SLkGANs.

This makes sense, as the LkGAN loss function aims to increase the GAN’s stability

compared to DCGAN [5].



92

Chapter 5

Conclusion

In this thesis, we have introduced Lα-GAN, a dual-objective GAN which uses a

parameterized CPE-based generator loss function in tandem with a canonical dis-

criminator loss function that achieves the same optimum as that of VanillaGAN. We

proved that the minimax game played by Lα-GAN minimizes a Jensen-fα-divergence

that can be directly derived from the generator’s loss function. We applied the Lα-

GAN framework to recover VanillaGAN and (1, α)-GAN. We proposed a translated

version of LkGAN called Shifted-LkGAN (SLkGAN), and showed that the SLkGAN

problem also reduced to the minimization of a Jensen-f -divergence. We conducted

experiments with the three aforementioned Lα-GANs on three image datasets. The

experiments indicated that (1, α)-GAN exhibits better performance than (αD, α)-

GAN when αD > 1. They also showed that the devised SLkGAN system achieves

lower FID scores and more stability with a VanillaGAN discriminator compared with

an LkGAN discriminator.

Future work includes finding more examples of existing GANs that can be recov-

ered by Lα-GAN. One can also try to apply our work to a non-canonical discriminator

loss function (e.g., the LkGAN discriminator loss function with γ ̸= 1 and/or β ̸= 0),
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which could result in the minimization of a different divergence measure. Addition-

ally, one can attempt to apply the Lα-GAN to a newly-designed CPE loss Lα, derive

its generating function for the Jensen-f -divergence, and evaluate the model’s perfor-

mance.
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Appendix A

A.1 Neural Network Architectures

We outline the architecures used for the generator and discriminator. For the MNIST

dataset, we use the architectures of [5]. For the CIFAR-10 and Stacked MNIST

datasets, we base the architectures on [33]. We summarize some aliases for the archi-

tectures in Table A.1. For all models we use a batch size of 100 and noise size of 784

for the generator input.

Alias Definition

FC Fully Connected
UpConv2D Deconvolutional Layer
Conv2D Convolutional Layer

BN Batch Normalization
LeakyReLU Leaky Rectified Linear Unit

Table A.1: Summary of aliases used to describe neural network architectures.

We omit the bias in the convolutional and deconvolutional layers to decrease the

number of parameters being trained, which in turn decreases computation times. We

initialize our kernels using a normal distribution with zero mean and variance 0.01.

We present the MNIST architectures in Tables A.2 and A.3, and the CIFAR-10 and

Stacked MNIST architectures in Tables A.4 and A.5.
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Layer Output Size Kernel Stride BN Activation

Input 28× 28× 1 No
Conv2D 14× 14× 64 5× 5 2 No LeakyReLU(0.3)

Dropout(0.3) No
Conv2D 7× 7× 128 5× 5 2 No LeakyReLU(0.3)

Dropout(0.3) No
FC 1 No Sigmoid

Table A.2: Discriminator architecture for the MNIST dataset.

Layer Output Size Kernel Stride BN Activation

Input 784
FC 7× 7× 256

UpConv2D 7× 7× 128 5× 5 1 Yes LeakyReLU(0.3)
UpConv2D 14× 14× 64 5× 5 2 Yes LeakyReLU(0.3)
UpConv2D 28× 28× 1 5× 5 2 No Tanh

Table A.3: Generator architecture for the MNIST dataset

Layer Output Size Kernel Stride BN Activation

Input 32× 32× 3
Conv2D 16× 16× 128 3× 3 2 No LeakyReLU(0.2)
Conv2D 8× 8× 128 3× 3 2 No LeakyReLU(0.2)
Conv2D 4× 4× 256 3× 3 2 No LeakyReLU(0.2)

Dropout(0.4) No
FC 1 Sigmoid

Table A.4: Discriminator architecture for the CIFAR-10 and Stacked MNIST
datasets.

