
Source-Channel Coding Techniques

in the Presence of Interference and Noise

by

Ahmad Abou Saleh

A thesis submitted to the

Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

September 2015

Copyright c© Ahmad Abou Saleh, 2015



Abstract

As wireless systems proliferate worldwide, interference is becoming one of the main

problems for system designers. Interference, which occurs when multiple transmis-

sions take place over a common communication medium, limits system performance.

Wireless devices can coordinate the use of scarce radio resources in order to manage

the interference and establish successful communication. To effectively deal with the

interference problem, some wireless devices must have a certain level of knowledge

about the interference. In practice, this knowledge comes at the expense of using

more resources (such as employing a proper channel training mechanism). With the

remaining available resources, the question is how to achieve reliable communication?

This thesis investigates an information theoretic approach and employs several cod-

ing techniques to improve system performance by either cancelling the interference

or extracting knowledge from it about the information signal.

The first part of this thesis considers the transmission of information signals over

a fading channel that is disturbed with additional interference. The system’s infor-

mation theoretic limit in terms of mean square error distortion is assessed. Moreover,

hybrid coding schemes are proposed and analyzed to obtain an achievable perfor-

mance. As an extension to this problem, source channel-state estimation is inves-

tigated; in this case, the receiver is interested in estimating the information signal
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and the channel-state (interference). It is shown that the achievable performance is

close to the derived limit. Motivated by multi-terminal systems, the transmission of

a pair of sources over the two-user Gaussian broadcast channel in the presence of

interference is then studied. Inner and outer bounds on the system’s mean square

error distortion are obtained.

Unlike the first part of the thesis, in the second part, two additional constraints

are added to the picture: 1) low coding delay and 2) low complexity. Similar com-

munication scenarios as the ones in the first part are investigated under low delay

and complexity requirements. These two constraints are motivated by the increased

popularity of wireless sensor networks; a sensor node, often conceived as having lim-

ited lifetime and processing power, communicates its sensed field information to a

fusion centre over a noisy wireless channel. To meet these challenges, we propose to

use analog source-channel mappings. Parametric and nonparametric mappings are

investigated in this last part of the thesis; it is noted that parametric mappings based

on spiral and sawtooth curves are able to outperform linear scheme. Moreover, non-

parametric mappings based on joint optimization of the encoder and the decoder are

shown to outperform other low delay schemes.
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1

Chapter 1

Introduction

Telecommunication is an increasingly important part of modern societies. Not only

it enables the transportation of information in a short time without being hindered

by distance, but it also orients ourselves to almost every point in our globe. One of

the ultimate goals in modern communication systems is to provide reliable, robust

and efficient transmission of information bearing signals, such as text, images, video,

speech, over a noisy medium. Such signals have a high information rate, while the

medium has a limited capacity. Various theories and systems have been developed

to achieve the ultimate goal of communication and to accommodate the increasing

demand for high data rates and more link reliability.

Source coding (source compression) and channel coding (efficient use of the chan-

nel) were subjected to extensive research over the last decades. Traditionally, source

and channel coding have been designed separately, resulting in what is called a tandem

system. Despite great achieved progress for point-to-point communication systems,

particularly vis-a-vis separate source and channel coding, it is not always possible

to achieve the desired quality of the received signal for certain channels and for low

coding delay and complexity constraints; moreover, using a tandem scheme is not
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optimal for multi-terminal systems (e.g., broadcast channels). The combination of

source and channel coding may achieve better performance under limited resources

and for multi-terminal systems. Thus, joint source-channel coding (JSCC) is a topic

that has been receiving increasing attention. Over the years, many researchers have

developed JSCC techniques that show benefits in terms of performance improvement

and robustness to variations in channel over separate coding for a given channel con-

dition and fixed complexity and delay constraints.

In this thesis, we investigate two different joint source-channel coding methods

for the reliable and efficient transmission of analog-valued sources over noisy channels

in the presence of interference. The first one uses a high delay hybrid digital-analog

coding technique, and the second one is based on low delay analog coding, referred

to as Shannon-Kotel’nikov mapping.

1.1 Source and Channel Coding

1.1.1 Tandem Coding System

In a typical communication system, signals are often modelled by a discrete-time

continuous-amplitude (analog) random sequences. Due to restrictions on bandwidth

and storage, a source encoder is usually employed on the source sequence to compress

it and remove its redundancy. This operation, which is referred to as source coding,

leads to a loss of information. This inevitable loss of information from source coding

may introduce a greater level of sensitivity to channel noise. Therefore, a channel en-

coder may be required to add some controlled redundancy at the output of the source

encoder to enable detecting and correcting errors at the receiver side. This operation

is often called channel coding. The channel encoder output is then modulated and
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transmitted over the waveform channel. To get an estimate of the source sequence,

channel and source decoders are applied on the noisy received channel output. This

communication system, that consists of separately designed source and channel coders

as shown in Fig. 1.1, is often called a tandem coding system.

Information

Source

Source

Encoder

Channel

Encoder

Detected

Source

Source

Decoder

Channel

Decoder

P
h
y
sical

C
h
an

n
el

Figure 1.1: Block diagram of the tandem source-channel coding system.

According to Shannon’s source coding theorem, the rate distortion function R(D)

is the minimum rate that is sufficient and needed to represent the source samples

with an average distortion not exceeding D. According to Shannon’s channel coding

theorem, the capacity-cost function C(P ) is the maximum rate at which information

can be reliably transmitted given an average power constraint P on the channel

input. As a result, it is impossible to communicate at a rate above channel capacity.

Combining Shannon’s source and channel coding theorems, it is possible to obtain

a source sequence reconstruction with fidelity D if R(D) ≤ C. For point-to-point

communication, a source signal can be transmitted (optimally) with fidelity D via

a tandem coding scheme if R(D) ≤ C. This result is known as the source-channel

separation theorem [13, 58].
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1.1.2 Joint Source-Channel Coding

Many available practical communication systems are based on Shannon’s source-

channel separation principle. There are, however, a few problems with tandem sys-

tems that have motivated researchers to investigate joint source-channel coding. In

addition to the fact that tandem schemes are not optimal for multi-terminal systems,

one main problem that is worth mentioning about the source-channel separation the-

orem is that the coders must have unlimited delay and complexity in order to achieve

optimality. This means that, in practice, for fixed delay and complexity constrained

applications, the tandem system may not be optimal. Another problem is that source

and channel codes are designed separately. More precisely, source codes are designed

assuming that the channel codes can correct all errors introduced by the channel

noise; and channel codes are designed to protect all source codes equally assuming

information is uniformly distributed in these codes. These assumptions are not true

and unequal error protection with source codes can indeed result in better perfor-

mance. Another important drawback is that the separate source-channel system is

highly non-robust to mismatch in noise level between the transmitter and the receiver.

More specifically, if the true channel noise is higher than the design channel noise, the

performance degrades drastically. This is often called the threshold effect [59] and is

due to the quantizer’s sensitivity to the channel errors and the eventual breakdown

of the error correcting code at high noise levels. Furthermore, if the actual channel

noise falls below the design one, the performance remains constant beyond a certain

threshold. This is often referred to as the leveling-off effect [59] and is due to the

non-recoverable distortion introduced by the quantizer.

Examples of joint source-channel coding techniques include: (a) unequal error
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protection where the idea is to use several channel codes to protect source information

according to its level of importance [36, 51]; (b) optimal quantizer design for noisy

channels such as channel-optimized vector quantization (COVQ) [19,43,44]; (c) direct

source-channel mapping [11,55,59,66].

Although most digital JSCC techniques perform fairly well in terms of reconstruc-

tion quality, coding delay and complexity over tandem systems when the channel

condition falls below the design parameter, they usually fail to improve their per-

formance as the channel condition enhances (levelling-off effect). Moreover, digital

JSCC schemes may not be optimal over multi-terminal systems. This leads us to

investigate the advantage of (1) hybrid digital-analog coding systems which combines

digital and analog schemes and (2) purely analog systems (i.e., Shannon-Kotel’nikov

mappings) that are based on a direct source-channel mapping approach, to achieve

a graceful performance over a wide range of channel conditions and obtain a better

performance over multi-terminal communication scenarios.

1.2 Thesis Overview

Chapter 2 describes the general point-to-point communication system. The theo-

retical limit of such system is then presented. Various joint source-channel coding

techniques for point-to-point systems including optimal linear systems, power con-

straint channel-optimized vector quantization, Shannon-Kotel’nikov mappings, and

hybrid digital-analog systems are reviewed. Furthermore, a detailed description of

K : 1 Shannon-Kotel’nikov mappings and 2 : 1 bandwidth reduction systems based

on the double Archimedes’ spiral function are presented. Several coding schemes

for Gaussian channels with side information at the transmitter and the receiver are
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described. For multi-terminal systems, a brief description of the broadcast channel

and superposition coding are included; this coding technique is able to achieve the

capacity of the degraded broadcast channel.

Chapter 3 considers the problem of sending a Gaussian source over a fading chan-

nel with Gaussian interference known non-causally to the transmitter. Joint source-

channel coding schemes for the case of unequal bandwidth between the source and

the channel and when the source and the interference are correlated are studied. An

outer (lower) bound on the system’s distortion is first derived by assuming additional

information at the decoder side. A layered coding scheme is then proposed based on

proper combination of power splitting, bandwidth splitting, Wyner-Ziv and hybrid

coding. More precisely, a hybrid layer, that uses the source and the interference, is

concatenated (superimposed) with a purely digital layer to achieve bandwidth expan-

sion (reduction). The achievable (square error) distortion regions of these schemes

(upper or inner bounds) under matched and mismatched noise levels are then ana-

lyzed. The proposed schemes are shown to perform close to the best derived bound

and to be resilient to channel noise mismatch. As an application of the proposed

schemes, both inner and outer bounds on the source-channel-state distortion region

are derived for the fading channel with correlated interference; the receiver, in this

case, aims to jointly estimate both the source signal as well as the channel-state

(interference).

Chapter 4 studies the transmission of bivariate Gaussian sources over the two-user

Gaussian degraded broadcast channel in the presence of interference that is correlated

to the source and known non-causally at the transmitter. Each user is interested in

estimating one of the sources. Hybrid digital-analog schemes are studied and their
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achievable (square-error) distortion regions under matched and expansion bandwidth

regimes are analyzed. These schemes, which use the idea of superposition coding for

broadcast channels, require proper combinations of power splitting, bandwidth split-

ting, rate splitting, Wyner-Ziv and Costa coding. An outer bound on the distortion

region is also derived by assuming knowledge of one of the sources at the stronger user

and full/partial knowledge of the interference at both users. The proposed schemes

are shown to outperform other reference schemes and behave close to the derived

outer bound for certain system settings.

The fifth chapter examines low delay analog source-channel coding schemes for

different noisy channels in the presence of interference. Parametric mappings based

mainly on spiral and sawtooth curves are studied. Nonparametric mappings are also

designed in this chapter. This is done by first deriving the necessary conditions

for optimality and then proposing an iterative algorithm based on joint optimiza-

tion between the encoder and the decoder. A reduced-complexity approach for the

implementation of the design algorithm is also presented. The proposed (nonlinear)

mappings are shown to outperform linear scheme and give a graceful performance over

wide range of noise levels. Moreover, these nonlinear mappings, which are shown to

fit well the channel space, overcome the inevitable saturation effect of linear scheme.

The sixth and final chapter contains a compendium of the principal results pre-

sented in the thesis.

1.3 Summary of Contributions

The main contributions of the thesis are briefly summarized as follows:

• Inner bounds on the system’s distortion are found for fading channels in the
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presence of interference that is correlated to the source and known non-causally

to the transmitter; this is done by proposing hybrid schemes based on Costa

and Wyner-Ziv coding. As an application, the proposed hybrid schemes are ex-

tended to the case of joint source state-interference estimation. Outer bounds

on the system’s distortion region are derived for the above mentioned communi-

cation scenarios. Such bounds are obtained by assuming additional knowledge

of the interference at the decoder side.

• Derived the distortion regions for transmitting bivariate Gaussian sources over

two-user Gaussian degraded broadcast channel in the presence of interference;

the interference is correlated with the source and known non-causally to the

transmitter. Hybrid schemes that use superposition coding technique are em-

ployed to ensure reliable transmission over the degraded broadcast channel.

• Developed a reliable sensor-communication system based on low delay analog

coding; transmission over noisy medium in the presence of interference is tack-

led. Parametric mappings are proposed to accommodate the low delay coding

constraint in sensor networks.

• To improve the performance whenever storage and offline design complexity are

not an issue, low delay nonparametric mappings are designed through an iter-

ative process based on joint optimization between the encoder and the decoder

using the necessary conditions for optimality.
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Chapter 2

Background

2.1 General Problem Formulation

We consider the problem of transmitting a discrete-time, continuous-amplitude source

over a memoryless discrete-time, continuous-amplitude channel. We assume that

the channel symbols are corrupted by additive/multiplicative noise. As shown in

Fig. 2.1, the source vector V K = (V (1), · · · , V (K))T ∈ RK , which is composed of

independent and identically distributed (i.i.d.) K samples, is transformed into an N

dimensional channel input XN = α(V K) ∈ RN using a nonlinear mapping, in general,

α(·) : RK → RN , where (·)T denotes the transpose operator. The system operates

under an average transmission power constraint P

1

N
E[||XN ||2] =

1

N

∫
||xn||2p(xn)dxn ≤ P (2.1)

where E[·] denotes the expectation operator and p(xn) is the probability density func-

tion (pdf) of the channel input XN .

After transmission over the noisy channel, the received signal (channel output)

Y N is decoded to produce an estimate of the source vector V̂ K = γ(Y N), where the
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Figure 2.1: A general point-to-point communication system.

decoder is a mapping from RN → RK . The aim in such communication system is to

reconstruct the estimate source vector V̂ K with some fidelity criterion. The distortion

measure that is considered in this thesis is the mean square error (MSE) defined as

follows

d(V K , V̂ K) =
1

K
||V K − V̂ K ||2. (2.2)

Hence, the general system design can be formulated by finding the encoder and the

decoder that minimize the average MSE distortion given by

D =
1

K
E[d(V K , V̂ K)] =

1

K

∫∫
||vk − v̂k||2p(vk, v̂k)dvkdv̂k (2.3)

where p(vk, v̂k) is the joint pdf of the source vector and the reconstructed one. The

rate of the system is given by r = N
K

channel use/source symbol. When r = 1, the

system has a matched bandwidth between the source and the channel. For r < 1,

the system performs bandwidth reduction; for r > 1, the system performs bandwidth

expansion. Note that throughout the thesis, when all samples in a vector are i.i.d., we

drop the indexing when referring to a sample in a vector (i.e., X(i) = X). Particular

realizations of a random variable are written in corresponding lower case letters.
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2.2 Theoretical Limit

In this section, we present the theoretical performance limit of the point-to-point

communication problem. We limit our discussion to the theoretical limit on the

system’s distortion for the case of a memoryless Gaussian source and an additive

white Gaussian noise (AWGN) channel. The definition of the bound that is developed

in this section, is based on the fundamental source and channel separation theorem

introduced by Shannon [58].

2.2.1 Bounds on Source-Channel Coding

As shown from the block diagram of a tandem source-channel coding system in

Fig. 2.2, a source encoder that compresses the source information and a channel

encoder that protects the source information from channel noise by adding some con-

trolled redundancy are applied to the source vector V K . This operation produces the

V
K

X
N Y

N
V̂

K

Encoder Decoder

Source

Encoder

Channel

Decoder

Channel
+

Source

W
N

Figure 2.2: A point-to-point communication system based on the separation theorem
for AWGN channel.

channel input XN that is transmitted over an AWGN channel. The received noisy

signal can be written as follows

Y N = XN +WN (2.4)
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where addition is component-wise and each sample in the additive noise WN is drawn

from a Gaussian distribution with zero mean and variance σ2
W (W ∼ N (0, σ2

W ))

independently from the source. Using the noisy received signal Y N , we estimate the

information source using a channel and a source decoder.

Given a fidelity criterion, an absolute lower bound on the rate of the source was

derived by Shannon. This is known as the rate-distortion function. For a memory-

less i.i.d. Gaussian source V under the MSE distortion measure, the rate-distortion

function is given by [13]

R(D) = max

[
1

2
log

(
σ2
V

D

)
, 0

]
(bits/source symbol) (2.5)

where σ2
V is the variance of the source signal and D is the distortion.

Information from the source encoder is transmitted over a noisy medium (channel)

at a certain rate. This rate is governed by the capacity of the channel which represents

an upper limit on the rate at which information can be transmitted reliably (with

probability of error that asymptotically vanishes with respect to the coding block

length) given a certain channel signal-to-noise ratio (CSNR) [58]. For the AWGN

channel with an average transmission power constraint P on the channel input, the

capacity-cost function can be expressed as follows [13]

C(P ) =
1

2
log

(
1 +

P

σ2
W

)
(bits/channel use) (2.6)

where the ratio P/σ2
W is the CSNR.
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2.2.2 Optimal Performance Theoretically Attainable

Finally, to determine the optimal achievable performance for the given communication

system, we combine the source and the channel coding theorems; a memoryless source

can be reproduced with system rate r and distortion at most D at the receiving end

of a memoryless channel of capacity C(P ) > (1/r)R(D). Conversely, the distortion

D is unattainable if C(P ) < (1/r)R(D). Hence, for the memoryless Gaussian source-

channel pair, the optimal performance theoretically attainable (OPTA) can be found

by equating the source rate distortion to the channel capacity times the system rate

(R(D) = rC(P )). The OPTA in term of signal-to-distortion ratio (SDR) can then be

expressed as follows

SDR ,
σ2
V

D
=

(
1 +

P

σ2
W

)r
. (2.7)

When the system rate r > 1, redundant dimensions are available and error correcting

codes can be used; when r < 1, however, the source has to be compressed to lower

its dimension before transmission over noisy channel. Note that this performance can

be achieved using a tandem source-channel coding system.

2.3 Joint Source-Channel Coding Schemes

In this section, we present several JSCC techniques based on digital and analog sig-

nalling. Let us first note that in order to implement a mapping from a source sequence

with symbol rate BS to a channel sequence with symbol rate BC , we use the block-

based approach as shown previously in Fig. 2.2. In such system, samples of the

memoryless source V are grouped into blocks of size K to form the source vector

V K which is encoded using α(·). The encoding process maps V K to a channel input
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vector XN of length N . By having N/K = BC/BS, bandwidth expansion/reduction

is obtained by mapping the K source samples into N channel samples. Note that

bandwidth expansion/reduction and dimension expansion/reduction are used inter-

changeably throughout this thesis. In the rest of this section, we focus more on JSCC

techniques for Gaussian channels.

2.3.1 Optimal Linear System

Block pulse amplitude modulation (BPAM) is the optimal (in the mean square error

sense) linear system for transmitting a vector source on a vector channel with additive

noise [47]. Consider a Gaussian source vector V K to be transmitted over a memoryless

AWGN channel with average power constraint P . In [47], it was shown that for

bandwidth expansion (r > 1), the optimal linear encoder and decoder that minimize

the MSE distortion are given as follows

XN = α(V K) =

√
rP

σV
IN×KV

K

V̂ K = γ(Y N) =

√
σ2
V P/r

P + σ2
W

IK×NY
N (2.8)

where Y N = XN +WN is the received signal and IN×K is a N ×K matrix with ones

on the main diagonal and zeros elsewhere.

On the other hand, for bandwidth reduction system (r < 1), the optimal linear

encoder and decoder can be expressed as follows

XN = α(V K) =

√
P

σV
IN×KV

K

V̂ K = γ(Y N) =

√
σ2
V P

P + σ2
W

IK×NY
N . (2.9)
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In effect, the optimal linear system inserts zero samples when more channel bandwidth

is available (N > K) and removes source samples when channel bandwidth is limited

(N < K). Fig. 2.3 shows the performance of the optimal linear system for a 1 : 2
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Figure 2.3: Performance of the optimal linear system for different dimension expan-
sion/reduction ratios, σ2

V = 1 and P = 1. The theoretical limit (OPTA)
is also plotted for comparison.

bandwidth expansion ratio (i.e., K = 1, N = 2) and 2 : 1 bandwidth reduction.

The 1 : 1 theoretical limit is also shown for comparison. The plot is made for a

memoryless Gaussian source V with unit variance and Gaussian channel with average

power constraint P = 1. From Fig. 2.3, we can notice that under dimension reduction,

the performance of the linear scheme saturates after certain CSNR level. This can be

explained in a similar way as the levelling-off effect in a purely digital system. One

can also notice that the linear system behaves very close to the optimal performance

for low CSNRs; however as CSNR increases, the linear system is far from optimal.



2.3. JOINT SOURCE-CHANNEL CODING SCHEMES 16

Since the linear system performs well only for very poor channels which is usually

not of interest, this has motivated the investigation of nonlinear systems which can

achieve better performance.

2.3.2 Power Constrained Channel-Optimized Vector Quantization

In [23, 24], the authors propose to use a power constrained channel-optimized vector

quantization (PCCOVQ) in order to close the gap between the linear scheme and

the optimal performance. Here again, the objective is to find the encoder α and the

decoder γ that minimize the average MSE distortion

D(α, γ) = E[||V K − V̂ K ||2]/K (2.10)

subject to an average transmission power P (α) = E[||α(V K)||2]/N ≤ P . Using

the Lagrangian method, the constrained optimization problem can be recast into an

unconstrained minimization problem given by

min
α,γ

[D(α, γ) + λP (α)] (2.11)

where λ is the Lagrange multiplier used to control the consumed average power. If for

a given λ, we solve the unconstrained problem and find that the power constraint is

fulfilled, the solution we have obtained is also a solution to the constrained optimiza-

tion problem [30]. It is worth mentioning that this problem is related to the COVQ

design problem but with an additional constraint on the transmission power.

To solve this problem, the authors in [23, 24] propose to use a vector quantizer

followed by a mapping from the source space to a finite channel space set at the
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encoder side. The channel signal set is composed of an N -fold cartesian product

of a uniform pulse amplitude modulation (PAM) alphabet. The decoder structure

is based on the nearest neighbour detector that chooses the decoded source from a

reconstruction codebook. The PCCOVQ is optimized by choosing the encoder parti-

tion, the reconstruction codebook, and the distance between samples in the channel

signal set that minimize the MSE distortion under a power constraint. This process

is performed using a modified version of the generalized Lloyd algorithm. Bandwidth

reduction and expansion are developed in [23]. It is shown that PCCOVQ performs

well for dimension reduction; there is only 1 dB gap between the SDR performance

of a 2 : 1 PCCOVQ and the theoretical limit OPTA. For bandwidth expansion, how-

ever, PCCOVQ gives a poor performance with respect to other reference systems.

More recently, the authors in [22] study the same problem and focus on PCCOVQ

under bandwidth expansion. They apply the same algorithm as the one proposed

in [23] but using different initial conditions and a larger number of samples in the

channel signal set. These slight modifications are shown to improve the performance

of the PCCOVQ for bandwidth expansion. Numerical results indicate that the per-

formance of 1 : 2 and 1 : 3 PCCOVQ systems are comparable to other state of the

art reference systems [22]. However, this gain in performance comes at the expense

of higher computational complexity for the system design due to the use of a large

number of symbols in the channel signal set. In Fig. 2.4, we show the reconstruction

codebook structure of size 512 for a 2 : 1 PCCOVQ. Notice that for low CSNR (0

dB), the codebook structure has a straight line shape which is similar to the linear

system (BPAM). In BPAM, we disregard one component and hence the mapping is

a line along one of the axes. For high CSNR (20 dB), the structure of the codebook,
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however, is nonlinear and has the shape of a double Archimedes’ spiral.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

 

 

−4 −2 0 2 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b)

 

 

CSNR=20 dBCSNR=0 dB

Figure 2.4: The reconstruction codebook structure of size 512 for a 2 : 1 PCCOVQ
system. The system is designed for (a) CSNR = 0 dB and (b) CSNR = 20
dB. The graph is made for an i.i.d. Gaussian source with unit variance.

2.3.3 Shannon-Kotel’nikov Mappings

As opposed to quantizing the source into a discrete set of representation points

which are then mapped into the channel space as in the case of PCCOVQ, Shannon-

Kotel’nikov mapping [42,59] is an approach based on direct source-channel mapping

in which source and channel coders are merged into one operation. This operation

maps the source space directly into the channel space. The main idea behind these

mappings is based on a geometrical interpretation of the communication problem.

The source, in this case, is represented using a point in the source space RK (message

space), and the channel input is a point in the channel space RN (signal space). This

geometrical approach is first introduced by Shannon in [59]. Furthermore, Kotel’nikov

presents a theory for bandwidth expansion in his doctoral dissertation [42] by using
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a similar signal mapping approach; and hence its name.

Shannon-Kotel’nikov mappings perform either a projection of the source onto a

lower dimensional space or map the source into a higher dimensional space. The

former represents a lossy compression of the source (dimension reduction), while the

latter uses the redundant dimensions for error control (dimension expansion). For

the case of matched bandwidth (dimension) between the source and the channel, it is

well known that a linear, or uncoded, transmission is optimal for a memoryless source

and Gaussian channel [6]. However, for mismatched bandwidth, linear transmission

is suboptimal. Instead of discarding the excess of source samples to achieve band-

width reduction, or repeating part of the source samples for bandwidth expansion

(as discussed in Section 2.3.1), nonlinear mappings need to be explored in order to

achieve a better performance.1 As an example of 1 : 2 bandwidth expansion map-

ping, Shannon proposes the curve shown in Fig. 2.5 [59]. In this mapping, the one

dimensional source is given by the line space (e.g., the length along the curve) which

is mapped to a two dimensional channel input (X(1), X(2)). This approach will give

a better performance than the one where we just send the same source symbol twice

(repetition code). Shannon also suggests that the same mapping shown in Fig. 2.5

can be used for bandwidth reduction by interchanging the source and the channel

space; more precisely, every source vector (V (1), V (2)) is projected onto the nearest

point on the mapping curve which will be represented using a one dimensional chan-

nel space (e.g., the distance from some reference origin to the projected point on the

curve).

The structure of the curve is very much related to the overall system performance.

1Note that repeating part of the source or inserting zeros samples will not alter the performance
of the system since both mappings are related by some orthonormal transformation.
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X(2)

X(1)

Figure 2.5: Shannon’s example on 1 : 2 dimension expansion mapping [59].

The Shannon-Kotel’nikov approach uses space filling curves to perform dimension re-

duction/expansion from the source to the channel space. One important question

is: How one can determine the optimal geometrical structure of such mapping? One

possible way to answer this question is by looking at the codebook structure of the

PCCOVQ [23, 24] which is closely related to Shannon-Koteln’nikov approach. For

example, by connecting the adjacent codebook points of the designed PCCOVQ code-

book, we can obtain a space filling-curve that can be used as a mapping function.

Another way is by searching for a mapping function that satisfies some necessary

requirements [55]: 1) The mapping curve should cover well the entire source space to

reduce overload distortion; 2) source symbols with high probability should be mapped
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to low power channel symbols so that the transmission power is minimized; 3) points

in the channel space that are close to each other should be mapped to source symbols

that are also close in the source space in order to minimize the distortion when errors

occur. Moreover, one has to make sure that when choosing a mapping, all chan-

nel representations should have low correlation so that no redundant information is

transmitted on different channel symbols.

Recently, the authors in [20, 31–33] have shown that for a memoryless Gaussian

source, the double Archimedes’ spiral represents a good mapping for 1 : 2 bandwidth

expansion and 2 : 1 bandwidth reduction. Looking at the structure of the reconstruc-

tion codebook for a 2 : 1 PCCOVQ in Fig. 2.4, we can notice that this structure

resembles very much the spiral mapping for high CSNR levels. In this case, the

advantage of using a parameterized Shannon-Kotel’nikov mapping is the easiness in

designing the system for a given source and channel characteristics. All we need is to

modify the mapping parameters so that the shape can be changed accordingly.

2.3.4 Hybrid Digital-Analog Systems

The main advantage of using digital techniques in communication systems is the

ability to achieve asymptotically the theoretical performance limit for a given CSNR

via separate source-channel coding (tandem system). There are, however, two main

drawbacks with tandem systems: 1) the threshold effect and 2) the leveling-off effect.

