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Abstract

We study the maximuma posteriori(MAP) decoding of memoryless non-uniform sources over multiple-antenna

channels. Our model is general enough to include space-timecoding, BLAST architectures, and single-transmit

multi-receive antenna systems which employ any type of channel coding. We derive a closed-form expression for

the codeword pairwise error probability (PEP) of general multi-antenna codes using moment generating function

and Laplace transform arguments. We then consider space-time orthogonal block (STOB) coding and prove that,

similar to the maximum likelihood (ML) decoding case, detection of symbols is decoupled in MAP decoding. We

also derive the symbol PEP in closed-form for STOB codes. We apply these results in several scenarios. First,

we design a binary antipodal signaling scheme which minimizes the system bit error rate (BER) under STOB

coding. At a BER of10−6, this constellation has a channel signal-to-noise ratio (CSNR) gain of 4.7 dB over

conventional BPSK signaling for a binary non-uniform source with p0

△
= P (0) = 0.9. We next design space-time

linear dispersion (LD) codes which are optimized for the source distribution under the criterion of minimizing the

union upper bound on the frame error rate (FER). Two codes aregiven here: one outperforms V-BLAST by 3.5 dB

and Alamouti’s code by 12.3 dB at an FER of10−2 for a binary source withp0 = 0.9, and the other outperforms

V-BLAST by 4.2 dB at an FER of10−3 for a uniform source. These codes also outperform the LD codes of [13]

constructed under a different criteria. Finally, the problem of bit-to-signal mapping is studied. It is shown that for

a binary source withp0 = 0.9, 64-QAM signaling, and SER =10−3, a gain of 3.7 dB can be achieved using a

better-than-Gray mapping. For a system with one transmit and two receive antennas that uses trellis coding with

16-QAM signaling, a 1.8 dB gain over quasi-Gray mapping and ML decoding is observed when MAP decoding

is used for binary sources withp0 = 0.9.
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I. INTRODUCTION

IDEALLY, a lossless or lossy source coder would compress datainto an independent, identically dis-

tributed (i.i.d.) nearly uniform bit-stream (for sufficiently long blocklengths). However, most practical

source coding methods are not ideal; hence there exists a residual redundancy (in the form of non-

uniform distribution and/or memory) at their output which will be present at the input of the channel

encoder. For example, the line spectral parameters at the output of codebook-excited linear predictive

(CELP) speech vocoders may contain up to 42% of (residual) redundancy due to non-uniformity and

memory (see, e.g., [3]). Another example is the bit-stream at the output of vector quantizers with moderate

blocklengths. Furthermore, natural data sources, which incertain complexity-constrained applications (e.g.,

wireless sensor networks) are transmitted uncompressed over the channel, exhibit even higher amounts

of redundancy. For example, binary images may contain as much as 80% of redundancy due to non-

uniformity; this translates into a probability as high as 97% for having a “0” (as opposed to a “1”) in the

image bit-stream (see, e.g., [34] and the references therein).

In this paper, we study how exploiting the source non-uniformity at the transmitter and/or the receiver

can improve the performance of multi-antenna systems in thepresence of quasi-static Rayleigh fading.

This scenario allows for the use of channel coding (such as convolutional, Turbo or low-density parity

check (LDPC) coding) before the multi-antenna encoding operation, as long as systematic channel codes

are used. If such codes are employed, then the resulting bit-stream at the input of the multi-antenna coder

will still be non-uniform (albeit to a lesser extent than theoriginal source, depending on the code rate and

blocklength). If non-systematic channel codes are used, the resulting bit-stream will be closer to uniform;

in this case, a different (and challenging) approach, not considered here, would be to jointly design the

channel code and the multi-antenna encoder to exploit the non-uniformity of the original source (refer to

[34] for examples of non-systematic Turbo codes that exploit the source non-uniformity in a single-antenna

system).

Our contribution is threefold. First, we derive the maximuma posteriori(MAP) decoding rule for multi-

antenna codewords. We then derive a closed-form expressionfor the codeword pairwise error probability

(PEP) of general multi-antenna codes (including any space-time and BLAST codes) under MAP decoding.

