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Abstract

Most coding schemes used in today’s communication systems are designed for mem-

oryless channels. These codes break down when they are transmitted over channels

with memory, which is in fact what real-world channels look like since errors often

occur in bursts. Therefore, these systems employ interleaving to spread the errors so

that the channel looks more or less memoryless (for the decoder) at the cost of added

delay and complexity. In addition, they fail to exploit the memory of the channel

which increases the capacity for a wide class of channels. On the other hand, most

channels with memory do not have simple and mathematically tractable models, mak-

ing the design of suitable channel codes more challenging and possibly not practical.

Recently, a new model has been proposed known as the queue-based channel (QBC)

which is simple enough for mathematical analysis and complex enough for modeling

wireless fading channels.

In this work, we examine the performance of linear block codes when transmitted

over this channel. We break down our focus into two parts. First, we investigate the
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maximum likelihood decoding of binary linear block codes over the QBC. Since it

is well known that for binary symmetric memoryless channels, maximum likelihood

decoding reduces to minimum Hamming distance decoding, our objective here is to

explore whether there exists a similar relation between these two decoding schemes

when the channel does have memory. We give a partial answer for the case of perfect

and quasi perfect codes.

Next, we study Reed-Solomon (RS) codes and analyze their performance when trans-

mitted over the QBC under the assumption of bounded distance decoding. In partic-

ular, we examine the two interleaving strategies encountered when dealing with non-

binary codes over a binary input channel; namely, symbol interleaving and bit inter-

leaving. We compare these two interleaving schemes analytically and show that sym-

bol interleaving always outperforms bit interleaving. Non-interleaved Reed-Solomon

codes are also covered. We derive some useful expressions pertaining to the calculation

of the probability of codeword error. The performance of non-interleaved RS codes

are compared to that of interleaved ones for the simplest scenario of the QBC which

is the additive (first-order) Markov noise channel with non-negative noise correlation.
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Chapter 1

Introduction

1.1 Preliminaries

The art of designing good error-correcting codes for reliably transmitting data over a

noisy environment has become an important component in designing any communica-

tion system ever since Shannon’s landmark work in the past century [35]. Hamming

and Slepian pioneered this field in the early 1950s by designing good codes along with

efficient decoding techniques. Further research later on led to the construction of new

codes that have rich algebraic structures with more efficient decoding techniques.

Today’s communication technologies utilize different coding schemes depending on

their applications. The global system for mobile (GSM) communication which is one
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of the popular standards for mobile cellular phones, for instance, employs convolu-

tional codes with Viterbi algorithm at the decoder. More recent standards that are

extensions of the GSM such as the GPRS1, EDGE2 and UMTS3 also implement dif-

ferent convolutional and turbo coding schemes [5]. Data storage applications such

as compact discs (CD) and digital versatile discs (DVD), on the other hand, use

cross-interleaved Reed-Solomon codes that offer a great error correction capability

especially for bursty channels. Due to the high demand for wireless digital communi-

cation, the design of better coding schemes that are power efficient and can operate

at high data rates while keeping the decoding error and decoding complexity as low

as possible is an active area of research.

1.2 Problem Description

In order to design an efficient coding scheme, a comprehensive understanding of the

nature of the medium through which the information is transmitted is necessary. Such

a medium is called the communication channel. Various mathematical models have

been developed to describe physical communication channels. A classical example of

communication channel models is the additive white Gaussian noise (AWGN) channel,

which is extensively studied in the literature. The information transmitted over such

1General packet radio service
2Enhanced data GSM environment
3Universal mobile telecommunications service
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a channel is represented (via modulation) as continuous-time signals. Let x(t) denote

the information-bearing signal sent by the transmitter over the AWGN channel; then

the decoder will receive a signal y(t), given by

y(t) = x(t) + n(t)

where n(t) is a Gaussian process corresponding to the distortion introduced by the

channel. The channel noise is uncorrelated, which makes the AWGN model a simple

one from an analysis point of view.

Wireless channels are not as simple as the AWGN channel. When signals travel

over wireless channels, they may experience attenuation, superposition, delay, etc.,

due to the time varying nature of the wireless medium. Because of such distortions

introduced by the channel, the received signal is said to be faded. As a result, better

and more complex models are needed to account for this fading behavior. Examples

of fading channels include the Rayleigh and Rician fading channels. Fading channel

noise is multiplicative rather than additive. For instance, suppose that a signal x(t)

is transmitted over a fading channel. Then at the receiver the faded signal is given

by y(t) = h(t)x(t) where h(t) is a multiplicative noise process. To better model the

wireless channel, it is natural to assume the presence of the additive white Gaussian

noise, due to electronic circuits noise and thermal noise. Therefore, y(t) can be written

y(t) = h(t)x(t) + n(t).

The above channel models are known as continuous-time channels. The transmitted
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signal, the received signal and the noise process are all continuous functions of time.

However, in digital communications, information signals produced from a source are

usually quantized (i.e., transformed from continuous-time to discrete-time with finite

alphabet) and then encoded via a channel encoder (see Chapter 3). The encoded

information signals, known as codewords, are then modulated and transformed into

continuous-time signals and then transmitted. At the decoder, the received signal

is demodulated and transformed to a discrete-time signal and then decoded. The

overall channel including the continuous-time channel along with the modulator and

demodulator can be viewed as a discrete-time channel since its input and output are

discrete (in time and amplitude). For example, the binary symmetric channel (BSC)

(see Chapter 2) which is a discrete-time channel is equivalent to the AWGN channel

with a binary phase shift keying modulation and a hard-decision demodulation at the

decoder. The family of discrete channels is interesting for the purpose of mathematical

and statistical analysis. More details on discrete channels is given in the next chapter.

Given a channel model, the task of coding theorists becomes designing error-correcting

codes that are capable of reliably communicating data in the sense of minimizing the

probability of decoding error while operating at as high rate as possible. The existence

of such codes is guaranteed by Shannon’s channel coding theorem as long as the rate

is kept below the channel capacity. Another fundamental element considered in such

designs in today’s communication systems is the issue of complexity and delay.
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1.3 Literature Review

Conventional communication systems employ coding schemes that are designed for

memoryless channels, such as the BSC. However, since most real world channels have

statistical memory, interleaving is used in an attempt to spread the channel noise in a

uniform fashion over the set of received words so that the channel appears memoryless

to the decoder. This in fact adds more complexity and delay to the system, while

failing to exploit the benefits of the channel memory [11].

Progress has been achieved on the statistical and information theoretic modeling of

channels with memory (e.g., see [1], [23], [30], [33], [48]), as well as on the design of

effective iterative decoders for such channels (e.g., see [12], [14], [24], [25]). Channel

noise models based on Markov processes have been shown to reliably fit or approxi-

mate different types of fading channels. In [1], the authors describe a channel with

memory in which the noise propagates in the channel in a similar fashion to the

spread of a contagious disease through a population using the Polya urn model. A

resultant channel model is called the finite-memory contagion channel (FMCC). The

Gilbert-Elliott channel (GEC) [23] is a discrete channel model characterized by an

underlying hidden Markov model (HMM). It is used in [33] to model the correlated

Rician fading channel. Furthermore, Fritchman’s Markov model is also used in [30]

to describe channels of bursty nature. In [46], [49], the authors propose a queue-

based channel (QBC) to model a discrete binary channel with an M th order Markov
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noise. This is in fact a generalization of the FMCC. The advantages of the QBC are

that it has a fixed number of parameters along with a closed form expression for the

block transition probability, the channel capacity and the autocorrelation function.

Moreover, it is shown that the QBC can be a better model to the Rician slow fading

channel than the GEC [48], [50].

The power of binary linear codes with rich algebraic structures over memoryless chan-

nels has been demonstrated since the birth of algebraic coding. For instance, binary

perfect and quasi-perfect codes have been shown to achieve the smallest probability

of codeword error (PCE) amongst all codes with the same blocklength and rate. On

the other hand, little is known about the performance of such codes over channels

with memory. In [17], Hamada investigates whether algebraic codes can perform as

well and thus give a good solution to the coding problem when the channel is not

memoryless. He studies the optimality of Hamming codes and cyclic subcodes of

the Hamming codes over the binary additive Markov noise channel (BAMNC) un-

der maximum-likelihood decoding. He first defines the block transition probability

in terms of a generalized weight function that reduces to the Hamming weight when

the noise correlation coefficient is set to zero. The generalized weight is a decreasing

function of the block transition probability under the assumption that the all-zero

noise n-tuple is generated by the channel with a non-zero probability. Given an [n, k]

linear block code (where n is the code’s blocklength and 2k is the codes’s size) and
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using this generalized weight, a set containing 2n−k n-tuples is constructed such that

any element in the set has a weight less than or equal to the weight of any element

outside the set. Such a set is called an ideal decoding set (under maximum-likelihood

decoding) which may not be unique. A decoding set refers to the set of all binary

n-tuples the decoder may subtract from the received words when decoding them in

its attempt to recover the original transmitted codewords. The set of all coset leaders

is an example of a decoding set and is an ideal set when the channel is a BSC (with

cross-over probability less than 1
2
). An optimal code then will have a decoding set

identical to the ideal decoding set. The author showed that the family of binary

Hamming codes are optimal over the BAMNC (with non-negative noise correlation)

amongst all the codes of the same length and rate. He also showed near-optimality

(ε-optimality) of even-weight subcodes of the cyclic Hamming codes. That is, the

ratio of the probability of correct decoding for these subcodes to that of the optimal

code is larger than or equal to 1 − ε, for very low values of ε.

Contrary to the case of binary algebraic codes, non-binary codes have received more

attention when dealing with channels with memory. A famous example of this family

of codes is the class of Reed-Solomon (RS) codes which will be discussed in more

details in Chapter 3. The performance of non-interleaved RS codes over correlated

fading channels is analyzed in [7], [19], [20], [31] using a two step procedure. First,

a channel model is introduced for the generation of the bit or symbol error process,
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and then a formula for the PCE under bounded distance decoding is derived for

the proposed model. In [7] an L-state Markov chain is proposed to characterize the

correlation of symbol errors. In [19], the channel is modeled via the GEC whose pa-

rameters are calculated using a simple threshold model; i.e., the channel is in the bad

state whenever the instantaneous signal to noise ratio is below a given threshold. An

approximation to the PCE is derived under the assumption that the channel state

does not change during each symbol transmission. In [20], level crossing statistics

are applied to characterize the fading arrival process and the fading durations, and

the PCE is expressed in terms of the probability distribution of the fading durations.

In [31], the bit error process resulting from the hard-decision demodulation of bi-

nary frequency-shift keying modulated signals over correlated Rician fading channels

is modeled via a Fritchman channel. Furthermore, an analytical method based on

the generating series approach for calculating the PCE of RS codes over finite state

channels is presented. Imperfect (finite-length) symbol interleaving is also considered

in [20], [29], [31].

1.4 Thesis Contribution

In this thesis, we study the performance of both binary and non-binary block codes

over the QBC. First, we study the maximum-likelihood (ML) decoding of binary block

codes when transmitted over the QBC. Since it is well known that over the memoryless
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BSCs, ML decoding reduces to minimum distance (MD) decoding, our objective is to

investigate whether a similar relation exists between these two decoding techniques

when the channel is not memoryless. We first assume that the channel memory is

longer than the blocklength of the codeword and establish a relation between ML and

MD decoding. Next, we consider a special case of the QBC which is the BAMNC with

non-negative noise correlation. We study both perfect and quasi-perfect codes when

operated over this channel. Similar to the previous case, we show a relation between

the ML and MD decoders for the case of perfect codes. For quasi-perfect codes, a

new decoding technique is proposed based on MD decoding that is near-optimal for

a range of channel parameters. The contributions of this part of the thesis (which in

part appeared in [3]) are as follows.

• Proving that for binary block codes, ML decoding is equivalent to either MD

decoding or maximum distance decoding when the channel memory is longer

than the codeword blocklength.

• Proving that the all-zero n-tuple is the most likely noise output generated by

the BAMNC.

• Proving some important properties of the block transition probability of the

BAMNC.

• Deriving sufficient conditions under which ML decoding reduces to MD decoding
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for binary perfect codes sent over the BAMNC.

• Proposing a new decoding algorithm for binary quasi-perfect codes sent over

the BAMNC that is nearly equivalent to ML decoding over a range of channel

parameters.

Next, we investigate the performance of non-binary codes over the QBC. In particular,

we focus on the performance of RS codes especially when the QBC is reduced to the

BAMNC with non-negative noise correlation. Two important interleaving strategies

are worth studying when dealing with such codes: interleaving the code (or chan-

nel) bits which reduces the channel to the memoryless BSC (under perfect or infinite

interleaving depth) and interleaving the code symbols. In [41], the author observes

experimentally that RS codes sent over Rayleigh fading channels perform better un-

der symbol interleaving than under bit interleaving. In this work, we provide a proof

that symbol interleaving is better than bit interleaving for all non-binary linear block

codes when transmitted over the QBC. Moreover, we analyze the performance of RS

codes when transmitted over the BAMNC with non-negative noise correlation un-

der bounded distance decoding. We calculate the PCE after establishing a recursive

expression for the probability of m symbol errors in a block of length n using the gen-

erating series method [15], [28] which provides a powerful combinatorial approach.

Furthermore, we study four typical RS codes under both interleaving strategies as

well as when they are not interleaved when sent over the BAMNC with non-negative
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correlation. The purpose of this study is to define the range of channel conditions

under which interleaving either degrades the performance or does not provide a sig-

nificant gain compared to the case when no interleaving is used. The contributions

of this part of the thesis (which in part appeared in [4]) are as follows.

• Proving that symbol interleaving is better than bit interleaving for non-binary

block codes over the QBC.

• Deriving a recursive expression for the probability of m symbol errors in a block

of n symbols when transmitting over the BAMNC.

• Numerically studying the performance of four typical RS codes over the BAMNC

and identifying the range of channel parameters for which interleaving can be

avoided.

1.5 Thesis Overview

The organization of this thesis is as follows. In Chapter 2, a brief introduction to

communication channel models is given. We begin this chapter by introducing Markov

chains. Next we introduce some important definitions related to channel coding before

stating Shannon’s coding theorem. After that, we describe some discrete binary

channel models along with their properties.

In Chapter 3, we introduce both binary and non-binary linear block codes. We start
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with some general notations and terminologies before introducing binary codes such

as Hamming codes, extended Hamming codes, and the BCH codes. Next, syndrome

decoding for these codes is explained. Finally, RS codes are introduced along with

Berlekamp’s iterative decoding algorithm and Forney’s algorithm that are used to

decode the RS codes.

In Chapter 4, we study the ML decoding of binary linear block codes over the QBC.

First, the case of M > n (where M is the length of the queue, while n is the length of

the codeword) is studied. Next we consider the case M ≤ n. For this case, we restrict

our study to M = 1 resulting in the BAMNC with non-negative noise correlation.

We derive some important and useful results pertaining to binary perfect and quasi-

perfect codes. We also simulate the performance of another binary linear block code

that is neither perfect nor quasi-perfect.

In Chapter 5, the performance analysis of non-binary block codes in general and RS

codes in particular is investigated. Interleaved RS codes at both the symbol and

bit levels as well as non-interleaved RS codes are analyzed. For the special case of

BAMNC with non-negative noise correlation, we derive an expression to calculate the

PCE using the generating series approach. Furthermore, four different high and low

rate RS codes are studied and channel parameters are identified for which these codes

can perform better without interleaving.