The threshold effect means that the system performs well at the design CSNR level,

while its performance degrades drastically when the true CSNR level is lower than

the design one. The levelling-off effect means that the system performance remains

constant beyond a certain CSNR level; this is due to the non-recoverable distortion
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introduced by the quantizer.

Using a digital joint source-channel coding, we can overcome the threshold effect.

Such systems, however, still suffer from the levelling-off effect. On the other hand, an

analog system does not suffer from the levelling-off effect. This motivates researchers

to exploit the advantage of using both digital and analog techniques in one system

(hybrid technique). This is done by allowing part of the system to use digital modu-

lation and coding and another part to use analog signalling. Mainly, schemes based

on hybrid transmission are built by splitting the source into a quantized (digital)

part, and a quantization error (analog) part. A general block diagram of a hybrid

digital-analog (HDA) system is illustrated in Fig. 2.6 [14,15,50,60,61,68].
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Source

Encoder

Channel

Decoder

Channel

+

Source

Decoder

Source

-

+
Encoder

Linear
Channel

Channel +

Decoder

Linear

Figure 2.6: A block diagram of a general hybrid digital-analog system. The digital
part uses a tandem scheme and the analog part uses a linear transmission.

In [60], the authors present an HDA system for bandwidth expansion based on

vector quantization and linear (uncoded) transmission; they propose a design algo-

rithm to optimize the system performance. In [61], an HDA scheme is proposed for

bandwidth expansion/reduction system; this hybrid scheme uses tandem coding, that

employs turbo code, for the digital part and a linear/nonlinear mappings for the ana-

log part. In [14, 15], a hybrid scheme, which is referred to as hybrid scalar quantizer

linear coder (HSQLC), is proposed. This scheme is able to achieve a 1 : 2 bandwidth
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expansion by using a scalar quantizer for the digital part and a linear mapping for

the analog part. One main difference between the HSQLC and the proposed HDA

schemes in [60,61], is that the HSQLC has a low delay coding and low complexity; the

HSQLC encodes a single source sample at a time (no coding delay), and uses a simple

scalar quantizer and a linear coder. In contrast, the HDA schemes in [60,61] use either

a vector quantization or a powerful channel codes in the digital part and hence incur

large coding delay and complexity. In general, HDA systems have shown to offer a ro-

bust and graceful performance improvement/degradation for a wide range of CSNRs

which make them suitable in many practical applications including broadcasting.

2.4 K : 1 Shannon-Kotel’nikov Mapping

In this section, we describe the theory for K : 1 dimension reduction mapping and

provide results which will be used to analyze the 2 : 1 reduction system in detail [32].

In such case, the source vector V K ∈ RK in the source space is first approximated

by mapping it to a parametric curve S in the source space. The dimension is subse-

quently changed from K to 1 by a lossless operator, for instance the radial distance

from the origin out to the given point on the curve. The one dimensional parameter

value is then given a representation on the channel space through an invertible map-

ping function. This function determines the way we measure the distance from the

origin of the curve to the given approximated point. Denoting the one dimensional

channel signal by X, the reconstructed signal V̂ K at the receiver is estimated using

the mapping S(·) as follows V̂ K = S(X + W ), where W denotes the additive noise.

There will be two distortion effects on this system, approximation distortion from

projecting a K dimensional source vector into a one dimensional channel input, and
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channel noise distortion due to the additive channel noise.

Approximation distortion: The reduction of dimensionality of a source for trans-

mission over a power constrained channel introduces information loss. The approxi-

mation operation maps the source vectors onto a parametric curve S that is a subset of

RK . To reduce the approximation distortion, the curve has to densely fill the source

space; this, however, is in contrast with the requirement for reducing the channel

noise distortion. This trade-off is similar to the one in the traditional lossy source

coding; as few representation values as possible are desired while at the same time

the distance between them should be as small as possible.

Channel noise distortion: The received signal has to be passed through the non-

linear mapping S before it is detected. Given a transmitted one dimensional channel

input X0, the received signal can be expressed using the following linear approxima-

tion

S(X0 +W ) ≈ S(X0) + S ′(X0)W (2.12)

where S ′ is the derivative of S at X0 and the linear approximation is accurate for a

small deviation in noise W . The last term in (2.12) contributes to the distortion of

the received value. Given that X0 was transmitted, the mean square error distortion

caused by the channel noise is given by

εch =
1

K
E[||S ′(X0)W ||2] =

σ2
W

K
||S ′(X0)||2. (2.13)

Hence, the average distortion can be expressed as follows

ε̄ch =
σ2
W

K

∫
||S ′(x)||2p(x)dx (2.14)
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where p(x) is the pdf of the channel signal.

2.4.1 Example System using Archimedes’ Spiral

In the following, we present a 2 : 1 bandwidth reduction system based on spiral

mapping. We consider i.i.d. Gaussian memoryless source V 2 = [V (1) V (2)]T and

AWGN channel.

Encoder

We perform the bandwidth reduction by transmitting a combination of the source

samples V (1) and V (2) as one channel input X. This is done by first approximating

V 2 to the closest point on the spiral mapping. Note that for a given variable x ∈

R, the two dimensional spiral mapping output can be mathematically expressed as

follows [32]

S1:2(x) =

 V (1)

V (2)

 =
1

π

 sgn(x)∆ϕ(x) cosϕ(x)

sgn(x)∆ϕ(x) sinϕ(x)

 (2.15)

where sgn(·) is the signum function, ∆ is the radial distance between any two neigh-

bouring spiral arms, and ϕ(x) =
√

6.25|x|/∆. The approximated point, represented

by its radial distance dr from the origin, is then mapped to the channel via an invert-

ible operator `(·)

X = u`(dr) = u

(
±0.16

(
π2

∆

)
(d2
r)

)
(2.16)

where u is a gain factor related to channel power constraint P , + sign represents

points residing on the solid spiral arm, and the − sign represents points residing on

the dashed spiral arm in Fig. 2.7.
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Figure 2.7: Two dimensional spiral mapping.

Decoder

Given the received noisy channel output Y = X +W , the maximum likelihood (ML)

estimate is given by the source vector V 2 = [V (1) V (2)] that maximizes the likelihood

function

p(y|x) =

(
1

2πσ2
W

)
e
− ||y−x||

2

2σ2
W . (2.17)

This is achieved by the source vector [V (1), V (2)] that minimizes the L2 norm ||y−x||.

Although ML decoding is simple and performs well at high CSNRs, it is not optimal

for the MSE distortion criterion. Next, we describe the minimum mean square error

(MMSE) decoder, which is optimal in the MSE sense. The MMSE estimate can be
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expressed as follows

V̂ 2 = [V̂ (1) V̂ (2)] = E[V 2|y] =

∫
v2p(v2|y)dv2

=

∫
v2p(y|v2)p(v2)dv2∫
p(y|v2)p(v2)dv2

. (2.18)

System Optimization

For a given CSNR level, the radial distance ∆ is the only parameter that needs to be

optimized in order to minimize the overall MSE distortion. When the received signal is

decoded, we may encounter two types of distortion: 1) the approximation distortion

ε̄a which is related to projecting a two dimensional signal into a one dimensional

channel input, and 2) the channel distortion ε̄ch which is due to transmitting over

a noisy environment. The approximation operation mainly introduces radial errors

and can be modelled by a standard scalar quantizer. Therefore, the approximation

distortion is well given by ε̄a ≈ ∆2/12 [32]. The channel noise distortion is expressed

in a similar way as (2.14). Moreover, the received signal is rescaled using the inverse

of the transmit scaling parameter (i.e., 1/u). This implies that the channel noise is

also scaled and has a power of (1/u2)σ2
W . After some manipulation, the distortion

from channel noise ε̄ch is well approximated by the scaled noise variance (1/u2)σ2
W .

Hence the overall MSE distortion can be approximated as follows

D2:1 Spiral ≈ (ε̄a + ε̄ch) ≈ 1

2

(
∆2

12
+
σ2
W

u2

)
. (2.19)

The optimal radial distance ∆opt is found by minimizing the MSE distortion in (2.19).

Note that in the system simulations, we use both ML and MMSE decoders. When

using MMSE decoder, the radial distance ∆ is optimized numerically by searching
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for ∆ that achieves the best performance. This is done by generating a large set of

(V (1), V (2),W ) and computing the overall distortion D empirically for each possible

∆ in the search space.

2.4.2 Numerical Results

In this section, we assume an i.i.d. Gaussian source with standard deviation σV = 1

that is transmitted over an AWGN channel with power constraint P = 1. Both

ML and MMSE decoders are investigated for 2 : 1 bandwidth reduction using spiral

mapping. From Fig. 2.8, we can notice that MMSE decoder gives better performance
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Figure 2.8: Performance of 2 : 1 bandwidth reduction using spiral mapping for a
Gaussian source vector with standard deviation σV = 1. The optimal
linear system (BPAM) and the theoretical limit (OPTA) of the system
are also plotted.
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than ML decoder. There is a substantial improvement at low CSNR levels and the

performance from the spiral mapping is now similar to the linear system which comes

close to achieve OPTA for asymptotically bad channels [47]. However as CSNR

increases, the ML decoder gives a similar performance as the MMSE decoder. This

is expected since the performance of the ML decoder approaches that of the optimal

MMSE decoder (in the MSE sense) for high CSNR levels [57, pp. 291-292].

2.5 Coding Schemes with Side Information

2.5.1 Interference Known to the Transmitter

In this section, we focus on the AWGN channel with Gaussian interference known non-

causally to the transmitter side. The system model is shown in Fig. 2.9. Assuming

that the Gaussian source V K and the interference SN are uncorrelated, we next

present two schemes that achieve the optimal distortion. Note that in this case, the

optimal performance is the same as if the decoder had knowledge of the interference;

this means that the interference can be completely removed and has no effect on the

overall performance. This problem, which is sometimes referred to as the dirty paper

coding problem, is considered in the seminal works of [12,29].

V K

SN

α(.)
+

WN

XN Y N

γ(.) V̂ K

+

Figure 2.9: Block diagram for the dirty paper coding problem.
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Tandem Costa Coding

In [29], Gel’fand and Pinsker showed that the capacity of a point-to-point communi-

cation system with side information (interference) known non-causally at the encoder

side is given by

C = max
p(u,x|s)

(
I(U ;Y )− I(U ;S)

)
(2.20)

where the maximum is over all joint distributions of the form p(s)p(u, x|s)p(y|x, s),

U denotes an auxiliary random variable and I(·, ·) is the mutual information. In [12],

Costa proposes to use the following auxiliary variable for the AWGN channel

UN = XN + αSN (2.21)

where each sample in XN is a zero mean i.i.d. Gaussian with variance P that is

independent of SN and α is a real parameter. By choosing α = P
P+σ2

W
, Costa shows

that the capacity is CDPC = 1
2

log
(

1 + P
σ2
W

)
and coincides with the capacity when

both encoder and decoder know the interference SN . As a result, this choice of UN

is optimal in terms of achieving capacity.

The tandem Costa scheme is based on the concatenation of an optimal source

code and Costa coding. Hence, the source V K is first quantized using an optimal

quantizer Q : RK → {1, 2, ..., 2KR}, where R is defined later. The quantization index

m = Q(V K) is then transmitted using Costa coding [12] which is briefly described as

follows

• Codebook Generation: Create a codebook Cu with block length N and size

2NI(U ;Y ), where each codeword is generated according to the random variable

UN . The codewords are randomly assigned to 2KR bins. For each UN , let i(UN)
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be the index of the bin that contains UN .

• Encoding: For a given quantization index m, the encoder looks for a codeword

UN such that i(UN) = m and (UN , SN) are jointly typical. If such UN is found,

then XN = UN − αSN is transmitted.

• Decoding: Given the received signal Y N = XN + SN +WN , the decoder looks

for a UN ∈ Cu such that (UN , Y N) are jointly typical and declares i(UN) to

be the decoded message if this codeword is found and is unique. From [12],

the overall probability of error (encoding and decoding failures) can be made

arbitrarily small by setting R = CDPC .

HDA Costa Coding

Now, we describe a joint source channel coding where the source V K is not explicitly

quantized. Note that this scheme is only applicable for the matched source-channel

bandwidth case (K = N). We define the auxiliary random variable UN
h as follows [70]

UN
h = XN + αhS

N + κhV
K (2.22)

where each sample in XN is a zero mean i.i.d. Gaussian with variance P that is

independent of SN and V N , αh = P
P+σ2

W
and κ2

h = P 2

P+σ2
W

. The encoding and decoding

processes of the HDA Costa scheme are described as follows

• Codebook Generation: Generate a codebook Ch of block length N and size 2NRh

following the random variable UN
h , where Rh is defined later.

• Encoding: Given the source V K (K = N) and the interference SN , the encoder



2.5. CODING SCHEMES WITH SIDE INFORMATION 32

looks for a UN
h ∈ Ch such that (UN

h , S
N , V K) are jointly typical. If this is found,

XN = UN
h − αhSN − κhV K is transmitted.

• Decoding: Given the received signal Y N , the decoder looks for UN
h that is jointly

typical with Y N and is unique. In the absence of decoding error, the decoder

forms a linear MMSE estimate of V K based on the decoded codeword UN
h and

the received signal Y N .

The encoding and decoding failure of the codeword UN
h can be made arbitrarily small

by using I(U ;S, V ) ≤ Rh ≤ I(U, Y ) [70]. Note that in [67], the authors adapted

the HDA Costa coding scheme for the bandwidth reduction case; this is done by

superposing two layers consisting of HDA Costa coding and tandem Costa coding.

2.5.2 Side Information at the Receiver

In this section, as shown in Fig. 2.10, we consider the transmission of a Gaussian

source V K over an AWGN channel with a Gaussian side information Ṽ K at the

decoder side, where V K = Ṽ K+EK with each sample in EK follows an i.i.d. Gaussian

distribution with variance D̃ (E ∼ N (0, D̃)). Suppose that the side information is

V K

Ṽ K

α(.) +

WN

XN Y N

γ(.) V̂ K

Figure 2.10: The Wyner-Ziv problem.

available at both sides (i.e., encoder and decoder), the least required rate for achieving
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a desired MSE distortion D is

Rwz =
1

2
log

D̃

D
. (2.23)

Let us set this rate to be close to the capacity of an AWGN channel (the rate at

which the channel can support with low probability of error). The best achievable

distortion is then given by

Dwz =
D̃(

1 + P
σ2
W

)r . (2.24)

Now we will illustrate how this distortion can be achieved using Wyner-Ziv cod-

ing [71]. Let TK be an auxiliary random variable given by

TK = αwzV
K +BK (2.25)

where αwz =
√

1− Dwz
D̃

, Dwz is given in (2.24) and each sample in BK is zero mean

i.i.d. Gaussian with variance Dwz. The encoding and decoding processes of the

Wyner-Ziv coding can be summarized as follows

• Generate a length K i.i.d. Gaussian codebook T of size 2KI(T ;V ) and randomly

assign the codewords into 2KR bins with R equal to the AWGN capacity.

• For each source realization V K , we find a codeword TK ∈ T such that (V K , TK)

is jointly typical. The encoder then transmits the index bin of this codeword

using a channel code with rate R.

• The decoder first decodes the bin index and then looks for a codeword TK in this

bin such that (TK , Ṽ K) are jointly typical. In case of succeed (which happens

with high probability of error with the chosen rate), we form a linear MMSE



2.6. BROADCAST CHANNELS 34

estimate of V K based on the decoded codeword TK and the side information

Ṽ K .

It can be verified that using the above approach, we can achieve the distortion in

(2.24).

2.6 Broadcast Channels

The broadcast channel is a communication channel in which there is one transmitter

and two or more receivers. The basic problem in this multi-terminal channel is to find

the set of simultaneously achievable rates for reliable communication in this channel.

The general broadcast, which is illustrated in Fig. 2.11, can be mathematically defined

as follows [13,17].

XN ∈ XN
Y N

1
∈ YN

1

Y N

2
∈ YN

2

P (y1, y2|x)

Figure 2.11: General broadcast channel.

Definition 2.1. A broadcast channel consists of an input alphabet X , two out-

put alphabets Y1, Y2 and a transition probability mass function (pmf) P (y1, y2|x)

on Y1 × Y2. The broadcast channel is said to be memoryless if P (yn1 , y
n
2 |xn) =∏n

i=1 P (y1(i), y2(i)|x(i)).

We note that an error for the first receiver (Y N
1 ) depends only on the distribution

P (xn, yn1 ) and not on the joint distribution P (xn, yn1 , y
n
2 ). As a result, the capacity

region of a broadcast channel depends only on the conditional marginal distributions



2.6. BROADCAST CHANNELS 35

P (yn1 |xn) and P (yn2 |xn); this means that for two broadcast channels with the same

marginal distributions, their capacity regions are the same.

2.6.1 Degraded Broadcast Channels

Definition 2.2. A broadcast channel is said to be physically degraded if

P (y1, y2|x) = P (y2|x)P (y1|y2). (2.26)

This means we have the following Markov chain X → Y2 → Y1.

The degraded broadcast channel can be illustrated as in Fig. 2.12. As an example

XN ∈ XN
Y N

2
∈ YN

2

Y N

1
∈ YN

1

P (y2|x)

P (y1|y2)

Y N

2
∈ YN

2

Figure 2.12: Physically degraded memoryless broadcast channel.

of degraded broadcast channel, we present the Gaussian degraded broadcast channel.

In this case, one output is a degraded version of the other output. The received

signals at user 2 and 1 can be written as follows, respectively,

Y N
2 = XN +WN

2

Y N
1 = XN +WN

1 = Y N
2 + W̃N (2.27)
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where each sample in WN
2 follows an i.i.d. Gaussian distribution with variance σ2

W2(
W2 ∼ N (0, σ2

W2
)
)

and each sample in W̃N is drawn from an i.i.d. Gaussian distri-

bution
(
W̃ ∼ N (0, σ2

W1
− σ2

W2
)
)
. Note that in this case, user 1 is the weak user and

user 2 is the strong user.

2.6.2 Broadcast Scenario with Two Message Sets

Fig. 2.13 shows the structure of a broadcast channel with two message sets. A

XN

Y N

2

P (y1, y2|x)
(I, J)

Y N

1

α(.)

γ1(.)

γ2(.)

Î

Ĵ

Figure 2.13: Broadcast channel with two message sets.

(2NR1 , 2NR2 , N) code for a broadcast channel with two message sets consists of an

encoder,

α : {1, 2, · · · , 2NR1} × {1, 2, · · · , 2NR2} → XN (2.28)

and two decoders

γ1 : YN1 → {1, 2, · · · , 2NR1} and γ2 : YN2 → {1, 2, · · · , 2NR2}. (2.29)

The average probability of error is defined as the probability that the decoded message

is not equal to the transmitted message; that is

Pe = Pr(Î = I or Ĵ = J) (2.30)
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where the messages (I, J) are assumed to be uniformly distributed and Pr(·) denotes

the probability of an event. A rate of pair (R1, R2) is said to be achievable if there

exists a sequence of (2NR1 , 2NR2 , N) codes with probability of error Pe → 0 as N →∞.

The capacity in this case, is given by the closure of the set of achievable rates.

2.6.3 Capacity Region for the Degraded Broadcast Channels

We now consider sending independent information over a degraded broadcast channel

at rate R1 to Y1 and rate R2 to Y2.

Theorem 2.1. The capacity region for sending independent information over the

degraded broadcast channel X → Y2 → Y1 is the convex hull of the closure of all

(R1, R2) satisfying

R1 ≤ I(Ub;Y1)

R2 ≤ I(X;Y2|Ub) (2.31)

for some joint distribution P (ub)P (x|ub)P (y1, y2|x) and Ub is an auxiliary random

variable. Note that I(·, ·) denotes the mutual information.

The capacity of the degraded broadcast channel is achieved using superposition

coding [17]. The auxiliary random variable UN
b will serve as a cloud centre that can

be distinguished by both receivers (i.e., Y N
1 and Y N

2 ). Each cloud consists of 2NR2

codewords XN distinguishable by the strong receiver Y N
2 . The worst receiver can

only see the clouds, while the better receiver can see the individual codewords (the

satellite codewords) within the clouds. A representation of the satellite and cloud

codewords are given in Fig. 2.14.
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Figure 2.14: Illustration of clouds and satellite codewords used in superposition cod-
ing.

Capacity Region of Gaussian Degraded Broadcast Channel

The capacity region of the Gaussian degraded broadcast channel is a function of only

the CSNR and a power allocation parameter.

Theorem 2.2. The capacity region of the Gaussian degraded broadcast channel is the

set of rate pairs (R1, R2) such that

R1 ≤
1

2
log

(
1 +

ηtP

(1− ηt)P + σ2
W1

)
R2 ≤

1

2
log

(
1 +

(1− ηt)P
σ2
W2

)
(2.32)

where 0 ≤ ηt ≤ 1.
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Achievability follows by using the superposition coding technique, setting each

sample in UN
b to be an i.i.d. Gaussian (Ub ∼ N (0, ηtP )) and choosing XN = UN

b +ŨN ,

where each sample in ŨN is an i.i.d. Gaussian (Ũ ∼ N (0, (1− ηt)P )) independent of

Ub. With this choice of (UN
b , X

N), it can be readily shown that the region in (2.31)

reduces to (2.32).
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Chapter 3

Hybrid-Digital Analog Coding for Gaussian Source

and State Interference Estimation

3.1 Introduction

The traditional approach for analog source transmission in point-to-point communi-

cation systems is to employ separate source and channel coders. This separation is

(asymptotically) optimal given unlimited delay and complexity in the coders [58]. As

mentioned in the previous chapter, there are, however, two disadvantages associated

with digital transmission. One is the threshold effect: the system typically performs

well at its designed noise level, while its performance degrades drastically when the

true noise level is higher than the design level. The other trait is the levelling-off ef-

fect: as the noise level decreases, the performance remains constant beyond a certain

threshold. JSCC schemes are more robust to noise level mismatch than tandem sys-

tems. Analog JSCC schemes, which are based on the so-called direct source-channel

mappings (Shannon-Kotel’nikov mappings) [2,3,9,21,32,34,38,39,55], are used to in-

crease the robustness of communication systems. Moreover, a family of HDA schemes

are introduced in [50, 61, 69] to overcome the threshold and the levelling-off effects.
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In [27,41,52], HDA schemes are also proposed for broadcast channels.

As described in Sec. 2.5.1, it is well known that for the problem of transmitting a

Gaussian source over an AWGN channel with interference that is known non-causally

to the transmitter, a tandem Costa coding scheme, which comprises an optimal source

encoder followed by Costa’s dirty paper channel code (Costa coding) [12], and an HDA

Costa coding [70] are optimal in the absence of correlation between the source and

the interference. In [35], the authors study a joint source channel coding scheme for

transmitting analog Gaussian source over AWGN channel with interference known

to the transmitter and correlated with the source. In that work, they propose two

schemes for the matched source-channel bandwidth case; the first one is the super-

position of the uncoded signal and a digital signal resulting from the concatenation

of a Wyner-Ziv coder [71] and a Costa coder, while in the second scheme the digital

part is replaced by the HDA Costa coding. The limiting case of this problem, where

the source and the interference are fully correlated is studied in [63]; the authors

show that a purely analog scheme (uncoded) is optimal. Moreover, they also consider

the problem of sending a digital (finite alphabet) source in the presence of inter-

ference where the interference is independent from the source. More precisely, the

optimal tradeoff between the achievable rate for transmitting the digital source and

the distortion in estimating the interference is studied; they show that the optimal

rate-state-distortion tradeoff is achieved by a coding scheme that uses a portion of

the power to amplify the interference and the remaining power to transmit the digital

source via Costa coding. In [4], the authors consider the same problem as the one

in [63] but with imperfect knowledge of the interference at the transmitter side.

In this chapter, we study the reliable transmission of a memoryless Gaussian
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source over a Rayleigh fading channel with interference known non-causally to the

transmitter and correlated to the source. More precisely, we consider equal and un-

equal source-channel bandwidths and analyze the achievable distortion region under

matched and mismatched noise levels. We propose a layered scheme based on hy-

brid coding. One application of JSCC with correlated interference can be found in

sensor networks and cognitive radio channels where two nodes interfere with each

other. One node directly transmits its signal; the other, however, is able to detect

its neighbouring node’s transmission and treat it as a correlated interference. One

interesting extension of this problem, which is also considered in this chapter, is to

study the source-channel-state distortion region for the fading channel with corre-

lated interference; in that case, the receiver side is interested in estimating both the

source and the channel-state (interference). Inner and outer bounds on the source-

interference distortion region are established. Our setting contains several interesting

limiting cases. In the absence of fading and for the matched source-channel band-

width, our system reverts to that of [35]; for the uncorrelated source-interference

scenario without fading, our problem reduces to the one in [67] for the bandwidth

reduction case. Moreover, the source-channel-state transmission scenario generalizes

the setting in [63] to include fading and correlation between source and interference.

The rest of the chapter is organized as follows. In Section 3.2, we present the prob-

lem formulation. In Section 3.3, we derive an outer bound and introduce linear and

tandem digital schemes. In Section 3.4, we derive inner bounds (achievable distortion

region) under both matched and mismatched noise levels by proposing layered hybrid

coding schemes. We extend these inner and outer bounds to the source-channel-state

communication scenario in Section 3.5. Finally, conclusions are drawn in Section 3.6.
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Note that throughout the thesis, we use the following notation. Vectors are de-

noted by characters superscripted by their dimensions. For a given vector XN =

(X(1), ..., X(N))T , we let [XN ]K1 and [XN ]NK+1 denote the sub-vectors [XN ]K1 ,

(X(1), ..., X(K))T and [XN ]NK+1 , (X(K + 1), ..., X(N))T , respectively. When there

is no confusion, we also write [XN ]K1 as XK . When all samples in a vector are i.i.d.,

we drop the indexing when referring to a sample in a vector (i.e., X(i) = X).

3.2 Problem Formulation

We consider the transmission of a Gaussian source V K = (V (1), ..., V (K))T ∈ RK over

a Rayleigh fading channel in the presence of Gaussian interference SN ∈ RN known

at the transmitter (see Fig. 3.1). The source vector V K represents the first K samples

V K

SN

α(.) +

WN

XN Y N
γ(.)

V̂ K

+ x

FN

V max(K,N)
Side
Channel

Smax(K,N)

Figure 3.1: A K : N system structure over a fading channel with interference known
at the transmitter side. The interference Smax (K,N) is assumed to be
the output of a noisy side channel with input V max (K,N). V K represents
the first K samples of V max (K,N) (SN is defined similarly). The fading
coefficient is assumed to be known at the receiver side; the transmitter
side, however, knows the fading distribution only.

of V max (K,N); SN is similarly defined. The source vector V K , which is composed of

i.i.d. samples, is transformed into an N dimensional channel input XN ∈ RN using a

nonlinear mapping function, in general, α(.) : RK ×RN → RN . The received symbol
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is given by

Y N = FN(XN + SN) +WN (3.1)

where addition and multiplication are component-wise, FN represents an N -block

Rayleigh fading that is independent of (V K ;SN ;WN) and known to the receiver side

only, XN = α(V K , SN), SN is an i.i.d. Gaussian interference vector (with each

sample S ∼ N (0, σ2
S)) that is considered to be the output of a side channel with

input V max (K,N) as shown in Fig. 3.1, and each sample in the additive noise WN is

drawn from a Gaussian distribution (W ∼ N (0, σ2
W )) independently from both the

source and the interference. Unlike the typical dirty paper problem which assumes an

AWGN channel with interference (that is uncorrelated to the source) [12], we consider

a fading channel and assume that V K and SN are jointly Gaussian. Since the fading

realization is known only at the receiver, we have partial knowledge of the actual

interference FNSN at the transmitter. In this scenario, we assume that only V (i)

and S(i), i = 1, ...,min (K,N), are correlated according to the following covariance

matrix

ΣV S =

 σ2
V ρV SσV σS

ρV SσV σS σ2
S

 (3.2)

where ρV S is the source-interference correlation coefficient. The system operates under

an average power constraint P

E[||α(V K , SN)||2]/N ≤ P. (3.3)

The reconstructed signal is given by V̂ K = γ(Y N , FN), where the decoder is a map-

ping from RN × RN → RK . According to the correlation model described above,
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note that for system’s rate r < 1 (bandwidth reduction), the first N source samples

[V K ]N1 and SN are correlated via the covariance matrix in (3.2), while the remaining

K−N samples [V K ]KN+1 and SN are independent. For r > 1 (bandwidth expansion),

however, V K and [SN ]K1 are correlated via the covariance matrix in (3.2), while V K

and [SN ]NK+1 are uncorrelated.

