
Channel Optimized Vector Quantization over

Communication Channels with Memory and Feedback

by

Timothy Liu

A thesis submitted to the

Department of Mathematics and Statistics

in conformity with the requirements for

the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

August 2025

Copyright © Timothy Liu, 2025

Abstract

This thesis investigates joint source-channel coding schemes (JSCC) for noisy discrete

channels with memory and noiseless feedback. While feedback does not increase the

capacity of discrete memoryless channels or additive-noise channels with memory,

Amanullah and Salehi have shown that feedback-adapted schemes can outperform

non-adaptive schemes under the same rate in terms of mean square error distortion

or signal-to-noise ratio (SNR). Building on this result, this thesis explores alternative

ways in which channel feedback can enhance such adaptive coding methods. We be-

gin by examining channel-matched tree structured vector quantization (CM-TSVQ)

and generalize its necessary conditions for optimality when adapted to noiseless feed-

back. We then prove that these conditions are equivalent to necessary conditions for

optimality for the adaptive channel optimized vector quantization (ACOVQ) scheme

introduced by Amanullah and Salehi. Leveraging the tree-like structure of ACOVQ,

we study pruning and growing tree algorithms for TSVQ and generalize a growing

algorithm for ACOVQ. Simulation results demonstrate that under the same aver-

age rate constraints, variable-rate ACOVQ outperforms fixed-rate ACOVQ in terms

of SNR. Furthermore, in general the performance SNR gap increases with higher

i

average rates and a more concentrated source distribution.

ii

Acknowledgments

This endeavor would not be possible without the support of my supervisors Professor

Fady Alajaji and Professor Tamás Linder. I am deeply grateful for their invaluable

feedback, patience, and guidance throughout the past 2 years, and for giving me the

opportunity to pursue this degree.

Many of the simulation results in this thesis would not have been obtained with-

out the Center of Advanced Computing (CAC). I would like to thank the CAC for

allowing me to use their resources and for their technical assistance.

I would also like to thank friends and colleagues for their encouragement, our

academic discussions, and for making my time at Queen’s an exciting and fun expe-

rience.

Words cannot express my gratitude to my mother, father, and brother for their

love and support throughout my academic journey. Your constant encouragements

and prayers have sustained me throughout the ups and downs along the way. I could

not reach this point without you.

Above all, I want to thank God for His never-ending love and for giving me the

strength and perseverance to finish this work.

iii

Contents

Abstract i

1 Introduction 1
1.1 Joint Source-Channel Coding . 1
1.2 Literature Review . 3
1.3 Thesis Contributions . 6
1.4 Thesis Outline . 7

2 Preliminaries 9
2.1 Communication Channel Models . 9

2.1.1 Discrete Channels . 9
2.1.2 Discrete Channels with Memory 10

2.2 Source and Channel Encoding . 13
2.3 Joint Source Channel Encoding . 15
2.4 Vector Quantization . 15
2.5 Channel Optimized Vector Quantization 22

2.5.1 Optimality Conditions . 22
2.6 Channel Matched Tree Structured Vector Quantization 26

2.6.1 Two-Stage Optimality Conditions 26
2.6.2 Generalization for Multiple Stages 30
2.6.3 Algorithm for Designing Locally Optimal CM-TSVQs 32

2.7 Adaptive Channel Optimized Vector Quantization 33
2.7.1 Two-Stage Optimality Conditions 33
2.7.2 Generalization for Multiple Stages 39

2.8 Initial Codebook Design . 42

3 Tree Structured Vector Quantization With Noiseless Feedback 45
3.1 Introduction . 45

iv

3.2 Preliminaries . 46
3.2.1 Second Stage Derivations . 46
3.2.2 Generalization for Multiple Stages 49

3.3 Equivalence of ATSVQ and ACOVQ 52
3.3.1 Conditions for Equivalence . 53

3.4 Simulations Results . 56
3.4.1 Channel Properties . 56
3.4.2 ACOVQ and ATSVQ Performance Results 59

4 Variable-Rate Adaptive Tree Structure Vector Quantization 66
4.1 Introduction . 66
4.2 Variable-Rate Quantization . 67
4.3 Optimal Bit Allocation Problem . 68

4.3.1 The Generalized BFOS Algorithm 71
4.4 VR-ACOVQ Bit Allocation Algorithm 72

4.4.1 Algorithm Overview . 72
4.4.2 Steepest Descent Bit Allocation Algorithm 75

4.5 Complexity Analysis . 78
4.5.1 Computational and Storage Complexity of FR-ACOVQ Encoder 78
4.5.2 Encoding Complexity of VR-ACOVQ 82

4.6 Simulation Results . 85
4.6.1 4-Bit VR-ACOVQ Simulation Results 86
4.6.2 6-Bit VR-ACOVQ Simulation Results 87

5 Conclusion 108
5.1 Summary of Work . 108
5.2 Future Work . 109

A Proof for ATSVQ Generalized Centroid Condition Reduction 110

B Additional Simulation Results for VR-ACOVQ and FR-ACOVQ 113

v

Chapter 1

Introduction

1.1 Joint Source-Channel Coding

A fundamental problem in communication engineering is the reliable transmission of

information –– such as text, speech, or images –– over noisy communication chan-

nels, such as satellite or wireless links. In the 1940s, Claude E. Shannon pioneered

the foundations of Information Theory in his paper, “A Mathematical Theory of

Communication” [30], by introducing mathematical models for data sources and

communication channels. Shannon modeled the source as a stochastic process and

mathematically quantified the intrinsic information the source contained as “source

entropy,” and quantified the maximum achievable rate at which information can be

reliably transferred over a channel as its “channel capacity.” Two cornerstone the-

orems emerged from this work: the source coding theorem and the noisy-channel

coding theorem. The source coding theorem states that it is possible for a source to

1

be losslessly compressed at any rate above its entropy; compression below this limit

results in information loss. The channel coding theorem states that it is possible for

a source to be reliably transmitted over a noisy channel at a rate below the channel’s

capacity and conversely that any attempt to transmit a message at a rate above

the channel’s capacity will lead to completely unreliable transmissions. Together,

the source channel and the noisy-channel coding theorems support what is know as

Shannon’s source-channel separation principle, which state that source compression

and channel coding can be done independently without loss of optimality –– provided

sufficient delay and computational resources are available.

The separation principle supports the optimality of tandem coding, a coding

scheme comprising of two independent and separately designed components: the

source codes and channel codes. The source codes removes statistical redundancies

in the source. This however makes the source’s encoded representation susceptible to

channel noise. The channel codes then adds controlled redundancies to the output of

the source encoder, to protect it from channel errors. Tandem coding provides flexi-

bility in designing source and channel codes as they can be interchangeably replaced

without affecting reliability. However, this scheme’s reliability depends on source

and channel codes with arbitrarily large block lengths. Thus, optimal performance

is only guaranteed with infinite delay and computational resources. This can make

tandem encoding infeasible to implement in practical situations. As a result, joint

source-channel coding (JSCC) has emerged as an alternative approach that jointly

designs source and channel encoders and decoders –– or combines each pair into a

single operation –– to achieve better performance under practical constraints.

2

1.2 Literature Review

Various JSCC schemes have been introduced in literature in the past decades. One of

the earliest and well-known JSCC techniques is channel optimized vector quantiza-

tion (COVQ), which jointly designs a vector quantizer and channel code to minimize

the expected distortion at the decoder [11]. However, a drawback of COVQ is scala-

bility: as the codebook size increases, the search complexity and storage requirements

increase, making the COVQ suffer from complexity constraints at high rates [13].

To address this drawback, channel optimized sample adaptive product quantiz-

ers (COSAPQ) [24, 25], channel matched tree structured vector quantization (CM-

TSVQ) [21, 23], and channel matched multi-stage vector quantization (CM-MSVQ)

[21, 23] were proposed as alternative schemes to COVQ aimed to reduce the complex-

ity of COVQ at the cost of acceptable reductions in performance. COSAPQ reduces

the complexity of COVQ by taking a high dimensional source and quantizing subvec-

tors of the source with multiple, lower dimensional COVQs. The COSAPQ codebook

would then be the cartesian product of these lower dimensional COVQ codebooks.

Simulation results show that COSAPQ performs similarly to COVQ (within 0.2-

0.8 dB) despite having an encoding complexity half of COVQ [24]. CM-TSVQ and

CM-MSVQ are multi-stage successive refinement quantization schemes. An initial

approximation is made in the first stage, with subsequent stages refining the residual

expected error [21, 23]. CM-TSVQ reduces the encoding complexity by imposing a

tree structure in its codebook. CM-MSVQ is a more constricted scheme: the scheme

is equivalent to CM-TSVQ with the added constraint that all codebooks for a given

stage are the same. In both cases, the resulting designs are not optimal and in gen-

3

eral perform worse than a full-search COVQ. Simulation results in [21, 23] show that

CM-TSVQ outperforms CM-MSVQ (under the same dimension, rate, and number

of stages) in noiseless channels and that the CM-MSVQ outperforms CM-TSVQ in

channels with high noise. This suggests that CM-TSVQ is more prone to chan-

nel noise as a single decoding error can propagate into further decoding errors for

subsequent stages.

Another JSCC is maximum a posteriori (MAP) decoding. In MAP decoding

JSCC schemes, channel and source properties are given to the decoder. The decoder

observes a sequence of channel outputs and determines the most probable source

sequence. Although the MAP detection can be computationally expensive to imple-

ment, in some cases the MAP decoder can be simplified down to simple rules such

as “believe what you see” or “guess zero (or one) regardless of what you see.” In

[4], the authors derive necessary and sufficient conditions under which these simple

rules are true for a binary symmetric Markov source over a Polya contagion channel

with memory, introduced in [3]. Simulation results in [4] show that the performance

of MAP detection improves with higher source redundancy and channel noise cor-

relation. In [29], MAP decoding for non-binary noise discrete channels with finite

queue based correlated noise was studied and conditions were derived for which

a sequential MAP decoder, with large delay, can be reduced to an instantaneous

symbol-by-symbol MAP decoder.

One challenge in analyzing JSCC systems –– particular those using COVQ –– is

the difficulty in finding an analytical expression for expected distortion, due to the

nonuniform transition probability between channel inputs and outputs. In [34], a

4

tandem VQ and channel coding system is considered with random index assignment.

By taking the expected distortion over all possible index assignments, the expected

distortion of a tandem VQ and channel coding system is decomposed into three

components: distortion from the quantizer, from the source variance, and from the

“scatter factor” of the codebook. Necessary conditions for the optimality of jointly

designed VQs and channel coders under random index assignment are derived in

[34]. Also a high-rate analysis shows a gain of 4.77 dB using the joint source-channel

scheme over the tandem scheme for a two-dimensional Gaussian source.

The study of channels with noiseless feedback is motivated by the fact that such

models capture realistic communication scenarios. For example, uplink communi-

cation between a mobile cell user and a base tower can be paired with a downlink

feedback channel. The base tower is assumed to have significantly more transmission

power and resources, making the assumption of noiseless downlink transmission rea-

sonable, since strong error-correcting codes and/or higher transmission power can be

used. One of the earliest results on the effects of feedback on channel capacity was

derived by Shannon, who proved that the presence of feedback, even if noiseless, does

not increase the capacity of a discrete memoryless channel (DMC) [31]. This result

was then extended in [1] to show that feedback does not increase the capacity of

discrete channels with additive random noise in the most general case. Note that the

Polya contagion channel, which will be considered for the simulations of this thesis,

falls into this class of channels with memory. But under input cost constraints, feed-

back can increase capacity for both discrete additive noise channels [32] and additive

Gaussian noise channels [10]. It can also be used to increase the channel’s zero-error

5

capacity [31]. Note however that channel capacity provides a theoretical limit on the

performance of the best error correcting codes under sufficiently long block lengths.

In practice, coding schemes use finite-block lengths. Thus even if feedback cannot

increase capacity for certain channels, it can still yield significant performance im-

provements for finite coding lengths. Indeed, results in [5] show that JSCC schemes

that use feedback perform better than schemes that do not over the memoryless

binary symmetric channel. Simulation results in [26] show that the adaptive scheme

introduced in [5] outperforms channel optimized scalar quantization without feed-

back when transmitting over the Polya contagion channel with a noiseless feedback

link. Although channel memory is generally seen as an unfavorable condition, since

currently deployed error-correcting codes cannot properly handle long error bursts

that typically occur in fading channels, these simulations show that the average dis-

tortion decreases the more correlated the channel noise is. This indicates that the

adaptive scheme effectively exploits channel memory.

1.3 Thesis Contributions

The contributions of this thesis are as follows:

1. The necessary conditions for optimality of the CM-TSVQ scheme of [21] are

generalized to adapt to noiseless feedback from a discrete channel with memory.

We then show that these necessary conditions are equivalent to those of the

adaptive COVQ scheme in [5] and show that, with equivalent initializations,

the performance of the adaptive COVQ scheme in [5] match the performance of

6

the derived adaptive CM-TSVQ scheme. This result helps unify two previously

distinct JSCC approaches.

2. We introduce a variable-rate version of the ACOVQ, by generalizing a tree

pruning algorithm introduced in [27] to the ACOVQ scheme. Simulations are

then systematically carried to compare the performance of the two schemes

under the same average rate constraints. The simulation code is available at:

https://github.com/timothyliutl/VR-ACOVQ.git. We show a significant

increase in performance for the variable-rate ACOVQ compared to its fixed-

rate counterpart comes, albeit with an increased encoding complexity. We also

show that as the channel noise becomes more correlated, the performance for

variable-rate ACOVQ increases, indicating that the scheme is able to effectively

exploit channel memory.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 introduces various discrete channel models with memory. We then

study vector quantization (VQ) and the necessary conditions for optimal VQs

as well as an algorithm for designing locally optimal VQs. Afterwards, we intro-

duce various discrete noise communication channel models and JSCC schemes

–– COVQ, CM-TSVQ, and ACOVQ –– as well as their respective necessary

conditions for optimality.

7

https://github.com/timothyliutl/VR-ACOVQ.git

• Chapter 3 presents generalized necessary conditions for optimality for the CM-

TSVQ when adapted to noiseless feedback. We then prove that the conditions

are equivalent to those of ACOVQ and validate this result through simulation.

• In Chapter 4, we study various variable rate tree structured schemes for VQs.

We then extend the pruning method introduced in [27] for the design of variable

rate ACOVQ and compare the encoding complexity and performance of fixed-

rate and variable rate ACOVQ.

• Chapter 5 concludes the thesis with a summary of main results and a discussion

of possible directions for future work.

8

Chapter 2

Preliminaries

2.1 Communication Channel Models

2.1.1 Discrete Channels

A discrete communication channel can be characterized by input X with finite alpha-

bet X , output Y with finite alphabet Y , and a sequence of i-dimensional transition

probabilities

{P (Y i = yi|X i = xi)}∞i=1 (2.1)

for i ≥ 1, where xi = (x1, . . . , xi) ∈ X i and yi = (y1, . . . , yi) ∈ Y i. A discrete channel

is called a discrete memoryless channel (DMC) if the following property holds:

P (Y n = yn|Xn = xn) =
n∏

i=1

P (Yi = yi|Xi = xi) (2.2)

9

for all xn ∈ X n and yn ∈ Yn. This property implies that the transition at time

i only depends on the input xi and does not depend on the previous input and

output sequences. A simple example of a discrete memoryless channel is the binary

symmetric channel (BSC). In this model we have that X = {0, 1},Y = {0, 1} and

P (Y = 1|X = 0) = P (Y = 0|X = 1) = ε, P (Y = 1|X = 1) = P (Y = 0|X = 0) =

1− ε, where 0 ≤ ε ≤ 1 is the cross-over probability.

2.1.2 Discrete Channels with Memory

The memoryless assumption allows for a simple transition probability calculations;

however, it does not accurately reflect how errors in real-world communication chan-

nel often come in bursts (such as in wireless fading channels). Here we describe a

few widely used discrete channel models with memory.

The Gilbert-Elliot channel (GEC) extends the BSC by incorporating a time vary-

ing cross-over probability governed by a first-order Markov process. The Markov

process contains 2 states: a “good” state, in which ε is low, and a “bad” state, in

which ε is high. This model does account for the burst-like behaviour of real-world

models. However, the resulting noise process is a hidden Markov process and hence

hard to analyze since its transition distribution and entropy rate (and resulting GEC

capacity) do not admit simple analytical expressions.

Another model is the binary additive Markov noise channel model whose output

Yi at time i ≥ 1 is given by Yi = Xi ⊕ Zi, where ⊕ denotes addition modulo-2 and

{Zi}∞i=1 is a binary (i.e., with alphabet Z = {0, 1}) Markov noise process of memory

order M . While this model has a closed form capacity formula, its noise transition

10

matrix, has size 2M×2M , which makes it computationally infeasible for large memory

values M .

The Polya contagion model with finite memory, proposed in [3], is a specific case

of the binary additive Markov noise channel model. Here we have that for Markov

memory M , cross-over probability ε, and memory δ,

P (Zi = 1|Zi−1 = ei−1, . . . ,Z1 = e1) (2.3)

= P (Zi = 1|Zi−1 = ei−1, . . . , Zi−M = ei−M) (2.4)

=


ε+

∑i−1
j=i−M ejδ

1+Mδ
, i ≥ M + 1

ε+
∑i−1

j=1 ejδ

1+(i−1)δ
, i ≤ M

(2.5)

where ei ∈ {0, 1}. In this model, Zi only depends on the sum of the previous M noise

samples. Here δ denotes the correlation in {Zi}∞i=1 –– the higher δ is the more likely

the noise will occur in bursts. Note that when there is no noise correlation (δ = 0)

the model reduces down to the memoryless BSC with crossover probability ε.

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be the input and output block,

respectively, such that Z = X ⊕ Y = (X1 ⊕ Y1, . . . , Xn ⊕ Yn). For cases where

n ≤ M , the channel block transition probability is [3]

P (Y = y|X = x) = P (Z = (e1, . . . , en)) (2.6)

= P (Z1 = e1)
n∏

i=2

P (Zn = en|Zn−1 = en−1, . . . , Z1 = e1) (2.7)

=

∏sn−1
i=0 (ε+ iδ)

∏n−sn−1
j=0 (1− ε+ jδ)∏n−1

l=1 (1 + lδ)
, (2.8)

11

where ei = xi⊕yi and sn = e1+e2+ . . .+en. For cases where n ≥ M+1 the channel

block transition probability is [3]

P (Y = y|X = x) = L

n∏
i=M+1

(
ε+ s̃i−1δ

1 +Mδ

)ei (1− ε+ (M − s̃i−1)δ

1 +Mδ

)1−ei

(2.9)

where s̃i−1 = ei−M + . . .+ ei−1 + ei−1, and

L =

∏sM−1
i=0 (ε+ iδ)

∏n−sM−1
j=0 (1− ε+ jδ)∏M−1

l=1 (1 + lδ)
. (2.10)

Throughout this thesis, only Polya contagion channels with Markov memory of 1

(i.e.,M = 1) will be considered. For M = 1, the one-step transition probability

matrix of {Zi}∞i=1 is given by

P (Zi = 0|Zi−1 = 0) P (Zi = 1|Zi−1 = 0)

P (Zi = 0|Zi−1 = 1) P (Zi = 1|Zi−1 = 1)

 =
1

1 + δ

1− ε+ δ ε

1− ε ε+ δ

 . (2.11)

The capacity of the Polya contagion channel with Markov memory of one (i.e., M =

1) is shown in [3] to be given by

C = 1−H(Z2|Z1) (2.12)

= 1−
(
ε× hb

(
ε+ δ

1 + δ

)
+ (1− ε)× hb

(
ε

1 + δ

))
(2.13)

where hb(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function and

H(Z2|Z1) = −
∑

a∈Z
∑

b∈Z P (Z1 = a, Z2 = b) log2 P (Z2 = b|Z1 = a) is the condi-

tional entropy of Z2 given Z1.

12

2.2 Source and Channel Encoding

The goal of source encoding is to represent source samples using fewer bits than their

original representation, before transmission through a channel. There are two types

of source encoding: lossless encoding and lossy encoding. In lossless encoding, statis-

tical redundancies embodied by the source entropy are removed, allowing the original

sample to be perfectly recovered from its compressed representation described at a

rate above entropy. This redundancy can come from memory in the source and from

the non-uniformity of the source distribution and can be mathematically quantified.

In lossy encoding, both non-statistical and statistical redundancies are reduced so

that the compressed representation is described at a rate below entropy. In this

case, the original sample cannot be perfectly recovered from the compressed repre-

sentation, but this process typically results in smaller compression rates compared

to lossless encoding (and hence higher compression efficiency).

We will first mathematically quantify the redundancies in lossless encoding. Shan-

non quantified the information gained when observing an random variable as entropy.

For a random variable X with a discrete finite alphabet X , the entropy of X is defined

as

H(X) := −
∑
x∈X

P (X = x) · log2 P (X = x) (bits). (2.14)

Note that entropy is maximized when the distribution of X is uniform. For a stochas-

13

tic process {Xi}∞i=1, the entropy rate is defined as

H(X) := lim
n→∞

1

n
H(Xn, . . . , X1), (2.15)

where

H(Xn, . . . , X1) :=

−
∑

(x1,...,xn)∈Xn

P (Xn = xn, . . . , X1 = x1) · log2 P (Xn = xn, . . . , X1 = x1). (2.16)

When {X}∞i=1 is an independently and identically distributed process, H(X) =

H(X1). A uniform and memoryless source will achieve the highest entropy rate

of H(X) = log2 |X |, where |X | denotes the number of elements in X . According to

Shannon’s source coding theorem, a stationary ergodic source {X}∞i=1 can be encoded

with a rate of H(X) bits per source symbol losslessly for a sufficiently long block-

length. Further, the theorem states that any block codes with a rate less than H(X)

bits per source symbol cannot encode the source with an arbitrarily small probability

of decoding error. The redundancy can then be quantified as the difference between

log2 |X |, the rate for uncompressed source representation, and H(X). We then have

the following,

ρt := log2 |X | −H(X) (2.17)

ρd := log2 |X | −H(X1) (2.18)

ρm := H(X1)−H(X), (2.19)

14

where ρt represents the total redundancy, ρd represents the redundancy due to the

nonuniformity of the distribution of X, and ρm represents the redundancy due to the

statistical memory of the source. Note that ρt = ρd + ρm.

2.3 Joint Source Channel Encoding

In his renowned paper [30], Shannon, proved that channel coding does not depend

on the source it is transmitting, as long as the rate of the channel code transmitted

does not exceed the channel’s capacity. Therefore, channel codes can be created

independently from source codes and still achieve asymptotically error-free perfor-

mances. However, this proof assumes block-lengths of infinite lengths in order for

this to be achieved, introducing large delay and requiring large processing power to

encode and decode. In cases where modest amounts of distortion is allowed and

minimal delay is needed, it is favorable to combine channel and source encoding in a

low-delay joint source encoder. We next examine different lossy joint source-coding

schemes for effective quantization and transmission of real-valued sources over noisy

channels. Before doing so, we first describe the vector quantization lossy source

coding method.

2.4 Vector Quantization

Conceptually, a vector quantizer (VQ) is a function that takes in a vector of source

samples and outputs the nearest approximation from a finite set of predetermined

vectors. This finite set is called the codebook and the elements in this set are called

15

reproduction codevectors. In general, the input space is partitioned into encoding

regions, in which values within the same encoding region share the same vector

quantizer output. Let Q represent a vector quantizer of dimension k and size N .

Then Q is the function,

Q : Rk → C, (2.20)

where C = {c1, . . . , cN} ⊆ Rk, which assumes that the support of the source vector

u is Rk. Here C is called the codebook and ci ∈ Rk, for i ∈ {0, . . . , N −1}, are called

codevectors. Every codevector ci has a corresponding encoding region given by

Si :=
{
u ∈ Rk : Q(u) = ci

}
, (2.21)

such that
⋃N−1

i=0 Si = Rk and Si ∩ Sj = ∅ for i 6= j ∈ {0, . . . , N − 1}. We will denote

the set of encoding regions or partition by S = {S0, . . . , SN−1}. The quantizer Q

can be represented as the composition of two functions: the encoder and decoder,

denoted by E and D, respectively. The encoder and decoder are defined as:

E : Rk → {0, . . . , N − 1} s.t. E(u) = i ⇐⇒ u ∈ Si (2.22)

D : {0, . . . , N − 1} → C s.t. D(i) = ci, (2.23)

such that Q(u) = D ◦ E(u), for all u ∈ Rk. The encoder can be defined by the

partition S and the decoder likewise can be defined by the codebook C. In general,

the encoding regions and codevectors are selected to minimize the expected distortion

16

of Q defined as

E[d(U, Q(U))], (2.24)

where d : Rk × Rk → [0,∞) is called a distortion measure. For this thesis, the

square error distortion measure will be used, which is given by the squared Euclidean

distance ‖·‖2:

d(x,y) = ‖x− y‖2 (2.25)

=
k∑

i=1

(xi − yi)
2, x,y ∈ Rk, (2.26)

where xi, yi are the ith component of vectors x,y, respectively. For a codebook C

and partition P , the expected distortion of Q is given by

E[d(U, Q(U))] =
N−1∑
i=0

∫
Si

fU(u)d(u, ci)du (2.27)

=
N−1∑
i=0

∫
Si

fU(u) ‖u− ci‖2 du, (2.28)

where fU(u) is the probability density function of the source. Let QN denote the

family of all N−level quantizers (quantizers where |C| = N). An N -level quantizer

Q∗ ∈ QN is called an optimal quantizer if it satisfies

Q∗ = arg min
Q∈Qn

E[d(U, Q(U))]. (2.29)

17

A practical challenge is determining an optimal quantizer - that is, determining

the optimal codebook and partition that define it. In general, the interdependence

between the codebook (decoder) and the partition (encoder) makes simultaneous

optimization difficult. As a result, it is advantageous to decompose the problem and

alternately optimize the encoder or decoder while holding the other fixed. There

are two necessary conditions for a quantizer to be optimal called the nearest neigh-

bor condition and the centroid condition. The centroid condition states that for a

fixed partition S = {S0, . . . , SN−1}, the optimal codevectors (that minimize expected

distortion) satisfy [15]

ci = arg min
ω∈Rk

E[d(U,ω)|U ∈ Si], i ∈ {0, . . . , N − 1}. (2.30)

In other words, the decoder of an optimal quantizer must assign each region Si a

codevector ci ∈ Rk that minimizes the expected distortion for the source U condi-

tioned on U ∈ Si. Under mean squared distortion, the centroid condition reduces

down to

ci = E[U|U ∈ Si] (2.31)

=

∫
Si
ufU(u)du∫

Si
fU(u)du

, i ∈ {0, . . . , N − 1}. (2.32)

18

The nearest neighbor condition states that for a fixed codebook C = {c0, . . . , cN−1}

the optimal encoding regions satisfy [15]

Si =
{
u ∈ Rk : d(u, ci) ≤ d(u, cj), j ∈ {0, . . . , N − 1}

}
,

i ∈ {0, . . . , N − 1}. (2.33)

In other words, the encoder of an optimal quantizer maps each source vector to the

codeword that minimizes distortion. Equivalently the optimal encoder E∗ is given

by

E∗(u) = i ⇐⇒ d(u, ci) ≤ d(u, cj), j ∈ {0, . . . , N − 1}, (2.34)

for fixed codebook C, where i ∈ {0, 1, . . . , N − 1}. Note that for a given source

vector, the indices that correspond to the minimum distortion may not be unique

(i.e., a source vector may be equidistant from 2 different centroids). In these cases,

the source vector can be encoded arbitrarily from the minima without changing the

expected distortion of the quantizer [15].

