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Abstract

The problem of channel coding with feedback has been extensively studied over the

last 50 years. Using an ideal feedback link, the encoder knows all previously received

channel outputs. Recently the duality between channel coding and rate distortion

has been established in [15] and [3], leading to the problem of source coding with

feed-forward.

In this project we first study the general formula for the feed-forward rate dis-

tortion function given by Venkataramanan et al. [8]. They studied the source coding

problem when a feed-forward link is available for general sources and general distor-

tion measures. They derived the feed-forward rate distortion function for an arbitrary

source in terms of the directed information which was originally introduced by Massey

[5]. It is shown that the general formula given for source coding with feed-forward

is closely related to the general formula for channel coding with feedback given by

Tatikonda [4].

We then study another formula for the feed-forward rate distortion function re-

cently proposed by Naiss et al. which is tractable and computable [17]. They also cal-

culated the exact rate distortion function for first order asymmetric Markov sources.

An original contribution of this project is an alternative achievability proof for

the feed-forward rate distortion function of first order asymmetric Markov sources.

I



Acknowledgments

I am grateful to my supervisors Prof. Fady Alajaji and Prof. Tamás Linder for their

sincere and insightful guidance, continuous support and for being so open and helpful

for all problems I had had while completing my degree.

I am also grateful to my family. I cannot imagine myself going through with this

degree without their unconditional love and support.

II



Contents

Abstract I

Acknowledgments II

Contents III

List of Figures V

1 Introduction 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Organization of Report . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Feed-Forward Rate Distortion Function 9

2.1 Stationary and Ergodic Sources . . . . . . . . . . . . . . . . . . . . . 10

2.2 General Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Another Look at Stationary Ergodic Sources 20

3.1 nth Order Feed-Forward RDF . . . . . . . . . . . . . . . . . . . . . . 21

4 Markov Sources 32

4.1 Binary Asymmetric Markov Source . . . . . . . . . . . . . . . . . . . 35

4.2 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

III



4.3 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Summary and Conclusions 42

Appendix A:

Directed Information . . . . . . . . . . . . . . . . . . . . 43

Appendix B:

Proof of Lemma 3.1.2 . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV



List of Figures

1.1 Instantaneous side information, n = 5 [8]. . . . . . . . . . . . . . . . . 2

1.2 Delayed side information, n = 5 [8]. . . . . . . . . . . . . . . . . . . . 4

2.1 Codetree for binary sources . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Concatenation of two sub-codetrees each whose length is n = 3. . . . 23

3.2 A codetree structure from the ith codebook, n = 3 and L = 6. Letters

indicated by f are fixed letters. . . . . . . . . . . . . . . . . . . . . . 28

4.1 The block diagram of encoder . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The block diagram of decoder . . . . . . . . . . . . . . . . . . . . . . 40

V



Chapter 1

Introduction

Missing a train is only painful if you run after it!

–N. N. Taleb

The problem of source coding with side information at the decoder has gained

special significance since the emergence of wireless sensor networks. The model of

this problem is as follows: An information source which is modeled by a random pro-

cess X = {Xi}∞i=1 is to be encoded in blocks of length n into a message W which is

then transmitted over a noiseless channel of finite rate to a decoder. The decoder has

access to another random process Y = {Yi}∞i=1, which is correlated with the source

X. The decoder then estimates n source samples knowing Y and W and produces a

reconstruction of the source process over time. The goal is then to minimize the re-

construction distortion subject to a rate constraint. This problem dates back to 1976

when Wyner and Ziv [1] obtained the optimal rate distortion function when (X, Y )

is assumed to be a jointly independent identically distributed (i.i.d.) process. In this

problem, (Xi, Yi) are simultaneously observed at the encoder and decoder. Figure 1.1
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Figure 1.1: Instantaneous side information, n = 5 [8].

shows this scenario for blocklength n = 5. Note that in this case, the decoder recon-

structs1 X5 at the 6th time slot, but we display this as shown in Figure 1.1. Often the

side information is the noisy version of the source which is assumed to be available at

the decoder. The idealized (though interesting) question is what happens if a delayed

version of the source process is available at the decoder. In this case, the delay must

be greater than n. Figure 1.2 shows this scenario when the delay is 6 and Yi = Xi.

Although the problem of Figure 1.2 is different from the Wyner and Ziv problem,

the encoding remains the same, i.e., a mapping from the n−fold product of the

source alphabet to an index set of size 2nR, where R is the rate of transmission; thus

the encoder is noncausal and the decoder is causal. This model is referred to as

data compression with feed-forward. Obviously, while reconstructing X̂i, the decoder

knows X i−1. Henceforth we assume that the delay in the scenario of Figure 1.2 is 1

despite the fact that the actual delay is n + 1 = 6. Note that the delay obviously

cannot be less than the blocklength n, so the assumption that delay is 1 shall not

be viewed as the actual delay. In other words, in the feed-forward problems delay k

refers to an actual delay of n+ k.

The source coding model in this setting is as follows. Consider a general discrete
1As usual, Xn := (X1, X2, . . . , Xn).
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source X with alphabet X and output alphabet X̂ . There is a distortion measure

dn : X̂ n × X n → R+ associated to each pair of sequences. We assume here that

dn(x̂n, xn) is normalized with respect to n and uniformly bounded. An (n, 2nR) source

code with feed-forward of delay 1 and block length n and rate R consists of an encoder

mapping f and sequence of decoder mappings gi, i = 1, 2, . . . , n such that

f : X n → {1, 2, . . . , 2nR},

and

gi : {1, 2, . . . , 2nR} × X i−1 → X̂ .

The encoder maps a sequence of length n to an index chosen from set {1, 2, . . . , 2nR}

and sends it to the decoder. The decoder then receives the index and to reconstruct

the ith sample it is given all previous (i− 1) source samples.

This model was first proposed by Weissman and Merhav [6] in the context of

competitive prediction. They considered feed-forward of delay 1 and a single letter

difference distortion measure. They derived the distortion rate function with feed-

forward of delay 1 for sources which can be represented via an auto-regressive model

with an innovation process that is either i.i.d. or satisfies the Shannon Lower Bound

(SLB) with equality. As examples of such sources, the distortion rate function is

evaluated in [6] for a symmetric binary Markov source with feed-forward of delay 1

and a stationary Gaussian source with feed-forward of delay 1. They also showed

that for single-letter difference distortion measures, feed-forward does not lower the

optimal distortion rate function for i.i.d. sources and all sources that satisfy the SLB

with equality.

Later Pradhan [7] considered the model of source coding with general feed-forward

as a variant of the problem of source coding with side information at the decoder and
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Figure 1.2: Delayed side information, n = 5 [8].

a quantization scheme with linear processing for i.i.d. Gaussian sources with mean

squared error distortion measure. Finally [8] derived the rate distortion function for

general sources and general distortion measures in terms of directed information using

the information spectrum method [9], which will be discussed in this report.

The main differences between the results of [8] and [6] are as follows:

• The distortion rate function of a source with feed-forward is completely charac-

terized in [6] only when the source has an auto-regressive representation and the

characterization of the distortion rate function is in terms of an innovation pro-

cess. However [8] considered general sources with feed-forward and the resulting

distortion rate function is expressed as a directed information which involves

only the source distribution and the conditional probability of reconstruction

points given source symbols.

• The results of [6] are valid only for single-letter, difference distortion measures

and feed-forward with delay one, while, [8] deals with arbitrary distortion mea-

sures and feed forward with arbitrary delay.
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1.1 Preliminaries

In 1990, Massey noticed that the usual definition of the most basic channel, namely the

discrete memoryless channel (DMC), precludes the use of feedback2 [5]. He pointed

out that probabilitic dependence is quite different from causal dependence. For ex-

ample, statistical dependence, as opposed to causality, has no inherent directivity.

In other words, whether X causes Y or Y causes X, the random variables X and Y

are statistically dependent. He then came up with the notion of directivity in infor-

mation theory by considering the directed information. The properties of directed

information were developed mainly by Kramer in his PhD thesis [12]. Although the

directed information was introduced in the problem of channel coding with feedback,

the established duality between feedback in channel coding and feed-forward in source

coding has caused the directed information to appear in the source coding literature,

see e.g. [8], [16], [17], [21]. In this section we briefly define quantities that we need in

our problem and list some of their properties.

