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Abstract

We study the maximura posteriori(MAP) decoding of memoryless non-uniform sources over ipiehantenna
channels. Our model is general enough to include spacedodeng, BLAST architectures, and single-transmit
multi-receive antenna systems which employ any type of sbbooding. We derive a closed-form expression for
the codeword pairwise error probability (PEP) of generaltrantenna codes using moment generating function
and Laplace transform arguments. We then consider spaeedithogonal block (STOB) coding and prove that,
similar to the maximum likelihood (ML) decoding case, déiat of symbols is decoupled in MAP decoding. We
also derive the symbol PEP in closed-form for STOB codes. Wayathese results in several scenarios. First,
we design a binary antipodal signaling scheme which mirésiithe system bit error rate (BER) under STOB
coding. At a BER 0f1075, this constellation has a channel signal-to-noise ratiSNR) gain of 4.7 dB over
conventional BPSK signaling for a binary non-uniform seuweth p 2 P(0) = 0.9. We next design space-time
linear dispersion (LD) codes which are optimized for therseulistribution under the criterion of minimizing the
union upper bound on the frame error rate (FER). Two codegiges here: one outperforms V-BLAST by 3.5 dB
and Alamouti’s code by 12.3 dB at an FER 1f~2 for a binary source withpy = 0.9, and the other outperforms
V-BLAST by 4.2 dB at an FER o102 for a uniform source. These codes also outperform the LD sof¢13]
constructed under a different criteria. Finally, the pesblof bit-to-signal mapping is studied. It is shown that for
a binary source withpy = 0.9, 64-QAM signaling, and SER %03, a gain of 3.7 dB can be achieved using a
better-than-Gray mapping. For a system with one transnttteo receive antennas that uses trellis coding with
16-QAM signaling, a 1.8 dB gain over quasi-Gray mapping and d¢coding is observed when MAP decoding

is used for binary sources withy = 0.9.
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I. INTRODUCTION

DEALLY, a lossless or lossy source coder would compress idébaan independent, identically dis-
I tributed (i.i.d.) nearly uniform bit-stream (for sufficity long blocklengths). However, most practical
source coding methods are not ideal; hence there existsiduaésedundancy (in the form of non-
uniform distribution and/or memory) at their output whichllvibe present at the input of the channel
encoder. For example, the line spectral parameters at ttputoaf codebook-excited linear predictive
(CELP) speech vocoders may contain up to 42% of (residualyngancy due to non-uniformity and
memory (see, e.g., [3]). Another example is the bit-streatheaoutput of vector quantizers with moderate
blocklengths. Furthermore, natural data sources, whickitain complexity-constrained applications (e.qg.,
wireless sensor networks) are transmitted uncompressedtiog channel, exhibit even higher amounts
of redundancy. For example, binary images may contain ashmasc80% of redundancy due to non-
uniformity; this translates into a probability as high a®®tr having a “0” (as opposed to a “1”) in the
image bit-stream (see, e.g., [34] and the references therei

In this paper, we study how exploiting the source non-uniity at the transmitter and/or the receiver
can improve the performance of multi-antenna systems irptesence of quasi-static Rayleigh fading.
This scenario allows for the use of channel coding (such asatotional, Turbo or low-density parity
check (LDPC) coding) before the multi-antenna encodingape, as long as systematic channel codes
are used. If such codes are employed, then the resultirgjrb@m at the input of the multi-antenna coder
will still be non-uniform (albeit to a lesser extent than thrgginal source, depending on the code rate and
blocklength). If non-systematic channel codes are usedebulting bit-stream will be closer to uniform;
in this case, a different (and challenging) approach, nosklered here, would be to jointly design the
channel code and the multi-antenna encoder to exploit theundormity of the original source (refer to
[34] for examples of non-systematic Turbo codes that exghe source non-uniformity in a single-antenna
system).

Our contribution is threefold. First, we derive the maximarposteriori(MAP) decoding rule for multi-
antenna codewords. We then derive a closed-form expre&sidhe codeword pairwise error probability
(PEP) of general multi-antenna codes (including any spiace-and BLAST codes) under MAP decoding.
Finally, we explore some applications of the above resuits show that there can be a large gain in
performing MAP decoding as compared with maximum likelidgML) decoding. Knowing the exact PEP
in closed form facilitates the derivation of better estiesabf the system error rates, since the Chernoff

upper bound on the codeword PEP derived in [29] is often tasdoto be useful. In fact, numerical
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results in [7] show that the Chernoff-based union upper doisnsignificantly ineffective for symbol
error rate (SER) and bit error rate (BER) estimation at thererates of practical interest in wireless
communications since the bounds are often larger than atdonedium values of the channel signal-
to-noise ratio (CSNR). The exact codeword PEP is hence af wmiterest for both analysis and design
purposes.

For ML decoding, the main challenge in finding the PEPs ofreseunder fading is to averaggv/X)
where Q(-) is the Gaussian error integral and is a non-negative random variable. A closed-form
expression for the codeword PEP of space-time codes oframpistructure under slow Rayleigh fading
and ML decoding is derived in [19]. The derivation is basedaaralternate formula for th@(-) function
[10], which only works for non-negative arguments. As wi#t been in the sequel, computing the PEP
between a pair of MAP decoded codewords requires finding xpeated value of)(vX + \/vX),
where )\ is a real (positive or negative) number; this is more invdltlean the ML decoding case. We
use singular value decomposition and Laplace transformnaegts to derive the above PEP. Other work
on the error analysis of space-time coded channels underédbding include [31], where an expression
for the exact PEP of space-time trellis codes is found and tsalerive an upper bound on the BER.
Another form of the exact PEP is derived in [27] which is eatsecompute in certain cases. The authors
have presented simple formulas in closed-form for the eR&f of space-time codes in [7], where very
tight upper and lower bounds on system SER and BER are alseedeifo the best of our knowledge,
there is no work in the literature on performance analysisimulation of space-time codes under MAP
decoding.

