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Abstract

Under the contemporary spectrum usage regulations, radio frequency bands are allo-

cated statically to licensed users in a large geographical area and over a long period

of time. Recent investigations revealed that such static spectrum allocation has led

to very poor spectrum utilization. Cognitive radio has emerged as a new commu-

nication paradigm to improve spectrum utilization. It is defined as an intelligent

communication system that allows coexistence of the unlicensed users with the li-

censed ones. Additionally, the users in this system adopt efficient communication

protocols to enhance spectral efficiency.

We employ cooperative mechanisms to accomplish two tasks:

• Cooperative spectrum sensing: Licensed users do not in this task. Instead,

unlicensed users monitor the activity of the licensed users and transmit only

during their absence.

• Cooperative spectrum management: Licensed and unlicensed users can benefit

from cooperation with each other, e.g., can assist each other in transmission

via relaying. Accordingly, they can save power or bandwidth and therefore, the

whole network can accommodate more users.

In the first part of this thesis, we focus on cooperative spectrum sensing. We
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first study the asymptotic performance of optimal distributed detectors and identify

the conditions under which the highest or lowest asymptotic performance is achieved.

For each condition, we study several detectors and investigate their performance-

sensitivity-bandwidth tradeoffs. We then consider distributed detection of an OFDM

signal. We propose several frequency-domain detectors that, despite their lower com-

putational complexity, outperform state-of-the-art time-domain detectors. Finally,

we consider spectrum sensing in fading environments and propose several novel de-

tectors that significantly outperform traditional detectors. For all these detectors,

we theoretically analyze their performance and prove that the proposed suboptimal

detectors are asymptotically optimal.

We then focus on cooperative spectrum management and study the problem of

cooperative relay selection and power allocation. We determine the conditions, in

terms of channel gains and network geometry, under which such cooperation leads to

an increase in rate, or a reduction in power and bandwidth usage. Lastly, we propose

cooperative protocols that use these results to enhance spectrum efficiency.
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Chapter 1

Introduction

The current wireless systems are regulated by fixed spectrum assignment policy where

a single frequency band is assigned to a licensed user on long term basis and for a large

geographical region. Figure 1.1 shows the spectrum distribution over a large portion

of the spectrum for New York and Chicago. It can be observed that the spectrum is

highly utilized over a certain portion of the spectrum while the rest is either under-

utilized or un-utilized. A recent investigation by Shared Spectrum Company (SSC)

and FCC has shown that on average less than 20 % of the allocated spectrum is

utilized [69, 42]. On the other hand, in recent years, there has been a drastic increase

in demand for accessing the scarce spectrum resources.

Limitation of the available spectrum resources and inefficiency of the past policy

necessitate a new paradigm in wireless communication [3]. Cognitive radio is put forth

as a new communication paradigm to improve the utilization of the radio spectrum.

It is viewed as an intelligent wireless communication system that is aware of its

environment and adapts to its variations for a more efficient use of the spectrum. As

such, cognitive radio contemplates two different approaches [54]:
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1. The unlicensed users can coexist with the licensed users in an interference free

fashion. In other words, the licensed frequency bands that are not being fully

utilized can be used by the unlicensed users [56].

2. The licensed and unlicensed users can cooperate with each other to manage their

spectrum effectively in order to optimize a certain objective, e.g., to increase

their rate or save power [60].

Employing the first strategy, the inefficient usage of the existing resources by the

licensed users can be improved by opportunistic access to the spectrum by the unli-

censed users [81]. More specifically, the unlicensed users first determine the frequency

bands that are not being used. We refer to this stage as spectrum sensing. Having

determined the availability of the spectrum opportunities, the unlicensed users may

utilize these bands for data transmission. Since the spectrum sensing is prone to

error, such opportunistic access may interfere with the transmission of the licensed

users. This interference must be capped below some acceptable level.

Adopting the second strategy, the involved users (licensed and/or unlicensed users)

monitor the radio environment in order to adjust their transmission or reception pa-

rameters. In addition, they can assist each other in transmission through relaying

[24, 100]. Such cooperation can potentially result in more efficient spectrum utiliza-

tion.

Cognitive radio, however, poses several research challenges. For instance, it calls

for new distributed spectrum sensing techniques such that the information collected

from different users are fused efficiently. In addition, it motivates the research on

cooperative communications. In the following, we discuss these research challenges

in more detail.
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1.1 Spectrum Sensing

In order to improve spectrum utilization, cognitive radio allows unlicensed users to

coexist with the licensed users. To this end, licensed users take a passive role while

the unlicensed users have to comply with the interference regulation, which specifies

the maximum allowed perceived interference [89, 44]. In this setting, the unlicensed

users sense/detect the transmission of the licensed users and transmit only when the

licensed users are not transmitting.

In order to cope with the environmental factors such as fading, cooperative spec-

trum sensing has been proposed [92, 91, 77, ?]. In this way, the unlicensed users

act as sensors and collect observations. Afterwards, they employ techniques such

as distributed detection to decide on the presence or absence of the licensed users

[97, 30]. Note that their inherent spatial distribution provides diversity and improves

the detection performance.

Focusing on cooperative spectrum sensing, we aim to address these questions:

• Optimal and Suboptimal Data Fusion:

– Optimal: How can we optimally fuse the collected observations from mul-

tiple sensors?

– Suboptimal: How can we obtain practical suboptimal detectors when some

parameters are unknown?

• Performance Analysis: What is the performance of these detectors?

• Sensitivity-Performance Trade-off : What is the impact of synchronization

among the sensors and correlation of the observations on the performance and

sensitivity of these detectors?



CHAPTER 1. INTRODUCTION 5

• Performance Improvement:

– How can we exploit temporal-spectral features of the transmitted signal in

these detectors for ?

– How can we exploit fading and shadowing parameters in these detectors?

1.2 Spectrum Management

Cognitive radio is considered as a reconfigurable radio, which adapts its transmit and

receive parameters based on the environment. The process of adaptation, primitively,

starts with observation or monitoring. After acquiring the relevant information such

as channel gains, bandwidth requirements, and rate requirements, the licensed and

unlicensed users can jointly optimize their transmit/receive parameters or may decide

to cooperate with each other for data transmission in order to optimize a certain

objective [5, 7]. In this context, we usually encounter an optimization problem in a

multi-user system. For instance, the problem of maximizing the achievable rate of

the users with individual power constraints while guaranteeing a fair spectrum access

for them is of great interest [101, 32, 74].

Cooperation among users gives the whole network an additional degree of free-

dom, which can provide an increase in rate or a reduction in energy or bandwidth

usage. Therefore, the whole spectrum will be utilized more efficiently. Note that such

cooperation is only an option since depending on the radio environment, cooperation

may or may not be beneficial [6, 4]. We aim to study the problem of cooperation

via relaying and joint power allocation in cognitive radio and determine the involved

gains and losses in terms of rate increase and power and bandwidth usage reduction.
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We also aim to identify the conditions, in terms of channel gains, network geometry,

and other involved parameters, for a gainful cooperation.

1.3 Contributions

The contributions of the thesis presented in Chapters 2 to 5 are summarized as follows.

Considering the detection of a random source using multiple sensors, we prove

that, as the number of samples L increases, the optimal Neyman-Pearson Detec-

tor (NPD) achieves its highest (or lowest) performance when the collected observa-

tions are correlated (or uncorrelated). We then obtain novel asymptotic expressions

for the performance of several optimal and suboptimal detectors for correlated and

uncorrelated observations and study the sensitivity-performance trade-off. We also

propose several frequency-domain distributed detectors for an Orthogonal Frequency-

Division Multiplexing (OFDM) random source that, despite their lower computational

complexity, outperform state-of-the-art time-domain detectors. We also derive exact

closed form expressions for their performance. Additionally, we propose novel optimal

and suboptimal detectors for cooperative spectrum sensing in mixture-Nakagami fad-

ing channels that significantly outperform traditional detectors. Lastly, we propose

several spectrum management protocols that greatly enhance spectrum efficiency.

More specifically, in Chapter 2, we consider detection of a random source using

multiple sensors. Assuming partially correlated observations, we derive the optimal

NPD. We prove that, as the number of samples L increases, the Probability of Mis-

detection (Pmd) of this detector for a fixed Probability of False Alarm (Pfa), achieves

the fastest exponential decay when the sensors observe an identical source signal in

independent additive white Gaussian noise, namely, a coherent system. Whereas it
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achieves the slowest exponential decay when the sensors observe independent pieces of

the source signal, namely, in a noncoherent system. We then study/propose different

optimal and suboptimal detectors in these systems. We also obtain novel asymptotic

expressions for the performance of these detectors. We compare these detectors with

three known detectors derived for the coherent system. We show that the coherent

detectors require 2L times more bandwidth than the noncoherent ones. Additionally,

in contrast to the coherent detector, the noncoherent detectors are robust to the signal

coherence and sampling time/frequency errors. We also prove that all these detectors

are either optimal or asymptotically optimal, i.e., their performance converges to that

of the uniformly most powerful one as L increases. The results of this chapter are

presented in [14]. Note that we have extended [14] in [17], where we studied spectrum

sensing when a rate constraint is imposed on the communication link between each

sensor/user and the Fusion Center (FC). However, the results in [17] are not presented

in this thesis.

In Chapter 3, we consider distributed detection of an OFDM random source us-

ing multiple sensors and propose different frequency-domain optimal and suboptimal

detectors. We also derive the exact closed form expressions for their performance.

In addition, we prove that the suboptimal detectors are asymptotically optimal. We

show that the proposed detectors have insignificant communication overhead and,

despite their lower computational complexity, their performance surpasses that of the

state-of-the-art time-domain detectors in practical cases. The results of this chapter

are presented in [16].
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In Chapter 4, we propose novel optimal and suboptimal detectors for coopera-

tive spectrum sensing in mixture-Nakagami fading channels. They significantly out-

perform energy and cyclostationary detectors in practical scenarios. We study the

performance of these detectors in special cases and show that in Reyleigh fading chan-

nels they simplify to a linear weighted-correlator or a weighted-energy detector. The

results of this chapter are presented in [15].

In Chapter 5, we investigate spectrum management in a network in which users

are willing to cooperate with each other; decode and forward the messages of the

other along with their own messages to a destination. We study the problem of joint

relay selection and power allocation and show that a considerable gain (i.e., increasing

rate, saving energy, or reducing the time-bandwidth) and determine the conditions

under which such cooperation offers gain in terms of 1) increasing the achievable rate,

2) saving the transmit energy, and 3) reducing the time-bandwidth requirement. We

demonstrate that a rate or energy improvement by a factor of at most
(

1 + η

√
k
k+1

)η

can be obtained, where η is the environment path loss exponent and k is the ratio

of the rates of the involved users. In addition, we show that the cooperation is only

beneficial for the middle range rate ratio. The results of this chapter are presented

in [13, 12, 11].

1.4 Practical Impact

The results of Chapter 2 on the sensitivity-performance trade-off provides invaluable

insights to the design of the distributed detectors. In addition, this chapter provides

useful techniques for analyzing the asymptotic performance of these detectors, which

is of great interest when the exact theoretical results are intractable.
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The frequency-domain modeling of the OFDM signal in the presence of synchro-

nization errors in Chapter 3 enables us to fully exploit the signal features. Subse-

quently, the proposed detectors outperform state-of-the-art time-domain detectors. In

addition, the lower computational complexity of the proposed detectors make them

attractive in practise. Similarly, effective incorporation of the channel statistic in

spectrum sensing in Chapter 4 enables us to propose practical detectors with lower

complexity and superior performance compared to the traditional detectors.

Lastly, Chapter 5 provides several practical cooperative protocols that can greatly

enhance the spectrum utilization.



Chapter 2

Asymptotic Performance Analysis

of Spectrum Sensing

We consider detection of a random source using multiple sensors. Assuming partially

correlated observations, we derive the optimal NPD and prove that, for a fixed Pfa

and as the number of samples L increases, its Pmd achieves the fastest exponential

decay, when the sensors observe an identical source signal in independent Additive

White Gaussian Noise (AWGN), namely the coherent system. However, it achieves

the slowest exponential decay when the sensors observe independent pieces of the

source signal in AWGN, namely the noncoherent system. We then study different

detectors in these systems. Assuming unknown signal to noise ratios or noise vari-

ance, we propose three novel detectors for the noncoherent system. We also use the

Edgeworth expansion to obtain novel asymptotic expressions for the Pfa and Pmd of

these detectors and two other known detectors. We then compare these detectors

with three known detectors derived for the coherent system in terms of bandwidth

requirement and sensitivity to signal coherence and sampling time/frequency errors.

10
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We also prove that these detectors are either optimal or asymptotically optimal, i.e.,

their performance converges to that of the uniformly most powerful one as L increases.

2.1 Introduction

In distributed source detection, a number of sensors locally process their observed data

and transmit a summary of these observations to a FC. The FC then uses the reported

summaries to make a global decision. This is in contrast to centralized detection where

sensors transmit all the (raw) observations to the FC [55]. Distributed detection is

of great practical interest in cognitive radio whereas its centralized counterpart is

impractical due to the bandwidth scarcity in cognitive radio.

We refer to a system as noncoherent if 1) the bandwidth is significantly larger

than the carrier frequency mismatch of the sensors, 2) the sensors have almost iden-

tical sampling frequency and 3) the sampling times of the sensors are such that the

sensors observe independent pieces of the same source signal in independent AWGN

and the observations of different sensors can be assumed uncorrelated. Assuming a

noncoherent system, investigators proposed different techniques for distributed source

detection. One approach is that the sensors report only a real-valued function of the

local observations (as a summary of the observations) to the FC. For instance it is

proposed in [94] to report the norm of the observed signals (or energy) to the FC.

Employing suboptimal techniques in [94], the FC combines the reported energies to

make a global decision. Reporting the likelihood ratio of the observations is also

proposed, e.g., a censoring approach is presented in [82] in which sensors may choose

to report the likelihood ratio of the local observations or keep silent. Another ap-

proach is to allow each sensor to report a single bit per observation (corresponding
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to a local binary decision) [97, 55]. Using this scheme, suboptimal techniques such as

counting rule, OR, and AND are investigated in [96]. The noncoherent assumption

may fail to hold in some cases, e.g. when the sensors have overlapping sampling in-

tervals. We refer to a system as coherent if the sampling time and frequency of the

sensors are synchronized such that they observe identical pieces of the source signal

in independent AWGN. This synchronization can be achieved by employing time and

frequency synchronization methods provided in [88]. Considering such a partially or

fully coherent system, [41, 65, 1] study optimal and suboptimal detectors where the

local binary decisions are sent to the FC.

Most results on decentralized detection solely study detectors within a given sys-

tem and, to the best of our knowledge, comparison of these systems with each other

in terms of the performance, bandwidth requirement, sensitivity, and implementa-

tion aspects of their corresponding detectors, has never been considered. Here, we

aim to analyze the asymptotic performance of distributed detectors in these systems

and to understand the impact of bandwidth and synchronization among sensors on

the performance. We consider distributed detection of a zero-mean Gaussian source

signal in independent AWGN. Such a signal model is valid e.g. in OFDM systems

where each sub-carrier is loaded with independent data streams and can be assumed

Gaussian by virtue of the central limit theorem. Assuming that sensors may or may

not have overlapping sampling intervals, we first consider distributed detection using

partially correlated observations. For such partially correlated observations, we de-

rive the NPD, denoted by Λ1. We then prove that the Pmd of Λ1 achieves the fastest

exponential rate of decay when the system is coherent and achieves the slowest ex-

ponential rate of decay when the system is noncoherent. We then move on to study
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these two important systems. For the noncoherent system, we propose a novel Gener-

alized Likelihood Ratio Detector (GLRD) for unknown Signal to Noise Ratio (SNR)

and two novel heuristic detectors for unknown SNR or noise variance. In addition,

we use the Edgeworth expansion to derive novel asymptotic expressions for the Pmd

and Pfa of these detectors as well as two previously known detectors (i.e., the NPD

for the noncoherent system and a GLRD for unknown SNRs and noise variance). We

then compare the detectors designed for the noncoherent system with several well-

known detectors designed for the coherent system, and show that the coherent ones

require 2L times more bandwidth than the noncoherent ones. In addition, we study

the sensitivity of these detectors to the sampling time/frequency synchronization er-

rors and show that, in contrast to the coherent detectors, the noncoherent ones are

robust to such errors. We propose to use the detectors, designed for the noncoherent

system, for the partially/fully coherent systems. This leads to a significant reduction

in the bandwidth requirement at the expense of some performance loss, compared

to the optimal detectors. We theoretically analyze the performance of the NPD for

the noncoherent system, when used in the fully coherent system and show that the

performance loss can be easily compensated by increasing the temporal sample size,

without requiring extra bandwidth. Finally, we prove that all the aforementioned de-

tectors are either optimal or asymptotically optimal and their performance converges

to those of the Uniformly Most Powerful (UMP) tests as L→∞.

This chapter is organized as follows. We introduce the system model in Section 2.2.

We study detection in the the noncoherent and coherent systems in Sections 2.3

and 2.4 respectively. In Section 2.5, we investigate the bandwidth requirement and

sensitivity of these detectors to sampling time/frequency errors, propose two novel
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Figure 2.1: An example of overlapping sampling intervals.

asymptotically optimal detectors, study distributed detectors where sensors report

the energies, and numerically evaluate the performance of these detectors. We give

our concluding remarks in Section 2.6

2.2 System Model

We consider a network of M sensors, intending to detect the presence of a signal

source xi ∈ CL, where L is the sample size, using the following observations from the

sensors

yi = hixi + ni, i = 1, 2, . . .M, (2.1)
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where hi ∈ C denotes the channel gain between the source and the ith sensor and

{xi} denote the source components of the observed signals by different sensors. We

assume {xi} are complex white Gaussian random variables with zero mean and equal

variance. Without loss of generality, let {hi} absorb the variance of the source signal

and assume that {xi} have unitary variance, i.e., xi ∼ 1
πLM

exp (−‖xi‖2), where ‖xi‖

denotes the norm of xi. We also assume an AWGN at the ith sensor, denoted by

ni ∈ CL, with zero mean and covariance matrix σ2IL, where IL denotes the identity

matrix of size L, i.e.

N = [n1, . . . ,nM ] ∼ 1

πLMσ2LM
exp(− 1

σ2
tr (NNH)). (2.2)

Let also the signal vectors and noise vectors {xi,ni} be mutually independent. In

general, the observation interval of different sensors may or may not overlap since

the sensors may start sampling with any desired delay. Figure 2.1 depicts a scenario

where M = 3 sensors are collecting observations in overlapping intervals. Let {Aj}

denote the time intervals between the starts or ends of the sampling intervals (See

Figure 2.1 for an example). During Aj, the source components of the observed signals

of the participating sensors are identical. For instance, in Figure 2.1, the elements

of x1 and x2 that are being observed during A2 are identical. The joint Probability

Density Function (PDF) of the observations Y = [y1, ...,yM ] is given by

Y = [y1, ...,yM ] ∼





∏
j

exp
(
−tr (Σ−1

Aj
Y H
Aj
Y Aj

)
)

|πΣAj
||Aj |

, H1

exp(−σ−2tr (YHY))
πLMσ2LM , H0

(2.3)
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where H0 and H1 represent the absence and the presence of the source respectively.

In addition, YAj ∈ C|Aj |×MAj denotes the collected observations by MAj participat-

ing sensors during Aj, where |Aj| denotes the number of samples collected by each

participating sensor. We have ΣAj = E[YH
Aj

YAj |H1] = hHAjhAj + σ2IMAj
, where hAj

is the vector of channel gains of the participating sensors (e.g., for A2 in Figure 2.1,

we have hA2 = [h1, h2]).

Before deriving the NPD for the hypothesis test in (2.3), we first briefly review its

concept. The NPD, is used to perform a hypothesis test between two point hypotheses

H1 : θ = θ1 and H0 : θ = θ0. As such, the NPD is characterized by the likelihood-

ratio Λ(y), which is given by the ratio of the PDFs of the observations y under these

hypotheses as Λ(y) = f(y|H1)
f(y|H0)

. This test favors H1 when Λ(y) > η, where η is the

detection threshold. It is proven that [79, p. 23], for any given Pfa = α, when η is

such that P (Λ(y) > η|H0) = α, this test has the highest Probability of Detection (Pd)

(i.e., the lowest Pmd) for this given Pfa.

As discussed above, assuming known parameters, the NPD for the hypothesis test

in (2.3) is given by the ratio of the PDFs in (2.3), i.e.,

σ2LM∏
j |ΣAj

||Aj |

∏
j exp

(
−tr (Σ−1

Aj
Y H
Aj
Y Aj

)
)

exp(−σ−2tr (YHY))

H1

≷
H0

η′1, (2.4)

where η′1 is the detection threshold. Using the matrix inversion theorem, we have

Σ−1
Aj

= σ−2IMAj
− σ−2

σ2+‖hAj ‖
2 hHAjhAj . In addition, we have

∑
jMAj |Aj| = LM and

∣∣ΣAj

∣∣ = (‖hAj‖2 + σ2)σ2(MAj
−1). Substituting the above in (2.4), we obtain the

following NPD

Λ1 ,
∑

j

σ−2‖hAjY
H
Aj
‖2

σ2+‖hAj ‖
2 − |Aj| log(1 +

‖hAj ‖
2

σ2 )
H1

≷
H0

log(η′1). (2.5)
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The sampling intervals {Aj} play a significant role in the performance of Λ1. In the

following, we find the conditions for {Aj} under which Pmd,Λ1 achieves the fastest or

slowest exponential decay rate.