We aim to find a source-channel encoder α and decoder γ that minimize the MSE

distortion D = E[||V K− V̂ K ||2]/K under the average power constraint in (3.3). For a

particular coding scheme (α, γ), the performance is determined by the channel power

constraint P , the fading distribution, the system rate r, and the incurred distortion

D at the receiver. For a given power constraint P , fading distribution and rate r,

the distortion region is defined as the closure of all distortions Do for which (P,Do)

is achievable. A power-distortion pair is achievable if for any δ > 0, there exist

sufficiently large integers K and N with N/K = r, a pair of encoding and decoding

functions (α, γ) satisfying (3.3), such that D < Do + δ. In this work, we analyze the

distortion for equal and unequal bandwidths between the source and the channel with

no constraint on the delay (i.e., both N and K tend to infinity with N
K

= r fixed).

Our main contributions in this chapter can be summarized as follows

• We derive inner and outer bounds for the system’s distortion region for a Gaus-

sian source over fading channel with correlated interference under equal and

unequal source-channel bandwidths. The outer bounds are found by assum-

ing full/partial knowledge of the interference at the decoder side. The inner

bounds are derived by proposing hybrid coding schemes and analyzing their

achievable distortion region. These schemes are based on proper combination

of power splitting, bandwidth splitting, Wyner-Ziv and hybrid coding; a hybrid
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layer that uses the source and the interference is concatenated (superimposed)

with a purely digital layer to achieve bandwidth expansion (reduction). Dif-

ferent from the problem considered in [35], we consider the case of fading and

mismatch in the source-channel bandwidth. Our scheme offers better perfor-

mance than the one in [35] under matched bandwidth (when accommodating

the Costa coder in their scheme for fading channels). Moreover, our scheme

is optimal when there is no fading and when the source-interference are either

uncorrelated or fully correlated.

• As an application of the proposed schemes, we consider source-channel-state

transmission over fading channels with correlated interference. In such case, the

receiver aims to jointly estimate both the source signal as well as the channel-

state. Inner and outer bounds are derived for this scenario. For the special

case of uncorrelated source-interference over AWGN channels, we obtain the

optimal source-channel-state distortion tradeoff; this result is analogous to the

optimal rate-state distortion for the transmission of a finite discrete source over

a Gaussian state interference derived in [63]. For correlated source-interference

and fading channels, our inner bound performs close to the derived outer bound

and outperforms the adapted scheme of [63].

3.3 Outer Bounds and Reference Systems

3.3.1 Outer Bounds

In [35] and [10], outer (i.e., lower) bounds on the achievable distortion are derived

for point-to-point communication over Gaussian channel with correlated interference

under matched bandwidth between the source and the channel. This is done by
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assuming full/partial knowledge of the interference at the decoder side. In this section,

for the correlation model considered above, we derive outer bounds for the fading

interference channel under unequal source-channel bandwidth. Since S(i) and V (i)

are correlated for i = 1, ...,min (K,N), we have S(i) = SI(i) + SD(i), with SD(i) =

ρV SσS
σV

V (i) and SI ∼ N (0, (1 − ρ2
V S)σ2

S) are independent of each other. To derive an

outer bound, we assume knowledge of both (S̃K , [SN ]NK+1) and FN at the decoder

side for the case of bandwidth expansion, where S̃K = η1S
K
I + η2S

K
D (the linear

combination S̃ is motivated by [10]), and (η1, η2) is a pair of real parameters. For

the bandwidth reduction case, we assume knowledge of S̃N and FN at the decoder to

derive a bound on the average distortion for the first N samples; the derivation of a

bound on the average distortion for the remaining K−N samples assumes knowledge

of [V K ]N1 in addition to S̃N .

Definition 3.1. Let MSE(Y ; S̃) be the distortion incurred from estimating Y based

on S̃ using a linear minimum MSE estimator (LMMSE) denoted by γlmse(S̃
K , fK).

This distortion, which is a function of η1, η2, E[XSI ] and E[XSD], is given by

MSE(Y ; S̃) = E[(Y − γlmse(S̃K , fK))2] =
(
E[Y 2]− (E[Y S̃])2

E[S̃2]

)
, where E[Y 2] = f 2(P +

σ2
S + 2(E[XSI +XSD])) + σ2

W , E[Y S̃] = f
(
E[X(η1SI + η2SD)] +E[η1S

2
I + η2S

2
D]
)

and

E[S̃2] = E[η2
1S

2
I + η2

2S
2
D]. These terms will be used in Lemmas 3.1 and 3.2.

Lemma 3.1. For a K : N bandwidth expansion system with N ≥ K (the matched

case is treated as a special case), the outer bound on the system’s distortion D can be
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expressed as follows:

D ≥ Dob , sup
η1,η2

inf
X:

|E[XSI ]|≤
√

E[X2]E[S2
I ]

|E[XSD]|≤
√

E[X2]E[S2
D]


Var(V |S̃)

exp

{
EF
[
log

((
MSE(Y ;S̃)

σ2
W

)(
f2P+σ2

W

σ2
W

)r−1
)]}


(3.4)

where Var(V |S̃) = σ2
V

(
1− η2

2ρ
2
V S

η2
1(1−ρ2

V S)+η2
2ρ

2
V S

)
is the variance of V given S̃.

Proof. For a K : N system with N ≥ K, we have the following

K

2
log

Var(V |S̃)

D
≤ I(V K ; V̂ K |S̃K , [SN ]NK+1, F

N) ≤ I(V K ;Y N |S̃K , [SN ]NK+1, F
N)

= h(Y N |S̃K , [SN ]NK+1, F
N)− h(Y N |V K , SN , FN)

≤ h(Y K |S̃K , FK) + h([Y N ]NK+1

∣∣[SN ]NK+1, [F
N ]NK+1)− h(Y N |V K , SN , FN)

= EF
[
h(Y K |S̃K , fk) + h([Y N ]NK+1

∣∣[SN ]NK+1, [f
n]nk+1)

]
− h(WN)

≤ EF
[
K

2
log 2πe(MSE(Y ; S̃)) +

N −K
2

log 2πe(f 2P + σ2
W )

]
− N

2
log 2πeσ2

W

= EF

[
K

2
log

(
MSE(Y ; S̃)

σ2
W

)
+
N −K

2
log

(
f 2P + σ2

W

σ2
W

)]
(3.5)

where we used h(Y K |S̃K , fK) ≤ h(Y K − γlmse(S̃
K , fK)) ≤ K

2
log 2πe

(
MSE(Y ; S̃)

)
.

By the Cauchy-Schwarz inequality, we have |E[XSI ]| ≤
√

E[X2]E[S2
I ] and |E[XSD]| ≤√

E[X2]E[S2
D]. For a given η1 and η2, we have to choose the highest value of MSE(Y ; S̃)

over E[XSD] and E[XSI ]; then we need to maximize the right-hand side of (3.4) over

η1 and η2. Note that most inequalities follow from rate-distortion theory, the data

processing inequality, the facts that conditioning reduces differential entropy and that

the Gaussian distribution maximizes differential entropy.

Lemma 3.2. For K : N bandwidth reduction (K > N), the outer bound on D is
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given by

D ≥ Dob(ξ
∗) , sup

η1,η2

inf
ξ

inf
X:

|E[XSI ]|≤
√

(1−ξ)PE[S2
I ]

|E[XSD]|≤
√

(1−ξ)PE[S2
D]

r Var(V |S̃)

exp
{
EF
[
log
(

MSE(Y ;S̃)

ξPf2+σ2
W

)]}

+(1− r) σ2
V

exp
{
EF
[

N
K−N log

(
ξPf2+σ2

W

σ2
W

)]}
 (3.6)

where ξ ∈ [0, 1].

Proof. We start by decomposing the average MSE distortion as follows

D =
1

K
E[||V K − V̂ K ||2] =

1

K

(
E[||V N − V̂ N ||2] + E[||[V K ]KN+1 − [V̂ K ]KN+1||2]

)
=

N

K

(
1

N
E[||V N − V̂ N ||2]

)
+
K −N
K

(
1

K −N E[||[V K ]KN+1 − [V̂ K ]KN+1||2]

)
= rD1 + (1− r)D2 (3.7)

where D1 and D2 are the average distortion in reconstructing V N and [V K ]KN+1,

respectively. To find an outer bound on D, we derive bounds on both D1 and D2. To

bound D1, We can write the following expression

N

2
log

Var(V |S̃)

D1

≤ I(V N ; V̂ N |S̃N , FN) ≤ I(V N ;Y N |S̃N , FN)

= h(Y N |S̃N , FN)− h(Y N |S̃N , V N , FN)

= h(Y N |S̃N , FN)− h(Y N |SN , V N , FN)

(a)

≤ EF
[
N

2
log 2πe(MSE(Y ; S̃))− N

2
log 2πe(ξPf 2 + σ2

W )

]
≤ sup

Y ∈A
EF

[
N

2
log

(
MSE(Y ; S̃)

ξPf 2 + σ2
W

)]
(3.8)



3.3. OUTER BOUNDS AND REFERENCE SYSTEMS 50

where the set A = {Y : h(Y N |SN , V N , FN) = EF
[
N
2

log 2πe(ξPf 2 + σ2
W )
]
}. Note

that in (3.8)-(a) we use the fact that h(Y N |SN , V N , FN) = EF
[
N
2

log 2πe (ξPf 2 + σ2
W )
]
,

for some ξ ∈ [0 1]. This can be shown by noting that the following inequality

holds N
2

log 2πe(σ2
W ) = h(WN) ≤ h(Y N |SN , V N , FN) ≤ h(FNXN + WN |FN) =

EF [N
2

log 2πe(Pf 2 + σ2
W )]; as a result, there is a ξ ∈ [0 1] such that h(Y N |SN , V N , FN) =

EF
[
N
2

log 2πe (ξPf 2 + σ2
W )
]
. Moreover in (3.8)-(a), we used the fact that

h(Y N |S̃N , FN) = EF [h(Y N |S̃N , fn)] = EF [h(Y N − γlmse(S̃N , fn)|S̃N , fn)]

≤ EF [h(Y N − γlmse(S̃N , fn))] ≤ N

2
EF [log 2πe(MSE(Y ; S̃))].

(3.9)

Similarly, to derive a bound on D2, we have the following

K −N
2

log
σ2
V

D2

≤ I([V K ]KN+1; [V̂ K ]KN+1|SN , V N , FN) ≤ I([V K ]KN+1;Y N |SN , V N , FN)

= h(Y N |SN , V N , FN)− h(Y N |SN , V N , [V K ]KN+1, F
N)

= h(Y N |SN , V N , FN)− h(Y N |SN , V K , FN)

= E
[
N

2
log

(
ξPf 2 + σ2

W

σ2
W

)]
(3.10)

where in the last equality, we used h(Y N |SN , V N , FN) = EF
[
N
2

log 2πe (ξPf 2 + σ2
W )
]

as shown earlier. Note that since we do not know the value of ξ, the overall distortion

has to be minimized over the parameter ξ. Now using (3.8) and (3.10) in (3.7), we
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have the following bound

D ≥ inf
ξ

inf
Y ∈A

r Var(V |S̃)

exp
{
EF
[
log
(

MSE(Y ;S̃)

ξPf2+σ2
W

)]} + (1− r) σ2
V

exp
{
EF
[

N
K−N log

(
ξPf2+σ2

W

σ2
W

)]}


(3.11)

where the sup in (3.8) is manifested as inf on the distortion. Note that the above

sequence of inequalities in (3.9) becomes equalities when Y is conditionally Gaus-

sian given F and when Y − γlmse(S̃, f) and S̃ are jointly Gaussian and orthogo-

nal to each other given F ; this happens when X∗ is jointly Gaussian with S, V

and W given F . Hence, the sup in (3.8) happens when X∗ is Gaussian. Now

we write X∗ = N∗ξ + X∗ξ , where N∗ξ ∼ N (0, ξP ) is independent of (V, S) and

X∗ξ ∼ N (0, (1 − ξ)P ) is a function of (V, S). Note that X∗ξ is independent of N∗ξ .

As a result , the equality h(Y N |SN , V N , FN) = EF
[
N
2

log 2πe (ξPf 2 + σ2
W )
]

still

holds and hence Y ∗ ∈ A, E[Y 2] = f 2(P + σ2
S + 2(E[X∗ξSI + X∗ξSD])) + σ2

W and

E[Y S̃] = f
(
E[X∗ξ (η1SI + η2SD)] + E[η1S

2
I + η2S

2
D]
)
. By the Cauchy-Schwarz in-

equality, |E[X∗SI ]| = |E[X∗ξSI ]| ≤
√

E[(X∗ξ )2]E[S2
I ] and |E[X∗SD]| = |E[X∗ξSD]| ≤√

E[(X∗ξ )2]E[S2
D]. Hence we maximize the value of MSE(Y ; S̃) over X or equivalently

over E[X∗ξSI ] and E[X∗ξSD] satisfying the above constraints. Finally, the parameters

η1 and η2 are chosen so that the right hand side of (3.6) is maximized.

3.3.2 Linear Scheme

In this section, we assume that the encoder transforms the K dimensional signal V K

into an N dimensional channel input XN using a linear transformation according to

XN = α(V K , SN) = TV K + MSN (3.12)



3.3. OUTER BOUNDS AND REFERENCE SYSTEMS 52

where T and M are RN×K and RN×N matrices, respectively. In such case, Y N is

conditionally Gaussian given FN and the MMSE decoder is a linear estimator, with,

V̂ K = ΣV Y Σ−1
Y Y N , where ΣV Y = E

[
(V K)(Y N)T

]
and ΣY = E

[
(Y N)(Y N)T

]
. The

matrices T and M can be found (numerically) by minimizing the MSE distortion

Dlinear = EF
[

1
K
tr
{
σ2
V IK×K − ΣV Y Σ−1

Y ΣT
V Y

}]
under the power constraint in (3.3),

where tr(.) is the trace operator. Note that by setting M to be the zero matrix

and T =
√
P/σ2

V IN×K , the system reduces to the uncoded scheme. Focusing on the

matched case (K = N), we have the following lemma for finite block length K.

Lemma 3.3. For the matched-bandwidth source-channel coding of a Gaussian source

transmitted over an AWGN fading channel with correlated interference, the distortion

lower bound for any linear scheme is achieved with single-letter linear codes.

Proof. Recall that since V K and SK are correlated, we have SK = ρV SσS
σV

V K + SKI ,

where the samples in SKI are i.i.d. Gaussian with common variance σ2
S(1− ρ2

V S). As

a result and using (3.12)

Y K = F

(
T +

ρV SσS
σV

M +
ρV SσS
σV

IK×K

)
V K + F (M + IK×K)SKI +WK

= FT̃V K + FM̃SKI +WK (3.13)

where F = diag(FK) is a diagonal matrix that represents the fading channel, M̃ =

(M + IK×K) and T̃ =
(
T + ρV SσS

σV
M + ρV SσS

σV
IK×K

)
. After some manipulation, the

distortion Dlinear is given by

Dlinear =
1

K
EF
[
tr

{(
T̃TFT [σ2

S(1− ρ2
V S)FM̃M̃TFT + σ2

W IK×K ]−1FT̃ + σ−2
V IK×K

)−1
}]

=
1

K
EF
[
tr
{(

QFTRF + σ−2
V IK×K

)−1
}]

(3.14)
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where we define Q = T̃T̃T , R = [σ2
S(1−ρ2

V S)FM̃M̃TFT +σ2
W IK×K ]−1 and use the fact

that for any square matrices A and B, tr (I + AB)−1 = tr (I + BA)−1 [1]. Now by

noting that for any positive-definite K×K square matrix D, tr(D−1) ≥∑K
i=1D

−1
ii [1],

where Dii denotes the diagonal elements in D and equality holds iff D is diagonal,

we can write the following

Dlinear ≥
1

K
EF

[
K∑
i=1

1

Qii|Fii|2Rii + σ−2
V

]
. (3.15)

Equality in (3.15) holds iff Q and R are diagonal; hence the optimal solution gives a

diagonal T and M. Thus, the linear coding can be achieved in a scalar form without

performance loss.

3.3.3 Tandem Digital Scheme

Recall that in [29] and as described in Sec. 2.5.1, Gel’fand and Pinsker showed that

the capacity of a point-to-point communication with side information (interference)

known non-causally at the encoder side is given by

C = max
p(u,x|s)

I(U ;Y )− I(U ;S) (3.16)

where the maximum is over all joint distributions of the form p(s)p(u, x|s)p(y|x, s) and

U denotes an auxiliary random variable. In [12], Costa showed that using U = X+αS,

with α = P
P+σ2

W
over AWGN channel with interference known at the transmitter, the

achievable capacity is C = 1
2

log
(

1 + P
σ2
W

)
which coincides with the capacity of the

AWGN channel (no interference). As a result, this choice of U is optimal in terms

of maximizing capacity. Next, we adapt the Costa scheme for the fading channel; we
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choose U = X + αS as above, where α is redesigned to fit our problem. Using (3.16)

and by interpreting the fading F as a second channel output, an achievable rate R is

given by

R = I(U ;Y, F )− I(U ;S) = I(U ;Y |F )− I(U ;S) (3.17)

where we use the fact that I(U ;F ) = 0. After some manipulations, the rate R can

be expressed as follows

R = EF
[

1

2
log

(
P [f 2(P + σ2

S) + σ2
W ]

Pσ2
Sf

2(1− α)2 + σ2
W (P + α2σ2

S)

)]
. (3.18)

To optimize the value of α, we minimize the expected value of the denominator in

(3.18) (i.e., EF [Pσ2
Sf

2(1−α)2 +σ2
W (P+α2σ2

S)]). As a result, we choose α = PE[f2]

PE[f2]+σ2
W

for finite noise levels. Note that this choice of α is independent of S and depends on

the second order statistics of the fading. In [74], the authors show that by choosing

α = P
P+σ2

W
, Costa coding maximizes the achievable rate for fading channels in the

limits of both high and low noise levels.

The tandem scheme is based on the concatenation of an optimal source code and

the adapted Costa coding (described above). The optimal source code quantizes the

analog source with a rate close to that in (3.18), and the adapted Costa coder achieves

a rate equal to (3.18). Hence, from the lossy JSCC theorem [17], the MSE distortion

for a K : N system can be expressed as follows

Dtandem =
σ2
V

exp
{
EF
[
r log

(
P [f2(P+σ2

S)+σ2
W ]

Pσ2
Sf

2(1−α)2+σ2
W (P+α2σ2

S)

)]} . (3.19)

Note that due to the purely digital nature of this scheme, its performance does not
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improve when the noise level decreases (levelling-off effect) or in the presence of

correlation between the source and the interference.

Remark 3.1. Assuming no fading, the tandem scheme is optimal for the uncorrelated

case (ρV S = 0). The system’s distortion in (3.19) is then simplified as follows

Dtandem =
σ2
V(

1 + P
σ2
W

)r . (3.20)

3.4 Distortion Region for the Layered Schemes

In this section, we propose layered schemes based on Wyner-Ziv and HDA coding

for transmitting a Gaussian source over a fading channel with correlated interference.

These schemes require proper combination of power splitting, bandwidth splitting,

rate splitting, Wyner-Ziv and HDA coding. A performance analysis in the presence

of noise mismatch is also conducted.

3.4.1 Scheme 1: Layering Costa and HDA Coding for Bandwidth Expan-

sion

This scheme comprises two layers that output XK
1 and XN−K

2 . The channel input is

obtained by multiplexing (concatenating) the output codeword of both layers XN =

[XK
1 XN−K

2 ] as shown in Fig. 3.2. The first layer is composed of two sublayers that are

superimposed to produce the first K samples of the channel input XK
1 = XK

a +XK
d .

The first sublayer is purely analog and consumes an average power of Pa; the output

of this sublayer is given by XK
a =

√
a(β1V

K + β2S
K), where β1, β2 ∈ [−1 1] and

a = Pa
β2

1σ
2
V +β2

2σ
2
S+2β1β2ρV SσV σS

is a gain factor related to power constraint Pa, with

0 ≤ Pa ≤ P . The second sublayer, that outputs XK
d and consumes the remaining
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Figure 3.2: Scheme 1 (bandwidth expansion) encoder structure.

power Pd = P − Pa, encodes the source V K using a Wyner-Ziv coder followed by

a (generalized) Costa coder. The Wyner-Ziv encoder, which uses the fact that an

estimate of V K can be obtained at the decoder side, forms a random variable TK1 as

follows

TK1 = αwz1V
K +BK

1 (3.21)

where each sample in BK
1 is a zero mean i.i.d. Gaussian, αwz1 and the variance of

B1 are defined later. The encoding process starts by generating a K-length i.i.d.

Gaussian codebook T1 of size 2KI(T1;V ) and randomly assigning the codewords into

2KR1 bins with R1 defined later. For each source realization V K , the encoder searches

for a codeword TK1 ∈ T1 such that (V K , TK1 ) are jointly typical. In the case of

success, the Wyner-Ziv encoder transmits the bin index of this codeword using Costa

coding. The Costa coder, which treats the analog sublayer XK
a in addition to SK as

interference, forms the following auxiliary random variable

UK
c1

= XK
d + αc1Š

K (3.22)
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where ŠK = (XK
a + SK), the samples in XK

d are i.i.d. zero mean Gaussian with vari-

ance Pd = P −Pa and 0 ≤ αc1 ≤ 1 is a real parameter. Note that XK
d is independent

of V K and SK . The encoding process of the Costa coding can be summarized as

follows

• Codebook Generation: Generate a K-length i.i.d. Gaussian codebook Uc1 with

2KI(Uc1 ;Y1,F ) codewords, where Y K
1 is the first K samples of the received signal

Y N . Every codeword is generated following the random variable UK
c1

and uni-

formly distributed over 2KR1 bins. The codebook is revealed to both encoder

and decoder.

• Encoding: For a given bin index (the output of the Wyner-Ziv encoder), the

Costa encoder searches for a codeword UK
c1

such that the bin index of UK
c1

is

equal to the Wyner-Ziv output and (UK
c1
, ŠK) are jointly typical. In the case of

success, the Costa encoder outputs XK
d = UK

c1
−αc1ŠK . Otherwise, an encoding

failure is declared.

The second layer, which outputs XN−K
2 , encodes V K using a Wyner-Ziv with rate

R2 and a Costa coder that treats [SN ]NK+1 as interference. The Wyner-Ziv encoder,

which uses the fact that an estimate of V K is obtained from the first layer, forms the

random variable TK2 as follows

TK2 = αwz2V
K +BK

2 (3.23)

where the samples in BK
2 are i.i.d. and follow a zero mean Gaussian distribution,

αwz2 and the variance of B2 are defined later. The Costa coder forms the auxiliary

random variable UN−K
c2

= XN−K
2 +αc2 [SN ]NK+1, where the samples in XN−K

2 are i.i.d.
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zero mean Gaussian with variance P , and the real parameter αc2 is defined later. The

encoding process of the Wyner-Ziv and the Costa coder for the second layer is very

similar to the one described for the first layer.

At the receiver side, as shown in Fig. 3.3, from the first K components of the

received signal Y N = [Y K
1 , Y N−K

2 ] = FN(XN + SN) + WN , where Y K
1 = [Y N ]K1 and

Y N−K
2 = [Y N ]NK+1, the Costa decoder estimates the codeword UK

c1
by searching for a

codeword UK
c1

such that (UK
c1
, Y K

1 , FK) are jointly typical. By the result of Gel’fand-

Pinsker [29] (or Costa [12]) and by treating the fading coefficient FK as a second

channel output, the error probability of encoding and decoding the codeword UK
c1

vanishes as K →∞ if

R1 = I(Uc1 ;Y1, F )− I(Uc1 ; Š) = I(Uc1 ;Y1|F )−
(
h(Uc1)− h(Uc1|Š)

)
= h(Uc1) + h(Y1|F )− h(Uc1 , Y1|F )− h(Uc1) + h(Uc1 |Š)

= EF

[
1

2
log

(
Pd[f

2(Pd + σ2
Š
) + σ2

W ]

Pdσ2
Š
f 2(1− αc1)2 + σ2

W (Pd + α2
c1
σ2
Š
)

)]
(3.24)

where σ2
Š

= E[(Xa + S)2]. We then obtain a linear MMSE estimate of V K (based on

Y K
1 and UK

c1
), denoted by V K

a . The distortion from estimating the source using V K
a

is given by

Da = EF
[
σ2
V − ΓΛ−1ΓT

]
(3.25)

where Λ = E[[Uc1 Y1]T [Uc1 Y1]] is the covariance of [Uc1 Y1] and Γ = E[V [Uc1 Y1]]

is the correlation vector between V and [Uc1 Y1]. By using rate R1 on the Wyner-

Ziv encoder, the bin index of the Wyner-Ziv can be decoded correctly (with high

probability). The Wyner-Ziv decoder then looks for a codeword TK1 in this bin such

that (TK1 , V
K
a ) are jointly typical (as K →∞, the probability of error in decoding TK1
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vanishes). A better estimate of V K is then obtained based on V K
a and the decoded

codeword TK1 . The distortion in the estimated source Ṽ K is then

D̃ =
Da

exp
{
EF
[
log
(

Pd[f2(Pd+σ2
Š

)+σ2
W ]

Pdσ
2
Š
f2(1−αc1 )2+σ2

W (Pd+α2
c1
σ2
Š

)

)]} . (3.26)

Note that this distortion is equal to the distortion incurred when assuming that the

side information V K
a is also known at the transmitter side; this can be achieved by

choosing αwz1 =
√

1− D̃
Da

and B1 ∼ N (0, D̃) in (3.21) and using a linear MMSE

estimator based on V K
a and TK1 . In contrast to the AWGN channel with correlated

interference [35], a purely analog layer is not sufficient to accommodate for the cor-

relation over AWGN fading channel with correlated interference; indeed using the

knowledge of UK
c1

as a side information to obtain a better description of the Wyner-

Ziv codewords TK1 will achieve a better performance. From the last N −K received

Wyner-Ziv
Decoder1

Costa
Decoder1

UK
c1

V K
a

Ṽ K
Y N

Wyner-Ziv
Decoder2

Costa
Decoder2

V̂ K

LMMSE
Estimator

Demux

UN−K
c2Y N−K

2

Y K
1

Figure 3.3: Scheme 1 (bandwidth expansion) decoder structure.

symbols Y N−K
2 , the Costa decoder estimates the codeword UN−K

c2
by searching for a
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codeword UN−K
c2

such that (UN−K
c2

, Y N−K
2 , [FN ]NK+1) are jointly typical. The proba-

bility of error in encoding and decoding the codeword UN−K
c2

goes to zero by choosing

R2 = I(Uc2 ;Y2, F )− I(Uc2 ;S) = EF
[

1

2
log

(
P [f 2(P + σ2

S) + σ2
W ]

Pσ2
Sf

2(1− αc2)2 + σ2
W (P + α2

c2
σ2
S)

)]
(3.27)

where αc2 = PE[f 2]/(PE[f 2] + σ2
W ) is found in a similar way as done in Sec. 3.3.3.

By using this rate, the Wyner-Ziv bin index can be decoded correctly (with high

probability). The Wyner-Ziv decoder then looks for a codeword TK2 in the decoded

bin such that TK2 and the side information from the first layer Ṽ K are jointly typical.

A refined estimate of the source can be found using the side information Ṽ K and the

decoded codeword TK2 . The resulting distortion is then

DScheme 1 = inf
β1,β2,Pa,αc1


D̃

exp

{
EF
[
log
(

P [f2(P+σ2
S)+σ2

W ]

Pσ2
Sf

2(1−αc2 )2+σ2
W (P+α2

c2
σ2
S)

)r−1
]}
 . (3.28)

Note that this distortion is equal to the distortion realized when assuming Ṽ K is also

known at the transmitter side; this can be achieved using a linear MMSE estimator

based on [T1 T2 Y1], and by setting αwz2 =
√

1− DScheme 1

D̃
and B2 ∼ N (0, DScheme 1)

in (3.23).