Definition. The directed information flowing from a random vector Xn := (X1, X2, . . . , Xn)

to another random vector Y n := (Y1, Y2, . . . , Yn) is defined as

I(Xn → Y n) :=
n∑
i=1

I(X i;Yi|Y i−1). (1.1)

Notice that (1.1) looks like the mutual information between two random vectors,

namely I(Xn;Y n) =
∑n

i=1 I(Xn;Yi|Y i−1), except that the mutual information has

Xn in place of X i. Hence we can say that the directed information is causal but the

mutual information is not. It is easy to verify that I(Xn → Y n) 6= I(Y n → Xn) in

general. Directed information appeared in almost all recent results where feedback
2As an example refer to [23, page 48] where Ash used the fact P (yi|xnyi−1) = P (yi|xiyi−1) for

DMC. In words, he confused probabilistic dependence with causal dependence.
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or feedforward are studied (c.f. [3], [4]). Later, Massey provided the relation between

mutual information and directed information by [14]

I(Xn → Y n) = I(Xn;Y n)−
n∑
i=2

I(Y i−1;Xi|X i−1). (1.2)

which can be justified as follows

I(Xn;Y n) = H(Xn) +H(Y n)−
n∑
i=1

H(Xi, Yi|X i−1, Y i−1),

= H(Xn) +H(Y n)−
n∑
i=1

H(Xi|X i−1, Y i−1)−
n∑
i=1

H(Yi|X i, Y i−1),

=
n∑
i=1

I(X i;Yi|Y i−1) +
n∑
i=2

I(Xi;Y
i−1|X i−1),

(a)
= I(Xn → Y n) +

n∑
i=2

I(Y i−1;Xi|X i−1), (1.3)

where (a) holds by definition of directed information 1.1 and we have assumed the

convention I(Y 0; .) = 0. Equation (1.2) has an interesting implication in source

coding. We know that without feedforward, we need I(X̂n;Xn) bits to represent

Xn by X̂n. At time instant i the decoder knows xi−1 to reconstruct X̂i, therefore

by (1.2) we can save I(X i−1; X̂i|X̂ i−1) bits. In other words, we need not spend

I(X i−1; X̂i|X̂ i−1) bits at time instant i.

Similar to the information rate, we can define the directed information rate as

lim
n→∞

1

n
I(Xn → Y n),

which is guaranteed to exist if the source is stationary and ergodic [12]. Other concepts

that we need are the directed counterparts of conditional probabilities defined by

~PX̂n|Xn(x̂n|xn) :=
n∏
i=1

PX̂i|Xi−1,X̂i−1(x̂i|xi−1, x̂i−1), (1.4)

which corresponds to the decoder conditional probability (or input to the test channel)
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and which we call "strictly causal conditional distribution with lag 1", and

~~PXn|X̂n(xn|x̂n) :=
n∏
i=1

PXi|Xi−1,X̂i(xi|xi−1, x̂i). (1.5)

which corresponds to the test channel and which we call "causal conditional distri-

bution with lag 1". To unify these two notions, we can use the causal conditional

distribution with lag s defined by Kramer [12] as

PY n||Xn−s(yn||xn−s) :=
n∏
i=1

PYi|Y i−1,Xi−s(yi|yi−1, xi−s),

for any s ≥ 0. Here we assume the convention that PYi|Y i−1,Xi−s(yi|yi−1, xi−s) =

PYi|Y i−1(yi|yi−1) for i = 1, 2, . . . , s. We can then rewrite (1.4) and (1.5) as P (X̂n||Xn−1)

and P (Xn||X̂n), respectively. It is easy to show that

PX̂N ,XN (x̂N , xN) = PX̂n||Xn−1(x̂
n||xn−1)PXn||X̂n(xn||x̂n). (1.6)

We can envision the source coding with feedforward via a test channel using the

above two notations. The decoder first receives the index W containing the infor-

mation about a block of n source samples. The reconstruction process starts from

reconstructing the first sample as a function of W ; x̂1 = g(W ). In the next time

instant, x̂1 is fed to the fictitious test channel PX1|X̂1
(x1|x̂1) to produce x1, which is

then fed back to the decoder. Therefore, the decoder knows W and x1 to reconstruct

the second source sample; x̂2 = g(W,x1). In the next time instant, as before, x̂2 goes

through the test channel P (x2|x̂2) to produce x2 fed back to decoder. Hence, the

decoder can use W,x1 and x2 to reconstruct the third sample; x̂3 = g(W,x2). This

procedure goes on till all source samples are reconstructed.
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1.2 Organization of Report

The next chapter considers general sources and gives the feed-forward rate distortion

function. In the same chapter, we summarize the results proved in [8]. Chapter 3

gives an alternative formula for feed-forward rate distortion function using the notion

of nth order rate distortion function. Chapter 4 provides an achievability proof for

the feed-forward rate distortion function of first order asymmetric Markov sources

together with its converse thus establishing the feed-forward rate distortion function.
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Chapter 2

Feed-Forward Rate Distortion

Function

A nice adaptation of conditions will make almost any hypothesis agree with the

phenomena. This will please the imagination but does not advance our knowledge.

–J. Black

Consider a sensor network in which a sensor measures a certain physical quantity

over time. The main objective of a sensor network is to convey the (processed)

measurement, Xi over time i = 1, 2, . . . , n, to the receiver. As an example, each

sensor quantizes a measurement and sends it to the receiver. The receiver might

have some side information with delay s ≥ 0, Yi−s. Clearly if the process (X, Y ) is

i.i.d. and s > 0, then side information does not help at all. However this is not the

case for s = 0 as Wyner and Ziv showed in 1976 [1]. An interesting case for side

information is Xi = Yi−s, so the whole source field is transferred to the receiver but

of course with some non zero delay. Here in this project we always assume that delay

is one. Note that in order to have a valid communication model, the delay must be
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always greater than the coding blocklength, n, so s = 1 is meant to be s = n + 1.

However in this report we write s = 1 for simplicity. In this chapter we first consider

the rate distortion function for an stationary ergodic source when a feed-forward of

delay one is available and then briefly generalize the result for arbitrary sources. The

feed-forward rate distortion function for an arbitrary delay is given in [8].

2.1 Stationary and Ergodic Sources

Although [8] gives the fundamental limit of source coding with feed-forward for gen-

eral sources, it is instructive to look first at the stationary and ergodic source. Here

we assume that dn(xn, x̂n) = 1
n

∑n
i=1 d(xi, x̂i), where d : X × X̂ → R+ is the dis-

tortion measure. We assume that d(x, x̂),∀x ∈ X , x̂ ∈ X̂ is bounded and therefore

limN→∞E
[
dn(Xn, X̂n)

]
exists. Note that when the joint random process {Xn, X̂n}

is stationary, then we can write E
[
dn(Xn, X̂n)

]
= E[d(X, X̂)].

Definition. R is an achievable rate at expected distortion D if for any ε > 0, for all

sufficiently large n, there exists an (n, 2nR) code such that

EXn

[
dn(Xn, X̂n)

]
≤ D + ε.

The distribution, defined by a sequence of finite-dimensional distributions is de-

noted by

PX := {PXi}∞i=1,

and similarly the conditional distribution is denoted by

PX̂|X := {PX̂i|Xi}∞i=1.
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Theorem 2.1.1. [8] For a discrete stationary and ergodic source X characterized

by a distribution PX = {PXi}∞i=1, all rates R ≥ R∗(D) are achievable at expected

distortion D where1

R∗(D) := inf
PX̂|X:E[d(X,X̂)]≤D

lim
n→∞

1

n
I(X̂n → Xn),

where the infimum is taken over all conditional distributions PX̂|X for stationary and

ergodic joint process {X̂n, Xn}.

Note that as we mentioned earlier, the directed information rate exists for sta-

tionary and ergodic sources. The proof of achievability is given after two constructive

lemmas. The proof is based on a new Asymptotic Equipartition Property (AEP). By

the Shannon-McMillan-Breiman theorem, we know that the AEP holds for discrete

stationary ergodic sources, which means that with probability one

− 1

n
logPXn(Xn)→ H(X),

and

− 1

n
logPXn,X̂n(Xn, X̂n)→ H(X, X̂)

where

H(X) := lim
n→∞

1

n
H(Xn) = lim

n→∞
H(Xn|Xn−1),

and

H(X, X̂) := lim
n→∞

1

n
H(Xn, X̂n) = lim

n→∞
H(Xn, X̂n|Xn−1, X̂n−1).

Let H(X̂n||Xn) denote the entropy of X̂n causally conditioned on Xn, defined as

H(X̂n||Xn) :=
n∑
i=1

H(X̂i|X̂ i−1, X i). (2.1)

1This theorem concerns the achievability of R∗(D), however the converse proof for arbitrary
sources is provided in [8].
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Similarly we can define2 H(X̂n||Xn−1) with respect to probability distribution (1.4)

as follows

H(X̂n||Xn−1) :=
n∑
i=1

H(X̂i|X̂ i−1, X i−1). (2.2)

Lemma 2.1.2. [8] If the process {Xi, X̂i}∞i=1 is stationary and ergodic, then with

probability one,

− 1

n
logPX̂n||Xn−1(x̂

n||xn−1)→ H(X̂||X)

as n→∞ where

H(X̂||X) := lim
n→∞

1

n
H(X̂n||Xn−1) = lim

n→∞

1

n

n∑
i=1

H(X̂i|X̂ i−1, X i−1)

= lim
n→∞

H(X̂n|X̂n−1, Xn−1).

The proof follows from the proof of the Shannon-McMillan-Breiman theorem given

in [15]. This lemma leads us to the new definition of a distortion typical set. Fix a

conditional distribution PX̂|X for a given source distribution PX, to obtain the joint

distribution PX̂,X = {Px̂n,xn}∞n=1. Then for any xn ∈ X n and x̂n ∈ X̂ n, we say that

the pair (xn, x̂n) belongs to directed distortion typical set, Anε , if∣∣∣− 1

n
logPXn(xn)−H(X)

∣∣∣ < ε, (2.3)∣∣∣− 1

n
logPXn,X̂n(xn, x̂n)−H(X, X̂)

∣∣∣ < ε, (2.4)∣∣∣− 1

n
logPX̂n||Xn−1(x̂

n||xn−1)−H(X̂||X)
∣∣∣ < ε, (2.5)∣∣∣dn(xn, x̂n)− Edn(Xn, X̂n)
∣∣∣ < ε.