Finally, we explore some applications of the above results and show that there can be a large gain in

performing MAP decoding as compared with maximum likelihood (ML) decoding. Knowing the exact PEP

in closed form facilitates the derivation of better estimates of the system error rates, since the Chernoff

upper bound on the codeword PEP derived in [29] is often too loose to be useful. In fact, numerical
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results in [7] show that the Chernoff-based union upper bound is significantly ineffective for symbol

error rate (SER) and bit error rate (BER) estimation at the error rates of practical interest in wireless

communications since the bounds are often larger than 1 at low to medium values of the channel signal-

to-noise ratio (CSNR). The exact codeword PEP is hence of vital interest for both analysis and design

purposes.

For ML decoding, the main challenge in finding the PEPs of interest under fading is to averageQ(
√

X)

where Q(·) is the Gaussian error integral andX is a non-negative random variable. A closed-form

expression for the codeword PEP of space-time codes of arbitrary structure under slow Rayleigh fading

and ML decoding is derived in [19]. The derivation is based onan alternate formula for theQ(·) function

[10], which only works for non-negative arguments. As will be seen in the sequel, computing the PEP

between a pair of MAP decoded codewords requires finding the expected value ofQ(
√

X + λ/
√

X),

whereλ is a real (positive or negative) number; this is more involved than the ML decoding case. We

use singular value decomposition and Laplace transform arguments to derive the above PEP. Other work

on the error analysis of space-time coded channels under ML decoding include [31], where an expression

for the exact PEP of space-time trellis codes is found and used to derive an upper bound on the BER.

Another form of the exact PEP is derived in [27] which is easier to compute in certain cases. The authors

have presented simple formulas in closed-form for the exactPEP of space-time codes in [7], where very

tight upper and lower bounds on system SER and BER are also derived. To the best of our knowledge,

there is no work in the literature on performance analysis orsimulation of space-time codes under MAP

decoding.

Next, we consider the special case of space-time orthogonalblock (STOB) codes and show that for

this case, when the symbols input to the space-time encoder are i.i.d. (but not necessarily uniformly

distributed), detection of symbols is decoupled (as in the ML decoding case). We then derive the symbol

PEP under MAP decoding for STOB codes. The PEP expression is also valid for systems that utilize

maximum-ratio combining (MRC).

Finally, we apply the PEP results to three coding scenarios.First, we find the optimal binary antipodal

signaling in the sense of minimizing the BER of space-time orthogonal coded systems. We prove that the

optimal binary antipodal signaling does not actually depend on the fading distribution and is the same as

the one derived for the additive white Gaussian noise (AWGN)channel. Second, we construct space-time

linear dispersion (LD) codes for both non-uniform and uniform i.i.d. sources. Unlike [13], where the code

design criterion is to maximize the mutual information between the channel input and output, we opt
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to minimize the union upper bound on the frame error rate (FER) of the code. We note that even for a

simple dual-transmit dual-receive system with BPSK modulation, gains up to 4.2 dB can be obtained over

V-BLAST for a uniform i.i.d. source at an FER of10−3. Third, we address the design of bit-to-signal

mappings which take the input non-uniformity into account to minimize the BER of two systems: one

system uses STOB codes while the other one is a trellis coded system with 16-QAM signaling in a

single-transmit multiple-receive antenna setup. We observe that the gains with better-than-Gray mappings

can be significant if the source has non-uniform distribution. For example, in a trellis coded system with

2 receive antennas andp0
△
= P (b = 0) = 0.9 (whereb is a data bit), at FER =10−3, a CSNR gain of 0.8

dB can be obtained through MAP decoding (instead of ML decoding) and an additional gain of 1.0 dB

can be achieved using a signal mapping which is carefully designed (hence a total gain of 1.8 dB over

quasi-Gray mapping and ML decoding is obtained).

MAP decoding for sources with redundancy (due to non-uniform distribution and/or memory) is a

form of joint source-channel coding/decoding. It would then be interesting to compare the performance of

MAP-decoded schemes with that of tandem coding systems, i.e., systems with separate and independent

source compression and channel coding blocks. Most previous coding designs, such as [2], [18], show that

independent (tandem) source and channel coding outperforms joint source-channel coding above some

threshold CSNR.1 As can be seen in the simulations of this paper, the CSNR threshold beyond which

tandem coding outperforms MAP decoding is quite large. In particular, there are many examples in which

joint source-channel coding outperforms tandem coding forthe entire CSNR range (or error rates) of

interest. Indeed, in a recent information theoretic study [33], it is proved that the error exponent (which is

the rate of asymptotic exponential decay of the probabilityof block error) of optimal joint source-channel

coding can be as large as twice the error exponent of optimal tandem systems (which concatenate optimal

source coding with optimal channel coding). This implies that for the same probability of error, optimal

joint source-channel coding would require half the encoding/decoding delay of the optimal tandem scheme.