Finally, in Chapter 6, we summarize our work and discuss some possible future work

12



that can be built upon our work presented in this thesis.
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Chapter 2

Communication Channel Models

The birth of information theory and channel coding is linked to the work pioneered

by C. Shannon in 1948. In his outstanding contribution [35], Shannon defined two

important quantities in information theory. Namely, the source entropy, and the

channel capacity. The former is a measure of the source’s uncertainty, and the latter

is the maximum rate at which information can be transmitted with arbitrary small

probability of decoding error. As a result of Shannon’s work, the communication

system can be separated into two main portions: source coding and channel coding as

shown in Fig. 2.1.

Definition 2.1 Let X be a discrete random variable (representing a discrete memo-

ryless or independent and identically distributed (i.i.d) source) with probability mass

14



function p(x). The entropy H(X) is defined by

H(X) = −
∑

x∈X

p(x) log2 p(x). (2.1)

Shannon also defined another quantity called the mutual information between two

random variables X and Y , denoted I(X;Y). The mutual information is a measure

of the amount of information that one random variable contains about another one.

In other words, it tells how much uncertainty about one random variable is reduced

due to the knowledge of the other.

Source - Source
Encoder

- Channel
Encoder

?

C
h
a
n
n
el

�Channel
Decoder

�Source
Decoder

�Sink

Channel
Coding

Source
Coding

Figure 2.1: Communication system model.
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Let X and Y be two random variables with joint probability mass function p(x, y)

and marginal probability mass functions p(x) and p(y), then I(X; Y ) is given by

I(X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (2.2)

2.1 Discrete Markov Chains

Markov chains are involved in modeling wireless communication fading channels (e.g.,

see [6], [30], [33], [36] – [40], [43] – [48]). A brief introduction to discrete Markov chains

is given in this section.

Definition 2.2 A discrete process {Z1, Z2, · · · } with finite-alphabet A is said to be a

Markov chain or Markov process if for n = 1, 2, · · ·

Pr(Zn = zn|Zn−1 = zn−1, Zn−2 = zn−2, · · · , Z1 = z1) = Pr(Zn = zn|Zn−1 = zn−1)

for all z1, · · · , zn ∈ A. In this case,

Pr(Zn = zn) = Pr(Z1 = z1)

n
∏

i=2

Pr(Zi = zi|Zi−1 = zi−1),

where zn△
=(z1, z2, · · · , zn).

Furthermore, a process is a Markov process of order M (or memory M), where

M > 0 is fixed, if

Pr(Zn = zn|Zn−1 = zn−1, Zn−2 = zn−2, · · · , Z1 = z1)

= Pr(Zn = zn|Zn−1 = zn−1, Zn−2 = zn−2, · · · , Zn−M = zn−M)
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for n > M and for all z1, · · · , zn ∈ A.

Proposition 2.1 Define the process {Sn}
∞
n=1 by

Sn , (Zn, Zn+1, · · · , Zn+M−1).

Then {Sn} is a Markov process with |A|M states.

Proof.

Pr(Sn = sn|Sn−1 = sn−1, · · · , S1 = s1)

= Pr(Zn+M−1 = zn+M−1|Zn+M−2 = zn+M−2, · · · , Zn−1 = zn−1)

= Pr(Sn = sn|Sn−1 = sn−1).

�

If the conditional probability of a Markov process, Zn, does not depend on n, which

means that the conditional probability satisfies

Pr(Zn = a|Zn−1 = b) = Pr(Z2 = a|Z1 = b),

for n > 1 and for all a, b ∈ A, then the process is said to be time-invariant or

homogeneous.

Definition 2.3 A stochastic process {Zn}
∞
n=1 with finite-alphabet A is said to be sta-

tionary if the joint distribution of any subset of the sequence of random variables is

invariant with respect to time shifts; i.e.,

Pr(Zn1 = zn1 , Zn2 = zn2 , · · · , Zn = znk
) = Pr(Zn1+τ = z1, Zn2+τ = z2, · · · , Znk+τ = zn)

17



for every time shift τ and for all z1, · · · , zn ∈ A and all k ≥ 1.

Definition 2.4 Let {Zn}
∞
n=1 be a Markov process. The matrix P whose (i, j)th entry

pij is the conditional probability of a transition from state i to state j,

pij
△
= Pr(Zn = j|Zn−1 = i).

is called the probability transition matrix of the process. A homogeneous Markov

process is characterized by the distribution of Z1 and its probability transition matrix,

P .

A Markov process is said to be irreducible or ergodic if the process can reach any state

from any other state in a finite number of steps with a non-zero probability [26].

Definition 2.5 For a Markov process {Zn}, a distribution on the states such that

the distribution at time n + 1 is the same as the distribution at time n is called a

stationary distribution and is denoted by π , (π0; π1; · · · ; π|A|−1).

Remark: The stationary distribution π always exists for any finite-alphabet homo-

geneous Markov process. In fact, if P
△
=[pij ] is the probability transition matrix of

the Markov process, then π can be obtained by solving π = πP . In addition, if the

initial state of a homogeneous Markov process is drawn according to the stationary

distribution π, then the Markov process is a stationary process.

18



2.2 The Channel Coding Theorem

The channel coding theorem is one of the main contributions Shannon has made

to communication theory. Contrary to what was generally accepted before 1948,

Shannon proved that increasing transmission rate does not increase the error rate as

long as the transmission rate is kept below a certain threshold he called the capacity

of the channel.

Definition 2.6 [10] A discrete channel (X n, p(yn | xn),Yn) consists of two finite

sets: an input set X and an output set Y, and a sequence of n-dimensional conditional

distributions, {p(yn | xn)}∞n=1, where p(yn | xn)
△
=Pr(Y n = yn | Xn = xn) ≥ 0

∀xn△
=(x1, · · · , xn) ∈ X n, yn△

=(y1, · · · , yn) ∈ Yn, and
∑

yn∈Yn p(yn | xn) = 1 ∀xn ∈

X n.

PY n|Xn(·|·)- -Xn Y n

Definition 2.7 Discrete Memoryless Channel (DMC): The DMC is a channel with

the property

Pr(Y n = yn|Xn = xn) =

n
∏

i=1

Pr(Yi = yi|Xi = xi).

A DMC is totally described by p(y | x)
△
= Pr(Y = y | X = x), where x ∈ X and y ∈ Y
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Definition 2.8 A discrete-time binary additive-noise channel is a communication

channel with common input, noise and output alphabets (i.e., X = Z = Y = {0, 1})

in which, the nth channel output Yn is given by Yn = Xn ⊕ Zn, where ⊕ is modulo-2

addition, and Xn and Zn are the channel input and noise, respectively. Furthermore,

the input and noise processes — {Xn}
∞
n=1 and {Zn}

∞
n=1, respectively — are indepen-

dent from each other.

The noise process {Zi}
∞
i=0 is generated according to a certain probabilistic model. An

error occurs at time t if and only if Zt = 1.

Definition 2.9 [10] An (n, M) code for the channel (X n, p(yn | xn),Yn) consists of:

• An index set {1, 2, · · · , M}.

• An encoding (injective) function f

f : {1, 2, · · · , M} → X n

resulting in a codebook, C, which is the set of codewords:

C = {f(1), f(2), · · · , f(M)}.

• A decoding function g

g : Yn → {1, 2, · · · , M}

which is a deterministic rule that assigns a guess to each possible received word.
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An important measure for evaluating the performance of a given communication

system (i.e., encoder and decoder) over a certain channel model is the probability

of error. Obviously, a system achieving the smallest possible probability of error is

always desirable.

Definition 2.10 (Probability of Error): Let

λi = Pr(g(Y n) 6= i|Xn = f(i)) =
∑

yn∈Yn

p(yn|f(i))I(g(yn) 6= i),

where I(·) is the indicator function. λi is called the conditional probability of error

given that index i was sent.

Definition 2.11 The maximal probability of error for an (n, M) code denoted by λ(n)

is defined as

λ(n) = max
i∈{1,2,··· ,M}

λi. (2.3)

Definition 2.12 The (arithmetic) average probability of error, denoted P
(n)
e , for an

(n, M) code is defined as

P (n)
e =

1

M

M
∑

i=1

λi. (2.4)

Definition 2.13 The rate R of an (n, M) code is defined as

R =
log2M

n
bits per channel transmission or symbol. (2.5)
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Definition 2.14 A rate R is said to be achievable if there exists a sequence of

(n, ⌈2nR⌉) codes such that limn→∞ λ(n) = 0.

Definition 2.15 The capacity of a channel denoted by C, is defined as the supremum

of all achievable rates. In other words, for every rate R < C, there exists a sequence

of (n, ⌈2nR⌉) codes with maximum probability of error λ(n) → 0 as n → ∞; also, any

sequence of (n, ⌈2nR⌉) codes with λ(n) → 0 as n → ∞ must have R ≤ C.

Theorem 2.1 [10] For a DMC,

C = max
p(x)

I(Xn; Y n), (2.6)

where the maximization is taken over all input distributions p(x).

Theorem 2.2 [13, 16] For a discrete-time binary channel with stationary ergodic

noise,

C = lim
n→∞

max
p(x)

I(Xn; Y n)

= 1 − H(Z)

where H(Z)
△
= limn→∞

1
n
H(Zn) is the noise entropy rate. In particular, if the noise

process is homogeneous Markovian of order M , then its entropy rate reduces to the

following conditional entropy

H(Z) = H(ZM+1 | ZM , · · · , Z1)

△
= −

∑

zM+1

p(zM+1) log2 p(zM+1|z
M )

which can be readily calculated using the Markov chain’s stationary and transition

distributions.
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2.3 The Binary Symmetric Channel (BSC)

The binary symmetric channel is an additive noise discrete channel. The noise process

{Zi}
∞
i=1 is binary memoryless (i.i.d) and the channel’s input/output transition distri-

bution can be represented as shown in Fig. 2.2. The channel is completely determined

by its crossover probability p , P (Zn = 1) and is hence denoted by BSC(p).
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�
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�
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�
�

��
-
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X Y

0 0

1 1

1 − p

1 − p

p p

Figure 2.2: The binary symmetric channel with cross over probability p (BSC(p)).

The capacity of this channel is

C = max
p(x)

I(X; Y )

= 1 − hb(p) (2.7)

where hb(x)
△
= − x log2 x − (1 − x) log2(1 − x) is the binary entropy function.

2.4 The Gilbert-Elliott Channel (GEC)

The Gilbert-Elliott channel (GEC) [23] is another binary additive noise channel. It

is one of the simplest models widely used in the literature to model channels with
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Figure 2.3: The Gilbert-Elliott channel model.

memory. The simplicity of this model lies in the fact that it is driven by a state process

with two values: the good state, denoted by G or 0, and the bad state, denoted by

B or 1, where each state corresponds to a BSC with a certain crossover probability,

as shown in Fig. 2.3. The transition between the states takes place according to a

Markov process. This type of channel model is known as a hidden Markov model

(HMM) since its noise process is itself a hidden Markov process. The probability

transition matrix for the Markov state process is

P =









1 − b b

g 1 − g









(2.8)

where 0 < b < 1 and 0 < g < 1.

Let Sk and Zk be the state of the channel and the noise output, respectively, at time

k. Define the matrix P (zk), whose ijth entry is given by Pr(Zk = zk, Sk = j|Sk−1 = i),

i, j = 0, 1. Then, P (0) and P (1) for the GEC are
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P (0) =









(1 − b)(1 − pG) b(1 − pB)

g(1 − pG) (1 − g)(1 − pB)









, (2.9)

P (1) =









(1 − b)pG bpB

gpG (1 − g)pB









. (2.10)

Let zn = (z1, z2, · · · , zn) be an n-tuple noise vector; then

Pr(Zn = zn) = πT

(

n
∏

i=1

P (zi)

)

1, (2.11)

where 1 is the all-ones column vector, and π is the state stationary distribution given

by

π =









π0

π1









=









g

b+g

b
b+g









. (2.12)

2.5 Finite Memory Contagion Channel (FMCC)

The finite memory contagion channel (FMCC) is a binary additive M th order Markov

noise channel. This model was first presented in [1, Section VI] to describe a channel

in which its errors spread in a similar fashion to the spread of disease through a

population. The noise process {Zi}
∞
i=0 is generated according to the Polya contagion

urn model with a slight modification in the following way. An urn contains originally

R red and S black balls with a total of T = R + S balls. Let ρ = R/T and σ =
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1 − ρ = S/T . At the ith draw (i = 1, 2, · · · ), a ball is drawn at a random from the

urn and replaced with 1 + ∆ balls of the same color, where ∆ > 0. At the (i + M)th

draw, these ∆ balls are removed from the urn. Then the ith noise output Zi is given

by

Zi =



















1 if the ith ball drawn is red,

0 if the ith ball drawn is black.

In such a scheme, the ∆ balls added at each time instant affect only M future draws;

this results in a finite-memory system. It can be shown [1, Section VI] that the

resulting noise process {Zi}
∞
i=1 is a stationary ergodic M th order Markov process.

2.5.1 Channel Properties

The block transition probability Pr(Y n = yn|Xn = xn) = Pr(M)(Zn = zn), where

zi = yi ⊕ xi, i = 1, · · ·n, is as follows.

• For blocklength n ≤ M ,

Pr(M)(Zn = zn) =
ρ(ρ + δ) · · · [ρ + (d − 1)δ]σ(σ + δ) · · · [σ + (n − d − 1)δ]

(1 + δ)(1 + 2δ) · · · [1 + (n − 1)δ]
,

where δ , ∆
T
, d is the Hamming distance between yn and xn (i.e., d = dH(yn, xn) =

wH(zn = yn ⊕ xn), and wH(an) denotes the Hamming weight of the tuple an

(i.e., the number of “ones” in an)).
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• For blocklength n > M ,

Pr(M)(Zn = zn) = L

n
∏

i=M+1

[

ρ + λi−1δ

1 + Mδ

]zi
[

σ + (M − λi−1)δ

1 + Mδ

]1−zi

,

where

L =

∏λM−1
j=0 (ρ + jδ)

∏M−1−λM

j=0 (σ + jδ)
∏M−1

j=1 (1 + jδ)
,

∏a

j=0(·)
△
=1, if a < 0, zi = xi⊕yi, and λi−1 = zi−1+· · ·+zi−M for i = M+1, · · · , n.

Proposition 2.2 [1] The capacity of the above channel is given by

C
(M)

FMCC
= 1 − H(ZM+1 | ZM , · · · , Z1)

= 1 −

M
∑

k=0

(

M

k

)

Lkhb

(

ρ + kδ

1 + Mδ

)

,

where

Lk =

∏k−1
j=0(ρ + jδ)

∏M−1−k

j=0 (σ + jδ)
∏M−1

j=1 (1 + jδ)
,

ρ = R/T is the channel BER, and δ = ∆/T is a correlation parameter. The correla-

tion coefficient of the noise process is

Cor ,
E[ZiZi+1] − E[Zi]

2

E[Z2
i ] − E[Zi]2

=
δ

δ + 1
≥ 0. (2.13)

2.6 Queue-Based Channel (QBC)

The queue-based channel (QBC) is a generalization of the FMCC described in the

previous section. It was introduced by Zhong, Alajaji and Takahara in [46], [49] to
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model an M th-order additive Markov noise channel using a finite queue. The noise

process {Zi}
∞
i=1 is drawn according to the following scheme. Suppose that there are

two parcels:

• Parcel 1 is a queue of length M (see Fig. 2.4), that contains initially M balls,

either red or black.