While these conditions are defined for a continuous random variable with a den-

sity function, in practice, the density function of the source is not always available.

In these cases, a training set can be used with slight modifications to the nearest

neighbor and centroid conditions. Let A = (a0, a1, . . . , aη) ⊆ Rk be a training set

of size η that are independenty and identically drawn from the random variable U.

Here we approximate the distribution of U with discrete random variable with prob-

ability 1
η

for each value in the sequence A. Thus, the nearest neighbor condition can

19

be expressed as

Si = {a ∈ A : d(a, ci) ≤ d(a, cj), j ∈ {0, . . . , N − 1}} , i ∈ {0, . . . , N − 1}.

(2.35)

The centroid condition can also be modified by replacing the integral with summa-

tions as follows:

E[d(U, Q(U))] =
1

η

N−1∑
i=0

∑
a∈Si

‖a− ci‖2 . (2.36)

A vector quantizer that satisfies both the centroid and nearest neighbor condition

is called a Lloyd-Max quantizer. Note that every optimal quantizer (i.e., a quantizer

that minimizes the distortion for a given N) is a Lloyd-Max quantizer, but a Lloyd-

Max quantizer is not necessarily optimal. A natural question that follows is how do

we find a quantizer with encoding regions and a codebook that satisfy these necessary

optimality conditions. In general, it is difficult to jointly optimize the encoder and

decoder; however, if either the encoder or decoder is fixed, the other component can

be easily optimized by applying the conditions in (2.30) or (2.33). Given an initial

encoder and decoder, a simple algorithm to find a Lloyd-Max quantizer is to suc-

cessively fix the encoder and optimize the decoder and vise-versa until the expected

distortion of the quantizer converges. This algorithm is called the LBG-Algorithm

[18], which is the generalization of Lloyd’s algorithm [19] from scalar quantization

(when k = 1) to vector quantization (when k > 1). Details of the LBG-algorithm

are shown below.

20

1. Let D(m), Q(m) represent the expected distortion and quantizer at the m-th

iteration, respectively. Set m = 0 and D(m) = ∞. Choose an initial S(m) =

{S(m)
0 , . . . , S

(m)
N−1}, C(m) = {c(m)

0 , . . . , c
(m)
N−1}, and T . Here S(m), C(m) represents

the m-th iteration of the encoding regions and codebook, respectively.

2. Using the fixed codebook C(m), for all i ∈ {0, . . . , N − 1}, set S
(m+1)
i = {u ∈

Rk : d(u, c
(m)
i) ≤ d(u, c

(m)
j), j ∈ {0, . . . , N − 1}}.

3. Using the fixed encoding regions S(m+1), set c
(m+1)
i = E[U|U ∈ Si].

4. Using C(m+1) and S(m+1), calculate D(m+1) = E[d(U, Q(m+1)(U))]. If

D(m) −D(m+1)

D(m)
< T,

then return C(m+1) and S(m+1). Otherwise, set m = m+ 1 and go to step 2.

The distortion in the LBG-algorithm is monotonically decreasing for each iter-

ation and eventually converges. The produced quantizer will satisfy the centroid

and nearest neighbor conditions of an optimal quantizer, but it is not necessarily

globally optimal. However, [14] shows that in cases where the source probability

density function is log concave, these conditions become sufficient for an optimal

quantizer. Therefore, Lloyd-Max quantizers are optimal for distributions such as

Gaussian, Laplacian and uniform distributions. Further, the initial choice of the

codebook and encoding regions plays a large role in whether the LBG-algorithm

converges to a “bad” local minimum. The LBG-algorithm assumes that all source

values are encoded without noise. In the presence of channel noise, the performance

21

of the LBG quantizer degrades significantly with increasing noise. However, the near-

est neighbor and centroid conditions can be modified to make the quantizer more

robust to channel noise.

2.5 Channel Optimized Vector Quantization

Figure 2.1: A block diagram for a COVQ communication system.

The channel optimized vector quantization (COVQ) scheme, introduced among oth-

ers in [11] [13], generalizes the nearest neighbor and centroid condition of the LBG-

algorithm to account for channel noise. Consider the communication system in Figure

2.1. A COVQ is a VQ that accounts for a noisy channel between the encoder and

decoder. In this scheme, knowledge of the channel’s block transition probability and

memory is assumed. However, when the memory in the channel is not known, an

interleaver can be used to effectively turn the channel into a memoryless channel.

In [22], it was shown that the channel memory can be exploited to improve the per-

formance of a COVQ and that in general the COVQ outperforms a COVQ with an

interleaver.

2.5.1 Optimality Conditions

Similar to a VQ, a COVQ will have a codebook and a set of encoding regions denoted

by C and S, respectively. Let E and D represent the encoder and decoder of the

22

COVQ, respectively, and let I = {0, . . . , N − 1} represent the channel index set. In

this system we have that the encoder takes in a source vector u ∈ Rk and outputs

an index x ∈ I. Afterwards the index x is transmitted through a noisy channel and

the index y ∈ I is received by the decoder. The decoder then takes in the index y

and outputs the corresponding value from the codebook cy. Here and throughout

the thesis, we assume that the channel has identical input and output alphabets

(i.e., X = Y = I). The expected distortion of this communication system is given

by

D =

∫
Rk

∑
y∈I

∑
x∈I

P (Y = y|X = x) ‖u− cy‖2 1{u∈Sx}fU(u)du (2.37)

=
∑
x∈I

∫
Sx

[∑
y∈I

P (Y = y|X = x) ‖u− cy‖2
]
fU(u)du (2.38)

where 1A is the indicator function of event A. The rate of the COVQ is defined as

R = 1
k
log2N bits per source sample. The term in brackets is called the modified

distortion and is denoted as

d′ : Rk × I → R (2.39)

d′(u, x) =
∑
y∈I

P (Y = y|X = x) ‖u− cy‖2 . (2.40)

The modified distortion describes the expected distortion for a source vector u when

encoded with a given index x. We can see in (2.38) that the distortion expression is

analogous to that for VQ in (2.27) with distortion being replaced with the modified

distortion. Note that the modified distortion is a generalization of the distortion in

23

the VQ case: when the channel is noiseless, it reduces to the square error distortion.

The generalized nearest neighbor condition for the COVQ states that for a fixed

codebook C an optimal COVQ will have a partition that satisfy [11]

Sx = {u ∈ Rk : d′(u, x) ≤ d′(u, x′), x′ ∈ I}, x ∈ I. (2.41)

The proof for this statement is as follows. Let Q denote the family of N -level, k-

dimensional quantizers. Let Q ∈ Q be an arbitrary quantizer with partition S and

codebook C. We then have that

E[d(U, Q(U))] =
∑
x∈I

∫
Sx

[∑
y∈I

P (Y = y|X = x) ‖u− cy‖2
]
fU(u)du (2.42)

=
∑
x∈I

∫
Sx

d′(u, x)fU(u)du (2.43)

≥
∫
Rk

argmin
x′∈I

d′(u, x′)fU(u)du (2.44)

= E[d(U, Q′(U))], (2.45)

where Q′ ∈ Q is a quantizer that shares the same codebook as Q and satisfies the

COVQ nearest neighbor condition. Hence it is necessary for an optimal COVQ

to satisfy the generalized nearest neighbor condition. The centroid condition for the

COVQ states that for a fixed partition S, the corresponding optimal centroids satisfy

cy = arg min
ω∈Rk

E[d(U,ω)|Y = y]. (2.46)

24

The proof for this statement is as follows. Let Q denote the family of N -level,

k-dimensional quantizers. We have that

E[d(U, Q(U))] =
∑
y∈I

E[d(U, Q(U))|Y = y]P (Y = y) (2.47)

=
∑
y∈I

E[d(U, cy)|Y = y]P (Y = y) (2.48)

≥
∑
y∈I

arg min
ω∈Rk

E[d(U,ω)|Y = y]P (Y = y) (2.49)

= E[d(U, Q′(U))], (2.50)

where Q′ ∈ Q is a quantizer that shares the same partition as Q and satisfies the

generalized centroid condition. Hence it is necessary for an optimal COVQ to satisfy

the centroid condition. Under square error distortion, the COVQ centroid condition

becomes

cy = E[U|Y = y]. (2.51)

This is similar to the VQ case, with the difference being that the distortion is con-

ditioned on the received index at the channel output rather than the encoded index.

Note that in cases of high channel noise and a high rate for the COVQ, empty

encoding regions may be present when applying the generalized LBG-algorithm.

25

2.6 Channel Matched Tree Structured Vector Quan-

tization

In this section, we introduce the Channel Matched Tree Structured Vector Quantiza-

tion (CM-TSVQ) scheme, proposed in [23]. The CM-TSVQ is a multistage, residual

quantization scheme, designed to reduce the encoding complexity of a COVQ with

the tradeoff of decreased performance and increased memory complexity compared

to a full-search COVQ. Let b = (b1, . . . , bn) denote the bit allocation for an n-stage

CM-TSVQ, such that bi represents the number of bits allocated for the i-th stage

for all i ∈ {1, . . . n}. The overall rate of the quantizer is 1
k

∑n
i=1 bi bits per source

sample. Let (N1, . . . , Nn) = (2b1 , . . . , 2bn) denote the number of codewords in each

stage quantizer. The first stage of the CM-TSVQ is a COVQ without any modifi-

cations. The second and subsequent stages are COVQs optimized to quantize the

quantization error resultant from all previous stages. All quantized values from the

codebook of each stage are then added together for the reconstructed vector.

2.6.1 Two-Stage Optimality Conditions

Consider a two-stage CM-TSVQ as depicted in Figure 2.2, with bit allocation b =

(b1, b2), where b1 and b2 correspond to the bits allocated to the first stage and second

stage, respectively. Set N1 = 2b1 and N2 = 2b2 . Let S(1) = {S(1)
0 , . . . , S

(1)
N1−1} and

C(1) = {c(1)0 , . . . , c
(1)
N1−1} denote the encoding regions and codebook for the first stage,

respectively. Also, let E (1) and D(1) be the encoder and decoder, respectively, for the

first stage, and let I(1) = {0, . . . , N1 − 1} and I(2) = {0, . . . , N2 − 1}. The encoder

26

Figure 2.2: Block diagram for a two-stage CM-TSVQ.

and decoder at the second stage can be expressed as the following functions:

E (2) : Rk × I(1) → I(2) (2.52)

D(2) : I(1) × I(2) → Rk. (2.53)

Unlike COVQ, the encoder in this case takes in the source value and the encoded index

in the first stage (x1). Further, the decoder takes in both the first and second stage

received channel indices (y1 and y2). In Figure 2.2, x1 and x2 are sent through the

channel one after the other. The channel can be represented as having identical input

and output alphabets given by I(1) × I(2) and having block transition probability

for receiving (y1, y2) given that (x1, x2) was sent given by P (Y2 = y2, Y1 = y1|X2 =

x2, X1 = x1). We then have that the expected quantization error for source value

u ∈ Rk given that u ∈ S
(1)
x1 for x1 ∈ I is

d′2(u;x1,x2) = E

[∥∥∥u− (c
(1)
Y1

+ c
(2)
Y2|Y1

)
∥∥∥2 |X1 = x1, X2 = x2

]
(2.54)

=
∑

y1∈I(1)

∑
y2∈I(2)

P (Y2 = y2, Y1 = y1|X2 = x2, X1 = x1)

∥∥∥∥u− c(1)y1
− c

(2)
y2|y1

∥∥∥∥2.
(2.55)

27

Note that d′2 is a generalization of the modified distortion from the stage one case

for the stage two case. Let S(2)
x1 = {S(2)

0|x1
, . . . , S

(2)
N2−1|x1

} denote the set of encoding

regions used in the second stage quantizer given that the inputted source value was

encoded with x1 ∈ I(1) in the first stage (i.e., S(2)
x1 is the partition that further refines

the encoding region S
(1)
x1). Let C(2)

y1 = {c(2)0|y1 , . . . , c
(2)
N2−1|y1} be the codebook for the

second stage when y1 ∈ I(1) is received in the first stage. The expected distortion of

the second stage quantizer conditioned on X1 = x1 is

E[d(U, c
(1)
Y1

+ c
(2)
Y2|Y1

)|X1 = x1] =
∑

y1∈I(1)

∑
x2,y2∈I(2)

P (Y2 = y2, Y1 = y1|X2 = x2, X1 = x1)

×
∫
S
(2)
x2|x1

∥∥∥u− (c(1)y1
+ c

(2)
y2|y1)

∥∥∥2 fU(u) du.
(2.56)

As a result, the overall distortion of the two stage quantizer is given by

E[d(U, c
(1)
Y1

+ c
(2)
Y2|Y1

)] =
∑

y1,x1∈I(1)

∑
x2,y2∈I(2)

P (Y2 = y2, Y1 = y1|X2 = x2, X1 = x1)

×
∫
S
(2)
x2|x1

∥∥∥u− (c(1)y1
+ c

(2)
y2|y1)

∥∥∥2 fU(u)du.
(2.57)

Note that, when deriving the necessary conditions for the optimal second stage quan-

tizer, we will assume that S(1) and C(1) are fixed. To derive the nearest neighbor and

centroid conditions, the expected distortion of the second stage quantizer Q(2) ∈ QN2

28

can be expressed as [12]

E[d(U,Q(2)(U))]

=
∑

x1∈I(1)

∑
x2∈I(2)

∫
S
(2)
x2|x1

d′2(u;x2, x1)fU(u)du (2.58)

=
∑

y1∈I(1)

∑
y2∈I(2)

E[d(U, c(1)y1
+ c

(2)
y2|y1)|Y1 = y1, Y2 = y2]× P (Y1 = y1, Y2 = y2).

(2.59)

The identities in (2.58) and (2.59) are analogous to those in (2.43) and (2.48), respec-

tively. Following a similar proof, we can derive the following optimality conditions

for the COVQ. The nearest neighbor condition for the second stage encoding regions

for fixed codebook C(2)
y1 for all y1 ∈ I(1) is [12]

Sx2|x1 = {u ∈ Rk : d′2(u;x1, x2) ≤ d′2(u;x1, x
′
2), x′

2 ∈ I(2)}, x2 ∈ I(2). (2.60)

The centroid condition for the second stage codebook given fixed partition S(2)
x1 for

all x1 ∈ I(1) is

c
(2)
y2|y1 = arg min

ω∈Rk
E[d(U, c

(1)
Y1

+ ω)|Y1 = y1], y1 ∈ I(1), y2 ∈ I(2). (2.61)

Under the square error distortion, the centroid condition reduces to

c
(2)
y2|y1 = E[U− c(1)y1

|Y2 = y2, Y1 = y1] (2.62)

= E[U|Y2 = y2, Y1 = y1]− c(1)y1
, y1 ∈ I(1), y2 ∈ I(2). (2.63)

29

2.6.2 Generalization for Multiple Stages

We next consider optimality conditions for CM-TSVQ for multiple stages greater

than 2. Let n be the number of stages in the CM-TSVQ and let b = (b1, . . . , bn)

be the bit allocation vector, such that bj bits are allocated for the j-th stage for

all j ∈ {1, . . . , n}. Let C(i)
yi−1,...,y1 be the codebook for the i-th stage used when

the sequence (y1, . . . , yi−1) is received from the previous i − 1 stages. Let S(i)
xi−1,...,x1

be the set of encoding regions for the i-th stage used for source values encoded

with the sequence (x1, . . . , xi−1) in the previous i − 1 stages. For brevity, let X i =

(Xi, . . . , X1), Y
i = (Yi, . . . , Y1) and let xi = (xi, . . . , x1), y

i = (yi, . . . , y1). Further,

we will denote I i = I(1)×· · ·×I(i), where I(j) = {0, 1, . . . , 2bj −1} for j ∈ {1, . . . , n},

and û(i) = c
(1)
y1 + c

(2)
y2|y1 + · · · + c

(i)

yi|yi−1 . The encoders and decoders at stage i of the

CM-TSVQ can be described by the following functions,

E (i) : Rk × I i−1 → I(i) (2.64)

D(i) : I i → Rk. (2.65)

Specifically, at stage i, the encoder takes in the source vector and the previous i− 1

encoding indices and outputs a channel index. The decoder takes in all received

channel indices and outputs the reconstructed value û(i) for the source vector u.

The overall expected distortion of the CM-TSVQ at stage i is given by

D(i) =
∑
xi∈Ii

∑
yi∈Ii

P (Y i = yi|X i = xi)

∫
S
(i)

xi|xi−1

∥∥u− û(i)
∥∥2 fU(u)du. (2.66)

30

Let

d′i(u;x
i) =

∑
xi∈Ii

∑
yi∈Ii

P (Y i = yi|X i = xi)

∥∥∥∥u− cy1 − cy2|y1 − · · · − cyi|yi−1

∥∥∥∥2 (2.67)

denote the expected distortion when source vector u is quantized with the sequence

xi, . . . , x1. Note that when describing the necessary conditions for optimality in the

ith stage, we assume that all partitions and codebooks from the previous i−1 stages

are fixed. The nearest neighbor condition for the i-th stage encoding region given

fixed codebook C(i)

yi
for all yi ∈ I i is

S
(i)
xi|xi−1,...,x1

= {u ∈ Rk : d′i(u;xi, xi−1, . . . , x1) ≤ d′i(u;x
′
i, xi−1, . . . , x1), x′

i ∈ I(i)}

(2.68)

for (xi, . . . , x1) ∈ I(i) × · · · × I(1). The centroid condition given fixed partition S(i)

xi−1

for all xi−1 ∈ I i−1 is

c
(i)

yi|yi−1 = arg min
ω∈Rk

E[d(U, c
(1)
Y1

+ c
(2)
Y2|Y1

+ · · ·+ ω)|Y i = yi], yi ∈ I i (2.69)

which under the square error distortion, reduces to

c
(i)

yi|yi−1 = E[U|Y i = yi]− c(1)y1
− c

(2)
y2|y1 − · · · − c

(i−1)

yi−1|yi−2 , yi ∈ I i. (2.70)

As pointed out, for source value u and received sequences yi, . . . , y1, the reconstructed

codeword from the decoder is û(i) = c
(1)
y1 + c

(2)
y2|y1 + · · ·+ c

(i)

yi|yi−1 .

31

2.6.3 Algorithm for Designing Locally Optimal CM-TSVQs

Given the optimality conditions for the CM-TSVQ, a natural question is how to

design an optimal CM-TSVQ. One method for finding locally optimal quantizers

follows from the LBG-algorithm, in which the generalized nearest neighbor and cen-

troid conditions are applied successively until convergence. Below is a generalization

of the LBG-algorithm for CM-TSVQs at stage i, given all codebooks and encoding

regions in stages 1, . . . , i − 1. Note that at stage i all the codebooks and partitions

from the previous i− 1 stages are fixed.

1. Given S(j)

xj−1 and C(j)

yj−1 for all j = 1, . . . , i− 1, let D(m) represent the distortion

at the m-th iteration respectively. Set m = 0 and D(m) = ∞. Choose an initial

S(i,m)

xi−1 , C(i,m)

yi−1 , and T . For this algorithm let S(i,m)

xi−1 , C(i,m)

yi−1 represent the m-th

iteration of the i-th stage encoding regions and codebook respectively.

2. Using C(i,m)

yi−1 , for all xi ∈ I(i) set S(i,m+1)

xi−1 = {u ∈ Rk : d′i(u;xi, xi−1, . . . , x1) ≤

d′i(u;x
′
i, xi−1, . . . , x1), x′

i ∈ I(i)}.

3. Using S(i,m+1)

xi−1 , set C(i,m+1)

yi−1 = E[U|Y i = yi]− c
(1)
y1 − c

(2)
y2|y1 − · · · − c

(i−1)

yi−1|yi−2 .

4. Set m = m + 1. Calculate D(m+1). If D(m)−D(m+1)

D(m) ≥ T , then go to step 2.

Otherwise, return S(i,m)

xi−1 , C(i,m)

yi−1 .

32

2.7 Adaptive Channel Optimized Vector Quanti-

zation

In this section, we describe the Adaptive Channel Optimized Vector Quantization

(ACOVQ) method, proposed in [5], for channels with feedback. The difference be-

tween the ACOVQ and CM-TSVQ schemes is that in the ACOVQ the encoder has

access to a noiseless feedback link to the channel outputs as well as the previous

encoding indices. This feedback is then used to update the source distribution by

calculating the posterior distribution. This posterior distribution is then treated as

a new source distribution and refined further by another quantizer. Additionally in

this scheme, only the codebook in the final stage is used to reconstruct the source

vector, unlike in the CM-TSVQ scheme, where the reconstructed codeword is the

sum of the codeword from each stage.

2.7.1 Two-Stage Optimality Conditions

Figure 2.3: Block diagram for two-stage ACOVQ.

33

Similar to CM-TSVQ, the first stage of ACOVQ is a COVQ without any modifi-

cations. Consider a two stage ACOVQ with bit allocation b = (b1, b2) depicted in

Figure 2.3. Let Y1 = y1 ∈ I(1) be the index received by the decoder in the first

stage. This index is then sent to the second stage encoder noiselessly via a unit-

delay feedback-link. Unlike CM-TSVQ, the first stage decoder is not used in this

scheme. Instead, only the codebook in the last stage is used to reconstruct the

source vector. Let fU(u) represent the probability density function for the source.

For each y1 ∈ I(1), the source distribution is updated at the encoder by calculating

the following posterior distribution:

fU|Y1(u|y1) =
fU(u)P (Y1 = y1|U = u)

P (Y1 = y1)
(2.71)

=
fU(u)

∑
x1∈I(1) P (Y1 = y1|X1 = x1,U = u)P (X1 = x1|U = u)∑

x1∈I(1) P (Y1 = y1|X1 = x1)P (X1 = x1)

(2.72)

=
fU(u)

∑
x1∈I(1) P (Y1 = y1|X1 = x1)1{u ∈ S

(1)
x1 }∑

x1∈I(1) P (Y1 = y1|X1 = x1)
∫
S
(1)
x1

fU(u)du
(2.73)

=
fU(u)P (Y1 = y1|X1 = E (1)(u))∑

x1∈I(1) P (Y1 = y1|X1 = x1)
∫
S
(1)
x1

fU(u)du
. (2.74)

Note that the simplification in (2.73) is due to the causality channel condition by

nature in which the channel is operated, where it is assumed that the following

Markov chain holds [2, p. 160]:

U → (X i, Y i−1) → Yi, i = 1, 2, 3, (2.75)

34

Note that under feedback, the property in (2.2) for memoryless channels may not

necessarily hold since the feedback may affect the probability of the next encoded

output [2]. In this case, the causality condition in (2.75) simplifies to [2, p. 161],

(U, X i−1, Y i−1) → Xi → Yi. (2.76)

Further, for the simplification in (2.74), recall that the encoding regions form a

partition over Rk. Therefore u can only belong to one encoding region and 1{u∈S(1)
x1

} =

1 ⇐⇒ E (1)(u) = x1. Therefore the only term in the summation
∑

x1∈I(1) P (Y1 =

y1|X1 = x1)1{u ∈ S
(1)
x1 } that is non-zero is the term where x1 ∈ I(1) corresponds to

the encoding region that u is in (where x1 = E (1)(u)). The encoder and decoder for

the second stage can be represented as

E (2) : Rk × I(1) × I(1) → I(2) (2.77)

D(2) : I(1) × I(2) → Rk. (2.78)

Let y1 be the received index via the feedback link. We have encoding regions

S(2)
y1 = {S(2)

0|y1 , S
(2)
1|y1 , . . . S

(2)
N2−1|y1} and codebook C(2)

y1 = {c(2)0|y1 , c
(2)
1|y1 , . . . , c

(2)
N2−1|y1} corre-

sponding to the posterior distribution fU|y1 . The expected distortion given Y1 = y1

can be expressed as

E[d(U, Q(U))|Y1 = y1] =

∫
Rk

d(u, Q(u))fU|y1(u)du (2.79)

=
∑

x2,y2∈I(2)

∑
x1∈I(1)

∫
S
(1)
x1

∩S(1)
x2|y1

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = x1)

35

× d(u, cy2|y1)fU|y1(u)du (2.80)

=
∑

x2,y2∈I(2)

∑
x1∈I(1)

∫
S
(1)
x1

∩S(1)
x2|y1

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = x1)

×
∥∥u− cy2|y1

∥∥2 fU|y1(u)du. (2.81)

With an abuse of notation, let

d′2(u; y1, E (1)(u), x2) =
∑

y2∈I(2)

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = E (1)(u))
∥∥∥u− c

(2)
y2|y1

∥∥∥2
(2.82)

represent the expected distortion when source value u is quantized with index x2

given Y1 = y1 and X1 = E (1)(u). We can then rewrite the expected distortion in

terms of the modified distortion in (2.81) as follows

E[d(U, Q(U))|Y1 = y1] =
∑

x2∈I(2)

∑
x1∈I(1)

∫
S
(1)
x1

∩S(1)
x2|y1

d′2(u; y1, x1, x2)fU|y1(u)du. (2.83)

It then follows that given fixed codebook C(2)
y1 , an optimal second stage quantizer

must have encoding regions that satisfy the following generalized nearest neighbor

condition:

S
(2)
x2|y1 = {u ∈ Rk : d′2(u; y1, E (1)(u), x2) ≤ d′2(u; y1, E (1)(u), x′

2), x′
2 ∈ I(2)},

x2 ∈ I(2), y1 ∈ I(1). (2.84)

36

The above expected distortion can also be expressed as

E[d(U, Q(U))|Y1 = y1] =
∑

y2∈I(2)

P (Y2 = y2|Y1 = y1)E[d(U, Q(U))|Y1 = y1, Y2 = y2].