Theorem 2.1. As L → ∞, Pmd,Λ1 achieves the fastest exponential rate of decay

when the system is coherent and achieves the slowest exponential rate of decay when

the system is noncoherent, i.e.,

limL→∞
logPmd,Λ1

L
≥∑M

i=1 log(1 + |hi|2
σ2 )− |hi|2

σ2+|hi|2 ,

limL→∞
logPmd,Λ1

L
≤ log(1 + ‖h‖2

σ2 )− ‖h‖2
σ2+‖h‖2 ,

(2.6)

where h = [h1, · · · , hM ].

Proof. Since Λ1 is the log-likelihood-ratio of the PDFs in (2.3), we can employ the

Stein’s theorem [9, 35] to compute the exponential decay rate of its Pmd for a fixed

Pfa. This theorem states that, assuming that the observations under each hypothesis

are Independent and Identically Distributed (i.i.d) and for any given Pfa, the Pmd is

such that limL→∞
logPmd

L
= D(f(observations|H0)||f(observations|H1)), where D(.||.)

denotes the Kullback-Leibler divergence between the PDFs of the observations under

H0 andH1, i.e., f(observations|H0) and f(observations|H1) respectively. After simple

manipulation, for Λ1, we have limL→∞
logPmd

L
= − limL→∞

E[Λ1|H0]
L

. Since the PDFs

of YAj under H0 is given by f(YAj |H0) =
exp(− 1

σ2 tr (YH
Aj

YAj
))

(σ2π)
|Aj |MAj

, it can be shown that

the Moment Generating Function (MGF) of ‖hAjYH
Aj
‖2 is given by

E[e
s‖hAjY

H
Aj
‖2|H0] = (1− s‖h‖2σ2)−|Aj |. (2.7)
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Defining ρj , limL→∞
|Aj |
L

, we have

− lim
L→∞

E[Λ1|H0]

L
=
∑

j

ρj
(

log(1 +
‖hAj‖2

σ2
)− ‖hAj‖2

σ2 + ‖hAj‖2

)
. (2.8)

In addition, it can be simply proved that

log(1 + x+ y)− x+ y

1 + x+ y
≥ log(1 + x)− x

1 + x
+ log(1 + y)− y

1 + y
, (2.9)

for any x, y > 0. Consider two sampling instances t1 ∈ A and t2 ∈ B where A and

B are two different sampling intervals such that the sets of the participating sensors

in A and B are disjoint (e.g., t1 ∈ A = A1 and t2 ∈ B = A4 in Figure 2.1). Now we

discuss that if these two sets of sensors sampled simultaneously at t2, the expression

on the right-hand-side of (2.8) would increase. This is verified using (2.9) as

log(1 + ‖hA‖2+‖hB‖2
σ2 )− ‖hA‖2+‖hB‖2

σ2+‖hA‖2+‖hB‖2
≥

log(1 + ‖hA‖2
σ2 )− ‖hA‖2

σ2+‖hB‖2
+ log(1 + ‖hB‖2

σ2 )− ‖hB‖2
σ2+‖hB‖2

.
(2.10)

This implies that (2.8) achieves its maximum when any two sensors sample simulta-

neously (i.e., in a coherent system) and achieves its minimum when all the sensors

sample in separate intervals (i.e., in a noncoherent system). Thus (2.6) can be ob-

tained.

Theorem 2.1 shows that the performance of the optimal detector for partially

coherent observations for large values of L is bounded by the performance of the opti-

mal detectors in the noncoherent (lower-bounded) and the coherent (upper-bounded)

systems. In order to gain practical insights into the impact of the source, channel,
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and noise parameters, we now study these two important cases.

2.3 Noncoherent Source Detection

Throughout this section, we consider a noncoherent system in which {xi} are assumed

independent. In this setting, it can be shown that (2.3) yields the following hypotheses

test for detection of a noncoherence source:

Y = [y1, ...,yM ] ∼





exp (−
∑M
i=1
‖yi‖2
pi

)

πLM
∏M
i=1 p

L
i

, H1

exp (−
∑M
i=1
‖yi‖2
σ2 )

πLMσ2ML , H0

(2.11)

where pi = |hi|2 + σ2. We first investigate the NPD that requires the knowledge of

the SNRs and noise power. Note that spectrum usage in cognitive radio has a fast

changing dynamic, the availability of such knowledge is unreasonable. Nevertheless,

the performance of the NPD is an upper-bound on the performance of any suboptimal

detector (for noncoherent signals), thus can be used for performance assessment.

2.3.1 Noncoherent NPD: Known SNRs and noise power

For the noncoherent system in (2.11), it can be shown that the NPD in (2.5) is

equivalent to the following weighted energy detector

Λ2 =
∑M

i=1wi
‖yi‖2
L

H1

≷
H0

η2, (2.12)

where η2 is the detection threshold, wi = qi
1+qi

, with qi = |hi|2
σ2 being the SNR of the

ith sensor. Note that Λ2 is a generalization of the detector in [62, p. 496], where



CHAPTER 2. ASYMPTOTIC PERFORMANCE ANALYSIS 20

weights are assumed identical.

Remark 2.1. Employing (2.12), the FC needs only one real number from each sensor,

i.e., the observed energies ‖yi‖2. This makes the noncoherent system very attractive.

The FC then linearly combines the reported energies to make a global decision.

The assigned weight wi to the ith sensor is the ratio of the signal component of

the energy to the total observed energy. These weights are larger for the observations

with higher SNR. Furthermore, limqi→∞wi = 1 and limqi→0wi = 0. This suggests

a suboptimal detector by discarding the observations from sensors with low SNR

(assigning wi = 0), and combining the observations with high SNR with equal weights

(assigning wi = 1). Note that wi = 1 is the same as assuming that the SNR is very

high. This suboptimal detector does not require the exact SNR values and only needs

enough information about SNRs to select a subset of them, e.g., sensors can compare

‖yi‖2 with a threshold and assign {0, 1} weights accordingly.

In the following, we obtain novel expressions for the Pfa and Pmd of Λ2 for large

values of L.

Theorem 2.2. The Pfa and Pmd of Λ2 for large L are approximately

Pfa,Λ2 ≈ 1− F (η2−d1√
d2

; [d2, d3, d4]),

Pmd,Λ2 ≈ F (η2−c1√
c2

; [c2, c3, c4]),
(2.13)

where ck = L1−kΓ(k)
∑

iw
k
i p

k
i , dk = L1−kΓ(k)σ2k

∑
iw

k
i , and

F (x, [α1, α2, α3]) =

Φ(x)− α2

6α2
1
Φ(2)(x) + α3

24α2.5
1

Φ(3)(x) +
α2

2

72α3.5
1

Φ(5)(x),
(2.14)
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with Φ(x) =
∫ x
−∞

1√
2π
e−

t2

2 dt and Φ(i)(x) = ∂iΦ(x)
∂xi

.

Proof. We first approximate the Cumulative Distribution Function (CDF) of Λ2 under

H1. Under H1, the MGF of LΛ2 is given by exp ζ1(s), where ζ1(s) = −L∑i log(1−

wipis). The kth cumulant of Λ2 is ∂kζ1(s)
Lk∂sk

|s=0, which can be verified that is given by

ck (defined above). Using these cumulants, we now employ the Edgeworth expansion

[83, 29, 26, 25] to compute the CDF of Λ2 under H1. According to this expansion, the

CDF of a random variable X can be expressed as P (X ≤ η) = F (η−κ1√
κ2

; [κ2, κ3, κ4]) +

O( κ5√
κ5

2

), where the kth cumulant of X is given by κk. Noticing that κk = ck, the

CDF of Λ2 under H1 can be approximated by (2.13), which is accurate to O( κ5√
κ5

2

) ∼

O( 1
L3/2 ).

Similarly, it can be shown that the cumulants of Λ2 under H0 are given by dk (defined

above). Using these cumulants in the Edgeworth expansion, Pfa,Λ2 in (2.13) can be

obtained, which is accurate to O( 1
L3/2 ).

Note that the equation in (2.2) for the Pfa can be used to obtain an appropriate

detection threshold for any given Pfa.

To draw simple conclusions from (2.13), we ignore the 3rd and 4th cumulants. This

results in expressions for Pfa and Pmd of Λ2 that are accurate to O( 1
L1/2 ) [83, 29, 26, 25].

Accordingly, the following approximate Receiver Operating Characteristics (ROC) for

Λ2 can be obtained:

Pmd,Λ2 ≈ Φ
(√∑M

i=1 w
2
i∑M

i=1 q
2
i

Φ−1(1−Pfa,Λ2)−
∑M
i=1 (qi−wi)√∑M
i=1 q

2
i /L

)
. (2.15)

The term
∑M
i=1 (qi−wi)√∑M

i=1 q
2
i /L

in (2.15) plays an important role in the performance of this de-

tector (see e.g. [61]). This term is positive and characterizes the normalized distance
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between the centers of PDFs of the test statistic under two different hypotheses of

H0 and H1. The larger it is, the higher performance can be achieved, e.g., this can

be achieved by increasing the number of samples L or sensors M .

Assuming equal weights as wi = 1, we obtain the conventional energy detector,

which is given by

ΛED =
∑M

i=1
‖yi‖2
L

H1

≷
H0

ηED (2.16)

Using the same approach as in Theorem 2.2, it can be shown that the Pfa and Pmd of

ΛED for large L are given/approximated by

Pfa,ED = 1− γ
(
LM, Lη5

σ2

)
, Pmd,ED ≈ F (η2−e1√

e2
; [e2, e3, e4]), (2.17)

where γ (s, x) = 1 − e−x
∑s−1

q=0
xq

q!
and ek = L1−kΓ(k)

∑
i p

k
i . Note that Pmd,ED is

accurate to O( 1
L3/2 ).

2.3.2 Noncoherent GLRD: Unknown SNRs and known noise

power

The optimal detector derived in Section 2.3.1 requires the knowledge of SNRs and

noise power, which may be unavailable in practice. Here, we assume that the SNRs

are unknown and derive a novel GLRD that only uses the noise variance.

Before deriving the GLRD, we briefly describe its concept. The GLRD is a general

procedure for composite testing problems. The basic idea is to compare the best

model (most probable) under H1 to the best (most probable) under H0. Assume

that we have two composite hypotheses of the form H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1.



CHAPTER 2. ASYMPTOTIC PERFORMANCE ANALYSIS 23

Also assume that the PDFs of the observations y is given by f(y|Hi) for i = 0, 1,

the GLRD for this hypothesis test is given by Λ(y) =
max
θ∈Θ1

f(y|H1)

max
θ∈Θ0

f(y|H0)

H1

≷
H0

η. In fact, since

θ is unknown, the Maximum Likelihood Estimate (MLE) of θ is replaced with the

unknown value in the PDF under different hypothesis. Then their ratio is compared

with some threshold [79, p. 38].

Now we derive the GLRD. To this end, we need to find the MLE of the unknown

SNRs, i.e., q̂ = [q̂1, · · · , q̂M ]. The MLE of pi, which can be obtained by maximizing

(2.11) with respect to pi, is given by p̂i = max(σ2, ‖yi‖
2

L
). Since we have q̂i = p̂i−σ2

σ2 ,

it can be verified that q̂i = max(0, ‖yi‖
2

Lσ2 − 1). Substituting q̂ in the ratio of PDFs in

(2.11), we obtain the following GLRD

Λ3 =
∑
∀i: ‖yi‖

2

Lσ2 >1

(‖yi‖2
Lσ2 − 1− log ‖yi‖

2

Lσ2

)H1

≷
H0

η3, (2.18)

where η3 is the detection threshold. This test first censors less informative observa-

tions (those for which ‖yi‖2
Lσ2 6 1) that have insignificant energy and only takes into

account the observations that support the hypothesis H1. This is advantageous as

each sensor needs to calculate its local energy ‖yi‖2 and report it to the FC only if

the energy level is above the noise energy Lσ2.

Before we derive asymptotic expressions for the performance of Λ3, we study its

asymptotic optimality. Note that suboptimal detectors such as GLRDs are not always

asymptotically optimal, i.e., their performance may not converge to that of the UMP

tests as the number of samples increases. Note that if a test/detector for a composite

hypothesis problem (H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1) is most powerful (i.e., has

the highest Pd for a given Pfa) for all θ1 ∈ Θ1, it is said to be UMP. The following

theorem expresses the conditions under which a GLRD is asymptotically optimal.
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Theorem 2.3 ([49]). Assume that Θ0 and Θ1 are disjoint subsets of RM and the

function g : RM → R is a Separating Function (SF) for these subsets, i.e., it con-

tinuously maps Θ0 and Θ1 onto two disjoint intervals as Θ0 ⊆ g−1((−∞, 0)] and

Θ1 ⊆ g−1((0,∞)]. Then g(θ̂)≷H1
H0
η is asymptotically optimal for the hypothesis prob-

lem H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, where θ denotes the unknown parameters and θ̂

denotes the MLE of θ.

Proof. According to [58] as L → ∞, the PDF of g(θ̂) tends to a normal PDF

where its mean and variance are given by g(θ) and 1
Ig(θ)

respectively. In addition

the minimum variance and unbiased estimator of g(θ), i.e., ĝ(θ), can be obtained

from
∑L

l=1
∂

∂g(θ)
ln(f(xl;θ)) = Ig(θ)(ĝ(θ)− g(θ)), where f(xl;θ) denotes the PDF of

the observations xl. Employing the central limit theorem, we observe that the PDF

of
∑L

l=1
∂

∂g(θ)
ln(f(xl;θ)) and ĝ(θ) tend to normal PDFs. Moreover, the mean and

variance of ĝ(θ) are g(θ) and 1
Ig(θ)

respectively. Thus, the PDF of g(θ̂) tends to that

of ĝ(θ) as L→∞. Therefore, Eθ(u(g(θ̂)−η)) approaches Eθ(u(ĝ(θ)−η)) as L→∞.

The proof is complete as Eθ(u(g(θ̂)− η)) and Eθ(u(ĝ(θ)− η)) for θ ∈ Θ0 and θ ∈ Θ1

represent the Pfa and Pd using SF and UMP test, respectively.

We now use this theorem to study the asymptotical optimality of Λ3.

Theorem 2.4. Λ3 is asymptotically optimal, in the sense of Theorem 2.3, as L→∞.

Proof. In order to prove the asymptotic optimality of Λ3, we first need to find appro-

priate Θ0 and Θ1. We observe that the vector of unknown received SNRs, q, is zero

only under H0, i.e., Θ0 , {[0, · · · , 0]}, and therefore, Θ1 , {[x1, · · · , xM ] ∈ RM |xi ≥
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0} \Θ0. The proof is complete as it can be verified that

g1(q) ,
∑

i

(qi − log (1 + qi)), (2.19)

satisfies the conditions in Theorem 2.3.

In the following, we obtain novel expressions for the Pfa and Pmd of Λ3 for large

values of L.

Theorem 2.5. The Pfa and Pmd of Λ3 for large L are approximately

Pfa,Λ3 ≈ 1− U(η3)εM0 −
∑M

i=1

(
M
i

)
εM−i0 (1− ε0)iγ( i

2
, Lη3),

Pmd,Λ3 ≈ F (η3−e1√
e2
, [e2, e3, e4]),

(2.20)

where e1 = g1(γ)+M
2L

, e2 =
∑
i q

2
i

L
+ M

2L2 , e3 =
∑
i 2q3

i+3q2
i

L2 +M
L3 , and e4 =

∑
i 6q4

i+16q3
i+12q2

i

L3 +

3M
L4 , and ε0 = γ(L, 1

L
).

Proof. We first approximate the CDF of Λ3 under H1. It is proven in [20, 73, p. 80]

that the integral
∫ b
a
eLp(x)q(x)dx can be expressed as (1 +O( 1

L
))
√

2π
L|p′′(x0)|e

Lp(x0)q(x0),

where a < x0 < b is such that p′(x0) = 0, therefore, it can be approximated by
√

2π
L|p′′(x0)|e

Lp(x0)q(x0) as L→∞. Then, it can be shown that

E[esL(
‖yi‖

2

Lσ2 −1−log
‖yi‖

2

Lσ2

)
|H1] ≈

( 1− s
1− (1 + qi)s

)L(1−s) (1 + qi)
−Ls

√
1− s . (2.21)

In addition since qi > 0, we have P (‖yi‖
2

Lσ2 > 1|H1)→ 1 as L→∞. Therefore,

E[esLΛ3|H1] ≈
∏

i

E[esL(
‖yi‖

2

Lσ2 −1−log
‖yi‖

2

Lσ2

)
|H1] (2.22)
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as L→∞, i.e., we have

E[esLΛ3 |H1] ≈∏M
i=1

(
1−s

1−(1+qi)s

)L(1−s) (1+qi)
−Ls

√
1−s . (2.23)

Using the Taylor series expansion of log(E[esLΛ3|H1]), the first four cumulants of Λ3

can be approximated by {ei}4
i=1 (defined above), which are accurate to {O( 1

Li+1 )}4
i=1

respectively. Using these approximate values, we can now use the Edgeworth expan-

sion [83, 29, 26, 25] to obtain Pmd,Λ3 in (2.20). Although we used approximate values

for the cumulants of Λ3, it is shown in [26, 25] that the accuracy of these cumulants

(accuracy of O( 1
Li+1 ) for approximation of κi) is enough to guarantee that the final

approximation for Pmd,Λ3 is accurate to O( 1
L3/2 ).

Under H0, we can similarly show that the MGF of ‖yi‖
2

Lσ2 − 1 − log ‖yi‖
2

Lσ2 approaches

that of 1
2
(‖yi‖

2

Lσ2 − 1)2 as L→∞. This implies that the latter converges in distribution

to the former, i.e., ‖yi‖
2

Lσ2 − 1 − log ‖yi‖
2

Lσ2

d.−→ 1
2
(‖yi‖

2

Lσ2 − 1)2. Since for large L, the PDF

of 1
2
(‖yi‖

2

Lσ2 − 1)2 converges to the Gamma distribution Γ(1
2
, 1
L

) (which is accurate to

O( 1
L1/2 )) and P (‖yi‖

2

Lσ2 < 1|H0) = γ(L, 1
L

), the PDFs of Λ3 under H0 for large L can

be approximated by

f(Λ3|H0) ≈ δ(Λ3)εM0 +
M∑

i=1

(
M

i

)
εM−i0 (1− ε0)i

Λ
i
2
−1

3 e−LΛ3

Γ( i
2
)L−

i
2

. (2.24)

Using above, Pfa,Λ3 in (2.20) can be obtained, which is accurate to O( 1
L1/2 ).
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2.3.3 Noncoherent GLRD: Unknown SNRs and noise power

Thus far, we have assumed that the noise power is known. However, when the spec-

trum dynamic is fast, the noise power may vary for each sampling interval and there-

fore its value must be estimated based on the acquired samples. Here, we introduce

a GLRD for the case where the noise power is also unknown. This test is obtained

by maximizing the PDFs of the observations, with respect to noise power σ2 and

channel gains |hi|2, under both hypotheses. We observe that under H0, the MLE of

the noise power is given by σ̂2 =
∑M
i=1 ‖yi‖2
LM

while, the MLE of ̂σ2 + |hi|2 is given by

̂σ2 + |hi|2 = ‖yi‖2
L

, substituting which in the ratio of PDFs in (2.11), we arrive at the

following GLRD:

Λ4 = log
(

1
M

∑M
i=1 ‖yi‖2

)
− 1

M

∑M
i=1 log(‖yi‖2)≷H1

H0
η4, (2.25)

where η4 is the detection threshold. This test compares the ratio of arithmetic to

geometrical mean of the reported energies. This ratio is a well-known source enu-

meration criterion [98]. In order for this test to perform well, different sensors must

have different channel gains, otherwise this detector misinterprets the observations as

noise, and favors H0. This means that the availability of the knowledge of the noise

power has significant impact on detection performance when the channel gains are

not far apart from each other.

In the following, we study the asymptotic optimality of Λ4.

Theorem 2.6. Λ4 is asymptotically optimal, in the sense of Theorem 2.3, as L→∞

.

Proof. The vector of unknown parameters is θ = [p1, · · · , pM ] which is the vector
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of variances. We observe that the feasible values of θ under H0 and H1 are Θ0 ,

{[x, · · · , x] ∈ RM |x > 0} and Θ1 , {[x1, · · · , xM ] ∈ RM |xi > 0} \ Θ0 respectively.

The proof is complete as it can be verified that

g2(θ) = log
(

1
M

∑M
i=1 pi

)
− 1

M

∑M
i=1 log(pi) (2.26)

satisfies the conditions in Theorem 2.3.

In the following, we obtain novel expressions for the Pfa and Pmd of Λ4 for large

values of L.

Theorem 2.7. The Pfa and Pmd of Λ4 for large L are approximately

Pfa,Λ4≈1−γ(
M−1

2
,
η4

ML
), Pmd,Λ4≈F (

η4−k1√
k2

,[k2, k3, k4]), (2.27)

where ki = ∂iζ3(s)
Li∂si

|s=0, ζ3(s) = LM log(t)−L(1− s
M

)
∑

i log(t− (1 + qi)s)− M
2

log(1−
s
M

)− 1
2

log(1 +
∑

i
s(1+qi)

(t−(1+qi)s)2(1− s
M

)
), and t is such that

∑
i

1+qi
t−(1+qi)s

= 1.