Having defined this new typical set, we can show that a result similar to the conven-

tional result in [15] can be obtained. That is, it is easy to show that for any pair

2Some references denote this as H(X̂n||0Xn−1) where 0Xn−1 := [−, X1, X2, . . . , Xn−1].
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(Xn, X̂n) drawn according to PX̂n,Xn ;

lim
n→∞

P
(
((Xn, X̂n) ∈ Anε )

)
= 1,

or in other words, Pr(Anε ) > 1 − ε for n sufficiently large, which is proved by an

application of Lemma 2.1.2 and the conventional AEP [15]. The following lemma

gives a bound on the ratio of conditional distribution and the directed distribution.

Lemma 2.1.3. [8] For any pair (xn, x̂n) ∈ Anε , we have
PX̂n|Xn(x̂n|xn)

PX̂n||Xn−1(x̂n||xn−1)
≤ 2(nI(X̂→X)+3ε),

where I(X̂→ X) = limn→∞
1
n
I(X̂n → Xn).

Proof.

PX̂n|Xn(x̂n|xn) =
PXn,X̂n(xn, x̂n)

PXn(xn)
= PX̂n||Xn−1(x̂

n||xn−1)
PXn,X̂n(xn, x̂n)

PX̂n||Xn−1(x̂n||xn−1)PXn(xn)

≤ PX̂n||Xn−1(x̂
n||xn−1) 2−n(H(X̂,X)−ε)

2−n(H(X̂||X)+ε)2−n(H(X)−ε)

= PX̂n||Xn−1(x̂
n||xn−1)2n(I(X̂→X)+3ε),

where the inequality holds because of (2.3),(2.4) and (2.5) and the last equality holds

because I(X̂n → Xn) = H(X̂n||Xn−1) − H(X̂n|Xn), which is proved in (A.6), Ap-

pendix A.

After the preceding lemmas, we can now give a coding scheme which achieves

R∗(D). We recall that dn(xn, x̂n) = 1
n

∑n
i=1 d(xi, x̂i). The following proof is adapted

from the one given in [8].

Proof of Theorem. Since different xi−1 may lead to different reconstruction x̂i, the

codebook here consists of codetrees in lieu of codewords. Let the first symbol be

x̂1. At the next time instant, the decoder knows x1, hence to choose x̂2 we have |X |

13



different choices depending on x1 observed via the feed-forward link. Similarly, to

choose x̂3 we have X 2 different choices given X2. We can continue this procedure

to construct a codebook consisting of 2nR codetrees for a source code with rate R.

To generate a codebook, we pick a joint distribution PX̂,X whose X-marginal is the

source distribution and satisfies Ed(X, X̂) ≤ D. This joint distribution is stationary

and ergodic by assumption. The first symbol x̂1 is chosen randomly according to PX̂1
.

The second one is chosen independently and randomly according to PX̂2|X̂1,X1
(.|x̂1, x1)

for each possible x1. For each of x̂2 chosen at last step, there are |X | possible choices

for x̂3 which we pick independently and randomly according to PX̂3|X̂2,X2(.|x̂2, x2),

We keep on constructing the codebook at each stage till finally we pick x̂n according

to PX̂n|X̂n−1,Xn−1(.|x̂n−1, xn−1). We construct 2nR such codetrees independently and

then reveal this codebook to both encoder and decoder.

The encoder can trace the path of each codetree given source sequence xn−1. By

this procedure, the encoder gets 2nR different sequences which in fact corresponds to

x̂n(m) for m ∈ {1, 2, . . . , 2nR}. Then the encoder sends index m for which (x̂n, xn) ∈

Anε .

The decoder receives the indexm of the codetree the encoder has picked. Given the

codetree and the feedforward sequence xk for k = 1, 2, . . . , n− 1, the decoder outputs

the path on the codetree determined by the sequence xk. For example, suppose the

codetree in Figure 2.1 is used for a binary source and the source sequence is 101. Then

tracing the path determined by 101 gives us 010 as reconstruction. There are two

types of distortion incurred in the above coding; one corresponding to the sequence

xn properly encoded which is less than D + ε and another one corresponding to the

sequences for which the encoder fails to encode (i.e., the encoder could not find a joint

14



Figure 2.1: Codetree for binary sources

typical path). When the latter happens within a given code for a source sequence,

we call the sequence bad. Letting Pe denote the probability of the set of bad source

sequence for the code, we can write the expected distortion given the code C as

E[dn(Xn, X̂n)|C] ≤ D + ε+ Pedmax,

where dmax denotes the maximum of d(x, x̂) among all x ∈ X and x̂ ∈ X̂ . Taking

average over all possible random independent codebooks, C, we get

EC

[
E[dn(Xn, X̂n)|C]

]
≤ D + ε+ P̄edmax,

in which P̄e denotes the probability of the set of bad source sequences averaged over all

random codes. It therefore suffices to show that P̄e → 0 as n→∞ when R ≥ R∗(D).

Letting G(C) be the set of all good sequences (i.e. the ones which can get properly

encoded) for code C, we can write

P̄e =
∑
C

P (C)
∑

xn:xn /∈G(C)

Pxn(xn). (2.6)

Recall that P̄e is the probability that for a source random sequence Xn and a random
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codebook, none of the 2nR paths are directed jointly typical set with Xn. Alterna-

tively, we can calculate P̄e by first fixing Xn = xn, then finding the probability of

bad random codes (the codes all whose codewords corresponding to Xn = xn are

non-typical with xn) and then summing over all xn, that is

P̄e =
∑
xn

PXn(xn)
∑

C:xn /∈G(C)

P (C). (2.7)

On the other hand, since we generate the codebood using PX̂n||Xn−1(x̂n||xn−1),

then the probability that a fixed source sequence xn is not properly represented by a

single random codeword X̂n is

Pr
(

(xn, X̂n) /∈ Anε
)

= 1−
∑

x̂n:(xn,x̂n)∈Anε

PX̂n||Xn−1(x̂
n||xn−1),

which together with the independence of codetrees leads us to calculate the probability

of choosing a bad codebook with respect to xn, that is∑
C:xn /∈G(C)

P (C) =

(
1−

∑
x̂n:(xn,x̂n)∈Anε

PX̂n||Xn−1(x̂
n||xn−1)

)2nR

,

and hence together with (2.7), we can write

P̄e =
∑
xn

PXn(xn)

(
1−

∑
x̂n:(xn,x̂n)∈Anε

PX̂n||Xn−1(x̂
n||xn−1)

)2nR

(2.8)

≤
∑
xn

PXn(xn)

(
1− 2−n(I(X̂→X)+3ε)

∑
x̂n:(xn,x̂n)∈Anε

PX̂n|Xn(x̂n|xn)

)2nR

(2.9)

≤
∑
xn

PXn(xn)
∑

x̂n:(xn,x̂n)/∈Anε

PX̂n|Xn(x̂n|xn) + e−2
n(R−I(X̂→X)−3ε)

(2.10)

=
∑

(xn,x̂n)/∈Anε

PXn,X̂n(xn, x̂n) + e−2
n(R−I(X̂→X)−3ε)

, (2.11)

where (2.9) holds using Lemma 2.1.3 and (2.10) is due to the inequality (1− xy)k ≤

1 − y + e−kx for k > 0 and 0 ≤ x, y ≤ 1. The first term in (2.11) tends to zero as

n→∞ and therefore P̄e → 0 if R > I(X̂→ X) + 3ε.
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It is worth comparing the Theorem 2.1.1 with results known for channel coding

with perfect feedback. Let X and Y be the channel input and output processes

such that {Xn, Yn}∞n=1 is stationary and ergodic. Let ~PY|X := {PYi|Xi,Y i−1}∞i=1 and

~PX|Y := {PXi|Xi−1,Y i−1}∞i=1. The channel is characterized by ~PY|X, so we assume it

is fixed. Note that PX,Y = ~PY|X.~PX|Y. Using the direct proof given in this chapter,

[16] shows that all rates less than sup~PX|Y
I(X → Y ) are achievable with feedback.

On the other hand, since we know I(X;Y ) = I(X → Y ) when there is no feedback,

we can conclude that the capacity of channel without feedback can be written as

supPX
I(X → Y ). Hence when feedback is available the objective function is the

same but the constraint set is larger because the space of PX is contained in ~PX|Y.

This is reversed in source coding. When feedforward is available the objective function

is smaller than the no-feedforward case whereas the constraint set is the same.

2.2 General Sources

This section gives the rate distortion function for general sources, which might be non

stationary nor ergodic. We can also assume a general distortion measure, single-letter

or multi-letter and also with memory. The result is based on the notations introduced

by Han in [9], which will be presented briefly in the sequel.

Definition. The limsup in probability for a sequence of real-valued random variables

{Xn} is defined as the smallest extended real number α such that

lim
n→∞

Pr(Xn > α) = 0.