Next, we consider the special case of space-time orthodadnak (STOB) codes and show that for
this case, when the symbols input to the space-time encader.ial. (but not necessarily uniformly
distributed), detection of symbols is decoupled (as in tHeddcoding case). We then derive the symbol
PEP under MAP decoding for STOB codes. The PEP expressiolsasvalid for systems that utilize
maximume-ratio combining (MRC).

Finally, we apply the PEP results to three coding scenaFiwst, we find the optimal binary antipodal
signaling in the sense of minimizing the BER of space-tintbayonal coded systems. We prove that the
optimal binary antipodal signaling does not actually depen the fading distribution and is the same as
the one derived for the additive white Gaussian noise (AW@GIN)nnel. Second, we construct space-time
linear dispersion (LD) codes for both non-uniform and umifa.i.d. sources. Unlike [13], where the code

design criterion is to maximize the mutual information beén the channel input and output, we opt
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to minimize the union upper bound on the frame error rate (F&Rhe code. We note that even for a
simple dual-transmit dual-receive system with BPSK matilte gains up to 4.2 dB can be obtained over
V-BLAST for a uniform i.i.d. source at an FER df0—3. Third, we address the design of bit-to-signal
mappings which take the input non-uniformity into accoumtntinimize the BER of two systems: one
system uses STOB codes while the other one is a trellis cogemns with 16-QAM signaling in a
single-transmit multiple-receive antenna setup. We olestirat the gains with better-than-Gray mappings
can be significant if the source has non-uniform distributiéor example, in a trellis coded system with
2 receive antennas ang 2 P(b=0)=0.9 (whereb is a data bit), at FER 203, a CSNR gain of 0.8
dB can be obtained through MAP decoding (instead of ML dewgdand an additional gain of 1.0 dB
can be achieved using a signal mapping which is carefullyjgded (hence a total gain of 1.8 dB over
quasi-Gray mapping and ML decoding is obtained).

MAP decoding for sources with redundancy (due to non-umifalistribution and/or memory) is a
form of joint source-channel coding/decoding. It wouldrthee interesting to compare the performance of
MAP-decoded schemes with that of tandem coding systemssystems with separate and independent
source compression and channel coding blocks. Most prewioding designs, such as [2], [18], show that
independent (tandem) source and channel coding outpesf@rimt source-channel coding above some
threshold CSNR. As can be seen in the simulations of this paper, the CSNR hblgseyond which
tandem coding outperforms MAP decoding is quite large. Ini@aar, there are many examples in which
joint source-channel coding outperforms tandem codingtlier entire CSNR range (or error rates) of
interest. Indeed, in a recent information theoretic stu88},[it is proved that the error exponent (which is
the rate of asymptotic exponential decay of the probabilitiplock error) of optimal joint source-channel
coding can be as large as twice the error exponent of optanalem systems (which concatenate optimal
source coding with optimal channel coding). This implieattfor the same probability of error, optimal
joint source-channel coding would require half the encgltiacoding delay of the optimal tandem scheme.

The rest of this paper is organized as follows. Section Itdbss the multi-input multi-output (MIMO)
channel model and formulates the MAP decoding rule basedhichvthe exact codeword PEP is derived
in Section Ill. In Section IV, we derive the MAP decoding ridad symbol PEP for the special case of
STOB codes. Applications of the PEP formulas in binary digga LD code design, and bit-to-signal

mapping are presented in Section V. Section VI presentsuheerical results and discussions. The paper

*An opposite behavior is however observed in [34], wheretjsurce-channel coding based on Turbo coding (with signifly longer

block lengths) outperforms tandem coding for high CSNRs.
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is concluded in Section VII.

II. SYSTEM MODEL AND THE MAP DECODING RULE

The MIMO communication system considered here empleysansmit andL receive antennas. The
input to the system is a stream of i.i.d. symbols which carehawn-uniform distribution. The baseband
constellation signals are denoted fy, }3-_, wherep is a positive integer. We will assume that the average
signal energy is normalized &S, |cx|*pr = 1, Wherep,, is the prior probability of signal or symba].. We
assume that every block of input symbols is encoded into @wort matrixS = (s, ss, ..., S,), Where
St = (814, 824, -, Sic) T IS simultaneously transmitted; is the codeword length in symbol periods, &nd
denotes transpositiohThe channel is assumed to be Rayleigh flat fading, so thatdhmplex path gain
from transmit antenna to receive antenng, denoted byH;;, has a zero-mean unit-variance complex
Gaussian distribution, denoted WA/ (0, 1), with i.i.d. real and imaginary parts. We assume that the
receiver, but not the transmitter, has perfect knowledgthefpath gains. Moreover, we assume that the
channel is quasi-static, meaning that the path gains regwistant during a codeword transmission, but
vary in an i.i.d. fashion from one codeword interval to théest The additive noise at thg" receive
antenna at time, IV, ;, is assumed to b€\ (0, 1) distributed with i.i.d. real and imaginary parts. We will
assume that the input, fading coefficients, and channekraris independent from each other.