Proof. For H1, we can use the multi-dimensional Laplace’s method [20] to show

that as L → ∞, the MGF of LΛ4 can be approximated by exp ζ3(s), where ζ3 is

defined above. Hence, the first four cumulants of Λ4 are approximately given by

ki = ∂iζ3(s)
Li∂si

|s=0, i = 1, · · · , 4, which are accurate to O( 1
Li+1 ) respectively. We use these

approximate values in the Edgeworth expansion to obtain Pmd,Λ4 in (2.27). Similar to

the discussion for Theorem 2.20, it can be shown that Pmd,Λ3 is accurate to O( 1
L3/2 ).

For H0, we substitute qi = 0 in ζ3(s) and observe that the MGF of LΛ4 can be ex-

pressed as (1−Ms)
M−1

2 (1+O( 1
L

)). Therefore, the PDFs of Λ4 approaches Γ(M−1
2
, 1
ML

)

as L→∞. Hence, the approximation for Pfa,Λ4 in (2.27) can be obtained.
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2.4 Coherent Source Detection

In this section, we study the problem of source detection in the coherent system where

the observation of the sensors are coherent, i.e., x1 = x2 = . . . = xM . We consider

detectors for the following hypotheses testing:

Y ∼





exp (− tr (Σ−1
1 YHY))

πLM |Σ1|L
, H1

exp(−σ−2tr (YHY))
πLMσ2LM , H0

(2.28)

where Σ1 = hHh+σ2IM and h = [h1, . . . , hM ]. We now study the NPD and GLRDs,

where in the former case, the channel gains and noise power are known, and in the

latter, they are assumed unknown.

2.4.1 Coherent NPD: Known channel gains and noise power

Assuming known channel gains and noise variance, it can be shown that the NPD in

(2.5) for the coherent system in (2.28) is equivalent to the following matched-filter

detector

Λ5 = ‖hYH‖2
σ4

H1

≷
H0

η5, (2.29)

where η5 is the detection threshold. This detector needs accurate synchronization,

otherwise its performance significantly deteriorates. In contrast to Λ2, which only

needs the amplitude of the channel gains {|hi|2}, Λ5 requires both amplitude and

phase information, i.e., {hi}. In addition, all the observation vectors must be trans-

mitted to the FC, which makes this detector impractical.

We now assess the performance of Λ5. From (2.28), it is easy to show that the
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MGF of Λ5 is E[esΛ5 |H1] =
(
1− s‖h‖2

σ2 (1 + ‖h‖2
σ2 )

)−L
and E[esΛ5|H0] = (1− s‖h‖2

σ2 )−L.

Thus the PDFs of Λ5 is given by

f(Λ5) =





Γ(L,
∑M

i=1 qi), H0

Γ(L, (
∑M

i=1 qi)(1 +
∑M

i=1 qi)), H1.
(2.30)

Hence, the Pfa and Pmd of Λ5 are given respectively by

Pfa,Λ5=1−γ
(
L,

η5∑
i qi

)
, Pmd,Λ5=γ

(
L,

η5

(
∑

i qi)(1+
∑

i qi)

)
. (2.31)

From (2.31), we conclude that the performance of Λ5 improves as the number of

observations L or the SNR of observations qi increases.

2.4.2 Coherent GLRD: Unknown channel gains and known

noise power

Here, we assume that the channel gains are unknown while the noise power are known.

It is shown in [10, 93] that the GLRD for such a case is given by

Λ6 =
eigmax( 1

L
YHY)

σ2

H1

≷
H0

η6, (2.32)

where eigmax(Σ) is the largest eigenvalue of Σ and η6 is the detection threshold. We

now study the asymptotic optimality of Λ6.

Theorem 2.8. Λ6 is asymptotically optimal, in the sense of Theorem 2.3, as L→∞

.

Proof. Let Σ denote the unknown covariance matrix. We notice the set of feasible
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covariance matrices under H0 and H1 are given by Θ0 , σ2IM and Θ1 , {xHx +

σ2IM |x ∈ CM ,∀i} \ Θ0 respectively. It is easy to show that any Σ ∈ Θ1 has two

non-identical eigenvalues of σ2 with a multiplicity of M − 1 and σ2 + ‖x‖2 with a

multiplicity of 1. Hence, it can be verified that

g3(Σ) = eigmax(Σ)
σ2 − 1, (2.33)

satisfies the conditions in Theorem 2.3. The proof is complete as the MLE of Σ is

given by Σ̂= 1
L
YHY [10].

2.4.3 Coherent GLRD: Unknown channel gains and noise

power

It is shown in [10, 93] that the GLRD for a case when the channel gains and noise

variance are all unknown is given by

Λ7 =
eigmax( 1

L
YHY)

tr( 1
L

YHY)

H1

≷
H0

η7, (2.34)

where η7 is the detection threshold. In the following, we study the asymptotic opti-

mality of Λ7 as L→∞.

Theorem 2.9. Λ7 is asymptotically optimal, in the sense of Theorem 2.3, as L→∞

.

Proof. We use g3 in (2.33) for Θ0 , {tIM |t > 0} and Θ1 , {xHx + tIM |x∈CM , t >

0}\Θ0. We must find the MLE of σ2, which is given by σ̂2 =
∑M
i=2 λ̂i
M

, where λ̂i are the

ith largest eigenvalue of 1
L
YHY [10]. The proof is complete since tr(Σ̂) =

∑
i λ̂i.
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Remark 2.2. In contrast to the noncoherent detectors in (2.5), (2.12), and (2.18),

where the sensors only need to report the energies of the observed signals, i.e., {‖yi‖2},

coherent detectors in (2.29), (2.32), and (2.34) require the knowledge of all of the

observation, i.e., {yi}. This makes the coherent detectors impractical (particularly

for large sample size) since they demand high bandwidth.

2.5 Discussion

Following Remarks 2.1 and 2.2, we realize that the amount of data required by Λ1

varies from one real number per sensor (for the noncoherent system) to 2L real

numbers per sensor (for the coherent system). Note that each sensor quantizes

its own data (the real numbers that must be transmitted to the FC) and then

transmits the quantized values. We assume that the quantization error is small

enough such that the quantization distortion in the received data by the FC can

be neglected. In order to employ Λ1, the participating sensors must report the

raw correlated observations (two real numbers for each sample) and the energy of

the noncoherent samples (one real number for all the samples) to the FC. As

shown in Theorem 2.1, employing Λ1, the lowest Pmd for large values of L and for

a given Pfa (i.e., the highest performance) is achieved when the signals are fully

coherent and the highest Pmd (i.e., the lowest performance) is obtained when the

signals are fully noncoherent. Figure 2.2 shows the P md,Λ1 versus the required

number of real numbers (per sensor) for a similar scenario as in Figure 2.1 with

|Ai| ∈ {0, · · · , L} for i = 1, · · · ,M − 1, L ∈ {10, 20, 40}, σ2 = 50,M = 4, hi = i

and Pfa = 0.1. Such choice of channel gains (i.e., hi = i) guarantees that the sen-

sors experience distinct channel gains and also generates a reasonably wide range
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of SNR = 10 log10( |hi|
2

σ2 ) = [-13, -7, -3, -1]. We observe that Pmd,Λ1 generally de-

creases (i.e., the performance improves) as L increases. Additionally, the perfor-

mance of Λ1 improves as the number of required real numbers increases for a given

L. Figure 2.3 depicts Pmd,Λ1 versus Pfa,Λ1 for a similar scenario as in Figure 2.1 with

L = 40, σ2 = 50,M = 4, |Ai| ∈ {40, 32, 16, 8, 0} (i.e., number of required real num-

bers per sensor ∈ {1, 17, 33, 49, 65, 80}) for i = 1, · · · ,M − 1. We observe that the

performance of the (2.5) is bounded between those of (2.3) (requiring 1 real number)

and (2.29) (requiring 2L real numbers).

The proposed detectors are also sensitive to sampling time/frequency synchro-

nization errors, i.e., their performance degrades when exposed to such errors. Our

simulation results show that the detectors designed for the coherent system (i.e., Λ5,

Λ6, and Λ7) are extremely sensitive while the ones for the noncoherent system (i.e., Λ2,

Λ3, and Λ4) are robust to such errors. To study the impact of the synchronization er-

rors, we generated xi = [x1,i, . . . , xL,i]
T by xn,i = exp(−jnωi)

∑5L
k=−5L

sin (π(n+τi−k))
π(n+τi−k)

xk,

where (τi, ωi) is the pair of the sampling time offset and frequency offset of ith sensor

and {xk}5L
k=−5L is an i.i.d zero mean normal random process with unitary variance.

Figures 2.4 and 2.5 show the average Pmd of these detectors for an imperfectly syn-

chronized system with Pfa= 0.1. In Figure 2.4, the sampling time offsets {τi} are

independently and uniformly generated over [−∆τ
2
, ∆τ

2
] and ωi = 0 whereas in Fig-

ure 2.5, the sampling time offsets {ωi} are independently and uniformly generated

over [−∆ω
2
, ∆ω

2
] and τi = 0. These figures show that the detectors Λ2, Λ3 and Λ4 are

quite robust to the time/frequency synchronization errors. In contrast, the detectors

Λ5, Λ6, and Λ7 are very sensitive to such errors and their performance dramatically

degrades in imperfectly synchronized systems.
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2.5.1 Detection Using The Energy Reports

From above, we conclude that the noncoherent system is more attractive and prac-

tical if the available bandwidth is limited, the synchronization is expensive or the

synchronization errors are not negligible. Motivated by this, we propose that the

sensors only report their observed energies and the FC uses (2.12), (2.18), or (2.25)

to combine the reported energies.

Note that the performance results reported in (2.13) are invalid for the coherent

signal model. In the following, we assess the asymptotic performance of Λ2 when used

for the detection of coherent signals.

Theorem 2.10. The Pfa and Pmd of Λ2 when used in a coherent system for large L,

can be approximated by

Pfa,Λ2,EN ≈ 1− F (
η

EN
−d1√
d2

; [d2, d3, d4]),

Pmd,Λ2,EN ≈ F (
η

EN2
−l1√
l2

; [l2, l3, l4]),
(2.35)

where {di} are defined in Theorem 2.2, li =
∂iζ

EN
(s)

Li∂si
|s=0, with ζ

EN
(s) =−L log(1 −

∑
i
swi|hi|2
1−sσ2wi

)− L∑i log(1− sσ2wi).

Proof. Note that the Pfa of Λ2 used in a coherent system is the same as Pfa,Λ2 in

Theorem 2.13 and is accurate to O( 1
L3/2 ). Under H1, the conditional MGF of LΛ2

(used for the coherent signal) given r = ‖x‖2 is

E[esLΛ2|r] = e
r
∑
i

s|hi|2wi
1−sσ2wi

M∏

i=1

(1− sσ2wi)
−L.

To find the unconditional distribution, we average the above MGF over r = ‖x‖2 ∼
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Γ(L, 1), take logarithm and obtain log(E[esLΛ2 ]) = ζ
EN

(s). The cumulants of Λ2 (used

for the coherent signal) are as li=
∂iζ

EN
(s)

Li∂si
|s=0, thus, Pmd,Λ2,EN can be directly obtained

from the Edgeworth expansion of Λ2 given {li}4
i=1, which is accurate to O( 1

L3/2 ).

To draw simple conclusions, we ignore the 3rd and 4th cumulants in (2.35). This

results in expressions for the Pfa and Pmd of Λ2 (when used in a coherent system) that

are accurate toO( 1
L1/2 ). It can be shown that l1=

∑
i qi and l2 =

∑
i 6=j wiwjqiγj +

∑
i q

2
i .

Thus the following approximate ROC can be obtained:

Pmd,EN ≈ Φ(

√∑
i w

2
iΦ−1(1−Pfa,EN)−L

∑
i (qi−wi)√∑

i 6=j wiwjqiγj+
∑
i q

2
i

). (2.36)

Comparing (2.15) and (2.36), there is an extra term
∑

i 6=j wiwjqiγj in the denomi-

nator, which indicates that Λ2 results in higher mis-detection probability (i.e., lower

performance) for a given Pfa when used for detection of coherent signals.

To get the maximum performance out of the noncoherent signal model in (2.11),

sensors may start sampling at random times to reduce the probability of concurrent

sampling by different sensors. This means that not only these detectors do not require

synchronization but also no coordination among sensors is required to ensure that the

sensor observations are noncoherent. Our numerical analysis also shows that these

detectors suffer solely from negligible performance loss when used for the coherent

system. This loss can be compensated by a small increase in the number of samples

L.
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2.5.2 Novel Heuristic Detectors

One can use Laplace’s method to approximate the MGF of
(‖yi‖2
Lσ2 − 1

)2
and ( ‖yi‖2

1
M

∑M
i=1 ‖yi‖2

−

1)2 for large values of L. As such, it can be observed that under both hypotheses

(i.e., H0 and H1), expressions similar to the approximate expressions for the MGF of

Λ3 and Λ4, respectively, in Theorems 2.5 and 2.7 can be obtained. This motivates us

to propose the following detectors. These two heuristic detectors are asymptotically

optimal and the proof for their asymptotic optimality is similar to Theorems 2.5 and

2.7. The following detector can be used for unknown channel gains:

Λ8 =
∑
∀i: ‖yi‖

2

Lσ2 >1

(‖yi‖2
Lσ2 − 1

)2 H1

≷
H0

η8, (2.37)

where η8 denotes the detection threshold. The following detector can be used for

unknown channel gains and noise variance:

Λ9 =
∑M

i=1( ‖yi‖2
1
M

∑M
i=1 ‖yi‖2

− 1)2
H1

≷
H0

η9 (2.38)

where η9 denotes detection threshold. As discussed above, similar to Theorems 2.5

and 2.7, it can be proved that the performance of Λ8 and Λ9 is similar to those of Λ3

and Λ4 respectively.

2.5.3 Numerical Results

Here, we evaluate the proposed distributed detectors numerically. Figure 2.6 shows

the Pmd versus Pfa of Λ2−Λ5, Λ8, and Λ9 for the noncoherent signal model, employing

M = 4 sensors, L ∈ {20, 40} samples, and assuming hi = i and σ2 = 20. The

theoretical performance (in (2.13), (2.20), and (2.27)) are given by dashed lines. We
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Figure 2.2: Pmd of Λ1 versus the number of required real numbers transmitted per
sensor with L ∈ {10, 20, 40}, σ2 = 50,M = 4 and Pfa = 0.1.

observe that Λ2 (the optimal detector for the noncoherent system) outperforms all the

other detectors. In addition, Λ3 (which performs close to Λ8) outperforms Λ4 (which

performs close to Λ9). This is intuitively expected as Λ3 and Λ8 (in contrast to Λ4

and Λ9) make use of the knowledge of the channel gains. We also observe that as the

number of samples increases, the performance of these detectors improves, i.e., the

performance degradation of suboptimal detectors can be compensated by an increase

in the sample size. For instance, our extended simulations show that the Λ3 and Λ8

with L = 30 outperform the optimal detector Λ2 with L = 20 and Λ4 and Λ9 with

L = 80 outperform Λ3 and Λ8 with L = 20.

Figure 2.7 compares the performance of the proposed detectors in the coherent

signal model, with hi = i, M = 4, σ2 = 50 and L = 20. The theoretical performance

(in (2.31) and (2.35)) are given by dashed lines. We observe that Λ5, Λ6, and Λ7

outperform Λ2, Λ3 (and Λ8), and Λ4 (and Λ9) respectively. This was expected as

the detectors designed for the coherent system outperform those of the noncoherent
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Figure 2.7: Pmd versus Pfa of Λ1 − Λ9 for the coherent signal model, with hi = i,
M = 4, σ2 = 50 and L = 20. The theoretical performance (in (2.31) and
(2.35)) are given by dashed lines.

system, however, this comes at a very high cost as Λ5 − Λ7 require 2L times more

bandwidth. The performance degradation of the suboptimal detectors can be com-

pensated by an increase in the sample size, e.g., Λ2 − Λ4 with L = 40 outperform

Λ5 − Λ7 with L = 20 respectively.

2.6 Conclusion

We have considered the problem of distributed detection where multiple sensors coop-

eratively detect presence or absence of a random source. We first considered partially

correlated observations and obtained the optimal NPD. Assuming a noncoherent

system, we obtained novel asymptotic expressions for the Pfa and Pmd of several opti-

mal/suboptimal detectors. We then compared these detectors with several detectors

derived for the coherent system and showed that the coherent detectors require 2L



CHAPTER 2. ASYMPTOTIC PERFORMANCE ANALYSIS 41

times more bandwidth than the noncoherent ones. We also showed that the de-

tectors for the noncoherent system are robust to the signal coherence and sampling

time/frequency errors. Interestingly, the NPD for partially correlated observations

reaches its highest performance when the observations are fully coherent and reaches

its lowest performance when the observations are fully noncoherent. We also proposed

one novel GLRD and two novel heuristic detectors for the noncoherent system. We

also proved that all these detectors are either optimal or asymptotically optimal.



Chapter 3

Frequency Domain Spectrum

Sensing

We consider distributed detection of an OFDM random source using a cooperative set

of sensors assuming that the observations of different sensors are independent. The

current OFDM detectors only make use of the signal correlation in time-domain and

neglect the frequency-domain features. In order to exploit these features, we focus on

the distributed detection of the OFDM signal in frequency-domain. We propose dif-

ferent frequency-domain detectors depending on the availability of knowledge of the

SNRs and noise variances. We also derive the exact closed form expressions for the

probabilities of false alarm and mis-detection for the NPD (which assumes SNRs and

noise variances are known), and for a GLRD (which assumes they are unknown). As-

suming known noise variances and unknown SNRs, we also propose two new GLRDs

for two cases in which the transmit power is either uniformly allocated to all the

subcarriers or not. We also prove that the GLRDs for unknown parameters and for

uniform power allocation are asymptotically optimal. In addition, we propose a third

42
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new Selection Combining (SC) based detector in which a select subset of observations

is utilized for detection. Our theoretical analysis matches our simulation results and

show that the proposed detectors have insignificant communication overhead. De-

spite their lower computational complexity, the proposed detectors outperform the

state-of-the-art time-domain detectors in practical cases.

3.1 Introduction

In distributed detection, multiple sensors cooperatively detect presence or absence of

a signal source. To this end, sensors transmit a summary of their observation to a FC,

where the global decision is made. In contrast, sensors in the centralized counterpart,

transmit all the (raw) observations to the FC [55]. We assume a noncoherent system

and consider the distributed detection of an OFDM source signal in such a noncoher-

ent system. Since it is crucial to efficiently detect the presence of the licensed users

in cognitive radio, developing efficient detectors for OFDM systems using distributed

noncoherent sensors is of great importance. As such, noncoherent detection of OFDM

systems enables heterogeneous communication systems such as WiFi, WiMAX, LTE

and DVB-T (which employ OFDM) to coexist.

Since the communication bandwidth in cognitive radio is restricted, distributed

detection, wherein only a summary of the observations is transmitted by each sen-

sor, is more practical. Several methods are proposed to obtain such summaries. For

instance, it is proposed to transmit the energy [80, 94, 47], likelihood ratio [82], or

correlation coefficient [33, 31] of the received signal to the FC. Employing sub-optimal

techniques, the FC then combines the reported summaries to make a global decision.

Another approach is to allow each sensor to transmit only a single bit to the FC.
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In this setting, each sensor may employ matched filter detection [85], the energy de-

tection [63], or the cyclo-stationary feature detection [43] to make a local decision,

which will be transmitted to the FC. The FC may employ optimal or sub-optimal

techniques (based on the counting rule, OR, and, AND detectors) to combine the

local decisions to make a global decision [97, 55]. These detectors usually assume

perfect OFDM symbol synchronization at the sensors. However, such synchroniza-

tion is power consuming and adds more complexity and delay to the sensing task.

The problem of OFDM signal detection with unsynchronized observations in time-

domain is studied in [21, 31] and various time-domain detectors are proposed. These

time-domain detectors only make use of the signal correlation, which is the most ap-

parent feature of the OFDM signal in time-domain. However, they cannot exploit the

frequency-domain features of the OFDM signal. We aim to design efficient OFDM

signal detectors with low complexity and low communication overhead that can fully

exploit its frequency-domain features. We also aim to evaluate the impact of the

parameters of the OFDM source and sensors on the detection performance. To this

end, we consider distributed detection of an OFDM source signal in frequency-domain

with imperfect synchronization in two cases:

1. stationary channel: the channel responses remain unchanged over the entire

detection interval,

2. non-stationary channel: the channel responses may vary over the detection

interval.

The detectors in [21, 31] are computationally demanding since the distribution of

unsynchronized OFDM symbols in time-domain is rather complex. We show that the

distribution of such symbols in frequency-domain converges to a normal distribution
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as the number of subcarriers increases. Using this result, we then derive detectors

with lower computational complexity. Table 3.1 summarizes these frequency-domain

detectors, denoted by Λi, i = 1, . . . , 5, with the equation number, type, required

parameters, and data summary collected from individual sensors. Two of these de-

tectors, Λ1 and Λ4, have been proposed for different applications [62, 98]. We analyze

the optimal NPD Λ1 and derive the exact closed form expressions for the Pfa and

Pmd. In some situations the noise variance can be accurately estimated and is known

to the sensors in advance. For such a situation, we propose two new GLRDs: Λ2 and

Λ3; Λ2 assumes that the unknown transmit power is uniformly distributed over all

the subcarriers, whereas Λ3 makes no such an assumption. When the SNRs and noise

variances are unknown, the GLRD Λ4 may be employed. Our novel asymptotical anal-

ysis accurately evaluates the performance of Λ4 as the number of temporal samples

is large enough in practice. We also propose a sub-optimal SC detector, Λ5, where a

subset of observations is selected and utilized for detection. This detector is a gener-

alization of several existing detectors. We show that our proposed frequency-domain

detectors have lower computational complexity compared to time-domain detectors.

