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Abstract

Linear programming (LP) decoding of low-density parity-check codes was intro-

duced by Feldman et al. in [1]. In his formulation it is assumed that communication

takes place over a memoryless channel and that the source is uniform. Here, we extend

the LP decoding paradigm by studying its application to scenarios with source non-

uniformity and to decoding over channels with memory. We develop two decoders for

the scenario of non-uniform memoryless sources transmitted over memoryless chan-

nels. The first decoder uses a modified linear cost function which incorporates the

a-priori source information and works with systematic codes. The second decoder

differs by using non-systematic codes obtained by puncturing lower rate systematic

codes and using an extended decoding polytope. Simulations show that the modified

decoders yield gains over the standard LP decoder. Next, LP decoding is considered

for two channels with memory: the binary additive Markov noise channel and the

infinite-memory non-ergodic Polya-contagion channel. For the Markov channel, no

linear cost function corresponding to maximum likelihood (ML) decoding could be

obtained and hence it is unclear how to proceed. For the Polya channel, two LP-based

decoders are developed. The first is derived in a straightforward manner from the ML

decoding rule of [2]. The second decoder relies on a simplification of the same ML

decoding rule which holds for codes containing the all-ones codeword. Simulations are

performed for both decoders with regular and irregular LDPC codes and demonstrate

relatively good performance with respect to the channel ǫ-capacity.

ii



Acknowledgments

First and foremost, I would like to thank my supervisors, Dr. Fady Alajaji, Dr.

Navin Kashyap and Dr. Glen Takahara. Their teaching, supervision, and direct

contributions to this work have been invaluable. They have invested a great deal of

time and energy into my work and development, and for this I am very grateful.

I would also like to thank my friends and colleagues in the math library, Pantelis,

Mark, Daniel and Amy, for many interesting discussions and distractions. In addition,

I would like to thank my friends and collaborators in music, Julian, Eric and Mike

(and more recently in business, Julian and Eric) for providing a fulfilling creative

outlet during my time here.

I would like to thank my family and my girlfriend Daniela for all that they have

given me in life. Finally, I would like to dedicate this work to my mother.

iii



Contents

Abstract ii

Acknowledgments iii

List of Tables vii

List of Figures viii

Chapter 1: Introduction 1

1.1 Description of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Channel Coding and Modelling 10

2.1 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Binary Linear Codes . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . 15

2.2 Channel Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



2.2.1 Channel Decoding . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Binary Symmetric Channel . . . . . . . . . . . . . . . . . . . 19

2.2.3 Additive White Gaussian Noise Channel . . . . . . . . . . . . 20

2.2.4 First-Order Markov Noise Channel . . . . . . . . . . . . . . . 22

2.2.5 Non-ergodic Polya Channel . . . . . . . . . . . . . . . . . . . 23

Chapter 3: Linear Programming Decoding 29

3.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Solving Linear Programs . . . . . . . . . . . . . . . . . . . . . 31

3.2 Decoding as an LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Linear Cost Function . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Region of Optimization . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Relaxing the Problem . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.5 Adaptive LP Decoding . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4: LP Decoding for Non-Uniform Sources 43

4.1 LP Decoding for Non-Uniform Sources with Systematic Codes . . . . 44

4.2 LP Decoding for Non-Uniform Sources with Non-Systematic Codes . 47

4.3 The AWGN Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



Chapter 5: LP Decoding for Channels with Memory 59

5.1 First-Order Markov Noise Channel . . . . . . . . . . . . . . . . . . . 60

5.2 Polya Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Simplified ML Decoding for the Polya Channel . . . . . . . . . . . . . 69

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 6: Conclusions and Future Work 80

Bibliography 83

Appendix A: Implementation Details 90

Appendix B: Iterative Decoders for the Polya Channel 94

vi



List of Tables

5.1 Relaxed MDD performance for Polya channel . . . . . . . . . . . . . 74

5.2 Relaxed MMDD performance for Polya channel . . . . . . . . . . . . 75

vii



List of Figures

1.1 Typical model for a communication system. . . . . . . . . . . . . . . 2

2.1 Visual representation of the binary symmetric channel (BSC). . . . . 20

2.2 The additive white Gaussian noise (AWGN) channel. . . . . . . . . . 21

2.3 State transition diagram for the first-order Markov noise channel. . . 24

4.1 Standard LP Decoder vs. Modified LP Decoders for Non-Uniform

Source n = 200, p1 = 0.9, R = 1
2

over the BSC. . . . . . . . . . . . . . 54

4.2 Standard LP Decoder vs. Modified LP Decoders for Non-Uniform

Source n = 200, p1 = 0.8, R = 1
2

over the BSC. . . . . . . . . . . . . . 55

4.3 Standard LP Decoder vs. Modified LP Decoders for Non-Uniform

Source n = 200, p1 = 0.7, R = 1
2

over the BSC. . . . . . . . . . . . . . 56

4.4 Systematic (200, 100) LDPC code vs. Systematic (1000, 500) LDPC

code at R = 1
2
, p1 = 0.7 over the BSC. . . . . . . . . . . . . . . . . . 57

4.5 LP JSC decoders for the BSC and AWGN channel with systematic

(200, 100) LDPC code and p1 = 0.8 . . . . . . . . . . . . . . . . . . . 58

viii



5.1 δ = 10: (200, 100) (3, 6)-regular LDPC code under relaxed MDD de-

coding and irregular (200, 100) LDPC code under relaxed MMDD.

Curves representing the ǫ-capacity and the case of ideal interleaving

(BSC) are also included for comparison. . . . . . . . . . . . . . . . . 76

5.2 δ = 4: (200, 100) (3, 6)-regular LDPC code under relaxed MDD decod-

ing and irregular (200, 100) LDPC code under relaxed MMDD. Curves

representing the ǫ-capacity and the case of ideal interleaving (BSC) are

also included for comparison. . . . . . . . . . . . . . . . . . . . . . . 77

5.3 δ = 2: (200, 100) (3, 6)-regular LDPC code under relaxed MDD decod-

ing and irregular (200, 100) LDPC code under relaxed MMDD. Curves

representing the ǫ-capacity and the case of ideal interleaving (BSC) are

also included for comparison. . . . . . . . . . . . . . . . . . . . . . . 78

5.4 δ = 10: (200, 100) (3, 6)-regular LDPC code and irregular (200, 100)

LDPC code under relaxed MDD and irregular (200, 100) LDPC code

under relaxed MMDD. Curve representing ǫ-capacity is also included. 79

1 Word error rate of a Rate-1
2

(3, 6) LDPC code of length 200 over a

range of BSC crossover probabilities, corresponding to [1, Fig. 7]. . . 93

2 Word error rate of a Rate-1
2

(3, 6) LDPC code of length 200 over the

non-ergodic Polya channel with δ = 2 using both a message-passing

decoder and relaxed MDD over a range of values of the Polya channel

BER ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ix



Chapter 1

Introduction

1.1 Description of the Problem

Shannon’s seminal work [3], “A Mathematical Theory of Communication,” laid the

foundation for information and communication theory. In his paper, Shannon defined

a novel method for measuring information, and proved a fundamental result about

the ability to reliably transmit that information over noisy channels.

We begin by clarifying what is meant by “communication over a noisy channel.”

A typical model for a communication system is shown in Figure 1.1. In this model,

the source attempts to communicate some message to the destination, and must do

so through a channel which has the potential to introduce corruption. The source

and channel encoders and decoders depicted in Figure 1.1 compose the pre- and post-

transmission processing components of the system. Typically, the source encoder and
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decoder are responsible for data compression and decompression, that is, the pro-

cess of representing the message as efficiently as possible, and then restoring it to its

original form. The channel encoder, on the other hand, introduces structured redun-

dancy into the message and the channel decoder attempts to use that redundancy

to detect and correct errors introduced by the channel. This work focusses primarily

on the channel coding component of the system, and even more specifically, on the

channel decoder. For a comprehensive and rigorous introduction to information and

communication theory, the reader is directed to [4] or [5].

Figure 1.1: Typical model for a communication system.

Although Shannon’s work demonstrated the existence and achievability of fun-

damental performance limits associated with transmitting information, it did not

show how these limits could be reached using practical systems. Thus, the develop-

ment of effective channel codes used for communication over noisy channels has been

an integral focus in information and communication theory since Shannon’s work

in 1948. From an application standpoint, one of the most notable classes of chan-

nel codes to date is the class of low-density parity-check (LDPC) codes. Although
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originally proposed by Gallager in 1960 [6], LDPC codes, along with powerful and

efficient sub-optimal iterative decoders, were not popularized until 1999, when they

were rediscovered by MacKay [7]. The excellent (near Shannon limit) performance

and practicality of LDPC codes quickly made them a primary focus in the field of

coding theory [8].

Very recently, Feldman [9] demonstrated that the problem of decoding LDPC

codes could be expressed as a linear program. This decoding approach, termed LP

decoding, yields similar error performance as iterative decoders and, in addition, is

an analytically tractable decoding technique. Feldman’s LP decoders were designed

to decode for uniform sources transmitting over discrete input memoryless symmetric

channels. Although these source and channel assumptions are common in the lit-

erature, they do not always apply well to real communication systems. The source

uniformity assumption is often inaccurate, as source data is frequently uncompressed,

and, even when it is compressed, it is rarely compressed ideally. Further, channel

memory is most commonly addressed in practice by interleaving, a strategy which

strives to make the channel ”appear” memoryless to the decoder. Although useful

in making the channel better-fit the memoryless assumption, this approach is not

optimal as memory has a positive effect on a channel’s ability to reliably carry infor-

mation. Thus, if accounted for correctly at the decoder, channel memory can serve

to improve performance. In light of these issues, there has been a substantial amount

of research into the modification of iterative decoders of LDPC codes for decoding
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in situations with source non-uniformity (see e.g., [10],[11]) and with channel with

memory (see e.g., [12],[13],[14]). Thus, it is natural to investigate the modification of

LP decoders to the same end, and this is the problem which is considered herein.

1.2 Review of Literature

LP decoding of binary linear codes (BLCs), and in particular, LDPC codes, was in-

troduced by Feldman et al. in his 2005 paper “Using linear programming to decode

binary linear codes” [1]. The paper was based on work from Feldman’s PhD thesis,

published in 2003 [9], and demonstrates how the problem of decoding BLCs trans-

mitted over discrete input memoryless symmetric channels can be formulated as an

LP. The proposed LP decoder is sub-optimal1 and has polynomial complexity with

respect to the code-length. For LDPC codes, its performance is tightly related to

that of the iterative min-sum decoder, a fact that was noted by Feldman and has

been studied by Vontobel and Koetter in [15]. Another important characteristic of

the proposed LP decoder is the so-called “ML certificate property,” which provides a

guarantee on the optimality of the LP decoding result. Prior to the work regarding

BLCs, and also based on work from Feldman’s thesis, Feldman et al. [16] demon-

strated how LP decoding could be applied to (turbo-like) repeat accumulator codes,

with bounded error performance. In [17], Kashyap proves that for a certain nontrivial

class of binary linear codes, relaxed LP decoding is in fact equivalent to ML decoding,

1If it is not stated explicitly when discussing decoder optimality, we are referring to optimality
in the sense of minimizing the probability of codeword error.
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thus providing a polynomial-time algorithm for the ML decoding of those codes. LP

decoding has also been studied in the context of non-binary linear codes [18].