Based on the above, for a CSNRyfat each receive branch and at timéhe signal at receive antenna

J can be written as?;; = /% K Hj;s;i + Nj4, or in matrix form,

Ty = \/%H3t+nt> (1)
Where’r‘t = (RLtv RQ,tv ceey RLJ)T, H = {Hjﬂ'}’ andnt = (Nl,tv N2,t7 ceey NL’t)T.

Let us denote the received signals correspondig§by R = (ry, 7o, ..., 7,,) and thea priori probability
of codewordS by p(.S). Assuming that perfect channel state information is alséelain MAP decoding

one aims to maximizé’(S|R, H) over the codebook. The MAP decoding rule is hence given by

argmax P{S|R,H} = argmax P{R|S,H}p(S)
S S
= argmax P{R—,/EHS‘S,H};D(S)
s K

= argSmaX p(S) H exp {— ‘Rj,t — 4/ % Z Hj,isi,t
7t 7

2}
5 2
Rj,t 1/ ?s ; Hj,isi,t } . (2)

2Note that one can interpret as the frame length and hence this model is general enougitiiae space-time trellis codes.

- argSmin {—ln(p(S)HZZ
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IIl. GENERAL SPACE-TIME CODES THE CODEWORD PAIRWISE ERROR PROBABILITY UNDER MAP

DECODING

The codeword PEP betweeiand S is defined as the probability th& has a larger MAP metric in
(2) than S given that$ is transmitted. Therefore,

\/%ZHj,idi,t‘i‘Nj,t hlp <ZZ|NJt| —lnp )}

whered, ; = s;; — 5;;. The codeword PEP is therefore equal to

P(S—S) = { {IZZ th,ZH],dzt \[ASS+A\fSASS}}

1 1
2 .
Pl {Q ( 2% %AzssAS’S) } 7 )

where(z,y) = R{z}R{y}+3{x}3{y} andR{-} andS{-} indicate real and imaginary parts, respectively,

2

P(S — S|H) = {

2
s
A?g,[g = E thz ZHj,idi,t
7 1
and
Ngg— L PS).
T2 p(S)

To compute the expectation (3) in closed-form, we deternteeprobability density function (pdf) of

Aés, convert (3) into a linear combination of the derivatives(ofQ (1/z)}, whereL(-) is the Laplace

transform operator, and then evaluate these derivativest, e note that

Ags= %ZZ Z

tljlz

~ L
= 23" hlUh,, (4)
K =

wherew;,; = 3, d;.d; ,, * denotes complex conjugation, aig is the transpose of th¢" row of H.
SinceU is Hermitian (i.e.U' = U, where' represents complex conjugate transposition) and nontirega
definite, it can be decomposed®&s= VDV, whereD is a non-negative definite diagonal matrix having
the eigenvalues of/ on its main diagonalV is a unitary matrix (i.e.V'V = | ) and its columns are

the unit-norm eigenvectors d@f. Therefore, from (4), we have

2
§Ass

IDa; = ZZ SNl (5)

]121

5
'VIDVh; = Ve

wherez; = Vh;, X;; is thei" element ofz;, and\; = D, ;. As V is unitary, the entries aof; are i.i.d.

CN(0,1) and the moment generating function (MGF) glfs?gs is

(6)
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where Z is the number of distinct non-zerg,’s each of multiplicityn, (with appropriate re-ordering of
the eigenvalues). The pdf of a random variablés the inverse Laplace transforng (') of ®g(—s). In

order to find£~! {@;Ag A(—s)} we convert (6) into a sum and then use the linearity of theldap
S S

transform. Lettingp, = =5, we can write the partial-fraction expansion of (6) as
VA Lnk Z Lnj—1 Qirt k
(blAfss B kl;[l s+pk )L :,;::1 ; (s+pk7)i+1’ @
where 4
ALy —ik = {% [(S + )t k@lAgS(—s)}} " i=0,..,Ln; — 1. (8)
Taking the inverse Laplace transform of the right hand sidé’p we have
flAsz(x) = ,;:L:LZ::OI %xie_ﬁ&(kx, x> 0. (9)
The next step is simply using (9) to evaluate (3). This yields
kzZ:“Lz"; Yk / Y 16_%%2 <\/§+ AL\/;> dy. (20)

We note that the integral in (10) is the Laplace transformyofQ (\/§+AS7S/\/§) evaluated at
s =02 2 2K /vs k.. We know that if f(¢) and F'(s) are Laplace transform pairg’'(s) = L{f(t)}), so
aret" f(t) and(—1)"-4F(s). Therefore, we need to find the- 1% derivative ofC {Q (\/g + AS,S/\@) }
Using integration by parts/{® udv = uwv| — [5° vdu) together with the identity (see [1])

\/ﬁ/ exp{ —(2s+1) ( N%) }dx: N%exp{—(ajL \a|)\/23+1},

we can show thafyap(s), the Laplace transform af) (\/g + Ass/\/g), is equal to

Fue(s) = [~ Q(Vi+Ags/Vi) e " dy

M dv

]_ © d /OO —t2/2 _
= — e dt y eV dy
sV 2m Jo {dy NN

1 o 1 ASS’ 1
= =/ \5 7 2. — (y+ A% 2AA}d
s\ 21 /0 <2\/§ Qy\/@> exp { 9 (y + S,s/y + s,s) Y
f— ]_—Lr(j\s’s) P 1 1 + Sgr(AS,S) 6_(AS,S+‘AS,S“\/@)’
sv2s+1 s

2s 2
where sgfr) = ‘—i‘ if £ 0 and0 otherwise. The term in the sum in (10) is simply

(11)

i—1
zld A

a; )
1) Fie(s) 2 auadin(i 5 A )

(i—1)!