Definition. The liminf in probability for a sequence of real-valued random variables

17



{Xn} is defined as the largest extended real number β such that

lim
n→∞

Pr(Xn < β) = 0.

Definition. For any sequence of joint distributions {PX̂n,Xn}∞n=1 define for xn ∈ X n

and x̂n ∈ X̂ n

i(xn; x̂n) := log
PXn;X̂n(xn; x̂n)

PXn(xn)PX̂n(x̂n)
, (2.12)

~i(x̂n;xn) := log
PXn;X̂n(xn; x̂n)

PX̂n||Xn−1(x̂n||xn−1)PXn(xn)
, (2.13)

Ī(X̂→ X) := lim sup
inprob

1

n
~i(X̂n;Xn), (2.14)

I(X̂→ X) := lim inf
inprob

1

n
~i(X̂n;Xn) (2.15)

Verdú and Han [10] showed the interesting result that the capacity without feed-

back is the sup of inf-information rate (liminf in probability of (2.12)). It was also

shown in [11] that the rate distortion function (without feed-forward) for an arbi-

trary source is given by the inf of the sup-information rate (limsup in probability of

(2.12)) and finally [4] proved that for arbitrary channels with feedback, the capacity

is an optimization of I(X→ Y), the inf-directed information rate given by (2.15).

The following result completes this picture by giving the rate distortion function with

feed-forward.

Theorem 2.2.1. For an arbitrary source X characterized by a distribution PX, the

rate distortion function with feed-forward at expected distortion D is given by

Rff (D) = inf
PX̂|X:λ(PX̂|X)≤D

Ī(X̂→ X)

where

λ(PX̂|X) := E[dn(Xn; X̂n)].
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We have to mention that the same result can be obtained when we impose some

constraint on the probability of distortion measure instead of its expectation, that is,

we want the achievable rate for which PXn

(
xn : dn(xn, x̂n) ≥ D

)
< ε.

Despite its complicated definition, Rff (D) has been evaluated in closed-form for

several classes of sources and distortions measures with memory [13].
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Chapter 3

Another Look at Stationary Ergodic

Sources

Not everything that can be counted counts, and not everything that counts can be counted.

–A. Einstein

As discussed in the previous chapter, the explicit definition of the feed-forward

rate distortion function for an arbitrary normalized distortion function is given by

Venkataramana et al. [8]. Borrowing the following measures from the information

spectrum method [10],

Ī(X̂→ X) = lim sup
inprob

1

n
log

PXn,X̂n(Xn, X̂n)

PXn||X̂n−1(X̂n||Xn−1)PXn(Xn)
,

and

I(X̂→ X) = lim inf
inprob

1

n
log

PXn,X̂n(Xn, X̂n)

PXn||X̂n−1(X̂n||Xn−1)PXn(Xn)
,

they showed that the feed-forward rate distortion function Rff (D), is given by

Rff (D) = inf
PX̂|X:E[d(X,X̂)]≤D

Ī(X̂→ X). (3.1)
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Tatikonda showed that [4]

I(X̂→ X) ≤ lim inf
n→∞

1

n
I(X̂n → Xn) ≤ lim sup

n→∞

1

n
I(X̂n → Xn) ≤ Ī(X̂→ X),

which lets us conclude that for any class of joint processes (Xn, X̂n) such that

I(X̂→ X) = Ī(X̂→ X) which includes but is not limited to stationary and ergodic

joint processes,

Rff (D) = inf
PX̂|X:E[d(X,X̂)]≤D

I(X̂→ X) = inf
PX̂|X:E[d(X,X̂)]≤D

lim
n→∞

1

n
I(X̂n → Xn).

Naiss et al.[17] adopted the same approach as [18] to define the nth order feed-

forward rate distortion function for stationary and ergodic sources and also proved

that it eventually approaches to Rff (D) from above. The new formula for Rff (D)

brings a great deal of simplification in terms of calculation as it shows the limit and

infimum in the original formula can be interchanged. We briefly mention this result

in this chapter and use this to calculate the feed-forward rate distortion function for

first order binary asymmetric Markov sources.

3.1 nth Order Feed-Forward RDF

Suppose the source is stationary and ergodic. As stated in the last chapter, a feed-

forward rate-distortion pair (R,D) is achievable if there exists an (n, 2nR) code such

that E[d(X̂n, Xn)] ≤ D+ε. We recall that the operational feed-forward rate distortion

function is the infimum of R for which (R,D) is achievable. Let Rn,ff (D) be the nth

order feed-forward rate distortion function for the source defined between two blocks
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Xn and X̂n and normalized distortion measure, i.e.1

Rn,ff (D) := inf
PX̂|X:E[d(Xn,X̂n)]≤D

1

n
I(X̂n → Xn), (3.2)

in similar way as (9.8.2) in [18]. Let RI
ff (D) be defined by

RI
ff (D) := lim

n→∞
Rn,ff (D). (3.3)

whenever the limit exists. The following theorem, adapted from [17], shows that

the operational definition of feed-forward rate distortion function is equal to the

expression given in (3.3).

Theorem 3.1.1. For any stationary and ergodic source and any distortion D, Rff (D) =

RI
ff (D).

To prove this theorem we first need to show that the limit in (3.3) exists, then show

that it is achievable (Rff (D) ≤ RI
ff (D)), and finally show the converse (Rff (D) ≥

RI
ff (D)).

Proof. [Achievability]

We first show the achievability and assume, for the moment, that the stationary source

is block ergodic in blocks of length n. This means that considering each block of

length n as a super letter from the super alphabet X n,we will obtain an ergodic super

source. In this setting, we want to prove that for any sufficiently large L, there exists

a codebook of trees TC of length L whose cardinality satisfies |TC| ≤ 2L(Rn,ff (D)+δ) for

which E[d(XL, X̂L)] ≤ D + δ. This is a generalization of [18, Theorem 9.8.2 ] for an

ensemble of codetrees generated by P (x̂n||xn−1) instead of codewords generated by

P (x̂n).
1In fact, we can use min in (3.2) in lieu of inf, as we know that the directed information, like

mutual information, is a convex function of the conditional probability distribution.
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Figure 3.1: Concatenation of two sub-codetrees each whose length is n = 3.

Fix PXn(xn). Let PXn|X̂n(x̂n|xn) be the conditional distribution that achieves

the Rn,ff (D) from which we obtain PXn||X̂n−1(x̂n||xn−1). For every L, consider the

codebook TC ensemble of M codetrees, each of which τL ∈ TC is a concatenation of L
n

sub-codetrees of length n. Each sub-codetree is generated independently according to

PXn||X̂n−1(x̂n||xn−1) as explained in the previous chapter and illustrated in Figure 3.1.

The encoder maps each source sequence xL to the codetree τL whose path de-

termined by xL has the minimum distortion with xL, that is, d(xL, x̂L(τL, xL−1)) is

minimum where x̂L(τL, xL−1) denotes the path over τL determined by xL. The en-

coder then sends the index of that codetree. In other words, the encoder sends the

index of codetree τL∗ defined as follows

τL∗ := arg min
τL∈TC

d(xL, x̂L(τL, xL−1)). (3.4)

The decoder simply picks the tree whose index is received and then follows the

path determined by XL sequentially, that is, at time k decoder returns x̂k(τL∗, xk−1).

In this setting the test channel and the causal conditional probability can be
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written as

PX̂L|XL(x̂L|xL) =

L/n−1∏
i=0

PX̂ni+n
ni+1 |X

ni+n
ni+1

(x̂ni+nni+1 |xni+nni+1 ), (3.5)

PX̂L||XL(x̂L||xL) =

L/n−1∏
i=0

PX̂ni+n
ni+1 ||X

ni+n−1
ni+1

(x̂ni+nni+1 ||xni+n−1ni+1 ), (3.6)

each of whose terms is simply the same by stationarity of the source, that is

P (X̂ni+n
ni+1 = x̂n|Xni+n

ni+1 = xn) = P (X̂n = x̂n|Xn = xn), (3.7)

P (X̂ni+n
ni+1 = x̂n||Xni+n−1

ni+1 = xn−1) = P (X̂n = x̂n||Xn−1 = xn−1). (3.8)

To follow the proof of Gallager we need to establish a result similar to [18, Lemma

9.3.1] for our setting. To do so we modify the definition of (9.8.8) in [18]. For every

tree τL we define the measure

In(τL → xL) = log
PX̂L|XL(x̂L(τL, xL−1)|xL)

PX̂L||XL−1(x̂L(τL, xL−1)||xL−1)
. (3.9)

Notice that (3.9) does not specify the directed information between x̂L and xL, but

its average does. Following (9.8.9) in [18] we define the following set

A = {τL ∈ T L, xL ∈ X L : either In(τL → xL) > LR̃ or d(xL, x̂L(τL, xL−1)) > LD̃},

(3.10)

where R̃ = (Rn,ff (D) + δ/2), D̃ = (D+ δ/2) and T L denotes the set of all trees with

length L.

The following lemma gives an upper bound to the probability (over the ensemble

of TC and ensemble of source outputs) that the distortion between source sequence

and the codeword into which it is mapped exceeds LD̃. This is similar to [18, Lemma

9.3.1].