(2.85)

Therefore, it follows that for a fixed partition S(2)
y1 an optimal second stage quantizer

must have a codebook that satisfies the following generalized centroid condition:

c
(2)
y2|y1 = arg min

ω∈Rk
E[d(U,ω)|Y1 = y1, Y2 = y2] (2.86)

which, under the square error distortion, reduces to

c
(2)
y2|y1 = E[U|Y1 = y1, Y2 = y2]. (2.87)

Figure 2.4 depicts the posterior distributions of an ACOVQ scheme in the scalar

case with bit allocation b = (2, 2) over the Polya Contagion Channel with memory

M = 1, ε = 0.05, and δ = 5 (details on how indices are sent over this binary

channel are provided in Section 3.4.1). Each box represents a COVQ in the ACOVQ

framework, displaying the source density function (blue line) and the corresponding

centroids (red dots). Arrows connecting the first-stage quantizer to the second-stage

quantizers indicate the channel output for the posterior distribution each second-

stage quantizer is responsible for refining. For the second-stage quantizer boxes, the

plot of the source density function is accompanied by the probability of the channel

output and the expected distortion of the COVQ when quantizing the respective

37

Figure 2.4: Posterior distributions of ACOVQ with bit allocation b = (2, 2) over the
Polya contagion channel with memory M = 1, ε = 0.05, and δ = 5.

posterior distribution. We can see that with feedback, the variance of the posterior

source distribution decreases. That is, with noiseless feedback, the decoder has more

certainty about the source value that was sent. The more stages added, the more the

posterior distributions will resemble the delta function. In Chapter 4, we will explore

these properties and how we can use these differences to improve the performance

of ACOVQ. We also observe from the figure that ACOVQ, similar to CM-TSVQ,

successively refines the initial source distribution and has a tree like structure.

38

Figure 2.5: Block diagram for the ith stage of ACOVQ in a noiseless feedback com-
munication system.

2.7.2 Generalization for Multiple Stages

The ith stage of an ACOVQ scheme is shown in Figure 2.5. Although not explicitly

depicted in the figure, the encoder at stage i has access to all previous encoders

(i.e., X1 = x1, . . . , Xi−1 = xi−1). Let y1, y2, . . . , yi−1 be the sequence of channel

outputs received at the encoder via the noiseless feedback link at the i-th stage and

let S(1),S(2)
y1 , . . . ,S

(i−1)
yi−2 be the fixed partitions from the previous stages. Here we

will show the necessary optimality conditions for the encoder and decoder in the ith

stage. The posterior distribution can be calculated recursively as follows:

fU|Y i−1(u|yi−1) =
fU|Y i−2(u|yi−2)P (Yi−1 = yi−1|Y i−2 = yi−2,U = u)

P (Yi−1 = yi−1|Y i−2 = yi−2)
(2.88)

=
fU|Yi−2(u|yi−2)P (Yi−1 = yi−1|Y i−2 = yi−2,U = u)∑

xi−1∈Ii−1 P (Yi−1 = yi−1|Y i−2 = yi−2, X i−1 = xi−1)
∫
α(xi−1)

fU|Y i−2(u|yi−2)
,

(2.89)

where α(xi−1) = S
(i−1)

xi−1|yi−2∩S(i−2)

xi−2|yi−3∩S(i−3)

xi−3|yi−4∩· · ·∩S(1)
x1 (i.e., the intersection of the

encoding regions corresponding to received sequence yi−2 and encoded sequence xi−1).

39

The encoded sequence for source vector u is built recursively, where the encoded

index at the i-th stage depends on all the previous encoded indices xi−1, . . . , x1.

Correspondingly, for notational simplicity, we represent the indices for each stage as

a recursive formula. For Y i−1 = yi−1 let

γ(1)(u) = E (1)(u) (2.90)

γ(2)
y1

(u) = E (2)(E (1)(u), y1,u) (2.91)

= E (2)(γ(1)(u), y1,u) (2.92)

γ
(3)

y2 (u) = E (3)(E (2)(E (1)(u), y1,u), E (1)(u), y2, y1,u) (2.93)

= E (3)(γ(2)
y1

(u), γ(1)(u), y2, y1,u) (2.94)
... (2.95)

γ
(i)

yi−1(u) = E (i)(γ
(i−1)

yi−2 (u), . . . , γ(1)(u), yi−1,u). (2.96)

That is, for received sequence yj−1, γ(j)

yj−1(u) represents the encoded index at stage j

for all j = 1, . . . , i. Let γi
yi−1(u) = (γ

(i)

yi−1(u), . . . , γ
(1)(u)) With an abuse of notation,

let

d′i(u; y
i−1, γi−1

yi−2(u), xi)

=
∑

yi∈I(i)

P (Yi = yi|Xi = xi, Y
i−1 = yi−1, X i−1 = γi−1

yi−2(u))
∥∥∥u− c

(i)

yi|yi−1

∥∥∥2 (2.97)

be the expected distortion at stage i, when u is encoded with xi ∈ I(i) given received

sequence Y i−1 = yi−1 and encoded sequence X i−1 = xi−1. Note that at stage i,

yi−1 and γi−1
yi−2(u) are fixed values. It then follows that given fixed codebook C(i)

yi−1 ,

40

an optimal ith stage quantizer will have encoding regions that satisfy the following

generalized nearest neighbor condition:

S
(i)

xi|yi−1 = {u ∈ Rk : d′i(u; y
i−1, γi−1

yi−2(u), xi) ≤ d′i(u; y
i−1, γi−1

yi−2(u), x
′
i), (2.98)

x′
i ∈ I(i)} xi ∈ I(i), yi−1 ∈ I i−1.

Conversely, it follows that for fixed partition S(i)

yi−1 that an optimal ith stage quantizer

will have encoding regions that satisfy the following generalized centroid condition:

c
(i)

yi|yi−1 = arg min
ω∈Rk

E[d(U,ω)|Y i = yi] (2.99)

which, under the square error distortion, reduces to

c
(i)

yi|yi−1 = E[U|Y i = yi]. (2.100)

Similar to CM-TSVQ and the LBG quantizer, locally optimal ACOVQs can be de-

signed, given an initial set of encoding regions and codebook, by repeatedly applying

the nearest neighbor and centroid conditions until convergence. However, unlike

CM-TSVQ, the value of the reconstructed vector is

û(i) = c
(i)

yi|yi−1 (2.101)

for channel output sequence Y i = yi. Note that in this case, only the last set of

codebooks are used for the reconstructed vector, whereas in CM-TSVQ, all codewords

41

from all previous stage codebooks are used.

2.8 Initial Codebook Design

As noted earlier, the generalized LBG-Algorithm converges to a local minimum and

requires an initial codebook to find an optimal quantizer. The choice of the initial

codebook is important to avoid “bad” local minima. A naive method would be to

select N random vectors for a codebook with N codewords. However, in [11] [13],

the authors proposed an algorithm for index assignment that, in general, outper-

forms random assignment. The distortion for a VQ through a noisy channel can be

rewritten as [17]:

D = E[d(U, cY)] (2.102)

=
∑
x∈I

∫
Sx

∑
y∈I

[
P (Y = y|X = x) ‖u− cy‖2

]
fU(u)du (2.103)

=
∑
x∈I

∫
Sx

∑
y∈I

[
P (Y = y|X = x)

∥∥∥∥(u− cx) + (cx − cy)

∥∥∥∥2
]
fU(u)du (2.104)

=
∑
x∈I

∫
Sx

∑
y∈I

[
P (Y = y|X = x)

(
‖u− cx‖2 + ‖cx − cy‖2+

(u− cx)(cx − cy)
T
)]
fU(u)du

(2.105)

=
∑
x∈I

∫
Sx

‖u− cx‖2fU(u)du︸ ︷︷ ︸
Dq

+
∑
x∈I

∑
y∈I

P (Y = y|X = x)‖cx − cy‖2︸ ︷︷ ︸
Dc

+
∑
x∈I

∫
Sx

∑
y∈I

(
(u− cx)(cx − cy)

T
)
fU(u)du︸ ︷︷ ︸

D∗

.

(2.106)

42

Therefore, the overall distortion can be decomposed into the following components:

Dq, Dc, and D∗, the distortions from the quantizer, the channel, and the cross-term,

respectively. However, for a quantizer satisfying the VQ centroid condition, D∗ = 0

and the overall distortion can be written as

D = Dq +Dc. (2.107)

Let τ represent an index assignment such that

τ : I → I (2.108)

is a 1-to-1 function. The goal of the simulated annealing algorithm proposed in [11]

is to find an index τ that minimizes Dc, where

Dc(τ) =
∑
x∈I

∑
y∈I

P (Y = τ(y)|X = τ(x)) ‖cy − cx‖2 (2.109)

is the channel distortion given the index assignment τ . The simulated annealing

algorithm is as follows.

1. Let T represent an effective temperature and set T = T0 as the initial temper-

ature. Set initial values for α,Nsuccess, Nfailure, Ncut. Choose a random state τ .

2. Randomly choose another state τ ′ and let ∆Dc = Dc(τ
′)−Dc(τ). If ∆Dc < 0,

then set b = b′ and go to step 3. Otherwise, set b = b′ with probability e−∆Dc/T

and go to step 3.

43

T0 10
Tf 2.5× 10−4

α 0.97
Nfailure 50000
Nsuccess 5
Ncut 200

Table 2.1: Simulated annealing parameters.

3. If the number of decreases in distortion, or “energy drops,” exceeds Nsuccess

then go to step 4. If the number of attempts exceeds Ncut, then go to step 4.

4. Set T = αT . If T < Tf or the number of unsuccessful “energy drop” attempts

exceed Nfailure, then stop the algorithm and return τ . Otherwise go to step 2.

Table 2.1 lists the parameter values used for initialization in this thesis for the sim-

ulated annealing algorithm.

44

Chapter 3

Tree Structured Vector

Quantization With Noiseless

Feedback

3.1 Introduction

In the previous chapter, different multi-stage quantization schemes were explored,

including CM-TSVQ and ACOVQ. As noted earlier, CM-TSVQ is optimized for

systems without noiseless feedback, while ACOVQ is optimized for systems with

noiseless feedback. Given that both schemes are tree structured and have a successive

refinement approach to quantizing the source, a natural question is whether CM-

TSVQ can be generalized for systems with noiseless feedback and how it would

compare to ACOVQ. We will call the CM-TSVQ generalized for noiseless feedback

45

the Adaptive Tree Structured Vector Quantizer (ATSVQ). In this section, we will

derive the nearest neighbor and centroid conditions for ATSVQ and show that the

resulting quantizer is in fact equivalent to ACOVQ (i.e., both schemes have equivalent

nearest neighbor and centroid conditions).

3.2 Preliminaries

Let U be a k-dimensional random vector with probability density function fU(u)

and support Rk. Let b = (b1, . . . , bn) be the bit allocation vector for a n-stage

ATSVQ and let Ni = 2bi represent the size of the codebook at stage i. Let S(1,AT) =

{S(1,AT)
0 , . . . , S

(1,AT)
N1−1 } and C(1,AT) = {c(1,AT)

0 , . . . , c
(1,AT)
N1−1 } denote the encoding regions

and codebook for the first stage of the ATSVQ, respectively. For i ∈ {2, . . . , n},

let S(i,AT)

yi−1 = {S(i,AT)

0|yi−1 , . . . , S
(i,AT)

Ni−1|yi−1} and C(i,AT)

yi−1 = {c(i,AT)

0|yi−1 , . . . , c
(i,AT)

Ni−1|yi−1} be the en-

coding regions and codebook for the i-th stage with received sequence Y i−1 = yi−1,

respectively. The first stage of ATSVQ consists of a COVQ without any modifica-

tions.

3.2.1 Second Stage Derivations

Figure 3.1: Communication block diagram for a two-stage ATSVQ.

46

The goal of each stage of CM-TSVQ after the first stage is to estimate the expected

coding error from all the preceding quantizers and refine the quantization by adding

a codeword to the existing quantization. In this section, we examine how noiseless

feedback affects the optimality conditions for the second stage ATSVQ. When de-

riving the necessary conditions for optimality, we will assume that S(1) and C(1) are

fixed. Consider the system’s block diagram in Figure 3.1. The ATSVQ encoder and

decoder can be described by the following functions:

E (2,AT) : Rk × I(1) × I(1) → I(2) (3.1)

D(2,AT) : I(2) × I(1) → Rk. (3.2)

Given the channel feedback output Y1 = y1, the expected distortion of the second

stage quantizer is

E[d(U, c
(1,AT)
Y1

+ c
(2,AT)
Y2|Y1

)|Y1 = y1]

=
∑

y2,x2∈I(2)

∑
x1∈I(1)

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = x1)

×
∫
S
(1,AT)
x1

∩S(2,AT)
x2|y1

d(u, c(1,AT)
y1

+ c
(2,AT)
y2|y1)fU|Y1(u|y1)du.

The expected distortion of the entire ATSVQ (without knowledge of Y1) is

E[d(U, c
(1,AT)
Y1

+c
(2,AT)
Y2|Y1

)] =
∑

y1∈I(1)

E[d(U, c
(1,AT)
Y1

+ c
(2,AT)
Y2|Y1

)|Y1 = y1]P (Y1 = y1) (3.3)

47

=
∑

y2,x2∈I(2)

∑
y1,x1∈I(1)

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = x1)

×
∫
S
(1,AT)
x1

∩S(2,AT)
x2|y1

d(u, c(1,AT)
y1

+ c
(2,AT)
y2|y1)fU|Y1(u|y1)du. (3.4)

Given feedback y1, the modified distortion function is

d′2(u; E (1,AT)(u), x2, y1)

=
∑

y2∈I(2)

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = E (1,AT)(u))

∥∥∥∥u− c(1,AT)
y1

− c
(2,AT)
y2|y1

∥∥∥∥2.
(3.5)

Thus as in the ACOVQ case, we can rewrite the expected distortion of the second

stage quantizer as

E[d(U, c
(1,AT)
Y1

+ c
(1,AT)
Y2|Y1

)|Y1 = y1]

=
∑

x1∈I(1)

∑
x2∈I(2)

∫
S
(1,AT)
x1

∩S(2,AT)
x2|y1

d′(u;x1, x2, y1)fU|Y1(u|y1)du (3.6)

=
∑

y2∈I(∈)

E[d(U, c
(1,AT)
Y1

+ c
(1,AT)
Y2|Y1

)|Y1 = y1, Y2 = y2]P (Y2 = y2|Y1 = y1). (3.7)

It then follows from (3.7) that for fixed codebook C(2)
y1 , the partition of the optimal

second stage quantizer satisfies the following generalized nearest neighbor condition:

S
(2)
x2|y1 = {u ∈ Rk : d′2(u; E (1)(u), x2, y1) ≤ d′2(u; E (1)(u), x′

2, y1), x
′
2 ∈ I(2)},

x2 ∈ I(2), y1 ∈ I(1). (3.8)

48

It also follows from (3.6) that for fixed partition S(2,AT)
y1 , the codebook of the optimal

second stage quantizer satisfies the following generalized centroid condition:

c
(2,AT)
y2|y1 = arg min

ω∈Rk
E[d(U, c

(1,AT)
Y1

+ ω)|Y1 = y1, Y2 = y2]. (3.9)

Under the square error distortion, this reduces to

c
(2,AT)
y2|y1 = E[U|Y2 = y2, Y1 = y1]− c(1,AT)

y1
. (3.10)

3.2.2 Generalization for Multiple Stages

Here, we will derive the ATSVQ nearest neighbor and centroid conditions for stage

i ≥ 2. Assume that we have the received sequence Y i−1 = yi−1 and fixed partitions

and fixed codebooks S(1,AT),S(2,AT)
y1 , . . . ,S(i−1,AT)

yi−2 and C(1,AT), C(2,AT)
y1 , . . . , C(i−1,AT)

yi−2 ,

respectively. Let S(i,AT)

yi−1 and C(i,AT)

yi−1 be the partitions and codebook for the i-th stage

quantizer with feedback Y i−1 = yi−1. The encoder and decoder for the ATSVQ at

the i-th stage can be characterized by the following functions:

E (i,AT) : Rk × I i−1 × I i−1 → I(i) (3.11)

D(i,AT) : I i → Rk, (3.12)

where I i = I(1)×I(2)×· · ·×I(i). Similar to the ACOVQ recursive encoding functions

in (2.90) - (2.96), we recursively use ζ
(i)

yi−1 to denote the encoded sequence for the

49

i stages of ATSVQ. For Y i−1 = yi−1, let

ζ(1)(u) = E (1,AT)(u) (3.13)

ζ
(2)

y1 (u) = E (2,AT)(E (1,AT)(u), y1,u) (3.14)

= E (2,AT)(ζ(1)(u), y1,u) (3.15)
... (3.16)

ζ
(i)

yi−1(u) = E (i,AT)(ζ
(i−1)

yi−2 (u), . . . , ζ(1)(u), yi−1,u). (3.17)

That is, for the received sequence yi−1, ζ
(j)

yj−1(u) represents the encoded index at

stage j for all j = 1, . . . , i. Let ζ iyi−1(u) = (ζ
(i)

yi−1(u), ζ
(i−1)

yi−2 (u), . . . , ζ(1)(u)). Given

feedback Y i−1 = yi−1, we have that the expected distortion at the ith stage is given

by

E[d(U, Q(U))|Y i−1 = yi−1]

=
∑

yi∈I(1)

∑
xi∈Ii

∫
α(xi−1)

P (Yi = yi|Y i−1 = yi−1, X i = xi) (3.18)

× d(u, c(1,AT)
y1

+ c
(2,AT)
y2|y1 + · · ·+ c

(i,AT)

yi|yi−1)fU|Yi−1(u|yi)du (3.19)

=
∑

yi∈I(1)

∑
xi∈Ii

∫
α(xi−1)

P (Yi = yi|Y i−1 = yi−1, X i = xi)

×
∥∥∥u− (c(1,AT)

y1
+ c

(2,AT)
y2|y1 + · · ·+ c

(i,AT)

yi|yi−1)
∥∥∥2 fU|Yi−1(u|yi)du (3.20)

where α(xi−1) = S
(i−1,AT)

xi−1|yi−2∩S(i−2,AT)

xi−2|yi−3∩S(i−3,AT)

xi−3|yi−4∩· · ·∩S(1,AT)
x1 , which are the encoding

regions corresponding to the sequence X i−1 = xi−1 given feedback Y i−2 = yi−2. Let

d′i(u;xi, ζ
i−1
yi−2(u), y

i−1) represent the modified distortion at the ith stage, which can

50

be expressed as

d′i(u;xi, ζ
i−1
yi−2(u), y

i−1)

=
∑

yi∈I(i)

P (Yi = yi|Xi = xi, X
i−1 = ζ i−1

yi−2(u), Y
i−1 = yi−1)

× d(u, c(1,AT)
y1

+ c
(2,AT)
y2|y1 + · · ·+ c

(i,AT)

yi|yi−1) (3.21)

=
∑

yi∈I(i)

P (Yi = yi|Xi = xi, X
i−1 = ζ i−1

yi−2(u), Y
i−1 = yi−1)

×
∥∥∥u− (c(1,AT)

y1
+ c

(2,AT)
y2|y1 + · · ·+ c

(i,AT)

yi|yi−1)
∥∥∥2 . (3.22)

The expected distortion can then be rewritten as

E[d(U, Q(U))|Y i−1 = yi−1]

=
∑
xi∈Ii

∫
α(xi−1)

d′(u;xi, x
i−1, yi−1)fU|Y i−1(u|yi−1)du (3.23)

=
∑

yi∈I(i)

P (Yi = yi|Y i−1 = yi−1)E[d(U, c(1,AT)
y1

+ · · ·+ c
(i,AT)

yi|yi−1)|Y i = yi]. (3.24)

It follows from (3.23) that for fixed codebook C(i,AT)

yi−1 , the optimal i-th stage quantizer

will have encoding regions satisfying

S
(i,AT)

xi|yi−1 = {u ∈ Rk : d′i(u;xi, ζ
i−1
yi−2(u), y

i−1) ≤ d′i(u;x
′
i, ζ

i−1
yi−2(u), y

i−1), x′
i ∈ I(i)},

xi ∈ I(i), yi−1 ∈ I i−1.

(3.25)

51

It also follows from (3.24) that for fixed partition S(i,AT)

yi−1 , the optimal i-th stage

quantizer will have a codebook with codewords given by

c
(i,AT)

yi|yi−1 = arg min
ω∈Rk

E[d(U, c(1,AT)
y1

+ · · ·+ c
(i,AT)

yi|yi−1 + ω)|Y i = yi], (3.26)

which under the square error distortion, becomes (as shown in Appendix A)

c
(i,AT)

yi|yi−1 = E[U|Y i = yi]− (c(1,AT)
y1

+ · · ·+ c
(i,AT)

yi|yi−1). (3.27)

In addition to the tree like structures present, we can already see that ACOVQ

and ATSVQ share similarities in their generalized nearest neighbor and centroid

conditions. In the next section, we show that these conditions are indeed equivalent.

3.3 Equivalence of ATSVQ and ACOVQ

The overall encoder and decoder at stage i of ATSVQ is given by

E i
AT : Rk × I i−1 → I i, such that E i

AT (u, y
i−1) = ζ iyi−1(u) (3.28)

Di
AT : I i → Rk, such that

Di
AT (y

i) = D(1,AT)(y1) +D(2,AT)(y2, y1) + · · ·+D(i,AT)(yi), (3.29)

and let the overall encoder and decoder at stage i of the ACOVQ be defined as

E i
AC : Rk × I i−1 → I i, such that E i

AC(u, y
i−1) = γi

yi−1(u) (3.30)

52

Di
AC : I i → Rk, such that Di

AC(y
i) = D(i,AC)(yi). (3.31)

In this section, we show that the generalized nearest neighbor and centroid conditions

of the ATSVQ and ACOVQ will lead to equivalent overall encoders under certain

conditions.

3.3.1 Conditions for Equivalence

Let C(1,AC), C(2,AC)
y1 and S(1,AC),S(2,AC)

y1 be the codebook and partitions for a 2 stage

ACOVQ, respectively, and let C(1,AT), C(2,AT)
y1 and S(1,AT),S(2,AT)

y1 be the codebook and

partitions for a 2 stage ATSVQ, respectively, with channel output Y1 = y1 received at

the encoders via a noiseless feedback link. We assume that the bit allocations for both

quantizers and the first stage quantizers for ATSVQ and ACOVQ are equivalent (i.e.,

C(1,AC) = C(1,AT) and S(1,AC) = S(1,AT)). Consider the ATSVQ generalized centroid

condition given in (3.9), which states that for a fixed first stage quantizer and fixed

partitions S(2,AT)
y1 an optimal second stage quantizer must have a codebook that

satisfies

c
(2,AT)
y2|y1 = arg min

ω∈Rk
E[d(U, c

(1,AT)
Y1

+ ω)|Y1 = y1, Y2 = y2] (3.32)

= arg min
ω∈Rk

E[d(U, c(1,AT)
y1

+ ω)|Y1 = y1, Y2 = y2]. (3.33)

53

Let z = c
(1,AT)
y1 +ω =⇒ ω = z − c

(1,AT)
y1 . Since c

(2,AT)
y1 is constant given Y1 = y1, we

have (after a change of variables) that

c
(2,AT)
y2|y1 = argmin

z−c
(1,AT)
y1

E[d(U, z)|Y1 = y1, Y2 = y2] (3.34)

=⇒ c
(2,AT)
y2|y1 + c(1,AT)

y1
= arg min

z∈Rk
E[d(U, z)|Y1 = y1, Y2 = y2], (3.35)

which under square error distortion becomes

c
(2,AT)
y2|y1 + c(1,AT)

y1
= E[U|Y1 = y1, Y2 = y2], (3.36)

Note that the right-hand side of (3.36) is exactly the centroid condition of ACOVQ

in (2.87). The value of the expectation is solely defined by the partitions in the first

and second stage and the channel. Thus, assuming that the partitions of ATSVQ and

ACOVQ are equivalent and satisfy the nearest neighbor condition, under the square

error distortion we have that c
(2,AT)
y2|y1 + c

(2,AT)
y1 = c

(2,AC)
y2|y1 for all y2 ∈ I(2). Note that

this implies that the overall second stage decoders are equivalent (i.e., D2
AT (y1, y2) =

D2
AC(y1, y2)).

Now assume that c(2,AT)
y2|y1 +c

(2,AT)
y1 = c

(2,AC)
y2|y1 for all y2 ∈ I(2) (i.e., equivalent overall

decoders). The generalized nearest neighbor condition states that for a fixed first

stage quantizer and fixed codebook C(2,AT)
y2 , the optimal second stage quantizer for

54

ATSVQ will have partitions that satisfy

S
(2,AT)
x2|y1 = {u ∈ Rk : d′2(u; E (1,AT)(u), x2, y1) ≤ d′2(u; E (1,AT)(u), x′

2, y1), x′
2 ∈ I(2)},

x2 ∈ I(2), y1 ∈ I(1),

(3.37)

where the modified distortion is given by

d′2(u; E (1,AT)(u), x2, y1)

=
∑

y2∈I(2)

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = E (1,AT)(u))

∥∥∥∥u− c(1,AT)
y1

− c
(2,AT)
y2|y1

∥∥∥∥2.
(3.38)

With the assumption that c
(2,AT)
y2|y1 + c

(2,AT)
y1 = c

(2,AC)
y2|y1 for all y2 ∈ I(2) and equivalent

first stage encoders, the modified distortion can be rewritten as

d′2(u; E (1,AT)(u), x2, y1)

=
∑

y2∈I(2)

P (Y2 = y2|X2 = x2, Y1 = y1, X1 = E (1,AC)(u))

∥∥∥∥u− c
(2,AC)
y2|y1

∥∥∥∥2, (3.39)

which is the modified distortion for ACOVQ in (2.82), implying that the second stage

generalized nearest neighbor conditions are equivalent.