The rest of this paper is organized as follows. Section II describes the multi-input multi-output (MIMO)

channel model and formulates the MAP decoding rule based on which the exact codeword PEP is derived

in Section III. In Section IV, we derive the MAP decoding ruleand symbol PEP for the special case of

STOB codes. Applications of the PEP formulas in binary signaling, LD code design, and bit-to-signal

mapping are presented in Section V. Section VI presents the numerical results and discussions. The paper

1An opposite behavior is however observed in [34], where joint source-channel coding based on Turbo coding (with significantly longer

block lengths) outperforms tandem coding for high CSNRs.
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is concluded in Section VII.

II. SYSTEM MODEL AND THE MAP DECODING RULE

The MIMO communication system considered here employsK transmit andL receive antennas. The

input to the system is a stream of i.i.d. symbols which can have non-uniform distribution. The baseband

constellation signals are denoted by{ck}2p

k=1 wherep is a positive integer. We will assume that the average

signal energy is normalized as
∑

k |ck|2pk = 1, wherepk is the prior probability of signal or symbolck. We

assume that every block of input symbols is encoded into a codeword matrixS = (s1, s2, ..., sw), where

st = (s1,t, s2,t, ..., sK,t)
T is simultaneously transmitted,w is the codeword length in symbol periods, andT

denotes transposition.2 The channel is assumed to be Rayleigh flat fading, so that the complex path gain

from transmit antennai to receive antennaj, denoted byHj,i, has a zero-mean unit-variance complex

Gaussian distribution, denoted byCN (0, 1), with i.i.d. real and imaginary parts. We assume that the

receiver, but not the transmitter, has perfect knowledge ofthe path gains. Moreover, we assume that the

channel is quasi-static, meaning that the path gains remainconstant during a codeword transmission, but

vary in an i.i.d. fashion from one codeword interval to the other. The additive noise at thej th receive

antenna at timet, Nj,t, is assumed to beCN (0, 1) distributed with i.i.d. real and imaginary parts. We will

assume that the input, fading coefficients, and channel noise are independent from each other.

Based on the above, for a CSNR ofγs at each receive branch and at timet, the signal at receive antenna

j can be written asRj,t =
√

γs

K

∑K
i=1 Hj,isi,t + Nj,t, or in matrix form,

rt =

√
γs

K
Hst + nt, (1)

wherert = (R1,t, R2,t, ..., RL,t)
T , H = {Hj,i}, andnt = (N1,t, N2,t, ..., NL,t)

T .

Let us denote the received signals corresponding toS by R = (r1, r2, ..., rw) and thea priori probability

of codewordS by p(S). Assuming that perfect channel state information is available, in MAP decoding

one aims to maximizeP (S|R, H) over the codebook. The MAP decoding rule is hence given by

arg max
S

P{S|R, H} = arg max
S

P{R|S, H}p(S)

= arg max
S

P
{

R −
√

γs

K
HS

∣
∣
∣
∣S, H

}

p(S)

= arg max
S

p(S)
∏

j,t

exp






−
∣
∣
∣
∣
∣
Rj,t −

√
γs

K

∑

i

Hj,isi,t

∣
∣
∣
∣
∣

2






= arg min
S






− ln (p(S)) +

∑

t

∑

j

∣
∣
∣
∣
∣
Rj,t −

√
γs

K

∑

i

Hj,isi,t

∣
∣
∣
∣
∣

2





. (2)

2Note that one can interpretw as the frame length and hence this model is general enough to include space-time trellis codes.
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III. GENERAL SPACE-TIME CODES: THE CODEWORD PAIRWISE ERROR PROBABILITY UNDER MAP

DECODING

The codeword PEP betweenS and Ŝ is defined as the probability thatS has a larger MAP metric in