Lemma 3.1.2. For a given source, distortion measure and test channel, we have the

inequality

24



P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
≤ P (A) + e−(M2−LR̃),

where the set A is defined in (3.10), P (A) is the probability of A on the test channel

ensemble, M is the number of codetrees and L is the size of codewords.

Proof. The proof is given in Appendix B.

Notice that the normalized average distortion over the ensemble of codes satisfies

E
[
d(XL, X̂L)

]
≤ D + δ/2 + P

(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
sup
xL,x̂L

d(xL, x̂L), (3.11)

obtained using upper-bounding the distortion by D + δ/2 when d(xL, x̂L) ≤ D + δ/2

and by supxL,x̂L d(xL, x̂L) otherwise. We know by the Lemma 3.1.2 that the term

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
in (3.11) is upper-bounded by P (A) + e−(M2−LR̃).

P (A) can be further upper-bounded using union bound as follows

P (A) ≤ P
(
{xL ∈ X L, τL ∈ T L : In(τL → xL) > LR̃}

)
+ P

(
{xL ∈ X L, τL ∈ T L : d(xL, x̂L(τL, xL−1)) > LD̃

)
. (3.12)

The first term in (3.12) tends to zero because with probability 1,

1

n
lim
L→∞

1

L/n

L/n−1∑
i=1

log
PX̂ni+n

ni+1 |X
ni+n
ni+1

(x̂ni+nni+1 |xni+nni+1 )

PX̂ni+n
ni+1 ||X

ni+n−1
ni+1

(x̂ni+nni+1 ||xni+n−1ni+1 )
=

1

n
E
[ P (X̂n|Xn)

P (X̂n||Xn−1)

]
= Rn,ff (D),

(3.13)

where the first equality is due to ergodicity of joint process (Xn, X̂n) and the second

equality follows from the definition of directed information; E
[

P (X̂n|Xn)

P (X̂n||Xn−1)

]
= I(X̂n →

Xn) (c.f. Appendix A). The joint process (Xn, X̂n) is ergodic because we assume

that the source is ergodic in blocks of length n and the test channel is defined to be

memoryless for the blocks of length n and therefore the joint process is ergodic [18,
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Lemma 9.8.1]. Hence,

P
(
In(τL → xL) ≤ L(Rn,ff (D) + δ/2)

)
→ 1, L→∞. (3.14)

The same argument applies to the second term in (3.12) indicating it also tends to

zero, in other words with probability 1,

lim
L→∞

1

L

L∑
i=1

d(xi, x̂i(τ
L, xi−1)) = E[d(X, X̂)] ≤ D + δ/2,

which showes that P (A) tends to zero as L→∞. The term e−(M2−LR̃) also vanishes

with sufficiently large L if M = b2L(Rn,ff (D)+δ)c. We can thus write

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
→ 0, L→∞, (3.15)

which together with the assumption supxL,x̂L d(xL, x̂L) < ∞ shows that the second

term in (3.11) tends to zero as L → ∞. Therefore we can claim that if the source

is ergodic in blocks of length n then there exists a codebook of size b2L(Rn,ff (D)+δ)c

which satisfies E
[
d(XL, X̂L)] ≤ D + δ.

However, an ergodic source need not be ergodic in blocks. As an example, consider

a binary source with alphabet {0, 1} for which the output consists of pairs of identical

digits. With probability 1/2, each digit with even index is chosen independently and

equipropably from the alphabet and each digit with odd index is a repetition of its

preceding even-numbered digit. Similarly, with probability 1/2 each digit with odd

index is chosen independently and equipropably from the alphabet and each digit with

even index is the same as the preceding odd-numbered digit. Obviously the second-

order super source (the source whose outputs are assumed to be pairs) is not ergodic

regardless whether the source is ergodic. Indeed, the second-order super source has

two modes; in one mode the super source is memoryless giving out 00 and 11 with

probability 1/2 and in the other mode all four possible pairs are equally likely and in
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this mode the last digit of one pair and the first digit of the next pair are the same.

Note that each of these two modes are ergodic.

To extend the above result for ergodic sources which are not necessarily ergodic

in blocks of length n, we need to follow Gallager’s notion of ergodic modes. We know

that all stationary processes that are not ergodic can be modeled as a mixture of

ergodic sources. If we consider the blocks of length n as a single symbol, then we

have a super source. As Gallager showed in[18, Lemma 9.8.2] , the set of sequences

from the super source can be decomposed into n′ ergodic modes, each of which has

equal probability 1/n′, where n′ divides n. In fact, if we consider an invariant set

S0, P (S0) > 0, with respect to the n-shift operator, T n, then we can decompose the

source S into n′ invariant subsets {Si = T i(S0)}n
′−1
i=0 , P (Si) = 1/n′ which are called

ergodic modes. Moreover, the modes are disjoint, except for an intersection of sets

of zero probability. This ensures that conditional on an ergodic mode, Si, all its

invariant subsets under one-shift operator, T , are of probability either 0 or 1. The

readers are refereed to [18, Section 9.8] for a detailed study of ergodic modes.

It will be more convenient, in what follows, to assume that there are n ergodic

modes where only n′ of them are different. We also need to define the ith-phase source,

0 ≤ i ≤ n−1, as the source that produces the sequences in Si according to the original

probability distribution on sequences of letters conditional on the occurrence of Si.

Now let I(X̂n → Xn|i) denote the directed information between a super letter

of the ith-phase source 0 ≤ i ≤ n − 1, and a letter of the super destination alpha-

bet using the conditional probability PX̂n|Xn(x̂n|xn) that achieves Rn,ff (D). We can

now conclude that 1
n
I(X̂n → Xn|i) is an upper bound to the n-th order feed-forward
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Figure 3.2: A codetree structure from the ith codebook, n = 3 and L = 6. Letters
indicated by f are fixed letters.

rate distortion function of the ith-phase source. Since we can apply the achievabil-

ity method given above for each ergodic mode, there exists a codebook TCi with

b2L( 1
n
I(X̂n→Xn|i)+δ)c many codetrees of length L such that the distortion constraint for

i-th phase is satisfied. We further know that the output of one mode is statistically

identical to that of the next mode shifted by one digit. Therefore, if we encode the

(i−1)th-phase source with TCi−1
, then we can encode ith-phase source with TCi . In the

following we mention the codebook construction, encoding and decoding processes.

For any L and any ergodic mode Si, 0 ≤ i ≤ n, we use a codebook TCi constructed

as explained before with Mi = b2L
(

1
n
I(X̂n→Xn|i)+δ

)
c many codetrees of length L ac-

cording to PX̂L||XL−1(x̂L||xL−1). Let L be large enough so that such a code can be

selected for each of the n phases and consider such a set of n codes. We use these

codetrees as the constituent elements of bigger codetrees. For every 0 ≤ i ≤ n−1 the

ith codebook is an ensemble of ’big’ codetrees which consists of n ’little’ constituent

codetrees starting from one in TCi and followed by one from TCi+1
to one from TCi+n−1

,

where all indices are modulo n. We place some fixed additional letters from X̂ at the

end of each little tree like the structure given by Gallager for codewords [18, Figure

9.8.1] which are to shift the sequence and encode it with a codetree from the sequen-

tial codebook. In the Figure 3.2, the letters indicated by f are the fixed letters. In

this setting, each codetree is therefore of length L′ = nL+ n.

28



For every i, the encoder assigns for each source sequence xL′ ∈ Si a codetree,

τL
′ , from the ith codebook such that d(xL

′
, x̂L

′
(τL

′
, xL

′−1)) is minimal. The decoder

simply picks the corresponding codetree (upon receiving the index) and then follows

the path determined by xL′ and returns x̂L′ .

Note that since the distortion constraint for ith-phase source is satisfied, the to-

tal distortion over all ergodic modes also satisfies the constraint. We also need to

check the distortions of fixed letters added between little codetrees. However those

distortions are upper-bounded by n sup d(x, x̂) and therefore is negligible in the total

normalized distortion for large L.

The total number of codetrees in the ith big code is thus
∏n−1

i=0 Mi where Mi is

the number of codetrees in the ith little code and since for every ergodic mode, the

codebook is of the same size, the number of overall codetrees is therefore:

M = n
n−1∏
i=0

Mi ≤ n
n−1∏
i=0

2L(
1
n
I(X̂n→Xn|i)+δ)

= 2L
(

1
n

∑n−1
i=0 I(X̂

n→Xn|i)+nδ+ logn
L

)
≤ 2L

(
I(X̂n→Xn)+nδ+ logn

L

)
= 2nL

(
1
n
I(X̂n→Xn)+δ+ logn

nL

)
≤ 2L

′
(

1
n
I(X̂n→Xn)+δ′

)
= 2L

′(Rn,ff (D)+δ′), (3.16)

where δ′ = δ + logn
nL

and the first inequality is due to the concavity of directed infor-

mation over the input probability P (xn), i.e.,

I(X̂n → Xn) ≥ 1

n

n−1∑
i=0

I(X̂n → Xn|i),

which completes the proof.

So far we proved that the Rn,ff (D) defined in (3.2) is achievable. Hence to com-

plete the proof of achievability of RI
ff (D), we need to show that limn→∞Rn,ff (D)
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exists and is also achievable. The following theorem shows this.

Theorem 3.1.3. The sequence Rn,ff (D) is sub-additive and thus

inf
n
Rn,ff (D) = lim

n→∞
Rn,ff (D).