Note that the codebooks and partitions satisfying the generalized nearest neigh-

bor and centroid conditions may not be unique, but may be chosen arbitrarily with-

out affecting the expected distortion. The consequences of these properties is that

55

when initializing the second stage with either the same partitions or codebooks such

that c
(2,AT)
y2|y1 + c

(2,AT)
y1 = c

(2,AC)
y2|y1 for all y2 ∈ I(2) and applying the generalized LBG-

algorithm, we can see that ATSVQ and ACOVQ will converge to equivalent encoders

and decoders. Consequently, this shows that in the communication model with feed-

back, there is no difference between successively refining by quantizing the coding

error and refining by quantizing a distribution conditioned on feedback. A similar

proof can be done in the general case for a quantizer at stage i with received sequence

Y i−1 = yi−1.

3.4 Simulations Results

In this section, we present the results of experimental simulations evaluating the

performance of ACOVQ and demonstrate the empirical equivalence between the

ATSVQ and ACOVQ. We begin by describing the channel model and the compu-

tation of block transition probabilities, followed by a presentation of the simulation

results. Up to this point, the transition probabilities for the channel indices have

been kept general. However, only the binary Polya contagion channel with Markov

memory 1 (M = 1) is considered for simulations in this thesis. In the following

section, we detail how these transition probabilities are assigned.

3.4.1 Channel Properties

The way that the channel indices are transmitted in the simulations is that an input

index is converted into a binary vector. Afterwards the vector is transmitted through

56

the Polya contagion channel bit-by-bit. Also, if the channel has memory, the channel

memory is preserved between stages (i.e., the channel noise in the current stage is

correlated with the channel noise in the previous stages). Let βl : N → {0, 1}l be

a function that outputs the l-bit binary representation of an integer (e.g., β4(3) =

(0, 0, 1, 1)), and let ⊕ represent modulo-2 bit-wise addition. Recall from Chapter 2

that the Polya channel with memory M = 1 is a discrete channel where the channel

noise {Zi}∞i=1 is characterized by P (Zi = 1) = ε, for i = 1, and

P (Zi = 1|Zi−1 = ei−1, . . . , Z1 = e1) = P (Zi = 1|Zi−1 = ei−1) (3.40)

=
ε+ ei−1δ

1 + δ
, (3.41)

for i ≥ 2, where ej ∈ {0, 1}, j = 1, 2, . . . , i − 1. Let b = (b1, . . . , bi) be the bit

allocation vector and let xi ∈ I i and yi−1 ∈ I i−1 represent the encoded and received

indices respectively. Let Bj =
∑j

l=1 bl and let Zp
l = (Zl+1, Zl+2, . . . , Zp), for l < p,

and Z l = (Z1, . . . , Zl) for l ≥ 2. Then the binary noise at stage-j can be represented

as

Z
Bj+1

Bj
= βbj(xj)⊕ βbj(yj). (3.42)

Note that we can also “concatenate” the binary representation of the channel indices

as follows

ZBj = βBj

(
j∑

l=1

xl · 2Bl

)
⊕ βBj

(
j∑

l=1

yl · 2Bl

)
, (3.43)

57

for all j = 1, . . . , i. Note that
(∑j

l=1 xl · 2Bl

)
and

(∑j
l=1 yl · 2Bl

)
are integers in

{0, 1, . . . , 2Bj −1}. The results in (3.43) are equivalent to calculating the entire noise

sequence using (3.42), but (3.43) can serve as a practical alternative to calculating

the binary sequence. We then have that the transition probability of Yi = yi given

X i = xi and Y i−1 = yi−1 is

P (Yi = yi|X i = xi, Y i−1 = yi−1)

= P (ZBi
Bi−1

= βbi(xi)⊕ βbi(yi)|Z
Bi−1

Bi−2
= βbi−1

(xi−1)⊕ βbi−1(yi−1), . . . ,

Zb1 = βb1(x1)⊕ βb1(y1)) (3.44)

= P

(
ZBi

Bi−1
= βbi(xi)⊕ βbi(yi)

∣∣∣∣ZBi−1 = βBi−1

(
i−1∑
l=1

xl · 2Bl

)

⊕ βBi−1

(
i−1∑
l=1

yl · 2Bl

))
.

(3.45)

Let zBi
Bi−1

= βbi(xi)⊕βbi(yi) and zBi−1 = βBi−1

(∑i−1
l=1 xl · 2Bl

)
⊕βBi−1

(∑i−1
l=1 yl · 2Bl

)
.

For a Polya channel with memory (M = 1), we then have that (3.45) evaluates to

P (ZBi
Bi−1

= zBi
Bi−1

|ZBi−1 = zBi−1) = P (ZBi
Bi−1

= zBi
Bi−1

|ZBi−1
= zBi−1

) (3.46)

=

Bi∏
j=Bi−1+1

P (Zj = zj|Zj−1 = zj−1). (3.47)

Expression (3.45) will then be used to calculate the transition probabilities used in

the modified distortion calculations in the generalized nearest neighbor conditions

and when generating noise samples in the simulations.

58

3.4.2 ACOVQ and ATSVQ Performance Results

ACOVQ Results

The following tables show the results of ACOVQ for various bit allocations. In

these simulations, the initial codebook values were determined by the VQ generalized

Lloyd’s algorithm with indexing determined by the simulated annealing algorithm.

Each quantizer in the ACOVQ is then trained using the generalized LBG-algorithm

along a sequence of increasing and decreasing channel error rate ε values ranging

from 0 and 0.1, using the increase-decrease method in [12], while keeping the noise

correlation parameter δ fixed. The highest performing quantizer for each set of

channel parameters is reported in Tables 3.1 - 3.6. The performance of each quantizer

here and throughout this thesis will be measured by its signal-to-noise ratio (SNR)

in decibels (dB), which is defined as

SNR = 10 log10

(
σ2

1
k
E[(U−Q(U))2]

)
, (3.48)

where σ2 is the variance of the source distribution. Note that the highest SNR value

in each row is put in bold. The source used in each simulation is a memoryless,

independently and identically distributed Gaussian source.

59

ε (4) (1,3) (2,2) (3,1) (1,1,2) (1,2,1) (2,1,1) (1,1,1,1)
0.0000 20.221 20.217 20.134 20.160 20.136 20.205 20.081 20.116
0.0005 18.658 19.439 19.373 19.042 19.649 19.608 19.372 19.664
0.0010 17.601 18.765 18.713 18.318 19.200 19.119 18.776 19.274
0.0050 14.373 15.793 15.940 14.809 16.738 16.452 15.782 16.955
0.0100 12.652 14.072 14.224 13.308 15.060 14.617 14.423 15.199
0.0500 8.292 9.205 9.132 9.375 9.778 9.895 9.914 10.404
0.1000 5.888 6.296 6.410 6.579 6.813 6.909 7.092 7.397

Table 3.1: ACOVQ SNR performance (in dB) on a 1-dimensional memoryless Gaus-
sian source (k = 1) for δ = 0 and various bit allocations and ε values.

ε (4) (1,3) (2,2) (3,1) (1,1,2) (1,2,1) (2,1,1) (1,1,1,1)
0.0000 20.223 20.227 20.127 20.154 20.153 20.204 20.096 20.099
0.0005 19.599 19.713 19.736 19.726 19.673 19.704 19.723 19.684
0.0010 19.129 19.259 19.333 19.393 19.290 19.195 19.379 19.253
0.0050 16.695 16.868 17.198 17.284 16.960 16.888 17.359 17.013
0.0100 15.229 15.209 15.769 15.605 15.574 15.149 15.772 15.333
0.0500 11.069 11.366 11.504 11.047 11.668 11.227 11.760 11.837
0.1000 8.942 8.901 9.366 9.077 9.594 9.345 9.932 9.995

Table 3.2: ACOVQ SNR performance (in dB) on a 1-dimensional memoryless Gaus-
sian source (k = 1) for δ = 5 and various bit allocations and ε values.

ε (4) (1,3) (2,2) (3,1) (1,1,2) (1,2,1) (2,1,1) (1,1,1,1)
0.0000 20.218 20.228 20.126 20.199 20.134 20.191 20.099 20.107
0.0005 19.865 19.767 19.845 19.897 19.786 19.772 19.836 19.741
0.0010 19.575 19.349 19.536 19.671 19.414 19.446 19.645 19.429
0.0050 17.786 17.295 17.970 18.126 17.554 17.421 18.060 17.442
0.0100 16.466 16.312 16.690 16.833 16.592 15.950 16.732 16.307
0.0500 12.666 12.144 13.188 12.474 12.912 12.689 13.303 13.000
0.1000 10.342 10.260 11.255 10.539 11.224 10.739 11.657 11.511

Table 3.3: ACOVQ SNR performance (in dB) on a 1-dimensional memoryless Gaus-
sian source (k = 1) for δ = 10 and various bit allocations and ε values.

60

ε (4) (1,3) (2,2) (3,1) (1,1,2) (1,2,1) (2,1,1) (1,1,1,1)
0 9.674 9.588 9.393 9.095 9.387 9.062 9.281 9.303

0.0005 9.527 9.471 9.335 9.032 9.339 9.010 9.247 9.250
0.001 9.454 9.403 9.282 8.968 9.280 8.959 9.196 9.197
0.005 8.791 8.904 8.869 8.511 8.871 8.573 8.791 8.795
0.01 8.152 8.345 8.410 8.022 8.414 8.146 8.349 8.350
0.05 5.530 5.806 6.037 5.709 6.037 5.860 6.020 6.008
0.1 3.875 4.103 4.308 4.066 4.309 4.231 4.306 4.314

Table 3.4: ACOVQ SNR performance (in dB) on a 2-dimensional memoryless Gaus-
sian source (k = 2) for δ = 0 and various bit allocations and ε values.

ε (4) (1,3) (2,2) (3,1) (1,1,2) (1,2,1) (2,1,1) (1,1,1,1)
0 9.685 9.588 9.394 9.093 9.390 9.063 9.301 9.303

0.0005 9.635 9.543 9.358 9.065 9.360 9.028 9.270 9.272
0.001 9.587 9.507 9.324 9.187 9.329 8.998 9.237 9.236
0.005 9.258 9.178 9.078 8.804 9.086 8.775 8.989 8.991
0.01 8.972 8.902 8.786 8.544 8.808 8.502 8.692 8.708
0.05 7.184 7.066 7.181 7.095 7.199 6.933 7.030 7.026
0.1 5.920 5.975 6.112 6.069 6.109 5.928 5.902 5.918

Table 3.5: ACOVQ SNR performance (in dB) on a 2-dimensional memoryless Gaus-
sian source (k = 2) for δ = 5 and various bit allocations and ε values.

ε (4) (1,3) (2,2) (3,1) (1,1,2) (1,2,1) (2,1,1) (1,1,1,1)
0 9.680 9.589 9.393 9.093 9.391 9.064 9.301 9.301

0.0005 9.641 9.551 9.369 9.221 9.363 9.038 9.269 9.280
0.001 9.612 9.492 9.336 9.204 9.343 9.011 9.254 9.252
0.005 9.369 9.267 9.127 8.876 9.147 8.826 9.054 9.057
0.01 9.167 9.038 8.916 8.837 8.904 8.610 8.824 8.826
0.05 7.566 7.607 7.601 7.638 7.588 7.314 7.421 7.424
0.1 6.684 6.686 6.824 6.605 6.824 6.562 6.354 6.268

Table 3.6: ACOVQ SNR performance (in dB) on a 2-dimensional memoryless Gaus-
sian source (k = 2) for δ = 10 and various bit allocations and ε values.

61

The results indicate that as the channel gets noisier, ACOVQ benefits from addi-

tional stages of feedback. Furthermore, as δ increases, the performance of ACOVQ

improves regardless of the bit allocation, suggesting that the quantizer is able to

exploit the memory in the channel.

ACOVQ and ATSVQ results

We next train ACOVQ and ATSVQ on a sample of 4 million vectors drawn from

a memoryless Gaussian source, using the generalized LBG-algorithm. Each stage

is trained under equivalent channel parameters and equivalent initializations–– i.e.,

settings in which the nearest-neighbor and centroid conditions are equivalent for

ACOVQ and ATSVQ, as discussed in Section 3.3.1. After training the final code-

books of each quantizer are compared. The comparison is based on the maximum

codeword distance: the largest Euclidean distance between any pair of corresponding

codewords for the ACOVQ and ATSVQ codebooks, evaluated across all stages and

channel output sequences. This is defined as:

argmaxj∈{1,...,n},yj∈Ij

∥∥∥c(j,AC)

yj |yj−1 −
(
c
(j,AT)

yj |yj−1 + c
(j−1,AT)

yj−1|yj−2 + · · ·+ c(1,AT)
y1

)∥∥∥ . (3.49)

Simulation results for various channel parameters and bit allocations are presented

in Tables 3.7 - 3.10.

62

Dim. k δ ε SNR (TSVQ) SNR (ACOVQ) Greatest Codeword Distance

1 0 0.00 20.087198 20.087198 2.47× 10−14

1 0 0.05 10.375423 10.367799 8.20× 10−3

1 0 0.10 7.376438 7.382376 3.87× 10−2

1 5 0.00 20.082411 20.082411 2.93× 10−14

1 5 0.05 11.615976 11.586737 3.07× 10−2

1 5 0.10 9.977197 9.984788 9.77× 10−3

4 0 0.00 4.395605 4.395605 3.75× 10−14

4 0 0.05 3.147361 3.149369 1.28× 10−2

4 0 0.10 2.274173 2.274005 2.08× 10−2

4 5 0.00 4.399283 4.399283 2.80× 10−14

4 5 0.05 3.728805 3.727707 8.46× 10−3

4 5 0.10 3.221204 3.219431 1.31× 10−2

Table 3.7: Comparison of ACOVQ and ATSVQ SNRs and codebooks for bit alloca-
tion (1, 1, 1, 1) and memoryless Gaussian source.

Dim. k δ ε SNR (TSVQ) SNR (ACOVQ) Greatest Codeword Distance

1 0 0.00 20.169320 20.169320 2.73× 10−14

1 0 0.05 8.802735 8.800211 5.54× 10−3

1 0 0.10 6.040480 6.030800 5.14× 10−3

1 5 0.00 20.172459 20.169811 4.31× 10−5

1 5 0.05 10.566610 10.582667 1.43× 10−2

1 5 0.10 8.737369 8.725517 8.91× 10−3

4 0 0.00 4.460133 4.460133 4.78× 10−14

4 0 0.05 3.052052 3.051580 5.00× 10−2

4 0 0.10 2.158082 2.158576 3.81× 10−2

4 5 0.00 4.450385 4.450385 3.14× 10−14

4 5 0.05 3.582166 3.581317 1.30× 10−2

4 5 0.10 3.017881 3.022005 8.69× 10−2

Table 3.8: Comparison of ACOVQ and ATSVQ SNRs and codebooks for bit alloca-
tion (1, 3) and memoryless Gaussian source.

63

Dim. k δ ε SNR (TSVQ) SNR (ACOVQ) Greatest Codeword Distance

1 0 0.00 20.103408 20.103408 2.39× 10−14

1 0 0.05 8.535109 8.534380 4.55× 10−2

1 0 0.10 5.988914 5.993359 5.98× 10−3

1 5 0.00 20.127089 20.127089 3.05× 10−14

1 5 0.05 9.829185 9.849087 1.76× 10−2

1 5 0.10 8.829142 8.823401 8.92× 10−3

4 0 0.00 4.360361 4.360361 3.55× 10−14

4 0 0.05 2.927418 2.924842 2.15× 10−2

4 0 0.10 2.134878 2.135311 5.56× 10−2

4 5 0.00 4.359788 4.359788 3.59× 10−14

4 5 0.05 3.595184 3.589755 1.05× 10−2

4 5 0.10 3.057900 3.055866 1.43× 10−2

Table 3.9: Comparison of ACOVQ and ATSVQ SNRs and codebooks for bit alloca-
tion (2, 2) and memoryless Gaussian source.

Dim. k δ ε SNR (TSVQ) SNR (ACOVQ) Greatest Codeword Distance

1 0 0.00 20.125013 20.125013 1.86× 10−14

1 0 0.05 8.442011 8.468965 1.11× 10−2

1 0 0.10 6.445608 6.459866 6.74× 10−3

1 5 0.00 20.110080 20.110080 1.03× 10−14

1 5 0.05 10.539527 10.525425 1.26× 10−2

1 5 0.10 9.098137 9.089128 1.24× 10−2

4 0 0.00 4.190830 4.190830 2.29× 10−14

4 0 0.05 2.810843 2.817062 5.39× 10−2

4 0 0.10 2.210464 2.212517 1.27× 10−2

4 5 0.00 4.195522 4.195522 2.39× 10−14

4 5 0.05 3.466058 3.468024 9.11× 10−3

4 5 0.10 2.903744 2.905105 2.44× 10−2

Table 3.10: Comparison of ACOVQ and ATSVQ SNRs and codebooks for bit allo-
cation (3, 1) and memoryless Gaussian source.

64

As shown in Tables 3.7 - 3.10, regardless of the channel parameters, bit allocation

or dimension, the maximum codeword distance is minimal relative to the source

variance. This distance is notably smaller in the noiseless channel case than in

the presence of channel noise. The discrepancy arises because the noise sequences

for ATSVQ and ACOVQ are generated independently (i.e., separate noise sequence

realizations are used for each quantizer). Nevertheless, even under noisy conditions,

the distance remains modest, indicating that the equivalence between the codebooks

is robust to different noise sequences from the same distribution. Additionally, the

SNR performances for ACOVQ and TSVQ match within hundredths of a decibel

in all cases. These results demonstrate that ACOVQ and ATSVQ, with the same

initializations, produce equivalent encoders, decoders, and overall performances.

65

Chapter 4

Variable-Rate Adaptive Tree

Structure Vector Quantization

4.1 Introduction

In the previous chapter, we showed that the necessary conditions for optimality for

ACOVQ is equivalent to those of ATSVQ. Up to this point, ACOVQ has only been

studied for fixed rates (i.e., all quantizers in a given stage have the same number of

bits). However, the posterior distributions at each stage of the ACOVQ, in general,

exhibit different variances and shapes, especially when the channel is noisy. This

suggests that a better performance can be obtained if we allocate bits non-uniformly

across the quantizers for that stage. In this chapter, we explore the performance

of a variable-rate ACOVQ (VR-ACOVQ) and algorithms to find an optimal bit

allocation for each stage given a constraint. We then compare the performance of

66

VR-ACOVQ to that of the fixed-rate ACOVQ (FR-ACOVQ) under the same average

rate constraints.

4.2 Variable-Rate Quantization

In variable-rate quantization, the number of bits used to quantize a source can vary

depending on the input source value. There are multiple well-studied methods for

variable-rate quantization such as quadtree-based quantization, pruned tree struc-

tured quantization, and greedy tree growing quantization [15]. The central principle

underlying these methods is that not all input vectors require a high rate quantiza-

tion; consequently, different rate quantizers can be used based on the characteristics

of the input vector. A common application of variable-rate vector quantization is

image compression: fairly homogeneous regions of an image, such as a solid colored

background, can be compressed at a low rate without incurring excessive distortion,

while high rate quantization can be reserved for highly detailed regions, such as

edges of objects. This allows the variable-rate quantizer to perform similarly to a

high fixed-rate quantizer while using a lower average rate. The same principle can be

applied in ACOVQ. As shown in Figure 2.4 not all posterior distributions have the

same variances or shapes. This suggests that a nonuniform bit allocation for each

posterior distribution of a given stage in the ACOVQ can lead to performance gains

on average compared to its fixed-rate counterpart. However, a question that arises

is how we allocate bits optimally. In the next section, we discuss existing literature

on optimal bit allocation in transform coding and TSVQ and extend those methods

67

to the VR-ACOVQ bit allocation problem.

4.3 Optimal Bit Allocation Problem

The VR-ACOVQ bit allocation problem is as follows. Consider a VR-ACOVQ

at the i ≥ 2 stage with a set of mi−1 channel output index sequences Hi−1 =

{h1,h2, . . . ,hmi−1
}, where hj ∈ Ni−1 for j = 1, . . . ,mi−1, from stage i− 1, with cor-

responding posterior probability density functions fU|Yi−1(u|hj) for j = 1, . . . ,mi−1.

Here mi−1 is an arbitrary number denoting the size of Hi−1. Specific details on how

the set Hi−1 is constructed are included in Section 4.4.1. Let φ(i) = (φ
(i)
1 , . . . , φ

(i)
mi−1)

be the bit allocation of the ith stage of the VR-ACOVQ, such that φ(i)
j bits are allo-

cated to the quantizer, at stage i, corresponding to the posterior source distribution

with density function fU|Yi−1(u|hj). Let D(φ
(i)
j ,hj) be the expected distortion when

quantizing a source with density function fU|Yi−1(u|hj) with a φ
(i)
j bit COVQ. The

VR-ACOVQ bit allocation problem is to find an optimal φ(i) that minimizes

E[D(i)] =

mi−1∑
j=1

P (Y i = hj)D(φ
(i)
j ,hj), (4.1)

where E[D(i)] is the expected distortion of the ACOVQ at stage i, such that

φ̄(i) =

mi−1∑
j=1

P (Y i = hj)φ
(i)
j ≤ Φ(i), (4.2)

where φ̄(i) is the average bits at stage i and Φ(i) is a given average bit allocation

constraint.

68

A similar bit allocation problem has been explored in [15, p. 226-231] for quantiz-

ing a block of Gaussian random variables under a bit allocation constraint. Consider

a set of m scalar random variables U1, . . . , Um. Let Qj denote the quantizer opti-

mized to quantize random variable Uj, and with an abuse of notation, let φj be the

bits allocated to Qj such that Qj is a 2φj -level quantizer. Let Dj(φj) denote the ex-

pected distortion of Qj with φj bits allocated when quantizing Uj. The optimal bit

allocation problem is to find optimal φ = (φ1, . . . , φm) such that the total distortion

D =
m∑
j=1

Dj(φj), (4.3)

is minimized given the constraint

m∑
j=1

φj ≤ Φ, (4.4)

where Φ is the given fixed quota of total bits used. Using a high rate approximation

for VQs, the optimal bit allocation is given by [15, p. 229]

φj =
Φ

m
+

1

2
log2

σ2
j

ρ2
, (4.5)

where σ2
j is the variance of Uj and

ρ2 = (
m∏
j=1

σ2
j)

1
m , (4.6)

which is the geometric mean of the random variable variances. However, the derived

69

optimal bit allocation result permits non-integer and even negative bit values, which

are impractical in real-world applications. Further, the solution in (4.5) assumes a

high-rate, closed form approximation for the distortion-rate function Dj, which may

not hold for low-rate COVQ with high channel noise, let alone low-rate VQs. A

greedy algorithm, introduced in [33], addresses these issues in the context of optimal

bit allocation when quantizing a block of discrete cosine transform (DCT) coefficients.

This algorithm was then extended to a system where the DCT coefficients were

quantized by a COVQ and transmitted over a noisy channel in [7] [8].

Given the structural similarities between TSVQ and ACOVQ, it is natural to

examine existing variable-rate TSVQ algorithms to determine whether they can be

adapted or extended to the ACOVQ framework. Several pruning algorithms have

been proposed in [20] [9] [6] [27] [16] to find an optimal bit allocation for variable-rate

TSVQs. In these algorithms, a large fixed-rate tree is created, then the nodes that

produced the lowest decrease in distortion per bits used (i.e., the “least efficient”

nodes) from the tree is pruned repeatedly until only the root node remains, creating

a sequence of sub-trees. The sub-tree in the sequence, that provides the best per-

formance for a given average rate, is then selected. For best results, a large initial

TSVQ would need to be trained to allow for a larger sub-tree sequence, which can

be computationally expensive. However, rather than pruning a large TSVQ, addi-

tional bits and nodes can be allocated to an existing tree greedily, until a constraint

can no longer be held. A greedy growing tree algorithm is discussed in [28] to split

nodes; however, the steps in the pruning methods in [27] can be done in reverse to

also create a greedy growing tree algorithm. In the next section, we will detail the

70

growing version of the pruning algorithm in [27] and extend it to the ACOVQ bit

allocation problem.

4.3.1 The Generalized BFOS Algorithm

The generalized Breiman, Friedman, Olshen, and Stone (BFOS) algorithm, proposed

in [27], provides a greedy bit allocation method for TSVQ. Although the algorithm

is detailed as a pruning method, the author notes that the algorithm steps can be

done in reverse to greedily “grow” the tree structured quantizer. Here we describe the

“growing” version of the algorithm detailed in [27]. Assume we have a “root” VQ with

m encoding regions S1, S2, . . . , Sm. We then have m additional VQs Q1, Q2, . . . , Qm,

such that Qj further refines source values in Sj, for j = 1, . . . ,m. Let φj be the

number of bits allocated for Qj for j = 1, . . . ,m. Let P (u ∈ Sj) be the probability

a source vector is in Sj. Let Dj(φj) represent the distortion of a φj-bit quantizer

on Sj for j = 1, . . . ,m. Let D, φ̄ represent the average distortion and rate of the m

quantizers, respectively, as shown:

D =
m∑
j=1

P (u ∈ Sj)Dj(φj) (4.7)

φ̄ =
m∑
j=1

P (u ∈ Sj)φj. (4.8)

The objective of this algorithm is to find φ1, . . . , φm that minimizes D and satisfies

φ̄ ≤ Φ, where Φ is a given average bit allocation constraint. The generalized BFOS

algorithm is detailed in the following steps:

71

1. For j = 1, . . . ,m, set φj = 0 for the initial bit allocation.

2. Determine I = argmaxj∈{1,...,m}{Dj(φi)−Dj(φj + 1)}.

3. Calculate D and φ̄. Check if φ̄ ≥ Φ. If so, stop. Else set φI = φI + 1 and

repeat Step 2.

In each iteration, the algorithm uses a simple resource allocation strategy: find the

quantizer with the highest performance increase per additional bit allocated, then

increment the bits for that quantizer until we exceed our constraint. In the next

section we extend this algorithm to the ACOVQ bit allocation problem.

4.4 VR-ACOVQ Bit Allocation Algorithm

4.4.1 Algorithm Overview

In this section, we present a high-level overview of the bit allocation algorithm,

focusing on its inputs, outputs, and how it is applied recursively to construct each

stage of a VR-ACOVQ. The algorithm is treated as a “black box”; the specific steps

will be detailed in the next section. Consider a VR-ACOVQ with a maximum of

n stages and a sequence of non-zero constraints Φ(1),Φ(2), . . . ,Φ(n). Let Hi−1 be

the set of channel output sequences up to the ith stage of the VR-ACOVQ for

i = 1, . . . , n, and let G(i)
h = {0, 1, . . . , 2φ

(i)
h − 1} for h ∈ Hi−1, where, with abuse of

notation, φ(i)
h is the number of bits allocated given Y i−1 = h.