(=1)
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We use the Leibniz's formula for thé&" derivative of a product [1, Eqg. 3.3.8], and a formula for tHe
derivative of a composite function [12] as well as inducttorfind the:™ derivative of (11) (see equation
(33) in the Appendix). The result is the following expressfor the exact codeword PEP of MAP decoded

space-time codes
Z Lnk

P(S — 8S) =3 Faigml(i 0k, g ), (12)

k=1 1i=1
where

m(n,6,A) = %M—%Q—OHMW)X
n-l (_1)n+k—1

n—k—1 v /2 1-1 n—k—2
s PROEEES ()T - p-2) (19

=1

p=0
and>%; z 2 1if L > U. The above formula is also valid for MAP decoding of codeveardsingle-input

multi-output systems under slow Rayleigh fading.

V. STOB CoDES AND MAP DECODING
A. The MAP Decoding Rule

Let ¢ = (c1,...,c,)T be a vector ofr consecutive symbols input to the STOB encoder #hd=
(s1,..., Sw) be the space-time codeword corresponding to it. In the ceS&OB codes, we have = g,
whereg is the coding gain an&S' = gc||?l x. As an example, for the codg’® in [28], w = 8, T = 4,
andg = 2, and for Alamouti’s code [4]g = 1 andw = 7 = 2. It can be shown that (1) can be re-written
as [20]

fj:\/EﬂJCjLﬁj =11, (14)

K
whereR;, = R;, and N;, = N;, for 1 <t < w/2, R;; = R}, andN;, = N7, for w/2 <t < w, and
H’ is derived from thej" row of H via negation and complex conjugation of some of its entrie (
[20, equations (10) and (19)] for two examples). It is cléwattV;, are i.i.d.CA/(0,1). The matrix H’
has orthogonal columns, el H = gY;L,, whereY; = 3, |H;,|>. Therefore, (14) can be multiplied
from the left by H’' to yield

TRy = i g\/%yjc + 7, (15)
wheren? 2 H''ni. Note that each entry af’ is associated with onlgnesymbol. Therefore, if we show
that the noise vectofi is composed of i.i.d. random variables, then we can detetibey: by only

considering the™ entry of the vectorg’, 1 < j < L.
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In order to find the distribution of the noise vectat, we consider two noise sampl@§, ,, and N, ,,
at two arbitrary symbol intervals; and r», and for two arbitrary receive antennasand ¢. Notice that
Ny, andN, ,, are weighted sums of normal random variables, and hencehtheyGaussian distribution.

Also, it is straightforward to verify thaB{N, .,} = F{N,,,} = 0. Hence, the correlation of these noise

E{(ZHZ“;Nm) (ZHf;‘ )}
- XS ALE ()

As the N;, are zero-mean i.i.d., the above double sum is zero uless; andi = j, in which case it

samples is

E{Nin Ny, }

q,72

equals

S BNy = S R A, (16)

i=1 i=1

=gy, ifn=
{ Z ‘ m—l‘ grg T1 T2 (17)

0 otherwise,

where (16) follows from the fact tha, is unit-variance and (17) follows from the orthogonality Hf.

Therefore, we have just shown that
Nyi ~ii.d. CN(0, gY3). (18)
For MAP decodingR can be used instead & becauseR is an invertible function ofR. The detection
rule is given by
o = argcmaxP(c\{Rl,t}le,H)

= argmaxf({Ri}iile, H) - p(e)

L ~
= argmax] [ fy,, ({Res — o' VieHr) - (e) (19)
c =1

|th ’Yc|2}
= argmax In (p —_— ), 20
] { ; 9Y1 (<0)

C

whereg’ = g\/ﬁ, and (19) and (20) are becauB&vt are i.i.d. and Gaussian, respectively, as indicated
in (18).

B. The Exact Symbol Pairwise Error Probability

1) The Conditional PEP:Without loss of generality, we consider MAP decoding for #f&symbol

period. The error probabilities may be determined usingN#eP detection metric given in (20). The
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receiver should evaluate this metric for the symbglsindc; given thatc; is transmitted (hencé?hk =
J'Ye +Nl7k) and decide in favor of the one which yields a larger resugt. s denote by’(c; — ¢;) the
probability thatc; is preferred over; (i.e., c; has a larger metric than in (20)) whenc; is sent. From

(20), we want to determine the probability of the foIIowimgeat

1 & | Rk — g'Yiei? \le—gYC &
In(p(c;)) — < 11’1 ! ’
() = 55 2 3
which is equivalent to
L 2(c; — ¢ le> 1 K | p(e) T &
vo ot > In =% + gle; — ¢ ° Y. (22)
R o I P | e e IR 7

From (18), it follows that/2(c; —c;, Nix)/|c;—¢;] is i.i.d. CA(0, gY;). Hence the sum on the left hand side
of (21) isCN(0, g X%, Y)). Therefore, the probability of the event in (21), which ig fREP conditioned

on the path gains, is given by

_ [97s 1 plci) 1
P(e; — ¢|H) =Q < e |c, VY + 29% P— In () \/}_/> : (22)

L K L
Y =>V=> > |Hyl? (23)
=1

k=11=1

where

is the sum of the squared magnitudes of all the path gains.
2) The Symbol PEP in Closed Fornfo find the unconditional symbol PEP, we should average (22)
with respect toY’. Defining random variable§ as(;_1)x+i = R{H;;} and(xr+-1)x+i = S{H,,;} for

i=1,.,K andj=1,.., L, we note that, ~ i.i.d. N(0,3), and we can writ&" as

Y =3 [Hl? =Y R{H 1+ S{H;} = Z ¢t
.3 .3 i=1
wheren = K L. Using the moment generating function of normal randomaldes yields the probability

density function ofY” as
1

(n—1)!