Proof. To show that a sequence, an is sub-additive, we need to prove that for all m

and l, (m + l)am+l ≤ mam + lal. Let Pm(x̂m|xm) and Pl(x̂
l|xl) be two conditional

probabilities that achieve Rm,ff (D) and Rl,ff (D), respectively. Consider two source

sequences xm and xl generated independently according to PXm(xm) and PXl(xl) and

then append them to obtain the sequence xm+l. Hence by the construction,

H(X̂m+l|Xm+l) = H(X̂m|Xm) +H(X̂m+l
m+1|Xm+l

m+1). (3.17)

According to the formula I(X̂n → Xn) = H(X̂n||Xn−1)−H(X̂n|Xn) proved in (A.6),

we need to calculate H(X̂n+l||Xn+l−1). We can write

H(X̂m+l||Xm+l−1) =
m+l∑
i=1

H(X̂i|X̂ i−1, X i−1) = H(X̂m||Xm−1) +
m+l∑

i=m+1

H(X̂i|X̂ i−1, X i−1)

≤ H(X̂m||Xm−1) +
m+l∑

i=m+1

H(X̂i|X̂ i−1
m+1, X

i−1
m+1)

= H(X̂m||Xm−1) +H(X̂m+l
m+1||Xm+l−1

m+1 ). (3.18)

Combining (3.17) and (3.18), we can write

(m+ l)Rm+l,ff (D) ≤ I(X̂m+l → Xm+l) ≤ I(X̂m → Xm) + I(X̂m+l
m+1 → Xn+l

m+1)

= nRn,ff (D) + lRl,ff (D), (3.19)

where the equality holds because Rn,ff (D) = 1
n
I(X̂n → Xn) and due to stationarity

Rl,ff (D) = 1
l
I(X̂m+l

m+1 → Xn+l
m+1). It just remains to invoke [18, Lemma 4A.2] to

conclude that infnRn,ff (D) = limn→∞Rn,ff (D).

This theorem shows that the limit in the definition of RI
ff (D) exists and is equal
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to the infimum of sequence Rn,ff (D). We showed that Rn,ff (D) is achievable for any

stationary and ergodic sources so is its infimum. Therefore RI
ff (D) is achievable, i.e.,

Rff (D) ≥ RI
ff (D). The following shows the converse.

Proof. [Converse]

To prove the converse, we assume that there is a feed-forward code (n, 2nR) defined

in Chapter 2 satisfying the distortion constraint E[d(xn, x̂n)] ≤ D + ε for sufficiently

large n. Suppose the encoder function is f and the index transmitted is T = f(Xn).

Then we can write:

nR ≥ H(T ) ≥ I(Xn;T ) =
n∑
i=1

I(Xi;T |X i−1)

=
n∑
i=1

H(Xi|X i−1)−H(Xi|T,X i−1)
(a)
=

n∑
i=1

H(Xi|X i−1)−H(Xi|T,X i−1, X̂ i)

(b)

≥
n∑
i=1

H(Xi|X i−1)−H(Xi|X i−1, X̂ i)

(c)
= I(X̂n → Xn), (3.20)

where (a) holds because given T and X i−1 the decoder knows X i, (b) is due to the fact

that conditioning reduces the entropy and (c) is the definition of directed information.

Taking n to infinity we can conclude that

R ≥ lim
n→∞

1

n
I(X̂n → Xn) ≥ lim

n→∞
Rn,ff (D) = RI

ff (D),

which proves the converse.
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Chapter 4

Markov Sources

The supreme task of the physicist is to arrive at those universal elementary laws from

which the cosmos can be built up by pure deduction. There is no logical path to these laws;

only intuition, resting on sympathetic understanding of experience, can reach them.

–A. Einstein

As discussed in the preceding chapters, two formulae have been proposed for

calculating Rff (D). The latter discussed in Chapter 3, gives a better means to

calculate the feed-forward rate distortion function. To calculate Rff (D) using this

formula given in (3.3), we need to first compute the nth order feed-forward rate

distortion function, Rn,ff (D), take its limit as n tends to infinity and then apply

Theorem 3.1.1. Although this is much easier than the original formula given in (3.1),

the computational complexity required for solving the convex optimization in (3.3)

grows exponentially with n. However it is shown in this chapter that (3.3) is helpful

for computing Rff (D) for Markov sources. We apply this approach to obtain the

feed-forward rate distortion function for the first order asymmetric Markov source

(FOAMS). Throughout this chapter we assume that D ≤ 1/2.
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The attempt to calculate the rate distortion function for Markov source dates

back to 1970 when Gray could explicitly compute the rate distortion function for a

binary symmetric Markov source with transition probability q, BSMS(q), only in a

small distortion region [19]. His result is given by

R(D) = Hb(q)−Hb(D), 0 ≤ D ≤ Dc, (4.1)

where Hb(.) is the binary entropy and for q ≤ 1/2

Dc =
1

2

(
1−

√
1−

( q

1− q
)2)

.

Beyond Dc currently only lower and upper bounds on R(D) are known. In 1977,

Berger found explicit lower and upper bounds for R(D), R`(D) and Ru(D) respec-

tively, which do not depend on n and hence can easily be computed [20]. The lower

bound is given by

R`(D) =


Hb(q)−Hb(D), 0 ≤ D ≤ D2,

maxq/2≤α≤1
[
D logα− log(1 + α)− (1− q) log pθ − q log qθ

]
, D2 ≤ D ≤ 1

2
,

where

D2 =
1

2

(
1−

√
1− 2q

)
,

r =
q

1− q
,

and

pθ = 1− qθ = (1 + rθ)−1

and θ and α are related via the following expression

rθ

p(1 + rθ)2(1 + r1−θ)
=

α

(1 + α)2
.

We can observe that for the small distortion region, R`(D) coincides with Gray’s

result; however, as distortion increases it deviates and can be shown to be strictly
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better than the one proposed by Gray. The upper bound, Ru(D), is given by

Ru(Dα) = Dα logα− log(1 + α)− (1− q log pα)− q log qα, (4.2)

where

qα = 1− pα = 2
√
α(1 +

√
α)−2,

rα =
qα
pα

=
2
√
α

1 + α
,

and

Dα =
( α

1− α2

)
[(prα + qr−1α )2 − α].

The advantage of these two bounds over the one given by Gray is that they can be

easily computed with little computational effort as they do not depend on n.

Feed-forward was introduced by Weissman et al.[6]. They actually called the

problem of feed-forward competitive prediction in which they defined a set of func-

tions, Fi, that predicts Xi given X i−1. They also defined the innovation process,

Wi = Xi − Fi(X i−1), and showed that if Wi is i.i.d. then the feed-forward distortion

rate function is equal to the standard distortion rate function of Wi without feed-

forward. They also showed that the same result can be obtained if the innovation

process meets the Shannon lower bound with equality. As an immediate consequence

of the former result, we can conclude that if Xi is a memoryless source and thus

an i.i.d. process, then Wi = Xi and therefore the presence of the feed-forward link

does not improve the rate-distortion function. Since for Hamming loss the innovation

process for BSMS(q), q ≤ 1/2 satisfies the Shannon lower bound with equality, the

result of [6] can be used to show that for BSMS(q), Rff (D) = Hb(q)−Hb(D) which

is equal to the lower bound obtained by Berger (4.2) and Gray (4.1) and thus the

feed-forward helps us achieve the lower bound of the rate distortion function for the
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binary symmetric Markov source. In this chapter we calculate the Rff (D) for an

asymmetric Markov sources, FOAMS, that can serve as the lower bound for R(D).

In the sequel, we first present the converse and then present an achievability proof

whose spirit is borrowed from [21].

4.1 Binary Asymmetric Markov Source

Let B(p) denote a Bernoulli distribution with transition probability p, that is, if

W ∼ B(p) then W = 1 with probability p and W = 0 with probability 1 − p. Any

FOAMS, X, can be represented by two Bernoulli sources as follows:

Xi = Xi−1W
1
i + (1−Xi−1)W

2
i , (4.3)

where W 1 and W 2 are two independent processes and W 1
i ∼ B(1−q) and W 2

i ∼ B(p)

and Xi−1, W 1
i and W 2

i are independent for every i. To show that the process Xi

with the above representation is indeed a Markov process, we need to show that

P (Xi = xi|X i−1 = xi−1) = Pr(Xi = xi|Xi−1 = xi−1) for xi, xi−1 ∈ {0, 1} and

xi−1 ∈ {0, 1}i−1.

P(Xi = 0|X i−1 = xi−1) = P
(
xi−1W

1
i + (1− xi−1)W 2

i = 0|X i−1 = xi−1
)
,

= 1{xi−1=0}P(W 2
i = 0) + 1{xi−1=1}P(W 1

i = 0),

and similarly,

P(Xi = 1|X i−1 = xi−1) = 1{xi−1=0}P(W 2
i = 1) + 1{xi−1=1}P(W 1

i = 1),

which show that P(Xi = xi|X i−1 = xi−1) is a function of only xi−1.