Since Feldman’s initial publications, a number of developments have occurred in

the area. One of the most interesting features of LP decoding is that, in direct

contrast to iterative decoding techniques, it is relatively well-suited to mathematical

analysis. As a result, there exist some important theorems on the properties of

LP decoding. The first such result, due to Feldman et. al., is regarding the error

correction capability of LP decoding [19]. Specifically, it is shown that for an LDPC

code satisfying certain conditions on its Tanner graph and code rate, LP decoding

can correct a number of errors that is proportional to the length of the code. We

note that the conditions required for the theorem to apply are satisfied with high

probability by a random LDPC code. Some additional results and analysis regarding

the error performance of LP decoding have been published in [20] and [21]. Another

important analytical result regarding LP decoding, due to Feldman and Stein, is

that LP decoding achieves capacity [22]. It is shown that when applied to expander

codes (a class of codes constructed from expander graphs), LP decoding achieves the

capacity of memoryless symmetric log-likelihood bounded channels.

The main draw-back of LP decoding is that it is much less efficient than iterative

decoding and so is not presently considered to be a practical decoding technique.

However, important progress has been made in this area. In [23], Taghavi and Siegel

demonstrate how major increases in the efficiency of LP decoding can be obtained
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by using adaptive LP techniques. The idea is to solve a series of less complex LPs,

adding constraints along the way, until the desired LP is solved. In the paper, they

show substantial experimental efficiency gains, especially in the case of codes with

more dense parity-check matrices. In addition, they show how the adaptive LP tech-

nique can be extended so as to improve decoding performance. Another interesting

publication “Toward low complexity LP decoding”, [24], explores the development of

algorithms designed specifically for LP decoding, as opposed to using standard LP

solvers. In this paper, Vontobel and Koetter show that algorithms which have com-

plexity similar to that of the min-sum algorithm are feasible for solving the decoding

LP, a very promising result. In a related work by Burshtein [25], an approximate

LP decoder is developed which is proved to correct the constant fraction of errors

promised in [19] with complexity that is linear in the length of the code.

There has also been research which demonstrates how the error performance of

LP decoding can be improved. Draper et al. extend the above-mentioned approach

of Taghavi and Siegel even further, and modify the adaptive LP decoder to incor-

porate integer constraints [26]. By allowing for integer constraints, they are able to

implement an ML decoder which executes in a reasonable amount of time for codes of

moderate block-length. Another improvement to the performance of LP decoding was

proposed by Dimakis and Wainwright [27] who develop a decoding algorithm which

provably outperforms the standard LP decoder for expander codes at the expense

of a modest increase in complexity. Again, similar to parts of the work of Taghavi
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and Siegel, enhanced performance is achieved by adding additional constraints to the

original LP and, in this case, those extra constraints are selected by guessing in a

certain way.

There is also work which explores the more general question of decoding via convex

optimization, a superset of linear programming. In [28], the authors demonstrate that

ML decoding of LDPC codes transmitted over linear vector channels can be relaxed

to a convex optimization problem, a result which is relevant to this work as this class

of channels has memory. A list of publications relating to LP decoding including

those mentioned herein and some others is found on the website of Vontobel [29].

1.3 Thesis Overview

In Chapter 2 we will provide an introduction to coding theory. Included are an

introduction to BLCs and LDPC codes, and a description of the communication

channels considered in this work. Specifically, we will discuss the binary symmetric

channel (BSC), the additive white Gaussian noise (AWGN) channel, the first order

additive Markov noise channel, and the infinite-memory non-ergodic Polya contagion

channel.

Next, Chapter 3 provides the background required to understand and extend

Feldman’s work on LP decoding of LDPC codes. We will discuss linear programming,

linear cost functions for decoding, decoding polytopes and adaptive LP decoding.
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With the required background, in Chapter 4 we explore the application of LP

decoding to the scenario of decoding LDPC-coded non-uniform sources sent over the

BSC and AWGN channels. A linear cost function is derived which exploits source

non-uniformity, and two decoders are developed based on this cost function. One

decoder is designed for systematic codes and one uses punctured systematic codes.

Simulation results are provided to demonstrate the decoders’ performance.

In Chapter 5, we investigate the application of LP decoding to channels with

memory; specifically, the Markov noise channel and the infinite-memory non-ergodic

Polya contagion channel. For the Markov noise channel, a quadratic cost function is

derived, but no decoder is developed. For the Polya channel, two separate decoders

are developed and simulation results are included to demonstrate their performance.

Finally, in Chapter 6 we will summarize our results and suggest future avenues

for work in this area.

1.4 Thesis Contribution

The following is a list of the contributions presented in this work:

• Developed an LP decoder for non-uniform sources and systematic codes for the

BSC and AWGN channel. Simulation results for these decoders are provided.

• Developed an LP decoder for non-uniform sources and non-systematic codes

based on puncturing and the use of an “extended codeword polytope” for the

8



BSC. Simulation results for the decoder are provided.

• Derived a quadratic cost function corresponding to maximum likelihood (ML)

decoding for the Markov noise channel.

• Proved the equivalence of ML decoding to minimum or maximum Hamming

distance decoding (depending on a channel parameter) for the non-ergodic Polya

channel when using codes with the all-ones codeword.

• Developed a relaxed LP decoder for the Polya channel.

• First simulation results for the Polya channel with good performance with re-

spect to the channel ǫ-capacity.

The results mentioned above have been published in part in [30].
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Chapter 2

Channel Coding and Modelling

2.1 Channel Coding

Channel coding is the process of adding redundancy to a message with the aim of

protecting that message against error. Before diving into definitions, we will provide

a very simple example of channel coding to demonstrate the concept.

Suppose that a source would like to transmit a message consisting of the binary

symbol “1” across a channel which flips the symbol to a “0” with probability p = 0.1.

If the message is sent as-is, then clearly it will be received correctly with probability

1 − p = 0.9. Now, suppose that we repeat the symbol three times, that is, transmit

10



“111” instead. Let us analyze the possible error sequences:

P [0 errors] = (1 − p)3 = 0.729,

P [1 errors] = 3(1 − p)2p = 0.243,

P [2 errors] = 3(1 − p)p2 = 0.027, and

P [3 errors] = p3 = 0.001.

Now, suppose that in order to decode this message we use a majority decoding rule,

that is, we decode to 1 if there are more 1’s than 0’s in the received bit sequence, and

vice versa. By this rule, we will correctly decode the received bits with probability

0.729 + 0.243 = 0.972, i.e., the probability that one or fewer errors occurred. If we

were to have repeated the symbol five times instead of three, used a majority rule

and left p = 0.1, we would increase the probability of successful decoding to 0.99144.

The example above demonstrates the classical trade-off between redundancy and

probability of error. This trade-off characterizes channel coding: we were able to

significantly reduce the probability of error at the cost of transmitting information at

a lower rate. Channel coding techniques are primarily focused on methods of adding

redundancy in a highly structured manner so as to obtain the maximum benefit in

terms of error protection. The content contained herein is standard in the literature,

and for a more thorough treatment of the subject the reader is directed to [31] or

[32].
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2.1.1 Binary Linear Codes

An (n, k), n > k, BLC C is a k-dimensional subspace F
n
2 . Any element c ∈ C is called

a codeword. We define the rate R of an (n, k) BLC to be R = k
n
. An encoder for C

is a 1-to-1 and onto map, f , of the form

f : F
k
2 → C.

In other words, the encoder maps each binary k-tuple to some binary n-tuple in C.

Redundancy is added here as n > k, and the rate of the code R represents the ratio

of the number of bits going into the encoder to that coming out.

The dual of a BLC C is denoted C⊥ and is defined as

C⊥ = {h ∈ F
n
2 : h · c = 0, ∀ c ∈ C},

where the dot product is performed over F2.

An (n, k) BLC can be described by a set of k basis vectors in F
n
2 . A generator

matrix of an (n, k) BLC is a k × n matrix over F2 with its rows forming a basis of

the code. A parity-check matrix of an (n, k) BLC is an (n − k) × n matrix over F2

with its rows forming a basis of C⊥. We note that a parity-check matrix for C is a

generator matrix of C⊥, and vice versa.

A BLC can be completely specified using a parity-check matrix or a generator
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matrix. Given a parity-check matrix H for an (n, k) code C, we have that

C = {c ∈ F
n
2 : Hct = 0},

where 0 is the all-zeros vector in F
k
2 and addition is performed modulo-2. Similarly,

given a generator matrix G for an (n, k) code C, we have

C = {c ∈ F
n
2 : sG = c for some s ∈ F

k
2},

where, again, addition is performed modulo-2. A generator matrix also serves as an

encoder for a BLC, as it maps vectors from F
k
2 into the appropriate subspace of F

n
2 .

It is worth noting that for a particular code, there are many distinct generator and

parity-check matrices.

We now provide an example of a linear block code. The (7, 4) Hamming code,

denoted H3, is a BLC with parity-check matrix

H =




1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


 ,

and generator matrix

G =




1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1




.

13



A generator matrix is said to be systematic if it contains the k×k identity matrix

as a submatrix, as in the example above. Strictly speaking, this is a property of

generator matrices; however, it is often the case that a code will be described as

systematic. In this case, it is tacitly assumed that the code is being discussed in

tandem with a corresponding systematic generator matrix which is being used as the

encoder.

Given a parity-check matrix for some BLC C, it is always possible to obtain a

corresponding systematic generator matrix for C. First, the parity-check matrix must

be row-reduced and have its columns permuted so as to take following block form

H = [A|In−k] ,

where A is an (n − k) × k matrix, and In−k is the (n − k) × (n − k) identity matrix.

Given such a parity-check matrix,

G =
[
Ik|At

]

is always a systematic generator matrix for C, where Ik is the k × k identity matrix,

and At is the transpose of A.
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2.1.2 Low-Density Parity-Check Codes

LDPC codes were originally proposed by Gallager in his PhD thesis in 1960 [6];

however, the codes were mostly forgotten until 1999 when they were revisited by

MacKay [7]. From this point forth, the codes have been studied heavily due to

their excellent (capacity-approaching) performance achieved using practical iterative

decoders [8].

LDPC codes are a class of BLCs which are represented by sparse parity-check

matrices. Roughly speaking, if we let d∗
r and d∗

c be the maximum number of 1’s in

any given row and column of some parity-check matrix H , respectively, then we say

that H is sparse if d∗
r and d∗

c are small constants relative to the number of columns

and rows in H , respectively. For example, in practice, a rate-1
2

LDPC code might

have a 30000× 60000 parity-check matrix with maximum row and column degrees of

6 and 3, respectively.

A BLC is said to be regular if it is derived from a parity-check matrix in which

every row and column has d∗
r and d∗

c 1’s, respectively. A length-n, dimension k regular

BLC with row degree d∗
r and column degree d∗

c will be referred to as an (n, k) (d∗
c , d

∗
r)-

regular code. A BLC is said to be irregular if it is not regular.

Below we give an example of a parity-check matrix corresponding to a (20, 10)

(3, 6)-regular code

15



H =




0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1

1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0

0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0

0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0

1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0




.

Generally speaking, an LDPC code is designed by creating a sparse parity-check

matrix with desired row- and column-degree properties. From the parity-check ma-

trix, a systematic generator matrix can always be obtained in the manner described

in 2.1.1. Both the regular and irregular LDPC codes used in the simulations of this

work were generated using the software of Neal [33], as described in Appendix A.

2.2 Channel Modelling

In the physical world, if one wishes to communicate a message of any form, that mes-

sage must travel through space and/or time before arriving at the intended destination

(e.g., one’s voice through the air, or bits stored on a cd-rom). The spatial/temporal

steps between transmitter and receiver, which have the potential to introduce corrup-

tion, are referred to as a communication channel. A channel is formally defined as a
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triple (X , P [·|·],Y), where X and Y are the sets of possible channel input and output

symbols, respectively, and P [·|·] describes the channel transition probabilities. More

specifically, given (x1, . . . , xn) ∈ X n and (y1, . . . , yn) ∈ Yn, P [(y1, . . . , yn)|(x1, . . . , xn)]

gives the probability (or likelihood, if Y is continuous) that (y1, . . . , yn) will be re-

ceived given that (x1, . . . , xn) was transmitted, for any n ≥ 1. A channel is said to

be memoryless if its transition probabilities are independent from symbol to symbol,

that is, if

P [(y1, . . . , yn)|(x1, . . . , xn)] =
n∏

i=1

P [yi|xi].