- } m } · · · m -

Ai1 Ai2 Ai3 AiM

1 2 3 M

Figure 2.4: A queue of length M .

Define the random variables Aik where i ≥ 1 is the ith experiment and

1 ≤ k ≤ M as:

Aik =



















1 if the kth cell contains a red ball

0 if the kth cell contains a black ball.

• Parcel 2 is an urn that contains a very large number of balls either red or black

such that the proportion of the black balls is 1 − p and the proportion of red

balls is p, where p ∈ (0, 1), p < 1/2.

At the ith experiment a biased coin with Pr(Head) = ε, where ε ∈ [0, 1), is tossed.

If head occurs, we select the queue (Parcel 1), otherwise Parcel 2 is selected. If the

queue is of a length M ≥ 2 and is selected, then a pointer points at the kth cell with a

probability 1
M−1+α

, for some constant α ≥ 0 if 1 ≤ k ≤ M −1, and with a probability
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α
M−1+α

if k = M . Whereas, if the queue contains only one cell (i.e., M = 1), then the

pointer selects it with probability 1. On the other hand, if Parcel 2 is selected, then

a ball is drawn at random from the urn. Based on the color of the ball selected by

the pointer or drawn from the urn, we insert a ball of the same color in cell 1 of the

queue, shifting its content to the right and forcing the rightmost ball (in cell M) out

of the queue. Hence, the queue, after the first M trials, will always contain the balls

selected in the last M experiments. The ith noise output is given by

Zi =



















1 if the ith experiment selects a red ball

0 if the ith experiment selects a black ball.

(2.14)

The state of the channel Si is defined to be the binary M-tuple in the queue, Si =

(Ai1, Ai2, · · · , AiM). In other words, the state of the channel at any time is the set of

the last M noise outputs of the channel, Si = (Zi, Zi−1, · · · , Zi−M+1) and the process

{Si}
∞
i=1 is a first-order Markov process with an alphabet of size 2M . We note that the

effect of the memory is in the queue. Thus if ε = 0, then we will always select the

urn, hence the channel becomes memoryless. Indeed, if ε = 0, then the QBC reduces

to the BSC(p).
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2.6.1 Channel Properties

Theorem 2.3 [49] The noise process {Zi}
∞
i=0 generated by the QBC is a homoge-

neous M th-order Markov process, with stationary distribution, π(M) given by

π
(M)
i =

∏M−1−ω
(M)
i

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏ω

(M)
i −1

j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] ,(2.15)

for i = 0, 1, 2, · · · , 2M − 1, where
∏a

j=0(·)
△
=1 if a < 0, and ω

(M)
i is the number of

“ones” in the M-bit binary representation of the decimal integer i.

The block transition probability for the QBC, Pr(Y n = yn|Xn = xn) = Pr(M)(Zn =

zn), where zn = yn ⊕ xn, is determined in [46], [49] as follows.

• For blocklength n ≤ M ,

Pr(M)(Zn = zn)

=

∏n−dn
1−1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏dn

1−1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=M−n

[

1 − (α + j) ε
M−1+α

] , (2.16)

where db
a = zb + zb−1 + · · ·+ za (db

a = 0 if a > b), and
∏a

j=0(·)
△
=1 if a < 0.

• For blocklength n ≥ M + 1,

Pr(M)(Zn = zn) = L(M)
n
∏

i=M+1

[

(

di−1
i−M+1 + αzi−M

) ε

M − 1 + α
+ (1 − ε)p

]zi

{

[(

M − 1 − di−1
i−M+1

)

+ α(1 − zi−M)
] ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

, (2.17)

where

L(M) =

∏M−1−dM
1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏dM

1 −1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] .
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The probability transition matrix for the process {Sn}
∞
n=1, denoted by P

(M)
QBC = [p

(M)
ij ],

where p
(M)
ij is the probability that Sn goes from state i to state j, is given by

p
(M)
ij =



















































































(

M − ω
(M)
i − 1 + α

)

ε
M−1+α

+ (1 − ε)(1 − p), if j = i
2 , and i is even,

(

M − ω
(M)
i

)

ε
M−1+α

+ (1 − ε)(1 − p), if j = ⌊ i
2⌋, and i is odd,

ω
(M)
i

ε
M−1+α

+ (1 − ε)p, if j = i+2M

2 , and i is even,

(

ω
(M)
i − 1 + α

)

ε
M−1+α

+ (1 − ε)p, if j = ⌊ i+2M

2 ⌋, and i is odd,

0, otherwise.

(2.18)

Here states i and j are the integer representations (varying from 0 to 2M − 1) for

states sn−1 and sn, respectively. For example, if the state at time n − 1 is sn−1 =

(zn−1, zn−2, · · · , zn−M), then i =
∑M−1

l=0 zn−1−l · 2
l.

The channel bit error rate, BER, and the correlation coefficient Cor, for the QBC are

given by

BER = Pr(M)(Zi = 1) = Pr(M)(Z1 = 1) = p, (2.19)

and

Cor =
ε

M−1+α

1 − (M − 2 + α) ε
M−1+α

=
ε

(M − 1 + α) − ε(M − 2 + α)
≥ 0. (2.20)

It can be also shown [46], [49] that the capacity of the QBC, denoted C
(M )
QBC is:

C
(M)

QBC = 1 −
M−1
∑

ω=0

(

M − 1

ω

)

L(M)
ω hb

[

ω
ε

M − 1 + α
+ (1 − ε)p

]

−

M
∑

ω=1

(

M − 1

ω − 1

)

L(M)
ω hb

[

(ω + α − 1)
ε

M − 1 + α
+ (1 − ε)p

]

(2.21)
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where

L(M)
ω =

∏M−1−ω

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏ω−1

j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] ,

∏a

j=0(·)
△
=1, if a < 0,

(

a

b

)△
=1, if a = 0, and hb(·) is the binary entropy function.

Theorem 2.4 [49] The capacity C
(M)

QBC
of the QBC strictly increases with α for fixed

M ≥ 2, BER and Cor ∈ (0, 1).

Remarks:

• QBC(M) has only 4 parameters: ε, p, α and M .

• if ε = 0, then the QBC(M) reduces to the BSC(p) .

• If M = 1, then we assume α = 1, and in this case the QBC is a general

first-order Markov noise channel (with non-negative noise correlation).

• If α = 1, then the QBC(M) reduces to the FMCC(M).

In Chapter 4 we will further analyze this channel model and derive some interesting

and important properties that will facilitate the performance analysis of linear block

codes over this channel.
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Chapter 3

Linear Block Codes

The channel coding theorem, as was stated in Chapter 2, proves the existence of

good codes with asymptotically vanishing probability of decoding error provided that

the rate is kept below the channel capacity. Ever since this remarkable discovery,

error-control coding has gained lots of attention and constructing codes within the

limits laid out by Shannon’s theorem has become the prime task of coding theorists.

Most of the codes that exist today belong to the class of linear block codes. Although

binary codes are more popular due to their simplicity and their practical usefulness,

non-binary codes were found to be as important, if not more, in some applications.

In this chapter, a glimpse of some famous binary and non-binary linear codes will be

introduced. In particular, the Hamming codes, the binary BCH codes, and the Reed-

Solomon (RS) codes will be discussed. The material of this chapter can be found in
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[21]–[22].

3.1 Binary Linear Block Codes

Definition 3.1 A binary linear code, C is a linear subspace of {0, 1}n. The dimension

of the code, k is the size of the basis of C, and given by k = log2 |C|. Such a code is

denoted by [n, k] and its elements are called codewords. The code’s rate is thus given

by R(C) = k/n.

Definition 3.2 Let C be a binary linear code. Then, for any codeword xn,(x1, · · ·, xn)

∈ C, the Hamming weight of xn, denoted by wH(xn), is the number of ones in xn.

The Hamming distance between two codewords xn, yn ∈ C, dH(xn, yn) is the Hamming

weight of their difference, dH(xn, yn) = wH(xn −yn) = wH(xn ⊕yn), where the − and

⊕ operations are performed component-wise on xn and yn.

Definition 3.3 The minimum distance, d, of the binary linear code C, is the smallest

non-zero Hamming weight of its codewords.

From now on we shall denote a binary code of length n, dimension k and minimum

distance d by [n, k, d] or just simply [n, k] if the minimum distance is not of interest.

Definition 3.4 Any k × n matrix whose rows are a basis of C is called a generator

matrix of C and denoted by G.
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G is called systematic if it is of the form G = [Ik | P ], where Ik is the k×k identity

matrix.

Definition 3.5 The parity-check matrix, H of the linear block code C, is an (n−k)×n

matrix of rank n − k with the property that G · HT = 0.

Remark: If G is systematic, then H = [P T | In−k], where T denotes the transpose

operation.

The generator matrix is used to encode the messages, while the parity-check matrix

can be used at the decoder using syndrome decoding as will be described later.

Definition 3.6 Let xn ∈ {0, 1}n, then for any linear code C, xn +C , {xn⊕cn : cn ∈

C} is called a coset of C.

Note that if xn ∈ C, then xn + C = C. The element of the smallest weight in x + C

is called the coset leader. For an [n, k] linear code C, the number of distinct cosets is

equal to 2n−k.

Definition 3.7 (Perfect Code) A linear code C is said to be a perfect code if, for

some non-negative integer t, it has all patterns (i.e., elements of {0, 1}n) of Hamming

weight t or less and no others as coset leaders.

Definition 3.8 (Quasi-Perfect Code) A linear code C is said to be quasi-perfect

if, for some non-negative integer t, it has all patterns of Hamming weight t or less,

some of weight t + 1, and none of greater weight as coset leaders.
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An equivalent definition for quasi-perfectness is that, for some non-negative integer t,

C has a packing radius equal to t and a covering radius equal to t+1; i.e., the spheres

with (Hamming) radius t around the codewords of C are disjoint, and the spheres

with radius t+1 around the codewords cover {0, 1}n. On the other hand, perfectness

means that both packing and covering radii are equal. For these two classes of codes,

t =
⌊

d−1
2

⌋

(with d = 2t + 1 for perfect codes and d = 2t + 1 or d = 2t + 2 for

quasi-perfect codes).

The [2m − 1, 2m − 1 − m, 3] Hamming codes, the [n, 1, n] repetition code with n odd

and the [23, 12, 7] Golay code are the only members of the family of the binary perfect

codes. Examples of quasi-perfect binary linear codes include the [n, 1, n] repetition

codes with n even, the [2m, 2m − 1 − m, 4] extended Hamming codes as well as the

[2m−2, 2m−2−m, 3] shortened Hamming codes (m ≥ 2), the [2m−1, 2m−1−2m, 5]

double-error correcting BCH codes (m ≥ 3), and the [24, 12, 8] extended Golay code.

Remark Perfect and quasi-perfect codes are optimal over the BSC [27]; i.e., they

achieve the smallest probability of codeword error amongst all the codes of the same

length and dimension when used over the BSC and decoded via a maximum likelihood

decoder (which will be defined in the following subsection).
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3.1.1 Hamming Codes

According to [9], the Hamming codes are the first class of error-correcting linear codes

to be designed. They and their variations are used in both digital communications

and data storage systems.

The family of binary Hamming codes are linear block codes with parameters n =

2m − 1, k = 2m − m − 1 and d = 3, where the integer m ≥ 2.

Example: The [7, 4, 3] Hamming code is a linear binary code with generator matrix

G and H given by

G =

























1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

























, (3.1)

H =

















1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1

















. (3.2)

One can easily verify that G · HT = 0.
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Encoding Hamming Codes

Every k message bits generated by the source are encoded by the channel encoder via

a simple multiplication using the generator matrix to produce a codeword of length

n. As was described earlier, the operation is one-to-one, thus making the reverse

operation of recovering the original message from the decoded codeword easier. In

the case of the systematic encoder, the first k bits of the codeword are nothing but

the original message produced by the source.

Decoding Hamming Codes

The aim of the decoder is to make a guess of what the actual transmitted codeword

was. The only pieces of information available to the decoder are the channel statistics

and the received codeword. If yn is received at the channel output, and is decoded

into cn
0 ∈ C, where cn

0 satisfies Pr(Y n = yn|Xn = cn
0 ) ≥ Pr(Y n = yn|Xn = cn) for

all cn ∈ C, then the decoder performs maximum likelihood (ML) decoding. If there is

more than one codeword for which the above condition holds, then the decoder picks

one of such codewords at random. If the above inequality, however, is strict then the

decoding is called strict ML (SML) decoding, in which a decoding failure is declared

if more than one codeword have largest ML metric, Pr(Y n = yn|Xn = cn). Another

decoding strategy is based on minimizing the Hamming distance between the received

word and the decoded codeword. In other words, the decoder chooses the codeword
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that is closest to the received word in terms of the Hamming distance. This is called

minimum distance (MD) decoding defined below. When a code is used over a BSC(p)

with crossover probability p < 1/2, then MD and ML decoding can be shown to be

equivalent.

Definition 3.9 Minimum Distance (MD) Decoding: yn is decoded into codeword

c0 ∈ C if w(c0 ⊕ y) ≤ w(c ⊕ y) for all c ∈ C. If there is more than one codeword

for which the above condition holds, then the decoder picks one of such codewords at

random.

Definition 3.10 Strict Minimum Distance (SMD) Decoding: It is identical to the

MD rule with the exception of replacing the inequality with a strict inequality; if no

codeword c0 satisfies the strict inequality, the decoder declares a decoding failure.

For both ML and MD decoding, exhaustive search over the codebook is not feasible

for codes with large values of k, since the complexity increases exponentially. A better

approach to decode linear block codes is to use syndrome decoding which is described

next.

Syndrome Decoding

The syndrome of any binary [n, k] code is an element of the vector space, {0, 1}n−k,

vector space obtained by multiplying all the n-tuple vectors an ∈ {0, 1}n by the

transpose of the parity-check matrix HT . Let xn be the transmitted codeword. Over
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the additive noise channel, the received word will be yn = xn ⊕ zn, where zn is the

additive noise vector generated according to a channel model described in the previous

chapter. Now, the syndrome, denoted sn−k , (s1, s2, · · · , sn−k) is given by

sn−k = yn · HT

= (xn ⊕ zn) · HT

= xn · HT ⊕ zn · HT

= zn · HT . (3.3)

Note that since G · HT = 0 and any codeword is spanned by the rows of G, then

xn · HT = 0 where xn is a codeword. This means that the syndrome only depends

on the error pattern zn, and not on the transmitted codeword. Thus any element in

zn + C will have the same syndrome. In other words, elements of the same coset are

mapped to the same syndrome. Hence, the number of distinct syndromes is equal to

the number of cosets, which is 2n−k.

Now assume that the syndrome of the received vector yn is sn−k. Then there are |C|

possible noise outputs that could have been generated by the channel and produced

yn, where |C| = 2k is the size of the codebook which also equals the size of any coset.

For the BSC with crossover probability p < 1
2
, noise outputs with smaller Hamming

weights are more likely to occur; therefore, the coset leader is the most likely noise

pattern to be generated. Hence, given the syndrome, the decoder presumes that the

corresponding coset leader, z∗, had been added to the actual transmitted codeword
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and thus subtracts (which is equivalent to the addition over the binary field) z∗ from

the received word to decode what it thinks is the most probable transmitted codeword

x̂n = yn ⊕ z∗. Indeed in this case, syndrome decoding is identical to ML and MD

decoding.