In addition, our simulation results show that the proposed frequency-domain detec-

tors, despite their lower computational complexity, outperform some state-of-the-art

time-domain detectors in practical cases.

Throughout this chapter, we denote the absence and the presence of the source

signal by H0 and H1 respectively. The Discrete Fourier Transform (DFT) of a vector

x ∈ CK is denoted by X = Fx, where [X]k =
∑K−1

n=0 xne
− 2πi

K
kn, k = 0, . . . , K−1 is the

kth element of X. The Inverse Discreet Fourier Transform (IDFT) of X is denoted by

x = F−1X, where [x]n = 1
K

∑K−1
k=0 Xne

2πi
K
kn, n = 0, . . . , K − 1. We denote the MLE
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Table 3.1: Summary of detectors. X: assumed to be known, ×: unknown parameter,

∗: unknown uniform transmit power, CO:
# reported values

# received samples
.

Decision
statistic Type

Subband
SNRs

Noise
variance

Local decision statistic to be
reported to the FC CO

Λ1 (3.2) NPD X X
∑
n,k

wm,n,k
Um,n,k
σ2
m

1
2KN

Λ2 (3.9) GLRD ×(∗) X

∑
n,k

|[F ρ̂m,n(l)]k|
σ2
m+|[F ρ̂m,n(l)]k|

Um,n,k−

−σ2
m log(1 + |[F ρ̂m,n(l)]k|

σ2
m

) 1
2KN

Λ3 (3.10) GLR × X
∑
n,k

g
(Um,n,k

σ2
m

)
u
(Um,n,k

σ2
m
− 1
)

1
2KN

Λ4 (3.12) GLR × × Ω(Um,1,1, . . . , Um,N,K) 1
2KN

Λ5 (3.18) SC × × ∑
n,k

Im,n,k
Um,n,k
σ2
m

≤ 1
2KN

of a parameter θ by θ̂.

This chapter is organized as follows. We introduce the system model in Section 3.2.

We investigate the NPD in Section 3.3. In Section 3.4.1 assuming uniform transmit

power, we derive the GLRD for unknown SNRs and known noise variance. We inves-

tigate GLRDs for two cases: 1) only the noise variances are known, and 2) the SNRs

and noise variances are unknown in Section 3.4.2 and Section 3.4.3 respectively. We

propose the SC detector in Section 3.5. In Section 3.6, we numerically evaluate the

proposed detectors. Finally, we give our concluding remarks in Section 3.7.

3.2 System Model

We assume M sensors aim to cooperatively detect the presence or absence of an

OFDM source employing K subcarriers. We assume a noncoherent system where

sensors are not synchronized and observe different (independent) pieces of the same
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source in independent additive white normal noise. We refer to a system as nonco-

herent if 1) the carrier frequency mismatch of the involved sensors are considerably

less than the bandwidth of one subcarrier, i.e., they observe the same channel with

no perfect synchronization, 2) the sampling times of the sensors are not synchronized,

however, their sampling frequencies are (almost) identical, and 3) the sampling times

of the sensors are such that the source observations from different sensors can be

treated as independent.

Let {hm,n(l)}Lc−1
l=0 denote the channel impulse response between the source and

m ∈ {0, . . . ,M − 1}th sensor over the n ∈ {0, . . . , N − 1}th time interval, where

Lc is the channel length. We assume that each sensor observes N discrete-time

sequences with length K from the same OFDM source. Let Sn,k denote the frequency-

domain OFDM transmitted symbol at the kth subcarrier during the nth interval. The

transmitter computes the IDFT of the symbols, i.e., {F−1Sn,k}, adds the cyclic prefix,

and then transmits the result through the channel. We assume that the sensors are

not synchronized and the mth sensor records the nth time interval of its received

signal with some unknown delay, and some small offsets in carrier frequency and

sampling rate. Therefore, the observed sequence may contain samples from the nth

and n + 1st sets of OFDM symbols. The sensors then take DFT of the K samples

of the recorded sequence to obtain {Ym,n,k}. For a perfectly synchronized system it

is known that Ym,n,k = Hm,n,kSn,k + Wm,n,k, where Wm,n,k is a zero-mean complex

normal noise with variance σ2
m, i.e., f({Wm,n,k}) =

∏
m,n,k

1
πσ2

m
exp− |Wm,n,k|2

σ2
m

, and

Hm,n,k =
∑Lc−1

l=0 e−
j2πkl
K hm,n(l) is the channel gain at frequency k.

However in an unsynchronized system, Ym,n,k is a linear transformation of the

sequence Sn,k and the relationship between Ym,n,k and Sn,k is very complex. In this



CHAPTER 3. FREQUENCY DOMAIN SPECTRUM SENSING 48

chapter, we do not make use of this complex relationship as it requires the system

to be fully synchronized, (i.e., the relationship depends on the unknown synchroniza-

tion parameters). We argue that {Ym,n,k}K−1
k=0 are uncorrelated. We notice that the

recorded data can be approximated as a wide sense stationary process and it is known

that the DFT of such a process converges (with probability one) to the Karhunen-

Loeve transform of the signal, as the DFT length increases [53, 95]. This is to say

that as the DFT length increases (compared with the channel length), {Ym,n,k}K−1
k=0

become uncorrelated. Moreover, the variance of Ym,n,k converges (with probability

one) to Pk |Hm,n,k|2 +σ2
m, where Pk represents the power spectral density of the input

of the channel at kth frequency index. This convergence is proven based on circular ap-

proximation of the symmetric Toeplitz autocovariance matrix of the recorded data.

In addition, the symbols Sn,k are usually taken from νk-QAM constellation points

where the number of constellation points νk is random and unknown to the sensors.

Thus the source symbols Sn,k have a discrete mixture probability distribution with

unknown parameters. In practice Ym,n,k is not only a linear combination of a num-

ber of source symbols {Sn,k} but also depends on several other random parameters

such as synchronization mismatches. Making use of the discrete mixture distribu-

tion of Sn,k is impractical as it requires to deal with all the unknown parameters.

Therefore by virtue of the central limit theorem, {Ym,n,k} converge in distribution to

normal random variables as K increases. Thus throughout this chapter, we model

the “unconditional distribution” of {Ym,n,k}K−1
k=0 as a set of independent normal ran-

dom variables with zero mean and variances of Pk |Hm,n,k|2 +σ2
m. Obviously, it is not

accurate to approximate the “conditional distribution” of {Ym,n,k} given the synchro-

nization parameters and channel conditions with a normal PDFs. Figure 3.1 shows
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Figure 3.1: The empirical and the fitted normal PDFs of Ym,n,k, i.e., f(Ym,n,k|H1),
using DFT lengthes of 16, 64, and 256, where in each subcarrier ei-
ther QPSK, 16QAM, or 64QAM constellations is randomly used with
[hm,n(l)] = [1, 1

4
, 1

16
], M = N = 1, K = 256, uniform sampling time delay

over [0, K − 1], and uniform frequency offsets over [−π, π).

how closely the empirical PDFs of Ym,n,k, i.e., f(Ym,n,k|H1), fit normal PDFs using

DFT lengths of 16, 64, and 256, with [hm,n(l)] = [1, 1
4
, 1

16
], M = N = 1, and K = 256,

where in each subcarrier either QPSK, 16QAM, or 64QAM is randomly used, the

sampling time delay is uniformly distributed over [0, K − 1] and the frequency offsets

is uniformly distributed over [− π
K
, π
K

).

Hence, the distribution of the recorded data by each sensor in the presence of

time/frquency synchronization error and in frequency-domain converges to a normal

PDF as NK → ∞. Accordingly, we shall use this fact throughout this chapter to

derive and study frequency-domain detectors.
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3.3 Optimal Detector for Known Parameters

In this section, we derive the optimal NPD assuming that subband SNRs and noise

variance are all known. This case is impractical, since availability of such knowledge

in some applications where the spectrum dynamics is fast, is unreasonable.

The NPD compares the ratio of the PDFs of the observations {Ym,n,k} under

two hypotheses with some threshold. As discussed in Section 3.2, we assume that

Ym,n,k has zero mean complex normal distribution with variance σ2
m and θm,n,k =

σ2
m + |Hm,n,k|2Pk, under H0 and H1 respectively, i.e.,





f({Ym,n,k}|H1) =
∏

m,n,k

exp(−
|Ym,n,k|

2

θm,n,k
)

πθm,n,k
,

f({Ym,n,k}|H0) =
∏

m,n,k

exp(−
|Ym,n,k|

2

σ2
m

)

πσ2
m

.

(3.1)

It is easy to show that
f({Ym,n,k}|H1)

f({Ym,n,k}|H0)

H1

≷
H0

η̄1 can be rewritten as

Λ1 ,
∑

m,n,k

wm,n,k
Um,n,k
σ2
m

H1

≷
H0

η1, (3.2)

where Um,n,k = |Ym,n,k|2, η1 = log(η̄1) +
∑

m,n,k log(
θm,n,k
σ2
m

), and wm,n,k = 1− σ2
m

θm,n,k
.

Remark 3.1. The detector Λ1 in (3.2) first spatially normalizes the observations by

dividing their norm by σ2
m. The assigned weight wm,n,k to the normalized value is

the ratio of the signal component of the subband energy, i.e., |Hm,n,k|2Pk, to the total

subband energy, θm,n,k. In addition, wm,n,k ∈ [0, 1] is an increasing function of the

subband SNR (defined as
|Hm,n,k|2Pk

σ2
m

), i.e., limSNR→0wm,n,k = 0 and limSNR→∞wm,n,k =

1. This suggests a sub-optimal detector by discarding the observations with lower

received subband SNRs, and combining the other observations with higher channel
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gains with unit weight. This sub-optimal detector does not require the exact values

of the received subband SNRs or noise variances and their approximate values can be

used to select a subset of them.

In order to implement the fusion rule in (3.2), which is optimal for (3.1), sensors

need to calculate two parameters, the noise variance σ2
m and total subband energy

θm,n,k. Each sensor computes

• the DFT of N observation vectors of size K,

• the subband observed energies Um,n,k, and

• the weighted sum of the observed subband energies
∑

n,k wm,n,k
Um,n,k
σ2
m

.

Since the number required operations is dominated by a DFT (requiring an order

of KN log2K operations), Λ1 requires an order of KN log2K operations at each

participating sensor, which is fewer than that of the time-domain NPD proposed

in [21] which requires an order of K3N2 operations. For every KN received obser-

vations (i.e., 2KN real numbers), the mth sensor reports solely one real number,
∑

n,k wm,n,k
Um,n,k
σ2
m

, to the FC. Obviously, the Communication Overhead (CO) defined

as the ratio
# reported values

# received samples
is 1

2KN
. The CO is very small for large values of

K and N and is inversely proportional to the sensing time (see Table 3.1). The FC

compares the summation of the reported values with η1 to make the global decision.

The detector in (3.2) is investigated in [62, page 142] for a different application

with a simpler model where the SNRs and noise variances are identical. However, to

the best of our knowledge, the performance of (3.2) has not been analyzed to date.

To this end, we introduce the following theorem that expresses the CDF of a linear

combination of Gamma random variables.
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Theorem 3.1 ([8]). The CDF of z =
∑

l θlul, where θl > 0 and {ul} are independent

random variables, each with Gamma distribution, i.e., f(ul) = url−1
l

e−ul
Γ(rl)

, for ul > 0,

is given by

Fz(z; r,θ) =
1∏L

l=1 θ
rl
l

L∑

k=1

rk∑

l=1

Ψk,l,rθ
rl
k γ(rl,

z

θk
) for x ≥ 0, (3.3a)

where γ (s, x) = 1− e−x∑s−1
q=0

xq

q!
, r = [r1, . . . , rL], θ = [θ1, . . . , θL], and,

Ψk,l,r =
∑

[i1,...,il]∈Ak,l

∏

1≤j≤l,j 6=k

(ij + rj − 1

ij

)( 1

θj
− 1

θk

)−(rj+ij)

, (3.3b)

where the set Ak,l is defined as

Ak,l =
{

[i1, . . . , il] ∈ Zl
∣∣∣

L∑

j=1

ij = l − 1, ik = 0, ij ≥ 0 ∀j
}
. (3.3c)

In non-stationary environment when wm,n,k are distinct for different (m,n, k),

employing Theorem 3.1 and some algebraic simplification, it can be shown that the

CDF of Λ1 =
∑

l θlul is given by

FΛ1(Λ1;θ) =
MNK−1∑

l=0

(1− e−
Λ1
θl )

∏

0≤`≤MNK−1,` 6=l

θ`
θ` − θl

, (3.4)

where θ = [θ0, . . . , θMNK−1]. Obviously, we have θmNK+nK+k = [θ0]mNK+nK+k =

wm,n,k under H0 and θmNK+nK+k = [θ1]mNK+nK+k =
θm,n,k−σ2

m

σ2
m

under H1. As a result,
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the Pfa and Pmd of Λ1 in (3.2) are expressed as

non-stationary model:





Pfa,Λ1 = 1− FΛ1 (η1;θ0) ,

Pmd,Λ1 = FΛ1 (η1;θ1) ,
(3.5)

where FΛ1 is defined in (3.4).

Remark 3.2. Under the stationary channel model, the channel impulse response

hm,n(l) remains static (invariant with respect to n) during the spectrum sensing in-

terval. This is in contrast to the non-stationary channel model where the channel

impulse response is constant only over the duration of one observation interval, but

varies from interval to interval. Thus for the stationary channel model, the DFT of

the channel impulse response in (3.2) is constant over the spectrum sensing interval

and can be approximated as Hm,n,k ≈ Hm,k, i.e., wm,n,k ≈ wm,k, and θm,n,k ≈ θm,k. In

such condition for the case where wm,k are distinct values for different (m, k), Λ1 be-

comes a linear combination of MK independent random variables uk,m with Gamma

distribution, i.e., f(uk,m) =
uN−1
k,m e

−uk,m

Γ(N)
, uk,m > 0. Employing Theorem 3.1, the Pfa

and Pmd of (3.2) under stationary channel model are expressed as

stationary model:





Pfa,Λ1 = 1− Fz (η1; r,θ′0) ,

Pmd,Λ1 = Fz (η1; r,θ′1) ,
(3.6)

where r = [N, . . . , N ], [θ′0]mK+k = wm,k and [θ′1]mK+k = |Hm,n,k|2Pk/σ2
m, and Fz is

defined in (3.3).
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3.4 Generalized Likelihood Ratio Detectors

3.4.1 GLRD for Uniform Power Distribution and Unknown

SNRs

We previously assumed that the subband SNRs and noise variance are known. How-

ever in some cases the environment has a fast changing dynamics and it is unreason-

able to assume the availability of the channel knowledge at the sensors. On the other

hand, due to the fast dynamics of the channel, the OFDM source cannot adapt to the

channel variations and therefore allocates its transmit power uniformly to the differ-

ent sub-channels. In this section, we address the detection of such an OFDM source,

where the transmit power of subbands Pk are assumed equal yet unknown. Without

loss of generality, let the channel gains Hm,n,k absorb the subband transmit power,

i.e., Pk = 1. Hence, to obtain the GLRD, we only need to find the MLE of |Hm,n,k|2

by maximizing the PDFs of the observations f({Ym,n,k}|H1) in (3.1) with respect to

|Hm,n,k|2. Note that since hm(n, l) = 0 for l ≥ Lc, the projection of the IDFT of

{|Hm,n,k|2} is zero on some components, i.e., [F−1|Hm,n,k|2]l = 0, Lc ≤ l ≤ K − Lc.

Hence, ̂|Hm,n,k|2 is the solution to the following optimization problem:





min
|Hm,n,k|2

∑
m,n,k

Um,n,k
σ2
m+|Hm,n,k|2

+ log(σ2
m + |Hm,n,k|2)

[F−1|Hm,n,k|2]l = 0, Lc ≤ l ≤ K − Lc.
(3.7)

Since this is a non-convex optimization problem, finding the general optimum is com-

putationally expensive when K is large. We notice the solution to the optimization

problem (3.7), when the constraints are relaxed, is given by max(Um,n,k − σ2
m, 0). Us-

ing this solution, we propose to use the following method to obtain an approximate
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solution:

1. Take IDFT of max(Um,n,k − σ2
m, 0) and retain the first Lc and last Lc − 1 ele-

ments, i.e.,

ρ̂m,n(l) =





0, Lc ≤ l ≤ K − Lc
[F−1max(Um,n,k − σ2

m, 0)]l, else.
(3.8)

2. Take DFT of ρ̂m,n(l) and use |[F ρ̂m,n(l)]| as a feasible initial estimate of |Hm,n,k|2.

One may use exhaustive search to solve (3.7) and then obtain the GLRD. However to

reduce the computational cost, we approximate the solution of (3.7) with ̂|Hm,n,k|2 ≈

|[F ρ̂m,n(l)]k|.

Substituting this approximation in
f({Ym,n,k}|H1)

f({Ym,n,k}|H0)
≷H1
H0
η̄2, with η̄2 being the detection

threshold, we propose the following sub-optimal GLRD:

Λ2 ,
∑

m,n,k

|[F ρ̂m,n(l)]k|
σ2
m + |[F ρ̂m,n(l)]k|

Um,n,k
σ2
m

− log(1+
|[F ρ̂m,n(l)]k|

σ2
m

)
H1

≷
H0

η2, (3.9)

where η2 = log(η̄2).

Remark 3.3. Under the stationary channel mode, relaxing the constraints, the so-

lution to (3.7) is given by max( 1
N
Um,k − σ2

m, 0), where Um,k =
∑

n Um,n,k. In this

condition, the same procedure, as described above, provides a feasible starting point

when the term Um,n,k is replaced with
Um,k
N

in (3.8).

Using (3.9), each sensor only needs to know the noise variances σ2
m and performs

an order of NK log2K operations (due to the dominant contribution of DFT in

the complexity). This detector exploits the additional a-priori knowledge of uniform
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transmit powers. However, this exploitation involves extra cost for the computation

of |[F ρ̂m,n(l)]| using (3.8).

Since Λ2 assumes uniform power allocation across all the sub-channels, its per-

formance degrades substantially if this condition is not satisfied. For non-uniform

transmit powers, this detector misinterprets the channel constraint and incorrectly

imposes it on the received subband powers, i.e., [F−1Sm,n,k]l = 0, for Lc ≤ l ≤ K−Lc
which is not necessarily correct if {Pk} are non-identical.

3.4.2 GLRD for Non-uniform Power Distribution and Un-

known SNRs

In contrast to the Section 3.4.1, here we assume the channel variations are slow and

therefore the OFDM source employs bit-loading techniques (e.g. [99]) and adapt the

transmit powers according to the channel. As such, we derive the GLRD assuming

that {|Hm,n,k|2Pk} are unknown while {σ2
m} are known. To this end, we need the

MLE of θm,n,k, i.e., θ̂m,n,k, which is found by maximizing f({Ym,n,k}|H1) with respect

to θm,n,k as θ̂m,n,k = max(Um,n,k, σ
2
m). Substituting θ̂m,n,k in the likelihood ratio

f({Ym,n,k}|H1)

f({Ym,n,k}|H0)

H1

≷
H0

η̄3, with η̄3 being the detection threshold, and simplifying the result,

we obtain the following GLRD for the non-stationary channel model:

Λ3 ,
∑

m,n,k

g
(Um,n,k
σ2
m

)
u
(Um,n,k
σ2
m

− 1
)H1

≷
H0

η3, (3.10)

where η3 = log η̄3,u(.) is the step function, and g(x)=x− 1− log(x).

Remark 3.4. Under the stationary channel model, the MLE of θm,k is given by

θ̂m,k = max(
Um,k
N
, σ2

m). In this condition, the GLRD in (3.10) is still applicable.
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However, the term Um,n,k must be replaced with
Um,k
N

.

For the GLRD in (3.10), each sensor needs to know its noise variance. In this set-

ting, each sensor first censors less informative observations with insignificant energy,

i.e., those for which
Um,n,k
σ2
m

< 1, (or
Um,k
Nσ2

m
< 1 under the stationary model) and only

takes into account the observations that favor the hypothesis H1. Then, using the

function g(x) = x − 1 − log(x), sensors performs a transform on the local energies

and forwards the summation
∑

n,k g
(Um,n,k

σ2
m

)
u
(Um,n,k

σ2
m
−1
)
. This detector requires each

participating sensor to perform only an order of KN log2K operations (due to the

dominant contribution of DFT in the complexity), which is fewer than that of the

suboptimal time-domain detector proposed in [21] which requires an order of NK2

operations.

3.4.3 GLRD for Unknown SNRs and Noise Variances

So far, the noise variance was assumed to be known. However in some situations, the

noise spectrum may vary with time and therefore it must be estimated based on the

acquired samples. Here, we treat the noise variance as unknown and derive a GLRD.