One of the most important properties of a channel, although not central to this

work, is its information capacity. The information capacity of a channel was shown

by Shannon [3] to represent the maximum rate at which, given sufficiently large

block length, information can be transmitted over the channel with arbitrarily small

probability of error. The existence of this quantity, having such a strong operational

significance, is one of the most important concepts in information and communication

theory.

Next, we give a brief introduction to channel decoding. The remainder of the

section will be devoted to describing the four specific communication channels which

will be considered in this work: the binary symmetric channel, the additive white

Gaussian noise channel, the first order additive Markov noise channel, and the infinite-

memory non-ergodic Polya contagion channel.
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2.2.1 Channel Decoding

Given a binary channel (F2, P [·|·],Y)1 and an (n, k) BLC C, a complete2 channel

decoder for C is a map of the form

g : Yn → C.

Suppose that a codeword c ∈ C is transmitted through the channel and y ∈ Yn is

received at the channel output. It is the job of the channel decoder to determine,

as best possible, which codeword of C was transmitted given that y was received.

Generally, the optimal decoding rule, in terms of minimizing the probability of code-

word error (PCE), is the maximum a-posteriori probability (MAP) decoding rule.

Given a received word y, the rule is to select as the decoded vector some ŷ ∈ C which

maximizes

P [ŷ]P [y|ŷ],

where P [ŷ] represents the a-priori probability that ŷ was transmitted and P [y|ŷ]

represents the probability (or likelihood if Y is continuous) that y was received given

that ŷ was transmitted.

1We restrict ourselves to the consideration of binary codes and binary input channels to simplify
the presentation. Further, throughout this work the channel output alphabet Y will either be R (for
the AWGN channel) or F2 (for all other channels considered here).

2”Complete” here specifies that the decoder always outputs a codeword. We note that many
practical decoders are not complete, and, in particular, relaxed LP decoders are not complete since
they can output pseudocodewords.
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If every codeword is equiprobable (i.e., the source is uniform) then the MAP de-

coding rule reduces to the maximum likelihood (ML) decoding rule. Given a received

word y, the ML decoding rule is to select as the decoded vector some ŷ ∈ C which

maximizes

P [y|ŷ],

where, again, P [y|ŷ] represents the probability (or likelihood if Y is continuous) that

y was received given that ŷ was transmitted.

2.2.2 Binary Symmetric Channel

The binary symmetric channel (BSC) is one of the simplest and well-studied com-

munication channels. It is a binary additive noise channel in which the noise process

{Zi} consists of independent and identically distributed (i.i.d.) Bernoulli random

variables. The channel behaviour can be described by

Yi = Xi ⊕ Zi,

where ⊕ represents addition modulo-2 and the binary variables Xi, Yi and Zi are the

channel input, output and noise, respectively, at time i. As the noise process is i.i.d.,

the channel can be fully described by the single parameter P [Zi = 1]
.
= p. It is also

instructive to describe the channel visually, as in Figure 2.1.
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Figure 2.1: Visual representation of the binary symmetric channel (BSC).

2.2.3 Additive White Gaussian Noise Channel

Here we will provide a basic discussion of the additive white Gaussian noise (AWGN)

channel in the context of binary phase-shift keying (BPSK) modulation. Generally

speaking, modulation is the process of representing a digital message with an analog

signal. We can model BPSK modulation as a mapping of messages from F2 to mes-

sages in R. Specifically, the binary symbols 0 and 1 are mapped to the real numbers

−1 and 1, respectively. In the context of BPSK modulation, we can model the AWGN

channel as an additive noise channel over the real numbers. We let the real numbers

X, Y and Z represent the channel input, output and noise, respectively, and model

the channel’s behaviour by

Y = X + Z

where X is either −1 or 1, and Z is a Gaussian random variable with mean 0 and

variance σ2. The channel is often represented visually as in Figure 2.2.
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Figure 2.2: The additive white Gaussian noise (AWGN) channel.

The probability density function (pdf) for Z is given by

pZ(z) =
1

σ
√

2π
e

−z
2

2σ2 . (2.1)

We define the channel signal-to-noise ratio (SNR) as

SNR =
ǫs

σ2
,

where ǫs denotes the average signal power per channel bit. We note that σ2, the

variance of the noise Z, is in fact equal to the average noise power and that ǫs = 1,

as we are always transmitting either −1 or 1. Due to the shape of the Gaussian

distribution, optimal single bit (hard-decision) decoding, in terms of minimizing the

probability of decoding error for each bit, is performed by minimizing the Euclidean

distance between the received and decoded signal. This rule simplifies to decoding to

1 when the received signal is greater than or equal to 0, and decoding to −1 otherwise.

Letting X̂ represent the decoded signal, we can calculate the probability of bit error,
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pe:

pe = P [X = −1]P [X̂ = 1|X = −1] + P [X = 1]P [X̂ = −1|X = 1]

= P [X = 1]P [Z > 1] + P [X = −1]P [Z < −1]

= P [Z < −1],

where the last equality follows by symmetry of the normal pdf and the fact that

P [X = 1] + P [X = −1] = 1. The bit-error probability under hard-decision decoding

will be used later in order to compare performance over the BSC to performance over

the AWGN channel by equating the BSC’s cross-over probability to pe.

2.2.4 First-Order Markov Noise Channel

An additive noise channel with memory is a channel in which the noise variables {Zi}

are not independent of one another. The binary first-order Markov noise channel is

a binary (modulo-2) additive noise channel with memory, and is one of the simplest

examples of such a channel. In this channel, the binary-valued noise process {Zi}

forms a Markov chain, which is to say that

P [Zi+1|Zi, Zi−1, . . . , Z1] = P [Zi+1|Zi].

If the Markovian noise process is stationary, the channel can be fully described using

two parameters, α and β, which define the channel’s noise characteristics in the
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following way:

P [Zi+1 = 1|Zi = 0] = α and P [Zi+1 = 1|Zi = 1] = 1 − β.

It follows that

P [Zi+1 = 0|Zi = 0] = 1 − α and P [Zi+1 = 0|Zi = 1] = β.

Alternately, we can describe the channel as having two states, S0 and S1, correspond-

ing to the scenarios in which the channel noise at the previous time was 0 or 1,

respectively. In each state, the channel has a distinct noise distribution according

to the probabilities given above. This perspective is best described using the state

transition diagram shown in Figure 2.3. If the channel is in the state S0 at time i,

then at time i + 1 it will be in state S0 with probability 1 − α (i.e., Zi = 0) or state

S1 with probability α (i.e., Zi = 1). On the other hand, if the channel is in state S1

at time i, then at time i + 1 it will be in state S1 with probability 1−β (i.e., Zi = 1)

or state S0 with probability β (i.e., Zi = 0).

2.2.5 Non-ergodic Polya Channel

The Polya-contagion communication channel was introduced by Alajaji and Fuja in

[2, Sections II-V]. It is an infinite memory, non-ergodic binary additive channel in

which the noise is modelled by the Polya contagion urn scheme of [34]. It is shown in
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Figure 2.3: State transition diagram for the first-order Markov noise channel.

[2] that this channel belongs to the class of averaged channels with memory, admits

a closed-form expression for its ǫ-capacity (defined later), and has a straightforward

formulation for ML decoding. Thus, the infinite-memory Polya channel provides an

interesting tool for modelling non-ergodic fading channels since the class of averaged

channels with memory has recently been actively studied in the context of (non-

ergodic) wireless fading channels and their outage capacity (studied in [35, Section

VI]). It should be noted that the finite-memory version of the Polya channel and its

generalization based on a finite queue have been recently shown to accurately model

ergodic Rician fading channels, e.g., see [36].

We denote the channel input, output and noise at time i by Xi, Yi and Zi, respec-

tively. As a binary additive channel, its behaviour at time i is governed by

Yi = Xi ⊕ Zi.

The distinguishing feature of the channel is the process by which the noise variables

{Zi} are generated. These variables are statistically modelled by supposing that they
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are generated by a random process involving drawing balls from an urn. Before giving

a concise definition of the channel, we provide a general idea of this process.

A hypothetical urn contains some number of red and black balls. At each time

instance i, a ball is randomly drawn from the urn. If that ball is red, then the noise,

Zi, at that time is 1, and otherwise it is 0. After a ball is selected, it is returned

to the urn and an additional number of balls ∆ of the same colour are added, hence

changing the channel statistics at the next time instance. The noise process {Zi} is

generated by repeating this process indefinitely. The infinite memory results from the

cumulative nature of this process, i.e., balls added at any given iteration remain for

all successive iterations, hence influencing all subsequent ball selections.

We now introduce some notation to describe the process more precisely. We can

define the state of the urn at time i as a pair Si = (Ri, Bi), where Ri and Bi represent

the number of red and black balls, respectively, at time i. We represent the total

number of balls at time i by Ti = Ri + Bi. The process is considered to start at time

1 with an initial state S1 = (R1, B1). At any time instance i we have the following

noise distribution:

P [Zi = 1] =
Ri

Ti

, P [Zi = 0] =
Bi

Ti

.

Recalling that ∆ is the number of extra balls returned to the urn after each draw, we
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can define the channel state transition probabilities as follows:

P [Si+1 = (Ri + ∆, Bi) |Si = (Ri, Bi)] =
Ri

Ti

P [Si+1 = (Ri, Bi + ∆) |Si = (Ri, Bi)] =
Bi

Ti

.

We note that the sequence of channel states forms a Markov chain, as the channel

state distribution at time i + 1 depends only on the channel’s state at time i.

To discuss the channel further, we introduce the following channel parameters,

used in [2]. Firstly, δ = ∆
T1

, represents the ratio of extra balls added at each iteration

as compared to the number of balls initially in the urn. Intuitively, this parameter is

a measure of the degree of volatility of the channel. When δ is small, the channel’s

noise statistics will remain relatively stable, and vice versa. At the extreme end of

this, we note that in the case where δ = 0 (∆ = 0), the channel reduces to a BSC with

crossover probability R1

T1

, as the number and ratio of balls stays constant. We also

define ρ = R1

T1

and σ = 1−ρ, the initial proportion of red and black balls, respectively.

The expression for the block transition probability (the probability that the received

block y = (y1, . . . , yl) was received given that x = (x1, . . . , xl) was transmitted and

starting from the initial channel parameters) is given in [2]:

P [y|x] =
Γ(1

δ
)Γ(ρ

δ
+ d)Γ(σ

δ
+ l − d)

Γ(ρ

δ
)Γ(σ

δ
)Γ(1

δ
+ n)

where d is the Hamming distance between x and y, and Γ(·) is the gamma function

26



defined as Γ(x) =
∫ x

0
tx−1e−t dt.

In [2], a formulation for ML decoding over the infinite-memory non-ergodic Polya

channel was derived in which either the minimum or maximum Hamming distance

codeword is selected depending on the channel parameters and the distances of the

minimum and maximum distance codewords. More precisely, if y is the received

vector, we define

d0 =
n

2
+

1 − 2ρ

2δ

dmin = min
c∈C

d(y, c)

dmax = max
c∈C

d(y, c)

where d(y, c) represents the Hamming distance between vectors y and c. Now, if

|dmax − d0| ≤ |dmin − d0| , (2.2)

then ML decoding is equivalent to minimum distance decoding (MDD). Otherwise, if

|dmax − d0| > |dmin − d0| , (2.3)

ML decoding is equivalent to maximum distance decoding. This formulation will be

important later, when we develop an LP decoder for this channel. Further, we will

see that in certain cases this formulation can be simplified.
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The last point of discussion for the Polya channel is regarding its capacity. It is

shown in [2] that the information capacity of the infinite memory non-ergodic Polya

channel is 0. However, the channel has a non-zero ǫ-capacity. For a given ǫ > 0, the

ǫ-capacity, Cǫ, of a channel is defined as the maximum ǫ-achievable rate. That is, the

maximum rate, R, for which there exist, given sufficiently large block length, codes

having rate arbitrarily close to R and probability of codeword error at most ǫ [2]. 3

A formula for the ǫ-capacity of the Polya channel is given in [2]

Cǫ = 1 − F−1
V (1 − ǫ), (2.4)

where F−1
V (·) is the inverse of the cumulative distribution function of the random

variable V
.
= hb(U). U is defined as a beta-distributed (ρ

δ
, σ

δ
) random variable, and

hb(x)
.
= −x log2(x) − (1 − x) log2(1 − x) for x ∈ [0, 1].