Example: For the [7, 4] Hamming code in the above example, assume that yn =

(1, 0, 0, 1, 0, 0, 0), then the syndrome is given by yn · HT = (0, 1, 1). The coset leader

for the syndrome can be shown to be (0, 1, 0, 0, 0, 0, 0). Thus, the decoder adds this

to the received word. So, the decoded codeword is x̂n = (1, 1, 0, 1, 0, 0, 0).

Syndrome decoding requires the system to store all 2n−k syndromes and their corre-

sponding coset leaders. However, this storage requirement reduces the computation

complexity incurred by the exhaustive search over the whole codebook. In many

applications, more sophisticated decoding algorithms are used such as the Viterbi

and sum-product algorithms (e.g., see [9]), which has less complexity than the syn-

drome decoding algorithm. However, for codes with small values of (n−k), syndrome

decoding can be used without a significant delay in the system.

Extended Hamming Codes

The extended Hamming codes is another family of the linear block codes. An [n, k, 3]

Hamming code can be easily transformed to an extended one by adding a bit to

each codeword to make its Hamming weight even. As a result, the new code is an
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[n + 1, k, 4] linear block code.

Example: The extended Hamming [8, 4, 4] is obtained by adding a (parity) bit to

the Hamming [7, 4, 3] in the same way described above.

Remark: The extended Hamming codes are quasi perfect.

3.1.2 BCH Codes

A shortcoming of the Hamming and extended Hamming codes is their small Hamming

distance. Codes with larger Hamming distances are desirable since they can correct

more errors. BCH codes are a generalization of Hamming codes. Such codes have

larger Hamming distances than the Hamming codes, in general. The BCH codes

belong to the class of cyclic linear block codes, which have the property that any

cyclic shift of any codeword yields another codeword.

For a binary [n, k] code C, a codeword cn ∈ C can be represented in polynomial form.

Let cn = (c0, c1, · · · , cn−1), then c(x) = c0+c1x+ · · ·+cn−1x
n−1 is the polynomial rep-

resentation for the codeword cn. A cyclic code is completely specified by its nonzero

codeword polynomial of minimum degree [22]. Such a polynomial is called the gener-

ator polynomial which is analogous to the generator matrix and is denoted by g(x).

The degree of this polynomial is n − k.

Definition 3.11 If a ∈ GF(2n), the Galois field of size 2n, with the property that

the smallest integer l satisfying al = 1 is l = 2n − 1, then a is called primitive. The

42



integer l is called the order of a.

Definition 3.12 Let a ∈ GF(2n). Let φ(x) be a (non-zero) polynomial over GF (2) =

{0, 1} with the smallest degree such that φ(a) = 0. Then φ(x) is called the minimal

polynomial of a.

For any given integer m ≥ 3 and t < 2m−1 a binary BCH code with the properties

n = 2m − 1, k ≥ n − mt and d ≥ 2t + 1 can be designed. The generator polynomial

for such code is given by

g(x) = LCM{φ1(x), φ2(x), · · · , φ2t(x)}

= LCM{φ1(x), φ3(x), · · · , φ2t−1(x)}

where LCM stands for the least common multiple, φi(x) is the minimal polynomial

of ai and a is a primitive element in GF(2n).

Remark: Under MD decoding, the above BCH code can correct up to t errors per

codeword (actually this applies to all block codes with d ≥ 2t + 1).

3.2 Non-Binary Linear Block Codes

Similar to the case of binary linear block codes, one can define non-binary linear block

codes or q-ary linear block codes. In this case, a codeword of a q-ary code will consist

of symbols from the Galois field of size q, GF(q) [22] such that q = pm, where p is

prime and m is a positive integer.
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Definition 3.13 Let F = GF(q). A q-ary [n, k] linear code, is a k-dimensional

subspace of the vector space F
n.

Likewise, one can also define a q-ary linear cyclic code, with a generator polynomial

of degree n − k with coefficients from GF(q).

Example: The q-ary BCH code is cyclic. The design of a BCH code that is capable of

correcting t errors under MD decoding is done by finding the corresponding generator

polynomial, g(x) which is in turn given by

g(x) = LCM{φ1(x), φ2(x), · · · , φ2t}

where φi(x) is the minimal polynomial of ai over GF(q) and a is a primitive element

in GF(qs), and s is a positive integer.

Remark: Each φi(x) is a monic polynomial, which means that the coefficient of the

highest degree term is 1. Hence, g(x) itself is monic.

Note that if q = 2, then we are reduced to the binary BCH codes discussed earlier.

If we let s = 1, then a special type of BCH codes is formed known as the Reed-Solomon

(RS) codes that are widely used in data storage applications, such as CD’s and DVD’s

due to their ability to correct bursts of errors. More details on this subclass of the

BCH codes are given in the next section.
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3.3 Reed-Solomon Codes

Reed-Solomon (RS) codes were first introduced by I. Reed and G. Solomon in 1960.

These codes are of considerable interest both theoretically and practically. As ex-

plained in the previous section, RS codes are a subset of the non-binary BCH codes.

In this work we will deal with RS codes with symbols from GF(2m).

The generator polynomial, g(x) of a t-error correcting Reed-Solomon code (under

bounded distance decoding1) is constructed as follows. Let γ ∈ GF(2m) be primitive.

Then g(x) is given by

g(x) = (x + γ)(x + γ2) · · · (x + γ2t)

The resultant RS code is of length n = 2m − 1, dimension k = n − 2t, and minimum

distance d = 2t + 1, and is over the field GF(2m) .

RS codes have the property of having the largest possible minimum distance amongst

all [n, k] codes. Such codes are called maximum distance separable (MDS). Through-

out this work, we assume the transmission of RS codes over binary channels. In

fact, each symbol in GF(2b) can be mapped one-to-one to a binary b-tuple. As a

result, the non-binary codewords are sent over a binary-input binary-output channel

by transmitting the equivalent binary representation for each codeword. A transmit-

ted symbol is received correctly if the noise corrupting it is a sequence of zeros of

1If an MD decoder can correct up to t errors within a codeword for some positive integer t, but
declares a decoding failure if more than t errors are detected, then it is said to perform bounded
distance decoding.
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length b, denoted as 0b. Otherwise, the transmitted symbol is received incorrectly

and a symbol error occurs. A t-error correcting code is capable of correcting bt bits

in the best case (i.e., if all the bits of the erroneous symbol are in error). This indeed

illustrates the power of RS codes in correcting bursts of errors, which in turn makes

this family of non-binary codes one of the favorites in many applications where errors

occur in bursts, such as data storage systems.

The generator polynomial is used in order to encode the incoming messages from the

source. Similar to the binary case, this is done by a simple polynomial multiplication

of every k message symbols by the g(x) to produce a codeword of length n symbols

that is eventually transmitted. The reader is referred to [22] and [9] for further details

on implementing g(x) at the encoder.

3.3.1 Decoding RS Codes

First we define the parity-check matrix H for the RS code in (3.4) below, with γ being

primitive in GF(2m). Assume rn ∈ (GF(2m))n is received at the channel output, with

polynomial form r(x). The decoding proceeds as follows.

H =

































1 γ γ2 · · · γn−1

1 γ2 (γ2)2 · · · (γ2)n−1

1 γ3 (γ3)2 · · · (γ3)n−1

...
...

... · · ·
...

1 γ2t (γ2t)2 · · · (γ2t)n−1

































. (3.4)
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1. First, the syndrome, s2t = (s1, s2, · · · , s2t) is computed as s2t = rn · HT .

Assume that the symbols in error are located at xj1, xj2 , · · · , xjν , then the error

polynomial e(x) is given by

e(x) = xj1 + xj2 + · · · + xjν (3.5)

where 0 ≤ j1 < j2 < · · · < jν < n.

Then we have

si = (γj1)i + (γj2)i + · · ·+ (γjν)i

= (β1)
i + (β2)

i + · · ·+ (βν)
i where 1 ≤ i ≤ 2t

where we define βl = γjl, for l = 1, 2, · · ·ν, as the error location numbers.

2. Define the error locator polynomial σ(x) by

σ(x) , (1 + β1x)(1 + β2x) · · · (1 + βνx)

= σ0 + σ1x + · · ·+ σνx
ν (3.6)

where σ0 = 1

σ1 = β1 + β2 + · · ·+ βν

σ2 = β1β2 + β2β3 + · · ·+ βν−1βν

...

σν = β1β2 · · ·βν .
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The elements of the syndrome si’s are related to the σi’s by the following New-

ton’s identities

s1 + σ1 = 0

s2 + σ1s1 + 2σ2 = 0

s3 + σ1s2 + σ2s1 + 3σ3 = 0

... (3.7)

sν + σ1sν−1 + · · ·+ σν−1s1 + νσν = 0.

3. After determining σ(x) from s2t = (s1, s2, · · · , s2t), the error locator numbers

β1, β2, · · · , βν must be determined by finding the roots of σ(x).

Berlekamp’s iterative algorithm is used to find the error locator polynomial σ(x). The

magnitude of the error is then determined by the Forney algorithm [8].

Berlekamp’s Iterative Algorithm

An important step in decoding RS codes is to find the error locator polynomial σ(x).

Berlekamp’s iterative algorithm is one of many algorithms that are designed for this

purpose. The number of iterations in this algorithm is 2t. Therefore, it is linear in

the number of correctable errors. In the ith step, the task is to find a minimum degree

polynomial satisfying the first i Newton’s identities given in (3.7). A summary of the

process of finding σ(x) is given below.
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• At the µth step , let the minimum-degree polynomial coefficients satisfying the

first µ Newton’s identities be

σµ(x) = 1 + σ
(µ)
1 x + σ

(µ)
2 x2 + · · · + σ

(µ)
lµ

xlµ . (3.8)

• To find σ(µ+1)(x), the µth discrepancy, dµ is calculated by

dµ = sµ+1 + σ
(µ)
1 sµ + σ

(µ)
2 sµ−1 + · · ·+ σ

(µ)
lµ

sµ+1−lµ . (3.9)

• If dµ = 0, then σ(µ+1)(x) = σ(µ)(x). Otherwise,

σ(µ+1)(x) = σ(µ)(x) − dµd
−1
ρ x(µ−ρ)σ(ρ)(x) (3.10)

where ρ is one of the steps prior to µ with dρ 6= 0 and ρ − lρ has the largest

value (lρ is the degree of σ(ρ)(x)).

The proof of this algorithm is given in [22].

The Forney Algorithm

After finding the error locator polynomial σ(x) and getting all of its roots, the error

locations are determined. The next step in decoding the received vector is to find

the magnitude of this error. Note that for the binary BCH codes this step is not

required because once the error locations are known, bits in those locations are flipped.

However this is not the case with the non-binary BCH codes and, in particular, for

RS codes. Forney algorithm is a way to find the error magnitude. The steps of this

algorithm are given next.
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• Let S(x) be the polynomial representation of the syndrome of the received word.

Define the error magnitude polynomial Ω(x) by

Ω(x) = σ(x)(1 + S(x)) mod (x2t+1). (3.11)

• Let the error location numbers be β1, β2, · · · , βν . These are already determined

from the previous steps.

Calculate the error magnitude by

eji
=

−βiΩ(β−1
i )

σ′(β−1
i )

. (3.12)

Note that βi = γji and 1 ≤ i ≤ ν.

Remark: If the number of errors ν > t, then the decoder fails to decode the received

word. Hence, the decoding algorithm is not complete. In other words, the decoder

will flag an error signal if the degree of σ(x) is greater than t. This is why such

decoding method is called bounded distance decoding.
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Chapter 4

Maximum Likelihood Decoding of

Binary Linear Block Codes Over

the QBC

In this chapter, ML decoding for binary linear block codes over the QBC with memory

M is studied. As introduced earlier in Chapter 2, the n-block transition probability

over the QBC has two different expressions depending on whether M > n or M ≤ n.

Therefore, the two cases must be studied separately. For the case of M ≤ n, we show

that ML decoding is equivalent to either minimum distance decoding or maximum

distance decoding; this result is similar to the one obtained for the infinite-memory

Polya contagion channel in [1]. For the other case, however, a different approach is
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needed and the study is restricted to the case M = 1, i.e., the binary additive Markov

noise channel (BAMNC).

4.1 Maximum Likelihood (ML) Decoding

Suppose that a channel encoder maps a binary k-bit message tuple uk (which is the

output of a uniformly distributed binary memoryless source) to a length n binary

codeword xn ∈ C. When transmitted over a binary additive noise channel, xn will

be received as yn = xn ⊕ zn (mod 2), where zn is the noise output. The task of the

decoder on the other hand is to estimate the transmitted message k-tuple by observing

yn. Denote this estimate by ûk. Since the encoder mapping is one-to-one, this reduces

the task of the decoder to making the best guess about what codeword was actually

transmitted. Let x̂n be the estimate of xn. Obviously, an error occurs if the decoder

outputs x̂n 6= xn given that xn is transmitted. At the decoder, the only information

available besides the received word yn is the channel statistics. Hence, the probability

of codeword decoding error, denoted Pr(E) can be computed mathematically as

Pr(E) =
∑

xn∈C

Pr(E|Xn = xn) Pr(Xn = Xn)

=
∑

xn∈C

Pr(X̂n 6= Xn|Xn = xn) Pr(Xn = xn) (4.1)

where Pr(E|Xn = xn) is the conditional probability of decoding error given that

codeword xn was sent.
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The best or optimal decoder is the one that minimizes Pr(E). It can be shown (e.g.,

[13]) that optimal decoder is the so-called maximum a-posteriori (MAP) decoder,

which selects the codeword xn that maximizes Pr(Xn = xn|Y n = yn).

On the other hand, the conditional probability Pr(Xn = xn|Y n = yn) can be ex-

pressed as

Pr(Xn = xn|Y n = yn) =
Pr(Y n = yn|Xn = xn) Pr(Xn = xn)

Pr(Y n = yn)
.

Hence, maximizing Pr(Xn = xn|Y n = yn) with respect to xn ∈ C is the same as

maximizing Pr(Y n = yn|Xn = xn) Pr(Xn = xn). However, since the source message

tuples are equally likely, all the codewords have equal likelihoods to be transmitted.

As a consequence, maximizing Pr(Xn = xn|Y n = yn) is reduced to maximizing

Pr(Y n = yn|Xn = xn) = Pr(Zn = zn), where zn = yn ⊕ xn. In other words, MAP

decoding reduces to ML decoding.

4.2 ML Decoding over the QBC

4.2.1 Case I: n ≤ M

First we consider the case of n ≤ M . The QBC block transition probability Pr(Y n =

yn|Xn = xn) = Pr(M)(Zn = zn), with zi = yi ⊕ xi, i = 1, · · · , n, for this case, is given
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by (2.16) as

Pr(M)(Zn = zn)

=

∏n−dn
1−1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏dn

1−1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=M−n

[

1 − (α + j) ε
M−1+α

] ,

where db
a = zb + zb−1 + · · · + za (db

a = 0 if a > b), and
∏a

j=0(·)
△
=1 if a < 0.