Hence,Y has a scaled chi-squared distribution with degrees of freedom. The average of (22) can then

fry) =

W, y = 0.

be written as

1
, s ~y/8%;

P(Cl - C]) ( 1 |52n / y 6 Q ( \/7> (24)
whered;; = /$|c; — ¢;| and \; = %ln . We note that the the above integral is the same as the one
in (10). Therefore, we obtain

1 d"
P(c; Ve~ ()P R
(e = ¢) (= 1)!53]”< )" e (s )S:(r2

J
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Therefore, we obtain the PEP between a pair of space-tilhegwhal block coded symbols under MAP
decoding as
P(CZ‘ — Cj) = W(n, 52']'7 )\ij)a (25)

with m(n,d;;, A;j) given in (13). Note that the above formula also holds for MAgtabing of symbols

under MRC, as the received signal in those systems has the feam as in (15) withK = 1.

When ther,’s are equally likely, MAP decoding reduces to ML decoding are have);; = 1 In p(c?)) =

0. Hence, the first sum in (13) is non-zero only foe=n — 1 and we have

1 dij &= (2K 1
P<Ci—>cj>—§(1_\/@go<k>m>’

which agrees with the result derived in [6].

V. APPLICATIONS
A. SER and BER of STOB Coded or MRC Systems

In [7], we established tight algorithmic bounds on the SER BER of STOB coded MIMO systems
with arbitrary signaling schemes and bit-to-signal magpiander slow Rayleigh fading and ML decoding.
To compute these bounds, one needs to calculate the pritpaiilsymbol pairwise error events (i.e.,
the PEP in (25)) as well as the probability of the intersectb pairs of such error events. Closed-form
expressions for these probabilities were derived in [7]e Work in [7] is further extended to the MAP
decoding case in [8]. Alternatively, one can use the geamapiproach in [25], [24] to compute the exact
values of the SER and BER of STOB coded systems. Although #tkad in [25], [24] is implemented for
the AWGN channel only, it can be extended to the STOB codeed gaig the pairwise error probabilities

given in [8].

B. The Optimum Binary Antipodal Signaling for STOB CodesIMR

In this section we consider binary antipodal signaling aptinsize it in the sense of minimizing the
BER given by
BER= P (c; — ¢3) - p(c1) + P (ca — 1) - p(ea). (26)

Normally, one should use the averaged PEP in (26) with= ¢« and ¢, = —b and find the optimak
andb via differentiation. However, this can be a tedious job iawiof the PEP given in (25). Therefore,
we use the PEPs at threceiverside, i.e., givenH, to find the solution in an easier way. The optimal

constellation derived in this way will not depend &#, justifying our approach.
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Let us assume that(c;) = p, and the bits 0 and 1 are mappeddo= —b andc¢; = a, respectively.
Letting 3 = /22, VA = 302/Y, and B = { In =2, with Y as defined below (22), we can write the
BER conditioned onH as

BERy = pQ (f — %) +(1-p)Q <\/Z+ %) . (27)

It is easy to verify that the BER is a strictly decreasing tiot of A (for any fixed B). Hence, given

a constellation energy, andp, in order to minimize the BER, one has to maximize Note thatA is

a scaled distance between the constellation points; trere$ignaling schemes with the same distance
between their signals have identical performance. It iarcteat the constellation with constant average
signal energyF, which maximizesA is the zero-mean constellation, because a constellatitmawnon-
zero mean can simply be shifted to reduce its energy withetfopmance loss.

From the zero-mean condition, we have- l%pa, and the average energy condition requires that
pa® + (1 — p)b* = E,.

The above two equalities result in

which is therefore the optimal binary antipodal constalat The above constellation is identical to the
antipodal signaling result in [16] for the case of the AWGNachel. As mentioned in Section II, we set

E,=1.

C. Linear Dispersion Code Design for MAP Decoding

Linear dispersion (LD) codes (introduced in [13]) conggtan important class of space-time block
codes. Every entry of an LD codeword is a weighted sum of theeland signals with the weights
chosen such that the mutual information between the chanpet and output is maximized given the
number of transmit and receive antennas. An LD codeword igenras