Layer Output Size Kernel Stride BN Activation

Input 784
FC 4× 4× 256

UpConv2D 8× 8× 128 4× 4 2 Yes LeakyReLU(0.2)
UpConv2D 16× 16× 128 4× 4 2 Yes LeakyReLU(0.2)
UpConv2D 32× 32× 128 4× 4 2 Yes LeakyReLU(0.2)
Conv2D 32× 32× 3 3× 3 1 No Tanh

Table A.5: Generator architecture for the CIFAR-10 and Stacked MNIST datasets.
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A.2 Algorithms

We outline the algorithms used to train our models in Algorithms 4, 5 and 6.

Algorithm 4 Overview of (αD, αG)-GAN training

Require αD, αG, Number of epochs ne, Batch size B, Learning rate η
Initialize Generator G with parameters θG, Discriminator D with parameters
θD.
for i = 1 to ne do

Sample batch of real data x = {x1, ...,xB} from dataset
Sample batch of Gaussian noise vectors z = {z1, ..., zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learn-

ing rate η by descending the gradient:

∇θD

(
− 1

B

B∑
i=1

(−ℓα(1, D(xi))− ℓα(0, D(G(zi))))

)

or update the discriminator’s parameters with a simplified GP:

∇θD

(
− 1

B

B∑
i=1

(−ℓα(1, D(xi))− ℓα(0, D(G(zi))))

+5

(
B∑
i=1

∣∣∣∣∣∣∣∣∇x log

(
D(x)

1−D(x)

) ∣∣∣∣∣∣∣∣2
2

))

Update the generator’s parameters using an Adam optimizer with learning
rate η and descending the gradient:

∇θG

(
1

B

B∑
i=1

ℓα(0, D(G(zi)))

)

end for
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Algorithm 5 Overview of Lk-SLkGAN training

Require k, Number of epochs ne, Batch size B, Learning rate η
Initialize Generator G with parameters θG, Discriminator D with parameters
θD.
for i = 1 to ne do

Sample batch of real data x = {x1, ...,xB} from dataset
Sample batch of Gaussian noise vectors z = {z1, ..., zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learn-

ing rate η by descending the gradient:

∇θD

(
1

B

B∑
i=1

(
1

2
(D(xi)− 1)2 +

1

2
(D(G(zi))

2)

))

or update the discriminator’s parameters with a simplified GP:

∇θD

(
1

B

B∑
i=1

(
1

2
(D(xi)− 1)2 +

1

2
(D(G(zi))

2)

)

+5

(
B∑
i=1

∣∣∣∣∣∣∣∣∇x log

(
D(x)

1−D(x)

) ∣∣∣∣∣∣∣∣2
2

))

Update the generator’s parameters using an Adam optimizer with learning
rate η and descending the gradient:

∇θG

(
1

B

B∑
i=1

1

2
(|1−D(G(zi))|k − 1)

)

end for
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Algorithm 6 Overview of Vanilla-SLkGAN training

Require k, Number of epochs ne, Batch size B, Learning rate η
Initialize Generator G with parameters θG, Discriminator D with parameters
θD.
for i = 1 to ne do

Sample batch of real data x = {x1, ...,xB} from dataset
Sample batch of noise vectors z = {z1, ..., zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learn-

ing rate η by descending the gradient:

∇θD

(
− 1

B

B∑
i=1

(log(D(xi)) + log(1−D(G(zi))))

)

or update the discriminator’s parameters with a simplified (GP):

∇θD

(
− 1

B

B∑
i=1

(log(D(xi)) + log(1−D(G(zi))))

+5

(
B∑
i=1

∣∣∣∣∣∣∣∣∇x log

(
D(x)

1−D(x)

) ∣∣∣∣∣∣∣∣2
2

))

Update the generator’s parameters using an Adam optimizer with learning
rate η and descending the gradient:

∇θG

(
1

B

B∑
i=1

1

2
(|1−D(G(zi))|k − 1)

)

end for

A.3 Additional Results

Supplementary experimental results for Chapter 4 are herein provided.
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[32] Ferdinand Österreicher. On a class of perimeter-type distances of probability

distributions. Kybernetika, 32(4):389–393, 1996.

[33] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. In Proceedings

of the 9th International Conference on Image and Graphics, pages 97–108, 2017.
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