72

First Stage Overview

The first stage of the VR-ACOVQ is a bΦ(1)c-bit COVQ with channel indices I(1) =

{0, 1, . . . , 2bΦ(1)c−1}. The algorithm, given Φ(2), H1, and associated probabilities for

each sequence in H1 (i.e., P (Y1 = h) for h ∈ H1), will output a bit allocation φ
(2)
h

for each h ∈ I(1).

Second and Subsequent Stages Overview

Figure 4.1: Tree diagram for a two-stage VR-ACOVQ.

After finding φ(2), we construct H2 using φ(2) and H1. The set H1 provides the

channel output received by the encoder via noiseless feedback and φ(2) provides the

bits allocated to each COVQ for each corresponding feedback value. COVQs in the

second stage are then added to the VR-ACOVQ with bit allocations provided by

φ(2). We can then construct H2 as follows:

H2 =
⋃

h1∈H1

{h1} × G(2)
h1

(4.9)

73

=
⋃

h1∈H1

{h1} ×
{
0, 1, . . . , 2φ

(2)
h1 − 1

}
. (4.10)

A tree-structured visual depiction of (4.10) can be seen in Figure 4.1. Each

rectangle represents a COVQ in the VR-ACOVQ. The rectangle on top is the stage 1

COVQ and the rectangles below are the stage 2 COVQs. Source samples whose

stage 1 channel outputs match the labels on the arrows will be further quantized by

the corresponding COVQs. Visually, the construction of H2 is taking all “paths” of

the tree and concatenating the “paths” with the corresponding channel indices for

the stage 2 COVQs. In this example, the possible channel outputs on the left side of

the tree up to stage 2 (i.e., the outputs corresponding with Y1 = 0) is {0}×{G(2)
0 } and

the possible channel outputs on the right side of the tree at stage 2 is {1} × {G(2)
1 }.

We then have that H2 = {0} × {G(2)
0 } ∪ {1} × {G(2)

1 }.

The algorithm will then be applied recursively for subsequent stages. Consider

stage i ≥ 2. The algorithm, given Hi−1, associated probabilities for each sequence in

Hi−1 (i.e., P (Y i−1 = h) for h ∈ Hi−1), and Φ(i) will output φ(i). We then construct

Hi as follows:

Hi =
⋃

h∈Hi−1

{h1} × {h2} × · · · × {hi−1} × G(i)
h . (4.11)

Specifically, {h1} × {h2} × · · · × {hi−1} in (4.11) denotes a sequence from stages 1

up to i − 1. We then append the new channel indices at stage i, given by the bit

allocation φ
(i)
h .

74

Figure 4.2: Tree diagram for a three-stage VR-ACOVQ.

We can see in Figure 4.2 a three-stage VR-ACOVQ tree diagram, which is a con-

tinuation of the 2-stage VR-ACOVQ depicted in Figure 4.1. In this case, we have that

H2 = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (1, 3)}, which represents the set of all channel

indices up to stage 2. Due to the size of H3, we will only exhaustively list elements

in the set corresponding to h1 = 0. The set of channel indices up to stage 3 corre-

sponding to h1 = 0 (i.e., the “left side” of Figure 4.2) is {(0, 0, 0), (0, 1, 0), (0, 1, 1)}.

4.4.2 Steepest Descent Bit Allocation Algorithm

In this section, we detail the bit allocation algorithm that will be applied in between

stages of VR-ACOVQ. At a given stage i ≥ 2 in a VR-ACOVQ, assume we have

a set of mi−1 channel output sequences, Hi−1 = {h1, . . . ,hmi−1
}, received by the

encoder via noiseless feedback link at stage i. Let φ(i) = (φ
(i)
1 , . . . , φ

(i)
mi−1) be the

bit allocation vector such that φ
(i)
j corresponds to the bits allocated to the COVQ

75

quantizing the posterior distribution corresponding to channel output hj for j =

1, . . . ,mi−1. Let the maximum bits allocated to any single quantizer be Φmax, such

that φ
(i)
j ≤ Φmax, for j = 1, . . . ,mi−1. Let Φ(i) be the maximum average rate such

that φ
(i)

:=
∑mi−1

j=1 P (Y i−1 = hj)φ
(i)
j ≤ Φ(i). For all j = 1, . . . ,mi−1, let D(φj,hj)

be the expected distortion of a φj bit quantizer with source distribution fU|hj
:=

fU|Y i−1(u|hj), and let

D(i) =

mi−1∑
j=1

P (Y i−1 = hj)D(φ
(i)
j ,hj) (4.12)

represent the average distortion at stage i for a given φ(i). Further, if φ
(i)
j = 0,

let D(φ
(i)
j ,hj) = σ2

fU|hj
, where σ2

fU|hj
=
∑k

j=1 Var(fuj |hj
) is the sum of the marginal

variances of the conditional source distribution.

1. Set φ
(i)
j = 0 for all j = 1, . . . ,mi−1. This will be the initial state of the

bit allocation algorithm. Set J = {1, . . . ,mi−1}. The set J will represent

the indices of all quantizers whose bit allocation can be incremented without

violating any constraints. Elements of J will be removed if a bit increase for

the corresponding index violate the constraint.

2. Set

λj =
∆D(i)

∆φ
(i)

(4.13)

=
P (Y i−1 = hj)

(
D(φ

(i)
j ,hj)−D(φ

(i)
j + 1,hj)

)
P (Y i−1 = hj)

(
(φ

(i)
j + 1)− (φ

(i)
j)
) (4.14)

76

= D(φ
(i)
j ,hj)−D(φ

(i)
j + 1,hj), ∀j ∈ J . (4.15)

Each element λj represents the ratio of the decrease in average distortion per

increase in average rate by allocating an extra bit to the quantizer correspond-

ing to sequence hj for all j = 1, . . . ,mi−1.

3. Find jmax = argmaxj∈J λj. Determine if

∑
l∈{1,...,mi−1}\{jmax}

P (Y i−1 = hl)φ
(i)
l + P (Y i−1 = hjmax)

(
φ
(i)
jmax

+ 1
)
> Φ(i)

or if φ
(i)
jmax

= Φmax. The inequality determines whether this increase in allo-

cation would violate the average bit allocation constraint for the given stage.

If either statement is true, set J = J \jmax and set λjmax = 0. Else set

φ
(i)
jmax

= φ
(i)
jmax

+ 1.

4. If J = ∅ or λj ≤ 0 for all j = 1, . . . ,mi−1 stop and return φ(i). Else repeat

steps 2 and 3.

In the absence of an analytical distortion-rate function for COVQ, we evaluate

D(φ
(i)
j ,hj) by training and evaluating the expected distortion of a COVQ for each

value of φ(i)
j and distribution fU|hj

for j = 1, . . . ,mi−1. The training for these quan-

tizers and distortion calculations will be done offline, and only the final quantizers

(i.e., quantizers whose allocated bits correspond to the final values in φ) will be

stored and used in the VR-ACOVQ.

77

4.5 Complexity Analysis

4.5.1 Computational and Storage Complexity of FR-ACOVQ

Encoder

Methods for reducing the complexity of CM-TSVQ and COVQ are detailed in [21]

and [13], respectively. In this section, we extend this method to ACOVQ. Consider an

ACOVQ at stage i ≥ 2 that satisfies the generalized nearest neighbor and centroid

conditions with partitions S(1),S(2)
y1 , . . . ,S

(i)

yi−1 . Let u ∈ Rk be the source vector,

Y i−1 = yi−1 be the channel output sequence received by the encoder via noiseless

feedback link, and X i−1 = xi−1 = γi−1
yi−2(u) be the encoded sequence for the previous

i− 1 stages. Recall from (2.99) that an ith stage ACOVQ satisfying the generalized

nearest neighbor condition has encoding regions given by

S
(i)

xi|yi−1 = {u ∈ Rk : d′i(u; y
i−1, γi−1

yi−2(u), xi) ≤ d′i(u; y
i−1, γi−1

yi−2(u), x
′
i), (4.16)

x′
i ∈ I(i)} xi ∈ I(i), yi−1 ∈ I i−1.

We then have that

E (i)(γi−1
yi−2(u), y

i−1,u) = xi ⇐⇒ xi ∈ S
(i)

xi|yi−1 (4.17)

=⇒ E (i)(γi−1
yi−2(u), y

i−1,u) = arg min
xi∈I(i)

{d′(u; γi−1
yi−2(u), xi, y

i−1)}, (4.18)

78

where

d′(u;xi−1, xi, y
i−1)

=
∑

yi∈I(i)

P (Yi = yi|X i = xi, Y i−1 = yi−1)
∥∥∥u− c

(i,AC)

yi|yi−1

∥∥∥2 (4.19)

=
∑

yi∈I(i)

P (Yi = yi|X i = xi, Y i−1 = yi−1)

×

(
‖u‖2 − 2 < u, c

(i,AC)

yi|yi−1 > +

∥∥∥∥c(i,AC)

yi|yi−1

∥∥∥∥2
)
. (4.20)

Let

κ
(i)
1 (yi−1, xi) =

∑
yi∈I(i)

P (Yi = yi|X i = xi, Y i−1 = yi−1)c
(i,AC)

yi|yi−1 (4.21)

κ
(i)
2 (yi−1, xi) =

∑
yi∈I(i)

P (Yi = yi|X i = xi, Y i−1 = yi−1)
∥∥∥c(i,AC)

yi|yi−1

∥∥∥2 . (4.22)

The encoding function can then be reduced as follows:

E (i)(γi−1
yi−2(u), y

i−1,u) (4.23)

= arg min
xi∈I(i)

{d′(u; γi−1
yi−2(u), xi, y

i−1)} (4.24)

= arg min
xi∈I(i)

{ ∑
yi∈I(i)

P (Yi = yi|X i = xi, Y i−1 = yi−1)

×

(
‖u‖2 − 2 < u, c

(i,AC)

yi|yi−1 > +

∥∥∥∥c(i,AC)

yi|yi−1

∥∥∥∥2
)}

(4.25)

79

= arg min
xi∈I(i)

{ ∑
yi∈I(i)

P (Yi = yi|X i = xi, Y i−1 = yi−1)

 ‖u‖2

− 2 < u, κ
(i)
1 (yi−1, xi) > +κ

(i)
2 (yi−1, xi)

}
(4.26)

= arg min
xi∈I(i)

{u− 2 < u, κ
(i)
1 (yi, xi) > +κ

(i)
2 (yi, xi)} (4.27)

= arg min
xi∈I(i)

{−2 < u, κ
(i)
1 (yi, xi) > +κ

(i)
2 (yi, xi)}. (4.28)

Assuming bi > 0, the encoding computational complexity of (4.28) is k · 2bi floating

point operations (FLOPs), or 2bi FLOPs per sample, which comes from the inner

product. If bi = 0, then |I(i)| = 1 and no computations are needed to encode any

values. Note the encoder does not need to consider indices that correspond to empty

encoding regions when finding the encoding sequence corresponding to the minimum

value in (4.28). If a quantizer has empty encoding regions, we can replace xi ∈ I(i), in

(4.28), with xi ∈ I(i)
nonempty, where I(i)

nonempty ⊂ I(i) is the set of indices corresponding

to nonempty encoding regions. As a result, the complexity can be further reduced

to k · |I(i)
nonempty| FLOPs or |I(i)

nonempty| FLOPs per sample.

To reduce the computational complexity, the encoder stores all outputs from

κ
(i)
1 and κ

(i)
2 . The total number of inputs for κ

(i)
1 and κ

(i)
2 is |I i−1| · |I i| for each

function. Consequently, we have that the number of scalars stored for all outputs of

κ
(i)
1 is k · (|I i−1| · |I i|), and for κ

(i)
2 is |I i−1| · |I i|. Note that when the channel has

finite memory, (4.21) and (4.22) may depend only on a subsequence of X i, allowing

for further reductions in storage complexity. For example, consider a b = (2, 1)

ACOVQ, with codebooks C(1), C(2)
y1 for y1 ∈ I(1), and a Polya contagion channel

80

with memory M = 1, detailed in Section 3.4.1, satisfying the following transition

probability property

P (Zi = zi|Zi−1 = zi−1) = P (Zi = zi|Zi−1 = zi−1). (4.29)

For stage i = 2, we have

κ
(2)
1 (y1, x

2) =
∑

y2∈I(2)

P (Y2 = y2|X2 = x2, Y1 = y1)c
(2,AC)
y2|y1 (4.30)

=
∑

y2∈I(2)

P (Z3 = β1(x2)⊕ β1(y2)|Z2 = β2(x1)⊕ β2(y1))c
(2,AC)
y2|y1 (4.31)

=
∑

y2∈I(2)

P (Z3 = β1(x2)⊕ β1(y2)|Z2 = (β2(x1)⊕ β2(y1))2)c
(2,AC)
y2|y1 , (4.32)

where βη(x), is the η-bit binary representation of the integer x (see Section 3.4.1) and

(β2(x1)⊕β2(y1))2 refers to the 2nd component of the binary vector. We can see that

κ
(2)
1 does not vary with the term (β2(x1))1. Hence, we have that κ

(2)
1 only depends

on the 2 of the 3 binary vector values of (x1, x2). Thus instead of accounting for all

8 values for (x1, x2) ∈ I2, we only need to account for the first 2 bits. Therefore the

storage complexity can be reduced from |I2| · |I1| = 32 scalar values to 4 · |I1| = 16

scalar values. A similar argument can be used to show that the storage complexity

of κ(2)
2 can be reduced from k · 32 scalar values to k · 16 scalar values in this example.

81

4.5.2 Encoding Complexity of VR-ACOVQ

In this section, we compare the average encoding computational complexity and

average rate of the VR-ACOVQ and FR-ACOVQ. Assume that we have an n stage,

k-dimensional, FR-ACOVQ with bit allocation b and an n stage, k-dimensional,

VR-ACOVQ with bit allocation φ(i) such that φ̄(i) = bi for i = 1, . . . , n. Further,

we assume that φ
(i)
j ≥ 1 for j = 1, . . . ,mi−1 and that there are no empty encoding

regions for all quantizers at this stage. The average rate of the VR-ACOVQ for a

given stage 2 ≤ i ≤ n is given by

1

k

mi−1∑
j=1

P (Y i−1 = hj)φ
(i)
j =

1

k
φ̄(i) (4.33)

=
1

k
bi (4.34)

bits per source sample, which is equivalent to the average rate of its FR-ACOVQ

counterpart. From (4.28), the encoding complexity of a φ-bit quantizer is

g(φ) =


2φ φ ≥ 1

0 φ = 0

(4.35)

FLOPs per source sample. However, if we restrict the domain such that φ ≥ 1, the

piecewise function reduces to g(φ) = 2φ, which is a convex function. The encoding

complexity of a VR-ACOVQ for a given stage 2 ≤ i ≤ n is then

mi−1∑
j=1

P (Y i = hj)2
φ
(i)
j ≥ 2

∑mi−1
j=1 P (Y i−1=hj)φ

(i)
j (4.36)

82

= 2φ̄
(i) (4.37)

= 2bi (4.38)

FLOPs per source sample. Note that the inequality from (4.36) comes from Jensen’s

inequality and from the convexity of the function g(φ) = 2φ. We can see from (4.38)

that the encoding complexity of the the VR-ACOVQ will be lower bounded by the

complexity of the FR-ACOVQ. Thus, in addition to the multiple quantizers that

need to be trained for the VR-ACOVQ, the encoding complexity on average will be

higher than its FR-ACOVQ counterpart.

However, the encoding complexity can be upper bounded based on the selected

value of Φmax, the maximum bits that can be allocated to any quantizer in a VR-

ACOVQ. Consider a VR-ACOVQ at stage i with an average bit allocation constraint

Φ(i), maximum bit allocation for any quantizer of Φmax, such that Φmax ≥ Φ(i), and

the set of channel output sequences Hi−1 = {h1, . . . ,hmi−1
}. Let pj = P (Y i−1 = hj)

for j = 1, . . . ,mi−1. We want to find p1, . . . , pmi−1
and φ

(i)
1 , . . . , φ

(i)
mi−1 that satisfy

mi−1∑
l=1

plφ
(i)
l ≤ Φ(i) (4.39)

mi−1∑
l=1

pl = 1 (4.40)

0 ≤ φ
(i)
j ≤ Φmax (4.41)

pj ≥ 0, (4.42)

83

for j = 1, . . . ,mi−1, and maximizes

V (p1, . . . , pmi−1
,φ(i)) :=

mi−1∑
l=1

plg(φ
(i)
l), (4.43)

the average encoding complexity of stage i. Because g(·) is a strictly increasing

function, the maximum of V (·) will be found when φ
(i)
l = 0 or Φmax for l = 1, . . . ,mi−1

(i.e., only values on the boundaries of the intervals in (4.41) are used). Equivalently,

we can let φ
(i)
1 = 0 and φ

(i)
2 = Φmax and let p3 = p4 = · · · pmi−1

= 0. Furthermore,

the maximum complexity is achieved when the maximum average rate is achieved in

(4.40) (i.e., when
∑mi−1

l=1 plφ
(i)
l = Φ(i)). We then have that the maximum complexity

is achieved when

p1 + p2 = 1 (4.44)

p1 ∗ 0 + p2Φmax = Φ(i), (4.45)

which implies that p2 = Φ(i)

Φmax
, p1 = 1 − Φ(i)

Φmax
. Plugging these values into (4.43) we

then have that the upper bound for complexity is

V (p1, . . . , pmi−1
,φ(i)) = p1g(0) + p2g(Φmax) (4.46)

=
Φ(i)

Φmax

2Φmax (4.47)

FLOPs per source sample. Hence, the encoding complexity of the VR-ACOVQ is

dominated by Φmax.

84

4.6 Simulation Results

The following tables compare the performances of a VR-ACOVQ to a FR-ACOVQ.

Note that the first stage for both quantizers is a COVQ. Let n denote the total num-

ber of stages for both quantizers and let Φ = (Φ(1),Φ(2), . . . ,Φ(n)) denote the average

bit allocation constraints for the n stages. The VR-ACOVQ will be trained by re-

cursively adding stages with a bit allocation given by the steepest decent algorithm

in Section 4.4.2. The FR-ACOVQ will have bit allocation b = (Φ(1),Φ(2), . . . ,Φ(n)).

Note that although Φ(j) for j = 1, . . . , n do not need to be integers when used as a

constraint for the VR-ACOVQ, only integer values will be considered for the sim-

ulations to allow b = Φ to be a valid FR-ACOVQ bit allocation, allowing the two

quantizers to have similar, if not equal, average rates. For the cases where “Bal-

anced Tree” is true, the FR-ACOVQ and VR-ACOVQ are expected to have similar

performances. The quantizers were trained on a source of 4 million vectors over a

sequence of increasing and decreasing ε values for various δ and average bit alloca-

tions constraints with the best performing quantizers stored. Various 4-bit and 6-bit

VR-ACOVQ and FR-ACOVQ are trained and compared with each other over mem-

oryless Laplacian and Gaussian sources. For the 4-bit quantizers we have Φmax = 5,

and for the 6-bit quantizers we have Φmax = 8.

Tables 4.1 - 4.6 and Tables 4.13 - 4.16 display the performance of FR-ACOVQ

and VR-ACOVQ for various 4-bit and 6-bit bit allocations respectively. Each have a

column called “Balanced Tree”, which contains booleans: when true, the optimal bit

allocation from the steepest descent algorithm is equivalent to a fixed-rate ACOVQ.

Further for the columns “VR-ACOVQ SNR” and “FR-ACOVQ SNR,” the greater

85

value in each row is bolded. Tables 4.13 - 4.13 and Tables 4.21 - 4.30 display the

performance differences between FR-ACOVQ and VR-ACOVQ. Note that in these

tables, unbolded values correspond to when the VR-ACOVQ and FR-ACOVQ bit

allocations are equal (i.e., when the corresponding “Balanced Tree” value is true),

while bolded values indicate a difference between the bit allocations. In this thesis,

only specific bit allocations will be selected for brevity. Additional simulation results

can be seen in Appendix B.

4.6.1 4-Bit VR-ACOVQ Simulation Results

Tables 4.1 - 4.6 show the performances for the VR-ACOVQ and FR-ACOVQ for

various 4-bit bit allocations. Note that the Bit Allocation Average column de-

picts a vector of bit allocation averages for each stage of the VR-ACOVQ (i.e.,

(φ̄(1), φ̄(2), . . . , φ̄(n))). We can see that in general, the VR-ACOVQ outperforms the

FR-ACOVQ regardless of the ε and δ communication channel parameters despite

having a lower average rate. Further, from Tables 4.7 - 4.12 we can see that perfor-

mance gap between the VR-ACOVQ and FR-ACOVQ is greater for a memoryless

Laplacian source compared to a memoryless Gaussian source. This indicates that

the gap between a VR-ACOVQ and FR-ACOVQ widens with a more biased source

distribution. An explanation for this behavior is that a bit allocation determined by

the steepest descent bit allocation algorithm outperforms a fixed-rate bit when the

posterior distributions at the given stage vary greatly. With a biased source distri-

bution, such as the Laplacian distribution, the posterior distributions exhibit greater

variation, leading to poorer performance of fixed-rate allocation and improved per-

86

formance of the algorithm-driven allocation. Table 4.29 shows that for 2-dimensional

memoryless Gaussian sources, the bit allocation significantly affects the performance

difference between FR-ACOVQ and VR-ACOVQ. Overall, the bit allocations (3, 1)

and (1, 2, 1) resulted in the most consistent performance improvements. In contrast,

bit allocations (1, 1, 2), (1, 3), and (2, 1, 1) consistently resulted in VR-ACOVQs with

bit allocations equivalent to FR-ACOVQ, leading to negligible performance differ-

ences. This suggests that, at low rates, VR-ACOVQ offers little to no benefit when

the average bit allocation constraint for the first and intermediate stages are 1 bit

with some exceptions.

4.6.2 6-Bit VR-ACOVQ Simulation Results

Tables 4.13 - 4.20 present the performances of VR-ACOVQ and FR-ACOVQ for var-

ious 6-bit bit allocations on 1 and 2 dimensional memoryless Gaussian and Laplacian

sources. We can see that in Tables 4.21 and 4.23 the SNR gain of VR-ACOVQ over

FR-ACOVQ ranges from 0.6 dB - 2.1 dB for bit allocations (4,1,1) and (3,1,1,1) on

a 1-dimensional Gaussian source. On a 1-dimensional Laplacian source, we can see

in Tables 4.25 and 4.27 the SNR gain of VR-ACOVQ over FR-ACOVQ ranges from

1.2 dB - 4 dB for bit allocations (4,1,1) and (3,1,1,1). In the 4-bit bit allocations,

the SNR gain between the two schemes goes up to 1.7 dB and 3 dB on Gaussian

and Laplacian sources, respectively. This indicates that the SNR gain between VR-

ACOVQ and FR-ACOVQ is increased with a higher rate and a more concentrated

source distribution. Furthermore, in Table 4.30, negligible gain is observed with

the bit allocation (1, 1, 4), while consistent gain is observed with allocations such

87

as (1, 4, 1) and (4, 1, 1). This suggests that the bit allocation algorithm generally

defaults to a fixed-rate allocation when all stages—except the last—are constrained

to 1 bit for a 2-dimensional Gaussian source.