M
S = (mAp + jBnBn),

m=1

where A,, and B,, are K x w matrices (similar to [13], we assume thdt, and B,, have real entries),
Cm = Qo + 70, IS @ symbol to be encoded & /—1), and M is the block length in symbols (i.e., the

number of data symbols to be encoded at a time).
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Instead of maximizing the mutual information, here we opidesign LD codes via minimizing the
union upper bound on the frame (block) error rate which iegiby
Zp(S) Z P(S — S’)
S 5#8
This bound can be computed using the codeword PEP formuéngiv(12).
There are a maximum of two distinct eigenvalues for a systetin two transmit antennas. It can be
verified that the following cases are possible:
« Only one non-zero eigenvalue/ (= 1 in (6)):
In this case the eigenvalues can be equal=£ 2) or one of them is zeron{ = 1). For the first case,
we have
Qarp1 = p%Ly

anda; , = 0 otherwise, and for the second case, we have

L
aL,l = pl 9

ando;, =1fori < L ork=2.
« Two distinct non-zero eigenvalueg & 2 in (6)):

We haven, = n, = 1 and

(“DPIGL(L+5—-1) ,
, — 0,1, L—1
p'<p2 _p1>L+p plp2 p

(—)PI(L+5—1) ,
pl(p1 — pa)LtP 1re

arp_p1

ar—p,2 p:O)lij_l

Our design method is as follows: to guarantee maximum thrpuggand to make sure that the per-
formance is always better than V-BLAST, we begin with tAg, and B,, matrices which correspond to
V-BLAST and are given by [11], [13]

AK(T—1)+k = BK(T—1)+]<: = Cng, T = 1, ., W, k= 1, ey K,

wherec. andd,, arew-dimensional and:-dimensional column all-zero vectors except for a 1 in tHe
and k" entries, respectively. We then improve the code by addimg-aean Gaussian noise to th,
and B,, matrices, normalizing thed,, and B,, matrices to satisfy the power constraint which, in the

uniform-source case, is given by [13, equation(18)]

> (trAf A, +trBl B,,) = 2wK, (28)

m
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and updating the code if the new FER union bound decreasehaWechosen the variance of the additive

noise to decrease according to

i 3
02 =0.25 (1 — > i=1,2, ..., Imax

max

wheres is the iteration number. This regime is chosen following][8@e to its fast convergence rate and
good results.

Note that this new code is still a linear dispersion code.rétoee:

1) Similar to [13], we have noticed that the performance @f tbsulting codes is not sensitive to the
design CSNR. Therefore, to avoid numerical problems riegufirom the addition of very small
numbers, we set the design CSNR at 5 to 10 dB, depending oruthbar of antennas.

2) The design criterion in [13] is to maximize the mutual imf@tion between channel input and output
under the assumption that the real and imaginary parts osigreal set haveV (0, %) distribution,
which may be far from the particular signaling scheme andunaiform distribution to be used. In
our method, we optimize the code for the particular sigrgpioheme and prior probabilities which
are going to be used. Obviously, the design method works dswith the assumption of having
N(0,1) distribution for the signals.

3) The power constraint (28) can be made more restrictive.ekample, one could usd! A,, =
B! B,, = iflx form =1,..., M. It is noted in [13] that this power constraint generallydedo
lower error rates, but we have used (28) in our design to Xfelae condition as much as possible
and let the search algorithm converge to any local minimurichvbatisfies the power constraint.

4) Obviously, the search method is random and may convergel¢éaal minimum. The variance of
the additive noise is large at the initial loops to allow Eighprovements, but it reduces with the
iterations to allow convergence and small refinement. Wee ltdbserved that many small changes
are made at lower noise variances.

5) In order to have the possibility of finding better minimag wn the algorithm twice with the second
round initialized with the results of the first. This allowsstaping” from a bad local minimum at

the beginning of the second round, when the variance of tdéiael noise is large.

VI. NUMERICAL RESULTS
A. Binary Antipodal Signaling

It suffices to study the BER of binary antipodal signaling hmw the exactness of our symbol PEP

formula in (25). We simulate the transmission of an i.i.d.dqg@quence over MIMO channels. The length
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of the bit-sequence isax(22, 10°) bits.

We consider a system with two transmit and one receive aate(which uses Alamouti’s code [4]) in
Figure 1 with various values gf,. Another system with three transmit and various numbereogive
antennas (and the cod@ in [28]) is considered in Figure 2. It is observed that thelysia and simulation
curves coincide everywhere. In Figure 3, we compare foutesys. two systems with BPSK signaling
and ML or MAP decoding, and two systems with optimum sigrgaiimd ML or MAP decoding. These
systems are indicated by ML BPSK, MAP BPSK, ML optimum, and RAptimum, respectively. The
source is an i.i.d. bit-stream with, = 0.9. At a BER of10~¢, the gain of using the modified constellation
and MAP detection is about 6 dB over the ML decoded system ®RISK modulation. For the same
BER, the gain over the MAP decoded BPSK system is 4.7 dB. Wedallserve that if the CSNR is high
enough, optimum signaling and ML detection outperforms BR&d MAP detection.

When the additive noise at the receiver is strong (i.e., &t 4g), the second term in the argument
of the Q(-) function in (22) has the dominant effect; hence MAP decodinilpn BPSK signals is more
effective than ML decoding with optimum signals. In lesssyochannel conditions (high,), the first
term in the argument of th€)(-) function becomes dominant and hence ML decoding with optimu

signaling outperforms MAP decoding with symmetric sign#s previously mentioned, MAP decoding

with optimum signaling is always better than other systems.