(2) thanŜ given thatS is transmitted. Therefore,

P (S → Ŝ|H) = P







∑

t

∑

j

∣
∣
∣
∣
∣
−
√

γs

K

∑

i

Hj,idi,t + Nj,t

∣
∣
∣
∣
∣

2

− ln p(Ŝ) <
∑

t

∑

j

|Nj,t|2 − ln p(S)






,

wheredi,t = si,t − ŝi,t. The codeword PEP is therefore equal to

P (S → Ŝ) = EH






P







√
2
∑

t

∑

j

〈Nj,t,
∑

i

Hj,idi,t〉 >
1√
2
∆

S,Ŝ +

√
2

∆
S,Ŝ

Λ
S,Ŝ













= E 1

2
∆2

S,
ˆ
S






Q





√

1

2
∆2

S,Ŝ
+

1
√

1
2
∆2

S,Ŝ

Λ
S,Ŝ










, (3)

where〈x, y〉 = ℜ{x}ℜ{y}+ℑ{x}ℑ{y} andℜ{·} andℑ{·} indicate real and imaginary parts, respectively,

∆2
S,Ŝ

=
γs

K

∑

t

∑

j

∣
∣
∣
∣
∣

∑

i

Hj,idi,t

∣
∣
∣
∣
∣

2

and

Λ
S,Ŝ =

1

2
ln

p(S)

p(Ŝ)
·

To compute the expectation (3) in closed-form, we determinethe probability density function (pdf) of

1
2
∆2

S,Ŝ
, convert (3) into a linear combination of the derivatives ofL{Q (

√
x)}, whereL(·) is the Laplace

transform operator, and then evaluate these derivatives. First, we note that

∆2
S,Ŝ

=
γs

K

w∑

t=1

L∑

j=1

∣
∣
∣
∣
∣

K∑

i=1

Hj,idi,t

∣
∣
∣
∣
∣

2

=
γs

K

L∑

j=1

h
†
jUhj , (4)

whereuk,i =
∑

t di,td
∗
k,t,

∗ denotes complex conjugation, andhj is the transpose of thej th row of H.

SinceU is Hermitian (i.e.,U † = U , where† represents complex conjugate transposition) and non-negative

definite, it can be decomposed asU = V
†
DV , whereD is a non-negative definite diagonal matrix having

the eigenvalues ofU on its main diagonal.V is a unitary matrix (i.e.,V †
V = IK) and its columns are

the unit-norm eigenvectors ofU . Therefore, from (4), we have

1

2
∆2

S,Ŝ
=

γs

2K

L∑

j=1

h
†
jV

†
DV hj =

γs

2K

L∑

j=1

x
†
jDxj =

L∑

j=1

K∑

i=1

γs

2K
λi|Xji|2, (5)

wherexj = V hj , Xji is theith element ofxj, andλi = Di,i. As V is unitary, the entries ofxj are i.i.d.

CN (0, 1) and the moment generating function (MGF) of1
2
∆2

s,ŝ
is

Φ 1

2
∆2

S,
ˆ
S

(s) =
Z∏

k=1

1
(

1 − λk
γs

2K
s
)Lnk

, (6)
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whereZ is the number of distinct non-zeroλk’s each of multiplicitynk (with appropriate re-ordering of

the eigenvalues). The pdf of a random variableΘ is the inverse Laplace transform (L−1) of ΦΘ(−s). In

order to findL−1

{

Φ 1

2
∆2

S,
ˆ
S

(−s)
}

, we convert (6) into a sum and then use the linearity of the Laplace

transform. Lettingpk = 2K
γsλk

, we can write the partial-fraction expansion of (6) as

Φ 1

2
∆2

S,
ˆ
S

(−s) =
Z∏

k=1

pLnk

k

(s + pk)Lnk
=

Z∑

k=1

Lnk−1
∑

i=0

αi+1,k

(s + pk)i+1
, (7)

where

αLnk−i,k =
1

i!

{

di

dsi

[

(s + pk)
LnkΦ 1

2
∆2

S,
ˆ
S

(−s)
]}
∣
∣
∣
∣
∣
s=pk

, i = 0, ..., Lnk − 1. (8)

Taking the inverse Laplace transform of the right hand side of (7), we have

f 1

2
∆2

S,
ˆ
S

(x) =
Z∑

k=1

Lnk−1
∑

i=0

αi+1,k

i!
xie

− 2K
γsλk

x
, x ≥ 0. (9)

The next step is simply using (9) to evaluate (3). This yields

P (S → Ŝ) =
Z∑

k=1

Lnk∑

i=1

αi,k

(i − 1)!