Remark 3.2. For AWGN channels with no fading, the same scheme can be used. In

this case, the distortion from reconstructing the source can be expressed as follows:

DScheme 1 = inf
β1,β2,Pa

{
Da

[(1 + P/σ2
W )r−1(1 + Pd/σ2

W )]

}
. (3.29)

This distortion can be found by setting the fading coefficient F = 1, αc1 = Pd/(Pd +
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σ2
W ) and αc2 = P/(P + σ2

W ) in (3.28). The distortion in (3.29) can be also achieved

by replacing the sublayer that outputs XK
d by an HDA Costa layer. Note that using

only Y K
1 as input to the LMMSE estimator in Fig. 3.3 is enough for the AWGN case.

In such case, Da in (3.29) can be simplified as follows

Da =

(
σ2
V −

(
√
aβ2

1σ
2
V + (

√
aβ2 + 1)ρV SσV σS)2

P + (2
√
aβ2 + 1)σ2

S + 2
√
aβ1ρV SσV σS + σ2

W

)
. (3.30)

Moreover, one can check that this scheme is optimal (for the AWGN channel) for

ρV S = 0 and ρV S = 1. For ρV S = 0, this happens by shutting down the analog

sublayer (i.e., Pa = 0) in the scheme and using (η1 = 1, η2 = 1) on the outer bound

in (3.4). For the case of ρV S = 1, the optimal power allocation for the scheme is

(Pa = P, Pd = 0). The resulting system’s distortion can be shown to be equal to the

outer bound in (3.4) for (η1 = 1, η2 = 0).

Scheme 1 under mismatch in noise levels: Next, we study the distortion of the

proposed scheme in the presence of noise mismatch between the transmitter and the

receiver. The actual channel noise power σ2
Wa

is assumed to be lower than the design

one σ2
W (i.e., σ2

Wa
< σ2

W ). Under such assumption, the Costa and Wyner-Ziv decoders

are still able to decode correctly all codewords with low probability of error. After

decoding TK1 and TK2 , a symbol-by-symbol linear MMSE estimator of V K based on

Y K
1 , TK1 and TK2 is calculated. Hence Scheme 1’s distortion under noise mismatch is

given by

D(Scheme 1)-mis = EF
[
σ2
V − ΓT1−misΛ

−1
1−misΓ1−mis

]
(3.31)

where Λ1−mis is the covariance matrix of [T1 T2 Y1], and Γ1−mis is the correlation

vector between V and [T1 T2 Y1]. Note that σ2
Wa

is used in the covariance matrix



3.4. DISTORTION REGION FOR THE LAYERED SCHEMES 62

Λ1−mis instead of σ2
W .

Remark 3.3. When σ2
Wa

> σ2
W , all codewords cannot be decoded correctly at the

receiver side; as a result we can only estimate the source vector V K by applying a linear

MMSE estimator based on the noisy received signal Y K
1 . The system’s distortion in

this case is given by

D(Scheme 1)-mis = EF
[
σ2
V −

f 2(
√
aβ2

1σ
2
V + (

√
aβ2 + 1)ρV SσV σS)2

f 2(P + (2
√
aβ2 + 1)σ2

S + 2
√
aβ1ρV SσV σS) + σ2

Wa

]
.

(3.32)

3.4.2 Scheme 2: Layering Costa and HDA Coding for Bandwidth Reduc-

tion

In this section, we present a layered scheme for bandwidth reduction. This scheme

comprises three layers that are superposed to produce the channel input XN = XN
a +

XN
1 +XN

2 , where XN
a , XN

1 and XN
2 denote the outputs of the first, second and third

layers, respectively. The scheme’s encoder structure is depicted in Fig. 3.4. Recall

that we denote the first N samples of V K by V N and the last K − N samples by

[V K ]KN+1. The first layer is an analog layer that outputs XN
a =

√
a(β1V

N + β2S
N),

a linear combination of V N and SN , and consumes Pa ≤ P as average power, where

β1, β2 ∈ [−1 1], and a = Pa
β2

1σ
2
V +β2

2σ
2
S+2β1β2ρV SσV σS

is a gain factor related to the power

constraint Pa. The second layer, which operates on the first N samples of the source,

encodes V N using a Wyner-Ziv with rate R1 followed by a Costa coder. The Wyner-

Ziv encoder forms a random variable

TN1 = αwz1V
N +BN

1 (3.33)
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where the samples in BN
1 are i.i.d and follow a zero mean Gaussian distribution, the

parameter αwz1 and the variance of B1 are related to the side information from the

first layer and hence defined later. The Costa coder that treats both XN
a and SN as

interference forms the following auxiliary random variable UN
c1

= XN
1 +αc1Š

N , where

the samples in XN
1 are i.i.d. zero mean Gaussian with variance P1 ≤ P − Pa and

independent of the source and the interference, ŠN = XN
a + SN and 0 ≤ αc1 ≤ 1 is a

real parameter. The last layer encodes [V K ]KN+1 using an optimal source encoder with

rate R2 followed by a Costa coder. The Costa encoder, which treats the outputs of

the first two layers (XN
a , X

N
1 ) as well as SN as known interference, forms the following

auxiliary random variable UN
c2

= XN
2 + αc2S̃

N , where S̃N = (XN
a + XN

1 + SN), the

samples in XN
2 are zero mean i.i.d. Gaussian with variance P2 = P − P1 − Pa and

αc2 = P2E[f 2]/(P2E[f 2] + σ2
W ).
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Encoder1
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Encoder1
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β2

+

+

√
a
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1

V K
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[V K ]KN+1

V N
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Figure 3.4: Scheme 2 (bandwidth reduction) encoder structure.

At the receiver side, as illustrated in Fig. 3.5, from the received signal Y N the

Costa decoder estimates UN
c1

. By using a rate R1 = I(Uc1 ;Y, F ) − I(Uc1 ; Š) =

EF
[

1
2

log
(

P1[f2(P1+σ2
Š

+P2)+σ2
W ]

P1(σ2
Š

)f2(1−αc1 )2+(σ2
W+f2P2)(P1+α2

c1
σ2
Š

)

)]
, where σ2

Š
= E[(Xa + S)2], the Costa

decoder (of the second layer) is able to estimate the codewords UN
c1

with vanishing
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error probability. We then obtain an estimate of V N , denoted by V N
a , using a linear

MMSE estimator based on Y N and UN
c1

. The distortion from estimating V N using

Wyner-Ziv
Decoder1

Costa
Decoder1

UN
c1

V N
a

V̂ NY N

Source
Decoder2

Costa
Decoder2 [V̂ K ]KN+1

LMMSE
Estimator

UK−N
c2

V̂ K

Mux

Figure 3.5: Scheme 2 (bandwidth reduction) decoder structure.

V N
a is then given by

Da = EF
[
σ2
V − ΓΛ−1ΓT

]
(3.34)

where Λ is the covariance of [Uc1 Y ] and Γ is the correlation vector between V and

[Uc1 Y ]. The Wyner-Ziv decoder (of the second layer) then looks for a codeword

TN1 such that (TN1 , V
N
a ) are jointly typical (as N → ∞, the probability of error in

decoding TN1 vanishes). A better estimate of V N is then obtained based on the side

information V N
a and the decoded codeword TN1 . The distortion from reconstructing

V N is then given by

DScheme 2
1 =

Da

exp
(
EF
[
log
(

P1[f2(P1+σ2
Š

+P2)+σ2
W ]

P1(σ2
Š

)f2(1−αc1 )2+(σ2
W+f2P2)(P1+α2

c1
σ2
Š

)

)]) . (3.35)

Note that the distortion in (3.35) can be found by choosing αwz1 =
√

1− DScheme 2
1

Da

and B1 ∼ N (0, DScheme 2
1 ) in (3.33) and using a linear MMSE estimator based on V N

a

and TN1 . To get an estimate of [V K ]KN+1, we use a Costa decoder followed by a source
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decoder. Codewords of this layer can be decoded correctly (with high probability) by

choosing the rateR2 = I(Uc2 ;Y, F )−I(Uc2 ; S̃) = EF
[

1
2

log
(

P2[f2(P2+σ2
S̃

)+σ2
W ]

P2σ2
S̃
f2(1−α2)2+σ2

W (P2+α2
2σ

2
S̃

)

)]
,

where σ2
S̃

= E[(Xa+X1 +S)2]. The distortion in reconstructing [V K ]KN+1 can be found

by equating the rate-distortion function to the transmission rate R2; this means that

K−N
2

log
σ2
V

DScheme 2
2

= (N)R2. As a result, the distortion in reconstructing [V K ]KN+1,

denoted by DScheme 2
2 , is given by

DScheme 2
2 =

σ2
V

exp
{
EF
[

r
1−r log

(
P2[f2(P2+σ2

S̃
)+σ2

W ]

P2σ2
S̃
f2(1−α2)2+σ2

W )(P2+α2
2σ

2
S̃

)

)]} . (3.36)

Hence, the system’s distortion is given by

DScheme 2 = inf
β1,β2,Pa,P1,αc1

{
rDScheme 2

1 + (1− r)DScheme 2
2

}
. (3.37)

Remark 3.4. For the AWGN channel, the distortion DScheme 2
1 and DScheme 2

2 for

the reduction case are simplified as follows

DScheme 2
1 =

Da

1 + P1

P2+σ2
W

and DScheme 2
2 =

σ2
V(

1 + P2

σ2
W

) r
1−r

. (3.38)

Since for AWGN channel, the use of UN
c1

as input to the LMMSE estimator in

Fig. 3.5 does not improve the performance, the distortion Da admits a simplified

expression as given in (3.30). The distortions in (3.38) can be derived by choosing

αc1 = P1

P1+P2+σ2
W

and αc2 = P2

P2+σ2
W

. Note that this scheme is optimal for uncorrelated

source-interference and for full correlation between the source and the interference.

For the uncorrelated case, the analog layer is not needed (Pa = 0, Da = σ2
V ) and
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the optimal power allocation between the two other layers can be derived by min-

imizing the resulting distortion with respect to P1; the optimal power P1 is P ∗1 =

σ2
W

[
1−

(
1 + P

σ2
W

)1−r
]

+P . For the case of full correlation between the (first N sam-

ples of the) source and the interference (ρV S = 1), the second layer can be shut down

(P1 = 0) and the optimal P ∗a satisfies the following equation

σ2
W

(
1 +

σW√
Pa

)(
1 +

P − Pa
σ2
W

) 1
1−r
(
P + σ2

W +
√
Paσ2

V

)
−
(
P + σ2

W + σ2
V + 2

√
Paσ2

V

)2

= 0. (3.39)

Scheme 2 under mismatch in noise levels: We next examine the distortion of the

proposed scheme in the presence of noise mismatched between the transmitter and

the receiver. The actual channel noise power σ2
Wa

is assumed to be lower than the

design one σ2
W (i.e., σ2

Wa
< σ2

W ). Under such assumption, the Costa and Wyner-Ziv

decoders can decode all codewords with vanishing probability of error. The distortion

in reconstructing [V K ]KN+1, DScheme 2
2−mis , is hence the same as in the matched noise level

case; and the distortion from reconstructing V N is DScheme 2
1−mis = EF

[
σ2
V − ΓTΛ−1Γ

]
,

where Λ is the covariance matrix of [T1 Y ], and Γ is the correlation vector between V

and [T1 Y ]. As a result, the system’s distortion is D(Scheme 2)-mis = rDScheme 2
1−mis + (1−

r)DScheme 2
2−mis . Note that σ2

Wa
is used in Λ instead of σ2

W when computing DScheme 2
1−mis .

Remark 3.5. When σ2
Wa

> σ2
W , all codewords cannot be decoded correctly at the

receiver side; as a result we can only estimate the source vector V N by applying a linear

MMSE estimator based on the noisy received signal Y N . The system’s distortion is
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then given by

D(Scheme 2)-mis = rEF
[(
σ2
V −

f 2(
√
aβ2

1σ
2
V + (

√
aβ2 + 1)ρV SσV σS)2

f 2(P + (2
√
aβ2 + 1)σ2

S + 2
√
aβ1ρV SσV σS) + σ2

Wa

)]
+(1− r)σ2

V . (3.40)

3.4.3 Numerical Results

In this section, we assume an i.i.d. zero-mean Gaussian source with unitary variance

that is transmitted over an AWGN Rayleigh fading channel with Gaussian interfer-

ence. The interference power is σ2
S = 1, the power constraint is set to P = 1 and

the Rayleigh fading has E[F 2] = 1. To evaluate the performance, we consider the

SDR performance; the design CSNR , PE[F 2]

σ2
W

is set to 10 dB for all numerical results.

Fig. 3.6, which considers the AWGN channel, shows the SDR performance versus the

correlation coefficient ρV S for bandwidth expansion (r = 2) and matched noise levels

between the transmitter and receiver. We note that the proposed scheme outper-

forms the tandem Costa reference scheme (described in Sec. 3.3.3) and performs very

close to the “best” derived outer bound for a wide range of correlation coefficients.

Although not shown, the proposed scheme also outperforms significantly the linear

scheme of Sec. 3.3.2. For the limiting cases of ρV S = 0 and 1, we can notice that the

SDR performance of the proposed scheme coincides with the outer bound and hence

is optimal.

Figs. 3.7, 3.8 and 3.9 show the SDR performance versus ρV S for the fading channel

with interference under matched noise levels and for r = 1, 2 and 1/2, respectively.

As in the case of the AWGN channel, we remark that the proposed HDA schemes

outperform the tandem Costa and the linear schemes and perform close to the best
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Figure 3.6: Performance of HDA Scheme 1 (r = 2) over the AWGN channel under
matched noise levels for different correlation coefficient values, P = 1,
σ2
S = 1 and CSNR=10 dB (as given by (3.28)). Tandem scheme and

outer bounds on SDR are plotted using (3.19) and (3.4), respectively.

outer bound. In contrast to the AWGN case, the proposed scheme never coincides

with the outer bound for finite noise levels. Using the result in [74], one can easily

show that our schemes are optimal for ρV S = 0 in the limits of high and low noise

levels. As a result, the auxiliary random variable used for the Costa coder is optimal

in the noise level limits.

Fig. 3.10 shows the SDR performance versus CSNR levels under mismatched noise

levels. All schemes in Fig. 3.10 are designed for CSNR=10 dB, r = 1 and ρV S =

0.7. The true CSNR varies between 0 and 35 dB. We observe that the proposed

scheme is resilient to noise mismatch due to its hybrid digital-analog nature. As

the correlation coefficient values decreases, the power allocated to the analog layer
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noise levels for different correlation coefficient, P = 1, σ2

S = 1, CSNR=10
dB and E[F 2] = 1 (as given by (3.28)). Tandem scheme and outer bounds
on SDR are plotted using (3.19) and (3.4), respectively.

decreases. Hence, the SDR gap between the proposed and the tandem Costa scheme

under mismatched noise levels decreases and the robustness (which is the trait of

analog schemes) reduces.

3.5 JSCC for Source-Channel-State Transmission

As an application of the joint source-channel coding problem examined in this chap-

ter we consider the transmission of analog source-channel-state pairs over a fading

channel with Gaussian state interference. We establish inner and outer bounds on

the source-interference distortion for the fading channel. The only difference between

this problem and that examined in the previous sections is that the receiver is also
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outer bounds on SDR are plotted using (3.19) and (3.4), respectively.

interested in estimating the interference SN . For simplicity, we focus on the matched

bandwidth case (i.e., K = N); the unequal source-channel bandwidth case can be

treated in a similar way as in Section 3.4. We also assume that the decoder has knowl-

edge of the fading. We denote the distortion from reconstructing the source and the

interference by Dv = 1
K
E[||V K− V̂ K ||2] and Ds = 1

N
E[||SN − ŜN ||2], respectively. For

a given power constraint P , a rate r and a Rayleigh fading channel, the distortion

region is defined as the closure of all distortion pair (Do
v, D

o
s) for which (P,Do

v, D
o
s)

is achievable, where a power-distortion triple is achievable if for any δv, δs > 0, there

exist sufficiently large integers K and N with N/K = r, encoding and decoding

functions satisfying (3.3), such that Dv < Do
v + δv and Ds < Do

s + δs.
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3.5.1 Outer Bound

Lemma 3.4. For the matched bandwidth case, the outer bound on the distortion

region (Dv, Ds) can be expressed as follows

Dv ≥
Var(V |S)

exp
{
EF
[
log

ζP |f |2+σ2
W

σ2
W

]} , Ds ≥
σ2
S

exp

{
EF
[
log

|f |2
(
P+σ2

S+2
√

(1−ζ)Pσ2
S

)
+σ2

W

ζP |f |2+σ2
W

]}
(3.41)

where Var(V |S) = σ2
V (1− ρ2

V S) is the variance of V given S and 0 ≤ ζ ≤ 1.
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Proof. For the source distortion, we can write the following

K

2
log

σ2
V

Dv

(a)

≤ I(V K ; V̂ K |FK)
(b)

≤ I(V K ; V̂ K |FK) + I(V K ;SK |V̂ K , FK)

= I(V K ; V̂ K , SK |FK)
(c)
= I(V K ;SK) + I(V K ; V̂ K |SK , FK)

(d)

≤ K

2
log

σ2
V

Var(V |S)
+ I(V K ;Y K |SK , FK)

=
K

2
log

σ2
V

Var(V |S)
+ h(Y K |SK , FK)− h(WK)

(e)
=

K

2
log

σ2
V

Var(V |S)
+
K

2
EF
[
log

ζP |f |2 + σ2
W

σ2
W

]
(3.42)

where (a) follows from the rate-distortion theorem, (b) follows from the non-negativity

of mutual information, (c) follows from the chain rule of mutual information and the
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fact that FK is independent of (V K , SK), (d) holds by the data processing inequality

and in (e) we used h(Y K |SK , FK) = K
2
EF [log (ζP |f |2 + σ2

W )] for some ζ ∈ [0, 1]; this

can be proved from the fact that K
2

log σ2
W = h(WN) ≤ h(Y K |SK , FK) ≤ h(FKXK +

WK |FK) = K
2
EF [log (P |f |2 + σ2

W )]. Hence, there exists a ζ ∈ [0, 1] such that

h(Y K |SK , FK) = K
2
EF [log (ζP |f |2 + σ2

W )].

For the interference distortion, we have the following

K

2
log

σ2
S

Ds

(a)

≤ I(SK ; ŜK |FK)
(b)

≤ I(SK ;Y K |FK) = h(Y K |FK)− h(Y K |SK , FK)

(c)

≤ sup
X∈B

EF
[
K

2
log 2πe(|f |2(P + σ2

S + 2E[SX]) + σ2
W )

]
−EF

[
K

2
log 2πe(ζP |f |2 + σ2

W )

]
(d)
= EF

[
K

2
log
|f |2(P + σ2

S + 2
√

(1− ζ)Pσ2
S) + σ2

W

ζP |f |2 + σ2
W

]
(3.43)

where (a) follows from the rate-distortion theorem, (b) follows from data process-

ing inequality for the mutual information, in (c) the set B = {X : h(Y K |SK , FK) =

EF
[
K
2

log 2πe(ζP |f |2 + σ2
W )
]
} and the inequality in (c) holds from the fact that Gaus-

sian maximizes differential entropy and h(Y K |SK , FK) = K
2
EF [log (ζP |f |2 + σ2

W )] (as

used in (3.42)). Note that the supremum over X in (c) happens when Y , S and W are

jointly Gaussian given F (i.e., X∗ is Gaussian). Now, we represent X∗ = N∗ζ + X∗ζ ,

where N∗ζ ∼ N (0, ζP ) is independent of X∗ζ ∼ N (0, (1 − ζ)P ). Note that X∗ζ is a

function of S. Using this form of X∗, h(Y K |SK , FK) = K
2
EF [log (ζP |f |2 + σ2

W )] still

holds (i.e., X∗ ∈ B) and E[X∗S] = E[X∗ζS]. Maximizing over X is equivalent to max-

imizing over E[XS]; using Cauchy-Schwarz
(
E[X∗S] = E[X∗ζS] ≤

√
E[(X∗ζ )2]E[S2]

)
we get (d).
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3.5.2 Proposed Hybrid Coding Scheme

The proposed scheme is composed of three layers as shown in Fig. 3.11. The first

layer, which is purely analog, consumes an average power Pa and outputs a linear

combination of the source and the interference XK
a =

√
a1(β11V

K + β12S
K), where

β11, β12 ∈ [−1 1] and a1 = Pa
(β2

11σ
2
V +2β11β12ρV SσV σS+β2

12σ
2
S)

is a gain factor related to power

constraint Pa. The second layer employs a source-channel vector-quantizer (VQ) on

the interference; the output of this layer is XK
q = µ(SK +UK

q ), where µ > 0 is a gain

related to the power constraint and samples in UK
q follow a zero mean i.i.d. Gaussian

that is independent of V and S and has a variance Q. A similar VQ encoder was used

in [64] for the broadcast of bivariate sources and for the multiple access channel [46].

In what follows, we outline the encoding process of the VQ

• Codebook Generation: Generate a K-length i.i.d. Gaussian codebook Xq with

2KRq codewords with Rq defined later. Every codeword is generated following

the random variable XK
q ; this codebook is revealed to both the encoder and

decoders.

• Encoding: The encoder searches for a codeword XK
q in the codebook that is

jointly typical with SK . In case of success, the transmitter sends XK
q .

The last layer encodes a linear combination of V K and SK , denoted by X̃K
wz, us-

ing a Wyner-Ziv with rate R followed by a Costa coder. The Costa coder uses an

average power of Pd and treats XK
a , SK and XK

q as known interference. The lin-

ear combination is given by X̃K
wz = β̃21V

K + β̃22S
K =

√
a2(β21V

K + β22S
K), where

β21, β22 ∈ [−1 1] and a2 = Pd
(β2

21σ
2
V +2β21β22ρV SσV σS+β2

22σ
2
S)

. The Wyner-Ziv encoder forms
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Figure 3.11: Encoder structure for source-channel-state transmission.

a random variable TK as follows

TK = αwzX̃
K
wz +BK (3.44)

where the samples in BK are zero mean i.i.d. Gaussian, the parameter αwz and the

variance of B are defined later. The encoding process of the Wyner-Ziv starts by

generating a K-length i.i.d. Gaussian codebook T of size 2KI(T ;X̃wz) and randomly

assigning the codewords into 2KR bins with R defined later. For each realization

X̃K
wz, the Wyner-Ziv encoder searches for a codeword TK ∈ T such that (X̃K

wz, T
K)

are jointly typical. In the case of success, the Wyner-Ziv encoder transmits the bin

index of this codeword using Costa coding. The Costa coder, that treats S̃K =

XK
a +XK

q +SK as known interference, forms the following auxiliary random variable

UK
c = XK

d + αcS̃
K , where each sample in XK

d is N (0, Pd) that is independent of the

source and the interference and 0 ≤ αc ≤ 1. The encoding process for the Costa

coder can be described in a similar way as done before.
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At the receiver side, as shown in Fig. 3.12, from the noisy received signal Y K ,

the VQ decoder estimates XK
q by searching for a codeword XK

q ∈ Xq that is jointly

typical with the received signal Y K and FK . Following the result in [64] and the error

analysis of [48], the error probability of decoding XK
q goes to zero by choosing the

rate Rq to satisfy I(S;Xq) ≤ Rq ≤ I(Xq;Y, F ), where

I(S;Xq) = h(Xq)− h(Xq|S) =
1

2
log

σ2
S +Q

Q

I(Xq;Y, F ) = I(Xq;F ) + I(Xq;Y |F ) = h(Y |F )− h(Y |Xq, F )

= EF
{

1

2
log 2πe

(
E[Y 2]

)
− 1

2
log 2πe

(
E[Y 2]− E[XqY ]2

E[X2
q ]

)}
.

(3.45)

The variance Q has to be chosen to satisfy the above rate constraint. Furthermore,

to ensure the power constraint is satisfied, we need µ to satisfy the following equation

Pa + µ2(σ2
S +Q) + 2µE[SXa] + Pd ≤ P. (3.46)

The Costa decoder then searches for a codeword UK
c that is jointly typical with

(Y K , FK). Since the received signal Y K and the codewords XK
q and UK

c are correlated

with X̃K
wz, an LMMSE estimate of X̃K

wz, denoted by ˆ̃XK
wz, can be obtained based on

Y K and the decoded codewords XK
q and UK

c . Mathematically, the estimate is given

by ˆ̃Xwz = ΓaΛ
−1
a [Xq Uc Y ]T , where Λa is the covariance of [Xq Uc Y ] and Γa is

the correlation vector between X̃wz and [Xq Uc Y ]. The distortion in reconstructing

X̃K
wz is then given by

Da = EF
[
Pd − ΓaΛ

−1
a ΓTa

]
. (3.47)
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Figure 3.12: Decoder structure for source-channel-state transmission.

Moreover, the Wyner-Ziv decoder estimates the codeword TK by searching for a

TK ∈ T that is jointly typical with ˆ̃XK
wz. The error probability of decoding both

codewords TK and UK
c vanishes as K →∞ if the coding rate of the Wyner-Ziv and

the Costa coder is set to

R = EF

[
1

2
log

(
Pd[f

2(Pd + σ2
S̃
) + σ2

W ]

Pd(σ2
S̃
)f 2(1− αc)2 + σ2

W (Pd + α2
cσ

2
S̃
)

)]
(3.48)

where σ2
S̃

= E[(Xa + Xq + S)2]. A better estimate of X̃K
wz can be obtained by using

the codeword TK and ˆ̃XK
wz. The distortion in reconstructing X̃K

wz can be expressed

as follows

D̃ =
Da

exp
{
EF
[
log
(

Pd[f2(Pd+σ2
S̃

)+σ2
W ]

Pd(σ2
S̃

)f2(1−αc)2+σ2
W (Pd+α2

cσ
2
S̃

)

)]} . (3.49)

This distortion can be achieved using a linear MMSE estimate based on TK , XK
q and

Y K by choosing αwz =
√

1− D̃
Da

and B ∼ N (0, D̃) in (3.44).

After decoding TK , XK
q , a linear MMSE estimator is used to reconstruct the

source and the interference signals. As a result, the distortion in decoding V K and
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SK are given as follows

DHybrid
v = EF

[
σ2
V − ΓvΛ

−1ΓTv
]
DHybrid
s = EF

[
σ2
S − ΓsΛ

−1ΓTs
]

(3.50)

where Λ is the covariance of [Xq T Y ], Γv is the correlation vector between V and

[Xq T Y ] and Γs is the correlation vector between S and [Xq T Y ].

Remark 3.6. For the AWGN channel with ρV S = 0, using the source itself instead

of X̃K
wz as input to the Wyner-Ziv encoder, shutting down the second layer and setting

β11 = 0 in XK
a give the best possible performance; the inner bound in such case

coincides with the outer bound, hence the scheme is optimal. This result is analogous

to the optimality result of the rate-state-distortion for the transmission of a finite

discrete source over a Gaussian state interference derived in [63].

3.5.3 Numerical Results

We consider source-interference pairs that are transmitted over a Rayleigh fading

channel (E[F 2] = 1) with Gaussian interference and power constraint P = 1; the

CSNR level is set to 10 dB. For reference, we adapt the scheme of [63] to our

scenario. Recall that the source and the interference are jointly Gaussian, hence

V K = ρV S
σV
σS
SK + SKI , where samples in SKI are i.i.d. Gaussian with variance

σ2
SI

= (1 − ρ2
V S)σ2

V and independent of SK . Now if we quantize SKI into digital

data, the setup becomes similar to the one considered in [63]; hence the encoding is

done by allocating a portion of the power, denoted by Ps, to transmit SK and the

remaining power Pd = (P − Ps) is used to communicate the digitized SKI using the
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(generalized) Costa coder. The received signal of such scheme is given by

Y K = FK

(√
Ps
σ2
S

SK +XK
d + SK

)
+WK (3.51)

where XK
d denotes the output of the digital part that communicates SKI . An estimate

of SK is obtained by applying an LMMSE estimator on the received signal; the dis-

tortion from reconstructing V K is equal to the sum of the distortions from estimating

ρV S
σV
σS
SK and SKI . Mathematically, the distortion region of such reference scheme

can be expressed as follows

DReference
s = EF

[
σ2
S −

E[SY ]2

E[Y 2]

]
= EF

[
σ2
S −

f 2(
√
PsσS + σ2

S)2

f 2(P + σ2
S + 2

√
PsσS) + σ2

W

]
,

DReference
v = ρ2

V S

σ2
V

σ2
S

Ds +
σ2
SI

exp
{
EF
[
log
(

Pd[f2(Pd+σ2
S̃

)+σ2
W ]

Pd(σ2
S̃

)f2(1−αc)2+σ2
W (Pd+α2

cσ
2
S̃

)

)]} (3.52)

where σ2
S̃

= E[(
√
Ps/σ2

SS + S)2] and the parameter αc is related to the Costa coder.