B. Tandem versus Joint Source-Channel Coding

Figure 4 compares a MAP decoded system with two tandem sgstender an identical overall rate)
for a dual-transmit single-receive channel with 16-QAM mladion. The input bit-stream is i.i.d. with
po = 0.89 so that the source entropy i#(X) = 0.5. The tandem systems consist df drder Huffman
coding followed by one of a 16-state or 64-state rate-1/Z/@clional coding blocks. The convolutional
codes are non-systematic and chosen from [15]. The lengtheofnput bit-stream i2 x 10° bits. The
test is repeated 500 times and the average BER is reportedoliiserved that the tandem system breaks
down (due to error propagation in the Huffman decoder) foNRS< 25 dB. The MAP-decoded system
outperforms the 16-state tandem coded system for BER x 10~7. It also outperforms the 64-state
tandem coded system for BER 3 x 10~7. Therefore, the jointly coded system has superior perfonaa
for the BER range of interest in many systems in practicesTéia typical behavior of to-date joint
source-channel coding designs (that do not employ TurbBL[zodes): they are superior to tandem
systems for a (sometimes wide) range of CSNRs below a cetiaashold [2], [3], [5], [17]. A similar

study as in [34] can also be done, where it is shown that jootce-channel Turbo codes outperform
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tandem systems that use source coding (Huffman coding) kEssical (channel-coding based) Turbo

codes.

C. Constellation Mapping with STOB Codes

We next demonstrate that a large gain can be achieved vialsigappings designed according to
the source non-uniform distribution over Gray and quasiy@nappings. The M1 mapping is introduced
in [26] and is designed for the transmission of non-uniforimaby sources over single antenna AWGN
channels. It minimizes the SER union bound for single ardeRayleigh fading channels with/-ary
PSK and square QAM signaling. Here we use the guidelines@hy&h the symbol PEP formula in (25)
to obtain the M1 mapping for the Star 8-QAM (shown in Figure§ether with the Gray signal labeling)
and 64-QAM (shown in [26, Fig. 9] also together with the Gragnal labeling) signal sets. Figures 6 and
7 compare the SER curves for the Gray and M1 mappings for #e8SQAM and 64-QAM signal sets,
respectively. These figures show that the M1 map performg wetl for STOB coded MIMO channels,
even for small signal sets such as Star 8-QAM. The gain of themMpping over Gray mapping is 1.4
dB for Star 8-QAM and 3.7 dB for 64-QAM at SER #)~3. The gain due to source redundancy is 10.4
dB for 64-QAM signaling.

D. Linear Dispersion Code Design

Figures 8 and 9 demonstrate the FER and BER performance ofLDurode search method for a
non-uniform binary i.i.d. source witlhp, = 0.9, respectively, for a dual-transmit dual-receive antenna
system.

As mentioned in Section V-C, we start from a V-BLAST struetuso M = 4. It is observed that the
new code significantly outperforms V-BLAST and its gain oVeBLAST continues to grow as the CSNR
increases. We believe that this behavior is due to the ladiyersity order of LD codes over V-BLAST,
as the LD codes send each signal over all transmit antenniges wh/-BLAST each signal is sent once
from only one transmit antenna, so it experiences only odadacoefficient.

The new code, which will hereafter be referred to as LDC4pimfl as

M [ 0.65782454  —1.30819861 | M [ 0.25968977  0.60373361 |
1 = 3 2 = )

| —0.10725738  0.20531537 | 0.97828103 —0.51361949 |

M [ 0.04809691  0.56160243 | M [ _0.70479974  0.22760978 |
3 — 3 4 = )

| —0.81070085 —0.35572084 | 004377761 0.68613179 |
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and

1=

9 =

0.25381635  1.74228787

1.19165069 —0.11729547
—0.26612417 —1.03714274

[ —0.08310451 —1.02226963 }

3:
—0.44476603 1.10551397 0.58266695 1.40274305

{ ~0.37841861 2.14539824} B { —0.98806533 0.27960017} |
In order to have the same information rate (of 4 bits/chamsel) in our comparison, we use 16-QAM
signaling for Alamouti'sG? code, and Q-PSK signaling otherwise. At FERL&2, the CSNR gain for
LDC4 is 12.3 dB oveiG?, 3.5 dB over V-BLAST, and 1.1 dB over the code of [13, eq. (3B BER
= 1073, the CSNR gain is 13 dB ovej?, 4.3 dB over V-BLAST, and 2.4 dB over the code of [13, eq.
(31)], respectively.

When the source is uniform, Alamouti’'s code offers howevesuperior performance for 2 transmit
antennas and a small number of receive antennas. For thas(gas 0.5), we again considered ax2
system. When initialized with Alamouti’s code and Q-PSK milation, our search algorithm could not

find a code with lower FER union bound. However, when we ihiga our algorithm with V-BLAST

and BPSK, the algorithm converged to

i 0.74342773 —0.08692446 ] —0.36902827  0.54303939

Al == ) A2 == 5
| 0.40936511  0.50797666 | 075611440 —0.00025825
M [ 0.30229420  0.83952155 | M [ 0.47303478 —0.03771225 |
3 = ) 4 = 3
| —0.45246174 0.09078508 0.21804135  0.85410106

and B; = 0,,,7 = 1,...,4 (because the signals are real). At FERG=3, the CSNR gain in using the
above code is 4.2 dB over V-BLAST and 1.2 dB over the LD codeld [eg. (31)]. Alamouti’s code,

however, demonstrates a 1.4 dB CSNR gain over our code above.

E. Bit-to-Signal Mapping and Trellis Coding

The system considered here has one transmit and two receieenas. The frame length is 120 bits
and the test is repeated 200000 times. A frame error is cduwmben the decoded and transmitted symbol
streams do not exactly match.