To obtain this detector, we must find the MLE of the unknown parameters under each

hypothesis. The obtained MLE then will be substituted in the corresponding PDFs,

the ratio of which, gives the desired GLRD. The MLEs are computed by maximizing

the PDFs of the observations in (3.1) with respect to θm,n,k and σ2
m. Thus we have

H0 : σ̂2
m =

∑
n,k Um,n,k

NK
, H1 : θ̂m,n,k = Um,n,k. (3.11)
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Substituting (3.11) respectively in f({Ym,n,k}|H0) and f({Ym,n,k}|H1), we obtain the

following GLRD:

Λ4 ,
∑

m

Ω(Um,1,1, . . . , Um,N,K)
H1

≷
H0

η4. (3.12)

where Ω(x1, . . . , xp) = log(x1+...+xp
p

) − log x1+...+log xp
p

, referred to as the homogeneity

index of (x1, . . . , xp), and η4 is the detection threshold.

Remark 3.5. For the stationary channel model and under H1, it can be shown that

θ̂m,n,k =
Um,k
N

. Thus in order to use Λ4 for such condition, the term Um,n,k must be

replaced by
Um,k
N

.

The detector Λ4 is a constant false alarm detector and does not require a-priori

knowledge about the noise variance and the SNRs. For this detector, each sensor must

carry out an order of KN log2K computations (due to the dominant contribution of

DFT in the complexity) to obtain the real number Ω(Um,1,1, . . . , Um,N,K) and shall

report it to the FC. The complexity of the time-domain GLR detector proposed in

[21] is of order of NK2 and is more than that of Λ4. This detector compares the ratio

of arithmetic to geometrical mean of the reported subband energies (Um,n,k or
Um,k
N

)

with a threshold. In fact, the ratio of geometrical mean to arithmetic mean is measure

of spectral flatness, i.e., Λ4 is always positive and quantifies how the observed signal

resembles a white noise process. A smaller value for Λ4 indicates that the energy is

more uniformly distributed over all the subbands and the power spectrum is more

flat. Otherwise, a large value of Λ4 indicates that more power is concentrated in a

number of bands than the other subbands [68]. Note that under H0, the signal is a

white noise process and has a flat spectrum. As a drawback, this detector fails in
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some cases where under H1, the spectrum is flat (see Remark 3.6). In such cases, Λ4

misinterprets the observation as white noise and favors H0.

Interestingly, the ratio of the geometric mean to the arithmetic mean also appears

as one of the well known source enumeration criterion in the literature (e.g. in MDL

or AIC criteria) [98, 27]. In current practical standards NK is a large number whereas

M can be small. To the best of our knowledge, the performance of (3.12) has not been

analyzed for this case. We use the following theorems to find the asymptotic PDFs of

Λ4 as KN →∞ under H0 and H1. The analysis carried out in the following theorems

is novel and has been recently cited and used in [77] for performance analysis of a

similar detector.

Theorem 3.2. For large NK, the distribution of Λ4 in (3.12) under H0 is approxi-

mately normal with the following mean and variance

E[Λ4|H0]=M(log(α)−ψ(α)), var[Λ4|H0]=
αMψ′(α)−M

NK
, (3.13)

where ψ(α) = Γ′(α)/Γ(α) is the digamma function and α = 1 for non-stationary, and

α = N for stationary model.

Proof. Similar to the proof in [50] assuming that {Um,n,k} are independent with identi-

cal Gamma distribution, i.e., {Um,n,k} ∼ exp(−∑n,k
Um,n,k
σ2
m

)
∏

n,k

Uαm−1
m,n,k

Γ(αm)σ2αm
m

, it is easy

to show that Ω(Um,1,1, . . . , Um,N,K) is the MLE of log(αm)−ψ(αm). It is proved that

as NK → ∞ the MLE gives an unbiased estimation and converges in distribution

to a normal distribution (e.g., see [58]) with a variance given by Cramér–Rao bound.

The proof is complete since Λ4 is the summation of the MLEs obtained from different

sensors.
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Theorem 3.3. For large NK, the distribution of Λ4 in (3.12) under H1 is approxi-

mately normal with the following mean and variance

E[Λ4|H1] =
∑
m

Ω(θm,1,1, . . . , θm,N,K)+M(log(α)−ψ(α)),

var[Λ4|H1] = αMψ′(α)−M
NK

+ α−1
∑

m

∑
n,k θ

2
m,n,k

(
∑
n,k θm,n,k)2 − M

NK
,

(3.14)

Proof. Under H1, we rewrite Λ4 as follows:

Λ4 =
∑

m

Ω(θm,1,1, . . . , θm,N,K) + Ω(Zm,1,1, . . . , Zm,N,K)+

log
∑

n,k

(
Zm,n,k∑
n,k Zm,n,k

NKθm,n,k∑
n,k θm,n,k

), (3.15)

where Zm,n,k =
Um,n,k
θm,n,k

. The first term in the above summation is constant which

only appears in E[Λ4|H1]. The distribution of the second term in (3.15) is given by

Theorem 3.2 as {Zm,n,k} are independent with identical exponential distribution. For

the last term in (3.15), we notice that it is a function of {xm,n,k =
Zm,n,k∑
n,k Zm,n,k

} which

has a Dericlet distribution, i.e., f({xm,n,k}) = Γ(NK)

ΓKN/α(α)

∏
n,k x

α−1
m,n,k. It is easy to find

the mean and the variance of the last term using a Taylor expansion, i.e.,

log

∑
n,kNKxm,n,kθm,n,k∑

n,k θm,n,k
≈

(

∑
n,kNKxm,n,kθm,n,k∑

n,k θm,n,k
− 1)− 1

2
(

∑
n,kNKxm,n,kθm,n,k∑

n,k θm,n,k
− 1)2 + . . .
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Figure 3.2: The empirical PDFs of the detector statistic Λ4 under H0 and H1 and the
approximated normal distributions in (3.13) and (3.3), with M = P =
N = 1, K = 512.

as follows

E[log
∑
xm,n,kθm,n,k

(NK)−1∑ θm,n,k
] ≈ 0, (3.16a)

var[log
∑
xm,n,kθm,n,k

(NK)−1∑ θm,n,k
] ≈ α−1

∑
θ2
m,n,k

(
∑
θm,n,k)2 − 1

NK
, (3.16b)

Cov[log(
∑
θm,n,kxm,n,k

(NK)−1∑ θm,n,k
),
∑

log(xm,n,k)] ≈ 0, (3.16c)

From (3.16c), we conclude that the 2nd and 3rd terms in (3.15) are uncorrelated for

large NK (which is accurate to O( 1
NK

)). In addition, our simulation results reveal

that the last term is also asymptotically normal (see Figure 3.2). This implies that

these terms are jointly normal and independent for large NK. Therefore, Λ4 under

H1 is a normal with the variance in (3.14) which is the sum of (3.16b) and the variance

in (3.14).
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Figure 3.2 depicts the empirical PDFs, the normal PDFs obtained from the em-

pirical mean and variance, and the theoretical normal PDFs in (3.13) and (3.14) for

Λ4 under H0 and H1, and log
∑

(
Zm,n,k∑
Zm,n,k

NKθm,n,k∑
θm,n,k

) under H1, where M = N = 1,

K = 64 and {θm,n,k} are such that
θm,n,k−1

50
∼ exp(−x), Ω(θm,1,1, . . . , θm,N,K) = 0.5,

and
NK

∑
θ2
m,n,k

(
∑
θm,n,k)2 = 1.8. This reveals that our theoretical expressions are accurate.

Note that a better accuracy can be obtained by considering higher moments and

cumulants, which results in intractable expressions for the performance of Λ4.

Remark 3.6. The last two theorems indicate that

E[Λ4|H1]− E[Λ4|H0] =
∑

m

Ω(θm,1,1, . . . , θm,N,K)

which is the homogeneity index of the subband energies. This is why a better perfor-

mance is achieved when the center of the two PDFs are far apart, which happens only

if θm,n,k are heterogenous, i.e., the source spectrum observed by sensors are non-flat.

It is easy to show that the homogeneity index is a decreasing function of σ2
m. In ad-

dition in high SNRs, the difference between the two means tends to the homogeneity

index of the source component of the subband energies, i.e., |Hm,n,k|2Pk.

The Pfa and Pmd of Λ4 can be expressed as follows:





Pfa,Λ4 ≈ Q( η4√
αMψ′(α)−M

NK

),

Pmd,Λ4 ≈ 1−Q(
η4−

∑
m Ω(θm,1,1,...,θm,N,K)√

αMψ′(α)−M
NK

+α−1

∑
θ2
m,n,k

(
∑
θm,n,k)2

− 1
NK

),
(3.17)

where Q(x)= 1√
2π

∫∞
x
e−

t2

2 dt, and η4 = η4−M(log(P )−ψ(P )).
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It can happen that the power spectrum of the received source component is rel-

atively flat, e.g., at low SNRs . In such a case, if all the sensors observe uniformly

distributed θm,n,k over all the subbands, this detector misinterpret the observations as

noise and favors H0. In addition under H0, the Pfa increases for highly colored noise

where the noise energy is not uniformly distributed over subbands. This implies that

Λ4 performs well only if the received power spectrum from the source is non-flat and

but that of noise is.

Theorem 3.4. The detectors (3.10) and (3.12) are asymptotically optimal, in the

sense of Theorem 2.3, as NK →∞.

Proof. The functions (3.10) and (3.12) are two separating functions [49] respectively

in terms of the unknown parameters {θm,n,k} and {σ2
m}. Thus, they are separating

function estimation tests and hence are asymptotically optimal [49, Th. 8].

3.5 Selection Combining Detector

The optimal NPD Λ1 needs the exact values of θm,n,k and σ2
m. However, in cognitive

radio, sensors cannot obtain these parameters in isolation. Moreover, in most OFDM

applications, the source occupies only a given subset of sub-channels [38]. However,

such a-priori knowledge is not incorporated in the detectors Λ2 in (3.9), Λ3 in (3.10),

and Λ4 in (3.12). Here, motivated by these facts and Remark 3.1, we propose an SC

detector that utilizes a selected subset of sensors and observations. We propose that

each sensor approximates the noise variance σ2
m in (3.2) by σ2

m ∈ R+ and the weight
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factor wm,n,k in (3.2) by a binary value Im,n,k ∈ {0, 1}, as follows

Λ5 ,
∑

m,n,k

Im,n,k
Um,n,k
σ2
m

H1

≷
H0

η5. (3.18)

Here, the sensors do not need the exact values of the involved parameters and only

require enough information to assign the weight of 0 or 1 and σ2
m to normalize the

observations. In this way, the mth sensor reports
∑

n,k Im,n,k
Um,n,k
σ2
m

to the FC only

if this value is non-zero. For (3.18), the CO is smaller than other methods as the

probability of zero weights for Im,n,k increases. Furthermore, the FC adds the reported

values and makes the global decision. Similarly the computational complexity of Λ5 is

of order of NK log2K (due to the dominant contribution of DFT in the complexity),

which is lower than that of the time-domain GLRD proposed in [21] which requires

an order of NK2 operations. The reason for the reduction in the complexity of the

detectors in this chapter is that the signals are uncorrelated in frequency-domain,

whereas time-domain algorithms deal with non-diagonal matrices. The following

examples illustrate how Im,n,k and σ2
m can be approximated in practise.

Example 3.1. If we substitute σ2
m = 1, Im,n,k = 1,∀m,n, k in (3.18), we obtain the

energy detector [48]. The energy detector decides between H0 and H1 by comparing the

sum of the measured subband energies to the threshold η
EN

, i.e.,
∑

m,n,k Um,n,k
H1

≷
H0

η
EN

.

The CDF of this detector is given by (3.4). Thus its probabilities of false-alarm Pfa,EN

and mis-detection Pmd,EN can be expressed as follows:

Pfa,EN = 1− Fz (η
EN

; [NK, . . . , NK], [σ2
1, . . . , σ

2
M ]) ,

Pmd,EN = FΛ1 (η
EN

;θEN) ,
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where [θEN]mNK+nK+k = Sm,n,k and Fz and FΛ1 are defined in (3.3) and (3.4), re-

spectively.

Example 3.2. In applications such as LTE or WiMax, a number of subcarriers are

not employed for signal transmission [38]. In this case, the sensors can use the average

of the measured subband energies in those subbands as σ2
m. Or alternatively use the

average of a number of smallest values of Um,n,k as σ2
m. The observations with lower

energy provide a better approximation for the noise variance. In addition, for higher

SNRs it is more likely that Um,k takes larger values. Thus we propose to sort data

{Um,k} at each sensor and let {Ũm,l}Kl=1 denote the sorted data and use the average of

a number of smallest values as σ2
m, and use the following as decision statistic

∑

m,l

Ũm,l
σ2
m

u(Ũm,l − Ũm,L) (3.19)

where u(.) is the step function, L ∈ {1, . . . K− 1} is the number subbands assumed to

be vacant. For the stationary channel model, the same criteria can be used, however,

the term Um,n,k must be replaced with
Um,k
N

. This detector requires that each sensor

performs an order of KN log2K operations. In addition, it has constant false alarm

rate and does not need a-priori knowledge of the noise variance or SNRs.

3.6 Simulation Results and Discussion

In this section, we numerically evaluate the proposed detectors. We generate a

multi-path time varying channel with the correlation function of E[hm,n(l)hHm,n′(l)] =

σ2
m,lJ0(2πfd(n− n′)), where σ2

ml represents the normalized power of the lth path of

the channel between the source and mth sensor such that
∑

l σ
2
m,l = 1, J0 denotes
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the zeroth-order Bessel function of the first kind, and fd is Doppler frequency. In

the simulations, a multi-path wireless channel with an exponentially decaying power

delay profile is chosen, i.e., Lc = 3, and σ2
m,0 = .448, σ2

m,1 = .322, and σ2
m,2 = .230

[78].

Figure 3.3 depicts the average mis-detection probability versus the average false-

alarm probability of the detectors Λ1 to Λ5 with K = 512, N = 20, fd = .0285, Pk = 1

and a cyclic-prefix Lp = 8 for two scenarios: 1) M = 4 and σ2
m = 50m and 2) M = 8

and σ2
m = 50m. We use the energy detector, as in Example 3.1 for the SC detector Λ5.

We observe that the performance of the detectors Λ1 to Λ4 improves as the number

of observation intervals N increases. This means that the performance loss of the

sub-optimal detectors can be compensated by increasing the number of observation

intervals. For instance, our simulation results show that the sub-optimal detector

Λ2 for N = 60 outperforms the optimal detector Λ1 with N = 20. Since the noise

variances of the sensors m ∈ {4, . . . , 8} are large, the performance of Λ1, Λ2, Λ3, and

Λ5 only slightly improves as the number of sensors increases. We also observe that

the detector Λ4 does not function in this setting, i.e., the outcome of the decision

is independent of the observations, number of sensors M and observation intervals

N . This is because the channels have a dominant path and the spectrum is almost

flat. In addition a uniform power allocation at the OFDM transmitter is used, which

results in a fairly flat power spectrum and therefore Λ4 (which uses the homogeneity

index) can not distinguish H0 from H1. We also observe that the performance of the

energy detector Λ5 is inferior to that of Λ2 and Λ3.

Figure 3.4 depicts the average probability of mis-detection versus the average

probability of false alarm of {Λi}5
i=2 for K = 512,M = 4, N = 20, Lp = 8, fd =
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Figure 3.3: Average Pmd versus average Pfa of Λ1 to Λ5 with K = 512, N = 20, Lp =
8, fd = .0285, Pk = 1 for two scenarios: 1) M = 4 and σ2

m = 50m and 2)
M = 8 and σ2

m = 50m.

.0285, σ2
m = 1 and fixed total transmit power of

∑
Pk = 512 for two cases where only

4 or 128 subcarriers are employed for transmission. The case where only 4 subcarriers

are employed represents an extremely non-flat spectrum. Therefore, we expect that

the performance of Λ2, which assumes uniform power allocation, significantly degrades

as the homogeneity index of the source spectrum increases. In addition, Λ3 which

estimates subband SNRs, outperforms other sub-optimal detectors. In contrast, the

performance of Λ4 is improved as the homogeneity in of the source spectrum increases.

Similarly, for extremely non-flat spectrum, the performance of Λ5 is improved as more

subbands are occupied. All the aforementioned detectors provide considerably inferior

performance compared to that of the optimal NPD that implies that the a-priori

knowledge about the transmitter power allocation can enhance the performance of

the sub-optimal detectors. Further simulation shows that Λ5 presented in Example 3.2
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Figure 3.4: Impact of spectrum flatness on the performance of the detectors Λ2 to Λ5

with K = 512,M = 4, N = 20, Lp = 8,= 100, fd = .0285, σ2
m = 1, and∑

Pk = 512 for two cases that only 4 or 128 subcarriers are employed for
transmission.

with L = 512− 4 or L = 512− 128 provides a performance close to that of Λ1. Note

that Λ5 in Example 3.2 requires the knowledge of the number of vacant subbands.

Figure 3.5 depicts the performance of the detectors Λ1, Λ2, and Λ4 for M =

4, N = 20, K = 512, Lp = 8, σ2
m = 50m, fd = .0285, Pk = 1 and using smaller (than

K) DFT lengthes of K ′ = 256 (with N ′ = 40), and K ′ = 32 (with N ′ = 320).

The performance of Λ1 is also reported for the DFT length of 512 for the sake of

comparison. Our simulation results show that the performance of the detectors Λ3

and Λ5 is not sensitive to the employed the DFT length from 32 to 512 (therefore,

only the curve for 256 is plotted in this figure). In contrast, the performance using Λ2

slightly degrades as the DFT length decreases. Using the smaller length K ′ allows to

significantly reduce the computational cost of Λ3 and Λ5 to NK log2(K ′) with almost

no performance loss.
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Figure 3.5: Impact of the DFT length on the performance of the detectors Λ1 to Λ5

with K = 512, N = 20, Lp = 8, σ2
m = 100, fd = .0285, Pk = 1 for two

number of sensors 1) M = 4, 2) M = 8.

Figures 3.6 and 3.7 show the achieved average mis-detection probability of the

detectors Λ1 to Λ5 for a given false alarm of Pfa= 0.1 and M = 4, N = 20, K =

512, Lp = 8, σ2
m = 50m, fd = .0285, Pk = 1 where there is no time and frequency syn-

chronization, respectively. For imperfect time-synchronization sensors independently

pick random times uniformly distributed over [− τ
2
τ
2
] as the start of an OFDM frame.

For imperfect frequency-synchronization sensors have independent random frequency

offsets uniformly distributed over [−φ
2
φ
2
]. Interestingly, these detectors are robust

against both time and frequency mismatches.

Figure 3.8 shows the achieved average mis-detection probability of the detectors

Λ1 to Λ5 as a function of the transmitted signal variance −20dB ≤ Pk ≤ 0dB, for a

given false alarm of Pfa = 0.1 and M = 4, N = 20, K = 512, Lp = 8, σ2
m = 50m, and

fd = .0285. We observe that the performance of the proposed detectors degrades for
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Figure 3.6: Impact of imperfect time synchronization error on the performance of the
detectors Λ1 to Λ5 for a given false alarm of 0.1 with M = 4, N = 20, K =
512, Lp = 8, σ2

m = 50m, fd = .0285, Pk = 1.
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Figure 3.7: Impact of imperfect frequency synchronization error on the performance
of the detectors Λ1 to Λ5 for a given false alarm of 0.1 with M = 4, N =
20, K = 512, Lp = 8, σ2

m = 50m, fd = .0285, Pk = 1.
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Figure 3.8: Impact of transmit power Pk on the performance of the detectors Λ1 to
Λ5 for a given false alarm of = 0.1 with M = 4, N = 20, K = 512, Lp =
8, σ2

m = 50m, and fd = 0.0285.

small values of Pk. Note that Λ4 malfunctions as the subband received powers are

equal and the spectrum is flat, i.e., the achieved mis-detection probability is 0.9 on

average regardless of Pk. Other detectors are robust for small values of Pk and an

average mis-detection probability of less than 0.9 is achievable for Pk ≥ −20dB.

Figure 3.9 compares the performance of Λ3 and Λ4 with two time-domain detectors

in [21, eq. (21)-(22)], which are designed for similar conditions and denoted by Λ6

and Λ7 respectively. We assume M = 1, N = 10, K = 64, Lp = 8, σ2
m = 1, fd =

0.0285 for two scenarios: 1) fully-utilized spectrum with 64 employed subcarriers

and 2) under-utilized spectrum with 32 employed subcarriers. The performance of

Λ4 (in contrast to Λ3, Λ6, and Λ7) improves as the number of employed subcarrier

decreases (See Remark 3.6). In addition, Λ4 (despite lower computational complexity)

outperforms Λ7 when the spectrum is under-utilized. This makes Λ4 attractive in for
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Figure 3.9: Comparison of Λ3 and Λ3 with Λ6 and Λ7 (proposed in [21, eq. (21)-(22)])
with M = 1, N = 10, K = 64, Lp = 8, σ2

m = 1, and fd = 0.0285 when only
32 or 64 subcarriers are employed for transmission.

detecting under-utilized spectrum. In this case, Λ4 may be used in conjunction with

a second detector for fully-utilized spectrum (such as energy detector). The study

of such multi-detector system is beyond the scope of this chapter. Additionally,

Λ3 (despite lower computational complexity) significantly outperforms Λ6 since it

takes into account the multichannel fading effect and non-uniform power allocation in

frequency-domain. Note that Λ6 and Λ7 outperform previously known time-domain

detectors, hence, this demonstrate that our proposed frequency-domain detectors

outperform state-of-the-art time-domain detectors.