Having represented FOAMS like this, its easy to show that

H(Xi|Xi−1) = π1H(p) + π2H(q), 2 ≤ i ≤ n, (4.4)
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where π = (π1, π2) is the invariant distribution of Markov source. For the FOAM

represented by (4.3), we can write

π1 =
q

p+ q
, π2 =

p

p+ q
.

4.2 Converse

The general formula for the feed-forward rate distortion function is given in (3.1) in

terms of directed information. The formula for the stationary and ergodic sources is

Rff (D) = inf
P (X̂|X),E[d(X,X̂)≤D]

lim
n→∞

1

n
I(X̂n → Xn). (4.5)

Note that if we use the single letter distortion function, i.e., d(xn, x̂n) = 1
n

∑n
i=1 d(xi, x̂i),

then for jointly stationary process {Xn, X̂n}, E[d(Xn, X̂n) = E[d(X, X̂)]. The for-

mula (4.5) is hard to compute even for the easiest sources; however as shown in

Chapter 3, (3.3) can instead be used. That is, we can simply exchange the inf and

lim to compute the Rff (D) which makes the computation much easier. For FOAMS

we can therefore write

1

n
I(X̂n → Xn) =

1

n

n∑
i=1

I(X̂ i;Xi|X i−1),

=
1

n

n∑
i=1

H(Xi|X i−1)−H(Xi|X i−1, X̂ i),

(a)
=

1

n

[
H(X1) + (n− 1)H(Xn|Xn−1)−

n∑
i=1

H(Xi|X i−1, X̂ i)
]
,

(b)

≥ 1

n

[
H(X1) + (n− 1)H(Xn|Xn−1)−

n∑
i=1

H(Xi|X̂i)
]
,

(c)

≥ 1

n
H(π) +

n− 1

n
[π1H(p) + π2H(q)]−H(D).
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Figure 4.1: The block diagram of encoder

where (a) holds due to Markovity and stationarity of source, (b) follows from the

fact that the conditioning reduces the entropy and (c) follows from the fact that

P (Xi 6= X̂i) ≤ D and H(D) increases with D for D ≤ 1
2
. We can hence conclude that

Rff (D) ≥ π1H(p) + π2H(q)−H(D). (4.6)

4.3 Achievability

This section describes the encoding and decoding scheme that achieves the lower

bound given in (4.6). The encoder in this setting is a mapping f : {0, 1}n → {1, 2, . . . , 2nR}

and the decoder is a series of functions gi : {1, 2, . . . , 2nR} × {0, 1}i−1 → {0, 1} and

the distortion function is single letter. We first partition the source sequence into

two sub-sequences, the xi’s following a 0 and the xi’s following a 1 and then encode

separately these two sub-sequences. We describe in detail the encoding process for

one sub-sequence as the other one is similar. Figure 4.1 shows the schematic structure

for the proposed encoder.

Given the source sequence {Xn}∞n=1, let Ni be the time index of ith zero in the

sequence and Yi := XNi+1. We can show that {Yn} is an i.i.d. process generated by
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B(p). To achieve this end, we write

P (Y i = yi) =
i∏

j=1

P (Yj = yj|Y j−1 = yj−1)

=
i∏

j=1

∞∑
n=1

P (Yj = yj|Y j−1 = yj−1, Nj = n)P (Nj = n|Y j−1 = yj−1)

(a)
=

i∏
j=1

∞∑
n=1

P (Xn+1 = yj|Xn = 0)P (Nj = n|Y j−1 = yj−1)

(b)
=

i∏
j=1

pyj(1− p)1−yj ,

where (a) is due to the fact that 1{Y j−1=yj−1,Nj=n} is a measurable function of W 1
1 ,

W 1
2 , . . . , W 1

j−1, W 2
1 ,W

2
2 , . . . ,W 2

j−1 and hence due to the Markovity of source P (Yj =

yj|Y j−1 = yj−1, Nj = n,Xn = 0) = P (Xn+1 = yj|Xn = 0) and (b) holds because from

(4.3), P (Xn+1 = yj|Xn = 0) = pyj(1− p)1−yj .

The key idea of the encoding scheme is to apply the rate distortion code of a

Bernoulli B(p) source for the sequence Y i. By the strong law of large numbers for

Markov chains, we can conclude that the number of zeros in a sufficiently large source

sequence Xn is approximately nπ1, in other words, as n→∞ with probability one1

1

n

n∑
i=1

1{Xi=0} → π1.

Let kpn = dn(π1 − δ)e and En be a binary random variable defined as follows

En =


0 if Nkpn ≤ n,

1 if Nkpn > n.

(4.7)

When En = 0 we encode (Y1, Y2, . . . , Ykpn) using an optimal rate distortion code for the

source B(p) at rate R and if En = 1 we do not encode and simply send a particular

vector. Note that Y kpn is no longer an i.i.d. sequence when conditioned on the event
1For further details on this result and similar ones, refer to [22, Section 5.5].
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En = 0. Let (Ŷ1, Ŷ2, . . . , Ŷkpn) be the reproduction sequence and assume that the

distortion between the two sequences is normalized, that is,

d(yk
p
n , ŷk

p
n) =

1

kpn

kpn∑
i=1

d(yi, ŷi),

and the per-letter distortion is assumed to be Hamming. The total distortion in

encoding Y kpn using an optimal rate distortion code is

Dn := E
[
d(Y kpn , Ŷ kpn)

]
= E

[
d(Y kpn , Ŷ kpn)|En = 0

]
P (En = 0) + E

[
d(Y kpn , Ŷ kpn)|En = 1

]
P (En = 1). (4.8)

Since the sequence Y1, Y2, . . . is an i.i.d. sequence with distribution B(p), then obvi-

ously

lim
n→∞

Dn = Dp(R), (4.9)

where Dp(R) is the distortion rate function of a Bernoulli source B(p) operating at

rate R. Note that since all terms in (4.8) are nonnegative, we have

Dp(R) = lim
n→∞

Dn ≥ lim sup
n→∞

E
[
d(Y kpn , Ŷ kpn)|En = 0

]
P (En = 0). (4.10)

On the other hand, since d(x, y) ≤ 1 for x, y ∈ {0, 1}, the distortion of our scheme

is deterministically upper bounded by 1 when En = 1. Thus, if Dp
n denotes the

expected distortion of our scheme, we have

Dp
n ≤ E

[
d(Y kpn , Ŷ kpn)|En = 0

]
P (En = 0) + P (En = 1). (4.11)

Hence together with the fact that P (En = 1)→ 0 as n→∞, we obtain

lim sup
n→∞

Dp
n ≤ lim sup

n→∞
E
[
d(Y kpn , Ŷ kpn)|En = 0

]
P (En = 0) ≤ Dp(R). (4.12)

The encoding scheme for the other sub-sequence is similar to the above. Let Mi

be the time index of ith one in the source sequence xn and Zi := XMi+1. We can

again show that sequence {Zi} is i.i.d. with distribution B(q). Letting kqn be equal
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Figure 4.2: The block diagram of decoder

to dn(π2 − δ)e, we can imitate the same coding scheme as before for sequence Zkqn .

Similarly, let Dq
n define the distortion of the encoding scheme in this case.

In the receiver side, we receive two indices regarding two encoders for Y kpn and Zkqn

and hence are able to reconstruct Ŷ kpn and Ẑkqn . We then need the causal information,

i.e., X i−1 at time i to reconstruct the source sequence. In other words, at time i,

causal information X i−1 helps the decoder pick the appropriate letter between Ŷi and

Ẑi depending on whether Xi−1 = 0 or Xi−1 = 1. The decoder diagram is schemed in

Figure 4.2

The total distortion for encoding the source sequence Xn using our parallel en-

coding scheme is the sum of the distortion of each sub-sequence and therefore can be

obtained in terms of kpn, Dp
n, k

q
n and Dq

n. Note that thanks to the way we define kpn

and kqn, there are at most 2nδ many source letters which are not encoded and hence

contributes to the total normalized distortion at most 2δ. For the total normalized

distortion we can write

Dtot ≤
1

n

(
kpnD

p
n + kqnD

q
n + 2nδ

)
, (4.13)
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where 2nδ is the contribution of uncoded bits. Letting n→∞, we can write:

Dtot ≤ (π1 − δ)DP (R) + (π2 − δ)Dq(R) + 2δ

≤ π1DP (R) + π2Dq(R) + δ(1−Dp(R)︸ ︷︷ ︸
>0

) + δ(1−Dq(R)︸ ︷︷ ︸
>0

)

= π1DP (R) + π2Dq(R) + ε. (4.14)

The entire encoding function can be described as the following mapping

{0, 1}k
p
n+k

q
n → {1, 2, . . . , 2k

p
nR, 2k

p
nR + 1} × {1, 2, . . . , 2k

q
nR, 2k

q
nR + 1},

which emphasizes that for the sequence Y kpn we need an index chosen from {1, 2, . . . , 2k
p
nR}

and also one extra index for the case of En = 1 and similarly for Zkqn . Clearly the rate

of this encoding is

Rtot =
1

n
log
[
(2k

p
nR + 1)(2k

q
nR + 1)

]
≤ 1

n
(kpnR + kqnR + 2)

≤ R + ε, (4.15)

where we use the obvious inequality log(1 + x) ≤ 1 + log x for x ≥ 1.
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Chapter 5

Summary and Conclusions

In this project, we considered the problem of lossy source coding in the presence of

a feed-forward link which conveys the source symbols to the receiver with a non-zero

delay. The fundamental limit of the lossy source coding, namely the rate distortion

function, is characterized for general sources and any delay in [8] in terms of a multie-

letter expression. Naiss et al.[17] uses the Gallager’s idea of nth order rate distortion

function to prove another formula for feed-forward rate distortion function for station-

ary and ergodic soruces. They showed the existence of a sequence of rate-distortion

function which converge from above to the formula given by [8].