∫ ∞

0
yi−1e

− 2K
γsλk

y
Q

(

√
y +

Λ
S,Ŝ√
y

)

dy. (10)

We note that the integral in (10) is the Laplace transform ofyi−1Q
(√

y + Λ
S,Ŝ/

√
y
)

evaluated at

s = δ−2
k

△
= 2K/γsλk. We know that iff(t) andF (s) are Laplace transform pairs (F (s) = L{f(t)}), so

aretnf(t) and(−1)n dn

dsn F (s). Therefore, we need to find thei−1st derivative ofL
{

Q
(√

y + Λ
S,Ŝ/

√
y
)}

.

Using integration by parts (
∫∞
0 udv = uv|∞0 − ∫∞

0 vdu) together with the identity (see [1])

1√
2π

∫ ∞

0
exp






−1

2
(2s + 1)

(

x +
a

x
√

2s + 1

)2





dx =

1

2
√

2s + 1
exp

{

−(a + |a|)
√

2s + 1
}

,

we can show thatFMAP(s), the Laplace transform ofQ
(√

y + Λ
S,Ŝ/

√
y
)

, is equal to

FMAP(s) =
∫ ∞

0
Q
(√

y + Λ
S,Ŝ/

√
y
)

︸ ︷︷ ︸

u

e−ysdy
︸ ︷︷ ︸

dv

=
1

s
√

2π

∫ ∞

0







d

dy

∫ ∞
√

y+Λ
S,

ˆ
S

/
√

y
e−t2/2dt






e−ysdy

= − 1

s
√

2π

∫ ∞

0

(

1

2
√

y
−

Λ
S,Ŝ

2y
√

y

)

exp
{

−1

2

(

y + Λ2
S,Ŝ

/y + 2Λ
S,Ŝ

)}

dy

=
1 − sgn(Λ

S,Ŝ)

2s
− 1

2

(

1

s
√

2s + 1
+

sgn(Λ
S,Ŝ)

s

)

e−(Λ
S,Ŝ

+|Λ
S,Ŝ

|
√

2s+1), (11)

where sgn(x) = |x|
x

if x 6= 0 and0 otherwise. The term in the sum in (10) is simply

αi,k

(i − 1)!
(−1)i−1 di−1

dsi−1
FMAP(s)

△
= αi,kδ

2
kπ(i, δk, ΛS,Ŝ).
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We use the Leibniz’s formula for theith derivative of a product [1, Eq. 3.3.8], and a formula for theith

derivative of a composite function [12] as well as inductionto find theith derivative of (11) (see equation

(33) in the Appendix). The result is the following expression for the exact codeword PEP of MAP decoded

space-time codes

P (S → Ŝ) =
Z∑

k=1

Lnk∑

i=1

δ2i
k αi,kπ(i, δk, ΛS,Ŝ), (12)

where

π(n, δ, λ) =
1 − sgn(λ)

2
− 1

2
e−(λ+|λ|

√
2δ−2+1) ×

n−1∑

k=0

(−1)n+k−1

(2 + δ2)n−k−1

(

−sgn(λ) +
δ√

2 + δ2

k∑

m=0

(

2m

m

)

1

(2δ2 + 4)m

)

×
n−k−1∑

l=1

|λ|l(δ2 + 2)l/2

l!δl

l−1∑

p=0

(

l

p

)

(−1)l+p
n−k−2∏

q=0

(l − p − 2q) (13)

and
∑U

i=L zi
△
= 1 if L > U . The above formula is also valid for MAP decoding of codewords in single-input

multi-output systems under slow Rayleigh fading.