3.7 Conclusion

We have considered distributed detection of an OFDM random source using a coop-

erative set of sensors. Assuming a noncoherent system, we have shown that sensors
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only need to transmit a real-valued function of their observations. We have analyzed

the NPD (for known parameters) and a GLRD (for unknown SNRs and noise vari-

ance) and proposed two new GLRDs (for unknown SNRs or noise variances) and a

new SC detector. For the SC detector, only a set of observation are selected by sen-

sors and utilized by the FC for detection. We have derived the Pmd and Pfa of these

detectors. We have also proved that the GLRDs are asymptotically optimal. Our

theoretical analysis and simulation results have shown that these frequency-domain

detectors have negligible communication overhead and computational complexity and

outperform the state-of-the-art time-domain detectors.



Chapter 4

Spectrum Sensing over Fading

Channels

We propose novel detectors for cooperative spectrum sensing in mixture-Nakagami

fading channels, namely 1) NPD, 2) a Locally Optimum Detector for weak signals

that use the correlation between the observations and transmitted signals, 3) a weak

signal detector for unknown parameters and 4) two GLRDs that use the received

energies. They significantly outperform energy and cyclostationary detectors in prac-

tical scenarios. We also analyze the performance of the NPD and GLRD for unknown

transmitted signal over Rayleigh channels, where they reduce to a linear weighted-

correlator and a weighted-energy detector respectively.

74
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4.1 Introduction

In cooperative spectrum sensing, a set of sensors aim to detect a signal source. The

performance of such muti-sensor detectors deteriorates significantly in fading envi-

ronments. Analogous to diversity techniques in communication systems, observations

from multiple sensors with independent channels can be employed to combat fading.

To this end, the sensors transmit a summary of their observations to a FC where a

global decision is made.

Most of the existing cooperative spectrum sensing techniques do not make use

of the channel fading parameters [47, 84, 71, 46, 90]. Assuming fixed channel gains

between the source and sensors, the NPD becomes a linear weighted energy detec-

tor. We prove that this is not always true for random fading channels. Moreover in

fading environments, the energy detector (ED) [47, 84] and Locally Optimum Detec-

tor (LOD) are suboptimal [71, 46]. Here, we aim to incorporate fading parameters into

spectrum sensing. We consider mixture-Nakagami channels, which can accurately ap-

proximate most commonly used channel distributions (e.g., Rayleigh, Nakagami, and

Rician, Nakagami-lognormal [19]), and derive novel detectors capable of exploiting

the knowledge of the fading parameters. We show that the NPD and LOD are the

sum of summaries reported by sensors, where each summary is a real-valued function

of the correlation between the observations and the transmitted signal. Interestingly,

the NPD for the Rayleigh Fading Channel (RFC) model simplifies to a linear com-

bination of these correlations. The LOD provides a near-optimal performance and

has a lower computational cost compared to the NPD. For unknown transmitted

signals and known fading parameters, we derive a GLRD and propose a Weak Signal

Detector (WSD) for which the sensors only need to report a real-valued function of
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the energy of their observation. For RFCs, this GLRD simplifies to a weighted energy

detector. The WSD has a lower computational cost and outperforms this GLRD even

at high SNRs. We also derive a second GLRD that does not require the fading param-

eters and its decision statistic is computed numerically by solving some polynomial

equations. This GLRD is attractive for Rayleigh-Lognormal environments [87, p.128]

since without requiring the fading parameters performs close to the WSD.

We introduce the system model in Section 4.2. We derive the NPD, LOD, and

GLRDs and assess their performance for some cases in Sections 4.3 and 4.4. We

numerically evaluate these detectors in Section 4.5 and conclude in Section 4.6.

4.2 System Model

We use a network of M sensors to detect presence of a signal. The received signal by

the ith sensor is denoted by





yi = ni, H0,

yi = hisi + ni, H1,
i = 1, · · · ,M, (4.1)

where hi = rie
jφi ∈ C is the channel gain from the source to the ith sensor, si ∈ C1×L

is the transmitted signal, L is number of samples and ni ∈ C1×L is the received noise.

The absence and presence of the source are denoted by H0 and H1 respectively. We

assume {ni} are independent and normal with zero mean and variance {σ2
i }, i.e.,

f({ni}) =
∏

i

f(ni) =
∏

i

1

πLσ2L
i

exp (−‖ni‖
2

σ2
i

). (4.2)
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By virtue of maximum entropy principle, we assume that {φi} are independent and

uniformly distributed over [0, 2π) [22, 39, 45]. We use a mixture of Nakagami PDF,

i.e.,

f({ri}) =
∏

i

f(ri) =
∏

i

N∑

j=1

2vjm
m

Γ(m)Ωm
i,j

r2m−1
i exp (−mr

2
i

Ωi,j

), (4.3)

where Ωi,j is the average fading power, m is the fading parameter, Γ(.) is the Gamma

function, N is the number of terms in the mixture and
∑

j vj = 1 with vj > 0.

Rayleigh, Nakagami, and Rician PDFs are accurately represented/approximated with

N = 1. As N increases, the mixture f(ri) as a sum of Nakagami terms con-

verges to any pdf. For Nakagami-lognormal distribution, the mixture parameters

are obtained directly from the measurable Nakagami-lognormal parameters, i.e., as

Ωi,j = e
√

2λitj+µi , where µi and λi are the mean and standard deviation of the lognor-

mal pdf respectively, vj =
wj∑N
k=1 wk

, tj and wj are given in [2, p. 890]. Using a sufficient

number of terms this finite series accurately approximates Nakagami-lognormal dis-

tribution [19].

4.3 Optimal Detectors for Known Parameters

In some situations {si} contains known pilots (intended for channel estimation and

synchronization, e.g. in WiFi, WiMax, IEEE 802.22 beacon signals [38, 36]). We

now derive the NPD for known {si}, {Ωi,j},m, N , and {σ2
i }. It optimally maximizes

the probability of detection for a given probability of false alarm and favors H1 if

f({yi}|H1)
f({yi}|H0)

is above some threshold.
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Theorem 4.1. The NPD for (4.1) is

ΛNP ,
∑M

i=1 log(
∑N

j=1 vj
exp(zNP

i,j )Pm−1(−zNP
i,j )

(1+
Ωi,j‖si‖2

mσ2
i

)m
)
H1

≷
H0

ηNP, (4.4)

where zNP
i,j =

|yisHi |2
σ4
i
m

Ωi,j
+‖si‖2σ2

i
, ηNP is the detection threshold and Pm(x) is the Laguerre

polynomial [2, p. 781].

Proof. Under H1, the conditional pdf of the {yi} is Gaussian given the channel gains

{hi = rie
jφi}. Integrating over the PDFs of ri and φi, the pdf of yi is given by

f(yi|H1) =
∫∞

0

∫ 2π

0
e
− ‖yi−rie

jφisi‖
2

σ2
i

f(ri)dφidri
2πL+1σ2L

i
. (4.5)

Denoting siy
H
i = |yisHi |ejψi , we can rewrite the above as

f(yi|H1)= e
−‖yi‖

2

σ2
i

πLσ2L
i

∞∫
0

π∫
0

e
2|yis

H
i |ri cos(θi)−r

2
i ‖si‖

2

σ2
i f(ri)

dθi
π
dri, (4.6)

where θi = φi − ψi. Using the equalities [52, p. 339, p. 707]

I0(a) = J0(a
√
−1) =

∫ π
0
ea cos(θ) dθ

π
,

Γ(m)
2am

e
b2

a Pm−1(− b2

a
) =

∫∞
0
r2m−1e−ar

2
I0(2br)dr

(4.7)

respectively, from (4.6), we obtain the pdf of {yi} under H1 as:

f({yi}|H1) =
∏M

i=1

∑N
j=1 vj

exp(zNP
i,j −

‖yi‖
2

σ2
i

)Pm−1(−zNP
i,j )

πLσ2L
i (1+

Ωi,j‖si‖2

mσ2
i

)m
. (4.8)

From f({yi}|H0) =
M∏
i=1

exp− ‖yi‖
2

σ2
i

πLσ2L
i

and (4.8), we obtain (4.4).
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ΛNP cannot be further simplified, thus it is the decision statistic for (4.1). Each

sensor performs in the order of L operations to compute log(
∑

j vj
exp(zNP

i,j )Pm−1(−zNP
i,j )

(1+Ωi,j‖si‖2/mσ2
i )m

).

The FC compares the sum of these summaries/statistics with ηNP to make a decision.

We now consider weak signals as ‖si‖2 → 0 and derive the LOD, which maximizes

the slope of the average probability of mis-detection P̄md for a fixed average probability

of false alarm P̄fa, i.e., the LOD favors H1 when
∑ ∂f({yi}|H1)

f({yi}|H0)∂‖si‖2 is above some

threshold. From (4.4), the LOD is given by

ΛLO ,
∑M

i=1
ui,LO

σ4
i

|yisHi |2
‖si‖2

H1

≷
H0

ηLO, (4.9)

where ηLO is the detection threshold, ui,LO = σ2
i
∂SNRi
∂‖si‖2 =

∑
jvjΩi,j > 0 and SNRi =

‖si‖2
σ2
i

∑
jvjΩi,j. Each sensor performs in the order of L operations (yet fewer than

that of ΛNP). The FC linearly combines the sample correlations |yisHi |2 with the

weight
ui,LO

σ4
i ‖si‖2

, which are proportional to σ−4
i and the channel quality ui,LO. We now

assess its performance in some cases.

4.3.1 Single-sensor case (SS)

Since exPm−1(−x) is monotonically increasing, (4.4) for M = 1 reduces to a correlator:

ΛNP-SS , |yisHi |2
H1

≷
H0

ηNP-SS, (4.10)

where ηNP-SS is the detection threshold. A similar result for RFCs can be found in [62,

p. 486]. Under H0, ΛNP-SS has an exponential pdf with mean ‖si‖2σ2
i . Under H1 and
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given hi, it has a noncentral chi-squared pdf and its conditional MGF is

E[etΛNP-SS|H1, hi] = e
r2i ‖si‖

4t

1−‖si‖2σ2
i
t (1− ‖si‖2σ2

i t)
−1. (4.11)

Using the identity
∫∞

0
xm−1e−

x
adx = amΓ(m), the MGF of ΛNP-SS is

E[etΛNP-SS|H1] =
∑

j

vj
(1− ‖si‖2σ2

i t)
m−1

(1− tjt)m
, (4.12)

where tj = ‖si‖2(σ2
i +

Ωi,j
m
‖si‖2). We use partial fraction expansion to get

E[etΛNP-SS|H1] =
N∑

j=1

m∑

k=1

vjαk,j(1− tjt)−k, (4.13)

where αk,j can be obtained by multiplying the both sides by (1− tjt)m and evaluating

the kth derivative of the result at t = t−1
j , which amounts to

αk,j =

(
m−1
k−1

)
‖si‖2k−2Ωk−1

i,j σ
2m−2k
i

mk−1(σ2
i +

Ωi,j
m
‖si‖2)m−1

. (4.14)

Taking the inverse Laplace transform of E[etΛNP-SS|H1], we obtain the P̄fa and P̄md of

(4.10) as:

P̄NP-SS, fa = exp (−ηNP-SS‖si‖−2σ−2
i ),

P̄NP-SS, md =
∑N

j=1

∑m
k=1 vjαk,jγ(k, ηNP-SSt

−1
j ),

(4.15)

where γ(p, x) = 1− e−x∑p−1
q=0

xq

q!
for any p ∈ N.
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4.3.2 Rayleigh fading channel (RFC)

For RFCs, i.e., N = m = 1, and Ωi,j = Ωi, we can simplify (4.4) to a linear weighted

correlator as

ΛNP-RFC ,
∑M

i=1
ui,RFC

σ2
i,RFC

|yisHi |2
‖si‖2

H1

≷
H0

ηNP-RFC, (4.16)

where ui,RFC = SNRi

1+ SNRi
, SNRi = Ωi‖si‖2

σ2
i

, and ηNP-RFC is the detection threshold.

ui,RFC ∈ [0, 1) is the ratio of the signal component of the received signal to the total

observed energy and is an increasing function SNRi.

We shall use the following theorem (See [8]) to obtain the CDF of ΛNP-RFC.

Theorem 4.2. If θl> 0 and ul>0 are independent Gamma random variables, i.e.,

f(ul)=
u
rl−1

l e−ul

Γ(rl)
, then the CDF of z=

∑
θlul is

Fz(z; [ri]
L
i=1, [θi]

L
i=1)=

L∏

l=1

θ−rll

L∑

k=1

rk∑

l=1

Ψk,l,rθ
rl
k γ(rl,

z

θk
), (4.17a)

where z > 0 and Ψk,l,r is defined as

Ψk,l,r =
∑

[ij ]lj=1∈Ak,l

∏

1≤j≤l,j 6=k

(
ij + rj − 1

ij

)( 1

θj
− 1

θk

)−(rj+ij), (4.17b)

Ak,l =
{

[ij]
l
j=1 ∈ Zl

∣∣∣
L∑

j=1

ij = l − 1, ik = 0, ij ≥ 0
}
. (4.17c)

To assess the performance of ΛNP-RFC, we note that |yisHi |2 has an exponential pdf

under both hypotheses. Since ΛNP-RFC is a sum of Gamma random variables, we use
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Theorem 4.2 with rl = 1 and θi = ‖si‖2Ωi
σ2
i+‖si‖2Ωi

under H0 and θi = Ωi under H1 to get

P̄NP-RFC, fa = Fz(ηNP-RFC; [1, · · · , 1]1×M , [
‖si‖2Ωi

σ2
i+‖si‖2Ωi

]Mi=1),

P̄NP-RFC, md = Fz(ηNP-RFC; [1, · · · , 1]1×M , [Ωi]
M
i=1).

(4.18)

4.4 Detectors for Unknown Parameters

4.4.1 GLR1: Known Signal Energy and Fading Parameters

We previously assumed that {si} are known. However in some cases, such knowledge

is unavailable. We now derive a GLRD for known ‖si‖2 (instead of {si}) that utilizes

the MLE of unknown parameters. This is motivated by sources with stationary power

such as TV channels for which ‖si‖2 is almost constant if the observation duration is

long enough. The MLE of si under H1 is ŝi = ‖si‖
‖yi‖y

H
i , substituting which in (4.4), we

obtain the following:

ΛGLR1 ,
∑M

i=1 log
∑N

j=1 vj
e
zGLR1
i,j Pm−1(−zGLR1

i,j )

(1+
Ωi,j‖si‖2

mσ2
i

)m

H1

≷
H0

ηGLR1, (4.19)

where zGLR1
i,j = ‖yi‖2‖si‖2

σ4
i
m

Ωi,j
+‖si‖2σ2

i
. Each sensor requires in the order of L operations to com-

pute log
∑

j vj
exp (zGLR1

i,j )Pm−1(−zGLR1
i,j )

(1+Ωi,j‖si‖2/mσ2
i )m

. The FC makes a global decision by comparing

the sum of the reported values with ηGLR1. We now assess the performance of ΛGLR1

for some cases.
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Single-sensor case (SS)

Since exPm−1(−x) is monotonically increasing, (4.19) reduces to the ED as

ΛGLR1-SS , ‖yi‖2 ≷H1
H0
ηGLR1-SS, (4.20)

for M = 1, where ηGLR1-SS is the detection threshold. A similar result for m → ∞

and N = 1 can be found in [62, p. 250]. Under H0, ΛGLR1-SS has a Gamma pdf with

parameters (L, σ2
i ). Similar to Section 4.3.1, we can show that

E[etΛGLR1-SS|H1] =
∑

j vj
(1−σ2

i t)
m−L

(1−(σ2
i+

Ωi,j
m
‖si‖2)t)m

. (4.21)

For L > m, the pdf corresponding to each term in E[etΛGLR1-SS|H1], is a linear com-

bination of two Gamma random variables. Thus using Theorem 4.2, P̄fa and P̄md of

(4.20) are

P̄GLR1-SS, fa= 1− γ(L, σ−2
i ηGLR1-SS),

P̄GLR1-SS, md=
∑

jvjFz(ηGLR1-SS;[L−m,m], [σ2
i +

Ωi,j
m
‖si‖2, σ2

i ]).

Rayleigh Fading Channel (RFC)

For RFCs, we have N = 1, m = 1, and Ωi,j = Ωi. Thus (4.19) reduces to the following

weighted energy detector, i.e.,

ΛGLR1-RFC ,
∑M

i=1
ui,RFC

σ2
i
‖yi‖2

H1

≷
H0

ηGLR1-RFC. (4.22)
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Similar to Section 4.3.1, we can show that under H1 the MGF of ΛGLR1-SS is given by

E[etΛGLR1-RFC |H1] =
∏M

i=1 (1− ui,RFCt)
1−L(1− SNRit)

−1. (4.23)

Under H0, the MGF of ΛGLR1-RFC is similarly obtained as

E[etΛGLR1-RFC|H0] =
M∏

i=1

(1− ui,RFCt)
−L.

Using these MGFs, we conclude that ΛGLR1-RFC is always a linear combination of

Gamma random variables. Thus employing Theorem 4.2 yields

P̄GLR1-RFC, fa = Fz(ηGLR1-RFC; [L, · · · , L]1×M , [ui,RFC]Mi=1),

P̄GLR1-RFC, md = Fz(ηGLR1-RFC; r,θ),
(4.24)

where r = [[L− 1, · · · , L− 1]1×M , [1, · · · , 1]1×M ], and θ = [[ui,RFC]Mi=1, [SNRi]
M
i=1] ∈

R1×2M .

4.4.2 Weak Signal Detector (WSD)

To detect weak unknown transmitted signals, i.e., ‖si‖2 → 0, we propose to substitute

the MLE of si under H1 in (4.9), which results in the following weighted energy

detector

ΛWSD ,
∑M

i=1
ui,LO

σ4
i
‖yi‖2

H1

≷
H0

ηWSD. (4.25)

Note that each sensor performs in the order of L operations to compute its statis-

tic (although fewer than that of ΛGLR1). Although, this detector is heuristic, our
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simulation results show that it outperforms ΓGLR1 in practical cases.

4.4.3 GLR2: Unknown Signal and Fading Parameters

Thus far, we assumed {Ωi,j} and N are known, which may be impracticable in some

cases. Here, we assume that {si}, ‖si‖2, {Ωi,j}, {vi} and N are unknown and derive

a GLRD for such a case. From (4.19), we observe that the MLE of ‖si‖2Ωi,j under

H1 does not depend on j and is given by

Ω̂i = argmax
Ωi,j‖si‖2

ez
GLR1
i,j Pm−1(−zGLR1

i,j )

(1 + Ωi,j‖si‖2/mσ2
i )
m
. (4.26)

Additionally, N vanishes after substituting Ω̂i in (4.19). As Ω̂i is non-negative, it

must be either zero or the largest positive solution to ∂
∂Ωi

f({yi}|H1) = 0, which

yields Ω̂i = max(
mσ2

i

‖yi‖2+xσ2
i
, 0) and x is the smallest positive root of the polynomial

equation

‖yi‖2+xσ2
i

mσ2
i

(Pm−1(x)− P ′m−1(x))− Pm−1(x) = 0. (4.27)

Substituting Ω̂i in (4.4), we obtain the following GLRD:

ΛGLR2 ,
M∑
i=1

Ω̂i‖yi‖2

σ2
i (Ω̂i+mσ2

i )
+log

Pm−1(− Ω̂i‖yi‖
2

σ2
i

(Ω̂i+mσ
2
i

)
)

(1+Ω̂i/mσ2
i )m

H1

≷
H0

ηGLR2. (4.28)

Theorem 4.3. The detectors (4.19) and (4.28) are asymptotically optimal, in the

sense of Theorem 2.3, as L→∞.

Proof. The functions (4.28) and (4.19) are two separating functions [49] respectively in

terms of the unknown parameters {si} and {Ωi}. Thus, they are separating function
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estimation tests and hence are asymptotically optimal [49, Th. 8].

For RFCs, we have m = 1 and Ω̂i = max(‖yi‖2 − σ2
i , 0). Thus we obtain the

following GLRD:

ΛGLR2-RFC ,
∑

∀i:‖yi‖2>σ2
i

‖yi‖2

σ2
i

− 1− log
‖yi‖2

σ2
i

H1

≷
H0

ηGLR2-RFC. (4.29)

Each sensor computes its test statistic with in the order of L operations. The test

censors the uninformative observations with ‖yi‖2 < σ2
i and only considers those that

support H1. It reduces the communication overhead as the sensors report to the FC

only if the energy level is above the noise energy.

4.5 Simulation Results

We now use Monte-Carlo simulations averaged out over 106 runs to evaluate the

proposed detectors. We assume σ2
i = i, {si} chosen from QPSK symbols with a

period of 10 and ‖si‖2 = L. To capture the large-scale fading, different path-losses

are assumed with E[|hi|2] = .99 for 1 ≤ i ≤ M
2

and E[|hi|2] = .01 for M
2
< i ≤M .

Figure 4.1 shows P̄md versus P̄fa for the proposed detectors and ED for M=2,

L=10, N=1 and m ∈ {1, 3}. ΛNP outperforms the rest and only slightly outperforms

ΛLO. ΛGLR1 outperforms ΛGLR2 as it uses the transmit power knowledge. ΛWSD closely

follows ΛGLR1 and the ED is significantly inferior to the rest as it does not use such

information. Since the channel becomes less faded as m increases, the performance

generally improves. ΛWSD is attractive for unknown transmitted signal and known

fading parameters since it outperforms ΛGLR1 and is computationally less expensive.
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Figure 4.1: Impact of fading parameter m ∈ {1, 3} on the performance of the detec-
tors with N = 1, M = 2, and L = 10.

Figure 4.2 shows the same probabilities for M ∈ {2, 4} and L ∈ {20, 40} in RFCs.