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 20.674 20.116 False (1.0, 1.0, 1.0, 1.0)
0.0005 0 20.004 19.664 False (1.0, 1.0, 1.0, 1.0)
0.0010 0 19.562 19.274 False (1.0, 1.0, 1.0, 0.961)
0.0050 0 17.158 16.955 False (1.0, 1.0, 1.0, 0.97)
0.0100 0 15.377 15.199 False (1.0, 1.0, 1.0, 0.956)
0.0500 0 10.624 10.404 False (1.0, 1.0, 1.0, 0.995)
0.1000 0 7.523 7.397 False (1.0, 1.0, 1.0, 0.99)

0.0000 5 20.674 20.099 False (1.0, 1.0, 1.0, 1.0)
0.0005 5 20.011 19.684 False (1.0, 1.0, 1.0, 0.955)
0.0010 5 19.573 19.253 False (1.0, 1.0, 1.0, 0.959)
0.0050 5 17.469 17.013 False (1.0, 1.0, 1.0, 0.986)
0.0100 5 15.711 15.333 False (1.0, 1.0, 1.0, 0.955)
0.0500 5 11.644 11.837 False (1.0, 1.0, 1.0, 1.0)
0.1000 5 10.407 9.995 False (1.0, 1.0, 1.0, 0.999)

0.0000 10 20.667 20.107 False (1.0, 1.0, 1.0, 1.0)
0.0005 10 20.087 19.741 False (1.0, 1.0, 1.0, 0.956)
0.0010 10 19.749 19.429 False (1.0, 1.0, 1.0, 0.957)
0.0050 10 17.669 17.442 False (1.0, 1.0, 1.0, 0.965)
0.0100 10 16.433 16.307 False (1.0, 1.0, 1.0, 0.983)
0.0500 10 13.233 13.000 False (1.0, 1.0, 1.0, 0.983)
0.1000 10 11.977 11.511 False (1.0, 1.0, 0.999, 0.989)

Table 4.1: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 1, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

88

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 20.588 20.160 False (3.0, 0.993)
0.0005 0 19.758 19.042 False (3.0, 0.985)
0.0010 0 19.173 18.318 False (3.0, 0.986)
0.0050 0 16.503 14.809 False (3.0, 0.995)
0.0100 0 14.709 13.308 False (3.0, 0.995)
0.0500 0 10.245 9.375 False (3.0, 0.993)
0.1000 0 7.164 6.579 False (3.0, 0.998)

0.0000 5 20.556 20.154 False (3.0, 0.99)
0.0005 5 20.206 19.726 False (3.0, 0.998)
0.0010 5 19.798 19.393 False (3.0, 0.994)
0.0050 5 18.100 17.284 False (3.0, 0.981)
0.0100 5 16.901 15.605 False (3.0, 0.988)
0.0500 5 12.424 11.047 False (3.0, 0.952)
0.1000 5 10.156 9.077 False (3.0, 0.963)

0.0000 10 20.528 20.199 False (3.0, 0.987)
0.0005 10 20.288 19.897 False (3.0, 0.989)
0.0010 10 20.184 19.671 False (3.0, 0.997)
0.0050 10 18.775 18.126 False (3.0, 0.981)
0.0100 10 17.836 16.833 False (3.0, 0.993)
0.0500 10 13.897 12.474 False (3.0, 0.948)
0.1000 10 11.918 10.539 False (3.0, 0.988)

Table 4.2: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (3, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

89

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 20.666 20.081 False (2.0, 1.0, 0.999)
0.0005 0 19.766 19.372 False (2.0, 1.0, 1.0)
0.0010 0 19.119 18.776 False (2.0, 1.0, 0.962)
0.0050 0 17.405 15.782 False (2.0, 0.993, 0.999)
0.0100 0 16.032 14.423 False (2.0, 0.837, 0.999)
0.0500 0 11.073 9.914 False (2.0, 0.956, 0.995)
0.1000 0 7.283 7.092 False (2.0, 0.813, 0.995)

0.0000 5 20.674 20.096 False (2.0, 1.0, 1.0)
0.0005 5 20.150 19.723 False (2.0, 1.0, 0.999)
0.0010 5 19.803 19.379 False (2.0, 1.0, 0.964)
0.0050 5 17.868 17.359 False (2.0, 1.0, 0.965)
0.0100 5 16.716 15.772 False (2.0, 1.0, 0.959)
0.0500 5 13.079 11.760 False (2.0, 0.989, 1.0)
0.1000 5 10.382 9.932 False (2.0, 0.88, 0.995)

0.0000 10 20.527 20.099 False (2.0, 1.0, 1.0)
0.0005 10 20.402 19.836 False (2.0, 1.0, 0.999)
0.0010 10 19.980 19.645 False (2.0, 1.0, 0.957)
0.0050 10 18.425 18.060 False (2.0, 1.0, 0.962)
0.0100 10 17.428 16.732 False (2.0, 1.0, 0.949)
0.0500 10 14.136 13.303 False (2.0, 0.967, 0.994)
0.1000 10 11.750 11.657 False (2.0, 0.85, 0.996)

Table 4.3: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (2, 1, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

90

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0 0 16.857 14.945 False (1.0, 1.0, 0.986, 1.0)
0.001 0 15.982 14.590 False (1.0, 1.0, 0.94, 0.999)
0.001 0 15.610 14.249 False (1.0, 1.0, 0.937, 0.999)
0.005 0 13.109 12.267 False (1.0, 1.0, 0.904, 0.996)
0.010 0 11.630 10.672 False (1.0, 1.0, 0.966, 0.999)
0.050 0 6.371 5.940 False (1.0, 1.0, 0.923, 0.999)
0.100 0 3.389 3.244 False (1.0, 1.0, 0.925, 1.0)

0 5 16.931 14.950 False (1.0, 1.0, 0.995, 1.0)
0.001 5 15.991 14.628 False (1.0, 1.0, 0.94, 0.999)
0.001 5 15.215 14.329 False (1.0, 1.0, 0.913, 0.998)
0.005 5 13.518 12.572 False (1.0, 1.0, 0.925, 1.0)
0.010 5 12.467 11.092 False (1.0, 1.0, 0.941, 0.997)
0.050 5 7.997 7.516 False (1.0, 1.0, 0.941, 0.999)
0.100 5 6.873 5.878 False (1.0, 1.0, 0.982, 0.987)

0 10 16.893 14.935 False (1.0, 1.0, 0.993, 1.0)
0.001 10 15.544 14.699 False (1.0, 1.0, 0.91, 0.999)
0.001 10 15.402 14.470 False (1.0, 1.0, 0.937, 0.998)
0.005 10 14.246 13.019 False (1.0, 1.0, 0.943, 1.0)
0.010 10 12.556 11.718 False (1.0, 1.0, 0.932, 0.998)
0.050 10 8.750 8.506 False (1.0, 1.0, 0.977, 1.0)
0.100 10 7.724 7.221 False (1.0, 1.0, 0.935, 0.996)

Table 4.4: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 1, 1) and 1-
dimensional (k = 1) memoryless Laplacian source.

91

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.000 0 16.670 15.094 False (3.0, 1.0)
0.001 0 15.840 14.082 False (3.0, 0.987)
0.001 0 15.324 13.293 False (3.0, 0.984)
0.005 0 13.062 10.776 False (3.0, 0.999)
0.010 0 11.140 8.235 False (3.0, 0.987)
0.050 0 6.537 4.989 False (3.0, 0.988)
0.100 0 3.445 2.390 False (3.0, 0.986)

0.000 5 16.624 15.086 False (3.0, 0.999)
0.001 5 16.268 14.652 False (3.0, 0.991)
0.001 5 15.950 14.107 False (3.0, 0.987)
0.005 5 14.713 12.324 False (3.0, 0.971)
0.010 5 13.683 10.581 False (3.0, 0.958)
0.050 5 9.394 6.610 False (3.0, 0.981)
0.100 5 7.026 4.861 False (3.0, 0.983)

0.000 10 16.602 15.089 False (3.0, 0.999)
0.001 10 16.377 14.785 False (3.0, 0.989)
0.001 10 16.204 14.542 False (3.0, 0.999)
0.005 10 15.062 12.831 False (3.0, 0.999)
0.010 10 14.524 11.988 False (3.0, 0.997)
0.050 10 10.797 7.943 False (3.0, 0.992)
0.100 10 8.349 6.159 False (3.0, 0.953)

Table 4.5: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (3, 1) and 1-
dimensional (k = 1) memoryless Laplacian source.

92

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0 0 16.901 14.931 False (2.0, 0.997, 1.0)
0.001 0 15.307 14.396 False (2.0, 0.923, 1.0)
0.001 0 15.175 13.877 False (2.0, 0.971, 1.0)
0.005 0 13.780 11.140 False (2.0, 0.943, 0.996)
0.010 0 12.531 10.022 False (2.0, 0.921, 0.999)
0.050 0 7.238 5.331 False (2.0, 0.861, 0.999)
0.100 0 3.901 2.862 False (2.0, 0.841, 0.995)

0.000 5 16.922 14.937 False (2.0, 0.991, 1.0)
0.001 5 15.522 14.546 False (2.0, 0.915, 1.0)
0.001 5 15.363 14.242 False (2.0, 0.92, 0.997)
0.005 5 14.441 12.333 False (2.0, 0.995, 1.0)
0.010 5 13.500 10.867 False (2.0, 0.929, 1.0)
0.050 5 9.681 7.368 False (2.0, 0.931, 0.999)
0.100 5 6.914 5.575 False (2.0, 0.912, 0.999)

0.000 10 16.946 14.951 False (2.0, 0.996, 1.0)
0.001 10 16.625 14.665 False (2.0, 0.998, 1.0)
0.001 10 15.524 14.426 False (2.0, 0.93, 0.999)
0.005 10 14.834 12.939 False (2.0, 0.99, 0.999)
0.010 10 14.086 11.745 False (2.0, 0.978, 0.995)
0.050 10 10.448 8.649 False (2.0, 0.905, 1.0)
0.100 10 7.987 7.167 False (2.0, 0.875, 0.998)

Table 4.6: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (2, 1, 1) and 1-
dimensional (k = 1) memoryless Laplacian source.

93

δ

ε 0 5 10

0.0 0.559 0.576 0.559
0.0005 0.34 0.327 0.346
0.001 0.288 0.32 0.32
0.005 0.203 0.456 0.227
0.01 0.178 0.378 0.126
0.05 0.22 -0.193 0.233
0.1 0.125 0.411 0.466

Table 4.7: SNR gain of VR-ACOVQ over
FR-ACOVQ for bit allocation (1, 1, 1, 1)
and memoryless 1-dimensional (k = 1)
Gaussian source.

δ

ε 0 5 10

0.0 1.915 1.977 1.964
0.0005 1.39 1.364 0.845
0.001 1.364 0.882 0.919
0.005 0.833 0.944 1.221
0.01 0.97 1.375 0.838
0.05 0.44 0.484 0.255
0.1 0.151 1.0 0.503

Table 4.8: SNR gain of VR-ACOVQ over
FR-ACOVQ for bit allocation (1, 1, 1, 1)
and 1-dimensional (k = 1) memoryless
Laplacian source.

δ

ε 0 5 10

0.000000 0.428 0.402 0.33
0.000500 0.717 0.48 0.392
0.001000 0.855 0.405 0.512
0.005000 1.695 0.816 0.649
0.010000 1.401 1.296 1.003
0.050000 0.87 1.377 1.423
0.100000 0.585 1.079 1.379

Table 4.9: SNR gain of VR-ACOVQ over
FR-ACOVQ for bit allocation (3, 1) and
1-dimensional (k = 1) memoryless Gaus-
sian source.

δ

ε 0 5 10

0.000000 1.576 1.55 1.522
0.000500 1.749 1.616 1.597
0.001000 2.031 1.848 1.662
0.005000 2.277 2.389 2.229
0.010000 2.912 3.094 2.535
0.050000 1.556 2.773 2.848
0.100000 1.058 2.158 2.186

Table 4.10: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation (3, 1)
and 1-dimensional (k = 1) memoryless
Laplacian source.

94

δ

ε 0 5 10

0.000000 0.584 0.578 0.428
0.000500 0.393 0.427 0.566
0.001000 0.343 0.424 0.335
0.005000 1.623 0.508 0.364
0.010000 1.608 0.943 0.696
0.050000 1.159 1.319 0.833
0.100000 0.191 0.45 0.093

Table 4.11: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(2, 1, 1) and 1-dimensional (k = 1) mem-
oryless Gaussian source.

δ

ε 0 5 10

0.000000 1.976 1.985 1.99
0.000500 0.912 0.975 1.96
0.001000 1.297 1.116 1.098
0.005000 2.641 2.101 1.906
0.010000 2.516 2.635 2.34
0.050000 1.91 2.314 1.8
0.100000 1.033 1.339 0.818

Table 4.12: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(2, 1, 1) and 1-dimensional (k = 1) mem-
oryless Laplacian source.

95

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.709 31.670 False (4.0, 0.994, 1.0)
0.0005 0 27.194 25.679 False (4.0, 0.999, 1.0)
0.0010 0 25.607 24.225 False (4.0, 0.999, 1.0)
0.0050 0 22.581 21.333 False (4.0, 0.988, 1.0)
0.0100 0 20.994 19.451 False (4.0, 1.0, 1.0)
0.0500 0 14.221 13.331 False (4.0, 0.997, 1.0)
0.1000 0 10.310 9.472 False (4.0, 0.997, 1.0)

0.0000 5 32.684 31.651 False (4.0, 1.0, 1.0)
0.0005 5 29.257 27.544 False (4.0, 1.0, 1.0)
0.0010 5 28.062 26.045 False (4.0, 0.995, 1.0)
0.0050 5 23.556 22.292 False (4.0, 0.995, 1.0)
0.0100 5 21.578 20.815 False (4.0, 0.984, 1.0)
0.0500 5 17.598 15.623 False (4.0, 1.0, 1.0)
0.1000 5 15.237 13.404 False (4.0, 0.998, 1.0)

0.0000 10 32.693 31.680 False (4.0, 0.999, 1.0)
0.0005 10 30.508 28.889 False (4.0, 0.996, 1.0)
0.0010 10 29.515 27.395 False (4.0, 0.998, 1.0)
0.0050 10 25.444 23.960 False (4.0, 0.999, 1.0)
0.0100 10 23.729 22.271 False (4.0, 1.0, 1.0)
0.0500 10 19.605 18.197 False (4.0, 0.999, 1.0)
0.1000 10 16.994 16.054 False (4.0, 0.997, 1.0)

Table 4.13: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (4, 1, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

96

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.858 31.630 False (3.0, 0.992, 1.0, 1.0)
0.0005 0 28.664 26.867 False (3.0, 0.987, 0.999, 1.0)
0.0010 0 27.770 25.976 False (3.0, 0.991, 1.0, 1.0)
0.0050 0 24.722 23.199 False (3.0, 0.951, 1.0, 1.0)
0.0100 0 22.438 21.541 False (3.0, 0.951, 1.0, 1.0)
0.0500 0 15.476 14.094 False (3.0, 0.991, 1.0, 1.0)
0.1000 0 10.449 9.754 False (3.0, 0.994, 1.0, 1.0)

0.0000 5 32.814 31.653 False (3.0, 0.989, 1.0, 1.0)
0.0005 5 29.990 28.232 False (3.0, 0.978, 1.0, 1.0)
0.0010 5 28.287 26.886 False (3.0, 0.973, 0.999, 1.0)
0.0050 5 24.534 23.102 False (3.0, 0.991, 0.999, 1.0)
0.0100 5 22.746 21.089 False (3.0, 0.97, 1.0, 1.0)
0.0500 5 17.657 16.006 False (3.0, 0.954, 1.0, 1.0)
0.1000 5 15.522 13.611 False (3.0, 0.974, 1.0, 1.0)

0.0000 10 32.758 31.616 False (3.0, 0.983, 1.0, 1.0)
0.0005 10 30.732 29.299 False (3.0, 0.991, 1.0, 1.0)
0.0010 10 29.646 27.905 False (3.0, 0.978, 1.0, 1.0)
0.0050 10 26.245 24.650 False (3.0, 0.988, 1.0, 1.0)
0.0100 10 24.752 23.050 False (3.0, 0.989, 1.0, 1.0)
0.0500 10 20.535 18.469 False (3.0, 0.97, 1.0, 1.0)
0.1000 10 17.956 16.515 False (3.0, 0.968, 1.0, 1.0)

Table 4.14: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (3, 1, 1, 1) and
1-dimensional (k = 1) memoryless Gaussian source.

97

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.221 14.935 False (4.0, 0.994, 0.998)
0.0005 0 14.878 14.651 False (4.0, 0.972, 0.999)
0.0010 0 14.572 14.400 False (4.0, 0.997, 0.999)
0.0050 0 13.284 12.987 False (4.0, 0.995, 1.0)
0.0100 0 12.230 11.835 False (4.0, 0.985, 1.0)
0.0500 0 8.459 8.372 False (4.0, 0.999, 1.0)
0.1000 0 6.208 5.974 False (4.0, 0.982, 1.0)

0.0000 5 15.209 14.944 False (4.0, 0.995, 0.997)
0.0005 5 15.047 14.797 False (4.0, 0.994, 0.998)
0.0010 5 14.861 14.697 False (4.0, 0.999, 0.996)
0.0050 5 14.059 13.880 False (4.0, 0.978, 1.0)
0.0100 5 13.342 13.189 False (4.0, 0.982, 0.999)
0.0500 5 10.739 10.137 False (4.0, 0.97, 0.999)
0.1000 5 9.098 8.687 False (4.0, 0.998, 0.998)

0.0000 10 15.183 14.900 False (4.0, 1.0, 0.997)
0.0005 10 15.072 14.842 False (4.0, 0.981, 1.0)
0.0010 10 15.042 14.760 False (4.0, 0.994, 0.998)
0.0050 10 14.436 14.250 False (4.0, 0.967, 0.997)
0.0100 10 13.860 13.647 False (4.0, 0.991, 0.997)
0.0500 10 11.311 11.000 False (4.0, 0.991, 1.0)
0.1000 10 10.244 9.792 False (4.0, 0.986, 0.999)

Table 4.15: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (4, 1, 1) and 2-
dimensional (k = 2) memoryless Gaussian source.

98

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 14.942 14.533 False (3.0, 1.0, 0.993, 0.995)
0.0005 0 14.641 14.366 False (3.0, 0.946, 0.99, 1.0)
0.0010 0 14.497 14.449 False (3.0, 1.0, 0.994, 1.0)
0.0050 0 13.552 13.111 False (3.0, 0.965, 0.999, 1.0)
0.0100 0 12.610 12.292 False (3.0, 1.0, 0.994, 1.0)
0.0500 0 8.531 8.671 False (3.0, 0.925, 1.0, 0.998)
0.1000 0 6.196 6.187 False (3.0, 1.0, 1.0, 1.0)

0.0000 5 15.022 14.851 False (3.0, 1.0, 1.0, 0.999)
0.0005 5 14.837 14.750 False (3.0, 1.0, 0.998, 1.0)
0.0010 5 14.865 14.395 False (3.0, 0.961, 0.993, 0.997)
0.0050 5 14.101 13.743 False (3.0, 1.0, 1.0, 0.988)
0.0100 5 13.370 13.119 False (3.0, 1.0, 1.0, 1.0)
0.0500 5 10.680 10.515 False (3.0, 0.914, 0.995, 1.0)
0.1000 5 9.278 9.010 False (3.0, 0.965, 0.989, 1.0)

0.0000 10 14.888 14.847 False (3.0, 1.0, 0.997, 0.996)
0.0005 10 14.780 14.787 False (3.0, 1.0, 0.985, 1.0)
0.0010 10 14.899 14.428 False (3.0, 1.0, 0.996, 1.0)
0.0050 10 14.560 13.975 False (3.0, 1.0, 0.984, 0.999)
0.0100 10 13.842 13.477 False (3.0, 1.0, 0.994, 0.996)
0.0500 10 11.576 11.388 False (3.0, 1.0, 1.0, 0.992)
0.1000 10 10.452 10.212 False (3.0, 1.0, 1.0, 0.993)

Table 4.16: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (3, 1, 1, 1) and
2-dimensional (k = 2) memoryless Gaussian source.

99

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 31.699 29.546 False (1.0, 3.0, 1.0, 0.999)
0.0005 0 27.390 25.177 False (1.0, 3.0, 0.998, 1.0)
0.0010 0 26.483 23.728 False (1.0, 3.0, 0.998, 1.0)
0.0050 0 23.026 20.163 False (1.0, 3.0, 0.999, 1.0)
0.0100 0 21.450 18.568 False (1.0, 3.0, 0.994, 1.0)
0.0500 0 14.426 12.551 False (1.0, 3.0, 1.0, 1.0)
0.1000 0 10.339 8.568 False (1.0, 3.0, 0.99, 1.0)

0.0000 5 31.655 29.669 False (1.0, 3.0, 0.999, 1.0)
0.0005 5 28.322 26.021 False (1.0, 3.0, 0.999, 1.0)
0.0010 5 26.853 24.611 False (1.0, 3.0, 0.999, 1.0)
0.0050 5 23.925 21.306 False (1.0, 3.0, 0.999, 1.0)
0.0100 5 22.221 19.342 False (1.0, 3.0, 0.995, 1.0)
0.0500 5 17.903 14.616 False (1.0, 3.0, 0.996, 1.0)
0.1000 5 14.650 12.278 False (1.0, 3.0, 0.999, 1.0)

0.0000 10 31.658 29.546 False (1.0, 3.0, 0.999, 0.999)
0.0005 10 28.806 26.943 False (1.0, 3.0, 1.0, 1.0)
0.0010 10 27.837 25.843 False (1.0, 3.0, 0.999, 1.0)
0.0050 10 25.327 22.395 False (1.0, 3.0, 0.997, 1.0)
0.0100 10 24.192 20.557 False (1.0, 3.0, 1.0, 1.0)
0.0500 10 20.083 16.441 False (1.0, 3.0, 0.999, 1.0)
0.1000 10 17.406 14.299 False (1.0, 3.0, 0.996, 1.0)

Table 4.17: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 3, 1, 1) and
1-dimensional (k = 1) memoryless Laplacian source.

100

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 31.797 29.671 False (4.0, 0.997, 1.0)
0.0005 0 27.423 23.974 False (4.0, 0.997, 1.0)
0.0010 0 25.727 22.978 False (4.0, 0.996, 1.0)
0.0050 0 22.455 19.560 False (4.0, 0.999, 1.0)
0.0100 0 21.021 18.271 False (4.0, 0.998, 1.0)
0.0500 0 13.419 11.906 False (4.0, 0.998, 1.0)
0.1000 0 9.957 8.131 False (4.0, 0.998, 1.0)

0.0000 5 31.775 29.700 False (4.0, 1.0, 0.999)
0.0005 5 29.221 25.232 False (4.0, 0.997, 1.0)
0.0010 5 27.898 23.917 False (4.0, 0.996, 1.0)
0.0050 5 23.431 20.640 False (4.0, 0.997, 1.0)
0.0100 5 21.975 19.091 False (4.0, 1.0, 1.0)
0.0500 5 17.319 14.280 False (4.0, 0.997, 1.0)
0.1000 5 14.750 11.893 False (4.0, 0.999, 1.0)

0.0000 10 31.796 29.564 False (4.0, 1.0, 0.999)
0.0005 10 30.031 26.928 False (4.0, 0.992, 1.0)
0.0010 10 29.301 25.442 False (4.0, 0.997, 1.0)
0.0050 10 25.152 21.890 False (4.0, 0.997, 1.0)
0.0100 10 23.686 20.244 False (4.0, 0.996, 1.0)
0.0500 10 19.339 16.301 False (4.0, 0.999, 1.0)
0.1000 10 16.651 14.132 False (4.0, 0.997, 1.0)

Table 4.18: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (4, 1, 1) and 1-
dimensional (k = 1) memoryless Laplacian source.

101

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 14.698 13.749 False (1.0, 3.0, 1.0, 1.0)
0.0005 0 14.435 13.567 False (1.0, 3.0, 0.996, 1.0)
0.0010 0 14.140 13.394 False (1.0, 3.0, 0.997, 1.0)
0.0050 0 13.593 12.217 False (1.0, 3.0, 0.994, 1.0)
0.0100 0 12.566 11.198 False (1.0, 3.0, 0.997, 1.0)
0.0500 0 8.581 7.741 False (1.0, 3.0, 0.99, 1.0)
0.1000 0 5.925 5.446 False (1.0, 3.0, 0.982, 0.999)

0.0000 5 15.007 13.798 False (1.0, 3.0, 0.994, 1.0)
0.0005 5 14.808 13.670 False (1.0, 3.0, 0.996, 1.0)
0.0010 5 14.590 13.598 False (1.0, 3.0, 0.988, 1.0)
0.0050 5 13.997 12.928 False (1.0, 3.0, 0.989, 1.0)
0.0100 5 13.300 12.267 False (1.0, 3.0, 0.998, 1.0)
0.0500 5 10.562 9.580 False (1.0, 3.0, 0.99, 1.0)
0.1000 5 9.323 7.922 False (1.0, 3.0, 0.987, 1.0)

0.0000 10 14.805 13.800 False (1.0, 3.0, 1.0, 1.0)
0.0005 10 14.879 13.749 False (1.0, 3.0, 0.995, 1.0)
0.0010 10 14.732 13.667 False (1.0, 3.0, 0.992, 1.0)
0.0050 10 14.152 13.120 False (1.0, 3.0, 0.998, 1.0)
0.0100 10 13.444 12.585 False (1.0, 3.0, 1.0, 1.0)
0.0500 10 11.653 10.332 False (1.0, 3.0, 0.992, 1.0)
0.1000 10 10.620 9.108 False (1.0, 3.0, 0.996, 1.0)

Table 4.19: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 3, 1, 1) and
2-dimensional (k = 2) memoryless Laplacian source.

102

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.165 13.772 False (4.0, 0.992, 1.0)
0.0005 0 14.907 13.525 False (4.0, 0.99, 1.0)
0.0010 0 14.642 13.257 False (4.0, 0.982, 1.0)
0.0050 0 13.461 11.959 False (4.0, 0.997, 1.0)
0.0100 0 12.493 11.063 False (4.0, 0.998, 1.0)
0.0500 0 8.616 7.567 False (4.0, 0.998, 1.0)
0.1000 0 5.846 5.327 False (4.0, 0.99, 1.0)

0.0000 5 15.412 13.816 False (4.0, 0.997, 1.0)
0.0005 5 15.033 13.662 False (4.0, 0.989, 1.0)
0.0010 5 15.075 13.561 False (4.0, 1.0, 1.0)
0.0050 5 14.529 12.843 False (4.0, 0.983, 1.0)
0.0100 5 13.768 12.219 False (4.0, 0.981, 1.0)
0.0500 5 10.889 9.318 False (4.0, 0.978, 0.999)
0.1000 5 9.079 7.909 False (4.0, 0.995, 1.0)

0.0000 10 15.289 13.829 False (4.0, 0.997, 1.0)
0.0005 10 15.039 13.697 False (4.0, 0.984, 1.0)
0.0010 10 15.096 13.674 False (4.0, 0.984, 1.0)
0.0050 10 14.456 13.065 False (4.0, 0.983, 1.0)
0.0100 10 14.047 12.587 False (4.0, 0.997, 1.0)
0.0500 10 11.913 10.184 False (4.0, 0.992, 1.0)
0.1000 10 10.611 9.025 False (4.0, 0.99, 1.0)

Table 4.20: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (4, 1, 1) and 2-
dimensional (k = 2) memoryless Laplacian source.

103

δ

ε 0 5 10

0.0000 1.04 1.033 1.013
0.0005 1.516 1.712 1.619
0.0010 1.382 2.017 2.12
0.0050 1.248 1.264 1.483
0.0100 1.544 0.763 1.458
0.0500 0.891 1.975 1.408
0.1000 0.838 1.833 0.941

Table 4.21: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(4, 1, 1) and 1-dimensional (k = 1) mem-
oryless Gaussian source.

δ

ε 0 5 10

0.0000 0.285 0.265 0.282
0.0005 0.227 0.25 0.23
0.0010 0.172 0.164 0.283
0.0050 0.297 0.179 0.186
0.0100 0.394 0.153 0.214
0.0500 0.087 0.602 0.312
0.1000 0.233 0.411 0.453

Table 4.22: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(4, 1, 1) and 2-dimensional (k = 2) mem-
oryless Gaussian source.

δ

ε 0 5 10

0.000000 1.228 1.16 1.142
0.000500 1.798 1.758 1.433
0.001000 1.794 1.4 1.741
0.005000 1.523 1.432 1.595
0.010000 0.897 1.657 1.703
0.050000 1.382 1.651 2.066
0.100000 0.696 1.911 1.441

Table 4.23: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(3, 1, 1, 1) and 1-dimensional (k = 1)
memoryless Gaussian source.

δ

ε 0 5 10

0.000000 0.409 0.171 0.042
0.000500 0.275 0.088 -0.006
0.001000 0.049 0.47 0.472
0.005000 0.441 0.358 0.585
0.010000 0.317 0.251 0.364
0.050000 -0.14 0.165 0.188
0.100000 0.008 0.268 0.239

Table 4.24: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(3, 1, 1, 1) and 2-dimensional (k = 2)
memoryless Gaussian source.