Since dn
1 is nothing but the Hamming weight of the noise output zn, we wish to

express the above expression of the block transition probability in terms of dn
1 for a

given blocklength n and a channel condition p, M, ε and α. For simplicity, write dn
1

as d. Then, similar to the strategy used in [1], we use the fact that

n−1
∏

j=0

(u + jv) = vn Γ(u/v + n)

Γ(u/v)
, for u, v > 0

where Γ(·) is the well-known gamma function, Γ(x) =
∫∞

0
tx−1e−tdt for x > 0, and

note that Pr(M)(Zn = zn) can be expressed as

Pr(M)(Zn = zn) = C · Γ

(

1

ε
(1 − ε)(1 − p)(M − 1 + α) + n − d

)

×Γ
(p

ε
(1 − ε)(M − 1 + α) + d

)

where C is a constant that depends on n, p, ε and α given by

C ,
Γ(M−1+(1−ε)α

ε
+ M − n)

Γ(M−1+(1−ε)α
ε

+ M) · Γ( (1−ε)(1−p)(M−1+α)
ε

) · Γ(p(1−ε)(M−1+α)
ε

)
.

Now define, f(d) , Pr(M)(Zn = zn). Since f(d) is strictly log-convex1 due to the fact

that the gamma function is strictly log-convex and thus the product of two or more

1A positive-valued function f is said to be log-convex if log f is convex. Log-convex functions are
convex.
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gamma functions is also strictly log-convex, it has a unique minimum value. Let

d0 =
n

2
+

1 − ε

2ε
(M − 1 + α)(1 − 2p).

Observe that for any t > 0, we have

f(d0 + t) = C(M, n, α, ε)Γ

(

n

2
+

1 − ε

2ε
(M − 1 + α) − t

)

×Γ

(

n

2
+

1 − ε

2ε
(M − 1 + α) + t

)

= f(d0 − t).

Therefore, f(d) is symmetric about d0, and therefore, the strict log-convexity of f(d)

implies that the minimum is attained at d0.

When α = 1, QBC ⇔ FMCC; then the parameters of FMCC can be expressed in

terms of the parameters of QBC as follows:

δ =
ε

(1 − ε)(M − 1 + α)
=

ε

(1 − ε)M
since α = 1,

ρ = p.

Thus
d0 =

n

2
+

1

2δ
(1 − 2ρ)

which is exactly the result derived in [1]. As a result, the decoding algorithm proposed

in [1, Section III] applies to the case of the QBC as well. An optimal decoder will

decode the received codeword yn as following, assuming a codebook C.

1. Compute di , d(yn, xn
i ) for i = 1, · · · , |C| and xn

i ∈ C.
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2. Compute dmax , max{di} and dmin , min{di}.

3. If |dmax−d0| ≤ |dmin−d0|, decode xn
j for which dj = dmin. Hence, ML decoding

⇔ minimum distance (MD) decoding.

4. Otherwise, decode xn
j for which dj = dmax. Thus, ML decoding ⇔ maximum

distance decoding.

The above decoding method applies to the case where the blocklength n is smaller

than the channel noise memory M . It can thus be useful for application involving

delay-constrained wireless channels under deep or very slow fading (where the fading

memory is larger than the coding blocklength).

4.2.2 Case II: n > M

In many communication systems codewords with long blocklength are desirable since

they offer strong performance in noisy environments with the possibility of reaching

Shannon’s capacity limit (e.g., LDPC codes). Thus, the memory of the wireless

fading channels is often smaller than the blocklength of the transmitted codeword.

As a result, studying the case in which n > M is important. However, such analysis is

not straightforward for channels with memory in general and the QBC in particular.

In this section, the block transition probability for the QBC under the assumption

that n > M is revisited. We derive a different expression for this probability that
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will facilitate the analysis of the BAMNC with non-negative noise correlation (i.e.,

the QBC with M = 1). Later, the performance of binary perfect and quasi-perfect

linear block codes is analyzed and a new decoding algorithm is proposed that is nearly

equivalent to ML decoding for a range of channel conditions.

The block transition probability for the QBC for the case n > M is given by (2.17):

Pr(M)(Zn = zn) = L(M)
n
∏

i=M+1

[

(

di−1
i−M+1 + αzi−M

) ε

M − 1 + α
+ (1 − ε)p

]zi

{

[(

M − 1 − di−1
i−M+1

)

+ α(1 − zi−M)
] ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

,

where

L(M) =

∏M−1−dM
1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏dM

1 −1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] .

Assume α = 1, then the QBC reduces to the FMCC and the above expression gets

simplified to

Pr(M)(Zn = zn) = L(M)
n
∏

i=M+1

[

di−1
i−M

ε

M
+ (1 − ε)p

]zi
[

(M − di−1
i−M )

ε

M
+ (1 − ε)(1 − p)

]1−zi

(4.2)

where

L(M) =

∏M−1−dM
1

j=0

[

j ε
M

+ (1 − ε)(1 − p)
]
∏dM

1 −1
j=0

[

j ε
M

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (1 + j) ε
M

] .

For any given i, to evaluate the ith term in the product in (4.2), we only need the

Hamming weight of the last M noise bits as well as the value of the current ith bit.

In other words, if zi = zj and
∑M

k=1 zi−k =
∑M

k=1 zj−k then the ith and the jth terms

are the same for M + 1 ≤ i, j ≤ n.
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Define ti,j(z
n) as follows:

ti,j(z
n) =

n
∑

k=M+1

δ

(

k−1
∑

r=k−M

zr, i

)

δ(zk, j), (4.3)

where i = 0, 1, · · · , M , j = 0, 1 and δ(x, y) is the Kronecker-delta function

δ(x, y) =



















1 if x = y,

0 if x 6= y.

Note that ti,j(z
n) is the number of occurrences of a binary M +1-tuple whose first M

bits (counting from left) are of Hamming weight i and the last bit (i.e., the (M +1)st

bit) is j in the binary n-tuple zn.

Example: Consider the case where M = 1, n = 5 and zn = (z1, z2, z3, z4, z5) =

(1, 0, 1, 1, 0). Then

ti,j(z
n) =

5
∑

k=2

δ(zk−1, i)δ(zk, j)

= δ(z1, i)δ(z2, j) + δ(z2, i)δ(z3, j) + δ(z3, i)δ(z4, j) + δ(z4, i)δ(z5, j),

⇒ t1,0(z
n) = 1 + 0 + 0 + 1 = 2,

t0,1(z
n) = 0 + 1 + 0 + 0 = 1.

Now we can re-write (4.2) as

Pr(Zn = zn) = L(M) · g(t(zn)) (4.4)
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where

t(zn) = (t0,0(z
n), · · · , tM,0(z

n), t0,1(z
n), · · · , tM,1(z

n)),

g(t(zn)) =
M
∏

i=0

(

[

M − i

M
ε + (1 − ε)(1 − p)

]ti,0(zn)[
i

M
ε + (1 − ε)p

]ti,1(zn)
)

and

M
∑

j=0

(tj,0(z
n) + tj,1(z

n)) = n − M.

Now we extend our discussion to the general QBC with α ≥ 1.

In this case to evaluate the ith term in Pr(M)(Zn = zn), we need 3 pieces of infor-

mation: the ith noise bit, the (i − M)th noise bit, and the Hamming weight of the

noise bits in between. Let bi,j,k represent the sequence of M + 1 noise bits whose

leftmost and rightmost bits are i and k, respectively, and whose bits in between have

a Hamming weight equal to j. Let ti,j,k(z
n) be the number of times bi,j,k appears in

zn. Then, ti,j,k(z
n) is given by

ti,j,k(z
n) =

n
∑

s=M+1

δ(zs−M , i)δ

(

s−1
∑

r=s−M+1

zr, j

)

δ(zs, k).

It follows that the block transition probability can be re-written as:

Pr(Zn = zn) = L(M) · gα(tα(zn))

where

tα(zn) = (t0,0,0, · · · , t0,M−1,0, t0,0,1, · · · , t0,M−1,1, t1,0,0, · · · , t1,M−1,0, t1,0,1, · · · , t1,M−1,1)
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and

gα(tα(zn))

=

M−1
∏

j=0

[

(M − 1 + α − i)ε

M − 1 + α
+ (1 − ε)(1 − p)

]t0,j,0(zn) M−1
∏

j=0

[

iε

M − 1 + α
+ (1 − ε)p

]t0,j,1(zn)

M−1
∏

j=0

[

(M − 1 − i)ε

M − 1 + α
+ (1 − ε)(1 − p)

]t1,j,0(zn) M−1
∏

j=0

[

(i + α)ε

M − 1 + α
+ (1 − ε)p

]t1,j,1(zn)

.

4.3 Block Transition Probability for the Binary

Additive Markov Noise Channel

As noted earlier, the BAMNC with non-negative noise correlation is a special case

of the QBC obtained by setting M = 1 (α is forced to be 1 in this case). The

probability of block transition is given then by (4.2) by substituting M = α = 1. For

this particular case the tij(z
n)’s are as given by (4.3) after replacing M = 1 (for the

sake of simplicity, ti,j(·) is written as tij(·)). Then

tij(z
n) =

n
∑

k=2

δ (zk−1, i) δ(zk, j)

=
n−1
∑

k=1

δ (zk, i) δ(zk+1, j).

Observe that

δ(zk, i) =



















(1 − zk) if i = 0,

zk if i = 1.
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Hence,

t00(z
n) =

n−1
∑

k=1

(1 − zk)(1 − zk+1),

t11(z
n) =

n−1
∑

k=1

zkzk+1,

t10(z
n) =

n−1
∑

k=1

zk(1 − zk+1),

t01(z
n) =

n−1
∑

k=1

(1 − zk)zk+1.

Also, L(1) is

L(1) =



















1 − p if z1 = 0,

p if z1 = 1,

which can be rewritten as

L(1) = pz1(1 − p)(1−z1).

Therefore, in terms of the tij(z
n)’s Pr(Zn = zn) can be written as

Pr(Zn = zn) = L(1) [ε + (1 − ε)(1 − p)]t00(zn) [(1 − ε)p]t01(zn)

× [(1 − ε)(1 − p)]t10(zn) [ε + (1 − ε)p]t11(zn) . (4.5)

But from the definition of the tij(z
n)’s, we have the following.

t10(z
n) = n − 1 − w(zn) − t00(z

n) + z1 (4.6)

t01(z
n) = w(zn) − z1 − t11(z

n), (4.7)
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where w(zn) =
∑n

k=1 zk is the Hamming weight of zn. Substituting (4.6) and (4.7)

into (4.5) yields the following expression for the noise block distribution, which will

be instrumental in our analysis.

Pr(Zn = zn) = (1 − ε)(n−1)(1 − p)nAt00(zn)Bt11(zn)

[

p

1 − p

]w(zn)

(4.8)

where

A =

[

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

]

and B =

[

ε + (1 − ε)p

(1 − ε)p

]

.

Proposition 4.1 The properties of t00(z
n) and t11(z

n) in terms of only n and w(zn)

are as follows.

1. If w(zn) = 0, then t00(z
n) = n − 1 and t11(z

n) = 0.

2. If 0 < w(zn) = l ≤ n − 1, then

t00(z
n) ≤ n − l − 1

with equality if and only if all the 0’s in zn occur consecutively. Also

t11(z
n) ≤ l − 1

with equality if and only if all the 1’s in zn occur consecutively.

3. If 0 < w(zn) = l ≤ n
2
, then

t00(z
n) ≥ max{n − 2l − 1, 0}
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and

t11(z
n) ≥ 0.

4. If n
2

< w(zn) = l ≤ n − 1, then

t00(z
n) ≥ 0

and

t11(z
n) ≥ 2l − n − 1.

5. If w(zn) = n, then t11(z
n) = n − 1 and t00(z

n) = 0.

Proof.

(1) and (5) are trivial, while (4) can be proved from (3) by swapping the zeros and

ones.

(2) follows directly by writing

t00(z
n) =

n−1
∑

k=1

(1 − zk)(1 − zk+1) =
n−1
∑

k=1

I(zk = zk+1 = 0) ≤ n − l − 1

t11(z
n) =

n−1
∑

k=1

zkzk+1 =
n−1
∑

k=1

I(zk = zk+1 = 1) ≤ l − 1

where I(·) is the indicator function.

To prove (3), we first note from (4.6) that

t00(z
n) = n − 1 − w(zn) − t10(z

n) + z1.
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Note that if w(zn) = l ≤ n
2
, then the maximum value for t10(z

n) is l which occurs if

and only if every 1 in zn is followed by a 0. Also, z1 ≥ 0. Thus,

t00(z
n) ≥ n − 1 − l − l + 0 = n − 2l − 1.

Finally, it is obvious that t00(z
n) and t11(z

n) are non-negative quantities. �

When there is no possibility for confusion, we will write t00(z
n) and t11(z

n) as t00 and

t11, respectively. We also assume throughout that the blocklength n ≥ 2.

4.3.1 Analysis of the Noise Block Distribution

Lemma 4.1 Let 0n be the all-zero word (of length n) and let zn 6= 0n be any non-zero

binary word. Then

Pr(Zn = zn) < Pr(Zn = 0n).
Proof. Using (4.5), we have

Pr(Zn = zn) = L [ε + (1 − ε)(1 − p)]t00 [(1 − ε)p]t01 [(1 − ε)(1 − p)]t10 [ε + (1 − ε)p]t11

< (1 − p) [ε + (1 − ε)(1 − p)]t00 [ε + (1 − ε)(1 − p)]t01

· [ε + (1 − ε)(1 − p)]t10 [ε + (1 − ε)(1 − p)]t11

= (1 − p) [ε + (1 − ε)(1 − p)]t00+t01+t10+t11

= (1 − p) [ε + (1 − ε)(1 − p)]n−1

= Pr(Zn = 0n)

where the strict inequality holds since L = p < 1 − p if z1 = 1, and since p < 1 − p

with t01 > 0 (since zn 6= 0n) if z1 = 0. �
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Lemma 4.2 Let zn
1 6= 0n be a non-zero noise word with Hamming weight w(zn

1 ) < n,

t00 = n − w(zn
1 ) − 1 and t11 = w(zn

1 ) − 1 (i.e., zn
1 is of the form (11 · · ·100 · · ·0) or

(00 · · ·011 · · ·1) ). Let zn
2 be another non-zero noise word with w(zn

2 ) = w(zn
1 ) but

with different t00 and/or t11. Then, if ε > 0,

Pr(Zn = zn
1 ) > Pr(Zn = zn

2 ).

Proof. From (4.8), we note that Pr(Zn = zn) strictly increases with both t00 and t11

when the weight is kept constant and ε > 0. Since zn
1 has maximum values for both

t00 and t11 amongst all noise words of weight w(zn
1 ) (but with different t00 and/or

t11), the strict inequality above follows. �

Note that when ε = 0, obviously all noise words with the same weight have identical

distributions (since the channel reduces to the BSC(p)).

Lemma 4.3 Suppose that

u < u∗ ,
ln
[

ε+(1−ε)(1−p)
(1−ε)(1−p)

]

+ ln
[

1−p

p

]

ln
[

ε+(1−ε)(1−p)
(1−ε)(1−p)

]

+ ln
[

ε+(1−ε)p
(1−ε)p

] − 1

and

0 < ε <
1 − 2p

2(1 − p)
.

Let zn be a noise word of weight w(zn) = m such that 0 ≤ m ≤ u + 1 ≤ n
2
. Then

Pr(Zn = zn) > Pr(Zn = z̄n) where z̄n is any noise word with weight w(z̄n) = l > m.
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Proof. First, note that the result directly holds if m = 0 by Lemma 4.1. Now let

zn be a noise word of nonzero weight m ≤ u + 1, and let z̄n be another noise word

with w(z̄n) > m.