We observe a performance gain as the number of sensors or samples increases, i.e.,

the performance loss of the GLRDs (compared to the NPD) can be compensated by

increasing M or L, e.g. in this setting, ΛGLR1 with M = 2, L = 100 outperforms ΛNP

with M = 2, L = 20 and ΛGLR2 with M = 2, L = 30 outperforms ΛGLR1 with M = 2,

L = 20.

Figure 4.3 shows the same probabilities under Rayleigh-lognormal model with

m = 1, N = 10 for M = 2 and L ∈ {20, 70}. The curves for ΛGLR1 and ΛGLR2 are

very close. Thus ΛGLR2 is attractive in environments which involve both small and

large scale fading, since it only needs the noise variance. Figures 4.2 and 4.3 depict

the performance of the Cyclostationary Detector (CD). The CD performs close to

the GLRDs and WSD only for large values of L. It comes at a high computational
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Figure 4.2: Impact of the number sensors M ∈ {2, 4} and samples L ∈ {20, 40} on
the performance of the detector in Rayleigh channels.

cost as it needs about L3 operations, whereas the proposed detectors require about

L operations.

4.6 Conclusion

We derived several detectors for cooperative spectrum sensing in a mixture-Nakagami

environment that make use of channel statistic for performance improvement. These

detectors significantly outperform the ED. The LOD and WSD are attractive since

they are computationally less expensive than the others, while the LOD provides a

near optimal performance and the WSD outperforms the GLRDs. Under Rayleigh-

lognormal model, the GLRD for unknown fading parameters is attractive since its

performance is very close to the WSD, which uses the fading parameters.
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Figure 4.3: Performance of the proposed detector in Rayleigh-lognormal channels
with L ∈ {20, 70} and M = 2, N = 10, m = 1.



Chapter 5

Cooperative Spectrum

Management

We investigate the joint resource allocation and relay selection problem in a cogni-

tive radio network where (licensed and/or unlicensed) users are willing to cooperate

with each other; decode and forward the messages of the other along with their own

messages to the destination. We study the performance obtained from cooperation

in terms of 1) increasing the achievable rate, 2) saving the transmit energy, and 3)

reducing the resource (time-bandwidth) requirement. To ensure fairness, we assume

that the ratio of the transmit energy to the rate is fixed for all the users. We opti-

mally allocate the radio resources for the proposed Cooperative Protocol (CP) and

compare the results with the Non-Cooperative Protocol (NCP) where users transmits

their messages directly to the destination. Such comparison allows us 1) to decide

whether to cooperate or not and 2) to select one relay among the possible relay users.

We show that a considerable gain (in terms of increasing rate, saving energy, or reduc-

ing time-bandwidth) can be obtained if the direct source-destination channel gain is

90
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significantly smaller than those of alternative links. We demonstrate that a rate and

energy improvement of up to
(

1 + η

√
k
k+1

)η
can be obtained, where η is the environ-

ment path loss exponent and k is the ratio of the required rates (i.e., rate demands)

of the involved users. We also show that the cooperation is only beneficial for the

middle range rate ratio.

5.1 Introduction

In wireless networks, the main interrelated quantities are achievable rate, transmit or

receive energy and efficiency of resource. Many recent results, e.g.,[86, 76, 64], show

that cooperation among users in wireless networks, depending on channel condition

and available energy, may increase the rate or reduce the energy or resource (time-

bandwidth) requirement. Here, we ask the questions:

• Depending on channel condition and available energy, when is cooperation ben-

eficial?

• What are the involved gain or loss from the possible cooperation?

• How can we select a relay among the possible candidates?

In order to answer these questions, we consider a network of licensed and/or

unlicensed users intending to send independent information to their corresponding

destinations (see Figure 5.1 for different scenarios). Since the role of the licensed

and unlicensed users is assumed interchangeable, we do not distinguish between them

and throughout this chapter simply refer to the both as users. We propose that the

users assist each other only if, in a fair way, the cooperation offers benefit in terms
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1

Resource Allocation and Relay Selection for
Collaborative Communications

Saeed Akhavan Astaneh, Saeed Gazor

Abstract—We investigate the relay selection problem in a net-
work where users are able to collaborate with each other; decode
and forward the messages of each other along with their own
messages to the destination. We study the performance obtained
from collaboration in terms of 1) increasing the achievable rate,
2) saving the transmit energy, and 3) reducing the resource (time-
bandwidth) requirement. To ensure fairness, we assume that the
transmit energy to the rate ratio is fixed for all users. We allocate
resource optimally for the proposed collaborative protocol (CP)
and compare the result with the non-collaborative protocol
(NCP) where users transmits their messages directly to the
destination. The collaboration gain allows us 1) to decide whether
to collaborate or not and 2) to select one relay among the possible
relay users. We show that a considerable gain can be obtained if
the direct source-destination channel gain is significantly smaller
than those of alternative links. We demonstrate that a rate and
energy improvement of up to

(
1 + η

√
k

k+1

)η

can be obtained,
where η is the environment path loss exponent andk is the ratio
of the rates of involved users. We also show that the collaboration
is only beneficial for the middle range rate ratio.

Index Terms—Collaboration, relay selection, resource alloca-
tion, rate improvement, energy saving, resource efficiency.

I. I NTRODUCTION

In wireless networks, the main interrelated quantities are
achievable rate, transmit or receive energy and efficiency
of resource. Many recent results, e.g., [1]–[3], show that
collaboration among users in wireless networks, depending on
channel condition and available energy, may increase the rate,
save on the energy or reduce the resource requirement. Here,
we ask the questions: Depending on channel condition and
available energy, when collaboration is beneficial?, what are
the involved gain or loss from possible collaboration?, and
how to select one relay among the possible candidates? In
order to answer these questions, we consider a network of
users intending to send independent information to a their cor-
responding destinations (see Figure 1, for different scenarios).
We propose that users assist each other only if in a fair way, the
collaboration offers benefit in terms of rate, energy or resource.
Here, the notion of fairness means that the achievable rates of
different users would be proportional to their energy levels.
We evaluate the effect of proposed collaboration protocol on
system performance and then, based on the achieved gain or
loss, present our protocol and relay selection.

Most of the existing CPs, e.g., [1]–[3], implicitly assume
that a relay is already chosen, although, selective schemes have
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Authors are with the Department of Electrical and Computer Engineer-
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Fig. 1. A collaborative network, the channel energy gain betweenith and
jth user is denoted byhij . Consider three scenarios: 1) the1st and the2nd

users transmit to the3rd user, 2) the1st user transmit to the3rd user and
the 2nd user broadcasts to the3rd and the 4th users, 3) the1st to the 3rd,
the 2nd and the3rd to the 4th.

been investigated recently and several interesting methods have
been proposed to choose the best relay among the potential
relay users using different optimization criteria, for example
the error rate in [4], [5], energy consumption and network
lifetime in [6]–[8], diversity gain and outage probability in
[9]–[11], the pricing technique in [12] and convex optimization
in [13]. In all these references [1]–[13], it is assumed that
the relay node provides free service to the source which is
obviously beneficial to the source. Following [14], we study
the problem of relay and protocol selection using three criteria;
rate, energy and resource. In addition, to capture fairness
among users, we assume that users will assist each other in
relaying only if they gain from such a collaboration, thus
those users having no data to transmit will not engage in
such a collaboration. In contrast to [14], as it is important to
take into consideration the different rate demands of various
users, we introduce a new priority parameter. This parameter
is imposed by an upper layer in order to determine the ratio of
rate demands of involved users in the network. The motivation
of this approach is to provide differentiated/prioritized services
(see [15]). In this paper assuming that a rate ratio is provided
by the upper layer, we either maximize the achieved rate,
minimize the energy consumption or the resource utilization.

The remainder of the paper is organized as follows. Next
we present the system model and present the protocols in
Section II. In Section III we study single relay networks and
investigate the rate, energy and resource improvement from
possible collaboration. We then provide conditions on the
location of the relay user for collaboration to be beneficial.
In Section IV, we present our relay selection protocols. Ex-
tensions to the general network with multiple source and relay
topology are discussed in Section V. Finally, in Section VI we
give our concluding remarks.

Figure 5.1: A cooperative network, the channel energy gain between ith and jth user
is denoted by hij. Consider three scenarios: 1) the 1st and 2nd users use
time-frequency division and transmit to the 3rd user, 2) the 1st user first
transmits to the 3rd user and then the 2nd user broadcasts to the 3rd and
4th users, 3) the 1st user transmits to the 3rd user and then the 2nd and
3rd users use time-frequency division to transmit to the 4th user.

of rate, energy, or resource. Here, the notion of fairness means that the achievable

rates of different users would be proportional to their energy levels. We evaluate the

effect of such cooperation on the performance of the system (in terms of gains in rate,

energy, or time-bandwidth) and then, based on the achieved gains or losses, present

our cooperative protocols.

Most of the existing CPs, e.g.,[86, 76, 64], implicitly assume that a relay is al-

ready chosen, although, selection schemes have been investigated recently and sev-

eral interesting methods have been proposed to choose the best relay among the

potential relay users using different optimization criteria. For example the error

rate in [102, 59], energy consumption and network lifetime in [34, 103, 57], di-

versity gain and outage probability in [28, 23, 75], the pricing technique in [72],

and convex optimization in [66] are used for user selection. In all these references

[86, 76, 64, 102, 59, 34, 103, 57, 28, 23, 75, 72, 66], it is assumed that the relay node
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provides free service to the source which is obviously beneficial to the source. Fol-

lowing [12, 11, 18], we study the problem of relay and protocol selection using three

criteria; rate, energy and resource. In addition, to capture fairness among users, we

assume that users will assist each other in relaying only if they gain from such a

cooperation. Thus, those users having no data to transmit will not engage in such a

cooperation. In contrast to [12, 11, 18], as it is important to take into consideration

the different rate demands of various users, we introduce a new priority parameter.

This parameter is imposed by an upper layer in order to determine the ratio of rate

demands of involved users in the network. The motivation of this approach is to

provide differentiated/prioritized services (see [40]). In this chapter assuming that

a rate ratio is provided by the upper layer, we either maximize the achievable rate,

minimize the energy consumption, or minimize the resource utilization.

The remainder of the chapter is organized as follows. Next we present the sys-

tem model and present the protocols in Section 5.2. In Section 5.3 we study single

relay networks and investigate the rate, energy and resource improvement from the

possible cooperation. We then provide conditions on the location of the relay user

for cooperation to be beneficial. In Section 5.4, we present our relay selection proto-

cols. Extensions to the general network with multiple source and relay topology are

discussed in Section 5.5. Finally, in Section 5.6 we give our concluding remarks.

5.2 System Model

Consider the first scenario in Figure 5.1, where we assume that the 1st and 2nd users

wish to transmit independent messages respectively with rates R1 and R2 to the 3rd

user over an additive white Gaussian noise channel and the 2nd user may also assist
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the 1st user to transmit its messages to the 3rd user. The scenarios with multiple relays

or with different destinations will be addressed later in this chapter. Let hij denote

the channel gain of the communication link between the ith and jth user. We assume

that the gain of all the channel links are perfectly known to all the users. Thus, users

need to acquire their channel gains via efficient channel estimation algorithms (see

e.g. [67]) and make it available to all other users. To this end, we assume that the

involved users could initially exchange messages to establish a cooperation protocol

before the main data streams are transmitted. Obviously, such exchanges consume

a fraction of the available energy and resource. In this chapter, we ignore the extra

cost incurred by this communication overhead.

When the users cooperate, the network is a multi-hopping network where one

user receives the messages of another user and forwards the decoded messages to the

intended receiver as well as its own messages. Otherwise, they form a multiple access

channel, i.e., they transmit directly to the receiver via a resource sharing method.

We assume that users transmit via a resource division protocol where the ith user

can transmit over a portion βi of available resource (by resource we mean the product

of used time and bandwidth, i.e., B×T .) Using time/frequency division requires per-

fect time/frequency synchronization. In this chapter, we ignore the required overhead

to achieve this synchronization and assume perfect synchronization. The received en-

ergy to noise ratio within the resource slot βiBT can be expressed as
hijEi
NβiBT

, where Ei

denotes the transmit energy of the ith user and N denotes the received noise power.

Unless otherwise stated, we consider the case where the available resource BT is

unity, i.e., BT = 1. Let us define the ratio of Transmit Energy to Received Noise
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Power (TERN) as εi = Ei
N

. Thus, the achievable rate for the user i is given by [37]

Ri = βi log

(
1 +

hijεi
βi

)
. (5.1)

To pose the fairness issue in a multi-user communication network, we first need to

define a fairness constraint. Most data applications are sensitive to error but tolerant

to delay. It is clear that a higher Signal to Interference plus Noise Ratio (SINR) level

at the output of the receiver will generally result in a lower bit-error rate, and hence

higher throughput. However, achieving a high SINR level requires the user terminals

to transmit at a high power, which in turn results in low battery life. Similar to

[70, 51], we impose the constraint εi
Ri

= Const. in order to maintain the fairness in

the network for all users. This constraint ensures fairness among users as the energy

spent by users is proportional to their demand for rate. This constraint captures the

tradeoff between the throughput and energy consumption and is particularly suitable

for applications in which energy efficiency is critical [70]. Note that this constraint

penalizes the nodes with higher channel gain. This approach can be deemed as fair

since, although users have no control over their channel gains, they can control their

rate demand versus the required transmit energy. The fairness constraint also can be

recast as

R2

R1

=
ε2
ε1

def
= k. (5.2)

which hereafter we denote k as the rate ratio and as a design parameter imposed by

upper layers of the network such as the MAC layer.

We consider a half-duplex communication network where each user can either
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transmit or receive (but not both) at any time and any frequency band. Throughout

this chapter, we consider two following communication protocols:

• Non-Cooperative protocol where users transmit directly to the destination via

a resource (time and frequency) division method.

• Cooperative protocol where over the 1st resource slot, the 1st user transmits its

message and the 2nd user decodes the message of the 1st user. Then, over the

2nd resource slot, the 2nd user re-encodes the decoded message of the 1st user in

conjunction with its own message, the 2nd message, and broadcasts the encoded

message.

5.3 Cooperation in Single Relay Networks

In the following we study some properties of proposed protocols and investigate up-

per and lower bounds for achievable rates. We use the Shannon’s capacity as the

performance metric. In order to justify this assumption, we assume that the users

employ a capacity-achieving channel coding.

5.3.1 Non-Cooperative Protocol (NCP)

In this protocol, during the 1st portion of resource slot, i.e., β1, the 1st user transmits

its message. The receiver, the 3rd user, decodes this message correctly for a maximum

rate of R1(β1) = β1 log
(

1 + h13ε1
β1

)
. In a similar manner, the maximum rate of the 2nd

user which could be decoded reliably at the 3rd user is R2(β2) = β2 log
(

1 + h23ε2
β2

)
.

Since, we assume that one unit of resource is available, i.e., β1 + β2 = 1, hereafter,

we denote ε1
def
= ε, ε2 = kε, β1

def
= β and β2 = 1 − β. Hence, we get the following
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optimization problem for the NCP:

RNCP = max
β

(R1 (β) +R2 (1− β))

s.t. R2

R1
= k

(5.3)

where RNCP is the achievable sum rate of the users R1 (β) = β log
(

1 + h13ε
β

)
and

R2 (1− β) = (1− β) log
(

1 + h23kε
1−β

)
. Since R1 (β) and R2 (1− β) are increasing and

decreasing function of β, respectively, the solution of the above optimization is the

unique solution of the following

RNCP = (k + 1)β log

(
1 +

h13ε

β

)
=
k + 1

k
(1− β) log

(
1 +

h23kε

1− β

)
. (5.4)

The optimal resource βi as a solution of (5.4) is a function of hij and ε. However for

ease of notation and abbreviation, we denote the optimal resource only by βi.

5.3.2 Cooperative protocol (CP)

In this protocol, over the 1st portion of the resource slot, i.e., β, the 1st user transmits

its messages at rate R1. During this time, The 3rd user is switched off and thus

ignores the received signal from the 1st user. The 2nd user attempts to decode the

messages of the 1st user. Hence, the maximum achievable rate for the 1st user is

expressed as R1(β) = β log
(

1 + h12ε
β

)
. Over the remaining portion of resource slot,

i.e., 1−β, the 2nd user re-encodes the decoded messages of the 1st user and transmits

the messages of the 1st user as well as its own messages to the intended destination.

In fact, during this time, the 2nd user must transmit at rate of k+1
k
R2 to accommodate

both data. The maximum achievable rate which may be decoded reliably at the 3rd
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user is R2(1−β) = k(1−β)
k+1

log
(

1 + h23kε
1−β

)
. This yields the following max-min resource

allocation problem:

RCP = max
β

(R1 (β) +R2 (1− β))

s.t. R2

R1
= k

(5.5)

where RCP is the achievable sum rate of the users which will be compared with RNCP.

In a similar way, the optimal solution is the unique solution of the following equation

with respect to β:

RCP = (k + 1)β log

(
1 +

h12ε

β

)
= (1− β) log

(
1 +

h23kε

1− β

)
. (5.6)

Similar to the NCP, for ease of notation, we denote the optimal resource by βi.

5.3.3 Rate Improvement for Given Resource and Energy

Here, we define the cooperation gain as the ratio of achievable sum rate of the CP

to that of the NCP, i.e., RCP

RNCP
. This ratio represents the achievable sum rate im-

provement of these protocols. We derive tight upper and lower bounds and study the

asymptotic behavior of the cooperation gain at a low and high TERN and rate ratio.

Since R1(β) and R2 (1− β) are increasing and decreasing convex and continuous

functions of β, respectively, the maximization (5.4) is guaranteed to have a unique

solution. Unfortunately, this solution has no closed form expression. Nevertheless,

the following bounds can be obtained.
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Theorem 5.1. For the NCP, we have

RNCP >
1
k

log (1 + kh23ε) log (1 + h13ε)
1
k

log (1 + kh23ε) + log (1 + h13ε)
, (5.7a)

RNCP <

log(1+h13(k+1)ε)(
1− 1

1+h13(k+1)ε
−log(1+h13(k+1)ε)

) + k log(1+h23(k+1)ε)(
1− 1

1+h23(k+1)ε
−log(1+h23(k+1)ε)

)
(k+1)(

1− 1
1+h13(k+1)ε

−log(1+h13(k+1)ε)
) + k(k+1)(

1− 1
1+h23(k+1)ε

−log(1+h23(k+1)ε)
) (5.7b)

Proof. We use the first-order Taylor series approximation at point 1
k+1

for R1(β) and

R2(1 − β) which is accurate for a high TERN regime. The intersection point of the

approximate lines gives an upper bound for achievable capacity for the NCP. The

coordinates of this intersection point are given by

β =
1

k + 1
+

1
k+1

log
(

1+(k+1)h23ε
1+(k+1)h13ε

)

log ((1 + (k + 1)h23ε) (1 + (k + 1)h13ε))− (k+1)h13ε
1+(k+1)h13ε

− (k+1)h23ε
1+(k+1)h23ε

(5.8)

and (5.7b), which as noted before is tight for a high TERN. The lower bound in

(5.7a) is obtained from the intersection point of the two lines connecting end points

of the rate curves.

These bound are tight for a high TERN ε → ∞; this is the case where the noise

power is negligible compared with the received signal powers. For a high TERN,

the available resource is allocated to the users’ receive in proportion with their rate

demands, i.e., lim
ε→∞

β = 1
k+1

.

Using the same approach, we can find the bounds in (5.9a) and (5.9b) for the

achievable sum-rate of the CP
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Theorem 5.2. For the CP, we have

R
CP
>

1
k+1

log (1 + kh23ε) log (1 + h12ε)
1

k+1
log (1 + kh23ε) + log (1 + h12ε)

, (5.9a)

RCP <

log(1+h12(k+1)ε)(
1− 1

1+h12(k+1)ε
−log(1+h12(k+1)ε)

) +
(k+1)log(1+h23

k(k+2)
k+1

ε)(
1− 1

1+h23(k+1)ε
−log(1+h23

k(k+2)
k+1

ε)
)

k+2(
1− 1

1+h12(k+1)ε
−log(1+h12(k+1)ε)

) + (k+1)(k+2)(
1− 1

1+h23
k(k+2)
k+1

ε
−log(1+h23

k(k+2)
k+1

ε)
) , (5.9b)

which are tight in the high TERN regime.

From (5.7b) and (5.9a), it is easy to see that limε→∞
RCP

RNCP
≥ k+1

k+2
. In addition,

from (5.7a), we can see that limε→∞
RCP

RNCP
≤ k+1

k+2
. Thus limε→∞

RCP

RNCP
= k+1

k+2
. We

conclude that the cooperative protocols are not attractive in the high TERN regime

since the sum rate gain k+1
k+2

is smaller than one.

We also can derive tight bounds for the low TERN regime (small values of ε).

Theorem 5.3. For the NCP, we have

RNCP > ε
2h23 + 2h13 − h2

13ε− kh2
23ε−

√
A

4
, (5.10a)

RNCP < min

{
log (1 + h13ε) ,

1

k
log (1 + kh23ε)

}
≤ εmin {h13, h23}, (5.10b)

where A = 4 (h23 − h13)2 + ε2 (h2
13 + kh2

23)
2

+ 4ε (h23 − h13) (h2
13 − kh2

23).