To evaluate the performance, we plot the outer bound (given by (3.41)) and the in-

ner bounds (the achievable distortion region) of the proposed hybrid coding (given

by (3.50)) and the reference scheme (adapted scheme of [63]). Fig. 3.13, which con-

siders the AWGN channel, shows the distortion regions of the source-interference pair

for ρV S = 0.8 and σ2
S = 0.5. We can notice that the hybrid coding scheme is very

close to the outer bound and outperforms the scheme of [63]. Fig. 3.14, which con-

siders the fading channel, shows the distortion regions of the source-interference pair

for ρV S = 0.8 and σ2
S = 1. The hybrid coding scheme performs relatively close to the

outer bound.
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Figure 3.13: Distortion region for hybrid coding scheme over the AWGN channel for
σ2
V = 1, P = 1, σ2

S = 0.5 and ρV S = 0.8.

3.6 Summary and Conclusions

In this chapter, we consider the problem of reliable transmission of Gaussian sources

over Rayleigh fading channels with correlated interference under unequal source-

channel bandwidth. Inner and outer bounds on the system’s distortion are derived.

The outer bound is derived by assuming additional knowledge at the decoder side;

while the inner bound is found by analyzing the achievable distortion region of the

proposed hybrid coding scheme. Numerical results show that the proposed schemes

perform close to the derived outer bound and to be robust to channel noise mis-

match. As an application of the proposed schemes, we derive inner and outer bounds

on the source-channel-state distortion region for the fading interference channel; in

this case, the receiver is interested in estimating both source and interference. Our
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Figure 3.14: Distortion region for hybrid coding scheme over the fading channel for
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setting contains several interesting limiting cases. In the absence of fading and/or cor-

relation and for some source-channel bandwidths, our setting resorts to the scenarios

considered in [35,63,67].
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Chapter 4

Distortion Bounds for Broadcasting Bivariate

Gaussian Sources in the Presence of Interference

4.1 Introduction

For multi-terminal systems, tandem coding is no longer optimal; a JSCC scheme may

be required to achieve optimality. One simple scenario where the tandem scheme is

suboptimal concerns the broadcast of Gaussian sources over Gaussian channels [28].

For a single Gaussian source sent over a Gaussian broadcast channel with matched

source-channel bandwidth, the distortion region is known and can be realized by a

linear scheme [28]. For mismatched source-channel bandwidth, the best known coding

schemes are based on JSCC with hybrid signalling [50, 54, 56, 61]. One extension to

this problem is the broadcasting of two correlated Gaussian sources to two users,

each of which is interested in recovering one of the two sources; in [45], it is proven

that the linear scheme is optimal when the system’s signal-to-noise ratio is below a

certain threshold under matched bandwidth. In [64], a hybrid digital-analog scheme

is proposed for the same matched bandwidth system and is shown to be optimal

whenever the linear scheme of [45] is not; hence providing a complete characterization
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of the distortion region. Under mismatched bandwidth, various HDA schemes are

proposed in [5], consisting of different combinations of several known schemes using

either superposition or dirty paper (Costa) coding. Recently, in [26], a tandem scheme

based on successive coding is studied and shown to outperform the HDA schemes

of [5].

In this chapter, we consider the transmission of two correlated sources over Gaus-

sian broadcast channel in the presence of interference, where the interference is as-

sumed to be correlated with the sources. We propose and analyze HDA schemes for

this system based on Wyner-Ziv [71], Costa [12] and HDA Costa coding [70]. The rest

of the chapter is organized as follows: Section 4.2 presents the problem formulation.

Section 4.3 introduces an outer bound on the system’s distortion region and some ref-

erence schemes. In Section 4.4, inner bounds on the distortion region under matched

and expansion bandwidth are studied by proposing HDA schemes. Numerical results

are included in Section 4.5. Finally, conclusions are drawn in Section 4.6.

4.2 Problem Formulation

We consider the transmission (Fig. 4.1) of a pair of correlated Gaussian sources

(V K
1 , V K

2 ) over a two-user Gaussian broadcast channel in the presence of Gaussian

interference SN known non-causally to the transmitter. User i (i = 1, 2) receives the

transmitted signal corrupted by additive white Gaussian noise WN
i and interference

SN , where each sample in SN is drawn from an i.i.d. Gaussian distribution with

variance σ2
S. Each user i aims to estimate V K

i = (Vi(1), Vi(2), ..., Vi(K)), where each

sample Vi(j), j = 1, ..., K, is drawn from an i.i.d. Gaussian with variance σ2
Vi

. Herein,
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we assume that (V1(i), V2(i), S(i)), i = 1, ..., K, are correlated via the following co-

variance matrix

ΣV1V2S =


σ2
V1

ρV1V2σV1σV2 ρV1SσV1σS

ρV1V2σV1σV2 σ2
V2

ρV2SσV2σS

ρV1SσV1σS ρV2SσV2σS σ2
S

 (4.1)

where ρV1V2 , ρV1S and ρV2S are the correlation coefficients between V1 and V2, S and

V1 and S and V2, respectively. The covariance matrix in (4.1) being positive definite

restricts the possible values of ρV1V2 , ρV1S and ρV2S.

V K

1

V K

2

+

SN

α(.)

+

+

WN

1

WN

2

XN

Y N

1

Y N

2

γ1(.)

γ2(.)

V̂ K

1

V̂ K

2

Figure 4.1: System model structure.

As shown in Fig. 4.1, the source pair vector (V K
1 , V K

2 ) is transformed into an N

dimensional channel input XN ∈ RN via α(·), a mapping from (RK×RK×RN)→ RN .

The received vector at user i is given by

Y N
i = XN + SN +WN

i (4.2)
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where addition is component-wise, XN = α(V K
1 , V K

2 , SN), SN is the Gaussian in-

terference (S ∼ N (0, σ2
S)) known to the transmitter, and each sample in the ad-

ditive noise WN
i is drawn from an i.i.d. Gaussian distribution with variance σ2

Wi

(Wi ∼ N (0, σ2
Wi

)) independently from both sources and interference. The system

operates under an average power constraint P given by

E[||α(V K
1 , V K

2 , SN)||2]

N
≤ P (4.3)

The reconstructed signal is given by V̂ K
i = γi(Y

N
i ), where the decoder functions γi(.)

are mappings from RN → RK ; again, the reconstruction quality at each user is the

MSE distortion Dvi =
E[||V Ki −V̂ Ki ||2]

K
for i = 1, 2. We assume that σ2

W1
> σ2

W2
and the

broadcast channel is physically degraded; hence user 1 is the weak user and user 2 is

the strong one. This means that we can write the received signal at the weak user

as Y N
1 = Y N

2 + W̃N , where each sample in W̃N follows a Gaussian distribution that

is independent of everything else and has a variance σ2
W̃

= σ2
W1
− σ2

W2
. For a given

power constraint P and system’s rate r, the distortion region is defined as the closure

of all distortion pairs (Do
v1
, Do

v2
) for which (P,Do

v1
, Do

v2
) is achievable, where a power-

distortion triple is achievable if for any δvi > 0, there exist sufficiently large integers

K and N with N/K = r, encoding and decoding functions (α, γ1, γ2) satisfying (4.3),

such that Dvi < Do
vi

+ δvi , i = 1, 2. In this chapter, we are interested in analyzing

the distortion region of this system under matched (r = 1) and expansion bandwidth

modes (r > 1). Note that for r > 1, V K
i and the first K interference samples SK

in SN are correlated via the covariance matrix in (4.1), while V K
i and [SN ]NK+1 are

independent.
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4.3 Outer Bounds and Reference Schemes

4.3.1 Outer Bound for ρV1V2 6= 1

In [62] and [5], an outer bound on the distortion region for sending correlated sources

over the broadcast channel without interference is obtained for r = 1 and r 6= 1,

respectively. This is done by assuming additional knowledge of the source V K
1 at

the strong user (user 2). In this section, we derive an outer bound on the distortion

region for the interference broadcast channel for r ≥ 1. Since S(i) and V1(i) are

correlated for i = 1, ..., K, we have S(i) = S̃I(i) + S̃D(i), with S̃D(i) =
ρV1S

σS
σV1

V1(i)

and S̃I ∼ N (0, (1− ρ2
V1S

)σ2
S). To derive an outer bound, we assume knowledge of V K

1

at the strong user (this is a reasonable assumption for small correlation coefficients;

this bound, however, might not be tight for high correlation values) and (S̃K , [SN ]NK+1)

at both users, where S̃K = η1S̃
K
I + η2S̃

K
D .

Definition 4.1. Let MSE(Yi; S̃) be the distortion incurred from estimating Yi based

on S̃ using an LMMSE estimator, for i = 1, 2. This distortion, which is a function

of η1, η2, E[XS̃I ] and E[XS̃D], will be used in Lemma 4.1 and Lemma 4.2.

Lemma 4.1. The outer bound on the distortion region can be expressed as follows

Dv1 ≥ sup
η1,η2

inf
X:

|E[XS̃I ]|≤
√

E[X2]E[S̃2
I ]

|E[XS̃D]|≤
√

E[X2]E[S̃2
D]

{
Var(V1|S̃)(ξP + σ2

W1
)r

(MSE(Y1; S̃))(P + σ2
W1

)r−1

}

Dv2 ≥
Var(V2|V1, S)(

1 + ξP
σ2
W2

)r (4.4)

where ξ ∈ [0 1], Var(V2|V1, S) = σ2
V2

(
1− ρ2

V1V2
−2ρV1V2

ρV1S
ρV2S

+ρ2
V2S

1−ρ2
V1S

)
is the variance of
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V2 given V1 and S and Var(V1|S̃) = σ2
V1

(
1− η2

2ρ
2
V1S

η2
1(1−ρ2

V1S
)+η2

2ρ
2
V1S

)
is the variance of V1

given S̃.

Proof. For a K : N system with N ≥ K, we have

K

2
log

σ2
V2

Dv2

≤ I(V K
2 ; V̂ K

2 ) ≤ I(V K
2 ;Y N

2 , V K
1 , S̃K , [SN ]NK+1)

= I(V K
2 ;V K

1 , S̃K , [SN ]NK+1) + I(V K
2 ;Y N

2 |V K
1 , S̃K , [SN ]NK+1)

= h(V K
2 )− h(V K

2 |V K
1 , SN) + h(Y N

2 |V K
1 , SN)− h(Y N

2 |V K
1 , V K

2 , SN)

(a)
=

K

2
log

σ2
V2

Var(V2|V1, S)
+
N

2
log 2πe(ξP + σ2

W2
)− N

2
log 2πe(σ2

W2
)

=
K

2
log

σ2
V2

Var(V2|V1, S)
+
N

2
log (1 +

ξP

σ2
W2

) (4.5)

where (a) uses the fact that we can bound h(Y N
2 |V K

1 , SN) as follows: N
2

log 2πe(σ2
W2

) =

h(Y N
2 |V K

1 , V K
2 , SN) ≤ h(Y N

2 |V K
1 , SN) ≤ h(Y N

2 |SN) ≤ N
2

log 2πe(P + σ2
W2

); hence

there exists an ξ ∈ [0 1] such that h(Y N
2 |V K

1 , SN) = N
2

log 2πe(ξP + σ2
W2

). To get a

bound on estimating V K
1 , we can write the following

K

2
log

σ2
V1

Dv1

≤ I(V K
1 ; V̂ K

1 ) ≤ I(V K
1 ;Y N

1 , S̃K , [SN ]NK+1)

= I(V K
1 ; S̃K , [SN ]NK+1) + I(V K

1 ;Y N
1 |S̃K , [SN ]NK+1)

= h(V K
1 )− h(V K

1 |S̃K , [SN ]NK+1) + h(Y N
1 |S̃K , [SN ]NK+1)− h(Y N

1 |V K
1 , SN)

≤ K

2
log

σ2
V1

Var(V1|S̃)
+ h(Y K

1 |S̃K) + h([Y N
1 ]NK+1|[SN ]NK+1)− h(Y N

1 |V K
1 , SN)

≤ K

2
log

σ2
V1

Var(V1|S̃)
+
K

2
log 2πe(MSE(Y1; S̃)) +

N −K
2

log 2πe(P + σ2
W1

)

−N
2

log 2πe(ξP + σ2
W1

) (4.6)

in the last inequality, we use the fact that h(Y N
1 |V K

1 , SN) ≥ N
2

log 2πe(ξP + σ2
W1

) due
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to the entropy power inequality and since Y N
1 = Y N

2 +W̃N with W̃ ∼ N (0, σ2
W1
−σ2

W2
).

Moreover, we use h(Y K
1 |S̃K) ≤ h(Y K

1 − γlmse(S̃
K)), where γlmse(S̃

K) is the LMMSE

estimator of Y1 based on S̃. By the Cauchy-Schwartz inequality, we have |E[XS̃I ]| ≤√
E[X2]E[S̃2

I ] and |E[XS̃D]| ≤
√
E[X2]E[S̃2

D]. For a given η1 and η2, the maximum

value of MSE(Y1; S̃) over E[XS̃I ] and E[XS̃D] has to be used; then, we need to

maximize the distortion expression over the parameters η1 and η2. Note that most

inequalities follow from rate-distortion theory, the data processing inequality, the

non-negativity of mutual information, conditioning reduces differential entropy and

the fact that the Gaussian distribution maximizes differential entropy.

Remark 4.1. The bound in (4.4) reduces to the one in [62] when there is no inter-

ference. This can be seen by setting ρV1S = ρV2S = 0 and η1 = η2 = 0. Neglecting the

strong user (i.e., reducing the broadcast problem to point-to-point communications),

the bound on reconstructing V1 in (4.4) reduces to the bound derived in Lemma 3.1

for the case of AWGN channel (no fading). This can be seen by setting ξ = 0 in the

derived bound on Dv1.

4.3.2 Outer Bound for ρV1V2 = 1

For this special case, we consider broadcasting one source V K (i.e., V K
1 = V K

2 = V K).

A “trivial” outer bound can be derived by treating each user separately (as in the

case of point-to-point communications). As a result, by assuming partial knowledge

about the interference (S̃K , [SN ]NK+1) at the receiver side, we can obtain an outer

bound on the source reconstruction distortion Dvi at user i in a similar way as given

in Lemma 3.1. The outer bound on the source reconstruction distortion at user i,
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Dvi , under bandwidth expansion (r ≥ 1) can be then expressed as follows

Dvi ≥ sup
η1,η2

inf
X:

|E[XSI ]|≤
√

E[X2]E[S2
I ]

|E[XSD]|≤
√

E[X2]E[S2
D]

(
Var(V |S̃)(σ2

Wi
)r

(MSE(Yi; S̃))(P + σ2
Wi

)r−1

)
. (4.7)

Note that this outer bound gives a rectangular region for Dv1 and Dv2 . To derive a

better bound, we need to introduce an auxiliary random variableGK similar to the one

in [53]. This approach is also used to find a bound for the Gaussian broadcast channel

in [56]. More precisely, an outer bound can be obtained by assuming knowledge of

(S̃K , [SN ]NK+1) at both users and choosing GK = V K+ZK , where ZK is independent of

everything else and each sample of ZK follows a zero mean i.i.d. Gaussian distribution

with variance σ2
Z .

Lemma 4.2. For a K : N bandwidth expansion system, the outer bound can be

expressed as follows

Dv1 = η inf
X:

|E[XSI ]|≤
√

E[X2]E[S2
I ]

|E[XSD]|≤
√

E[X2]E[S2
D]

Var(V |S̃)(σ2
W1

)r

(MSE(Y1; S̃))(P + σ2
W1

)r−1

Dv2 ≥ sup
σ2
Z

Var(V |S̃)σ2
Z(σ2

W2
)r

Var(G|S̃)

[
A
(
Dv1+σ2

Z

Var(G|S̃)

) 1
r − σ2

W̃

]r
−H

(4.8)

where η ≥ 1, A = (MSE(Y1; S̃))
1
r (P+σ2

W1
)
r−1
r , H = (σ2

W2
)rVar(V |S̃) and Var(G|S̃) =

Var(V |S̃) + σ2
Z is the variance of G given S̃. Note that the outer bound has to be

maximized over η1 and η2 and that the bound on Dv2 is a function of Dv1.

Proof. Dv1 has the same form as the one in (4.7); for a given η ≥ 1, we get a bound
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on Dv2 . This is done as follows

K

2
log

Var(V |S̃)

Dv2

≤ I(V K ; V̂ K
2 |S̃K , [SN ]NK+1) ≤ I(V K ;Y N

2 |S̃K , [SN ]NK+1)

= I(V K ;GK |S̃K , [SN ]NK+1) + I(V K ;Y N
2 |GK , S̃K , [SN ]NK+1)

−I(V K ;GK |Y N
2 , S̃K , [SN ]NK+1)

= h(GK |S̃K , [SN ]NK+1)− h(GK |V K , SN) + h(Y N
2 |GK , S̃K , [SN ]NK+1)

−h(WN
2 )− h(GK |Y N

2 , S̃K , [SN ]NK+1) + h(GK |Y N
2 , V K , SN)

= h(GK |S̃K , [SN ]NK+1) + h(Y N
2 |GK , S̃K , [SN ]NK+1)− h(WN

2 )

−h(GK |Y N
2 , S̃K , [SN ]NK+1). (4.9)

Note that in (4.9), h(GK |S̃K , [SN ]NK+1) = K
2

log 2πeVar(G|S̃) and h(WN
2 ) = N

2
log 2πeσ2

W2
.

Next, we bound the remaining two terms in (4.9). Using the entropy power inequality,

we can write the following

2
2
K
h(GK |Y N2 ,S̃K ,[SN ]NK+1) ≥ 2

2
K
h(V K |Y N2 ,S̃K ,[SN ]NK+1) + 2

2
K
h(ZK). (4.10)

Now using (4.10) and the fact that h(V K |Y N
2 , S̃K , [SN ]NK+1) = h(V K |S̃K , [SN ]NK+1)−

I(V K ;Y N
2 |S̃K , [SN ]NK+1), we can lower bound h(GK |Y N

2 , S̃K , [SN ]NK+1) by

K

2
log 2πe

(
Var(V |S̃)2−

2
K
I(V K ;Y N2 |S̃K ,[SN ]NK+1) + σ2

Z

)
(4.11)

Since the broadcast channel is degraded, Y N
1 can be written as the sum of Y N

2 and a

noise W̃ that is independent of everything else and has a variance σ2
W̃

= σ2
W1
− σ2

W2
.
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Hence using the entropy power inequality, we have

2
2
N
h(Y N1 |GK ,S̃K ,[SN ]NK+1) ≥ 2

2
N
h(Y N2 |GK ,S̃K ,[SN ]NK+1) + 2πeσ2

W̃
(4.12)

where h(Y N
1 |GK , S̃K , [SN ]NK+1) = h(Y N

1 |S̃K , [SN ]NK+1)−I(Y N
1 ;GK |S̃K , [SN ]NK+1); more-

over, h(Y N
1 |S̃K , [SN ]NK+1) can be upper bounded in a similar way as in (4.6) and the

mutual information I(Y N
1 ;GK |S̃K , [SN ]NK+1) is lower bounded as follows

I(Y N
1 ;GK |S̃K , [SN ]NK+1) ≥ I(V̂ K

1 ;GK |S̃K , [SN ]NK+1) ≥ K

2
log

Var(G|S̃)

Dv1 + σ2
Z

(4.13)

where we use the data processing theorem, the rate-distortion theory and the fact

that

1

K
E[||V̂ K

1 −GK ||2] =
1

K
E[||V̂ K

1 − V K + V K −GK ||2] = (Dv1 + σ2
Z) (4.14)

where we use the fact that V K − GK = ZK is independent of (V̂ K
1 − V K). Now

combining all the above inequalities and after some manipulations we can get the

bound on Dv2 given in (4.8).

4.3.3 Linear Scheme

In this section, we assume that the encoder transforms the K dimensional sources

(V K
1 , V K

2 ) into an N dimensional channel input XN using a linear transformation

according to

XN = T1V
K

1 + T2V
K

2 + M1S
N (4.15)
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where T1, T2 are N × K matrices and M1 is an N × N matrix. In such case, the

received signal at user i, Y N
i is conditionally Gaussian and the MMSE decoder is a

linear estimator. The estimated source at user i is then given by

V̂ K
i = ΣViYiΣ

−1
Yi
Y N
i (4.16)

where ΣViYi = E[(V K
i )(Y N

i )T ] is the correlation matrix between V K
i and Y N

i and

ΣYi = E[(Y N
i )(Y N

i )T ] is the covariance matrix of Y N
i , for i = 1, 2. The distortion

region of the linear scheme can then be expressed as follows

Dlinear
vi

=
1

K
tr{σ2

Vi
IK×K − ΣViYiΣ

−1
Yi

ΣT
ViYi
}. (4.17)

4.3.4 Tandem Digital Scheme

This strategy is based on successive coding where the sources are encoded jointly at

both the common and the refinement layers. Using [26], the achievable source coding

rate (R1, R2) for any distortion (D
′
v1
, D

′
v2

) is given by

R1(ν) =
1

2
log

1− ρ2

D′v1
(1− ν2(1−D′v1

))− (ρ− ν(1−D′v1
))2

R2(ν) =

[
1

2
log

1− ν2(1−D′v1
)

D′v2

]+

(4.18)

where ν ∈
[
ρ,min

(
1
ρ
, ρ

1−D′v1
,
√

(1−D′v2
)/(1−D′v1

)
)]

and [x]+ = max (x, 0). For a

Gaussian interference broadcast channel, the rate (R1, R2) can be achieved if and only
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if there exists 0 ≤ ηt ≤ 1 such that

R1 ≤
r

2
log

(
1 +

ηtP

(1− ηt)P + σ2
W1

)
,

R2 ≤
r

2
log

(
1 +

(1− ηt)P
σ2
W2

)
. (4.19)

By plugging these rates into (4.18), we get the achievable distortions for Dtandem
v1

and

Dtandem
v2

. The above rates can be achieved via Costa coding. Note that this is the

‘best’ tandem scheme for uncorrelated interference in terms of achievable distortion

region.

4.4 HDA Coding Schemes

4.4.1 HDA Scheme 1 for Matched Bandwidth

As shown from the encoder structure in Fig. 4.2, this scheme has five layers that are

merged to output XK (K = N). The first layer, which uses an average power of

Pa, outputs XK
a =

√
a(β1V

K
1 + β2V

K
2 + β3S

K), a linear combination of the sources

and the interference, where β1, β2, β3 ∈ [−1 1], and a = Pa/(β
2
1σ

2
V1

+ β2
2σ

2
V2

+ β2
3σ

2
S +

2β1β2ρV1V2σV1σV2 + 2β1β3ρV1SσV1σS + 2β2β3ρV2SσV2σS) is a gain factor related to the

power constraint Pa. The second layer, which is meant for both users, employs a

source-channel VQ on the source vector V K
1 with rate Rq; the output of this layer

is XK
q = µ(V K

1 + UK
q ), where µ is a gain factor related to the power constraint and

samples in UK
q follow a zero mean i.i.d. Gaussian that is independent of V K

1 , V k
2 ,

SN and has a variance Q. The encoding process of the VQ is previously described in

Chapter 3 and the VQ codebook is denoted by Xq. The third layer, which outputs

XK
h with power Ph, uses HDA Costa coding on the linear combination X

′K
h =

√
uXK

a ,
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VQ

Encoder

Wyner-Ziv

Encoder1

Costa

Encoder1

β1

β2

+
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Encoder
+

XK
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q

XK
11
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h
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1

β3

√

a

SK
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a

Wyner-Ziv

Encoder2
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Encoder2

XK
12

V K
2

√

u

Figure 4.2: HDA Scheme 1 encoder structure for rate r = N
K

= 1.

where u = Ph/Pa is a gain factor related to power constraint Ph. This layer is meant

for both users and treats XK
a and SK as known interference. The auxiliary random

variable of the HDA Costa encoder is given by

UK
h = XK

h + αh(S
K +XK

a ) + κhX
′K
h (4.20)

where each sample inXK
h follows an i.i.d. Gaussian with variance Ph (Xh ∼ N (0, Ph)),

αh and κh are defined later. The HDA Costa encoder forms a codebook Uh with

codeword length K and 2KRh codewords (the rate Rh is defined later). Every code-

word is generated following the random variable UK
h . The codebook is revealed to

both the encoder and decoder. The encoder searches for a UK
h ∈ Uh such that

(X
′K
h , S ′K , UK

h ) are jointly typical, where S ′K = (SK +XK
a ). The fourth layer, which

uses P11 as average power, encodes the source V K
1 using Wyner-Ziv coding at a rate
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R1 = 1
2

log (1 + P11

P−E[(Xa+Xq+Xh)2]+σ2
W1

). The Wyner-Ziv index m1 is then encoded us-

ing Costa coding that treats SK , XK
a and XK

h as interference; the output of this layer

is denoted by XK
11. In the fifth layer, which is meant for the strong user, the source

V K
2 is first encoded using a Wyner-Ziv at rate R2 = 1

2
log (1 + P12

σ2
W2

) followed by a

Costa coder that treats SK , XK
a , XK

h and XK
11 as interference and outputs XK

12, where

P12 = P −E[(Xa+Xq+Xh+X11)2]. The channel input is the superposition of all five

layers XK = XK
a +XK

q +XK
h +XK

11 +XK
12. Note that the proposed HDA scheme uses

the superposition coding principle for broadcast channels introduced in Chapter 2.

In our scheme, this concept (of cloud and satellite codewords) is manifested by using

layers (i.e., codewords) that are able to be decoded by all users while other layers are

only meant to the strong user.

At the weak user, from the noisy received signal Y K
1 , the VQ decoder estimatesXK

q

by searching for a codeword XK
q ∈ Xq that is jointly typical with the received signal

Y K
1 . Following the result of [64] and the error analysis of [48], the error probability

of decoding XK
q goes to zero by choosing the rate I(V1;Xq) ≤ Rq ≤ I(Xq;Y1). The

variance Q of Uq has to be chosen to satisfy the rate constraint on Rq. Based on Y K
1

and the decoded VQ codeword XK
q , an LMMSE estimator is used to get an estimate

of V K
1 denoted by Ṽ K

1 . The reconstruction distortion D̃v1 = E[||V K
1 − Ṽ K

1 ||2]/K is

given by

D̃v1 = σ2
V1
− ΓqΛ

−1
q ΓTq (4.21)

where Γq is the correlation vector between V1 and [Xq Y1] and Λq is the covariance of

[Xq Y1]. The HDA Costa decoder then estimates the codeword UK
h by searching for

a codeword in Uh that is jointly typical with (Ỹ K
1 , Ṽ K

1 ), where Ỹ K
1 = Y K

1 −XK
q . By

choosing αh = Ph
Ph+P11+P12+σ2

W1

and κh in (4.20) so that the HDA Costa rate Rh satisfies
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the following constraint I(Uh;S
′, X

′

h) ≤ Rh ≤ I(Uh; Ỹ1, Ṽ1), the error probability of

decoding UK
h goes to zero. The HDA Costa decoder then forms an LMMSE estimate

of V K
1 based on Ỹ K

1 , the VQ decoded codeword XK
q and the decoded codeword UK

h .

The resulting distortion is given by

D
′

v1
= σ2

V1
− ΓT1 Λ−1

1 Γ1 (4.22)

where Λ1 is the covariance matrix of [Xq Uh Ỹ1] , and Γ1 is the correlation vector

between V1 and [Xq Uh Ỹ1]. A better estimate of V K
1 , denoted by V̂ K

1 is obtained

from the fourth layer by using the decoded Wyner-Ziv 1 codeword TK1 . As a result

the average distortion from reconstructing V K
1 is given by

DHDA Scheme 1
v1

=
D
′
v1

1 + P11

P12+σ2
W1

. (4.23)

Note that the Wyner-Ziv 1 codewords follows the following random variable

TK1 = αwzV
K

1 +BK
1 (4.24)

where αwz =

√
1− P12+σ2

W1

P11+P12+σ2
W1

and B1 ∼ N (0, DHDA Scheme 1
v1

).