The ǫ-capacity is a theoretical lower-bound of error performance for a given code

rate, and hence is a benchmark against which we can compare our simulation results.

Because Cǫ represents the maximum rate with which communication can occur at an

error level of ǫ, determining the ǫ for which Cǫ = R′ gives us the smallest possible

achievable error rate for a code of rate R′. More concisely, given a code rate, R′, and

channel parameters ρ and δ, we use (2.4) to determine the ǫ for which Cǫ = R′.

3The channel capacity is the limǫ→0 Cǫ.
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Chapter 3

Linear Programming Decoding

3.1 Linear Programming

3.1.1 Definition

Linear programming (LP)1 is a type of optimization problem which arises naturally

in a variety of contexts, especially economic planning [37]. It can be defined as an

optimization problem in which a linear cost function is minimized (or maximized)

with respect to some set of variables under the restriction that the values taken by

those variables satisfy a set of linear inequality constraints. More formally, we can

express an LP as follows

min{dT x|Ax ≤ b}
1LP is used throughout to stand for both “Linear Programming” and “Linear Program,” and

this will be clear from the context.
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where dT = (d1, d2, . . . , dn) and xT = (x1, x2, . . . , xn) are vectors in R
n, bT = (b1, b2, . . . , bn)

is a vector in R
m, and A is a real m×n matrix [38]. Here, x represents the set of vari-

ables over which the linear cost function, represented by d, is being minimized. The

matrix inequality Ax ≤ b represents the set of m linear constraints on the variables

(x1, x2, . . . , xn). For example, if n = 3, m = 2,

A =

[
1 2 3

4 5 6

]
and b =

[
7

8

]
,

then the matrix inequality Ax ≤ b corresponds to the inequalities

x1 + 2x2 + 3x3 ≤ 7 and 4x1 + 5x2 + 6x3 ≤ 8.

We also note that this definition allows for equality constraints, which can be obtained

by means of a pair of inequality constraints.

For our purposes, it is important that we introduce the concepts of polyhedra and

polytopes. A subset of R
n of the form {x|Ax ≤ b} is called a polyhedron. Thus, it is

equivalent to consider an LP to be the optimization of a linear cost function over a

polyhedron. Further, we can define a polytope as the convex hull of some finite set

of points in R
n:

P(S) =




∑

s∈S

λss : λs ≥ 0,
∑

s∈S

λs = 1



 ,

where S is a finite subset of R
n. Finally, a subset of R

n is a polytope if and only if
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it is a bounded polyhedron [38, Corollary 7.1c], meaning that any polytope is also

a polyhedron. Thus, the minimization of a linear objective function over a polytope

also constitutes an LP, and this is the form in which we will be expressing LPs.

3.1.2 Solving Linear Programs

In addition to the fact that LP arises naturally in a variety scenarios, one of its most

important features, which makes it a very applicable paradigm for optimization, is

that LPs are efficiently solvable. Here, we will briefly discuss the simplex algorithm

and the ellipsoid algorithm, two well-known algorithms for solving the general LP

problem.

The simplex method, due to Dantzig [39] in 1951, was the first algorithm designed

to solve LPs and to this day remains the most important practical algorithm for

solving LPs [38, p. 129]. The algorithm works under the principle that over any

polytope, a linear function admits its minimum (or maximum) at a vertex. So, it

follows that in order to find a global optimum of a linear function it suffices to explore

the set of vertices of the region of optimization. This is exactly what the simplex

algorithm does; it traverses the vertices of the polytope in a prescribed manner so

that it is guaranteed to converge on a globally optimum vertex [38, p. 129-130].

There exist various sets of rules used by the simplex algorithm in order to traverse

the polytope, and each of these corresponds to a unique version of the simplex method.

The simplex algorithm has proved through empirical evidence to be very fast [38, p.
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139]. However, despite its practical efficiency, for all known versions of the simplex

method, examples can be constructed in which the algorithm requires an exponential

amount of time to converge with respect to the size of the input. These examples,

although not representative of naturally occurring problems, leave a theoretical gap

in the sense that they provide an undesirable upper-bound (which can be reached)

on the complexity of solving LPs.

This issue was resolved by Khachiyan [40] in 1979 who showed that LPs can be

solved in polynomial time using an extension of the ellipsoid method, an algorithm

used to solve nonlinear programming problems [38, p. 163]. The importance of the

ellipsoid method for LPs is primarily a theoretical one, as it was the first algorithm

which proved that LPs are solvable in polynomial time. However, from a practical

standpoint, the simplex method is much more efficient, despite its weaker theoretical

complexity [38, p. 170].

3.2 Decoding as an LP

In this section, we review the recent work of Feldman [1, 9] in which the problem

of decoding linear error correcting codes transmitted over memoryless channels is

formulated as an LP. An LP has two primary components: a linear cost function and

a set of linear constraints defining a region of optimization (a polytope). So, in order

to formulate decoding as an LP we will next consider each of these components.
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3.2.1 Linear Cost Function

We herein assume that a binary source symbol s = (s1, s2, . . . , sk) is generated by a

memoryless uniform source and is encoded by a linear (n, k) code C. The encoder

output is transmitted over a DMC, and the binary n-vector y = (y1, y2, . . . , yn) is

received. In this scenario, the optimal decoding rule, in terms of minimizing the

probability of codeword error, is the maximum likelihood (ML) decoding rule. The

ML decoding rule is to select a codeword ŷ ∈ C which maximizes the probability

that ŷ was transmitted given that y was received. More precisely, ML decoding is

performed by selecting the decoded codeword to be in the set argmax c∈C P [y|c] or,

equivalently, the set

argmax
c∈C

n∏

i=1

P [yi|ci].

Next, we derive a linear cost function whose maximum is attained by the same set of

codewords that maximize the ML decoding metric. Here, and for the remainder of

this work, we let P [yi|ci], P [yi|1] and P [yi|0] represent the probabilities that yi was
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received given that that ci, 1 and 0, respectively, were transmitted at time i:

ŷ = argmax
c∈C

n∏

i=1

P [yi|ci]

= argmax
c∈C

log

(
n∏

i=1

P [yi|ci]

)

= argmax
c∈C

n∑

i=1

log (P [yi|ci])

= argmax
c∈C

∑

i:ci=1

log (P [yi|1]) ci +
∑

i:ci=0

log (P [yi|0])

= argmax
c∈C

n∑

i=1

log (P [yi|1]) ci +
∑

i:ci=0

log (P [yi|0])

−
n∑

i=1

log (P [yi|0]) ci +
∑

i:ci=1

log (P [yi|0])

= argmax
c∈C

n∑

i=1

log

(
P [yi|1]

P [yi|0]

)
ci +

n∑

i=1

log (P [yi|0])

= argmax
c∈C

n∑

i=1

log

(
P [yi|1]

P [yi|0]

)
ci

= argmax
c∈C

γ · c (3.1)

where γ = (γ1, . . . , γn) is defined as the log-likelihood ratio (LLR)

log

(
P [yi|1]

P [yi|0]

)
, (3.2)

as in [1]. So γ is a linear cost function whose optima among the set of codewords are

the same as those for the ML decoding metric.
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3.2.2 Region of Optimization

Since an LP achieves its optimum at a vertex, it follows that in order to formulate

the ML decoding problem as an LP we must define a polytope which contains the set

of codewords as its vertex set. The most natural way to arrive at such a polytope is

to consider the codeword polytope, P(C), that is, the convex hull of the code C over

R
n:

P(C) =





∑

c∈C

λcc : λc ≥ 0,
∑

c∈C

λc = 1




 .

Thus, solving the LP

max
x∈P(C)

γ · x (3.3)

where γ is as in (3.1), yields the solution of the ML decoding problem. This follows

because we are essentially maximizing over the set of vertices of P(C) which is exactly

equal to the discrete set C, and, as shown, the linear cost function γ shares its set of

optimizing vectors with the ML metric. So (3.3) constitutes an LP which solves the

ML decoding problem. However, it is known that the ML decoding problem for an

arbitrary code is NP-hard [41]. It follows that solving the LP (3.3) is also NP-hard.

We note here that although an arbitrary LP can be solved in polynomial time in

terms of the size of its input, this does not guarantee anything about the efficiency of

solving (3.3) (in terms of the code length n). That is, if the size of the input, namely,
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the size of the description of the polytope in (3.3), is exponentially large in terms of

n, then the time required to solve (3.3) is also exponential in terms of n.

3.2.3 Relaxing the Problem

In a situation where solving an LP is prohibitively complex, a common practice is to

“relax” the problem. The idea of a relaxation in this context is to find a polytope

that contains the code as a subset of its vertex set, but which has some property that

allows an LP defined over it to be solved more easily. In this case, that property

is a compact representation of the polytope in terms of linear constraints. Such a

polytope is called a relaxation of the codeword polytope P(C).

A certain relaxation of the codeword polytope has received much recent attention

[1], [23]. This is the polytope which, given a code C of length n, and a subset of the

dual code, H ⊂ C⊥, is defined as

Q(H) =
⋂

h∈H

P(h⊥), (3.4)

where P(h⊥) is the codeword polytope of the code h⊥ = {c ∈ {0, 1}n : h · c ≡ 0

(mod 2)}.

For any H = {h1, h2, . . . , hl} ⊂ C⊥, the polytope Q(H) contains C as a subset of

its vertex set, V(Q(H)). This follows by noting that C is a subset of h⊥
i for all i, and

so P(h⊥
i ) contains C as a subset of its vertex set for all i; thus, clearly by intersecting

all such polytopes, the resulting polytope will also contain C as a subset of its vertex
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set. Consequently, the LP

max
x∈Q(H)

γ · x (3.5)

constitutes a relaxation of the LP that represents ML decoding. This decoder will be

referred to throughout this work as the “standard LP decoder”.

Now, any standard LP-solving algorithm requires that the LP to be solved has

its constraints represented via linear inequalities, i.e., as a subset of R
n in the form

{x|Ax ≤ b}. The advantage of using the relaxation Q(H) is that there is a straight-

forward representation of the constraint x ∈ Q(H) as a set of linear inequalities. The

polytope Q(H) can also be expressed as [1, Theorem 4]

Q(H) =
⋂

h∈H

Π(supp(h)), (3.6)

where for h = (h1, . . . , hn), supp(h) = {i : hi = 1} and for S ⊂ {1, 2, . . . , n}, Π(S)

denotes the polyhedron

Π(S) =
⋂

J⊂S
|J |odd





(x1, . . . , xn) ∈ [0, 1]n :

∑
j∈J xj −

∑
i∈S\J xi ≤ |J | − 1





. (3.7)

Let J (Q(H)) = V(Q(H))∩{0, 1}n denote the set of integral vertices (i.e., vertices

whose coordinates are all integers) of Q(H). We discussed above that C ⊂ V(Q(H))

and since C consists of integral vectors we clearly have that C ⊂ J (Q(H)). If H
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is a spanning subset (over F2) of C⊥, so that the vectors in H form (the rows of)

a parity-check matrix of C, then we in fact have C = J (Q(H)). This is because if

x ∈ {0, 1}n is not in C, then x /∈ h⊥ for some h ∈ H , and hence, x /∈ P(h⊥) ⊃ Q(H).