104

δ

ε 0 5 10

0.0000 2.246 2.3 2.303
0.0005 2.858 2.692 2.565
0.0010 2.412 2.624 2.678
0.0050 2.142 3.258 2.975
0.0100 1.739 3.189 3.251
0.0500 2.149 2.793 2.862
0.1000 1.204 2.461 2.474

Table 4.25: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(3, 1, 1, 1) and 1-dimensional (k = 1)
memoryless Laplacian source.

δ

ε 0 5 10

0.0000 -0.035 0.124 0.175
0.0005 -0.503 0.663 0.089
0.0010 0.366 0.503 0.184
0.0050 0.703 0.371 -0.728
0.0100 1.062 0.856 -0.176
0.0500 1.297 1.339 1.135
0.1000 0.793 0.772 0.66

Table 4.26: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(3, 1, 1, 1) and 2-dimensional (k = 2)
memoryless Laplacian source.

δ

ε 0 5 10

0.0000 2.126 2.074 2.231
0.0005 3.449 3.988 3.103
0.0010 2.75 3.981 3.859
0.0050 2.895 2.791 3.262
0.0100 2.75 2.884 3.441
0.0500 1.513 3.038 3.038
0.1000 1.826 2.857 2.518

Table 4.27: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(4, 1, 1) and 1-dimensional (k = 1) mem-
oryless Laplacian source.

δ

ε 0 5 10

0.0000 1.392 1.595 1.46
0.0005 1.382 1.371 1.342
0.0010 1.384 1.514 1.422
0.0050 1.502 1.686 1.392
0.0100 1.429 1.55 1.46
0.0500 1.049 1.571 1.729
0.1000 0.519 1.17 1.587

Table 4.28: SNR gain of VR-ACOVQ
over FR-ACOVQ for bit allocation
(4, 1, 1) and 2-dimensional (k = 2) mem-
oryless Laplacian source.

105

Bit Allocation (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (3, 1)
δ ε

0 0.0000 0.005 0.152 -0.070 0.017 0.105
0.0005 -0.002 0.152 0.032 0.001 -0.001
0.0010 0.005 0.120 0.035 -0.001 0.275
0.0050 -0.000 0.067 -0.090 -0.028 0.262
0.0100 -0.002 0.225 -0.006 0.003 0.360
0.0500 -0.005 0.010 -0.001 -0.014 -0.004
0.1000 -0.004 0.014 -0.001 0.002 0.021

5 0.0000 -0.004 0.286 -0.000 -0.000 0.253
0.0005 0.002 0.211 0.003 -0.005 0.195
0.0010 -0.011 0.280 -0.040 0.003 0.037
0.0050 -0.009 0.118 0.045 0.002 0.250
0.0100 0.003 0.207 -0.011 -0.004 0.047
0.0500 -0.005 0.066 0.032 0.011 0.060
0.1000 0.001 -0.005 -0.007 -0.016 0.108

10 0.0000 -0.000 0.292 0.000 0.000 0.242
0.0005 0.002 -0.002 0.002 0.005 0.048
0.0010 -0.002 0.283 0.033 -0.002 0.056
0.0050 0.005 0.002 0.014 0.000 0.134
0.0100 0.027 0.004 -0.000 -0.001 0.115
0.0500 -0.014 0.114 -0.019 0.011 0.002
0.1000 0.001 0.000 0.007 0.002 0.135

Table 4.29: SNR gain of VR-ACOVQ over FR-ACOVQ for various 4-bit bit alloca-
tions on a 2-dimensional (k = 2) memoryless Gaussian source.

106

Bit Allocation (1, 1, 4) (1, 4, 1) (4, 1, 1)
δ ε

0 0.0000 -0.000 0.404 0.285
0.0005 0.000 0.438 0.227
0.0010 -0.004 0.312 0.172
0.0050 -0.011 0.362 0.297
0.0100 0.009 0.253 0.394
0.0500 0.009 0.310 0.087
0.1000 -0.016 0.184 0.233

5 0.0000 -0.000 0.525 0.265
0.0005 -0.004 0.413 0.250
0.0010 -0.010 0.509 0.164
0.0050 0.008 0.442 0.179
0.0100 -0.031 0.386 0.153
0.0500 0.055 0.325 0.602
0.1000 0.050 0.307 0.411

10 0.0000 -0.006 0.436 0.282
0.0005 0.001 0.481 0.230
0.0010 -0.006 0.562 0.283
0.0050 0.024 0.516 0.186
0.0100 -0.028 0.369 0.214
0.0500 -0.053 0.281 0.312
0.1000 -0.002 0.256 0.453

Table 4.30: SNR gain of VR-ACOVQ over FR-ACOVQ for various 6-bit bit alloca-
tions on a 2-dimensional (k = 2) memoryless Gaussian source.

107

Chapter 5

Conclusion

5.1 Summary of Work

This thesis explored the design and performance of JSCC schemes in communication

systems with a noisy discrete channel with memory and noiseless feedback. The work

focused on extending existing JSCC vector quantization schemes to such communi-

cation systems.

In Chapter 2, we introduced various discrete channel models, such as the Polya

contagion and binary symmetric channel. We then introduced COVQ, ACOVQ,

and CM-TSVQ along with their respective necessary conditions for optimality. Af-

terwards, we described the generalized LBG-algorithm to design locally optimal

COVQs.

In Chapter 3, we extended the necessary conditions of optimality for CM-TSVQ

in communication systems with noiseless feedback. We then showed that the nearest

108

neighbor and centroid conditions are equivalent to those in ACOVQ. The simula-

tions supported this claim as ACOVQ and ATSVQ with equivalent initializations

converged to the same codebooks and encoding regions under the generalized LGB-

algorithm and had near equivalent performances.

In Chapter 4, we leveraged the tree-structured nature of ACOVQ and explored

various variable rate schemes for tree-strictured quantization that could be general-

ized to ACOVQ. We then extended the generalized BFOS algorithm, introduced in

[27], to ACOVQ. Simulations showed that in general, the VR-ACOVQ outperformed

FR-ACOVQ under the same average rate constraints at the cost of a higher encod-

ing complexity. Further, simulations indicate that the performance gap between the

quantizers increases with a higher rate and with a more biased source distribution.

5.2 Future Work

For ACOVQ, this thesis only considered discrete one way channels with a noiseless

feedback link. Future work may include generalizing the ACOVQ scheme to account

for communication systems with noisy feedback. Additionally, the VR-ACOVQ bit

allocation algorithm in Chapter 4 determines a bit allocation given an average rate

constraint for each stage and a predetermined number of stages. Additional work

may include developing an algorithm to output a bit allocation that is constrained

by an overall rate.

109

Appendix A

Proof for ATSVQ Generalized

Centroid Condition Reduction

In this section we will prove that (3.26) under the square error distortion reduces to

(3.27). Let i ≥ 2 denote the quantizer stage. From (3.26) we have that

c
(i,AT)

yi|yi−1 = arg min
ω∈Rk

E[d(U, c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1 + ω)|Y i = yi], (A.1)

given feedback Y i = yi and fixed partitions S(1,AT),S(2,AT)
y1 , . . . ,S(i,AT)

yi−1 fixed code-

books C(1,AT), C(2,AT)
y1 , . . . , C(i−1,AT)

yi−2 , which under square error distortion becomes

c
(i,AT)

yi|yi−1 = arg min
ω∈Rk

E

[∥∥∥∥U−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1 + ω
)∥∥∥∥2∣∣∣∣Y i = yi

]
. (A.2)

110

Because h(x) = ‖x‖2 is a convex function, we can find the global minimum of ω ∈ Rk

by holding all codewords constant and finding the critical points of the function

g(ω) = E

[∥∥∥∥U−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1 + ω
)∥∥∥∥2∣∣∣∣Y i = yi

]
. (A.3)

That is, the global minimum is given by

0 =
∂

∂ωi

g(ω) =⇒ ∂

∂ωi

E

[∥∥∥∥U−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1 + ω
)∥∥∥∥2∣∣∣∣Y i = yi

]
= 0

(A.4)

=⇒ E

[
∂

∂ωi

∥∥∥∥U−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1 + ω
)∥∥∥∥2∣∣∣∣Y i = yi

]
= 0

(A.5)

=⇒ E

[
2
(
Ui −

(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1 + ω
)
i

) ∣∣∣∣Y i = yi
]
= 0 (A.6)

=⇒ ωi = E[Ui|Y i = yi]−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1

)
i
, (A.7)

for all i = 1, . . . , k, where (v)i represents the ith component for any v ∈ Rk. Note

that assuming the source is of finite variance, we can interchange the expectation

and partial derivative in (A.5) by the dominated convergence theorem. Hence we

have that

ω = E[U|Y i = yi]−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1

)
, (A.8)

111

implying that under square error distortion, the centroid condition reduces to

c
(i,AT)

yi|yi−1 = E[U|Y i = yi]−
(
c(1,AT)
y1

+ . . .+ c
(i,AT)

yi|yi−1

)
. (A.9)

112

Appendix B

Additional Simulation Results for

VR-ACOVQ and FR-ACOVQ

113

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.683 31.819 False (1.0, 3.0, 0.999, 1.0)
0.0005 0 28.832 26.907 False (1.0, 3.0, 0.996, 1.0)
0.0010 0 27.871 26.089 False (1.0, 3.0, 0.996, 1.0)
0.0050 0 24.017 22.245 False (1.0, 3.0, 1.0, 1.0)
0.0100 0 22.446 20.598 False (1.0, 3.0, 0.995, 1.0)
0.0500 0 15.658 13.811 False (1.0, 3.0, 0.994, 1.0)
0.1000 0 10.815 9.826 False (1.0, 3.0, 0.999, 1.0)

0.0000 5 32.695 31.793 False (1.0, 3.0, 1.0, 1.0)
0.0005 5 28.766 27.937 False (1.0, 3.0, 0.992, 1.0)
0.0010 5 27.650 26.497 False (1.0, 3.0, 0.994, 1.0)
0.0050 5 25.560 22.978 False (1.0, 3.0, 0.992, 1.0)
0.0100 5 23.675 21.051 False (1.0, 3.0, 0.983, 1.0)
0.0500 5 18.839 16.247 False (1.0, 3.0, 0.998, 1.0)
0.1000 5 15.658 13.758 False (1.0, 3.0, 0.993, 1.0)

0.0000 10 32.718 31.781 False (1.0, 3.0, 1.0, 1.0)
0.0005 10 29.897 28.666 False (1.0, 3.0, 0.997, 1.0)
0.0010 10 28.544 27.485 False (1.0, 3.0, 0.996, 1.0)
0.0050 10 26.007 24.429 False (1.0, 3.0, 0.996, 1.0)
0.0100 10 25.249 22.563 False (1.0, 3.0, 0.988, 1.0)
0.0500 10 20.793 17.985 False (1.0, 3.0, 1.0, 1.0)
0.1000 10 17.952 15.808 False (1.0, 2.999, 1.0, 1.0)

Table B.1: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 3, 1, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

114

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.810 31.662 False (1.0, 1.0, 2.99, 1.0)
0.0005 0 29.380 27.730 False (1.0, 1.0, 2.991, 1.0)
0.0010 0 28.723 26.814 False (1.0, 1.0, 2.993, 1.0)
0.0050 0 25.245 22.637 False (1.0, 1.0, 3.0, 0.999)
0.0100 0 22.871 20.774 False (1.0, 1.0, 2.844, 1.0)
0.0500 0 16.193 13.791 False (1.0, 1.0, 3.0, 0.999)
0.1000 0 10.977 9.554 False (1.0, 1.0, 3.0, 0.992)

0.0000 5 32.768 31.669 False (1.0, 1.0, 2.99, 1.0)
0.0005 5 29.162 28.047 False (1.0, 1.0, 2.992, 1.0)
0.0010 5 27.893 26.986 False (1.0, 1.0, 2.992, 1.0)
0.0050 5 25.326 23.625 False (1.0, 1.0, 3.0, 0.998)
0.0100 5 23.757 21.454 False (1.0, 1.0, 3.0, 0.999)
0.0500 5 19.061 15.720 False (1.0, 1.0, 3.0, 0.999)
0.1000 5 15.699 13.338 False (1.0, 1.0, 3.0, 1.0)

0.0000 10 32.799 31.666 False (1.0, 1.0, 2.989, 1.0)
0.0005 10 29.955 29.065 False (1.0, 1.0, 2.99, 1.0)
0.0010 10 28.984 27.640 False (1.0, 1.0, 2.992, 1.0)
0.0050 10 26.968 24.929 False (1.0, 1.0, 3.0, 1.0)
0.0100 10 25.149 22.697 False (1.0, 1.0, 3.0, 1.0)
0.0500 10 20.985 17.711 False (1.0, 1.0, 3.0, 0.999)
0.1000 10 18.524 15.752 False (1.0, 1.0, 3.0, 0.999)

Table B.2: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 3, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

115

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.652 31.583 False (1.0, 1.0, 1.0, 2.999)
0.0005 0 29.207 28.683 False (1.0, 1.0, 1.0, 2.981)
0.0010 0 27.772 27.483 False (1.0, 1.0, 1.0, 2.99)
0.0050 0 23.663 23.368 False (1.0, 1.0, 1.0, 2.989)
0.0100 0 21.102 20.941 False (1.0, 1.0, 1.0, 2.998)
0.0500 0 13.542 13.483 False (1.0, 1.0, 1.0, 2.994)
0.1000 0 9.441 9.356 False (1.0, 1.0, 1.0, 2.944)

0.0000 5 32.675 31.585 False (1.0, 1.0, 1.0, 3.0)
0.0005 5 29.030 28.864 False (1.0, 1.0, 1.0, 2.955)
0.0010 5 27.631 27.296 False (1.0, 1.0, 1.0, 2.98)
0.0050 5 23.270 23.442 False (1.0, 1.0, 1.0, 2.987)
0.0100 5 21.365 21.359 False (1.0, 1.0, 1.0, 2.999)
0.0500 5 16.108 15.919 False (1.0, 1.0, 0.807, 2.999)
0.1000 5 14.312 13.392 False (1.0, 1.0, 1.0, 2.991)

0.0000 10 32.650 31.586 False (1.0, 1.0, 1.0, 3.0)
0.0005 10 29.876 29.237 False (1.0, 1.0, 1.0, 2.98)
0.0010 10 28.715 28.426 False (1.0, 1.0, 1.0, 2.98)
0.0050 10 24.754 24.920 False (1.0, 1.0, 1.0, 2.981)
0.0100 10 22.875 22.819 False (1.0, 1.0, 1.0, 2.992)
0.0500 10 18.991 17.986 False (1.0, 1.0, 1.0, 2.999)
0.1000 10 16.581 15.578 False (1.0, 1.0, 1.0, 2.989)

Table B.3: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 1, 3) and 1-
dimensional (k = 1) memoryless Gaussian source.

116

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.767 31.597 False (2.0, 2.0, 0.992, 1.0)
0.0005 0 28.930 28.178 False (2.0, 2.0, 0.999, 1.0)
0.0010 0 29.130 26.708 False (2.0, 1.995, 1.0, 1.0)
0.0050 0 24.733 23.667 False (2.0, 1.891, 1.0, 1.0)
0.0100 0 22.688 21.430 False (2.0, 1.84, 1.0, 1.0)
0.0500 0 15.632 13.870 False (2.0, 1.957, 1.0, 1.0)
0.1000 0 11.195 9.742 False (2.0, 2.0, 0.998, 1.0)

0.0000 5 32.727 31.609 False (2.0, 2.0, 0.991, 1.0)
0.0005 5 29.550 28.185 False (2.0, 2.0, 0.993, 1.0)
0.0010 5 28.364 27.056 False (2.0, 1.999, 0.997, 1.0)
0.0050 5 25.390 23.421 False (2.0, 1.999, 0.997, 1.0)
0.0100 5 23.339 21.586 False (2.0, 1.849, 0.999, 1.0)
0.0500 5 18.855 16.225 False (2.0, 1.989, 0.999, 1.0)
0.1000 5 15.795 13.889 False (2.0, 1.88, 0.999, 1.0)

0.0000 10 32.728 31.594 False (2.0, 2.0, 0.997, 1.0)
0.0005 10 30.556 29.349 False (2.0, 2.0, 0.992, 1.0)
0.0010 10 29.343 27.932 False (2.0, 1.998, 1.0, 1.0)
0.0050 10 26.969 24.915 False (2.0, 1.994, 1.0, 1.0)
0.0100 10 24.514 23.361 False (2.0, 1.866, 1.0, 1.0)
0.0500 10 20.635 18.699 False (2.0, 1.964, 1.0, 1.0)
0.1000 10 17.477 16.295 False (2.0, 1.844, 0.997, 1.0)

Table B.4: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (2, 2, 1, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

117

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.608 31.700 False (1.0, 2.0, 1.978, 1.0)
0.0005 0 29.339 27.841 False (1.0, 2.0, 1.967, 1.0)
0.0010 0 28.411 27.112 False (1.0, 2.0, 1.974, 0.999)
0.0050 0 25.746 23.229 False (1.0, 2.0, 2.0, 1.0)
0.0100 0 22.732 21.099 False (1.0, 2.0, 1.948, 1.0)
0.0500 0 15.152 13.579 False (1.0, 2.0, 1.925, 1.0)
0.1000 0 11.070 9.515 False (1.0, 2.0, 1.981, 1.0)

0.0000 5 32.598 31.706 False (1.0, 2.0, 1.976, 1.0)
0.0005 5 29.041 27.734 False (1.0, 2.0, 1.998, 1.0)
0.0010 5 27.990 26.959 False (1.0, 2.0, 1.976, 1.0)
0.0050 5 24.817 23.219 False (1.0, 2.0, 1.988, 1.0)
0.0100 5 23.110 21.458 False (1.0, 2.0, 1.962, 1.0)
0.0500 5 19.030 16.294 False (1.0, 2.0, 1.999, 1.0)
0.1000 5 16.047 13.552 False (1.0, 2.0, 1.996, 1.0)

0.0000 10 32.586 31.680 False (1.0, 2.0, 1.977, 1.0)
0.0005 10 29.822 28.913 False (1.0, 2.0, 1.979, 1.0)
0.0010 10 28.720 27.739 False (1.0, 2.0, 1.986, 1.0)
0.0050 10 26.183 24.752 False (1.0, 2.0, 1.978, 1.0)
0.0100 10 25.483 22.995 False (1.0, 2.0, 1.984, 1.0)
0.0500 10 21.386 18.367 False (1.0, 2.0, 1.991, 1.0)
0.1000 10 18.814 15.936 False (1.0, 2.0, 1.998, 1.0)

Table B.5: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 2, 2, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

118

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.708 31.628 False (1.0, 1.0, 2.0, 1.993)
0.0005 0 29.683 28.750 False (1.0, 1.0, 2.0, 1.993)
0.0010 0 28.333 27.282 False (1.0, 1.0, 2.0, 1.998)
0.0050 0 24.026 23.133 False (1.0, 1.0, 1.835, 1.999)
0.0100 0 22.446 21.439 False (1.0, 1.0, 2.0, 1.986)
0.0500 0 14.995 13.472 False (1.0, 1.0, 2.0, 1.994)
0.1000 0 10.355 9.335 False (1.0, 1.0, 2.0, 1.99)

0.0000 5 32.686 31.603 False (1.0, 1.0, 2.0, 1.991)
0.0005 5 29.408 28.572 False (1.0, 1.0, 2.0, 2.0)
0.0010 5 27.992 27.453 False (1.0, 1.0, 2.0, 1.999)
0.0050 5 23.564 23.432 False (1.0, 1.0, 1.835, 2.0)
0.0100 5 21.843 21.499 False (1.0, 1.0, 1.862, 2.0)
0.0500 5 18.185 16.072 False (1.0, 1.0, 2.0, 1.997)
0.1000 5 15.275 13.518 False (1.0, 1.0, 1.965, 1.989)

0.0000 10 32.672 31.648 False (1.0, 1.0, 2.0, 1.99)
0.0005 10 29.980 29.239 False (1.0, 1.0, 2.0, 1.994)
0.0010 10 28.821 28.259 False (1.0, 1.0, 2.0, 1.993)
0.0050 10 26.262 25.129 False (1.0, 1.0, 2.0, 1.994)
0.0100 10 24.651 23.168 False (1.0, 1.0, 2.0, 1.991)
0.0500 10 20.658 18.135 False (1.0, 1.0, 2.0, 1.998)
0.1000 10 18.070 15.896 False (1.0, 1.0, 2.0, 1.998)

Table B.6: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 2, 2) and 1-
dimensional (k = 1) memoryless Gaussian source.

119

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 32.711 31.824 False (1.0, 4.0, 1.0)
0.0005 0 28.791 26.405 False (1.0, 4.0, 0.999)
0.0010 0 27.629 24.389 False (1.0, 4.0, 1.0)
0.0050 0 23.509 21.131 False (1.0, 4.0, 1.0)
0.0100 0 21.323 19.407 False (1.0, 4.0, 0.999)
0.0500 0 15.268 13.175 False (1.0, 4.0, 0.998)
0.1000 0 10.469 9.329 False (1.0, 4.0, 0.999)

0.0000 5 32.704 31.823 False (1.0, 4.0, 0.999)
0.0005 5 29.032 27.702 False (1.0, 4.0, 0.998)
0.0010 5 27.712 26.365 False (1.0, 4.0, 0.993)
0.0050 5 25.034 22.573 False (1.0, 4.0, 0.998)
0.0100 5 23.906 20.624 False (1.0, 4.0, 0.999)
0.0500 5 18.889 14.665 False (1.0, 4.0, 1.0)
0.1000 5 16.055 12.802 False (1.0, 4.0, 0.999)

0.0000 10 32.669 31.840 False (1.0, 4.0, 1.0)
0.0005 10 29.684 28.423 False (1.0, 4.0, 1.0)
0.0010 10 28.622 27.572 False (1.0, 4.0, 0.998)
0.0050 10 26.144 24.222 False (1.0, 4.0, 1.0)
0.0100 10 24.676 22.137 False (1.0, 4.0, 0.995)
0.0500 10 20.072 17.205 False (1.0, 4.0, 1.0)
0.1000 10 17.824 15.249 False (1.0, 4.0, 1.0)

Table B.7: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 4, 1) and 1-
dimensional (k = 1) memoryless Gaussian source.

120

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 31.887 31.679 False (1.0, 1.0, 3.991)
0.0005 0 27.901 27.948 False (1.0, 1.0, 3.99)
0.0010 0 26.491 26.383 False (1.0, 1.0, 3.992)
0.0050 0 22.337 22.261 True (1.0, 1.0, 4.0)
0.0100 0 19.938 19.835 True (1.0, 1.0, 4.0)
0.0500 0 12.765 12.783 True (1.0, 1.0, 4.0)
0.1000 0 8.852 8.777 True (1.0, 1.0, 4.0)

0.0000 5 31.945 31.689 False (1.0, 1.0, 3.993)
0.0005 5 28.631 28.209 False (1.0, 1.0, 3.992)
0.0010 5 27.090 26.802 False (1.0, 1.0, 3.994)
0.0050 5 22.853 23.029 True (1.0, 1.0, 4.0)
0.0100 5 20.840 20.893 True (1.0, 1.0, 4.0)
0.0500 5 15.253 15.320 True (1.0, 1.0, 4.0)
0.1000 5 12.739 12.712 True (1.0, 1.0, 4.0)

0.0000 10 31.906 31.698 False (1.0, 1.0, 3.989)
0.0005 10 29.118 29.128 False (1.0, 1.0, 3.989)
0.0010 10 27.746 27.827 True (1.0, 1.0, 4.0)
0.0050 10 24.300 24.550 True (1.0, 1.0, 4.0)
0.0100 10 22.309 22.376 True (1.0, 1.0, 4.0)
0.0500 10 17.123 17.306 True (1.0, 1.0, 4.0)
0.1000 10 14.852 14.736 True (1.0, 1.0, 4.0)

Table B.8: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 4) and 1-
dimensional (k = 1) memoryless Gaussian source.

121

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.168 14.904 False (1.0, 3.0, 0.978, 0.999)
0.0005 0 14.878 14.666 False (1.0, 3.0, 1.0, 1.0)
0.0010 0 14.633 14.483 False (1.0, 3.0, 1.0, 0.997)
0.0050 0 13.599 13.340 False (1.0, 3.0, 0.996, 0.996)
0.0100 0 12.449 12.284 False (1.0, 3.0, 0.999, 0.999)
0.0500 0 8.905 8.533 False (1.0, 3.0, 0.992, 0.999)
0.1000 0 6.152 6.087 False (1.0, 3.0, 0.981, 0.999)

0.0000 5 15.051 14.918 False (1.0, 3.0, 0.971, 0.999)
0.0005 5 14.973 14.781 False (1.0, 3.0, 0.997, 0.999)
0.0010 5 14.874 14.650 False (1.0, 3.0, 1.0, 0.999)
0.0050 5 14.033 13.882 False (1.0, 3.0, 0.991, 0.997)
0.0100 5 13.337 13.148 False (1.0, 3.0, 0.996, 0.999)
0.0500 5 10.644 10.456 False (1.0, 3.0, 0.997, 1.0)
0.1000 5 9.425 8.825 False (1.0, 3.0, 0.991, 1.0)

0.0000 10 15.223 14.900 False (1.0, 3.0, 1.0, 0.998)
0.0005 10 14.931 14.727 False (1.0, 3.0, 0.98, 0.999)
0.0010 10 14.837 14.693 False (1.0, 3.0, 1.0, 0.996)
0.0050 10 14.322 14.122 False (1.0, 3.0, 0.977, 0.997)
0.0100 10 13.665 13.478 False (1.0, 3.0, 0.967, 0.998)
0.0500 10 11.762 11.462 False (1.0, 3.0, 0.998, 1.0)
0.1000 10 10.585 10.082 False (1.0, 3.0, 0.995, 1.0)

Table B.9: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 3, 1, 1) and 2-
dimensional (k = 2) memoryless Gaussian source.