IV. STOB CODES AND MAP DECODING

A. The MAP Decoding Rule

Let c = (c1, ..., cτ )
T be a vector ofτ consecutive symbols input to the STOB encoder andS =

(s1, ..., sw) be the space-time codeword corresponding to it. In the case of STOB codes, we havew = gτ ,

whereg is the coding gain andSS
† = g‖c‖2IK . As an example, for the codeG3 in [28], w = 8, τ = 4,

andg = 2, and for Alamouti’s code [4],g = 1 andw = τ = 2. It can be shown that (1) can be re-written

as [20]

r̄
j =

√
γs

K
H̄

j
c + n̄

j j = 1, · · · , L, (14)

whereR̄j,t = Rj,t and N̄j,t = Nj,t for 1 ≤ t ≤ w/2, R̄j,t = R∗
j,t and N̄j,t = N∗

j,t for w/2 < t ≤ w, and

H̄
j is derived from thej th row of H via negation and complex conjugation of some of its entries (see

[20, equations (10) and (19)] for two examples). It is clear that N̄j,t are i.i.d.CN (0, 1). The matrixH̄
j

has orthogonal columns, i.e.,̄H
j†

H̄
j

= gYjIτ , whereYj =
∑

i |Hj,i|2. Therefore, (14) can be multiplied

from the left byH̄
j† to yield

r̃
j △
= H̄

j†
r̄

j = g

√
γs

K
Yjc + ñ

j , (15)

whereñ
j △
= H̄

j†
n̄j . Note that each entry of̃rj is associated with onlyonesymbol. Therefore, if we show

that the noise vector̃nj is composed of i.i.d. random variables, then we can detect symbol i by only

considering theith entry of the vectors̃rj , 1 ≤ j ≤ L.
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In order to find the distribution of the noise vectorñ
j, we consider two noise samples̃Nk,τ1 andÑq,τ2

at two arbitrary symbol intervalsτ1 and τ2, and for two arbitrary receive antennask and q. Notice that

Ñk,τ1 andÑq,τ2 are weighted sums of normal random variables, and hence theyhave Gaussian distribution.

Also, it is straightforward to verify thatE{Ñk,τ1} = E{Ñq,τ2} = 0. Hence, the correlation of these noise

samples is

E
{

Ñk,τ1Ñ
∗
q,τ2

}

= E







(
w∑

i=1

H̄k∗
i,τ1N̄k,i

)



w∑

j=1

H̄q∗
j,τ2N̄q,j





∗




=
∑

i

∑

j

H̄k∗
i,τ1H̄

q
j,τ2E

{

N̄k,iN̄
∗
q,j

}

As the N̄j,t are zero-mean i.i.d., the above double sum is zero unlessk = q and i = j, in which case it

equals
w∑

i=1

H̄k∗
i,τ1H̄

k
i,τ2E

{

|N̄k,i|2
}

=
w∑

i=1

H̄k∗
i,τ1H̄

k
i,τ2 (16)

=







∑

i |H̄k
i,τ1

|2 = gYk if τ1 = τ2

0 otherwise,
(17)

where (16) follows from the fact that̄Nj,t is unit-variance and (17) follows from the orthogonality ofH̄.

Therefore, we have just shown that

Ñk,i ∼ i.i.d. CN (0, gYk). (18)

For MAP decoding,̃R can be used instead ofR becausẽR is an invertible function ofR. The detection

rule is given by

ct = arg max
c

P (c|{R̃l,t}L
l=1, H)

= arg max
c

f({R̃l,t}L
l=1|c, H) · p(c)

= arg max
c

L∏

l=1

fÑl,t
({R̃l,t − g′Ylc}L

l=1) · p(c) (19)

= arg max
c

{

ln (p(c)) −
L∑

l=1

|R̃l,t − g′Ylc|2
gYl

}

, (20)

whereg′ = g
√

γs

K
, and (19) and (20) are becausẽNk,t are i.i.d. and Gaussian, respectively, as indicated

in (18).