The polytope Q(H) in this case is the “projected polytope” Q̄ of Feldman et. al.

[1, p. 958]. The fact that C = J (Q(H)) for such a polytope Q(H) implies that

the polytope has the following “ML certificate” property [1, Proposition 2]: if the

LP (3.5) attains its minimum at some x ∈ J (Q(H)), then x is guaranteed to be

the ML codeword. However, it is possible that the LP attains its minimum at some

non-integral vertex x ∈ V(Q(H)) − J (Q(H)), in which case either decoding failure

is declared or some heuristic is used.

3.2.4 Complexity

If we let T represent the set of linear constraints required to define the polytope

Q(H), then we have that T contains the following constraints: for each h ∈ H , we

have the following constraint for every odd subset, J , of supp(h),

∑

j∈J

xj −
∑

i∈supp(h)\J

xi ≤ |J | − 1.

In addition, T contains the following constraints, ensuring that the polytope is con-

tained within the unit cube:

(x1, x2 . . . , xn) ∈ [0, 1]n.
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So, for each h ∈ H we have a set of linear constraints whose cardinality is equal to

the number of odd subsets of B = supp(h). The number of odd subsets of a given

set B is equal to 2|B|−1. Also, it is easy to see that 2n constraints are required to

restrict the polytope to the unit cube. In particular, if we consider a rate R, (n, k)

LDPC code C and take H ⊂ C⊥ corresponding to the rows of a parity-check matrix

of C with constant row-degree d, then we can explicitly calculate the number of linear

constraints required to represent Q(H):

|T | =
n−k∑

i=1

(
2|supp(h

i
)|−1
)

+ 2n

=
n−k∑

i=1

(
2d−1

)
+ 2n

= (n − k)2d−1 + 2n

= n(2 + (1 − R)2d−1).

Assuming that the row-degree d is not dependent on n, as is the case in an LDPC code,

then what the above shows is that the number of constraints required to represent

Q(H) is linear in the length of the code n. Further, in the case that we do not

have a constant row-degree d, but the row-degree is bounded by some constant, the

above expression acts as an upper-bound on the number of constraints required to

represent Q(H). We note here that the size of the representation of Q(H) is not

only dependent on the code C, but the choice of H . In particular, if we are selecting

H to correspond to the rows of a parity-check matrix for C, then this number will
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depend on the row-degree distribution of the particular parity-check matrix selected.

Generally speaking, an LDPC code is designed from a parity-check matrix which has

desirable row-degree properties, and so this matrix is used to define Q(H).

As previously discussed, the efficiency of a particular LP solver depends on the

size of the LP representation, which is proportional to the number of variables and

linear inequalities forming the constraints. Following the discussion above, if we select

H to be a parity-check matrix of an LDPC code, then the size of the input is linear in

n. Thus, because an LP is guaranteed to be solvable in polynomial time with respect

to the size of the input, we know that the relaxed LP (3.5) as defined for an LDPC

code is guaranteed to be solvable in polynomial time with respect to the code-length.

It should also be noted that the number of constraints, and hence the complexity

of the LP, is exponentially dependent on the maximum row-degree of the parity-check

matrix used. Thus, if the maximum row-degree grows with the code-length n, then the

complexity of the LP is exponentially dependent on n. So the relaxation discussed

herein is efficient for LDPC codes, where the maximum row degree is small and

fixed as n increases. In [1], an alternate polytope is defined which can be efficiently

represented for arbitrary (dense) parity-check matrices. In addition, the problem of

dense parity-check matrices can be addressed by using the adaptive LP method [23],

which is discussed next.
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3.2.5 Adaptive LP Decoding

In [23], Taghavi and Siegel introduce an algorithmic variation on the relaxed LP

decoding scheme of [1] which serves to increase the efficiency of LP decoding. The

proposed algorithm is identical to solving (3.5) in terms of performance but has lower

complexity, especially when defining the relaxed polytope using a dense parity-check

matrix.

The general idea is to start with some minimal subset of the constraints from

(3.7), solve the corresponding LP, and then find some constraint(s) from (3.7) which

make(s) the solution invalid. Those constraints (called cuts) are then added to the

LP, and the LP is solved again. This process is repeated until the solution of the LP

violates none of the constraints from (3.7), at which point the solution is the same as

that which would be obtained by solving (3.5) [23, Claim 1].

The adaptive LP decoding algorithm can be described more precisely as follows.

First, we solve the LP:

min γ · x subject to: (3.8)

0 ≤ xi if γi > 0,

xi ≤ 1 if γi < 0,

and obtain some vector x̂ = (x̂1, . . . , x̂n). Next, the following algorithm is used to

find constraints which are violated by x̂. We assume that the coordinates (x̂1, . . . , x̂n)
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are sorted in decreasing order. For each h ∈ H we proceed according to Algorithm 1,

letting supp(h) = (s1, . . . , st), s1 ≤ s2 ≤ . . . ≤ st.

Algorithm 1 Find Cut for h

1: set j = 1 and J = {s1}
2: if

∑
j∈J x̂j −

∑
i∈supp(h)\J x̂i ≤ |J | − 1 is violated then

3: a cut has been found; exit.
4: else

5: set j = j + 2.
6: if j ≤ t then

7: set J = J ∪ {sj−1, sj}
8: if |J | − 1 <

∑
i∈J x̂i ≤ |J | then

9: goto 2:
10: else

11: there is no cut associated with h; exit.
12: end if

13: else

14: there is no cut associated with h; exit.
15: end if

16: end if

If any constraints are yielded by Algorithm 1, they are added to the LP (3.8), the

LP is solved again, and the process of searching for cuts is repeated. Otherwise, if

no new constraints are yielded, then as stated above [23, Claim 1], the solution is the

same as that of the standard relaxed LP (3.5). The reader is directed to [23] for an

explanation of why this algorithm finds all cuts.
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Chapter 4

LP Decoding for Non-Uniform

Sources

The original formulation of LP decoding by Feldman, described in Chapter 3, is

designed for use with uniform sources. Accordingly, the standard LP decoder (3.5)

does not take the a-priori source information into account when the source is non-

uniform. To address this issue, we modify the standard LP decoder to account for

this a-priori information in order to achieve enhanced performance in this context.
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4.1 LP Decoding for Non-Uniform Sources with

Systematic Codes

Here, a modified version of the LP decoding scheme is applied to the scenario of de-

coding for a memoryless non-uniform source transmitting over a memoryless BSC. In

scenarios with non-uniformity at the source, we would like to account for the a-priori

codeword probabilities. Thus, if we want to design an LP decoder for this situa-

tion, we must somehow include the a-priori codeword probabilities into a linear cost

function involving the codeword variables. The optimal decoder, in terms of mini-

mizing the probability of codeword error, in this context is the maximum a-posteriori

probability (MAP) decoding rule. For a systematic (n, k) code C transmitted over

a memoryless BSC, it is possible to derive a linear cost function of the ci variables

whose set of optimizing codewords is the same as that for the (optimal) MAP metric.

We assume a non-uniform binary source with the probability of 1 and 0 being p1 and

p0, respectively and that the binary n-vector y = (y1, y2, . . . , yn) is received. We will

also assume for the remainder of this chapter that the source statistics p1 and p0 are

known to the decoder. Lastly, here, and for the remaind er of this work, we let P [ci],

P [1] and P [0] be the probabilities that the source output is ci, 1 and 0, respectively,
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at any given time, i.e., P [1] = p1 and P [0] = p0:

argmax
c∈C

P [c|y] = argmax
c∈C

P [c]P [y|c]

= argmax
c∈C

k∏

i=1

P [ci]

n∏

i=1

P [yi|ci]

= argmax
c∈C

k∑

i=1

log (P [ci]) + γ · c

= argmax
c∈C

∑

i:ci=1
i≤k

log (P [1]) ci +
∑

i:ci=0

i≤k

log (P [0]) + γ · c

= argmax
c∈C

k∑

i=1

log (P [1]) ci +

k∑

i=1

log (P [0])

−
k∑

i=1

log (P [0]) ci + γ · c

= argmax γ · c +

k∑

i=1

log

(
p1

p0

)
ci + const

= argmax γ+ · c,

where the second equality follows because the code is systematic 1, and the n-vector

γ+ = (γ+
1 , . . . , γ+

n ) is defined as

γ+
i =





γi + log
(

p1

p0

)
for 1 ≤ i ≤ k

γi for k < i ≤ n.

where γi is given by 3.2). Thus, for a systematic code, we have a linear cost function

that can be used to formulate an LP decoder which makes use of the a-priori codeword

1We assume without loss of generality that the systematic bits occur in the first k bit positions
of the code.
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information. This linear cost function is optimal, in the sense that the MAP codeword

would maximize this function over the set C. We can thus use this linear cost function

to formulate an LP by maximizing it over the relaxed codeword polytope (3.4). If we

select H ⊂ C⊥ corresponding to the rows of a parity-check matrix for C, then we can

construct the relaxed codeword polytope Q(H) and formulate a sub-optimal MAP

decoder by selecting the decoded vector ŷ to be in the set

max
x∈Q(H)

γ+ · x. (4.1)

If ŷ is an integral vector, then it is known to be the MAP codeword. This follows

because the set of integral vertices of Q(H) is exactly equal to C, and so if ŷ is integral,

then ŷ ∈ C. Thus, if ŷ is an optimum among V(Q(H)) ⊇ C, we also have that ŷ is

an optimum among C. This gives us a “MAP Certificate Property” analogous to the

“ML Certificate Property” discussed in [1, Proposition 2] and Section 3.2.3. When

the LP optimum ŷ is a non-integral vector, we can either declare decoding failure, or

as a heuristic alternative, we can round ŷ and return the result. We will refer to the

decoder (4.1) as the systematic joint source-channel (JSC) decoder.
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4.2 LP Decoding for Non-Uniform Sources with

Non-Systematic Codes

The proposed technique works; however, it has been demonstrated (e.g., see [42],

[10], [11] and the references therein) that in scenarios with non-uniformity at the

source, non-systematic codes provide substantial performance gains when compared

to systematic codes. Because the above derivation of a linear MAP cost function relies

completely on the code being systematic, another approach must be considered.

One way to incorporate the a-priori codeword information into an LP decoder

without transmitting a systematic code is to encode using a systematic code of rate

lower than desired, and then puncture the systematic bits before transmission. More

precisely, suppose that we wish to use an LDPC code of rate R = k
n
, and blocklength

n. First, we select a systematic (n + k, k) LDPC code, C̃. Now, suppose we encode a

source symbol s using C̃, but, before transmission, we strip away the first k (system-

atic) bits. That is, we transmit only the last n bits of the encoded block. Given that

the n-vector y is received, the MAP decoding metric can be linearized in a similar
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fashion

max
c∈C̃

P [c]P [y|x] = max
c∈C̃

k∏

i=1

P [ci]

n+k∏

i=k+1

P [yi−k|ci]

= argmax
c∈C̃

k∑

i=1

log (P [ci]) + γ · c′

= argmax
c∈C̃

∑

i:ci=1

i≤k

log (P [1]) ci +
∑

i:ci=0

i≤k

log (P [0]) + γ · c′

= argmax
c∈C

k∑

i=1

log (P [1]) ci +

k∑

i=1

log (P [0])

−
k∑

i=1

log (P [0]) ci + γ · c′

= argmax γ · c′ +
k∑

i=1

log

(
p1

p0

)
ci + const

= max
c∈C̃

γ∗ · c,

where c′ = (ck+1, . . . , ck+n) and γ∗ = (γ∗
1 , . . . , γ

∗
n+k) is defined as

γ∗
i =






log
(

p1

p0

)
, for 1 ≤ i ≤ k

log
(

P [yi−k|xi=1]

P [yi−k|xi=0]

)
, for k < i ≤ n + k.