The strong user, that is able to decode all codewords used by the weak user,

estimates the source V K
2 by first finding a linear MMSE estimate of V K

2 , denoted by

Ṽ K
2 , based on the VQ codeword XK

q , the HDA Costa codeword UK
h , the Wyner-Ziv

codeword TK1 and Ỹ K
2 = Y K

2 −XK
q . The distortion in reproducing V K

2 is

D̃v2 = σ2
V2
− ΓT2 Λ−1

2 Γ2 (4.25)
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where Λ2 is the covariance matrix of [Xq Uh T1 Ỹ2] , and Γ2 is the correlation

vector between V2 and [Xq Uh TK1 Ỹ2]. A better estimate V̂ K
2 is then found using

the decoded Wyner-Ziv 2 codeword TK2 and Ṽ K
2 . The resulting overall distortion in

estimating V K
2 can be expressed as follows

DHDA Scheme 1
v2

=
D̃v2

1 + P12

σ2
W2

. (4.26)

Note that this distortion can be achieved using an LMMSE estimator based on

XK
q , U

K
h , T

K
1 , Ỹ

K
2 and the Wyner-Ziv codeword TK2 . The inner bound for HDA

Scheme 1 is given by (4.23) and (4.26).

4.4.2 HDA Scheme 2 for Bandwidth Expansion

This scheme comprises two layers that are concatenated to output the transmitted

signal as shown in Fig. 4.3. The first layer, which outputs X̃K
1 , consists of the HDA

Scheme 1 encoder for r = 1 (composed of five sublayers) as described in the previous

section. The second layer is composed of two sublayers. The first sublayer encodes

V K
1 using a Wyner-Ziv at a rate R3 = 1

2
log (1 + P21

P−P21+σ2
W1

) followed by a Costa

coder with an average power P21. Note that the Costa coder treats [SN ]NK+1 as

interference and outputs XN−K
21 that is decodable by both users. The second sublayer

encodes V K
2 using a Wyner-Ziv at a rate R4 = 1

2
log (1 + P22

σ2
W2

) followed by a Costa

coder with an average power P22 = P − P21 that treats XN−K
21 and [SN ]NK+1 as

interference and outputs XN−K
22 . The output of the second layer is then given by

X̃N−K
2 = XN−K

21 +XN−K
22 . Note that XN is the concatenation of X̃K

1 and X̃N−K
2 .

At the weak user, an LMMSE decoder based on the decoded VQ codeword XK
q ,

the HDA Costa codeword UK
h , the Wyner-Ziv codeword TK1 and the first K received
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Encoder4
Costa

Encoder4
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Encoder3
+
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21
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22
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SK
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K+1

[SN ]N
K+1

Mux

Figure 4.3: HDA Scheme 2 encoder structure for rate r = N
K
> 1.

samples Y K
1 is used to get an estimate of V K

1 denoted by V
′K

1 . The distortion in

estimating V K
1 using V

′K
1 , denoted by D′v1

, can be expressed in a similar way as

given in (4.23). Using the last N − K samples of the received signal [Y N
1 ]NK+1, a

better refinement of V K
1 can be obtained using the Wyner-Ziv decoder 3. The overall

distortion in reconstructing V K
1 is then given by

DHDA Scheme 2
v1

=
D′v1(

1 + P21

P22+σ2
W1

)r−1 . (4.27)

At the strong user, which is able to decode all codewords used by the weak user,

we can obtain an estimate of V K
2 using an LMMSE estimator based on the received

signal Y K
2 , the VQ codeword XK

q , the HDA Costa codeword UK
h , the Wyner-Ziv

1 codeword TK1 and the decoded codeword TK3 of the Wyner-Ziv encoder 3. The

resulting distortion is D∗v2
= σ2

V2
− Γ22Λ−1

22 ΓT22, where Λ22 is the covariance ma-

trix of [Xq Uh T1 T3 Y2], and Γ22 is the correlation vector between V2 and
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[Xq Uh T1 T3 Y2]. Note that, in a similar way as explained previously, T3 =

αwz3V1 + B3, where αwz2 =

√
1−

(
P22+σ2

W1

P21+P22+σ2
W1

)r−1

and B3 ∼ N (0, DHDA Scheme 2
v1

).

A refinement of this estimate can be obtained using the Wyner-Ziv decoder 2 (of

HDA scheme 1) and 4. The resulting distortion in estimating V K
2 can be expressed

as follows

DHDA Scheme 2
v2

=
D∗v2(

1 + P12

σ2
W2

)(
1 + P22

σ2
W2

)r−1 . (4.28)

The inner bound for HDA Scheme 2 is given by (4.27) and (4.28).

Remark 4.2. Note that for the special case of ρV1V2 = 1 (i.e., V K
1 = V K

2 = V K), the

VQ layer and the digital layer (composed of Wyner-Ziv and Costa coder) that outputs

XK
11 are unnecessary ; the power of the two layers that produce XK

q and XK
11 can be set

to zero. In such case, the encoder structure of the proposed scheme can be simplified

as given in Fig. 4.4.

Moreover, for full correlation between the source and the interference (ρV1S =

ρV2S = 1), an uncoded scheme, which is a scaled version of the source, is optimal

for the matched bandwidth case (i.e., r = 1). This can be proved by comparing the

resulting distortion to the outer bound. Note that the best outer bound in this case is

obtained by choosing η1 = 1 and η2 = 0 in (4.7). This result is analogous to the one

in [63] for point-to-point communications.

4.5 Numerical Results

In this section, we assume that the source pairs (V K
1 , V K

2 ), with variance σ2
V1

= σ2
V2

=

1, are broadcasted to two users with interference variance σ2
S = 0 dB, and observation

noise variance σ2
W1

= 0 dB and σ2
W2

= −5 dB, respectively. The system’s average
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Figure 4.4: HDA Scheme encoder structure for rate r = N
K
≥ 1 and ρV1V2 = 1.

power is set to P = 1. To evaluate the performance, we plot the inner and outer

bounds derived in the previous sections for r = 1 and 2.

4.5.1 Case of ρV1V2 6= 1

Fig. 4.5 focuses on the uncorrelated source-interference case (ρV1S = ρV2S = 0) under

matched bandwidth (r = 1). For low correlation between the source pairs (ρV1V2 =

0.2), the proposed scheme gives some improvement over the tandem scheme and

performs very close to the derived outer bound; for high source correlation levels

(ρV1V2 = 0.8), however, the HDA scheme outperforms the tandem system but has

a larger gap with respect to the outer bound. Note that for uncorrelated source-

interference, the linear scheme gives a poor performance.

Fig. 4.6 shows the performance of the HDA scheme for ρV1V2 = 0.5, ρV1S = ρV2S =
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Figure 4.5: Distortion regions for HDA Scheme 1 for r = 1 as given by (4.23) and
(4.26). Distortion regions for the outer bound (given by (4.4)), tandem
and linear schemes (given by (4.17)) are also plotted.

0.2 and r = 1. We can notice that the purely analog scheme outperforms slightly

the tandem scheme without being able to approach the HDA scheme. This can be

explained from the fact that we operate at high noise levels, and since the linear

scheme can benefit from the source-interference correlation. For the tandem scheme,

which uses Costa coding, the transmitted signal is designed to be orthogonal to the

interference; hence it cannot exploit the source-interference correlation and no per-

formance improvement can be detected. Note that for moderate to low noise levels,

the linear scheme does not outperform the tandem scheme for low source-interference

correlations. Moreover, from other simulations, we notice that for r = 1, ρV1V2 = 0.8,

and ρV1S = ρV2S = 0.5, the linear scheme gives the best performance (our HDA

scheme reduces to a linear scheme in this case). This can be explained by noting that

in [45], the authors prove that under some conditions on the noise power and source
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Figure 4.6: Distortion region for HDA Scheme 1 for ρV1V2 = 0.5, ρV1S = ρV2S = 0.2
and r = 1 as given by (4.23) and (4.26). Distortion regions for the outer
bound (given by (4.4)), tandem and linear schemes (given by (4.17)) are
also plotted.

correlation (which are in accordance with the conditions for the last simulation), the

linear scheme is optimal for broadcasting bivariate Gaussians under no interference.

As a result, under similar conditions, the linear scheme is expected to give good

performance for our problem when the source-interference correlation gets high.

Fig. 4.7 shows that the HDA scheme outperforms the tandem scheme under band-

width expansion (r = 2). Note that for ρV1V2 = 0.2 and ρV1S = ρV2S = 0, it is hard

to notice (from Fig. 4.7) the gain of the HDA scheme over the tandem system on the

plotted scale; the outer bound for this case is not shown since both schemes perform

very closely to it. Moreover, the tandem scheme cannot benefit from the source-

interference correlation and its performance depends solely on ρV1V2 in Fig. 4.7.
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Figure 4.7: Distortion regions for HDA Scheme 2 for r = 2 as given by (4.27) and
(4.28). Distortion regions for the outer bound (given by (4.4)) and tandem
scheme are also plotted.

4.5.2 Case of ρV1V2 = 1

Recall that in this scenario, in which we have a single source vector to broadcast,

the source-interference correlation ρV1S is the same as ρV2S. Fig. 4.8 focuses on the

matched source-channel bandwidth case (r = 1). As we can notice, the gap between

the inner and the outer bounds decreases with the increase of the source-interference

correlation ρV1S. We also notice that the power allocated to the analog part of our

scheme increases with ρV1S. For the extreme case of full correlation between the source

and the interference (ρV1S = 1), our scheme reduces to a purely analog scheme which

is optimal as mentioned in Remark 4.2. For the matched source-channel bandwidth

case (r = 1), the best outer bound is found to be the trivial bound given in (4.7);

using an auxiliary random variable as done in Lemma 4.2 is not useful in this case.
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Figure 4.8: Distortion region for the HDA scheme for r = 1 as given by (4.23) and
(4.26). The outer bound (given by (4.8)) is also plotted.

Figs. 4.9 and 4.10 show the inner and outer bounds for r = 2. We can notice that

the gap between the achievable region and the outer bound is bigger than the ones

in the matched bandwidth case. Moreover, the outer bound derived in Lemma 4.2 is

shown to be beneficial for the expansion case. We can also notice that the proposed

scheme performs close to the outer bound when Dv1 is high; this is from the fact that

for high distortion Dv1 , the system behaves similar to a point-to-point communication.

Note that for the special case of r = 2 (our scheme is designed for any r ≥ 1),

using HDA Costa coder at the expansion layer leads to an increase in the achievable

distortion region.
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Figure 4.9: Distortion region for the HDA scheme for r = 2 and ρV1S = 0.2 as given
by (4.27) and (4.28). The outer bound (given by (4.8)) is also plotted.

4.6 Summary and Conclusions

In this chapter, we consider the transmission of a pair of correlated Gaussian sources

over the two-user Gaussian degraded broadcast channel in the presence of interference

that is correlated to the source. We propose layered HDA schemes under matched

and expansion source-channel bandwidth scenarios based on Wyner-Ziv and HDA

Costa coding; we also analyze their inner bounds. Outer bounds on the system’s

distortion region are also established by assuming additional knowledge at the receiver

side. Numerical results indicate that the HDA schemes outperform the ‘best’ tandem

scheme and perform close to the derived outer bounds under certain system settings.
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Figure 4.10: Distortion region for the HDA scheme for r = 2 and ρV1S = 0.8 as given
by (4.27) and (4.28). The outer bound (given by (4.8)) is also plotted.
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Chapter 5

Low Delay Analog Source-Channel Coding

5.1 Introduction

Shannon proves that the use of separate source and channel coders is optimal for point-

to-point communications given unlimited delay and complexity in the coders [58]. In

practice, JSCC can lead to a better performance when delay and complexity are

constrained. For the case of Gaussian source over a Gaussian channel with matched

source-channel bandwidth, linear transmission is optimal [28]. This result, however,

does not hold for the case of mismatch between source and channel bandwidth, and

in the presence of fading or interference. A common approach for JSCC design is

to jointly optimize the components of a tandem system with respect to the channel

and source characteristics. Another approach based on nonlinear analog mapping is

treated in [32,42,55,59].

With the increasing popularity of wireless sensor networks (WSNs), reliable trans-

mission with delay and complexity constraints is more relevant than ever. A sensor

node, often conceived as having limited lifetime and processing power, communicates

its sensed field information to a fusion centre over a noisy wireless channel. To meet
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these challenges, in this chapter, we investigate using a low delay and low complexity

lossy source-channel mappings in WSNs.

We study the reliable transmission of a memoryless Gaussian source over different

noisy channels subject to low delay/complexity constraints. More specifically, we use

parametric and nonparametric mappings under different source-channel bandwidth

ratios. The nonparametric mappings are based on joint optimization of the encoder

and the decoder under an average power constraint. The case of bandwidth reduc-

tion/expansion over AWGN channels is studied in [2,22,24]. In [22,24], the approach

used is based on mapping the output of a vector quantizer to a specific point in a

channel signal set. A direct source-channel mapping approach, however, is consid-

ered in [2,32]. Source-channel mappings for the relay and the multiple access channels

(MAC) are studied in [37,38]. Our system, that uses nonlinear direct source-channel

mappings, is shown to overcome the saturation effect, which is inevitable with linear

systems, and achieves a graceful performance over a wide range of noise levels.

The rest of the chapter is organized as follows. Section 5.2 considers low delay

coding over fading channels; both parametric and nonparametric mappings are pro-

posed for K : 1 bandwidth reduction. In Section 5.3, we consider the problem of

transmitting analog source over fading channels in the presence of interference that

is know to the transmitter and correlated with the source; this problem is also con-

sidered in Chapter 3. Unlike Chapter 3, we aim to optimize the encoder and decoder

under low delay coding constraint. Section 5.4 studies the problem of source and

state interference estimation. Finally, conclusions are drawn in Section 5.5.



5.2. LOW DELAY CODING FOR FADING CHANNELS 109

5.2 Low Delay Coding for Fading Channels

5.2.1 Problem Formulation

In this section, we consider the transmission of a Gaussian source vector V K over a

memoryless fading channel with AWGN. Fig. 5.1 shows the system structure where

the channel state information (CSI) is available at the decoder only (DCSI), and the

transmitter is assumed to know the fading distribution. We also consider two other

cases: 1) when CSI is available at both the encoder and the decoder (full CSI or FCSI);

2) when CSI is not available at the transmitter and the receiver. The source vector

V K is transformed into a one dimensional channel input X ∈ R using a nonlinear

mapping function α(·) (i.e., X = α(V K)). The received signal can be expressed as

V K

α(.) +

W

X Y
γ(.)

V̂ K

x

F

Figure 5.1: System structure for K : 1 bandwidth reduction over a fading channel
with AWGN. CSI is only available at the decoder side, while the encoder
knows only the distribution of the fading.

Y = FX +W (5.1)

where F is the fading gain drawn from an i.i.d. Rayleigh distributed process. As

in the previous chapters, the system operates under an average power constraint P

given by

E[α2(V K)] ≤ P. (5.2)
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At the receiver, the transmitted source vector is estimated using MMSE decoding

(assuming DCSI/FCSI)

V̂ K , γ(Y, F ) = E[V K |y, f ]. (5.3)

We aim to find the optimal source mapping α and receiver γ that minimize the

system’s MSE distortion D = E[||V K−V̂ K ||2]
K

under the average power constraint in

(5.2).

5.2.2 Preliminaries: Theoretical Bound and Linear System

Theoretical Limit

Shannon’s separation theorem states that in a point-to-point communication system,

optimal performance can be achieved by optimizing separately (in tandem) the source

and the channel coders given unlimited complexity and delay in the coders [58]. As

a result, the optimal performance OPTA can be derived by equating the source rate-

distortion function to the channel capacity times the system’s rate.

For a memoryless Gaussian source V with variance σ2
V and MSE distortion mea-

sure, the rate-distortion function is [13]

R(D) = max

{
0,

1

2
log

(
σ2
V

D

)}
. (5.4)

The capacity of a fading channel when considering DCSI/FSCI and with power input

P is given by [65]

C(P ) = EF
[

1

2
log

(
1 +

P (f)f 2

σ2
W

)]
(5.5)

where P (f) = P for DCSI. When CSI is available at both the encoder and the decoder

(i.e., FCSI), the transmitted power P (f) in (5.5) waterfills over the fading states as
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follows

P (f) = max

{
0,

(
1

b
− σ2

W

f 2

)}
(5.6)

where b satisfies E[P (f)] = P . To find OPTA we set R(D) = rC(P ). Solving this

will lead to the optimal distortion

DOPTA = σ2
V exp

(
rEF

[
log

(
σ2
W

P (f)f 2 + σ2
W

)])
. (5.7)

Note that this bound is achievable asymptotically using long block codes.

Linear Transmission

For a K : 1 bandwidth reduction, we use a simple coder that removes samples to

perform bandwidth reduction. In this case the encoder α(·) is a multiplication by a

constant matrix and the transmitted symbol can be expressed as follows

X =

√
P (f)

σ2
V

I1×KV
K (5.8)

where P (f) is given as follows [72]

P (f) =

 P, for DCSI

max
{

0, 1
f

(
1
b′
− σ2

W

f

)}
, for FCSI

(5.9)

where b′ is calculated by solving E[P (f)] = P . The optimal decoder (assuming

DCSI/FCSI) γ(Y, F ) is given by

V̂ K = E[V K |y, f ] =
f
√
P (f)σ2

V

P (f)f 2 + σ2
W

IK×1y. (5.10)
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When no CSI is available at the receiver, the MMSE decoder can be expressed as

follows

V̂ K = E[V K |y] =

∫∫
vkp(y|α(vk), f)p(f)p(vk)dfdvk∫∫
p(y|α(vk), f)p(f)p(vk)dfdvk

. (5.11)

5.2.3 Parametric Mappings

2 : 1 Spiral Mapping

System Structure

The Archimedes’ spiral is shown to perform well for AWGN channels [32]. In this

section, we extend the work of [32], which is introduced in Chapter 2, to optimize

the spiral mapping over fading channels. At the time of working on this problem, we

discovered that spiral mapping is also considered over fading channels in [8]. However,

our system differs from the one in [8] in parts by the structure, optimization process

and in applying power allocation when we have full CSI.

Bandwidth reduction is achieved by first approximating the two dimensional

source vector V 2 to the closest point on the spiral mapping. The approximated

point, represented by its radial distance dr from the origin, is then mapped to the

channel via an invertible operator `(·)

X = uX̃ = u`(dr) = u

(
±0.16

(
π2

∆

)
(d2
r)

)
. (5.12)

Recall from Chapter 2 that u is a gain factor related to the channel power constraint P ,

∆ is the radial distance between any two neighbouring spiral arms, and +, − represent

positive and negative channel values, respectively. At the receiver (assuming DCSI),

we scale the received samples using an optimal scaling factor f
√
PE[X̃2]/(Pf 2 +σ2

W )
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instead of a suboptimal factor 1/(uf) as used in [8]. The reconstructed source vector

is then estimated using ML decoding. This is done by mapping the scaled received

sample to a point on the spiral curve. In the simulation results, we also use the

MMSE decoder.

System Optimization

The radial distance ∆ is the only parameter that needs to be optimized in order to

minimize the average MSE distortion. The source signal is affected by two types of

distortion: 1) the approximation distortion ε̄a which is related to the approximation

operation, and 2) the channel distortion ε̄ch which is due to the transmission over

a noisy environment. Following the analysis introduced in Chapter 2, the system’s

distortion can be approximated as follows

D2:1 Spiral ≈ EF [(ε̄a + ε̄ch)|f ] ≈ 1

2

{
∆2

12
+ σ2

WE[X̃2]EF
[

Pf 2

(Pf 2 + σ2
W )2

]}
. (5.13)

The optimal radial distance ∆opt is found by minimizing the MSE distortion in (5.13).

Power Allocation

In this section, we assume that the CSI is also available at the transmitter side (i.e.,

FCSI). Instead of updating the radial distance ∆ at each time index [8], we allocate

the power (along the time index) according to the CSI knowledge in a similar approach

to [72].

Assuming the channel state is f and the corresponding power allocated is P (f),

the MSE distortion is well approximated in a similar way to (5.13). The optimal power

allocation P ∗(f) that minimizes the system’s distortion can be found by solving the
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following optimization problem

min EF
[

P (f)f 2

(P (f)f 2 + σ2
W )2

]
s.t. EF [P (f)] = P, P (f) ≥ 0. (5.14)

Lemma 5.1. Using the Karush-Kuhn-Tucker (KKT) conditions [7], for low noise

level, the optimal power allocation is well approximated as follows

P ∗(f) =


1
f

(
1√
b̃
− 2σ2

W

f

)
, for f ≥ 2σ2

W

√
b̃

0, otherwise

(5.15)

where b̃ is a threshold for all channel states and can be found from the average power

constraint P and the statistics of the fading F .

Proof. For low noise levels and by neglecting the term σ4
W , the optimization problem

in (5.14) can be approximated as follows

min EF
[

1

(P (f)f 2 + 2σ2
W )

]
s.t. EF [P (f)] = P, P (f) ≥ 0. (5.16)

If f has a finite states, assuming Pr(f = fi) = hi and P (fi) = Pi, i = 1, · · · , L̃, the

optimization problem can be expressed as follows

min
L̃∑
i=1

[
1

Pif 2
i + 2σ2

W

]
hi s.t.

L̃∑
i=1

Pihi = P, Pi ≥ 0. (5.17)

The Lagrangian is given by

G =
L̃∑
i=1

[
1

Pif 2
i + 2σ2

W

]
hi + b̃

 L̃∑
i=1

Pihi − P

− L̃∑
i=1

ςiPi (5.18)
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where b̃ and ςi are Lagrange multipliers. We obtain the KKT conditions as follows

∂G

∂Pi
=

−f 2
i

(2σ2
W + Pif 2

i )2
hi + b̃hi − ςi = 0,

Piςi = 0, i = 1, · · · , L̃,
L̃∑
i=1

Pihi = P. (5.19)

For all those Pi 6= 0, we have ςi = 0 and b̃ =
f2
i

(2σ2
W+Pif2

i )2 . Therefore

P ∗(fi) =


1
fi

(
1√
b̃
− 2σ2

W

fi

)
, for fi ≥ 2σ2

W

√
b̃

0, otherwise

(5.20)

where b̃ is a common threshold for all states and can be solved from
∑L̃

i=1 P
∗
i hi = P .

If f has a non-discrete pdf, then by discretizing the pdf and taking the limit, we

obtain the solution as given in (5.15).

K : 1 Parametric Mappings

In this section, we consider both 3 : 1 and 4 : 1 bandwidth reductions. In [20],

parametric mappings over AWGN channel for these reduction ratios are presented.

In what follows, we extend these mappings to accommodate the fading channel. In a

similar way to the 2 : 1 spiral mapping, the 3 : 1 and the 4 : 1 bandwidth reductions

are done by first approximating V K to the closest point on the mapping curve, and

then performing a one dimensional representation using (5.12). For a 3 : 1 bandwidth

reduction, a ball of yarn mapping is used; for a given variable x ∈ R+, the three
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dimensional mapping output can be mathematically expressed as follows

S1:3(x) =
∆ϕ(x)

π


cosϕ(x)

cos 1
2π
ϕ(x) sinϕ(x)

sin 1
2π
ϕ(x) sinϕ(x)

 (5.21)

and when x ∈ R−, the mapping output is given by

S1:3(x) =
−∆ϕ(x)

π


sin 1

2π
ϕ(x) cosϕ(x)

sinϕ(x)

cos 1
2π
ϕ(x) cosϕ(x)

 . (5.22)

For a 4 : 1 bandwidth reduction, for a given variable x ∈ R+, the four dimensional

output can be expressed as follows

S1:4(x) =
∆ϕ(x)

π



sin 1
3π
ϕ(x) cosϕ(x)

cos 1
2π
ϕ(x) sinϕ(x)

sin 1
2π
ϕ(x) sinϕ(x)

cos 1
3π
ϕ(x) cosϕ(x)


(5.23)

and when x ∈ R−, the mapping output is given by

S1:4(x) =
−∆ϕ(x)

π



sin 1
3π
ϕ(x) cosϕ(x)

sin 1
2π
ϕ(x) sinϕ(x)

cos 1
3π
ϕ(x) cosϕ(x)

cos 1
2π
ϕ(x) sinϕ(x)


. (5.24)



5.2. LOW DELAY CODING FOR FADING CHANNELS 117

At the receiver side, we use ML or MMSE decoding for signal recovery. Following

the analysis for K : 1 bandwidth reduction in Chapter 2, the overall distortion can

be approximated as follows

DK:1 Parametric ≈ EF [(ε̄a + ε̄ch)|f ]

≈ βK:1∆2−θK:1 + Pσ2
WE[X̃]2EF

[
f 2

(Pf 2 + σ2
W )2

]
(5.25)

where θ3:1 = 1, β3:1 = 0.6312, θ4:1 = 1.3, and β4:1 = 1.6244 for σ2
V = 1, are found

using a nonlinear curve fitting. Note that ∆, which has a different meaning than in

the 2 : 1 spiral mapping, is found by minimizing (5.25).

5.2.4 Nonparametric Mappings

Using the Lagrange multiplier method [30], the constrained optimization problem of

minimizing the MSE distortion E[||V K− V̂ K ||2]/K subject to (5.2) can be recast into

an unconstrained minimization problem via the Lagrange cost function

min
α,γ

J(α, γ) (5.26)

where the cost function J(α, γ) is given by

J(α, γ) =
E[||V K − V̂ K ||2]

K
+ λE[α2(V K)] (5.27)

and the Lagrange multiplier λ is used to control the average power. Note that if the

(optimal) solution to the constrained problem lies on the convex hull of all feasible

solutions to the problem, then the (optimal) solution to the unconstrained problem
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coincides to the former; otherwise, the two solutions differ and in effect the optimal

solution to the latter is suboptimal for the former problem [30]. The unconstrained

minimization in (5.26) is still hard to solve due to the interdependencies between

the optimized components, and since the encoder/decoder mappings are, in general,

nonlinear functions. To overcome these challenges, we proceed in a similar way to

classical design problems (e.g., vector quantizer design [49]) by formulating the neces-

sary conditions for optimality. This is done by finding the optimal encoder α given the

decoder γ, and vice versa. In what follows, we assume DCSI to derive the necessary

conditions for optimality.

Necessary Conditions for Optimality

The problem of finding the optimal source mapping α∗ (assuming γ is fixed) is given

by

α∗ = arg min
α

{
E[||V K − V̂ K ||2]/K + λE[α2(V K)]

}
. (5.28)

Using Bayes’ rule, the distortion E[||V K − V̂ K ||2] can be expressed as follows

E[||V K − V̂ K ||2] =

∫∫∫
p(vk)p(f)p(y|α(vk), f)||vk − v̂k||2dvkdfdy. (5.29)

Note that this factorization follows from the fact that channel noise, source, and

fading are assumed to be independent of each other. The mapping average power is

given by ∫
p(vk)α2(vk)dvk. (5.30)
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Since p(vk) in (5.29) and (5.30) is nonnegative, the source mapping α can be optimized

for each vk individually according to

α∗(vk) = arg min
x∈R

{∫∫
p(f)p(y|x, f)

||vk − v̂k||2
k

dfdy + λx2

}
. (5.31)

Hence, (5.31) is a necessary condition for α to be the optimal mapping.

On the receiver side, the optimal decoder in the MSE sense (assuming α is fixed)

is found using the conditional expectation of the source given the received symbol

and the fading gain

γ∗(Y, F ) = E[V K |y, f ] =

∫
vkp(y|vk, f)p(vk)dvk∫
p(y|vk, f)p(vk)dvk

. (5.32)

Design Algorithm

Based on the above necessary conditions for optimality, it is possible to optimize the

mapping at the sensor nodes and the receiver using an iterative process. This is done

by fixing one part while optimizing the other. The update equations (5.31) and (5.32)

yield a lower distortion at each iteration step; hence, with a finite amount of training

data, convergence is ensured. One common problem with such iterative technique

is that the final solution will depend on the initialization of the algorithm and does

not guarantee convergence to the global optimum solution. To get around these

challenges, we use noisy channel relaxation [25]. This method suggests to design the

system for a noisy channel, and uses the solution obtained as an initialization when

designing the system for a less noisy channel. For a given CSNR, the design algorithm

is stated as follows

1. Choose some initial mapping for the encoder α.
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2. Find the optimal receiver γ according to (5.32).