Figure 10 demonstrates the performance of a 3ate8-state 16-QAM trellis coded system. We optimize
the bit-to-signal mapping for a fixed convolutional encoskeucture using the symbol PEP formula in (25)
and the guidelines of [26], which result in the M1 mapping 28, Figure 8]. We compare the M1 and
Gray mapped systems for the same encoder structure spdwyfied, i1, he) = (11,2,4). It is observed
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that, since the M1 mapping is more energy-efficient, it acdsea 1 dB CSNR gain over Gray mapping
with MAP decoding at FER =03, and an additional 0.8 dB CSNR gain over ML decoding; i.e8, 1.
dB gain in CSNR over the conventional which use Gray mappimd) ML decoding.

VIlI. CONCLUSION

In this paper, we addressed the maximanposteriori decoding of non-uniform i.i.d. sources in a
multiple-antenna setting. We derived closed-form expoessfor the codeword pairwise error probability
of general multi-antenna codes as well as the PEP of symbmlergoing space-time orthogonal block
coding. It was shown that, similar to ML decoding, detectminsymbols is decoupled under MAP
decoding. We also explored some applications of the PEP uiasn For example, we proved that the
binary antipodal signaling scheme which minimizes the bibrerate in AWGN channels also minimizes
the BER under STOB coding. Moreover, we designed space-itilh&€odes which were optimized for
the source distribution. Two typical codes were given whoctiperformed V-BLAST and the LD codes
of [13] by a wide margin. We also addressed the issue of bsignal mapping in STOB coded scenarios
as well as trellis-coded MRC systems. Another applicat®the establishment of tight Bonferroni-type
bounds for the SER and BER of MIMO systems which employ MAPodatg (see [8]).

Extensions of this work may include computation of the eX@€R and BER of STOB coded channels
under MAP decoding following the approach of [25], [24] (whiis implemented for the AWGN channel)
using the PEP formulas in [8] and optimization of bit-toragmapping for STOB coded channels. Optimal
guaternary constellation design could also be studied §&linfor STOB coded channels using the error
bounds of [8]. Another direction is to use (12) to find treliscoders and signal mappings which, when
used with the MAP decoding rule in (2), will reduce the FER /anBER of a trellis-coded system.
A possible approach is to approximate the union upper bosindgijar to the work in [17] for AWGN
channels. The study of (12) to identify key parameters andetove design criteria for space-time codes
could be another extension of this work. It would also berggéng to find the codeword PEP for the

case where the source has memory in addition to non-unif@rmi
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APPENDIX

Here we derive thex™" derivative of (11) with respect te. First, we present a lemma which can be
proved easily via induction.
Lemma-The following hold
a) & (1) = e
b) £-(25+1)% = (25 + 1)% "H — 24)

C) dEZ:Le—(a—Fby) _ ( )nbne—(a—i-by)

The derivative of the first term in (11) may be found via (a). #s the product term, we use the

Leibniz’'s formula [1, Eqg. 3.3.8] to treat the two terms sepaly. The formula is

dn dn Z
= . 29
dx” Z ( )dml dxn—1 (29)

L andv = ¢ (“*"*+1) Using (29) again to find the" derivative

of the second term im with u; = g and v = and applying (a) and (b) with = —1 results in

\/2 V2s+1!

dofa 1\ _ (=Dila (=D T 1)
( +- ) +Z

dsi V2s+1 sitl (i —g)! si+1(2s 4+ 1)~ i+s
(—1)4la (—1) & <2k> sk
= 2 — - . 30
Sz-i—l Sz-i-l l;) k 2k(28+1)k+§ ( )
As for the exponential term, we use a result from [12] whicktest that forf(z) = F(y), y = ¢(x),
we have
" ~ Ui ' R A"k
T f@) =2 = FV(y), where U= Z Yty (31)
=1 "
Letting F(y) = e~ @) andy = /2s + 1, we use (31), (b), and (c) to get
dn—i —la s a S = 28+1 __n—Hb] il 1 nicl .
We ( +bv/2 +1) +b\/2 +1 Z ) Z («2) (_1)j+k H (,] —k— 21) (32)
§ j=1 k=0 1=0
Using (30) and (32) in (29) witlh = \;; andb = |)\;;| yields then™ derivative of (11) as
dr (1 —sgnAi))(=1)"n! 1 Xij+IAij V21
WFMAP( s) = 2sny+1 — ¢ ~ (R halVasF)
" (n\ (—1)kk! < u 2m> )
—sgn\;;) + X
;:%) <k‘> st 9 mX::o m ) 2m(2s + 1)
n—k |)\‘j‘l -1 l l+ n—k—1
. - P (I —p—2q). (33)
; 1'(2s 4+ 1)"F=2 ,;0 <p> ql;[O
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Fig. 6. Comparison between the Gray and the M1 mappings for SQAM modulation K = 2, L = 1, and theG? STOB code.
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Fig. 7. Comparison between the Gray and the M1 mappings fa@@&M modulation, K = 2, L = 1, and theG> STOB code.
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Fig. 9. Comparison between V-BLAST?, the LD code of [13, eq. (31)], and the new codé;= 2, L = 2. Q-PSK modulation (16-QAM

for G%) and MAP decoding wittpg = 0.9.
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Fig. 10. Comparison between M1 and Gray mappings for theXéateB-state 16-QAM trellis coded system with= 2 receive antennas.

The input is an i.i.d. bit-stream withy = 0.9.