(4.2)

Now, if we select H̃ ⊂ C̃⊥ corresponding to the rows of a parity-check matrix of

C̃, we can construct the relaxed polytope Q(H̃), as in the previous section. Decoding

can then be performed by selecting ŷ to be in the set

argmax
x∈Q(H̃)

γ∗ · x. (4.3)

48



For the same reasons as with the decoder (4.1), the above decoder has the “MAP

certificate” property.

Here, the first k components of the new cost function (4.2) correspond only to the

source statistics (the systematic bits of C̃), and the last n components correspond

only to the received signal information, y, and the channel statistics. Essentially, the

“extended codeword polytope”, Q(H̃), allows the systematic bits to be linked to the

punctured codewords during decoding without having to transmit them. We will refer

to the decoder (4.3) as the non-systematic JSC decoder or the “extended polytope”

decoder.

4.3 The AWGN Channel

LP decoders can be designed for decoding BPSK modulated codes over the AWGN

channel, as described in [9]. In order to do this, we must re-design the cost function

in order to deal with continuous output. Here, we demonstrate this for the case of

a non-uniform source and a systematic code, though it can easily be extended to

the non-systematic decoder described previously. The optimal decoder (in terms of

minimizing the probability of codeword error) in this context is the MAP decoding

rule. For a BPSK modulated systematic (n, k) code C transmitted over the AWGN

channel, it is possible to derive a linear cost function of the ci variables whose set of

optimizing codewords is the same as that for the (optimal) MAP metric. We assume

a non-uniform source with the probability of 1 and 0 being p1 and p0, respectively
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and that the real n-vector y is received. Skipping steps where prior derivations can

fill in the gaps, we have

argmax
c∈C

P [c]P [y|c] = argmax
c∈C

k∏

i=1

P [ci)
n∏

i=1

P [yi|ci]

= argmax
c∈C

k∑

i=1

log

(
p1

p0

)
ci +

n∑

i=1

log

(
P [yi|1]

P [yi|0]

)
ci

= γo · c,

where γo = (γo
1 , . . . , γ

o
n) is defined as

γo
i =





log
(

P [yi|1]
P [yi|0]

)
+ log

(
p1

p0

)
for 1 ≤ i ≤ k

log
(

P [yi|1]
P [yi|0]

)
for k < i ≤ n.

The main difference here is that the values P [yi|1] and P [yi|0] represent densities from

the pdf of the Gaussian noise, where before they represented probabilities. Specifi-

cally, letting Z be the random variable corresponding to the noise, we have

P [yi|1] = pZ(yi − 1) and P [yi|0] = pZ [yi + 1],

where pZ(·) is the pdf of Z, given by (2.1).

Now, if we select H ⊂ C⊥ corresponding to the rows of a parity-check matrix of C,

we can construct the relaxed polytope Q(H), as in the previous sections. Decoding
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for the AWGN channel can then be performed by selecting ŷ to be in the set

argmax
x∈Q(H̃)

γo · x. (4.4)

4.4 Simulation Results

The systematic and non-systematic JSC decoders (4.1) and (4.3) were implemented

and compared with the standard LP decoder (3.5) in terms of the probability of

codeword error (PCE) for non-uniform sources with p1 = 0.9, 0.8 and 0.7 over the

BSC. For the systematic JSC decoder, a systematic (200, 100) (3, 6)-regular LDPC

code was used. For the non-systematic JSC decoder, a systematic (300, 100) (3, 9)-

regular LDPC code was used, and the first 100 (systematic) bits were punctured so

as to give an equivalent effective rate of 1
2
.

In Figure 4.1, with the highly non-uniform source where p1 = 0.9, substantial gains

are obtained by the systematic JSC decoder as compared to the standard LP decoder.

This is expected, as the standard LP decoder does not make use of the (high amount

of) a-priori codeword information. Further, when we use the extended polytope

(non-systematic) decoder with a punctured systematic code, we see additional gains

for the same effective rate of R = 1
2
.

In Figure 4.2, where p1 = 0.8, moderate gains are obtained by the systematic JSC

decoder when compared to the standard LP decoder. Smaller gains are expected here

as the standard LP decoder is missing out on a smaller amount of a-priori codeword
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information when p1 = 0.8, as opposed to when p1 = 0.9. Interestingly, when we

use the extended polytope decoder with the punctured systematic code of equivalent

rate, we in fact see worse performance when compared to the systematic decoder;

however, it still performs slightly better than the standard LP decoder. Here, what

we are observing is that the losses due to code puncturing [10] outweigh the gains

associated with using a non-systematic code. In the case where p1 = 0.9, the gains

associated with using a non-systematic code are greater, and hence in that scenario

the non-systematic decoder has better performance.

In Figure 4.3, where p1 = 0.7, we see very modest gains when comparing the

systematic JSC decoder with the standard LP decoder. Again, this result is to be

expected, as when p1 = 0.7 there are even smaller amounts of a-priori codeword

information to be exploited by the JSC decoder. Further, we again see that it is not

beneficial to use the extended polytope decoder, which in this case performs worse

than even the standard LP decoder. This is a consequence of the same trade-off

discussed above, but with even less gain associated with using a non-systematic code.

From these simulations, we can infer the existence of a value of p1, say p∗1, for which

the systematic and non-systematic decoders perform nearly equally well. Ignoring

complexity, we would have that for sources with p1 greater than p∗1, it is advantageous

to use the non-systematic decoder (4.3), and otherwise it is advantageous to use the

systematic decoder. Based on the results presented herein, p∗1 would lie somewhere

between 0.8 and 0.9. We also note that the value of p∗1 would likely vary depending
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on the range of values of the channel BER p considered, as the relative performance

of the systematic and non-systematic decoders appears to vary depending on p.

Figure 4.4 compares the performance of a (1000, 500) (3, 6)-regular LDPC code

to a (200, 100) (3, 6)-regular LDPC code under decoder (4.1) with p1 = 0.7. We note

that for high values of p the length-1000 code performs worse than the length-200

code; however, for lower values of p, which are of greater interest, the opposite is

true, demonstrating a substantial gain in performance associated with using larger

block-lengths.

Finally, we include Figure 4.5 which compares the JSC LP decoder for the AWGN

channel (4.4) to that for the BSC (4.1) using the same systematic (200, 100) (3, 6)-

regular LDPC code when p1 = 0.8. This plot demonstrates an approximately 2dB

gain when communicating over the AWGN channel with the corresponding decoder, as

compared to the BSC. The horizontal axis, p, represents the BSC crossover probability

and the equivalent hard-decision error rate perr for the AWGN channel (see Section

2.2.3).
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Figure 4.1: Standard LP Decoder vs. Modified LP Decoders for Non-Uniform Source
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58



Chapter 5

LP Decoding for Channels with

Memory

Feldman’s LP decoding formulation is designed for channels without memory. Here

we attempt to extend this formulation to apply to channels with memory. More

specifically, we explore the application of LP decoding techniques to two channels

with memory: the first-order Markov noise channel and the infinite memory non-

ergodic Polya channel. We succeed in developing a decoder only in the latter case;

however, we do attain some insight into the feasibility of an LP decoder in the former

case.

59



5.1 First-Order Markov Noise Channel

Since the decoding polytope is independent of the channel, when developing an LP

formulation of decoding over the first-order Markov noise channel we only need to

develop a new linear cost function. The most obvious approach is to attempt to

linearize the ML decoding metric for the Markov channel, as done in the previous

chapter for the case of non-uniform sources. Here we attempt to do just that, using

similar manipulations. We let P [yi|ci, ci−1, yi−1] be the probability that yi was received

at time i given that ci and ci−1 were transmitted at time i and i − 1, respectively,

and that yi−1 was received at time i − 1. Further, we allow any or all of ci, ci−1 and

yi−1 to be replaced by constants keeping the same meaning, e.g., P [yi|0, 1, 1] is the

probability that yi was received at time i given that 0 and 1 were transmitted at

times i and i − 1, respectively, and that 1 was received at time i − 1:

ŷ = argmax
c∈C

P [y|c]

= argmax
c∈C

P [y1|c1]
n∏

i=2

P [yi|ci, ci−1, yi−1]

= argmax
c∈C

log (P [y1|c1])︸ ︷︷ ︸
T1

+

n∑

i=2

log (P [yi|ci, ci−1, yi−1])

︸ ︷︷ ︸
T2

.

Now, we expand the terms T1 and T2, keeping in mind that these terms take only

binary values for the ci variables. First, we note that T1 can be expressed in the
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following way (one only needs to verify that this holds when c1 = 0 and when c1 = 1):

T1 = log (P [y1|1]) c1 − log (P [y1|0]) c1 + log (P [y1|0]))

= log

(
P [y1|1]

P [y1|0]

)
c1 + const(y1),

where const(y1) represents a constant dependent only on yi, i.e., not dependent on c.

Next, we examine T2:

T2 =
∑

i:ci=1
2≤i≤n

log (P [yi|1, ci−1, yi−1]) ci +
∑

i:ci=0
2≤i≤n

log (P [yi|0, ci−1, yi−1])

=
n∑

i=2

log (P [yi|1, ci−1, yi−1]) ci

︸ ︷︷ ︸
T3

−
∑

i:ci=1
2≤i≤n

log (P [yi|0, ci−1, yi−1]) ci

︸ ︷︷ ︸
T4

+
n∑

i=2

log (P [yi|0, ci−1, yi−1])

︸ ︷︷ ︸
T5

We now expand T3, T4, T5, the subterms of T2 labelled above, starting with T3:

T3 =
∑

i:ci−1=1
2≤i≤n

log (P [yi|1, 1, yi−1]) cici−1

+
∑

i:ci−1=0
2≤i≤n

log (P [yi|1, 0, yi−1]) ci
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=
n∑

i=2

log (P [yi|1, 1, yi−1]) cici−1

+

n∑

i=2

log (P [yi|1, 0, yi−1]) ci

−
n∑

i=2

log (P [yi|1, 0, yi−1]) cici−1

=

n∑

i=2

log

(
P [yi|1, 1, yi−1]

P [yi|1, 0, yi−1]

)
cici−1

+
n∑

i=2

log (P [yi|1, 0, yi−1]) ci,

Next, we consider T4:

T4 = −
∑

i:ci−1=1
2≤i≤n

log (P [yi|0, 1, yi−1]) cici−1

−
∑

i:ci−1=0
2≤i≤n

log (P [yi|0, 0, yi−1]) ci

= −
n∑

i=2

log (P [yi|0, 1, yi−1]) cici−1

−
n∑

i=2

log (P [yi|0, 0, yi−1]) ci

+
n∑

i=2

log (P [yi|0, 0, yi−1]) cici−1

=

n∑

i=2

log

(
P [yi|0, 0, yi−1]

P [yi|0, 1, yi−1]

)
cici−1

−
n∑

i=2

log (P [yi|0, 0, yi−1]) ci,
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and, lastly, T5:

T5 =
∑

i:ci−1=1
2≤i≤n

log (P [yi|0, 1, yi−1]) ci−1

+
∑

i:ci−1=0
2≤i≤n

log (P [yi|0, 0, yi−1])

=

n∑

i=2

log (P [yi|0, 1, yi−1]) ci−1

+
n∑

i=2

log (P [yi|0, 0, yi−1])

−
n∑

i=2

log (P [yi|0, 0, yi−1]) ci−1

=
n∑

i=2

log

(
P [yi|0, 1, yi−1]

P [yi|0, 0, yi−1]

)
ci−1 + const(y),

where, again, const(y) is a term dependent on y, but not on c. Finally, gathering the

terms T1, T3, T4, T5, and dropping the constant terms independent of c, as they

will have no effect on a maximization with respect to c, we arrive at an expression

for ŷ:

ŷ = argmax
c∈C

T1 + T3 + T4 + T5

= argmax
c∈C

log

(
P [y1|1]

P [y1|0]

)
c1 +

n∑

i=2

log

(
P [yi|1, 0, yi−1]

P [yi|0, 0, yi−1]

)
ci

+

n∑

i=2

log

(
P [yi|0, 1, yi−1]

P [yi|0, 0, yi−1]

)
ci−1

+
n∑

i=2

log

(
P [yi|0, 0, yi−1]P [yi|1, 1, yi−1]

P [yi|0, 1, yi−1]P [yi|1, 0, yi−1]

)
cici−1.
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The above expression for the ML cost function is non-linear in terms of the ci variables,

as a consequence of the last term, which contains quadratic components of the form

cici−1. So, in order to formulate the decoding problem as an LP, we would need

to find some linearization or linear approximation to the cost function. Another

alternative would be to use codes with no adjacent 1’s, which would zero-out the

last term, leaving a linear cost function. Attempts to linearize the cost function were

unanimously unsuccessful. In fact, in terms of error performance over the Markov

channel, the memoryless cost function (3.2) performed best (in terms of codeword

error probability) among all linear cost functions tested.