Case 1: Assume that w(z̄n) = m + i where i ∈ {1, 2, ..., n − m − 1}. Then by (4.8),

we have

Pr(Zn = z̄n)

Pr(Zn = zn)

=

[

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

]t00(z̄n)−t00(zn) [
ε + (1 − ε)p

(1 − ε)p

]t11(z̄n)−t11(zn)(
p

1 − p

)w(z̄n)−w(zn)

≤

[

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

]m−i [
ε + (1 − ε)p

(1 − ε)p

]m+i−1(
p

1 − p

)i

≤

[

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

]m−1 [
ε + (1 − ε)p

(1 − ε)p

]m(
p

1 − p

)

, f(m).

The first inequality above results directly by applying the bounds on t00 and t11

assuming m ≤ n
2

(see Proposition 4.1), while the second inequality is obtained by

observing that the right hand side of the first inequality is a decreasing function of i for

a fixed m. Since f(m) is strictly increasing in m (when ε > 0), and m ≤ u+1 < u∗+1,

we obtain that

f(m) < f(u∗ + 1) = 1 ⇒
Pr(Zn = z̄n)

Pr(Zn = zn)
< 1.

Case 2: Assume that w(z̄n) = n. Let ẑn be another noise word with w(ẑn) = n − 1,

t11(ẑ
n) = n − 2 and t00(ẑ

n) = 0. Then

Pr(Zn = z̄n)

Pr(Zn = zn)
=

Pr(Zn = ẑn)

Pr(Zn = zn)

Pr(Zn = z̄n)

Pr(Zn = ẑn)
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<
Pr(Zn = z̄n)

Pr(Zn = ẑn)

=

[

ε + (1 − ε)p

(1 − ε)p

](

p

1 − p

)

=

[

ε + (1 − ε)p

(1 − ε)(1 − p)

]

< 1

where the first strict inequality holds since Pr(Zn = ẑn) < Pr(Zn = zn) by Case 1,

and the last strict inequality holds since ε < 1−2p

2(1−p)
.

�

4.4 Decoding Perfect and Quasi-Perfect Codes on

the BAMNC

Next, the relationship between strict maximum likelihood (SML) decoding and strict

minimum (Hamming) distance decoding for binary linear perfect and quasi-perfect

codes sent over the BAMNC is studied. As noted in Section 4.1, strict maximum like-

lihood (SML) decoding is an optimal (incomplete) decoder in the sense of minimizing

the probability of codeword error (PCE) when the codewords are operated on with

equal probability (which we herein assume). Since it is well known that ML decoding

of binary codes over the memoryless binary symmetric channel (with bit error rate

less than 1/2) is equivalent to minimum Hamming distance decoding, it is natural

to investigate whether a relation exists between these two decoding methods for the
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Markov noise channel. We provide a partial answer to this problem by showing that

for binary linear perfect codes ML decoding and MD decoding are equivalent provided

that the channel correlation is kept below a particular threshold. We also show that

the strict ML decoding of binary linear quasi-perfect codes can be nearly equivalent

to strict minimum distance decoding. As a result we propose a (complete) decoder

which is an improved version of the minimum distance decoder, and we illustrate its

performance via simulation results.

In a related work [17], Hamada showed that for the Markov channel with a non-

negative correlation coefficient (i.e., ε ≥ 0) and bit error rate p < 1/2, the binary

perfect Hamming codes (of minimum distance 3) are optimal in the sense of minimiz-

ing the probability of decoding error amongst all codes having the same blocklength

and rate provided that ε < (1− 2p)/2(1− p). Thus for a communication system em-

ploying codes with short blocklength due to delay constraints, Hamming codes used

with MD decoding will be optimal over the BAMNC amongst all codes of the same

blocklength and rate.

Lemma 4.4 Let C be an [n, k] perfect code with a minimum distance d to be used

over the BAMNC. Assume that

⌊

d − 1

2

⌋

<
ln
[

ε+(1−ε)p
(1−ε)p

]

+ ln
[

1−p

p

]

ln
[

ε+(1−ε)(1−p)
(1−ε)(1−p)

]

+ ln
[

ε+(1−ε)p
(1−ε)p

]

and

0 < ε <
1 − 2p

2(1 − p)
.
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Then SMD and SML decoding are equivalent.

Proof. First note that for perfect codes, the element within each coset of min-

imum weight (i.e., the coset leader) is unique. Also notice that the coset leader is

of weight less than or equal to ⌊(d − 1)/2⌋ ≤ n/2. Assume that yn is received; then

∃ĉ ∈ C which is unique such that w(ĉ ⊕ yn) < w(c ⊕ yn) ∀ c 6= ĉ ∈ C. Using Lemma

4.3 with u = ⌊(d − 1)/2⌋ − 1, we conclude that ∀ c 6= ĉ ∈ C

Pr(Zn = ĉ ⊕ yn) > Pr(Zn = c ⊕ yn)

⇔ Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c).

Hence, given a received word yn, the codeword with the smallest Hamming distance

to yn will be the most likely codeword that was sent over the channel amongst all the

codewords in C. Therefore, SMD and SML decoding are equivalent. �

Observations:

• The above lemma also proves that for perfect codes MD and ML decoding are

equivalent under the same assumptions on d, ε and p. This is because for such

codes SMD and MD are the same due to the uniqueness of their coset leaders

which results in no ties in the MD decoder. Similarly, the uniqueness of coset

leaders coupled with the proof of the above lemma also imply that SML and

ML are equivalent for the perfect codes under the range of channel parameters

given by the lemma.
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• By closely examining the proof of the optimality of Hamming codes over the

BAMNC in [17], one can deduce that ML and MD decoding are identical for

the same range of p and ε given in Lemma 4.4. In this work, however, we derive

sufficient conditions under which ML decoding of perfect codes reduces to MD

decoding. The issue of the optimality of the two perfect codes (the repetition

code with odd blocklength and the [23,12] Golay code) is not addressed here.

Lemma 4.5 Let C be an [n, k, d] binary linear quasi-perfect code to be used over the

BAMNC. Assume that

⌊

d − 1

2

⌋

< t∗ ,
ln
[

ε+(1−ε)p
(1−ε)p

]

+ ln
[

1−p

p

]

ln
[

ε+(1−ε)(1−p)
(1−ε)(1−p)

]

+ ln
[

ε+(1−ε)p
(1−ε)p

] − 1

and

0 < ε <
1 − 2p

2(1 − p)
.

Then, for a given word yn received at the channel output, the following hold.

(a) If ∃ ĉ ∈ C such that w(ĉ⊕ yn) < w(c⊕ yn) ∀ c 6= ĉ ∈ C, then Pr(Y n = yn|Xn =

ĉ) > Pr(Y n = yn|Xn = c) ∀ c 6= ĉ ∈ C.

(b) If ∃ ĉ ∈ C such that Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c) ∀ c 6= ĉ ∈ C,

then w(ĉ ⊕ yn) ≤ w(c ⊕ yn) ∀ c ∈ C.
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Proof.

(a) Let ĉ ∈ C such that w(ĉ ⊕ yn) < w(c ⊕ yn) ∀ c 6= ĉ ∈ C. Obviously, ĉ ⊕ yn is a

coset leader, thus w(ĉ⊕ yn) ≤
⌊

d−1
2

⌋

+1 ≤ n
2

since C is quasi-perfect. By Lemma 4.3,

Pr(Zn = ĉ ⊕ yn) > Pr(Zn = c ⊕ yn) ∀c ∈ C ⇐⇒ Pr(Y n = yn|Xn = ĉ) > Pr(Y n =

yn|Xn = c) ∀ c 6= ĉ ∈ C.

(b) Let ĉ ∈ C such that Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c) ∀ c 6= ĉ ∈ C.

Assume that ∃c̄ 6= ĉ ∈ C such that w(c̄⊕ yn) < w(ĉ⊕ yn); the existence of c̄ is always

guaranteed by choosing it such that c̄⊕ yn is the coset leader of C ⊕ yn. Thus, we can

assume that w(c̄ ⊕ yn) ≤ n
2

since the coset leader has weight less than or equal to n
2

(as C is quasi-perfect). Then by Lemma 4.3, Pr(Zn = ĉ⊕yn) < Pr(Zn = c̄⊕yn) ⇐⇒

Pr(Y n = yn|Xn = ĉ) < Pr(Y n = yn|Xn = c̄) which contradicts our assumption that

ĉ maximizes Pr(yn|c) over all codewords. Hence, w(ĉ⊕ yn) ≤ w(c⊕ yn) ∀ c ∈ C. �

Observation: Note that Lemma 4.5 implies that if a quasi-perfect code has no

decoding failures in its SMD decoder, then its SMD and SML decoders are equivalent

under the stated conditions on the Markov channel parameters (p, ε) and the code’s

minimum distance.2

In light of the above result and Lemma 4.2, we next propose the following complete

decoder that improves over MD decoding. It includes SMD decoding and exploits the

2In contrast, recall that for the BSC(p) with p < 1/2, SML and SMD decoding are equivalent for
all binary codes (the same equivalence also holds between ML and MD decoding). Note also that
when ε ↓ 0, the conditions in the above lemma reduce to

⌊

d−1

2

⌋

< ∞, and p < 1

2
(which is consistent

with what was just mentioned).
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knowledge of t00 and t11 to resolve ties (which occur when there are more than one

codeword that are closest to the received word).

MD+ Decoding:

Assume that yn is received at the channel output. Suppose the decoder outputs the

codeword c0 satisfying the MD decoding condition. If there is more than one such

codeword, then the decoder chooses c0 that maximizes t00(c0 ⊕ yn) + t11(c0 ⊕ yn). If

there is still a tie, then the decoder chooses c0 that maximizes t11(c0 ⊕ yn). Finally,

if there is still a tie, then the codeword c0 is picked at random.3 The advantage of

the MD+ decoding over the ML decoding is the complexity. Whereas ML decoding

requires an exhaustive search, MD+ can be implemented using syndrome decoding

where the coset leaders are chosen according to the MD+ criteria.

4.5 Simulation Results

4.5.1 Perfect Codes

We examine the [15,11,3] Hamming code under different channel conditions, and show

that indeed MD decoding and ML decoding are equivalent for the channel conditions

specified by Lemma 4.4, as illustrated in Table 4.1 with ε ≤ εt−1 for t = 1, 2, 3. Typical

3Clearly, MD+ and MD decoding are equivalent for the BSC, since for this channel, it does not
matter what codeword the decoder selects when there is a tie (as long as it is one of the codewords
closest to the received word).
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values are shown for ε ∈ {0.1, 0.5, 0.9} in Figs. 4.1 and 4.2. Note that ε = 0.1 satisfies

the conditions of Lemma 4.4 while ε = 0.5 and ε = 0.9 do not. The simulation results

show that MD and ML are identical for the case ε = 0.1 and almost identical at

ε = 0.5. Finally, for high correlations, we observe that MD decoding is slightly worse

than ML. When MD+ decoding is implemented we see that it does not show any

improvement over MD decoding (as expected, since there are no ties in MD decoding

for a perfect code).

4.5.2 Quasi-Perfect Codes

Given an [n, k, d] quasi-perfect code and a fixed CBER p, we let εt be the largest ε

for which both conditions of Lemma 4.5 hold, where t , ⌊(d − 1)/2⌋. In Table 4.1,

we provide the values of εt for t = 1, 2, 3 and different values of p.

We herein present simulation results for decoding the binary [8, 4, 4] extended Ham-

ming code and the [15, 7, 5] BCH code over the BAMNC. A large sequence of a

uniformly distributed binary i.i.d. source was generated, encoded via one of these

codes and sent over the channel. For the extended Hamming code, t = 1; thus the

values for ε1 in Table 4.1 provide the largest values of ε for which Lemma 4.5 holds

for different CBERs p. As a result, we simulated the Hamming system for the 5

values of p listed in Table 4.1 and ε ∈ {0.05, 0.1, 0.2, 0.25}. Note that these values are

less than ε1 values in Table 4.1. We then ran simulations for ε values that are larger
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than ε1 in the same table: ε ∈ {0.5, 0.9, 0.99}. Similarly, since t = 2 for the BCH

code, the values for ε2 apply, and the BCH system was simulated for ε = 0.05 and all

values of p in Table 4.1 except p = 10−3. Additional simulations were conducted for

larger correlations: ε ∈ {0.1, 0.9}. The extended Hamming code simulation results

are presented in Figs. 4.3 – 4.9 for the sets of ε indicated above, and the BCH code

simulations is shown in Figs. 4.10 – 4.12 for different values of ε.

Discussion

First we consider the figures obtained for the values of ε for which Lemma 4.5 holds.

Figs. 4.3 – 4.6 and 4.10 indicate that MD+ performs nearly identically to ML decoding

and provides significant gain over MD decoding. We also note that the performance

gap between MD and ML decoding decreases with ε (which is consistent with the fact

that MD and ML decoding are equivalent when ε = 0). Next, we look at the figures

obtained for the ε values that are larger than the previous ones. We observe that

the performance of the two given codes when the channel noise is highly correlated

depends on the code. For instance, the PCE performance of the different decoding

schemes applied to the extended Hamming code are almost identical when the channel

correlation is very high (e.g., for ε = 0.99), whereas the ML decoded BCH code at

ε = 0.9 for example is much better than the other two decoding schemes which seem

to have similar performance; see Figs. 4.9 and 4.12.
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Finally, note that one limitation of Lemma 4.5 is that its conditions are too strin-

gent to accommodate quasi-perfect codes with large minimum distance, unless if the

channel correlation ε is substantially decreased towards 0, thus rendering the Markov

channel nearly memoryless (e.g, see how εt decreases as t increases in Table 4.1). The

determination of less stringent conditions is an interesting topic for future work.

4.5.3 Non-Perfect Non-Quasi-Perfect Codes

The intention of this part is to examine the performance of any binary code that is nei-

ther perfect nor quasi-perfect under MD, MD+ and ML decoding. For this purpose,

we chose the BCH [15,5] code, which is a triple-error correcting code. Simulation

results for this code are shown in Figs 4.13 – 4.15. We note, that for correlations

ε ≤ 0.05, the MD+ and ML decoders perform similarly. The performance of the

MD+ decoder degrades as ε increases. On the other hand, the MD decoder always

yields the worst performance. As ε increases, MD and MD+ performance become

closer to each other (see Figs. 4.13 – 4.15).
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p ε0 ε1 ε2 ε3

1 × 10−3 499/999 0.3172 0.02843 0.08801
5 × 10−3 99/199 0.3152 0.05628 0.02277
1 × 10−2 49/99 0.3126 0.07297 0.03308
5 × 10−2 9/19 0.2918 0.11492 0.06644
1 × 10−1 4/9 0.2645 0.12367 0.07995

Table 4.1: Values of εt for different p and t. Lemma 4.4 holds for all ε ≤ εt−1 and
Lemma 4.5 holds for all ε ≤ εt.

76



 0.0001

 0.001

 0.01

 0.1

0.050.010.0050.0010.00050.0001

P
C

E

Channel Bit Error Rate (p)

MD (epsilon=0.1)
ML (epsilon=0.1)
MD (epsilon=0.5)
ML (epsilon=0.5)

Figure 4.1: PCE vs CBER p under different decoding schemes for the Hamming
[15, 11, 3] code over the BAMNC with noise correlation ε = 0.1, 0.5.