Proof. To find a lower bound, we can approximate the functions in (5.4) by their

second order Taylor series versus ε and obtain RNC ≥ max{h13ε− h2
13ε

2

2β
, h23ε− kh2

23ε
2

2(1−β)
}.
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To find a tight bound we solve (h23 − h13) β2+
(
h2

13ε

2
+

kh2
23ε

2
+ h13 − h23

)
β−h2

13ε

2
= 0.

This quadratic equation has only one feasible solution in the interval [0, 1]. This

bound is described by (5.10a) and

β =
(h23 − h13 − εkh2

23

2
− εh2

13

2
)

2 (h23 − h13)
+

√(
h23 − h13 − εkh2

23

2
− εh2

13

2

)2

+ 2 (h23 − h13) εh2
13

2 (h23 − h13)
.

(5.11)

To obtain (5.10b), we notice that the achievable rate is also upper bounded by two

end points of the curves. This upper bound is tight in the low TERN regime, i.e.,

where the received signal is dominated by noise power.

From the above, we conclude that

lim
ε→0+

RNCP

ε
= min{h13, h23}. (5.12)

Similar to the non-cooperative case, we derive the following upper and lower bounds

for the CP:

Theorem 5.4. For the CP, we have

R
CP

< min
{

log(1 + h12ε),
1

k+1
log(1 + kh23ε)

}
≤ εmin

{
h12,

k
k+1

h23

}
, (5.13a)

R
CP

> ε
4
(2kh23

k+1
+ 2h12 − h2

12ε− h2
23k

2ε

k+1
−B), (5.13b)

where B =

√
4
(
kh23

k+1
− h12

)2
+ ε2

(
h2

12 +
(
kh23

k+1

)2
)2

+ 4ε
(
kh23

k+1
− h12

) (
h2

12 − (kh23

k+1
)2
)
.
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Thus, we conclude that

lim
ε→0+

R
CP

ε
= min{h12,

k

k + 1
h23}. (5.14)

By combining (5.12) and (5.14), we get the following result

lim
ε→0+

RCP

RNCP

=
min

{
h12,

k
k+1

h23

}

min {h13, h23}
. (5.15)

In addition, It is easy to show that RCP

RNCP
is always smaller than

min{h12,
k
k+1

h23}
min{h13,h23} , i.e.,

RCP

RNCP
≤ min{h12,

k
k+1

h23}
min{h13,h23} . This means that the rate gain can be greater than unity only

if h13 ≤ min{h12, h23
k
k+1
}. In this case, the maximum rate gain (min{h12

h13
, h23
k+1
k
h13
}) is

only achievable in the low TERN regime.

Now, we examine the cooperative gain when the rate ratio is large. It is easy to see

that for large k, the optimal β, which is either the solution of (5.4) or (5.6), tends to

zero, i.e., β → 0. This implies that more resources should be allocated to the higher

demanding user. Hence, it is easy to show that lim
k→∞

log(k)
k
RNCP = lim

k→∞
log(k)
k
RCP = 1.

Then, it follows that

lim
k→∞

RCP

RNCP

= 1 (5.16)

On the other hand, if k tends to zero (where the rates of the 1st user is larger than

the rate of the 2nd user), the optimal β for the NCP tends to unity, while for the CP

tends to zero. Thus, the cooperative gain for small values of k, i.e., k → 0, is

lim
k→0+

1

k

RCP

RNCP

=
h23ε

log (1 + h13ε)
. (5.17)
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It follows that for small enough rate ratio the achievable rate of the NCP is strictly

greater than that of the CP, i.e, RNCP > RCP.

5.3.4 Energy Saving for Given Capacity and Resource

Here, we are interested in quantifying the advantage of the cooperation in terms of

energy saving. This is in contrast to the previous section where the rate is maximized

providing a fixed amount of available energy. Here, we assume that each user requires

some specified rate Ri and has to allocate TERN proportional to Ri. In order to

meet these rate requirements, users may cooperate (or not) to use available resource

efficiently. Given a unit of the shared resource, we minimize the TERN as follows

CP :





min εCP,

s.t. R = β log
(

1 + h12εCP

β

)

= 1−β
k

log
(

1 + h23kεCP

1−β

)
(5.18a)

NCP :





min εNCP,

s.t. R = β log
(

1 + h13εCP

β

)

= 1−β
k+1

log
(

1 + h23kεCP

1−β

)
(5.18b)

Since the rates in (5.3) and (5.5) are monotonically increasing functions of TERN,

it is easy to show that the optimization problem (5.18) is the dual of (5.3) and (5.5).

This means that under similar channel gains, the TERN cooperation gain (i.e., the

ratio of TERN in the NCP to that of cooperative one εNCP

εCP
) obtained from (5.18) is

the same as the rate cooperation gain from (5.3) and (5.5). More specifically from
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this duality, we conclude that

εNCP

εCP

≤
min

{
h12,

k
k+1

h23

}

min {h13, h23}
. (5.19)

Similarly, the maximum gain is obtained for small rate demands, i.e., when R→ 0.

5.3.5 Resource Efficiency for Given Capacity and Energy

Let βi,NCP (βi,CP), denote the required resource for the ith, i = 1, 2, user to transmit

its own information, R and kR (R and (k + 1)R), under TERN constraints of ε and

kε, respectively, in the NCP (CP). We also define resource efficiency as βNCP

βCP
, where

βNCP and βCP are solution of the following equations:





R = β1,NCP log
(

1 + h13ε
β1,NCP

)
=

β2,NCP

k
log
(

1 + h23ε
β2,NCP

)
,

βNCP = β1,NCP + β2,NCP,
(5.20a)





R = β1,CP log
(

1 + h12ε
β1,CP

)
=

β2,CP

k+1
log
(

1 + h23ε
β2,CP

)
,

βCP = β1,CP + β2,CP.
(5.20b)

Note that we have a feasible solution only if R ≤ εmin{h13, h23} for the NCP and

R ≤ εmin{h12, h23
k
k+1
} for the CP. As the required rates approach these upper

bounds the resource usage tends to infinity. In both protocols, due to the fairness

constraint, the user with the worst channel obtains a larger amount of resource.

5.3.6 Effect of Network Geometry

In the following, we investigate the impact of the location of the relay user on the

cooperation gain. In particular, we assume that the signal attenuation is governed
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by geometry of users as hij = 1
dij

η on two dimensional plane, where dij denotes the

distance between the ith and jth users. In order to understand the impact of users

relative locations on the cooperation gain, we investigate the region where transmis-

sion via cooperation provides more gain. We assume that in the two dimensional

plane, the source, relay and destination are located on (−1
2
, 0), (x, y) and (1

2
, 0), re-

spectively. Plugging the channel gains as 1
dη

and 1
(1−d)η

into the equations (5.4) and

(5.6), we obtain the rate improvement of both protocols as a function of geometry

of relay user. Figure 5.2 depicts the region where cooperation provides more benefit,

i.e., the rate of the CP is more than that of the NCP. This figure also depicts the

contours of rate gain, where the ratio of achievable rate of protocols is fixed numbers

(we plotted for the rate gains of 1, 2 and 4). We observe that as the rate ratio k

increases the cooperation contours enlarge. Further increase in the rate ratio would

result in shrinkage in the area of the gain contours. It implies that only the users

with middle rate demand have incentive to cooperate with other users.

Since the channel gains are symmetric in two dimensional space, it is clear that

the optimal relay user lies on the line connecting the source to the destination. We

observe that the gain contours are approximately the intersections of two arcs with the

radii (gc)1/η and (k+1
k

gc)1/η with gc = RCP

RNCP
. In order to find the optimal placement

of the relay user we examine the equation (5.15). It is easy to see that the optimal

location is

d =
1

1 +
(

k
k+1

)1/η
(5.21)
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Figure 5.2: Contours of the rate gain
R

CP

RNCP
(5.4), (5.6) versus relay (2nd user) location

(x, y) for ε = 0.01, hij = 1
dηij

and η = 3, (a) k = 0.1, (b) k = 10, (c)

k = 100

.
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where at that point the maximum rate gain of

RCP

RNCP

≤
(

1 +
η

√
k

k + 1

)η

(5.22)

is achievable.

Clearly the optimal location lies on the line connecting nodes 1 and 3. We now

assume that all three nodes are on a one dimensional line and are located at 0, d and

1, respectively, i.e. h12 = 1
dη

, h13 = 1 and h23 = 1
(1−d)η

. Figure 5.3 shows the resulting

ratio of the maximum achievable rates using the CP and NCP versus the location of

the relay node d ∈ [0, 1] for η = 3. As intuited from the upper bound in (5.22), for

higher rate ratio k, more gain is expected (see in Figure 5.3(a)), however, as depicted

in Figure 5.3(b), for large enough available energy of users ε, the cooperation gain

degrades as rate ratio k increases. Figure 5.4 presents the rate improvement from the

CP and NCP protocols versus the rate ratio of users k. We observe that for small rate

ratio, the rate improvement is zero and for large values of k, the rate improvement

tends to unity which also confirms that for high rate ratio k, the cooperation is not

beneficial. Figure 5.5 depicts the resource gain of the CP compared with the NCP,

i.e., βNCP

βCP
(5.20), for a required rate of 0.5h13ε versus location of the relay node. We

observe that for a given required rate, depending on the relay channel condition, the

resource gain is greater than unity. We have noticed that for small rate ratio k, the

CP provides more gain in terms of resource usage. In addition, for small rate ratio,

the best location for relay user is almost in the middle of the source and destination

users. Figure 5.6 shows the energy gain of the CP compared with the NCP, i.e., εNCP

εCP

(5.18), for a given required rate of R = 0.09h13 versus the location of the relay node.

Employing the CP, we obtain significant energy savings even for η = 3, provided



CHAPTER 5. COOPERATIVE SPECTRUM MANAGEMENT 108

that the relay is located appropriately. In addition, we observe that for higher rate

ratio (see Figure 5.5), the users benefit less in terms of resource efficiency. We deduce

that only users which are interested in resource efficiency, with less rate requirement,

can gain from possible cooperation. It is interesting to note that the CP provides

rate/energy gain even for η = 2, by contrast, for such a small η there is no gain in

rate/energy if the relay has no information to transmit (traditional multi-hopping)

[64, 12, 11, 18].

5.4 Cooperation in Multiple Relay Networks

In the following, we propose our relay selection protocols based on the cooperation

gain which is introduced in previous section. We use the channel gains to select

one relay among the available relay users to participate in cooperation. We note

that if the NCP outperforms the cooperative one, we fall back on the NCP, i.e., no

relay user would be selected and the source sends its information to the destination

directly. Otherwise, the source employs one relay in forwarding its information to

the destination. The main objective of the proposed protocols are to achieve higher

cooperation gain, higher rate improvement, energy saving or resource efficiency while

guaranteeing fairness for all users. However, in large networks, the cost incurred by

communication overhead must be considered in future works.
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Figure 5.3: Impact of the relay location d on rate improvement
R

CP

RNCP
(5.4), (5.6) for

h12 = 1
dη

, h13 = 1, h23 = 1
(1−d)η

, for η = 3, k = 0.01, 0.1, 1, 10, respectively,

and different TERN values (a) ε = 0.01, and (b) ε = 0.1.
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Figure 5.5: Ratio of resource usage in the CP and NCP βNCP

βCP
(5.20) for h12 = 1

dη
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h13 = 1 and h23 = 1
(1−d)η

versus relay location d for a required rate of
R = 0.5h13ε, η = 3 and h13ε = 0.01, and k = 1, 10, 100.
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Figure 5.6: Ratio of energy usage in the CP and NCP εNCP

εCP
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5.4.1 Relay Selection: Rate Improvement and Energy Saving

First, we consider the rate improvement as a criterion to select the best relay. As

shown in previous section, the energy minimization problem is dual of the rate max-

imization problem, hence the relay selection protocol holds for the energy saving as

well.

The results in (5.15) are very intuitive and suggests a strategy in deciding to use

cooperation and to choose a relay user among the potential candidates. Given the

full CSI, cooperation protocol is preferred if ε � 1 and h13 � min{h12, h23
k
k+1
}. In

order to maximize the rate gain, the best relay user is the one that maximizes the

min{h12,h23
k
k+1
}

h13
.

The results in (5.16) and (5.17) also provide an attractive guideline that for low

and high rate ratio, the NCP is preferred. The equation (5.21) implies that the best

relay user, in order to maximize the rate gain, is located almost in the middle of the

source and destination users. We observe that under severe path loss, users benefit

more from the proposed cooperation relative to direct transmission. Authors in [76]

showed the same result in the context of diversity gain which is not in the scope

of this chapter. This result also appear attractive that, in contrast to traditional

multi-hopping, appropriately designed cooperation can provide a significant rate gain

(see e.g., [64, 12, 11, 18]). Figures 5.3(a) and 5.3(b) confirm the above results. This

indicates that the best location for the relay user is in the vicinity of the midpoint

between the transmitter and the receiver pair. This means that by appropriately

selecting the relay user, we can efficiently take advantage of the geometrical distribu-

tion of users. A relay with optimal location almost achieves (5.15), which serves for

relay selection. Note that by selecting one relay, the multiple relay network becomes
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a single relay network. Thus, the exact rate improvement or energy saving can be

examined as in (5.4), (5.6), and (5.18).

5.4.2 Relay Selection: Resource Efficiency

Now, we address resource efficiency and the objective is to select a relay user among

the potential candidates and to decide whether to cooperate or not. We propose the

following procedure:

• Feasibility check: We compare R with εmin{h13, h23} for the NCP and with

εmin{h12, h23
k
k+1
} for the CP. Then, we ignore the protocol which is infeasible.

• Resource usage: If both are feasible, we must choose the protocols with the

least resource usage. The resource usages βNCP and βCP are the solutions of

(5.20). It is worth noting that this criterion is different from the rate and

energy criteria since here we are willing to minimize resource usage for a given

amount of energy and rate which does not necessarily yields the same result

as maximizing rate or energy ratios (compare Figures 5.5 with Figure 5.3 and

Figure 5.6 for difference between obtained rate, energy and resource gains).

However, in order to maximize the resource efficiency, the simulation result

(Figures 5.5) shows that the best location for the relay user is almost in the

middle of the source and the destination user.

• User selection: Similarly, we can use the resource usages as the criterion to

select users (to cooperate with) among multiple feasible candidates.
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5.5 Cooperation in General Networks

We can extend the proposed protocols to the general networks where more than one

user is available to relay the messages of multiple users (as source users) toward the

different destinations. As we have shown here, we focus on one relay system and

look for the best user to serve as relay to maximize the achievable rate, minimize the

energy consumption or utilize the available resource more efficiently. To this end, we

provide a rough guideline that if direct link channel gain is smaller than the other

links, often the CP outperforms the NCP. Otherwise, if a fixed rate is required, the

feasibility of different scenarios must be verified. Among feasible solutions, we must

choose the protocol and relays which provide maximum rate, or maximize savings on

resource (5.20) or on energy (5.18). For the CP, a relay among possible candidates

must be selected which maximizes min{h23k/(k + 1), h12} � h13.

For example, suppose that in Figure 5.1 the 1st user wishes to send data to the 3rd

user, while the 2nd user wishes to broadcast independent messages to the 3rd and 4th

users. Using this guideline, the 2nd user can cooperate with the 1st user via acting as

relay (the more information, the more incentive to cooperate). In this example the

3rd user has no data to send and thus, ironically, has no incentive to cooperate. So

the 2nd user should send his data directly to the 4th user.

So far, we have assumed the same destination for both transmissions. We might

relax this constraint. For example in Figure 5.1, suppose that the 1st user wishes to

send messages to the 3rd user and the 2nd and 3rd users wish to send messages to the

4th user. Using the CP, the 2nd user can act as the relay between the 1st and 3rd users

and the 3rd user acts as the relay between the 2nd and 4th users.

We have shown that cooperation have the potential to increase the rate gain of
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the users by a factor of at most
(

1 + η

√
k
k+1

)η
. This result shows that appropriately

choosing the relay user and cooperation protocol considerably save the transmit en-

ergy, and also reduce interference amongst the users. Our proposed protocols not only

improves rate, energy or resource utilization of the involved users, but also have the

potential to increase the spectral utilization of the whole network. We have shown

that cooperation can mitigate the effects of path loss, thus, users can save transmit

energy. This saving reduces interference among users which allows to increase density

of users in the network through resource reusing.

5.6 Conclusion

We used rate, energy and resource usage as criteria for cooperation and relay user

selection. We found the conditions under which the cooperation is preferred for all the

users. Interestingly, the gain of the users from cooperation in various terms (increase

their achievable rate, reduce their transmit energy or use resources more efficiently)

can be more significant at a low TERN, where the background noise is strong. Clearly,

if the background noise is very weak, the cooperation is less attractive. The relative

geometrical location of users (i.e., channel responses) must be considered in the relay

selection. Very simple criteria are proposed for relay selection. If the relay is in the

vicinity of the midpoint between the transmitter and the receiver pair, cooperation

can offer good performance. A maximum rate gain (as well as energy saving gain)

of up to
(

1 + η

√
k
k+1

)η
can be obtained provided that a cooperation is established

with an appropriately located relay, where η is the environment path loss exponent.

Furthermore, we present several protocols on how to select the best relay among the

possible candidates to maximize the cooperation gain.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

The contemporary spectrum allocation policies have led to very poor usage of the

overall spectrum. Cognitive radio is a promising paradigm in communication that has

the potential to improve the spectrum utilization. Cognitive radio is distinguished

by its two main features:

• cognitive users monitor the radio environment and respond to the changes by

adapting their transmit-receive parameters, and

• peaceful existence of licensed and unlicensed users is allowed as long as the

inflicted interference is below some certain threshold.

In this thesis, we addressed two main functionalities of every cognitive users, i.e.,

• Spectrum sensing: To sense/detect the presence of the licensed users to avoid

collision with their transmission
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• Spectrum management: To allocate the available radio resources more effec-

tively between cognitive users (either licensed or unlicensed)

For the spectrum sensing task to mitigate the effect of fading, we used coopera-

tion between the sensors/users. We started by answering fundamental questions on

the interplay between the synchronization and performance of the distributed detec-

tors. We then successfully incorporated channel characteristics and time-frequency

features of the signal transmitted by the licensed users into the system. For the spec-

trum management task, we added one degree of freedom to the system by considering

cooperative communications between the users. This led to some optimization prob-

lems that allowed us to re-allocate radio resources more efficiently, i.e., save power

and bandwidth or gain rate.

In Chapter 2, we considered the problem of distributed detection where multi-

ple sensors cooperatively detect the presence or absence of a random source. We

first considered partially correlated observations and obtained the optimal detector.

Assuming a noncoherent system, we obtained novel asymptotic expressions for the

Pfa and Pmd of several optimal/suboptimal detectors. We then compared these de-

tectors with several detectors derived for the coherent system and showed that the

coherent detectors require 2L times more bandwidth than the noncoherent ones. We

also showed that the detectors for the noncoherent system are robust to the signal

coherence and sampling time/frequency errors. Interestingly, the NPD for partially

correlated observations reaches its highest performance when the observations are

fully coherent and reaches its lowest performance when the observations are fully

noncoherent. We also proposed one novel GLRD and two novel heuristic detectors

for the noncoherent system. We also proved that all these detectors are either optimal
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or asymptotically optimal.

In Chapter 3, we considered the distributed detection of an OFDM random source

using a cooperative set of sensors. Assuming a noncoherent system, we have shown

that sensors only need to transmit a real-valued function of their observations. We

have analyzed several optimal and suboptimal detectors. We derived the Pfa and Pmd

of some of the proposed detectors. We also proved that the suboptimal detectors

are asymptotically optimal. Our theoretical analysis and simulation results showed

that using these distributed detectors, the sensors require negligible communication

overhead. Our results also showed that the proposed frequency-domain detectors

outperform the state-of-the-art time-domain detectors.

In Chapter 4, we derived several detectors for cooperative spectrum sensing in

a mixture-Nakagami environment that exploit channel statistic for performance im-

provement. These detectors significantly outperform the energy detector. In addition,

they are attractive in Rayleigh-lognormal fading channels, since, despite their lower

computational complexity, they provides a near optimal performance.

In Chapter 5, we used rate, energy and resource usage as criteria for cooperation

and relay-user selection. We found the conditions under which the cooperation is

preferred by all the users. We studied the gains and losses involved with the possible

cooperations. Interestingly, the gain of the users from cooperation is more significant

at low TERN. We proposed very simple criteria for relay selection. A maximum

rate gain (as well as energy saving gain) of up to
(

1 + η

√
k
k+1

)η
can be obtained.

Furthermore, we presented several protocols on how to select the best relay among

the possible candidates to maximize the cooperation gain.
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6.2 Future Works

The work in this thesis may be extended in many different ways.

• In Chapter 2, we used the Edgeworth expansion to derive the performance of

the proposed tests. This can be further generalized and a framework for the

asymptotic performance analysis of detectors can be investigated.

• In Chapter 3, we did not incorporate the channel fading statistic and the cor-

relation between subchannels into the model. These can be potential avenues

for future works.

• In Chapter 4, we considered mixture-Nakagami fading model. A potential ex-

tension is to derive detectors for other fading models such as K-channel.

• In Chapters 2, 3, and 4, we assumed Gaussian noise, which may not hold in

some cases. Studying detectors for non-Gaussian noise is also of great interest.

• In Chapter 5, we only considered users that cooperate by decoding and for-

warding. The disadvantage of this method is that users are able to decode each

other’s message. The concept of secrecy can be introduced to such networks,

where the private message of the users must not be decoded by the others. In

addition, other cooperative protocols such as amplify/compress and forward, or

beamforming may be considered.
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