Since the cost function above is quadratic in form, the use of quadratic program-

ming was considered. A quadratic program (QP) with linear constraints can be

defined as follows

minimize
1

2
xtQx + gtx

constrained by Ax ≤ b (5.1)

where g, x, and b are (column) vectors in R
n, Q and A are n-by-n real matrices, and

Q is a symmetric n-by-n real matrix [43, Section 1.5]. If the matrix Q is positive

semi-definite, then the problem is convex, and there exist algorithms to solve the QP

efficiently (i.e., in polynomial time). On the other hand, if the matrix Q is indefinite,

then in general, the problem is NP-hard. We next examine the nature of the matrix

Q in this instance. It should be noted here that we have formulated the problem as a
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maximization; however, a QP in the standard form (5.1) is posed as a minimization.

This can be overcome by simply considering the problem of minimizing the negative

of the function derived above, and, as we will see shortly, this has no effect on the

analysis which follows.

Choosing an arbitrary pair of parameters, α and β, for the first order Markov

noise channel, it can easily be verified that the quadratic terms of (5.1) take on a

value of either positive or negative L, where

L = log

(
(1 − α)(1 − β)

βα

)
.

More precisely,

log

(
P [yi|0, 0, yi−1]P [yi|1, 1, yi−1]

P [yi|0, 1, yi−1]P [yi|1, 0, yi−1]

)
=






L for yi = yi−1

−L for yi 6= yi−1

.

From the above, it follows by a simple expansion that if a QP were implemented ac-

cording to the expression (5.1), then the symmetric matrix Q would have the following

form

Q = L




0 ±1 0 . . . 0

±1 0 ±1 0

0 ±1
. . .

. . . 0
...

. . . 0 ±1

0 0 . . . ±1 0




,
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where each off-diagonal pair of ±1’s are equal and fixed to either 1 or −1 depending

on the received vector y.

Now, it is not hard to show that the matrix Q is indefinite (i.e. it has at least one

negative and one positive eigenvalue). In order to do so, we first must define what is

meant by a principal minor of a matrix. A minor of a matrix A is the determinant

of a square matrix obtained from A by removing some number of rows and columns.

If the square matrix is obtained from A such that the rows and columns removed are

of corresponding indicies, then the determinant of that matrix is a principal minor of

A (e.g., rows 2 and 4 and columns 2 and 4 are removed from A) [44, pg. 2]. Now,

we can use the Sylvester criterion for positive semi-definiteness in order to show that

Q is indefinite. This criterion states that a matrix A is positive semi-definite if and

only if all principal minors of the matrix are non-negative [44, pg. 307]. Now, if we

consider the the upper-left 2 × 2 square submatrix of Q, call it B, then B has one of

the following two forms, as Q is symmetric:

B = L

[
0 1

1 0

]
or L

[
0 −1

−1 0

]
.

In both cases, the determinant of B is −L2, and hence Q has a negative principal

minor and is not positive semi-definite by the Sylvester criterion. The same argument

shows that Q is not negative semi-definite, since if that were the case, −Q would be

positive semi-definite, which cannot be the case as the possible upper-left 2×2 square
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submatrices of −Q are the same as for Q. Therefore Q is indefinite, and we do not

have any guarantee of an efficient algorithm to solve the QP of interest. This is not

a particularly optimistic result; however, this does not reveal anything about the

existence of any such efficient algorithm to solve this optimization. To be precise,

this states that the problem of optimizing the quadratic function we are interested in

belongs to a class of optimization problems that is NP-hard.

As a future direction, it would be worth investigating whether or not any stronger

statements could be made about the existence of an efficient algorithm to solve this

problem.

5.2 Polya Channel

As discussed in Section 2.2.5, the ML decoding rule for the infinite memory non-

ergodic Polya channel with bit error rate ρ and correlation parameter δ relies on both

minimum- and maximum-distance decoding. As shown in [9], assuming the binary

n-vector y is received, it is possible to formulate MDD using an LP:

ŷ = argmin
c∈C

γ′ · c , where

γ′
i =






−1 if yi = 1

1 if yi = 0
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Using this assignment of γ′, we have that

γ′ · c = d(c, y) − ω(y)

where ω(y) represents the Hamming weight of the vector y. Thus,

argmin
c∈C

γ′ · c = argmin
c∈C

d(c, y)

since the term ω(y) does not depend on c, and hence can be left out of the mini-

mization without consequence. Therefore, the LP formulation using γ′ as the cost

function and codeword polytope P(C) as the region of optimization is equivalent to

MDD. Similarly, we can attain a formulation for maximum-distance decoding using

γ′′ = −γ′ as the cost function.

Having linear cost functions corresponding to minimum and maximum distance

decoding, we can formulate a relaxed LP decoder corresponding to ML decoding

for the Polya channel. First, we select an (n, k) LDPC code, C, and H ⊂ C⊥

corresponding to the rows of a parity-check matrix of C, and construct its relaxed

codeword polytope, Q(H). Then, relaxed minimum- and maximum-distance decoding

can be expressed as LPs by selecting y
min

and y
max

to be in the sets

argmin
x∈Q(H)

γ′ · x and argmin
x∈Q(H)

γ′′ · x,
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respectively.

We solve the LP’s corresponding to minimum- and maximum-distance decoding

and get the minimum-distance solution, ŷ
min

, and the maximum-distance solution

ŷ
max

. These solutions are rounded in order to obtain the nearest codeword, and are

then used to compute dmin and dmax. The decoded word is then taken as ŷ
min

or

ŷ
max

according to the conditions (2.2) and (2.3). We will refer to this LP decoder as

the relaxed minimum/maximum-distance decoder (MMDD). It is important to note

that this is not ML decoding, as we do not know if ŷ
min

and ŷ
max

represent the true

minimum and maximum distance codewords, and hence whether the computed dmin

and dmax are correct.

This decoder has the following ML certificate property: if both the minimum and

maximum distance LPs yield integral solutions, then the final solution, whether ŷ
min

or ŷ
max

, is guaranteed to be the ML solution. We have this property because if both

ŷ
min

and ŷ
max

are integral, then, by previous arguments, we know that they represent

the true minimum and maximum distance codewords, and since the decoder in [2]

is the true ML decoder, we know that conditions (2.2) and (2.3) will yield the ML

codeword.

5.3 Simplified ML Decoding for the Polya Channel

Here we present a simplification of the ML decoding rule for certain codes transmitted

over the Polya channel.
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Lemma 1. For a linear code containing the all-ones codeword, if ρ ≤ 0.5 then ML

decoding over the Polya channel reduces to minimum Hamming distance decoding.

Otherwise, if ρ > 0.5, ML decoding reduces to maximum Hamming distance decoding.

Proof. Suppose that we have a binary linear (n, k) code, C, containing the all-ones

word, 1n. Then we have that

1. For a received word y ∈ {0, 1}n, and c ∈ C s.t d(y, c) = t, there exists c′ ∈ C

s.t. d(y, c′) = n − t, since we can just take c′ to be c ⊕ 1n, which is in the code

by closure.

2. The above implies that for y ∈ {0, 1}n, dmin(y) = n − dmax(y), where

dmin(y)
.
= min

c∈C
d(c, y) and dmax(y)

.
= max

c∈C
d(c, y).

To see this, consider cmin achieving dmin(y). From above, we have that dmax(y)

is at least n − dmin(y), as d(1n ⊕ cmin,y) = n − dmin(y). Conversely, by similar

argument, dmin(y) is at least as small as n− dmax(y). So dmax(y) ≥ n− dmin(y)

and dmin(y) ≤ n − dmax(y) ⇒ dmax(y) ≤ n − dmin(y), and so dmin(y) = n −

dmax(y).

Note that since dmin(y) = n − dmax(y), we have that dmin(y) ≤ n
2
, since dmin(y) ≤

dmax(y). Now, suppose that ρ < 0.5. It follows that

d0 =
n

2
+

1 − 2ρ

2δ
>

n

2
;
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in other words,

d0 =
n

2
+ ǫ, ǫ > 0.

Now, we consider condition (2.2),

∣∣dmax(y) − d0

∣∣ =
∣∣∣n − dmin(y) − n

2
− ǫ
∣∣∣

=
∣∣∣(

n

2
− dmin(y)) − ǫ

∣∣∣ .

We also have that

∣∣dmin(y) − d0

∣∣ =
∣∣∣−(

n

2
− dmin(y)) − ǫ

∣∣∣ ;

but n
2
− dmin(y) ≥ 0 as dmin(y) ≤ n

2
. Thus, it follows that condition (2.2) is satisfied,

and hence MDD is optimal.

So, if a binary linear code has the all-ones word, and if ρ < 0.5, ML decoding is

equivalent to MDD. By a symmetric argument, we can show that if ρ > 0.5, then ML

decoding is equivalent to maximum distance decoding.

The above lemma allows us to formulate ML decoding in a more straightforward

manner as long as we are dealing with a linear code containing the all-ones codeword.

Fortunately, this class of codes is of interest, including the class of regular LDPC

codes with even row-degree.
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Therefore, we can implement relaxed ML decoding for the non-ergodic Polya chan-

nel with a single LP when using a code with the all-ones codeword and ρ < 0.5. First,

we select an (n, k) LDPC code C containing the all-ones codeword and H ⊂ C⊥

corresponding to the rows of a parity-check matrix of C, and construct its relaxed

codeword polytope, Q(H). Then, relaxed ML decoding for the Polya channel can be

implemented as relaxed MDD by selecting the decoded vector ŷ

argmin
x∈Q(H)

γ′ · x. (5.2)

In this simplified scenario, we have a straight-forward ML certificate property, that

is, if the LP yields an integral solution, then it is guaranteed to be the ML codeword.

5.4 Simulation Results

Since there are no known simulation results for decoding over the infinite-memory

Polya channel, it is natural for us to compare simulation results to the theoretical

performance limit, which is the channel ǫ-capacity (2.4) defined in Section 2.2.5. We

note that since the infinite-memory Polya channel is a (non-ergodic) averaged channel

with BSC components governed by the Beta distribution, its channel capacity is zero;

however, its ǫ-capacity is strictly positive for ǫ > 0 and strictly decreasing to zero as

ǫ ց 0 [2].

A closed-form expression for the ǫ-capacity, Cǫ, of the infinite-memory Polya chan-
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nel is given in [2, Equation (8)] as a function of ǫ, ρ and δ, as has been discussed in

Section 2.2.5. For the purpose of comparison, given ρ, δ and rate R′, we can determine

the ǫ for which R′ is the maximum achievable rate (i.e., the ǫ-capacity) by solving

Cǫ = R′ over ǫ. This value of ǫ is thus a theoretical lower bound on the PCE of a

rate-R′ code over the infinite-memory Polya channel with parameters ρ and δ.