3. Set the iteration index i = 0 and the cost J (0) =∞.

4. Set i = i+ 1.

5. Find the optimal mapping α according to (5.31).

6. Find the optimal receiver γ according to (5.32).

7. Evaluate the cost function J (i). If the relative improvement of J (i) compared

to J (i−1) is less than some positive threshold ε or i > Imax, stop iterating.

Otherwise go to step 4.

The above algorithm is nested inside a “bracketing” Lagrange multiplier search. We

first set λ = λ0. If the designed α produces E[||α(V K)||2] > P , λ0 is increased; else

λ0 is decreased. The search ends if E[||α(V K)||2] is close enough to but < P . In our

simulations, we used ε = 10−4, Imax = 15 and a linear mapping for initializing the

encoder α at low CSNR.

Implementation Aspects

For the actual implementation of (5.31) and (5.32), some modifications are required.

By the fact that it is impossible to evaluate the formulas for all vector V K in RK ,

we form as in [37] a set composed of Monte-Carlo (MC) samples drawn from the

distribution of V K . In our simulations, we use 104 samples to define this set. Since

the channel input and output spaces are real valued, we discretize them using a pulse

amplitude modulation (PAM) alphabet Xd and Yd

Xd = Yd =

{
−eL− 1

2
,−eL− 3

2
, ..., e

L− 3

2
, e
L− 1

2

}
(5.33)
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where e and L determine the resolution and the cardinality of the discrete set, re-

spectively. This set becomes close to analog by taking e to be small in relation to

the standard deviation of the noise and by choosing a sufficiently large L. In our

simulations, we use an L in the range [300 600], and set e = 12/(L− 1).

Since complexity is one of our main concerns, it is important to note that the

decoder side can be approximated with a table-lookup, thereby avoiding having to

compute a numerical integration for each received symbol. This is done by first

discretizing the fading gain F using a discrete set F (e.g., using a quantizer) and

mapping the discretized receiver input Y and the fading F onto a decoded symbol

V̂ K = γ(y, f) for (Y,F) = (y, f). Note that for a given cardinality |F|, one can design

an optimal quantizer for F . However, in our simulation results we use a uniform

quantizer for simplicity and set the cardinality |F| to 256. In a similar way to the

decoder side, the encoder can be also implemented via a table-lookup by quantizing

the source input. Using this approach, the system complexity is reduced to that of

table lookup.

The discretized versions of (5.31) and (5.32), which are used in the implementation

of the design algorithm, are, respectively, expressed as follows

α∗(vk) = arg min
x∈Xd

{∑
f∈F

∑
y∈Yd

P (f)P (y|x, f)
||vk − v̂k||2

k
+ λx2

}
(5.34)

and

γ∗(y, f) =

∑
vk v

kP (y|α(vk), f)∑
vk P (y|α(vk), f)

. (5.35)
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Nonparametric Mapping with Full CSI

In this section, we assume that the CSI is available at both encoder and decoder

(FCSI). The main change in the necessary conditions for optimality is in finding the

optimal encoder mapping α∗. The encoder mapping is now optimized for each (vk, f)

according to

α∗(vk, f) = arg min
x∈Xd

{∑
y∈Yd

P (y|x, f)
||vk − v̂k||2

k
+ λx2

}
. (5.36)

Note that the optimal decoder is given by (5.35).

Nonparametric Mapping with No CSI

In this section, we assume that no CSI is available at both encoder and decoder. The

main change in the necessary conditions for optimality from the one with CSI at the

decoder, is in finding the optimal decoder mapping. The optimal decoder in this case

can be expressed as follows

γ∗(y) =

∑
vk

∑
f∈F v

kP (y|α(vk), f)∑
vk

∑
f∈F P (y|α(vk), f)

. (5.37)

Note that the optimal encoder is given by (5.34).

5.2.5 Numerical Results

In this section, we assume a Gaussian source vector V K with unit variance σ2
V = 1

and a Rayleigh fading gain F with E[F 2] = 1. Fig. 5.2 shows the SDR performance

for parametric spiral and nonparametric 2 : 1 mapping under DCSI and FCSI. We

can notice that for most CSNR values, the spiral and the non-parametric mappings
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Figure 5.2: Performance of the parametric and the nonparametric mappings for 2:1
bandwidth reduction over Rayleigh fading channel. The performance of
the linear system and the theoretical limit (OPTA) with CSI at the de-
coder are also included. Note that for FSCI, the performance of the linear
system and the theoretical limit improves over the DCSI case by at most
0.2 dB in SDR.

outperform the linear system; there is around 2 dB gap from OPTA which is achiev-

able asymptotically using a highly complex long block codes. For low to moderate

CSNRs, using MMSE decoding with spiral mapping gives a substantial gain over ML

decoding. However as the CSNR increases, the gap between ML and MMSE decoder

diminishes. Moreover, using the optimal scaling factor with ML decoder gives a few

dBs SDR gain over the one with suboptimal scaling at low CSNRs. Fig. 5.2 shows

that the nonparametric mapping gives around 0.5 dB gain over the spiral mapping

with MMSE decoder. Moreover, at low CSNRs, the nonparametric mapping does

not underperform the linear system, unlike the parametric spiral mapping. Assuming
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FCSI, we can notice around 0.5 dB gain in SDR over the DCSI case. This gain is

numerically observed to reach 1 dB for CSNR = 40 dB.

Fig. 5.3 shows the performance of the spiral and the nonparametric 2 : 1 mappings

when no CSI is available at both transmitter and receiver. It is clear that the non-
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Nonparametric mapping with no CSI

Parametric spiral mapping with MMSE and no CSI

Linear system with no CSI

Figure 5.3: Performance of the parametric and the nonparametric mappings for 2:1
bandwidth reduction over Rayleigh fading channel. The performance of
the linear system is also included. This figure is for no CSI at both encoder
and decoder.

parametric mapping outperforms the spiral mapping and overcomes the saturation

effect which is inevitable with the linear system.

Figs. 5.4 and 5.5 show the SDR performance of the nonparametric and the para-

metric mappings for 3 : 1 and 4 : 1 bandwidth reductions, respectively. In these

figures we consider only the DCSI case. Similar to the 2 : 1 system, we can notice

that the nonparametric mappings outperform the other systems and give a graceful
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performance. More precisely, the nonparametric mappings are shown to give around

1 dB gain in SDR over the parametric mappings. This gain is due to the fact that the

nonparametric mappings have a higher degree of freedom in placing points in space

without being restrained to a specific structure.
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Nonparametric mapping with DCSI

Parametric mapping with MMSE and DCSI

Parametric mapping with ML and DCSI

Linear system with DCSI

Figure 5.4: Performance of the parametric and the nonparametric mappings with 3 : 1
bandwidth reduction over Rayleigh fading channel. The performance of
the theoretical limit and the linear system are also plotted.

Motivated by the broadcast scenario, we next optimize the encoder for a fixed-

design CSNR level and assume that the true CSNR is know by the decoder. For

this case, we can notice that both nonparametric and parametric mappings exhibit

various degree of robustness against mismatch in noise level; the nonparametric map-

pings still outperform the parametric mappings for most design and true CSNR levels.

However, for a low design CSNR level, the parametric mappings give better perfor-

mance when the true CSNR is very high. This can be explained from the fact that



5.2. LOW DELAY CODING FOR FADING CHANNELS 126

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

5

6

7

CSNR [dB]

S
D

R
 [

d
B

]

 

 

Theoretical limit (OPTA) with DCSI

Nonparametric mapping with DCSI

Parametric mapping with MMSE and DCSI

Parametric mapping with ML and DCSI

Linear system with DCSI

Figure 5.5: Performance of the parametric and the nonparametric mappings with 4 : 1
bandwidth reduction over Rayleigh fading channel. The performance of
the theoretical limit and the linear system are also plotted.

the nonparametric mappings have a different structure at low CSNR than at high

CSNR and look more like a linear mapping.

Fig. 5.6 shows the optimized decoder mappings for a 2 : 1 bandwidth reduction

ratio. We can notice that the structure of the nonparametric mapping is similar to

the Archimedes’ spiral. Moreover, the length of the mapping curves increase as the

fading gain increase (i.e., less noisy channel). This makes the mapping better fill the

power-delimited space, in order to lower the approximation error without increasing

much the distortion due to channel noise. Note also that the radial distance between

the mapping arms is not uniform as in the case of a spiral mapping with ML decoder.
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Figure 5.6: Decoded pairs for 2 : 1 bandwidth reduction, and fading gain f : (a)
0.3, (b) 0.6, and (c) 0.9. This graph is made for CSNR = 30 dB and
DCSI. The lines that are drawn between asterisk points correspond to
neighbours in the one dimensional mapped source (i.e., channel space).

5.3 Low Delay Coding for Fading Channels in the Presence of Correlated

Interference

5.3.1 Problem Formulation and Main Contributions

We consider the transmission of a memoryless Gaussian source V K over a Rayleigh

fading channel in the presence of Gaussian interference SN known to the transmitter.

We studied this problem in Chapter 3 (Fig. 3.1) under high delay coding constraint.

In this section, we aim to find an encoder α and decoder γ that minimize the MSE

distortion D = E[||V K − V̂ K ||2]/K under low delay coding constraint (K and N take

on small values). Our main contributions can be summarized as follows

• We show that for matched bandwidth between the source and the channel (i.e.,

r = 1), the uncoded scheme is optimal among all single-letter codes when the

source and the interference are fully correlated.
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• To benefit from nonlinearity whenever possible, we derive the necessary condi-

tions for optimality and use an iterative algorithm based on joint optimization

between the encoder and the decoder.

• To lower the complexity of our algorithm, we use importance sampling (at the

decoder) technique. We also use a targeted (focused) search method in order

to make our algorithm more scalable to larger dimensions (K and N) as well

as more computationally efficient.

5.3.2 Optimality of the Uncoded Scheme

Lemma 5.2. Among all single-letter (symbol-by-symbol) codes with K = N = 1, the

uncoded scheme is optimal for full correlation between the source and the interference

(ρV S = 1).

Proof. In a similar way as we prove Lemma 3.1 in Chapter 3, we obtain a lower bound

on the system’s distortion for K = N = 1. From the rate distortion theorem, we have

the following

1

2
log

Var(V |S̃)

E[(V − V̂ )2]
≤ I(V ; V̂ |S̃). (5.38)

Moreover, using the data processing inequality for the mutual information, the facts

that conditioning reduces differential entropy and that the Gaussian distribution max-

imizes differential entropy, I
(
V ; V̂ |S̃

)
can be upper bounded for any memoryless

single-letter codes
(
α, γ

)
with X = α

(
V, S

)
and V̂ = γ

(
Y, f

)
by

I(V ;Y |S̃) = h(Y |S̃)− h(W ) ≤ 1

2
log

MSE(Y ; S̃)

σ2
W

. (5.39)
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Combining (5.38) and (5.39), we have E[(V − V̂ )2|f ] ≥ Var(V |S̃)σ2
W

MSE(Y ;S̃)
. As a result,

E[(V − V̂ )2] ≥ EF

[
Var(V |S̃)σ2

W

MSE(Y ; S̃)

]
. (5.40)

The bound in (5.40) can be tightened by maximizing the right hand side of (5.40)

over η1 and η2. If we choose η1 = 1 and η2 = 0, (5.40) reduces to

E[(V − V̂ )2] ≥ EF

 σ2
V(

1 + |f |2(
√
P+ρV SσS)2

σ2
W

)
 . (5.41)

The MSE of the uncoded scheme (using Dlinear) in Sec. 3.3.2 is given by

Duncoded = EF

[
|f |2σ2

V σ
2
S(1− ρ2

V S)

|f |2(P + σ2
S + 2

√
PρV SσS) + σ2

W

]

+EF

 σ2
V

1 +
|f |2(P+σ2

S+2
√
PρV SσS)

σ2
W

 . (5.42)

It is easy to see that equality occurs in (5.41) using the uncoded scheme for ρV S = 1

(see (5.42)).

5.3.3 Design Algorithm for Low Delay Coding

In a similar way as done in Sec. 5.2.4, we present a scheme based on joint optimization

between the encoder and the decoder through an iterative algorithm. Using the

Lagrange multiplier method, the problem is to find the encoder and decoder that

minimize the Lagrange cost function J(α, γ)

J(α, γ) =
E[||V K − γ(Y N , FN)||2]

K
+ λ

E[||α(V K , SN)||2]

N
. (5.43)
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Necessary Conditions for Optimality

The optimal encoder mapping α∗ (assuming γ is fixed) is given by

arg min
α

{
E[||V K − γ(Y N , FN)||2]

K
+ λ

E[||α(V K , SN)||2]

N

}
. (5.44)

Using Bayes’ rule, the distortion E[||V K − V̂ K ||2] is given by

∫∫∫∫
p(vk, sn)p(yn|α(vk, sn), sn, fn)p(fn)||vk − v̂k||2dvkdsndyndfn. (5.45)

The average power is given by

1

N

∫∫
p(vk, sn)||α(vk, sn)||2dvkdsn. (5.46)

Since p(vk, sn) in (5.45)–(5.46) is nonnegative, α can be optimized “pointwise” for

each vk and sn according to

α∗(vk, sn) = arg min
xn∈Rn

{
1

K

∫∫
p(yn|xn, sn, fn)||vk − v̂k||2p(fn)dyndfn +

λ

N
||xn||2

}
.

(5.47)

Thus, (5.47) is a necessary condition for an optimal encoder.

On the receiver side, the optimal decoder in the MSE sense (assuming α is fixed)

is given by E[V K |yn, fn] as follows

γ∗(yn, fn) =

∫∫
vkp(yn|vk, sn, fn)p(vk, sn)dvkdsn∫∫
p(yn|vk, sn, fn)p(vk, sn)dvkdsn

. (5.48)
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Design Algorithm and Implementation Aspects

Based on the above necessary conditions for optimality, we optimize α and γ using

an iterative process based on (5.47) and (5.48). The design algorithm is similar to

the one in Sec. 5.2.4.

For the implementation of (5.47) and (5.48), some modifications are required.

Since it is intractable to evaluate the formulas for all real-valued (V K , SN), we form

a set of pairs (V ,S) composed of samples drawn from p(vk, sn). We also discretize

the channel input and output using a PAM alphabets Xd and Yd.

Even after discretizing the channel input and output using Xd and Yd, the (offline)

design algorithm is still computationally expensive. This is due to the fact that our

problem has both fading and interference on top of AWGN. To lower the complexity,

we resort to MC and importance sampling techniques. Using MC technique, (5.47)

is given by

α∗ = arg min
xn∈Xnd

l∑
i=1

||vk − γ(yni , f
n
i )||2

K
+
λ

N
||xn||2 (5.49)

and (5.48) can be expressed as follows

γ∗ =

∑l
i=1 v

k
i p(y

n|α(vki , s
n
i ), sni , f

n
i )∑l

i=1 p(y
n|α(vki , s

n
i ), sni , f

n
i )

(5.50)

where (vki , s
n
i ) and fni are MC samples that follow the distributions p(vk, sn) and

p(fn), respectively, and yni represents the discretized version of the corresponding

MC samples using Yd; equality in (5.49) and (5.50) are valid by the strong law of

large numbers when l → ∞. Note that the discretization of yni is necessarily to

couple (5.49) and (5.50); this is how we implement the “fixing” of decoder mapping

when updating the encoder (5.49). To increase the convergence rate of (5.50) (i.e.,
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lower l and the complexity), an alternative to sampling from p(vk) is to use importance

sampling. This is conducted by using samples from another distribution q(vk). After

some manipulation, (5.50) is given by

γ∗(yn, fn) =

∑l
i=1

vki p(y
n|α(vki ,s

n
i ),sni ,f

n)p(vki ,s
n
i )

q(vki )∑l
i=1

p(yn|α(vki ,s
n
i ),sni ,f

n)p(vki ,s
n
i )

q(vki )

. (5.51)

q(vk) has to be chosen to improve the convergence speed. Since suboptimal linear de-

coding gives some information about the estimate, we choose q(vk) ∼ N (vksubopt, Dlinear),

where vksubopt and Dlinear are the source estimate and the MSE distortion from applying

the linear decoder, respectively. One major issue that stands against the scalability of

our algorithm is that for each pair of (vk, sn) one has to search over a set of cardinality

|Xd|n which scales exponentially with the number of channel dimensions n. To reduce

the search complexity, we use a heuristic targeted search approach. Instead of fixing

the N dimensional PAM alphabet X n
d and blindly searching over the whole region

(fixed-search method), this targeted method starts by mapping each pair (vk, sn) to

a channel input (xn)(0) using a parametric mapping and then searching over a region

that varies for each pair and iteration i. For each source-interference pair, we choose

the region to have a span of X (i)
d = (x)(i−1) ± 4(σspan)(i) in each dimension, where

(xn)(i−1) is the channel input found for that pair in iteration i − 1. We have chosen

(σ2
span)(i) to decrease with i as follows

(σ2
span)(i) = c̃

(L− 1)e

4

(
1− i

Imax

)3

i = 1, ..., Imax

where c̃ is a constant. This method limits the search (at iteration i) to some small

neighbourhood of the current state (xn)(i−1), with neighbourhoods diminishing in size
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as the algorithm progresses. This method is not used at the channel output and we

still need to use a fixed Yd. We run the algorithm twice with the second round

initialized with the result of the first; this helps “escaping” from a local minimum at

the beginning of the second round when (σ2
span)(1) is large. In our simulation, we use

105 pairs to define (V ,S), ε = 10−4, Imax = 14, c̃ = 1/8 and l = 250 for K,N ≤ 3.

Note that after the design process of the encoder and decoder ends, both elements

can be implemented using a table-lookup; for the encoder, this is done by quantizing

the source-interference pairs and mapping each pair to a channel input.

5.3.4 Numerical Results and Discussion

In this section, we consider a source with σ2
V = 1 that is correlated to the interference

as considered in Chapter 3 (only the first min (K,N) pairs {V (i), S(i)}min (K,N)
i=1 are

correlated) and Rayleigh fading with E[F 2] = 1.

Matched Bandwidth Case

Table 5.1 shows the SDR of the optimized mapping along with the linear and the

uncoded schemes for K = N = 1. We first design our system for ρV S = 0 (linear

scheme is used as initialization); the solution obtained is then used as initialization to

design the system for higher values of ρV S. We perform a numerical search over the

coding matrices for the linear scheme so that Dlinear is minimized under the power

constraint P . We notice that as ρV S increases, the SDR gap between the optimized

and the linear scheme decreases (also the upper bound on all single-letter codes). For

ρV S = 1, the numerical result confirms Lemma 5.2; all schemes reduce to the uncoded

one and achieve optimality.
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Table 5.1: SDR in dB versus ρV S for P = 0.6, σ2
S = 1, σ2

W = 0.01 and r = 1.

ρV S 0 0.2 0.4 0.6 0.8 1

Uncoded 1.9 2.9 4.1 5.7 8.4 17.8
Linear 3.5 5.6 8.7 12.4 15.8 17.8

Optimized mapping 6.4 6.8 9.1 12.5 15.9 17.8
SDR upper bound 12.2 12.4 12.9 14.2 16.9 17.8

Mismatched Bandwidth Case

Fig. 5.7 shows the SDR of our proposed mapping for 2 : 1 and 3 : 2 bandwidth

reductions versus CSNR. We notice that the optimized mapping outperforms the

other reference schemes for all CSNRs (for the same K : N). For the 2:1 system, we

initialize the algorithm with a parametric mapping based on a spiral curve [32] and the

search range X (i)
d is set to 100 points. As a reference, we also plot the performance of

an (optimized) parametric mapping based on the combination of spiral and sawtooth

(modulo technique used for interference cancelation [16]). For the 3 : 2 case, a linear

mapping is used for initialization and X (i)
d is set to 15 points in each direction. For

reference, a parametric mapping that uses a linear transmission on the first symbol

and 2 : 1 spiral mapping on the last two symbols to achieve a 3 : 2 bandwidth

reduction is combined linearly with the interference and simulated. For the alphabet

Yd, we use e = 8/(L − 1), L = 500 (for the 2 : 1 system) and L = 20 (for the 3:2

system). Fig. 5.7 shows also the SDR upper bound; it is important to note that the

bound is an asymptotic result in the sense of infinite source and coding block lengths,

hence the gap to our low delay scheme is not surprising. We also design an optimized

mapping for 1 : 2 expansion system; we notice up to 1.6 dB gain in SDR over the

“best” parametric system (linear in this case) for CSNR = 20 and ρV S = 0.3. As

initialization to our algorithm, we use the resulting optimized mapping assuming no
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fading.

From other simulations, comparing the targeted search method to the fixed one

using the same alphabets cardinality (with similar and tractable complexity), we

notice that the proposed search method gives up to 1 dB gain in SDR over the fixed

search method for moderate to high CSNRs (for 2 : 1 system). For low CSNRs, not

much gain is observed; this is due to the fact that the (required) number of discrete

points L depends on the noise levels (in our case, L is fixed). For high noise levels, L

can be made smaller with no performance loss.
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Figure 5.7: SDR Performance versus CSNR for P = 1, σ2
S = 1, ρV S = 0.3.
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5.4 Low Delay Coding for Source and State Interference Estimation

5.4.1 Problem Formulation and Main Contributions

In this section, we consider the transmission of analog source and channel state in-

terference over an AWGN channel with additive interference that is known to the

transmitter. The system model, which is a special case of the one considered in

Sec. 3.5 (no fading and K = N = 1), is shown in Fig. 5.8. We aim to find an encoder

V

S

α(.) +

W

X Y
γ(.)

V̂

+ Ŝ

Figure 5.8: System model for joint source and state interference estimation.

α and a decoder γ = (γv, γs) that minimize the MSE distortion defined by

D , E[(V − V̂ )2]︸ ︷︷ ︸
Dv

+E[(S − Ŝ)2]︸ ︷︷ ︸
Ds

. (5.52)

More precisely, we focus on zero delay analog joint source-channel coding techniques

by studying parametric and nonparametric (nonlinear) mappings. Our main contri-

butions can be summarized as follows

• To benefit from nonlinearity whenever possible, we study a parametric analog

mapping based on the sawtooth (modulo) function which has a low design

complexity. We derive an upper bound on the system’s distortion by assuming

a suboptimal decoder at the receiver side. To optimize the system parameters,

we use two suboptimal methods; the first one is partially numerical in which part
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of the parameters are derived by minimizing a (partial) distortion expression

that assumes no sawtooth mapping is used at the encoder. The other method

minimizes the derived upper bound expression.

• Whenever storage and offline design complexity are not an issue, we design a

nonlinear mapping; this is done by deriving the necessary conditions for opti-

mality and proposing an iterative algorithm based on joint optimization between

the transmitter and the receiver.

5.4.2 Distortion Lower Bound

In Lemma 3.4, we have derived an outer bound on the distortion region (Dv, Ds) for

the same problem over fading channels. For the AWGN channel, the outer bound

simplifies as follows

Dv ≥ Dob
v ,

Var(V |S)σ2
W

ζP + σ2
W

,

Ds ≥ Dob
s ,

σ2
S

(
ζP + σ2

W

)
P + σ2

S + 2
√

(1− ζ)Pσ2
S + σ2

W

. (5.53)

As a result, the lower bound on the system’s distortion can be expressed as follows

D ≥ inf
ζ
{Dob

v +Dob
s }. (5.54)

5.4.3 Parametric Mapping

Recall that since V and S are correlated, we can write the source as V = ρV SσV
σS

S +

NρV S , where NρV S ∼ N (0, (1 − ρ2
V S)σ2

V ) is independent of S. Motivated by the

high delay scheme that uses analog and hybrid layers in Sec. 3.5, we herein propose
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a layered scheme based on linear coding and sawtooth mapping (sawtooth coding

is used in [73] for the relay channel). The sawtooth mapping can be seen as one

dimensional lattice coding; high delay lattice coding is widely studied for AWGN

channel with side information [18,40].

System Structure

The proposed scheme is composed of two superposed layers and outputs

X = c(X1 +X2) (5.55)

where c is a gain factor related to the power constraint (defined later). The first

layer, which outputs X1 =
√
Ps/σ2

SS, simply scales the interference S, where Ps ≤ P

represents the power consumed by this layer. The second layer, starts by forming a

linear combination of the partial information of the source NρV S and the interference

S; this is given by Xa = α1NρV S + α2S, where α1, α2 are real parameters. We then

use a sawtooth mapping M(·) on Xa to output X2 as follows

X2 ,M(Xa) = (Xa − 2Λm) for Xa ∈
[
Λ(2m− 1),Λ(2m+ 1)

)
(5.56)

where m is an integer and Λ is a nonnegative parameter dependent on the channel con-

dition. The gain factor c in (5.55) is given by c =
√
P/(Ps + E[X2

2 ] + 2
√
Ps/σ2

SE[SX2]),

where E[X2
2 ] can be written as follows

E[X2
a ] +

∑
m

−4Λm

∫
Dm

xap(xa)dxa︸ ︷︷ ︸
I1

+4Λ2m2

∫
Dm

p(xa)dxa︸ ︷︷ ︸
I2

(5.57)
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and E[SX2] is given by

α2σ
2
S −

∑
m

2Λm

∫ ∫
Dm

sg(xa − α2s)p(s)dxads (5.58)

where Dm =
[
Λ(2m − 1),Λ(2m + 1)

)
is the mth domain region of M(·) and g(·) is

the pdf of α1NρV S ∼ N (0, α2
1σ

2
V (1 − ρ2

V S)). Note that the integrals in (5.57) can be

simplified as follows

I1 =

√
E[X2

a ]√
2π

[
−exp

(−(Λ(2m+ 1))2

2E[X2
a ]

)
+ exp

(−(Λ(2m− 1))2

2E[X2
a ]

)]
,

I2 =
1

2

[
erf

(
Λ(2m+ 1)√

2E[X2
a ]

)
− erf

(
Λ(2m− 1)√

2E[X2
a ]

)]
(5.59)

where erf(·) is the Gaussian error function. At the decoder side, to obtain an es-

timate of the source and the interference, we use the optimal MMSE estimator

(V̂ = E[V |Y ], Ŝ = E[S|Y ]). The use of an optimal decoder comes at the expense

of computational and design complexity. To lower the design complexity, we resort

to two suboptimal methods for choosing the system parameters as described next.

System Optimization

Method 1

In this method, the optimized parameters α1 and α2 are found by assuming that no

sawtooth mapping is used. In such case, the parameters α1 and α2 are found by

minimizing the MSE distortion DNρV S
from reconstructing NρV S using an LMMSE

estimator. This distortion is given by (assuming no sawtooth mapping) DNρV S
=
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σ2
V (1− ρ2

V S)− E[NρV SY ]2

E[Y 2]
. The sawtooth parameter Λ and Ps, however, are found nu-

merically to minimize the overall MSE distortion D by performing a grid search. This

is done by generating a large set of (V, S,W ) triplets and computing D empirically

for each possible (Ps,Λ) in the search space.

Method 2

In this method, we optimize the system parameters by minimizing an upper bound

on the system’s distortion. To get a closed form expression on the upper bound, we

propose the use of a suboptimal decoder. Let us first note that the sawtooth mapping,

which uses the symmetric modulo function (5.56) over the interval [−Λ Λ], can be

written as M(Xa) = Xa mod Λ. To reconstruct the interference, we simply use an

LMMSE estimator based on the received signal Y . The distortion from reconstructing

S is given by

(Ds)parametric = σ2
S −

E[SY ]2

E[Y 2]

= σ2
S −

(c(E[S(Xa mod Λ)] +
√
PsσS) + σ2

S)2

P + σ2
S + σ2

W + 2c(
√
PsσS + E[S(Xa mod Λ)])

(5.60)

where E[S(Xa mod Λ)] can be written as in (5.58).