77



0.1

0.05

0.01

0.005

0.001

0.0001
0.050.010.0050.0010.0001

P
C

E

Channel Bit Error Rate (p)

MD (epsilon=0.9)
MD+ (epsilon=0.9)

ML (epsilon=0.9)

Figure 4.2: PCE vs CBER p under different decoding schemes for the Hamming
[15, 11, 3] code over the BAMNC with noise correlation ε = 0.9.
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Figure 4.3: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.05.
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Figure 4.4: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.1.

80



 0.0001

 0.001

 0.01

 0.1

0.10.050.010.0050.001

P
C

E

Channel Bit Error Rate (p)

MD decoding
MD+ decoding

ML decoding

Figure 4.5: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.2.
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Figure 4.6: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.25.
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Figure 4.7: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.5.
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Figure 4.8: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.9.
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Figure 4.9: PCE vs CBER p under different decoding schemes for the extended
Hamming [8, 4, 4] code over the BAMNC with noise correlation ε = 0.99.
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Figure 4.10: PCE vs CBER p under different decoding schemes for the BCH [15, 7, 5]
code over the BAMNC with noise correlation ε = 0.05.
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Figure 4.11: PCE vs CBER p under different decoding schemes for the BCH [15, 7, 5]
code over the BAMNC with noise correlation ε = 0.1.
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Figure 4.12: PCE vs CBER p under different decoding schemes for the BCH [15, 7, 5]
code over the BAMNC with noise correlation ε = 0.9.
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Figure 4.13: PCE vs CBER p under different decoding schemes for the BCH [15, 5]
code over the BAMNC with noise correlation ε = 0.05.
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Figure 4.14: PCE vs CBER p under different decoding schemes for the BCH [15, 5]
code over the BAMNC with noise correlation ε = 0.5.
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Figure 4.15: PCE vs CBER p under different decoding schemes for the BCH [15, 5]
code over the BAMNC with noise correlation ε = 0.9.
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Chapter 5

Performance Evaluation of

Reed-Solomon Codes over the

QBC

Burst-error correcting codes are of prime theoretical and practical interest due to the

bursty nature of real-world wireless digital communication channels. An important

class of non-binary burst-error correcting codes used widely in data transmission and

storage systems is the family of Reed-Solomon (RS) codes[8], [34], which was briefly

described in Chapter 3. Conventional communication systems employing these codes

are designed for memoryless channels, which is not an accurate model for wireless

92



fading channels. As a consequence, interleaving is used to render the channel memo-

ryless; this introduces additional delay and complexity to the system. Furthermore,

such interleaved system fails to exploit the benefits of the statistical memory of the

channel noise. When non-binary codes are sent over a stationary binary additive noise

channel with memory, two interleaving strategies are worth considering: interleaving

the code (or channel) bits which reduces the channel to the memoryless BSC (under

perfect or infinite interleaving depth) and interleaving the code symbols.

This chapter is concerned about the performance of RS codes (under bounded-

distance decoding) over the QBC. The QBC has the advantage of having a finite

number of parameters and closed form expressions for the block transition probabil-

ity, capacity and autocorrelation function as described in Chapter 2. Furthermore, it

has been shown in [48], [49] that QBC can fit or approximate the discrete channel with

Clarke’s autocorrelation (DCCA) model that employs binary frequency-shift keying

modulation, a Rician flat-fading channel, and a hard quantized non-coherent demod-

ulation. We first prove that under bounded-distance decoding, symbol interleaving

results in a better performance compared to bit interleaving for any non-binary block

code over the QBC with any M ≥ 1. We next restrict our analysis for the case M = 1

(i.e., the BAMNC with non-negative noise correlation) and derive a useful analytical

expression for the probability of m symbol errors in a block of n symbols, P (m, n),

which we will eventually use to study the performance of four different RS codes over
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the BAMNC with non-negative noise correlation. In particular, for the given codes,

we investigate whether we can avoid interleaving. A similar analysis can be carried

out for the QBC with M > 1; although in this case, a closed-form expression for

the key quantity P (m, n) is tedious to explicitly derive. But it can be calculated

numerically (for any M > 1) using (5.13); see Section 5.3.

5.1 Probability of Codeword Error for Non-Binary

Block Codes over the QBC

Assume C is a non-binary block code over GF(2b). In addition, assume that C can

correct up to t symbol errors under bounded distance decoding. Moreover, we assume

a binary-input binary-output channel. Recall from our discussion in Chapter 3 that

the transmission of non-binary codes with symbols from GF(2b) over such channels

is possible by transmitting the binary b-tuple representation of each code symbol we

want to transmit and that a transmitted symbol is received correctly if the noise cor-

rupting it is a sequence of zeros of length b, denoted as 0b. Otherwise, the transmitted

symbol is received incorrectly and a symbol error occurs. Then the PCE for C is given

by

PCE = 1 −
t
∑

m=0

P (m, n)

where P (m, n) is the probability of having m symbol errors in a block of n symbols.
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5.1.1 Error Sequence Probability for an M th-Order Markov

Noise Channel

Suppose we are given a stationary binary M th-order Markov noise channel model.

Then the channel state process {Sk}
∞
k=1, where Sk = (Zk, Zk−1, · · · , Zk−M+1), is a

(first-order) Markov process with N = 2M states as explained in Section 2.6. The

channel is completely characterized by the state probability transition matrix P .

Let Zk be the noise output at time k. Then Pr(Zn = zn) can be evaluated as in

Section 2.4. First, define the N × N matrices P (zk) where zk ∈ {0, 1} whose (i, j)th

entry is Pr(Zk = zk, Sk = j|Sk−1 = i). By definition, P = P (0) + P (1). Let Π be

the stationary distribution of the state process. Then Pr(Zn = zn) is given by

Pr(Zn = zn) = ΠT

(

n
∏

k=1

P (zk)

)

1 (5.1)

where T denotes the transpose of the matrix and 1 is the all-one column matrix.

The QBC with memory M has N = 2M states. Thus the dimension of the matrices

P , P (0) and P (1) depends on the value of M . For example if M = 1 then these

matrices are

P =









ε + (1 − ε)(1 − p) (1 − ε)p

(1 − ε)(1 − p) ε + (1 − ε)p









,

P (0) =









ε + (1 − ε)(1 − p) 0

(1 − ε)(1 − p) 0









P (1) =









0 (1 − ε)p

0 ε + (1 − ε)p









.
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If M = 2 then we get the following 4 × 4 matrices

P =

























ε + (1 − ε)(1 − p) 0 (1 − ε)p 0

ε
1+α

+ (1 − ε)(1 − p) 0 εα
1+α

+ (1 − ε)p 0

0 εα
1+α

+ (1 − ε)(1 − p) 0 εα
1+α

+ (1 − ε)(1 − p)

0 (1 − ε)(1 − p) 0 ε + (1 − ε)p

























,

P (0) =

























ε + (1 − ε)(1 − p) 0 0 0

ε
1+α

+ (1 − ε)(1 − p) 0 0 0

0 εα
1+α

+ (1 − ε)(1 − p) 0 0

0 (1 − ε)(1 − p) 0 0

























,

P (1) =

























0 0 (1 − ε)p 0

0 0 εα
1+α

+ (1 − ε)p 0

0 0 0 ε
1+α

+ (1 − ε)p

0 0 0 ε + (1 − ε)p

























.

For the general QBC, P (0) and P (1) can be derived easily from P . The first 2M−1

columns of P (0) is always the same as those of P while the remaining columns have

all zero entries. The opposite is true for P (1) (i.e., it agrees with P in their last 2M−1

columns while the remaining columns contain all zeros).
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5.2 Symbol Interleaving vs Bit Interleaving for the

QBC

For any non-binary linear block code over GF(2b) with length n and error correction

capability t, the PCE under (ideal) bit interleaving when the code is transmitted over

the QBC and under bounded distance decoding is given by

PCE = 1 −
t
∑

i=0

(

n

i

)

[1 − (1 − p)b]i[(1 − p)b]n−i. (5.2)

On the other hand, if the above code is transmitted with (ideal) symbol interleaving

then the PCE is given by

PCE = 1 −
t
∑

i=0

(

n

i

)

[1 − Pr(Zb = 0b)]n−i · [Pr(Zb = 0b)]i (5.3)

where

Pr(Zb = 0b) =



















∏b−1
j=0

j ε
M−1+α

+(1−ε)(1−p)

1−(α+M−1−j) ε
M−1+α

if b ≤ M ,

∏M−1
j=0

j ε
M−1+α

+(1−ε)(1−p)

1−(α+M−1−j) ε
M−1+α

(ε + (1 − ε)(1 − p))b−M if b > M.

Lemma 5.1 Let C be any non-binary linear block code over GF(2b) with length n

and error correction capability t (e.g., a Reed-Solomon code). Under bounded distance

decoding, symbol interleaving outperforms bit interleaving over the QBC with p > 0

and ε > 0.

Proof. Let the parameter of the QBC, M, p, ε and α, be given and a non-binary

code C over the Galois field GF(2b) with length n that can correct up to t symbols.
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Case 1: b ≤ M

Define the following two functions f(x) and g(x)

f(x) =



1 −

b−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α





x



b−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α





n−x

(5.4)

g(x) = [1 − (1 − p)b]x[(1 − p)b]n−x. (5.5)

For each j > 0 we notice that

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

> (1 − p)

⇔ j
ε

M − 1 + α
+ (1 − ε)(1 − p) > (1 − p)

(

1 − (α + M − 1 − j)
ε

M − 1 + α

)

⇔ j
ε

M − 1 + α
> (1 − p)ε

j

M − 1 + α

⇔ 1 > (1 − p).

Because b > 1 (for non-binary codes), we get

b−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

> (1 − p)b ⇔ f(0) > g(0) ⇔ f(n) < g(n). (5.6)

Since log f(x) and log g(x) are both linear functions of x and due to (5.6), f(x)

and g(x) have a unique point of intersection, denoted by x0 obtained by solving the

equation f(x) = g(x). In particular, x0 = n lnA/ ln B

where

A ,
(1 − p)b

∏b−1
j=0

j ε

M−1+α
+(1−ε)(1−p)

1−(α+M−1−j) ε

M−1+α
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and

B ,

(

1 −
∏b−1

j=0

j ε

M−1+α
+(1−ε)(1−p)

1−(α+M−1−j) ε

M−1+α

)

(1 − p)b

(

∏b−1
j=0

j ε

M−1+α
+(1−ε)(1−p)

1−(α+M−1−j) ε

M−1+α

)

(1 − (1 − p)b)
.

Furthermore, for each x < x0, f(x) > g(x) and for each x > x0, f(x) < g(x).

First, assume that the code’s error-correction capability (under bounded distance

decoding), t satisfies t ≤ ⌊x0⌋, then

t
∑

i=0

(

n

i

)

f(i) >

t
∑

i=0

(

n

i

)

g(i).

The left hand side in the above equation is the probability of correct decoding for

the symbol interleaved system while the right hand side is the probability of correct

decoding for the bit interleaved system.

Now assume t ≥ ⌊x0⌋, then

n
∑

i=t+1

(

n

i

)

f(i) <

n
∑

i=t+1

(

n

i

)

g(i).

Now the left hand side of the last equation above is the PCE for the symbol interleaved

system whereas the right hand is the PCE for the bit interleaved one, both under

bounded distance decoding. Hence, we have proved that if b ≤ M , then symbol

interleaving outperforms bit interleaving.
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Case 2: b > M

Define h(x) as following

h(x) =

[

1 −

(

M−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

(ε + (1 − ε)(1 − p))b−M

)]x

(

M−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

(ε + (1 − ε)(1 − p))b−M

)n−x

. (5.7)

We have already proved that
j ε

M−1+α
+(1−ε)(1−p)

1−(α+M−1−j) ε
M−1+α

> (1 − p) for j > 0. We also notice

that

ε + (1 − ε)(1 − p) = (1 − p) + εp > (1 − p).

Therefore, we combine the above two inequalities to get the following

(

M−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

(ε + (1 − ε)(1 − p))b−M

)

>

(1 − p)M(1 − p)b−M = (1 − p)b.

Therefore h(0) > g(0) and h(n) < g(n) (the strict inequality is because we assume

both p and ε 6= 0).

The rest of the proof is identical to the first case (i.e. b ≤ M) after replacing f(x)

with h(x) with the only difference being the point of intersection x0. However it is

obtained similarly by solving the equation h(x) = g(x). �
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5.3 Calculating P (m, n) Using the Generating Se-

ries Method

We are interested in evaluating P (m, n) in order to analyze the performance of non-

binary block codes over the QBC. The generating series method is a powerful tool

that offers a combinatorial approach to determine P (m, n) for a Markov noise process

with N states [29] [28]. More details on the generating series topic can be found in

[15].

Let R〈x0, x1〉 and R〈〈x0, x1〉〉 be the set of polynomials and the ring of all formal

power series in the non-commuting indeterminates x0 and x1, respectively, where R is

the field of real numbers. Note that any element in that any element in R〈〈x0, x1〉〉 is

nothing but an infinite sum of elements from R〈x0, x1〉. The choice of non-commuting

indeterminates is due to the fact that the probability of a sequence depends on the

positions of 0’s and 1’s. Let En be a generic notation for an error event of length n

(i.e., En is any subset of {0, 1}n). For example, if E3 is a subset of {0, 1}3 such that

E3 = {one error in a block of length 3}, then E3 = {100, 010, 001}.

The generating series for En can be expressed as

FEn
=
∑

en∈En

xe1xe2 · · ·xen
, xei

∈ {x0, x1}. (5.8)

Note that FEn
∈ R〈x0, x1〉 and that x0 and x1 mark the noise bits 0 and 1, respectively.
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Example: The generating series for the set E3

FE3 = x1x
2
0 + x0x1x0 + x2

0x1.

Using (5.1), the probability of the set E3 is given by

Pr(E3) = Pr(Z3 = (1, 0, 0)) + Pr(Z3 = (0, 1, 0)) + Pr(Z3 = (0, 0, 1))

= ΠT
(

P (1)(P (0))2 + P (0)P (1)P (1) + (P (0))2P (1)
)

1. (5.9)

Note that Pr(E3) can be calculated using the generating series FE3 , by replacing x0

and x1 with P (0) and P (1), respectively and multiplying by ΠT from left and by 1

from right.

Let MN(R) be the ring of all N×N matrices with entries from R. Define the mapping

∆ as
∆ : R〈x0, x1〉 → MN(R) : xk 7→ P (k) and a 7→ a · I for a ∈ R

where I is the N × N identity matrix.

Then, we can express Pr(E3) in a compact form as

Pr(E3) = ΠT (∆(FE3))1.

In general, given a set En, Pr(En) can be readily computed using its generating series

FEn
by

Pr(En) = ΠT (∆(FEn
)) 1.

Let R[[s, z]] be the ring of all formal power series in the commuting indeterminates s
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and z. Let P (s, z) be the generating series defined as

P (s, z) =
∞
∑

n=0

n
∑

m=0

P (m, n)smzn ∈ R[[s, z]].

Let [smzn]P (s, z) be the coefficient of the term smzn in P (s, z). Then

P (m, n) = [smzn]P (s, z). (5.10)

We are interested in calculating an expression for P (s, z). Let E∗
n be the set of all

binary sequences of length n. The generating series for this set is obtained via (5.8)

as

FE∗

n
= xn

0 + x0x
n−1
1 + x1x0x

n−2
1 + · · ·+ xn−1

1 x0 + x2
0x

n−2
1 + · · · + xn

1

= (x0 + x1)
n ∈ R〈x0, x1〉.