One issue that needs to be considered is how one should simulate communications

over a non-ergodic channel. Simulating over a single instance1 of the channel is cer-

tainly not correct, as this would demonstrate only one of many possible behaviours

of the channel. Instead, results were obtained by repeatedly initializing the channel

(setting the urn to the initial conditions) and transmitting a fixed number of code-

words in each instance. This allowed for the overall (Beta) distribution of possible

channel outcomes to be explored. For example, for the MMDD curve in Figure 5.3,

100 blocks (with each block consisting of 200 bits) were transmitted for each instance

of the channel, and this was repeated between 8000 and 90000 times, depending on

ρ.

In Figures 5.1, 5.2 and 5.3, simulation results are shown for relaxed MDD and

relaxed MMDD using LDPC codes with and without the all-ones codeword, respec-

tively. For the MDD decoder in these figures, a (200, 100) (3, 6)-regular LDPC code

was used. This code clearly contains the all-ones codeword, as the row-degree of every

row is even (it is equal to 6). For the MMDD decoder in these figures, an irregular

1“Single instance” here means a single realization of the infinite-memory non-ergodic Polya noise
process.
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(200, 100) LDPC code with a constant column-degree of 3 was used. This code was

verified not to contain the all-ones codeword. Simulations were performed over a

range of values of the channel BER ρ. In each figure, we include the appropriate

curve for the channel ǫ-capacity, as discussed above. We also include in each figure

the regular LDPC code’s performance over the BSC (i.e., when δ = 0), corresponding

to the situation where an ideal (infinite-depth) interleaver is applied to the channel.

In studying Figures 5.1, 5.2 and 5.3, the following trends can be observed. Firstly,

for all codes and decoders, we see an absolute improvement in error performance

with increasing δ. Secondly, as δ increases, we see a relative improvement in error

performance of the relaxed MMDD with the irregular LDPC code as compared to

the relaxed MDD with the regular LDPC code. Tables 5.1 and 5.2 summarize the

performance of the relaxed MDD and MMDD decoders relative to the ǫ-capacity in

terms of the percentage difference of ρ at which a certain fixed PCE is obtained.

Results are computed using a PCE of 10−2 and 10−3 (if data is available at this error

level).

Table 5.1: Relaxed MDD performance for Polya channel

δ 10−2

2 33%
4 51%
10 74%

In Figure 5.4, we demonstrate that the gains associated with the relaxed MMDD

decoder are not simply a result of the irregular code. Instead, this figure shows that
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Table 5.2: Relaxed MMDD performance for Polya channel

δ 10−2 10−3

2 20% NA
4 35% 33%
10 16% 13%

the gains are a result of the combination of using the more complex decoding rule in

conjunction with an irregular code that can exploit it, since it does not contain the

all-ones codeword. This is demonstrated by comparing results of the irregular LDPC

code being decoded using relaxed MDD and relaxed MMDD. We also include the

appropriate ǫ-capacity curve and the performance of the regular LDPC code under

relaxed MDD for reference. In this figure, δ = 10 is used as it demonstrates the most

extreme difference between the MDD and MMDD decoders. Another interesting

point to note is that the regular LDPC code and the irregular LDPC code appear to

perform nearly identically under MDD.
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Figure 5.1: δ = 10: (200, 100) (3, 6)-regular LDPC code under relaxed MDD decoding
and irregular (200, 100) LDPC code under relaxed MMDD. Curves representing the
ǫ-capacity and the case of ideal interleaving (BSC) are also included for comparison.
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Figure 5.2: δ = 4: (200, 100) (3, 6)-regular LDPC code under relaxed MDD decoding
and irregular (200, 100) LDPC code under relaxed MMDD. Curves representing the
ǫ-capacity and the case of ideal interleaving (BSC) are also included for comparison.
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Figure 5.3: δ = 2: (200, 100) (3, 6)-regular LDPC code under relaxed MDD decoding
and irregular (200, 100) LDPC code under relaxed MMDD. Curves representing the
ǫ-capacity and the case of ideal interleaving (BSC) are also included for comparison.
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Figure 5.4: δ = 10: (200, 100) (3, 6)-regular LDPC code and irregular (200, 100)
LDPC code under relaxed MDD and irregular (200, 100) LDPC code under relaxed
MMDD. Curve representing ǫ-capacity is also included.
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Chapter 6

Conclusions and Future Work

We have developed two LP decoders for the scenario of non-uniformity at the source.

One decoder uses systematic codes, and the other uses punctured systematic codes

and an extended polytope decoder. The former performs better for low values of the

source skew parameter p1 and the latter for high values of p1 (>∼ 0.9). These decoders

were developed primarily by modifying the linear cost function to incorporate the a-

priori codeword probabilities. Performance gains were observed for both decoders as

compared to the standard LP decoder. The gains observed increase with increasing

skew at the source, that is, with increasing p1, p1 > 0.5.

An interesting direction for future work in this area would be the development of an

LP decoder for non-systematic LDPC codes which does not rely on puncturing and an

extended polytope. Because puncturing is detrimental to performance, the proposed

extended polytope decoder only proves useful for the highest values of p1, since at
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this level of skew, the advantage of transmitting a non-systematic code is significant

enough to overcome the losses due to puncturing. Additionally, the extended polytope

increases the decoding complexity. Thus, finding an alternate approach to using LP

decoding with non-systematic codes is well-motivated. It should be pointed out that

this was attempted unsuccessfully, as it is not clear how to incorporate the a-priori

codeword information as a linear function of the codeword bits when the code is

non-systematic.

LP decoding for the additive Markov noise channel was considered; however, a

seemingly inherent non-linearity in the ML cost function was discovered. This non-

linearity acted as a major barrier to the application of LP decoding for the Markov

channel. Quadratic programming was also considered, again without success. The

quadratic cost function derived herein could potentially serve as a starting point for

further investigation into an optimization approach of decoding for the Markov noise

channel.

Finally, LP decoding was considered for the infinite-memory non-ergodic Polya

contagion channel. Because the ML decoding rule for the Polya channel is based on

minimum- and maximum-distance decoding, it was possible to represent a relaxed

version of this rule into an LP-based decoder. Further, it was shown in this work that

when using a code with the all-ones codeword, and when the channel bit error rate

satisfies ρ < 0.5, ML decoding for the Polya channel reduces to MDD, and hence can

be implemented as a single LP. Simulation results for the Polya channel demonstrate
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relatively good performance with respect to the channel ǫ-capacity, especially when

using relaxed MMDD with irregular codes.

As mentioned in Section 2.2.5, the infinite-memory Polya channel provides an

interesting tool for modeling non-ergodic fading channels. As such, the Lemma re-

garding the equivalence of MDD to ML decoding for the Polya channel is of interest

beyond the scope of LP decoding. It was shown (see Appendix B) that message-

passing decoders can be applied to the Polya channel for LDPC codes with the all-

ones codeword. These decoders perform as well as the relaxed minimum distance

LP decoder presented in this work for codes with the all-ones codeword. Thus, the

use of the Polya channel as a model is further motivated by the existence of efficient

iterative decoders which perform well on codes with the all-ones codeword. Further

investigation into the application of iterative decoders to the channel is warranted.
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Appendix A

Implementation Details

Simulations were completed by integrating three software packages: Matlab, Radford

Neal’s Software for Low Density Parity Check Codes [33], and the open source (Mixed-

Integer) Linear Programming system “lp solve” [45]. The following applies to all

simulation results presented in the previous chapters.

Matlab was the primary development environment and was selected primarily

for its relative ease when programming with mathematics. Although generally much

slower than compiled code from a lower-level language such as C, the tasks performed

within the Matlab scripts account for a very small percentage (< 1%) of the actual

computation time when running the simulations. Hence, using Matlab leaves little

lost in terms of performance, and yields substantial gains in terms of ease of devel-

opment. Specifically, the Matlab scripts are responsible for generating source and

noise blocks according to the source and noise distributions, respectively, encoding
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the source blocks, determining the error rate as well as serving as the main platform

for execution. The primary task in terms of computational complexity associated with

the simulations is solving the decoding LP. Consequently, it is necessary to make this

component as efficient as possible.

It is possible to interface Matlab with “lp solve” using a pair of dynamic linking

libraries (DLLs). The main DLL, “lpsolve55.dll”, contains the core functionality of

the “lp solve” software package. The driver “mxlpsolve.dll” serves as an interface

between Matlab and “lpsolve55.dll.” Since DLLs by nature represent compiled code,

porting the LP tasks to them results in substantially more efficient (on the order of

100 times faster) LP solving when compared to using a built-in Matlab solver (Matlab

scripts are not compiled, but interpreted on the fly).

In order to generate LDPC codes, the software of Neal was used [33]. Since

a Windows system was used, the Linux emulator “Cygwin” was employed as an

environment in which to compile and execute the LDPC code software. The software

provides the ability to create LDPC codes flexibly according to the desired length,

rate and row and column degree properties. For example, the following command

creates a parity-check matrix corresponding to a pseudo-random, (200, 100) (3, 6)-

regular LDPC code:

make-ldpc [output file] 100 200 [random seed] evenboth 3

Here, [random seed] is used to initialize the pseudo-random number generator, ’100’

indicates the dimension of the dual code, ’200’ indicates the code-length, “evenboth”
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indicates that the code (if possible) should have a constant row- and column-degrees,

and ’3’ indicates the desired column-degree. Note that the row-degree is a function of

the column-degree and the rate of the code, and hence only the column-degree needs

to be specified. The next example demonstrates how to generate a pseudo-random

(200, 100) irregular LDPC code

make-ldpc [output file] 100 200 [random seed] evencol 3

Differing in this command is only “evencol 3”, which indicates that the code should

have a constant column degree of ’3’1. With this command, the row degree is allowed

to vary from row-to-row, and hence an irregular code is produced.

Finally, the Adaptive LP method, discussed in Chapter 3, was implemented to help

increase the speed of LP solving. Algorithm 1 was implemented in C and compiled as

a mex-file (a type of compiled code which is easily interfaced with Matlab) allowing

it to be integrated with the existing code.

Figures 1 shows baseline simulations which were performed in order to test the

correctness of the implementation. The simulation parameters were set up to cor-

respond with Fig. 7 from [1]. The simulations using the implementation described

herein correspond very well with the results in [1], thus verifying the implementation’s

correctness.

1A few columns may be assigned extra 1’s so as to avoid rows with degree less than 2.
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Figure 1: Word error rate of a Rate-1
2

(3, 6) LDPC code of length 200 over a range
of BSC crossover probabilities, corresponding to [1, Fig. 7].
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Appendix B

Iterative Decoders for the Polya

Channel

Figure 2 demonstrates the performance of an iterative message-passing decoder ap-

plied to the non-ergodic Polya channel using a code with the all-ones codeword. The

performance is compared to the performance of the relaxed MDD introduced earlier.

We note almost identical performance in comparing these two decoders.

The message-passing decoder was implemented using Matlab’s “ldpcdec” object.

This decoder uses a variety of the message-passing algorithm and requires as input

a vector corresponding to the log-likelihood ratios (LLRs) l = (l1, . . . , ln). Given a

binary received vector y = (y1, . . . , yn), li is defined as

li = log

(
P [0|yi]

P [1|yi]

)
. (1)
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For the purpose of the simulation, the probabilities above were calculated assuming a

BSC with parameter p corresponding to the BER of the non-ergodic Polya channel,

ρ. It turns out that the use of the parameter ρ in computing the LLRs is important

in obtaining good performance over the Polya channel, as other parameters resulted

in inferior error performance.
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Figure 2: Word error rate of a Rate-1
2

(3, 6) LDPC code of length 200 over the non-
ergodic Polya channel with δ = 2 using both a message-passing decoder and relaxed
MDD over a range of values of the Polya channel BER ρ.
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