To get an estimate of the source V , we first use a modulo function on the received

signal and then apply an LMMSE estimator. More precisely, we first obtain

Ỹ = (Y/c) mod Λ

=

(
α1NρV S +

(
α2 +

√
Ps
σ2
S

+
1

c

)
S +

W

c

)
︸ ︷︷ ︸

Z̃

mod Λ (5.61)
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where the last equality follows from the fact that the modulo operation satisfies the

“distributive law” (i.e., [x mod Λ + y] mod Λ = [x + y] mod Λ). We then decode V

using an LMMSE estimator based on Ỹ . The resulting distortion is

(Dv)parametric = σ2
V −

E[V (Z̃ mod Λ)]2

E[(Z̃ mod Λ)2]
(5.62)

where Z̃ is as defined in (5.61) and E[(Z̃ mod Λ)2] is given by

E[Z̃2]− 4Λ
∑
m

m

∫
D̃m

z̃p(z̃)dz̃ + 4Λ2
∑
m

m2

∫
Dm

p(z̃)dz̃ (5.63)

and E[V (Z̃ mod Λ)] can be expressed as follows

E[V Z̃]−
∑
m

2Λm

∫
D̃m

∫∫
vp(v|s)p(z̃|v, s)p(s)dvdsdz̃ (5.64)

where D̃m =
[
Λ(2m − 1),Λ(2m + 1)

)
is the mth domain region of M(·). Note that

integrals in (5.63) can be simplified in a similar way as in (5.59) and distributions

in (5.64) are Gaussian. The upper bound on the system’s distortion Dupper for para-

metric mapping is then given by

Dupper = (Dv)parametric + (Ds)parametric. (5.65)

The system’s parameters (α1, α2, Ps,Λ) are found by minimizing Dupper.

Remark 5.1. For low correlation values between the source and the interference,

we propose to use a slightly different decoder (in method 2) for estimating V that

gives a better performance. The only modification is that Ỹ = −α2Y
cκ

mod Λ, where
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κ =
(√

Pu
σ2
S

+ 1
c

)
. After some manipulations, we can write Ỹ = (α1V + Weq) mod Λ,

where Weq = −α2W
cκ
−(1+α2

κ
)Xa mod Λ. Note that Weq can be regarded as an equivalent

noise term.

5.4.4 Nonparametric Mapping

In a similar way as done in Sec. 5.2.4 and Sec. 5.3.3, we next present a scheme

based on joint optimization between the encoder and the decoder through an iterative

algorithm. The rest of this section is dedicated to the design of the source-channel

mapping α(V, S) and the decoder γ(Y ) = (γv(Y ), γs(Y )). The Lagrange cost function

J(α, γ) of the unconstrained minimization is given by

E[
(
V − γv(Y )

)2
] + E[

(
S − γs(Y )

)2
] + λE[α2(V, S)]. (5.66)

The optimal encoder mapping α∗ (assuming γ is fixed) can be expressed as follows

arg min
α

{
E[
(
V − V̂

)2
] + E[

(
S − Ŝ

)2
] + λE[α2(V, S)]

}
. (5.67)

Using Bayes’ rule, the distortion E[
(
V − V̂

)2
] is given by

∫∫∫
p(v, s)p(y|α(v, s), s)(v − v̂)2dvdsdy. (5.68)

Similarly, the distortion E[
(
S − Ŝ

)2
] can be expressed as follows

∫∫∫
p(v, s)p(y|α(v, s), s)(s− ŝ)2dvdsdy. (5.69)
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The average power consumed by the mapping is given by

∫∫
p(v, s)α(v, s)2dvds. (5.70)

Since p(v, s) in (5.68), (5.69) and (5.70) is nonnegative, the encoder α∗ can be opti-

mized “pointwise” for each (v, s) according to

arg min
x∈R

{∫
p(y|x, s)[(v − v̂)2 + (s− ŝ)2]dy + λx2

}
. (5.71)

Thus, (5.71) is a necessary condition for an optimal encoder.

On the receiver side, the optimal decoder γv in the MSE sense (assuming α is

fixed) is given by E[V |y] as follows

γ∗v(y) =

∫∫
vp(y|v, s)p(v, s)dvds∫∫
p(y|v, s)p(v, s)dvds . (5.72)

Similarly, the optimal decoder γs is given by E[S|y] as follows

γ∗s (y) =

∫∫
sp(y|v, s)p(v, s)dvds∫∫
p(y|v, s)p(v, s)dvds . (5.73)

Using the above necessary conditions for optimality, we optimize α and γ via an

iterative process based on (5.71), (5.72) and (5.73) in a similar fashion as done in

Sec. 5.2.4. For the implementation of the algorithm, we again use a PAM alphabets Xd
and Yd. In our simulations, we use ε = 10−4, Imax = 15, L = 700 and e = 12/(L− 1)

for the algorithm and the alphabets Xd and Yd.
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5.4.5 Numerical Results

In this section, we consider source-interference pairs that are transmitted over an

AWGN channel with Gaussian interference and power constraint P = 1. Fig. 5.9

shows the performance, defined as 10 log 1
D

, versus the correlation ρV S for channel

signal-to-noise ratio CSNR = 25 dB.
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Figure 5.9: Performance versus source-interference correlation ρV S, for σ2
V = σ2

S = 1
and CSNR = 25 dB.

The nonparametric mapping outperforms other zero delay coding schemes; using

parametric mapping as initialization for the algorithm gives 0.5 to 1 dB gain in per-

formance (for ρV S ≤ 0.8) over the case where we use a linear mapping to initialize the

algorithm. The parametric mapping (with MMSE decoding) which is easier to de-

sign, outperforms the linear scheme and performs relatively close to the nonparametric

mapping. Note that using the optimized parameters resulting from method 1, gives

the ‘best’ performance for high correlation values; for low correlation values, however,
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it is better to use the optimized parameters resulting from minimizing Dupper given

by (5.65) (method 2). This behaviour comes from the fact that in method 2 we min-

imize a different objective function than the one used in method 1. As shown from

Fig. 5.9, the lower bound obtained from the derived Dupper is close to the performance

of the parametric mapping (optimized via method 1) with MMSE decoding for low

to moderate correlation values; for high correlation values, we can notice some gap

that is also manifested in the performance of method 2. Moreover, for the case of

ρV S = 1, all schemes revert to the uncoded scheme which is optimal. It is worth

mentioning that the upper bound and the HDA scheme (reference scheme) presented

in Sec. 3.5 are asymptotic in the sense of requiring infinite source and coding block

lengths, hence the gap to the proposed zero delay schemes is not surprising.

Fig. 5.10 shows the performance versus CSNR levels. We can notice that the non-
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Figure 5.10: Performance versus CSNR levels, for ρV S = 0.5 and σ2
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parametric mapping outperforms other zero delay schemes and that the lower bound

found using Dupper is very close to the performance of the parametric mapping (opti-

mized via method 1) with MMSE decoder. Moreover, the use of nonlinear mappings

defeats the saturation effect which is inevitable with the use of the linear scheme.

Figs. 5.11 and 5.12 show the encoder-decoder structure of the nonparametric map-

ping for two different correlation values. It is clear that the encoder and decoder map-
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Figure 5.11: Encoder (left) and its corresponding decoder (right) mappings optimized
using the proposed algorithm for CSNR = 25, ρV S = 0, σV = σS = 1 and
P = 1; parametric mapping is used for the initialization of the algorithm.
In the figure to the right, the asterisks show the reconstructed (V̂ , Ŝ) and
the small dots are samples from the distribution of (V, S).

pings comprise a piecewise nonlinear function that combines hard and soft decision

signalling. The proposed parametric mapping uses such combination; this explains
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the good performance achieved using parametric mapping. There is always a gain

from using the nonparametric mapping; this is due to the fact that the nonparamet-

ric mapping has a higher degree of freedom in placing points in space without being

restrained to a specific structure. Such gain comes at the expense of higher storage

and offline design complexity.
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Figure 5.12: Encoder (left) and its corresponding decoder (right) mappings optimized
using the proposed algorithm for CSNR = 25, ρV S = 0.7, σV = σS = 1
and P = 1; parametric mapping is used for the algorithm initialization.
In the figure to the right, the asterisks show the reconstructed (V̂ , Ŝ)
and the small dots are samples from the distribution of (V, S).



5.5. SUMMARY AND CONCLUSIONS 148

5.5 Summary and Conclusions

In this chapter, we present low delay lossy joint source-channel coding schemes for: 1)

fading channels; 2) fading channels in the presence of correlated interference; and 3)

source-channel-state (interference) estimation. A design algorithm for optimizing the

source-channel mapping is presented based on the necessary conditions for optimal-

ity. Parametric mappings that use spiral and sawtooth curves are studied. Numeri-

cal results show that parametric and nonparametric mappings outperform the linear

scheme. Moreover, these nonlinear mappings overcome the saturation effect which is

inevitable with linear system.
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Chapter 6

Conclusions

In this chapter, conclusions are drawn based on the principal results of the previous

chapters. Some issues and recommendations for further research in this area are also

discussed.

6.1 Summary and Conclusions

Chapter 3 considers the problem of sending a Gaussian source over a fading channel

in the presence of Gaussian interference known non-causally to the transmitter. Joint

source-channel coding schemes for the case of unequal bandwidth between the source

and the channel and when the source and the interference are correlated are studied.

An outer bound on the system’s distortion is derived in Sec. 3.3. This is achieved by

assuming partial knowledge of the interference at the decoder side. Sec. 3.4 presents

a layered coding schemes based on proper combination of power splitting, bandwidth

splitting, Wyner-Ziv and hybrid coding. More precisely, a hybrid layer, that uses

the source and the interference, is concatenated (superimposed) with a purely digi-

tal layer to achieve bandwidth expansion (reduction). The achievable (square error)

distortion regions of these schemes under matched and mismatched noise levels are
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then analyzed. The proposed schemes are shown to perform close to the best de-

rived bound and to be resilient to channel noise mismatch. As an extension to this

communication problem, a joint source-state-interference transmission is studied over

fading channels in Sec. 3.5; the receiver, in this case, aims to jointly estimate both the

source signal as well as the channel-state (interference). Sec. 3.5.1 derives the outer

bound on the source-channel-state distortion region. The bound on the source re-

construction distortion is found by assuming full knowledge of the interference at the

decoder side; no additional knowledge, however, is assumed to get a bound on the dis-

tortion from reconstructing the interference. An inner (achievable distortion region)

bound on the source-interference distortion region is derived for the fading channel

in Sec. 3.5.2 by proposing HDA scheme based on VQ and Costa coding. Comparison

of inner and outer bounds shows that the proposed HDA scheme performs close to

the outer bound. Moreover, our setting contains several interesting limiting cases.

In the absence of fading and/or correlation and for some source-channel bandwidths,

our setting resorts to the scenarios considered in [35,63,67].

In Chapter 4 a generalization of the problem considered in Chapter 3 to the

Gaussian degraded broadcast channel is studied. More precisely, the transmission of

bivariate Gaussian sources over the two-user degraded Gaussian broadcast channel in

the presence of interference that is correlated to the source and known non-causally

to the transmitter is tackled. Each user is interested in estimating one of the sources.

Sec. 4.3 derives an outer bound on the system’s distortion region. The derived outer

bound is obtained by assuming knowledge of one of the sources at the strong user

and partial/full knowledge of the interference at both users; for the limiting case of

single source transmission, a better bound for the case of source-channel bandwidth



6.1. SUMMARY AND CONCLUSIONS 151

expansion is derived with the help of auxiliary random variable. Hybrid digital-

analog schemes are studied and their achievable (square-error) distortion regions

under matched and expansion bandwidth regimes are analyzed in Sec. 4.4. These

schemes, which use the idea of superposition coding for broadcast channels by em-

ploying different layers that are meant to different users, require proper combinations

of power splitting, bandwidth splitting, rate splitting, vector-quantizer, Wyner-Ziv

and Costa coding. The proposed schemes are shown to outperform tandem and lin-

ear schemes. For low correlation values between the sources, our proposed schemes

perform close to the derived outer bounds. For high correlation values, however, the

gap between the proposed schemes and the outer bounds increases. Interestingly, our

schemes are always able to benefit from the interference whenever possible.

In Chapter 5, low delay analog source-channel coding for different noisy channels

in the presence of interference is examined. In Sec. 5.2, low delay analog coding

for Rayleigh fading channels is presented. In Sec. 5.3, the communication scenario

of Sec. 3.2 is studied under low delay coding and complexity constraints. Sec. 5.4

investigates the use of nonlinear zero delay analog mappings for source and state

interference estimation over AWGN channels. In this chapter, parametric mappings

based mainly on spiral and sawtooth curves are studied. Nonparametric mappings are

also designed. This is done by first deriving the necessary conditions for optimality

and then proposing an iterative algorithm based on joint optimization between the

encoder and the decoder. A reduced-complexity approach for the implementation of

the design algorithm is also presented. The proposed (nonlinear) mappings are shown

to outperform linear scheme and give a graceful performance over wide range of noise

levels. Moreover, these nonlinear mappings, which are shown to fit well the channel



6.2. SUGGESTIONS FOR FURTHER RESEARCH 152

space, overcome the inevitable saturation effect of linear scheme.

6.2 Suggestions for Further Research

Presented here is a list of issues which merit further consideration.

• Relaying has emerged to be a major factor for establishing reliable wireless

communication based on cooperation. Thus, it is interesting to consider com-

munication scenarios based on relaying systems with interference management;

one scenario is to study joint source-channel coding for relay channels with in-

terference that is correlated to the source signal and known at the transmitter

(but not at the relay). An easier problem in which the interference is known to

the relay is not yet fully solved and is worth also considering.

• Two-way relay channels are getting more relevant than ever; in such scenario,

two nodes exchange their correlated messages with the help of a relay. They

comprise two communication channels (phases): 1) a multiple access channel

and 2) a broadcast channel. Now assuming that during the second phase, the

received signals are disturbed by some interference that is known to the relay.

One can use the result of Chapter 3 and 4 to study the effect of using hy-

brid coding on this type of channel; information theoretic bounds can be also

obtained for such communication system.

• Further investigation of Chapter 3 can be done to accommodate different con-

straint settings such as secrecy and privacy.



BIBLIOGRAPHY 153

Bibliography

[1] K. M. Abadir and J. R. Magnus, Matrix Algebra. New York: cambridge Uni-

versity Pressr, 2005.

[2] E. Akyol, K. Rose, and T. Ramstad, “Optimal mappings for joint source channel

coding,” in IEEE Inform. Theory Workshop, Cairo, Egypt, 2010.

[3] E. Akyol, K. Rose, K. Viswanatha, and T. Ramstad, “On zero-delay source-

channel coding,” IEEE Trans. Inform. Theory, vol. 60, no. 12, pp. 7473–7489,

Dec 2014.

[4] B. Bandemer, C. Tian, and S. Shamai, “Gaussian state amplification with noisy

state observations,” in Proc. IEEE Int. Symp. on Inform. Theory, Istanbul,

Turkey, July 2013.

[5] H. Behroozi, F. Alajaji, and T. Linder, “On the performance of hybrid digital-

analog coding for broadcasting correlated Gaussian sources,” IEEE Trans. Com-

mun., vol. 59, no. 12, pp. 3335–3342, Dec 2011.

[6] T. Berger and D. W. Tufts, “Optimum pulse amplitude modulation part I:

transmitter-receiver design and bounds from information theory,” IEEE Trans.

Inform. Theory, vol. IT-13, no. 2, pp. 196–208, Apr 1967.



BIBLIOGRAPHY 154

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambrigde, U. K.: Cam-

bridge Univ. Press, 2003.

[8] G. Brante, R. Souza, and J. Garcia-Frias, “Analog joint source-channel coding

in Rayleigh fading channels,” in Proc. IEEE Int. Conf. Acoustics, Speech and

Signal Process., Prague, Czech Republic, May 2011.

[9] X. Chen and E. Tuncel, “Zero-delay joint source-channel coding using hy-

brid digital-analog schemes in the Wyner-Ziv setting,” IEEE Trans. Commun.,

vol. 62, no. 2, pp. 726–735, Feb 2014.

[10] Y.-K. Chia, R. Soundararajan, and T. Weissman, “Estimation with a helper who

knows the interference,” in Proc. IEEE Int. Symp. on Inform. Theory, Cam-

bridge, MA, July 2012.

[11] S.-Y. Chung, On the Construction of some Capacity-Approaching Coding

Schemes. Ph.D. dissertation, Massachusetts Institute of Technology, 2000.

[12] M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, no. 3,

pp. 439–441, May 1983.

[13] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York:

Wiley, 2006.

[14] H. Coward and T. Ramstad, “Hybrid digital-analog transmission of analog source

signals,” in Norwegian Signal Process. Symp., Norway, Sep 1999.

[15] ——, “Quantizer optimization in hybrid digital-analog transmission of analog

source signals,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-

cess., 2000, pp. 2637–2640.



BIBLIOGRAPHY 155

[16] J. Du, E. G. Larsson, M. Xiao, and M. Skoglund, “Optimal symbol-by-symbol

Costa precoding for a relay-aided downlink channel,” IEEE Trans. Commun.,

vol. 59, no. 8, pp. 2274–2284, Aug 2011.

[17] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge: Cam-

bridge University Press, 2012.

[18] U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice strategies for canceling

known interference,” IEEE Trans. Inform. Theory, vol. 51, no. 11, pp. 3820–3833,

Nov 2005.

[19] N. Farvardin and V. Vaishampayan, “On the performance and complexity of

channel-optimized vector quantizers,” IEEE Trans. Inform. Theory, vol. 37,

no. 1, pp. 155–159, Jan 1991.

[20] P. A. Floor, On the Theory of Shannon-Kotel’nikov Mappings in Joint Source-

Channel Coding. Ph.D. dissertation, Norwegian University of Science and Tech-

nology, 2008.

[21] P. A. Floor, A. N. Kim, N. Wernersson, T. Ramstad, M. Skoglund, and I. Bal-

asingham, “Zero-delay joint source-channel coding for a bivariate Gaussian on

a Gaussian MAC,” IEEE Trans. Commun., vol. 60, no. 10, pp. 3091–3102, Oct

2012.

[22] P. A. Floor, T. A. Ramstad, and N. Wernersson, “Power constrained channel

optimized vector quantizers used for bandwidth expansion,” in Proc. IEEE Int.

Symp. Wireless Commun. System, Trondheim, Norway, Oct 2007.



BIBLIOGRAPHY 156

[23] A. Fuldseth, Robust Subband Video Compression for Noisy Channels with Multi-

level Signaling. Ph.D. dissertation, Norwegian University of Science and Tech-

nology, 1997.

[24] A. Fuldseth and T. A. Ramstad, “Bandwidth compression for continuous ampli-

tude channels based on vector approximation to a continuous subset of the source

signal space,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process.,

Munich, Germany, Apr 1997.

[25] S. Gadkari and K. Rose, “Noisy channel relaxation for VQ design,” in Proc.

IEEE Int. Conf. Acoustics, Speech and Signal Process., Atlanta, GA, May 1996.

[26] Y. Gao and E. Tuncel, “Separate source-channel coding for transmitting corre-

lated Gaussian sources over degraded broadcast channels,” IEEE Trans. Inform.

Theory, vol. 59, no. 6, pp. 3619–3634, June 2013.

[27] ——, “Wyner-Ziv coding over broadcast channels: Hybrid digital/analog

schemes,” IEEE Trans. Inform. Theory, vol. 57, no. 9, pp. 5660–5672, Sept

2011.

[28] M. Gastpar, B. Rimoldi, and M.Vetterli, “To code or not to code: lossy source-

channel communication revisited,” IEEE Trans. Inform. Theory, vol. 49, no. 5,

pp. 1147–1158, May 2003.

[29] S. I. Gelfand and M. S. Pinsker, “Coding for channel with random parameters,”

Probl. Inform. Contr., vol. 9, no. 1, pp. 19–31, 1980.



BIBLIOGRAPHY 157

[30] H. Everett III, “Generalized Lagrange multiplier method for solving problems

of optimum allocation of resources,” Operations Research, vol. 11, no. 3, pp.

399–417, 1963.

[31] F. Hekland, On the Design and Analysis of Shannon-Kotel’nikov Mappings for

Joint Source-Channel Coding. Ph.D dissertation, Norwegian University of Sci-

ence and Technology, 2007.

[32] F. Hekland, P. A. Floor, and T. A. Ramstad, “Shannon-Kotel’nikov mappings in

joint source-channel coding,” IEEE Trans. Commun., vol. 57, no. 1, pp. 94–105,

Jan 2009.

[33] F. Hekland, G. E. Oien, and T. A. Ramstad, “Using 2:1 Shannon mapping for

joint source-channel coding,” in Proc. Data Compression Conf., Snowbird, Utah,

Mar 2005.

[34] Y. Hu, J. Garcia-Frias, and M. Lamarca, “Analog joint source channel coding us-

ing non-linear mappings and MMSE decoding,” IEEE Trans. Commun., vol. 59,

no. 11, pp. 3016–3026, Nov 2011.

[35] Y.-C. Huang and K. R. Narayanan, “Joint source-channel coding with correlated

interference,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1315–1327, May 2012.

[36] H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting

codes,” IEEE Trans. Inform. Theory, vol. 23, no. 3, pp. 371–377, May 1977.

[37] J. (Karlsson) Kron, Low-Delay Sensing and Transmission. Ph.D. dissertation,

Royal Institute of Technology, 2011.



BIBLIOGRAPHY 158

[38] J. (Karlsson) Kron and M. Skoglund, “Optimized low-delay source-channel-relay

mappings,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1397–1404, May 2010.

[39] M. Kleiner and B. Rimoldi, “Asymptotically optimal joint source-channel coding

with minimal delay,” in Proc. Global Telecommun. Conference, Honoulu, HI, Nov

2009, pp. 332–341.

[40] Y. Kochman and R. Zamir, “Joint Wyner-Ziv/dirty-paper coding by modulo-

lattice modulation,” IEEE Trans. Inform. Theory, vol. 55, no. 11, pp. 4878–4889,

Nov 2009.

[41] E. Koken and E. Tuncel, “Gaussian HDA coding with bandwidth expansion and

side information at the decoder,” in Proc. IEEE Int. Symp. on Inform. Theory,

Istanbul, Turkey, July 2013.

[42] V. A. Kotel’nikov, The Theory of Optimum Noise Immunity. New York:

McGraw-Hill, 1959.

[43] J. Kumazawa, M. Kasahara, and T. Namekawa, “A construction of vector

quantiz- ers for noisy channels,” Electronics and Engineering in Japan, vol. 67-B,

pp. 39–47, Jan 1984.

[44] A. Kurtenbach and P. Wintz, “Quantizing for noisy channels,” IEEE Trans.

Commun. Technol., vol. COM-17, pp. 291–302, Apr 1969.

[45] A. Lapidoth and S. Tinguely, “Broadcasting correlated Gaussians,” IEEE Trans.

Inform. Theory, vol. 56, no. 7, pp. 3057–3068, July 2010.

[46] ——, “Sending a bivariate Gaussian over a Gaussian MAC,” IEEE Trans. In-

form. Theory, vol. 56, no. 6, pp. 2714–2752, Jun 2010.



BIBLIOGRAPHY 159

[47] K. H. Lee and D. P. Petersen, “Optimal linear coding for vector channels,” IEEE

Trans. Commun., vol. COM-24, no. 12, pp. 1283–1290, 1976.

[48] S. H. Lim, P. Minero, and Y.-H. Kim, “Lossy communication of correlated

sources over multiple access channels,” in Proc. of the 48th Annual Allerton

Conf. on Commun., Control and Computing, Monticello, IL, Sep 2010.

[49] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,”

IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, Jan 1980.

[50] U. Mittal and N. Phamdo, “Hybrid digital analog (HDA) joint source channel

codes for broadcasting and robust communications,” IEEE Trans. Inform. The-

ory, vol. 48, no. 5, pp. 1082–1102, May 2002.

[51] J. W. Modestino and D. G. Daut, “Combined source-channel coding of images,”

IEEE Trans. Commun., vol. 27, no. 11, pp. 1644–1659, Nov 1979.

[52] J. Nayak, E. Tuncel, and D. Gunduz, “Wyner-Ziv coding over broadcast chan-

nels: digital schemes,” IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1782–

1799, Apr 2010.

[53] L. Ozarow, “On a source-coding problem with two channels and three receivers,”

Bell Syst. Tech. J., vol. 59, no. 10, pp. 1909–1921, Dec 1980.

[54] V. M. Prabhakaran, R. Puri, and K. Ramachandran, “Hybrid analog-digital

strategies for source-channel broadcast,” in Proc. 43rd Allerton Conf. Commun.,

Control and Computing, Allerton, IL, Sep 2005.

[55] T. A. Ramstad, “Shannon mappings for robust communication,” Telektronikk,

vol. 98, no. 1, pp. 114–128, 2002.



BIBLIOGRAPHY 160

[56] Z. Reznic, M. Feder, and R. Zamir, “Distortion bounds for broadcasting with

bandwidth expansion,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 3778–

3788, Aug 2006.

[57] D. Sakrison, Communication Theory: Transmission of Waveforms and Digital

Information. John Wiley & Sons Inc, 1968.

[58] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, pp. 379–423, 1948.

[59] ——, “Communication in the presence of noise,” Proc. IRE, vol. 86, no. 2, pp.

447–457, 1949.

[60] M. Skoglund, N. Phamdo, and F. Alajaji, “Design and performance of VQ-based

hybrid digital-analog joint source-channel codes,” IEEE Trans. Inform. Theory,

vol. 48, no. 3, pp. 708–720, Mar 2002.

[61] ——, “Hybrid digital-analog source-channel coding for bandwidth compres-

sion/expansion,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 3757–3763,

Aug 2006.

[62] R. Soundararajan and S. Vishwanath, “Hybrid coding for Gaussian broadcast

channels with Gaussian sources,” in Proc. IEEE Int. Symp. on Inform. Theory,

Seoul, Korea, July 2009.

[63] A. Sutivong, M. Chiang, T. Cover, and Y.-H. Kim, “Channel capacity and state

estimation for state-dependent Gaussian channels,” IEEE Trans. Inform. The-

ory, vol. 51, no. 4, pp. 1486–1495, Apr 2005.



BIBLIOGRAPHY 161

[64] C. Tian, S. N. Diggavi, and S. Shamai, “The achievable distortion region of

sending a bivariate Gaussian source on the Gaussian broadcast channel,” IEEE

Trans. Inform. Theory, vol. 57, no. 10, pp. 6419–6427, Oct 2011.

[65] D. N. C. Tse and P. Viswanath, Fundementals of Wireless Communications.

Cambridge, U.K.: Cambridge University Press, 2005.

[66] V. A. Vaishampayan, Combined Source-Channel Coding for Bandwidth Wave-

form Channels. Ph.D. dissertation, University of Maryland, 1989.

[67] M. Varasteh and H. Behroozi, “Optimal HDA schemes for transmission of a

Gaussian source over a Gaussian channel with bandwidth compression in the

presence of an interference,” IEEE Trans. Signal Process., vol. 60, no. 4, pp.

2081–2085, April 2012.

[68] Y. Wang, F. Alajaji, and T. Linder, “Hybrid digital-analog coding with band-

width compression for Gaussian source-channel pairs,” IEEE Trans. Commun.,

vol. 57, no. 4, pp. 997–1012, April 2009.

[69] ——, “Hybrid digital-analog coding with bandwidth compression for Gaussian

source-channel pairs,” IEEE Trans. Commun., vol. 57, no. 4, pp. 997–1012, Apr

2009.

[70] M. P. Wilson, K. R. Narayanan, and G. Caire, “Joint source-channel coding

with side information using hybrid digital analog codes,” IEEE Trans. Inform.

Theory, vol. 56, no. 10, pp. 4922–4940, Oct 2010.



BIBLIOGRAPHY 162

[71] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with

side information at the decoder,” IEEE Trans. Inform. Theory, vol. 22, no. 1,

pp. 1–10, Jan 1976.

[72] J.-J. Xiao, Z.-Q. Luo, and N. Jindal, “Linear joint source-channel coding for

Gaussian sources through fading channels,” in Proc. IEEE Global Telecommun.

Conf., San Francisco, CA, Dec 2006.

[73] S. Yao, M. Khormuji, and M. Skoglund, “Sawtooth relaying,” IEEE Commun.

Letters, vol. 12, no. 9, pp. 612–614, Sep 2008.

[74] W. Zhang, S. Kotagiri, and J. Laneman, “Writing on dirty paper with resizing

and its application to quasi-static fading broadcast channels,” in Proc. IEEE Int.

Symp. on Inf. Theory, Nice, France, June 2007.