We used the latter formula to calculate the rate distortion function of first order

asymmetric Markov source and proposed an optimal coding scheme to achieve it.

We are currently working on obtaining upper and lower bounds for the rate dis-

tortion function of Markov sources when the feed-forward link has delay 2.
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Appendix A

Directed Information

Since the directed information (DI) is used in expression for the feed-forward rate

distortion function, we provide some basic formulae for DI in this appendix. The

directed information from random sequence Xn to Y n was introduced by Massey [5]

as follows:

I(Xn → Y n) =
n∑
i=1

I(X i;Yi|Y i−1). (A.1)

Getting back to the mutual information between two sequences;

I(Xn;Y n) =
n∑
i=1

I(Xn;Yi|Y i−1),

we can conclude that DI is the causal version of mutual information. Based on this

formula, we can easily find the following more illuminating one:

I(Xn → Y n) = I(Xn;Y n)−
n∑
i=2

I(Y i−1;Xi|X i−1), (A.2)

which is justified in (1.3).

This equation shows how the feed-forward can reduce the rate distortion function.
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In the source coding setting, we can rewrite (A.2) as

I(X̂n → Xn) = I(Xn; X̂n)−
n∑
i=2

I(X i−1; X̂i|X̂ i−1). (A.3)

In fact the second term in (A.3) is the rate which comes for free when the feed-forward

link is available. This makes clear as to why DI characterizes the performance limit.

Another important formula for DI is due to the following simple algebraic manip-

ulations:

I(Xn → Y n) =
n∑
i=1

I(X i;Yi|Y i−1),

=
n∑
i=1

i∑
j=1

I(Xj;Yi|Xj−1, Y i−1),

=
n∑
j=1

n∑
i=j

I(Xj;Yi|Xj−1, Y i−1),

=
n∑
j=1

I(Xj;Y
n
j |Xj−1, Y j−1),

leading us to the following

I(Xn → Y n) =
n∑
i=1

I(Xi;Y
n
i |X i−1, Y i−1), (A.4)

each term of which corresponds to the achievable rate at time i given side information

(X i−1, Y i−1). There are two other formulae for directed information which have to

do with some other directed quantities. Let the entropy of Xn causally conditioned

on Y n be denoted by H(Xn||Y n), that is

H(Xn||Y n) =
n∑
i=1

H(Xi|X i−1Y i),

and

H(Xn||Y n−1) =
n∑
i=1

H(Xi|X i−1Y i−1).

Having defined these two quantities, we are able to derive two other formulae for DI
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as follows:

I(Xn → Y n) =
n∑
i=1

I(X i;Yi|Y i−1),

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|Y i−1, X i),

= H(Y n)−H(Y n||Xn),

which shows

I(Xn → Y n) = H(Y n)−H(Y n||Xn). (A.5)

Similarly we can obtain another formula using (A.4) as follows

I(Xn → Y n) =
n∑
i=1

I(Xi;Y
n
i |Y i−1, X i−1),

=
n∑
i=1

H(Xi|Y i−1, X i−1)−H(Xi|Y n, X i),

= H(Xn||Y n−1)−H(Xn|Y n).

and therefore

I(Xn → Y n) = H(Xn||Y n−1)−H(Xn|Y n). (A.6)
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Appendix B

Proof of Lemma 3.1.2

In this appendix, we prove Lemma 3.1.2. We state the lemma again in the following

for the sake of completeness. Recall that the set A is defined in (3.10) as

A = {τL ∈ T L, xL ∈ X L : either In(τL → xL) > LR̃ or d(xL, x̂L(τL, xL−1)) > LD̃},

(B.1)

Where In(τL → xL) is defined for every tree τL in (3.9). Lemma 3.1.2 gives an upper

bound for P (A); namely

Lemma B.0.1. For a given source, distortion measure and test channel, we have the

following inequality

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
≤ P (A) + e−(M2−LR̃),

where set A is defined in (3.10), P (A) is the probability of the set A on the test

channel ensemble, M is the number of codetrees and L is the size of codewords.

Proof. The proof here follows closely the proof of [18, Lemma 9.3.1]. Recall that

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
is defined over the ensemble of codes. We can
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expand this in the following way

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
=
∑

xL∈XL
P (xL)P

(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃|XL = xL

)
.

(B.2)

We can also partition set A corresponding to each xL ∈ X L, that is, for every xL, Ap

is the set of all codetrees τL ∈ T L for which (τL, xL) ∈ A and hence

Ap = {τL ∈ T L : either In(τL → xL) > LR̃ or d(xL, x̂L(τL, xL−1)) > LD̃}. (B.3)

Notice that the distortion between given xL and its corresponding path on the

best tree, τL∗, exceeds D if and only if it exceeds D for every trees, in other words,

we have d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃ for a given xL if d

(
XL, X̂L(τL, xL−1)

)
> LD̃ for

every τL ∈ T L. Thus, loosely speaking, d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃ only if τL ∈ Ap

for a given xL. Since τL is independently chosen,

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃|XL = xL

)
≤
(
1− P (Acp)

)M
, (B.4)

where Acp is the complement of Ap. Since we are dealing with codetrees (as opposed

to codewords), we have to consider all codetrees whose paths determined by the given

xl are similar. This is because the probability that τL ∈ Acp depends only on the x̂L

associated with xL. Hence we need to partition T L into disjoint sub-sets:

BxL,x̂L =
{
τL ∈ T L : τL(xL−1) = x̂L

}
,

where τL(xL−1) denotes the path on τL determined by xL. Note that since the trees

are constructed according to distribution PX̂L||XL−1(x̂L||xL−1), then we can conclude

that P (BxL,x̂L) = PX̂L||XL−1(x̂L||xL−1).

For every τL ∈ BxL,x̂L ⊂ Acp, we have

In(τL → xL) ≤ LR̃,
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and therefore

PX̂L||XL−1(x̂
L||xL−1) ≥ PX̂L|XL(x̂L|xL)2−LR̃. (B.5)

Getting back to (B.4) and letting

PD̃(xL) := P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃|XL = xL

)
,

then we can write

PD̃(xL) ≤
(
1− P (Acp)

)M
=
(

1−
∑

B
xL,x̂L

⊂Acp

P (BxL,x̂L)
)M

=
(

1−
∑

x̂L:B
xL,x̂L

⊂Acp

PX̂L||XL−1(x̂
L||xL−1)

)M
≤
(

1− 2−LR̃
∑

x̂L:B
xL,x̂L

⊂Acp

PX̂L|XL(x̂L|xL)
)M

, (B.6)

where the last inequality follows (B.5). Applying the inequality (1− ab)k ≤ 1− a +

exp{−bk} when a =
∑

x̂L:B
xL,x̂L

⊂Acp
PX̂L|XL(x̂L|xL) and 2−LR̃, we have

PD̃(xL) ≤ 1−
∑

x̂L:B
xL,x̂L

⊂Acp

PX̂L|XL(x̂L|xL) + exp{−M2−LR̃}, (B.7)

and therefore if we let PD̃ denote P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
, we can write

PD̃ ≤
∑

xL∈XL
PXL(xL)

[
1−

∑
x̂L:B

xL,x̂L
⊂Acp

PX̂L|XL(x̂L|xL) + exp{−M2−LR̃}
]

= 1−
∑

xL∈XL

∑
x̂L:B

xL,x̂L
⊂Acp

PXL,X̂L(xL, x̂L) + exp{−M2−LR̃}. (B.8)

Note that we can rewrite the double sum in (B.8) as follows
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∑
xL∈XL

∑
x̂L:B

xL,x̂L
⊂Acp

PXL,X̂L(xL, x̂L) =
∑

xL∈XL

∑
x̂L:B

xL,x̂L
⊂Acp

∑
τL∈T L

P (xL, x̂L, τL)

≥
∑

xL∈XL

∑
x̂L:B

xL,x̂L
⊂Acp

∑
τL∈B

xL,x̂L

P (xL, x̂L, τL). (B.9)

Notice that if τL ∈ BxL,x̂L , then x̂L is deterministically determined by xL, hence

we can continue from (B.9) as follows∑
xL∈XL

∑
x̂L:B

xL,x̂L
⊂Acp

PXL,X̂L(xL, x̂L) =
∑

xL∈XL

∑
B
xL,x̂L

⊂Acp

∑
τL∈B

xL,x̂L

P (xL, τL)

=
∑

xL∈XL

∑
τL∈Acp

P (xL, τL) = P (Ac). (B.10)

Now if we plug (B.10) into (B.8) we get

P
(
d
(
XL, X̂L(τL∗, xL−1)

)
> LD̃

)
≤ 1− P (Ac) + exp{−M2−LR̃

= P (A) + exp{−M2−LR̃}, (B.11)

which completes the proof.
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