Define E∗ =
⋃∞

n=0 E
∗
n. Then

FE∗ =
∞
∑

i=0

(x0 + x1)
i = (1 − (x0 + x1))

−1 ∈ R〈〈x0, x1〉〉.

We need to enumerate the Hamming weight and the length of each sequence in FE∗ .

In order to do this we define the generating series

F (x0, x1, s, z) =

∞
∑

i=0

zi(x0 + sx1)
i = (1 − z(x0 + sx1))

−1 ∈ R〈x0, x1〉[[s, z]]

where R〈x0, x1〉[[s, z]] is the ring of all formal power series in the commuting inde-

terminates s and z with coefficients from the ring R〈x0, x1〉. Note that z marks the

length of a binary sequence while s marks the Hamming weight of the sequence.

103



Let Em
n denote the set composed of all binary sequences of length n and Hamming

weight m. It is now clear that

FEm
n

= [smzn]F (x0, x1, s, z)

= [smzn](1 − z(x0 + sx1))
−1.

Then

Pr(Em
n ) = ΠT (∆(FEm

n
))1

= [smzn]ΠT [∆(F (x0, x1, s, z))]1

= [smzn]ΠT
[

∆(1 − z(x0 + sx1))
−1
]

1

= [smzn]ΠT
[

I − z(P (0) + sP (1))−1
]

1, (5.11)

where the last equality follows from the definition of the mapping ∆.

Comparing (5.10) with (5.11), we get

P (s, z) = ΠT
[

I − z(P (0) + sP (1))−1
]

1.

Now define S∗ to be the set that contains all strings of symbols from GF(2b). We

are interested in finding the generating series of S∗. Note that elements of S∗ can

be mapped one-to-one to binary strings due to the existence of a bijection between

GF(2b) and the set of all binary b-tuples {0, 1}b. Hence, the generating series of S∗

can still be represented in terms of x0 and x1.

Let F = {0, 1}b. Define F1 and F2 ⊂ F such that F1 = {0b} (i.e., the singleton

set containing the all-zero b-tuple) and F2 = F\F1. In other words, F1 and F2
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partition the set F . Now suppose that a non-binary symbol from GF(2b) is sent over

a binary-input binary-output channel. Let zb be a b-tuple noise output produced

by the channel. Obviously if zb ∈ F1 then the transmitted symbol will be received

correctly otherwise (i.e., zb ∈ F2) the received symbol will be in error. Let Fc and Fe

be the generating series for F1 and F2, respectively. Therefore, Fc and Fe are given

by

Fc = xb
0 ∈ R〈〈x0, x1〉〉

Fe = (x0 + x1)
b − xb

0 ∈ R〈〈x0, x1〉〉.

It can be shown that the generating series for S∗ can be expressed as [29], [28]

FS∗ = (1 − Fc − Fe)
−1.

Note that this is analogous to the binary case mentioned earlier in this section (i.e.,

FE∗) since both of Fc and x0 enumerate an error-free transmission of a symbol and bit,

respectively, whereas Fe and x1 represent an erroneous symbol and bit, respectively.

Let the indeterminates z mark the length of the channel noise output and s represent

the number of erroneous symbols in a noise output. Clearly, P (m, n) is the probability

that within n consecutive b-ary symbols, there are exactly m symbols from the set

enumerated by Fe. In this case, the formal power series P (s, z) is given by [32] [28]

P (s, z) = ΠT
[

I − z{P (0)b + s(P b − P (0)b)}
]−1

1. (5.12)

Thus P (m, n) can be derived as the coefficient of smzn in P (s, z) above [31]. This

105



can be represented as

P (m, n) = [smzn]ΠT
[

I − z{P (0)b + s(P b − P (0)b)}
]−1

1. (5.13)

The above equation is valid for any integer b ≥ 1 and when b = 1, (5.13) reduces to

(5.11).

When M = 1, the QBC reduces to the BAMNC with non-negative noise correlation.

The following two lemmas are helpful in order to evaluate (5.12) and (5.13).

Lemma 5.2 Let P be the probability transition matrix for the BAMNC (i.e. the

QBC with M = 1). Then for any integer n,

P n =









εn + (1 − p)(1 − εn) p(1 − εn)

(1 − p)(1 − εn) εn + (1 − εn)p









.

Proof. The proof follows by induction. The reader is referred to [42] for more details.

�

Lemma 5.3 The 2× 2 matrix P (0) as defined earlier for the BAMNC has the prop-

erty that for any integer n,

P (0)n =









(ε + (1 − p)(1 − ε))n 0

(1 − ε)(1 − p)(ε + (1 − p)(1 − ε))n−1 0









.
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Proof. The proof is done by induction, as well. For n = 1, we just get the

same matrix P (0). So now assume that the statement is true for n = k. Then, for

n = k + 1, we have

P k+1(0) = P k(0) · P (0)

=









(ε + (1 − p)(1 − ε))k 0

(1 − ε)(1 − p)(ε + (1 − p)(1 − ε))k−1 0

















(ε + (1 − p)(1 − ε)) 0

(1 − ε)(1 − p) 0









=









(ε + (1 − p)(1 − ε))k+1 0

(1 − ε)(1 − p)(ε + (1 − p)(1 − ε))k 0









.

�

Define the matrix K as follows.

K
△
=
[

I − z{P (0)b + s(P b − P (0)b)}
]

.

We can express K as

K =









k11 k12

k21 k22









where

k11 = 1 − z[(ε + (1 − p)(1 − ε))b + s(εb + (1 − p)(1 − εb) − (ε + (1 − p)(1 − ε))b)]

k12 = −zsp(1 − εb)
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k21 = −z[(1 − ε)(1 − p)(ε + (1 − p)(1 − ε))b−1 + s((1 − p)(1 − εb) −

(1 − ε)(1 − p)(ε + (1 − p)(1 − ε))b−1)]

k22 = 1 − zs[εb + p(1 − εb)].

Thus, the formal power series P (s, z) can be expressed as

P (s, z) = ΠT K−11

=

[

1 − p p

]









k11 k12

k21 k22









−1 







1

1









=
p(k12 − k22) + (1 − p)(k21 − k11)

det(K)

where

det(K) = k11k22 − k12k21

= 1 − z[ε + (1 − ε)(1 − p)]b + zs[(ε + (1 − ε)(1 − p))b − (1 + εb)]

+z2s[(ε + (1 − ε)(1 − p))b−1(εb(1 − p) + εp)] +

z2s2[εb − (εb(1 − p) + pε)(ε + (1 − ε)(1 − p))b−1].

Note that the denominator in the expression above is a tool to obtain a recursive

expression for the coefficient of the term smzn, while the numerator gives the initial
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conditions. Therefore, P (m, n) can be recursively written as

P (m, n) = [ε + (1 − ε)(1 − p)]bP (m, n − 1) − [(ε + (1 − ε)(1 − p))b − (1 + εb)]

× P (m − 1, n − 1) − [(ε + (1 − ε)(1 − p))b−1(εb(1 − p) + εp)]P (m− 1, n − 2)

− [εb − (εb(1 − p) + pε)(ε + (1 − ε)(1 − p))b−1]P (m− 2, n − 2) (5.14)

for n ≥ 2, with initial conditions given by

P (m, n) = 0 if m, n < 0 or m < n

P (0, 0) = 1

P (0, 1) = (1 − p)(ε + (1 − ε)(1 − p))b−1

P (1, 1) = 1 − (1 − p)(ε + (1 − ε)(1 − p))b−1.

If b = 1, then we have binary codes, and for this special case P (m, n) reduces to

P (m, n) = (ε+(1−ε)(1−p))P (m, n−1)+(ε+(1−ε)p)P (m−1, n−1)−εP (m−1, n−2).

This is a simpler expression than the one derived in [42] for the same binary system

as it contains one less term.

We are now ready to calculate the probability of decoding error for any non-binary

code over the BAMNC using bounded distance decoding. Figs. (5.1) – (5.4) show a

perfect agreement between the simulation results of four typical Reed-Solomon (RS)

codes described in Table 5.1 over the BAMNC and the analytical results using the

recursion developed above. In fact, the recursive expression is a reliable instrument for
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calculating the PCE at a reduced complexity compared to the simulation especially

for relatively large values of b and t.

5.4 Interleaving vs Non-Interleaving

Given a particular non-binary linear block code, we wish to examine the effect of

interleaving (symbol or bit) on the performance of this code when transmitted over

the BAMNC with non-negative correlation (i.e., the QBC with M = 1). We also use

the four RS codes of Table 5.1, two of which are high-rate codes and the other two

are low-rate ones. Using the PCE expression developed in the previous section, the

performance can be readily evaluated.

5.4.1 When Can Symbol Interleaving Be Avoided ?

When a non-binary linear code over GF(2b) is transmitted over the QBC with M = 1

(i.e., the BAMNC), the probability of m symbol errors in a block of n symbols under

symbol interleaving is given by (5.15)

P ′(m, n) =

(

n

m

)

Pr(1 symbol error)m Pr(No symbol error)n−m

=

(

n

m

)

(

1 − (1 − p)[ε + (1 − ε)(1 − p)]b−1
)m

(

(1 − p)[ε + (1 − ε)(1 − p)]b−1
)(n−m)

. (5.15)
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Symbol interleaving is equivalent to the assumption that the binary noise process is

only Markovian within each symbol (of length b bits), and it is independent between

symbols. As a result, the performance of the non-interleaved RS codes and the symbol

interleaved one may be nearly the same at certain channel conditions. Table 5.2 lists

the regions ε and p for which the performance of both schemes is similar over the

BAMNC (within an absolute relative error less than or equal to 0.1) for the codes

listed in Table 5.1.

5.4.2 When Can Bit Interleaving Be Avoided ?

We next evaluate the RS codes of Table 5.1 over the BAMNC using (5.14) to systemat-

ically identify the (p, ε) values for which the codes’ performance without interleaving

(with ε > 0) is superior to that with perfect bit interleaving (with ε = 0). The

results, with ε shown in the form εmin ≤ ε ≤ εmax for p given, are summarized in

Tables 5.3 – 5.6 (the dash symbols in the tables indicate that perfect bit interleaving

yields better performance for the specified p value). Thus for such channel conditions,

not only can one forgo additional delay and complexity by avoiding bit interleaving,

but improved performance can also be achieved as illustrated in Figs. 5.5 – 5.8.
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code n k t R
C1 255 221 17 0.867
C2 255 129 63 0.506
C3 127 111 8 0.874
C4 127 65 31 0.511

Table 5.1: Parameters of the considered RS codes.
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code p εmax

7 × 10−3 0.2
C1 5 × 10−3 0.1

4 × 10−3 0.06
4 × 10−2 0.3

C2 3 × 10−2 0.13
2.3 × 10−2 0.06
1 × 10−2 0.38

C3 5 × 10−3 0.12
4 × 10−3 0.08
4 × 10−2 0.26

C4 3 × 10−2 0.13
2 × 10−3 0.04

Table 5.2: [0, εmax] ε-intervals for different values of p for which to avoid symbol
interleaving over the BAMNC.

p εmin εmax

≥ 3 × 10−2 0 1
3 × 10−3 0 0.9
2 × 10−3 0 0.83
1 × 10−3 0.14 0.62

≤ 9 × 10−4 - -

Table 5.3: BAMNC (p, ε) values for which to avoid bit interleaving for C1.
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p εmin εmax

≥ 5 × 10−2 0 1
1 × 10−2 0 0.87
5 × 10−3 0 0.73
4 × 10−3 0 0.64

3.8 × 10−3 0.11 0.61
3.6 × 10−3 0.33 0.54

≤ 3.5 × 10−3 - -

Table 5.4: BAMNC (p, ε) values for which to avoid bit interleaving for C2.

p εmin εmax

≥ 5 × 10−3 0 1
3 × 10−3 0 0.87
2 × 10−3 0 0.78

1.5 × 10−3 0 0.69
1.2 × 10−3 0.29 0.53
≤ 1 × 10−3 - -

Table 5.5: BAMNC (p, ε) values for which to avoid bit interleaving for C3.

p εmin εmax

≥ 5 × 10−2 0 1
1 × 10−2 0 0.82
7 × 10−3 0 0.73
5 × 10−3 0.05 0.58

≤ 4.5 × 10−3 - -

Table 5.6: BAMNC (p, ε) values for which to avoid bit interleaving for C4.
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epsilon = 0.2; calc
epsilon = 0.2; sim
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Figure 5.1: PCE for C1 : simulation (sim.) vs analytical (calc.) results.
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Figure 5.2: PCE for C2 : simulation (sim.) vs analytical (calc.) results.
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Figure 5.3: PCE for C3 : simulation (sim.) vs analytical (calc.) results.
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Figure 5.4: PCE for C4 : simulation (sim.) vs analytical (calc.) results.
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Figure 5.5: PCE for code C1: BAMNC vs BSC.
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Figure 5.6: PCE for code C2: BAMNC vs BSC.
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Figure 5.7: PCE for code C3: BAMNC vs BSC.
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Figure 5.8: PCE for code C4: BAMNC vs BSC.
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Chapter 6

Conclusion and Future Work

The work presented in this thesis has two main themes. First of all, we study the

issue of maximum-likelihood (ML) decoding of a binary linear block code on the

QBC. For the case of n ≤ M , we obtain that the ML decoding rule is identical to

the case of infinite-memory Polya contagion channel studied in [1]. For the other

case, n > M , we restrict our analysis to the basic scenario, i.e., M = 1, which

reduces the channel to the binary additive Markov noise channel (with non-negative

noise correlation). Perfect and quasi-perfect codes are examined and a relationship

between ML decoding and MD decoding for these codes is established. In particular,

for perfect codes, when operated over the BAMNC with positive correlation coefficient

below a certain threshold, the ML and MD decoding schemes are found to be identical.

This threshold is observed to decrease, as the error-correcting capability of the code
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increases. On the other hand, the ML decoding analysis of quasi-perfect codes leads

us to propose a new decoding scheme, called MD+, that is nearly equivalent to the

ML decoding under certain channel conditions. MD+, however, seems to provide

negligible gain over the MD decoding when the channel correlation is high.

As far as future work is concerned, one may wish to investigate whether such relation

exists for other types of linear block codes and probably suggest a different decoding

algorithm for block codes that is optimal (i.e., equivalent to ML) or at least prove

the optimality of MD+ under certain conditions. Another possible future direction

is to design a decoder that exploits the memory between blocks by using estimates

of the previous noise samples. This can result in an improved performance over the

block-by-block ML and MD+ methods (studied in this thesis) at a cost of increased

complexity.

We also study the performance of Reed-Solomon (RS) codes over the QBC. A close

look at the performance of the RS codes when both (ideal) symbol interleaving and

bit interleaving are used. We prove analytically that symbol-interleaved RS codes

(as well as any other non-binary code) outperform the bit-interleaved ones over the

QBC under bounded distance decoding. Four typical RS codes are also examined

when transmitted over the BAMNC, and further analysis is carried out to derive a

recursive expression for the probability of codeword error for the non-interleaved RS

codes using a generating series approach. This is used to determine when interleaving
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can be avoided for those codes by numerically computing the probability of codeword

error under different interleaving schemes and comparing it with the case when no

interleaving is used. The advantage of using an RS code without interleaving is the

reduction in system complexity and delay.

Designing a decoder for the RS-coded system that can exploit the memory in the

channel is a worthy project for future work. In addition, deriving an exact or recursive

expression for the probability of codeword error for non-binary block codes over the

QBC with higher memory, i.e., M > 1, may be a possible extension to the work

presented here.
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