122

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 14.992 14.592 False (1.0, 1.0, 3.0, 0.991)
0.0005 0 14.771 14.436 False (1.0, 1.0, 3.0, 0.992)
0.0010 0 14.586 14.288 False (1.0, 1.0, 3.0, 0.996)
0.0050 0 13.559 13.232 False (1.0, 1.0, 3.0, 0.994)
0.0100 0 12.463 12.180 False (1.0, 1.0, 3.0, 0.99)
0.0500 0 8.728 8.611 False (1.0, 1.0, 3.0, 0.999)
0.1000 0 6.178 6.084 False (1.0, 1.0, 3.0, 0.997)

0.0000 5 15.116 14.598 False (1.0, 1.0, 3.0, 0.994)
0.0005 5 14.861 14.492 False (1.0, 1.0, 3.0, 0.996)
0.0010 5 14.769 14.390 False (1.0, 1.0, 3.0, 0.997)
0.0050 5 14.094 13.708 False (1.0, 1.0, 3.0, 0.998)
0.0100 5 13.389 13.036 False (1.0, 1.0, 3.0, 0.991)
0.0500 5 10.647 10.314 False (1.0, 1.0, 3.0, 0.997)
0.1000 5 9.116 8.745 False (1.0, 1.0, 3.0, 0.997)

0.0000 10 14.994 14.597 False (1.0, 1.0, 3.0, 0.996)
0.0005 10 14.960 14.492 False (1.0, 1.0, 3.0, 0.998)
0.0010 10 14.838 14.424 False (1.0, 1.0, 3.0, 0.993)
0.0050 10 14.302 13.890 False (1.0, 1.0, 3.0, 0.99)
0.0100 10 13.672 13.352 False (1.0, 1.0, 3.0, 0.999)
0.0500 10 11.758 11.203 False (1.0, 1.0, 3.0, 1.0)
0.1000 10 10.318 9.977 False (1.0, 1.0, 3.0, 1.0)

Table B.10: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 3, 1) and
2-dimensional (k = 2) memoryless Gaussian source.

123

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.208 15.123 False (1.0, 1.0, 0.999, 2.996)
0.0005 0 14.923 14.921 True (1.0, 1.0, 1.0, 3.0)
0.0010 0 14.809 14.731 False (1.0, 1.0, 1.0, 2.997)
0.0050 0 13.468 13.456 True (1.0, 1.0, 1.0, 3.0)
0.0100 0 12.311 12.355 False (1.0, 1.0, 1.0, 2.952)
0.0500 0 8.455 8.515 True (1.0, 1.0, 1.0, 3.0)
0.1000 0 6.030 6.021 True (1.0, 1.0, 1.0, 3.0)

0.0000 5 15.122 15.122 True (1.0, 1.0, 1.0, 3.0)
0.0005 5 14.989 14.999 True (1.0, 1.0, 1.0, 3.0)
0.0010 5 15.053 14.878 False (1.0, 1.0, 1.0, 2.992)
0.0050 5 14.102 14.102 True (1.0, 1.0, 1.0, 3.0)
0.0100 5 13.346 13.322 True (1.0, 1.0, 1.0, 3.0)
0.0500 5 10.557 10.558 True (1.0, 1.0, 1.0, 3.0)
0.1000 5 8.987 8.966 True (1.0, 1.0, 1.0, 3.0)

0.0000 10 15.281 15.108 False (1.0, 1.0, 0.994, 2.993)
0.0005 10 15.010 15.007 True (1.0, 1.0, 1.0, 3.0)
0.0010 10 14.935 14.930 True (1.0, 1.0, 1.0, 3.0)
0.0050 10 14.325 14.301 True (1.0, 1.0, 1.0, 3.0)
0.0100 10 13.692 13.733 True (1.0, 1.0, 1.0, 3.0)
0.0500 10 11.503 11.543 True (1.0, 1.0, 1.0, 3.0)
0.1000 10 10.178 10.167 True (1.0, 1.0, 1.0, 3.0)

Table B.11: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 1, 3) and
2-dimensional (k = 2) memoryless Gaussian source.

124

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 14.996 14.825 False (2.0, 2.0, 0.992, 1.0)
0.0005 0 14.812 14.657 False (2.0, 2.0, 0.999, 1.0)
0.0010 0 14.727 14.506 False (2.0, 2.0, 0.995, 1.0)
0.0050 0 13.561 13.424 False (2.0, 2.0, 0.971, 0.997)
0.0100 0 12.500 12.395 False (2.0, 2.0, 0.99, 0.998)
0.0500 0 9.027 8.883 False (2.0, 2.0, 1.0, 0.989)
0.1000 0 6.390 6.343 False (2.0, 2.0, 1.0, 0.988)

0.0000 5 15.120 14.826 False (2.0, 2.0, 0.993, 0.998)
0.0005 5 15.092 14.717 False (2.0, 2.0, 0.992, 1.0)
0.0010 5 14.656 14.634 False (2.0, 2.0, 1.0, 0.997)
0.0050 5 14.239 13.932 False (2.0, 2.0, 0.976, 0.999)
0.0100 5 13.477 13.254 False (2.0, 2.0, 0.996, 1.0)
0.0500 5 10.746 10.671 False (2.0, 2.0, 1.0, 0.997)
0.1000 5 9.319 8.966 False (2.0, 2.0, 0.981, 1.0)

0.0000 10 15.113 14.821 False (2.0, 2.0, 0.992, 0.999)
0.0005 10 14.976 14.750 False (2.0, 2.0, 0.985, 1.0)
0.0010 10 14.887 14.679 False (2.0, 2.0, 0.99, 0.999)
0.0050 10 14.294 14.128 False (2.0, 2.0, 0.982, 0.998)
0.0100 10 13.691 13.553 False (2.0, 2.0, 0.998, 0.998)
0.0500 10 11.734 11.640 False (2.0, 2.0, 0.99, 1.0)
0.1000 10 10.451 10.210 False (2.0, 2.0, 0.991, 1.0)

Table B.12: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (2, 2, 1, 1) and
2-dimensional (k = 2) memoryless Gaussian source.

125

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.036 14.528 False (1.0, 2.0, 1.942, 1.0)
0.0005 0 14.813 14.373 False (1.0, 2.0, 1.944, 0.999)
0.0010 0 14.635 14.227 False (1.0, 2.0, 1.947, 0.997)
0.0050 0 13.572 13.205 False (1.0, 2.0, 1.962, 1.0)
0.0100 0 12.456 12.320 False (1.0, 2.0, 1.973, 0.999)
0.0500 0 8.976 8.815 False (1.0, 2.0, 2.0, 0.992)
0.1000 0 6.312 6.227 False (1.0, 2.0, 2.0, 0.998)

0.0000 5 15.029 14.536 False (1.0, 2.0, 1.941, 0.999)
0.0005 5 14.775 14.401 False (1.0, 2.0, 1.943, 0.996)
0.0010 5 14.747 14.350 False (1.0, 2.0, 1.944, 0.996)
0.0050 5 14.044 13.679 False (1.0, 2.0, 1.95, 1.0)
0.0100 5 13.411 13.044 False (1.0, 2.0, 1.986, 0.999)
0.0500 5 10.788 10.531 False (1.0, 2.0, 2.0, 0.999)
0.1000 5 9.288 9.091 False (1.0, 2.0, 1.998, 0.996)

0.0000 10 14.961 14.546 False (1.0, 2.0, 1.942, 1.0)
0.0005 10 14.940 14.459 False (1.0, 2.0, 1.971, 0.998)
0.0010 10 14.873 14.383 False (1.0, 2.0, 1.972, 0.996)
0.0050 10 14.280 13.845 False (1.0, 2.0, 1.95, 0.998)
0.0100 10 13.716 13.374 False (1.0, 2.0, 1.957, 0.996)
0.0500 10 11.576 11.320 False (1.0, 2.0, 2.0, 1.0)
0.1000 10 10.492 10.231 False (1.0, 2.0, 2.0, 0.995)

Table B.13: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 2, 2, 1) and
2-dimensional (k = 2) memoryless Gaussian source.

126

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.428 14.942 False (1.0, 1.0, 2.0, 1.983)
0.0005 0 15.146 14.681 False (1.0, 1.0, 2.0, 2.0)
0.0010 0 15.079 14.585 False (1.0, 1.0, 2.0, 1.99)
0.0050 0 13.851 13.470 False (1.0, 1.0, 2.0, 1.997)
0.0100 0 12.758 12.475 False (1.0, 1.0, 2.0, 1.975)
0.0500 0 8.837 8.837 True (1.0, 1.0, 2.0, 2.0)
0.1000 0 6.240 6.246 True (1.0, 1.0, 2.0, 2.0)

0.0000 5 15.428 14.917 False (1.0, 1.0, 2.0, 1.982)
0.0005 5 15.339 14.849 False (1.0, 1.0, 2.0, 1.985)
0.0010 5 15.229 14.667 False (1.0, 1.0, 2.0, 1.99)
0.0050 5 14.382 13.974 False (1.0, 1.0, 2.0, 1.968)
0.0100 5 13.628 13.294 False (1.0, 1.0, 2.0, 1.973)
0.0500 5 10.849 10.722 False (1.0, 1.0, 2.0, 1.998)
0.1000 5 9.403 9.002 False (1.0, 1.0, 2.0, 1.995)

0.0000 10 15.438 14.953 False (1.0, 1.0, 2.0, 1.982)
0.0005 10 15.211 14.825 False (1.0, 1.0, 2.0, 1.979)
0.0010 10 15.290 14.788 False (1.0, 1.0, 2.0, 1.988)
0.0050 10 14.686 14.197 False (1.0, 1.0, 2.0, 1.998)
0.0100 10 14.047 13.657 False (1.0, 1.0, 2.0, 1.999)
0.0500 10 11.820 11.671 False (1.0, 1.0, 2.0, 1.975)
0.1000 10 10.537 10.311 False (1.0, 1.0, 2.0, 1.987)

Table B.14: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 2, 2) and
2-dimensional (k = 2) memoryless Gaussian source.

127

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.016 14.611 False (1.0, 4.0, 0.992)
0.0005 0 14.825 14.387 False (1.0, 4.0, 0.993)
0.0010 0 14.465 14.153 False (1.0, 4.0, 0.996)
0.0050 0 13.173 12.811 False (1.0, 4.0, 0.999)
0.0100 0 11.976 11.722 False (1.0, 4.0, 0.996)
0.0500 0 8.516 8.206 False (1.0, 4.0, 0.997)
0.1000 0 6.039 5.856 False (1.0, 4.0, 0.999)

0.0000 5 15.135 14.610 False (1.0, 4.0, 0.999)
0.0005 5 14.895 14.481 False (1.0, 4.0, 1.0)
0.0010 5 14.876 14.367 False (1.0, 4.0, 0.989)
0.0050 5 13.877 13.436 False (1.0, 4.0, 0.991)
0.0100 5 13.108 12.722 False (1.0, 4.0, 0.988)
0.0500 5 10.428 10.103 False (1.0, 4.0, 0.997)
0.1000 5 8.747 8.440 False (1.0, 4.0, 0.999)

0.0000 10 15.017 14.582 False (1.0, 4.0, 0.999)
0.0005 10 14.919 14.438 False (1.0, 4.0, 0.998)
0.0010 10 14.917 14.355 False (1.0, 4.0, 0.993)
0.0050 10 14.241 13.726 False (1.0, 4.0, 0.999)
0.0100 10 13.531 13.162 False (1.0, 4.0, 0.997)
0.0500 10 11.218 10.937 False (1.0, 4.0, 0.998)
0.1000 10 9.891 9.634 False (1.0, 4.0, 0.999)

Table B.15: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 4, 1) and 2-
dimensional (k = 2) memoryless Gaussian source.

128

ε δ
VR-ACOVQ
SNR (dB)

FR-ACOVQ
SNR (dB) Balanced Tree Bit Allocation

Average

0.0000 0 15.173 15.173 True (1.0, 1.0, 4.0)
0.0005 0 14.946 14.946 True (1.0, 1.0, 4.0)
0.0010 0 14.726 14.730 True (1.0, 1.0, 4.0)
0.0050 0 13.364 13.374 True (1.0, 1.0, 4.0)
0.0100 0 12.196 12.188 True (1.0, 1.0, 4.0)
0.0500 0 8.231 8.222 True (1.0, 1.0, 4.0)
0.1000 0 5.717 5.733 True (1.0, 1.0, 4.0)

0.0000 5 15.164 15.164 True (1.0, 1.0, 4.0)
0.0005 5 15.038 15.042 True (1.0, 1.0, 4.0)
0.0010 5 14.910 14.920 True (1.0, 1.0, 4.0)
0.0050 5 14.118 14.111 True (1.0, 1.0, 4.0)
0.0100 5 13.303 13.334 True (1.0, 1.0, 4.0)
0.0500 5 10.386 10.332 True (1.0, 1.0, 4.0)
0.1000 5 8.600 8.551 True (1.0, 1.0, 4.0)

0.0000 10 15.169 15.175 True (1.0, 1.0, 4.0)
0.0005 10 15.063 15.062 True (1.0, 1.0, 4.0)
0.0010 10 14.962 14.968 True (1.0, 1.0, 4.0)
0.0050 10 14.321 14.298 True (1.0, 1.0, 4.0)
0.0100 10 13.718 13.746 True (1.0, 1.0, 4.0)
0.0500 10 11.257 11.310 True (1.0, 1.0, 4.0)
0.1000 10 9.822 9.824 True (1.0, 1.0, 4.0)

Table B.16: VR-ACOVQ and FR-ACOVQ SNRs for bit allocation (1, 1, 4) and 2-
dimensional (k = 2) memoryless Gaussian source.

129

δ

ε 0 5 10

0.00000 0.864 0.903 0.938
0.00050 1.924 0.829 1.231
0.00100 1.781 1.153 1.059
0.00500 1.772 2.581 1.578
0.01000 1.848 2.624 2.686
0.05000 1.847 2.593 2.808
0.10000 0.99 1.9 2.143

Table B.17: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 3, 1, 1) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.264 0.134 0.322
0.00050 0.212 0.193 0.205
0.00100 0.151 0.224 0.144
0.00500 0.259 0.151 0.2
0.01000 0.165 0.189 0.187
0.05000 0.372 0.188 0.3
0.10000 0.065 0.6 0.503

Table B.18: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 3, 1, 1) and 2-dimensional
(k = 2) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 1.148 1.099 1.133
0.00050 1.65 1.115 0.89
0.00100 1.909 0.906 1.345
0.00500 2.608 1.7 2.039
0.01000 2.097 2.303 2.453
0.05000 2.402 3.342 3.274
0.10000 1.423 2.361 2.772

Table B.19: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 1, 3, 1) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.399 0.519 0.397
0.00050 0.335 0.37 0.468
0.00100 0.297 0.379 0.414
0.00500 0.327 0.386 0.411
0.01000 0.283 0.353 0.32
0.05000 0.117 0.333 0.555
0.10000 0.094 0.371 0.341

Table B.20: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 1, 3, 1) and 2-dimensional
(k = 2) memoryless Gaussian source.

130

δ

ε 0 5 10

0.00000 1.069 1.09 1.063
0.00050 0.524 0.166 0.639
0.00100 0.289 0.335 0.289
0.00500 0.295 -0.172 -0.166
0.01000 0.162 0.006 0.055
0.05000 0.059 0.189 1.005
0.10000 0.084 0.92 1.003

Table B.21: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 1, 1, 3) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.086 0.000 0.173
0.00050 0.002 -0.009 0.003
0.00100 0.077 0.175 0.004
0.00500 0.012 0.001 0.024
0.01000 -0.044 0.023 -0.042
0.05000 -0.061 -0.000 -0.040
0.10000 0.009 0.020 0.011

Table B.22: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 1, 1, 3) and 2-dimensional
(k = 2) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 1.169 1.118 1.134
0.00050 0.752 1.365 1.207
0.00100 2.422 1.309 1.411
0.00500 1.065 1.969 2.054
0.01000 1.258 1.753 1.153
0.05000 1.762 2.63 1.936
0.10000 1.453 1.906 1.183

Table B.23: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (2, 2, 1, 1) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.171 0.295 0.292
0.00050 0.154 0.375 0.226
0.00100 0.221 0.021 0.208
0.00500 0.137 0.307 0.167
0.01000 0.105 0.222 0.138
0.05000 0.144 0.075 0.095
0.10000 0.047 0.353 0.241

Table B.24: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (2, 2, 1, 1) and 2-dimensional
(k = 2) memoryless Gaussian source.

131

δ

ε 0 5 10

0.00000 0.908 0.892 0.906
0.00050 1.498 1.306 0.909
0.00100 1.3 1.031 0.982
0.00500 2.517 1.598 1.431
0.01000 1.633 1.651 2.488
0.05000 1.573 2.736 3.019
0.10000 1.556 2.495 2.879

Table B.25: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 2, 2, 1) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.508 0.493 0.415
0.00050 0.44 0.374 0.481
0.00100 0.408 0.397 0.49
0.00500 0.368 0.365 0.434
0.01000 0.136 0.367 0.342
0.05000 0.161 0.257 0.256
0.10000 0.085 0.197 0.261

Table B.26: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 2, 2, 1) and 2-dimensional
(k = 2) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 1.08 1.083 1.024
0.00050 0.933 0.836 0.741
0.00100 1.051 0.539 0.561
0.00500 0.893 0.132 1.134
0.01000 1.007 0.343 1.483
0.05000 1.523 2.113 2.523
0.10000 1.02 1.757 2.173

Table B.27: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 1, 2, 2) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.486 0.511 0.486
0.00050 0.465 0.49 0.386
0.00100 0.494 0.562 0.501
0.00500 0.382 0.408 0.488
0.01000 0.283 0.334 0.39
0.05000 0.000000 0.126 0.15
0.10000 -0.006000 0.401 0.226

Table B.28: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for bit
allocation (1, 1, 2, 2) and 2-dimensional
(k = 2) memoryless Gaussian source.

132

δ

ε 0 5 10

0.00000 0.887 0.881 0.829
0.00050 2.386 1.33 1.261
0.00100 3.24 1.348 1.051
0.00500 2.378 2.46 1.922
0.01000 1.915 3.282 2.539
0.05000 2.094 4.224 2.867
0.10000 1.141 3.253 2.575

Table B.29: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for
bit allocation (1, 4, 1) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.404 0.525 0.436
0.00050 0.438 0.413 0.481
0.00100 0.312 0.509 0.562
0.00500 0.362 0.442 0.516
0.01000 0.253 0.386 0.369
0.05000 0.31 0.325 0.281
0.10000 0.184 0.307 0.256

Table B.30: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for
bit allocation (1, 4, 1) and 2-dimensional
(k = 2) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 0.208 0.256 0.208
0.00050 -0.047 0.422 -0.01
0.00100 0.107 0.288 -0.080
0.00500 0.075 -0.175 -0.250
0.01000 0.103 -0.053 -0.067
0.05000 -0.018 -0.067 -0.183
0.10000 0.0750 0.027 0.116

Table B.31: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for
bit allocation (1, 1, 4) and 1-dimensional
(k = 1) memoryless Gaussian source.

δ

ε 0 5 10

0.00000 -0.000 -0.000 -0.006
0.00050 0.000 -0.004 0.001
0.00100 -0.004 -0.010 -0.006
0.00500 -0.011 0.008 0.024
0.01000 0.009 -0.031 -0.028
0.05000 0.009 0.055 -0.053
0.10000 -0.016 0.050 -0.002

Table B.32: Difference between VR-
ACOVQ and FR-ACOVQ SNRs for
bit allocation (1, 1, 4) and 2-dimensional
(k = 2) memoryless Gaussian source.

133

Bibliography

[1] F. Alajaji. Feedback does not increase the capacity of discrete channels with

additive noise. IEEE Transactions on Information Theory, 41(2):546–549, 1995.

[2] F. Alajaji and P.-N. Chen. An Introduction to Single-User Information The-

ory. Springer Undergraduate Texts in Mathematics and Technology. Springer,

Singapore, 1st edition, 2018.

[3] F. Alajaji and T. Fuja. A communication channel modeled on contagion. IEEE

Transactions on Information Theory, 40(6):2035–2041, 1994.

[4] F. Alajaji, N. Phamdo, N. Farvardin, and T. E. Fuja. Detection of binary

Markov sources over channels with additive Markov noise. IEEE Transactions

on Information Theory, 42(1):230–239, 1996.

[5] A. S. Amanullah and M. Salehi. Joint source-channel coding in the presence of

feedback. In Proceedings of 27th Asilomar Conference on Signals, Systems and

Computers, pages 930–934 vol.2, 1993.

[6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth, 1984.

134

[7] J. Cheng. Channel Optimized Quantization of Images Over Binary Channels

with Memory. PhD thesis, Queen’s University, 1997.

[8] J. Cheng and F. Alajaji. Channel optimized quantization of images over bursty

channels. In Proceedings of the Canadian Workshop on Information Theory

(CWIT), 1997.

[9] P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with appli-

cations to tree-structured source coding and modeling. IEEE Transactions on

Information Theory, 35(2):299–315, 1989.

[10] T. M. Cover and S. Pombra. Gaussian feedback capacity. IEEE Transactions

on Information Theory, 35(1):37–43, 1989.

[11] N. Farvardin. A study of vector quantization for noisy channels. IEEE Trans-

actions on Information Theory, 36(4):799–809, 1990.

[12] N. Farvardin and V. Vaishampayan. Optimal quantizer design for noisy chan-

nels: An approach to combined source - channel coding. IEEE Transactions on

Information Theory, 33(6):827–838, 1987.

[13] N. Farvardin and V. Vaishampayan. On the performance and complexity of

channel-optimized vector quantizers. IEEE Transactions on Information The-

ory, 37(1):155–160, 1991.

[14] P. E. Fleischer. Sufficient conditions for achieving minimum distortion in a

quantizer. In IEEE International Convention Record, Part I, pages 104–111,

1964.

135

[15] A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer

Academic Publishers, 1992.

[16] S.-Z. Kiang, G.J. Sullivan, C.-Y. Chiu, and R. L. Baker. Recursive optimal

pruning of tree-structured vector quantizers. In [Proceedings] ICASSP 91: 1991

International Conference on Acoustics, Speech, and Signal Processing, pages

2285–2288 vol.4, 1991.

[17] A. Kurtenbach and P. Wintz. Quantizing for noisy channels. IEEE Transactions

on Communication Technology, 17(2):291–302, 1969.

[18] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.

IEEE Transactions on Communications, 28(1):84–95, 1980.

[19] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Informa-

tion Theory, 28(2):129–137, 1982.

[20] S. M. Perlmutter and R. M. Gray. A low complexity multiresolution approach

to image compression using pruned nested tree-structured vector quantization.

In Proceedings of 1st International Conference on Image Processing, volume 1,

pages 588–592 vol.1, 1994.

[21] N. Phamdo. Quantization Over Discrete Noisy Channels Under Complexity

Constraints. PhD thesis, University of Maryland, 1993.

[22] N. Phamdo, F. Alajaji, and N. Farvardin. Quantization of memoryless and

Gauss-Markov sources over binary Markov channels. IEEE Transactions on

Communications, 45(6):668–675, 1997.

136

[23] N. Phamdo, N. Farvardin, and T. Moriya. A unified approach to tree-structured

and multistage vector quantization for noisy channels. IEEE Transactions on

Information Theory, 39(3):835–850, 1993.

[24] Z. Raza. Sample adaptive product quantization for memoryless noisy channels.

Master’s thesis, Queen’s University, 2002.

[25] Z. Raza, F. Alajaji, and T. Linder. Design of sample adaptive product quantiz-

ers for noisy channels. IEEE Transactions on Communications, 53(4):576–580,

2005.

[26] S. Rezazadeh. Scalar quantization algorithms for the robust transmission of

correlated sources over one- and two-way channels. Master’s thesis, Queen’s

University, 2019.

[27] E. A. Riskin. Optimal bit allocation via the generalized BFOS algorithm. IEEE

Transactions on Information Theory, 37(2):400–402, 1991.

[28] E. A. Riskin and R. M. Gray. A greedy tree growing algorithm for the design

of variable rate vector quantizers (image compression). IEEE Transactions on

Signal Processing, 39(11):2500–2507, 1991.

[29] S. Shahidi, F. Alajaji, and T. Linder. MAP decoding of quantized sources

over soft-decision fading channels with memory. In 2012 IEEE International

Conference on Communications (ICC), pages 2277–2282, 2012.

[30] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27:379–423, 1948.

137

[31] C. E. Shannon. The zero error capacity of a noisy channel. IRE Transactions

on Information Theory, 2(3):8–19, 1956.

[32] L. Song, F. Alajaji, and T. Linder. Capacity of burst noise-erasure channels

with and without feedback and input cost. IEEE Transactions on Information

Theory, 65(1):276–291, 2019.

[33] V. A. Vaishampayan and N. Farvardin. Optimal block cosine transform

image coding for noisy channels. IEEE Transactions on Communications,

38(3):327–336, 1990.

[34] X. Yu, H. Wang, and E. Yang. Optimal quantization for noisy channels with ran-

dom index assignment. In 2008 IEEE International Symposium on Information

Theory, pages 2727–2731, 2008.

138

	Abstract
	Introduction
	Joint Source-Channel Coding
	Literature Review
	Thesis Contributions
	Thesis Outline

	Preliminaries
	Communication Channel Models
	Discrete Channels
	Discrete Channels with Memory

	Source and Channel Encoding
	Joint Source Channel Encoding
	Vector Quantization
	Channel Optimized Vector Quantization
	Optimality Conditions

	Channel Matched Tree Structured Vector Quantization
	Two-Stage Optimality Conditions
	Generalization for Multiple Stages
	Algorithm for Designing Locally Optimal CM-TSVQs

	Adaptive Channel Optimized Vector Quantization
	Two-Stage Optimality Conditions
	Generalization for Multiple Stages

	Initial Codebook Design

	Tree Structured Vector Quantization With Noiseless Feedback
	Introduction
	Preliminaries
	Second Stage Derivations
	Generalization for Multiple Stages

	Equivalence of ATSVQ and ACOVQ
	Conditions for Equivalence

	Simulations Results
	Channel Properties
	ACOVQ and ATSVQ Performance Results

	Variable-Rate Adaptive Tree Structure Vector Quantization
	Introduction
	Variable-Rate Quantization
	Optimal Bit Allocation Problem
	The Generalized BFOS Algorithm

	VR-ACOVQ Bit Allocation Algorithm
	Algorithm Overview
	Steepest Descent Bit Allocation Algorithm

	Complexity Analysis
	Computational and Storage Complexity of FR-ACOVQ Encoder
	Encoding Complexity of VR-ACOVQ

	Simulation Results
	4-Bit VR-ACOVQ Simulation Results
	6-Bit VR-ACOVQ Simulation Results

	Conclusion
	Summary of Work
	Future Work

	Proof for ATSVQ Generalized Centroid Condition Reduction
	Additional Simulation Results for VR-ACOVQ and FR-ACOVQ