B. The Exact Symbol Pairwise Error Probability

1) The Conditional PEP:Without loss of generality, we consider MAP decoding for thekth symbol

period. The error probabilities may be determined using theMAP detection metric given in (20). The
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receiver should evaluate this metric for the symbolsci and cj given thatci is transmitted (hencẽRl,k =

g′Ylci + Ñl,k) and decide in favor of the one which yields a larger result. Let us denote byP (ci → cj) the

probability thatcj is preferred overci (i.e., cj has a larger metric thanci in (20)) whenci is sent. From

(20), we want to determine the probability of the following event

ln(p(ci)) −
1

2g

L∑

l=1

|R̃l,k − g′Ylci|2
Yl

≤ ln(p(cj)) −
1

2g

L∑

l=1

|R̃l,k − g′Ylcj|2
Yl

,

which is equivalent to
L∑

l=1

√
2〈cj − ci, Ñl,k〉
|cj − ci|

≥ 1

|cj − ci|

√

K

2γs

ln
p(ci)

p(cj)
+ g|cj − ci|

√
γs

2K

L∑

l=1

Yl. (21)

From (18), it follows that
√

2〈cj−ci, Ñl,k〉/|cj−ci| is i.i.d. CN (0, gYl). Hence the sum on the left hand side

of (21) isCN (0, g
∑L

l=1 Yl). Therefore, the probability of the event in (21), which is the PEP conditioned

on the path gains, is given by

P (ci → cj|H) = Q

(√
gγs

2K
|ci − cj |

√
Y +

√

K

2gγs

1

|ci − cj|
ln

p(ci)

p(cj)

1√
Y

)

, (22)

where

Y =
L∑

l=1

Yl =
K∑

k=1

L∑

l=1

|Hl,k|2 (23)

is the sum of the squared magnitudes of all the path gains.

2) The Symbol PEP in Closed Form:To find the unconditional symbol PEP, we should average (22)

with respect toY . Defining random variablesζi asζ(j−1)K+i = ℜ{Hj,i} andζKL+(j−1)K+i = ℑ{Hj,i} for

i = 1, ..., K and j = 1, ..., L, we note thatζk ∼ i.i.d. N (0, 1
2
), and we can writeY as

Y =
∑

i,j

|Hj,i|2 =
∑

i,j

ℜ{Hj,i}2 + ℑ{Hj,i} =
2n∑

i=1

ζ2
i ,

wheren = KL. Using the moment generating function of normal random variables yields the probability

density function ofY as

fY (y) =
1

(n − 1)!
yn−1e−y, y ≥ 0.

Hence,Y has a scaled chi-squared distribution with2n degrees of freedom. The average of (22) can then

be written as

P (ci → cj) =
1

(n − 1)!δ2n
ij

∫ ∞

0
yn−1e−y/δ2

ijQ

(

√
y +

λij√
y

)

dy, (24)

whereδij =
√

gγs

2K
|ci − cj | andλij = 1

2
ln p(ci)

p(cj)
. We note that the the above integral is the same as the one

in (10). Therefore, we obtain

P (ci → cj) =
1

(n − 1)!δ2n
ij

(−1)n−1 dn

dsn
FMAP(s)

∣
∣
∣
∣
∣
s=δ−2

ij

.
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Therefore, we obtain the PEP between a pair of space-time orthogonal block coded symbols under MAP

decoding as

P (ci → cj) = π(n, δij , λij), (25)

with π(n, δij, λij) given in (13). Note that the above formula also holds for MAP decoding of symbols

under MRC, as the received signal in those systems has the same form as in (15) withK = 1.

When theci’s are equally likely, MAP decoding reduces to ML decoding and we haveλij = 1
2
ln p(ci)

p(cj)
=

0. Hence, the first sum in (13) is non-zero only fork = n − 1 and we have

P (ci → cj) =
1

2



1 − δij
√

2 + δ2
ij

n−1∑

k=0

(

2k

k

)

1

(2δ2
ij + 4)k



 ,

which agrees with the result derived in [6].

V. APPLICATIONS

A. SER and BER of STOB Coded or MRC Systems

In [7], we established tight algorithmic bounds on the SER and BER of STOB coded MIMO systems

with arbitrary signaling schemes and bit-to-signal mappings under slow Rayleigh fading and ML decoding.

To compute these bounds, one needs to calculate the probability of symbol pairwise error events (i.e.,

the PEP in (25)) as well as the probability of the intersection of pairs of such error events. Closed-form

expressions for these probabilities were derived in [7]. The work in [7] is further extended to the MAP

decoding case in [8]. Alternatively, one can use the geometric approach in [25], [24] to compute the exact

values of the SER and BER of STOB coded systems. Although the method in [25], [24] is implemented for

the AWGN channel only, it can be extended to the STOB coded case using the pairwise error probabilities

given in [8].

B. The Optimum Binary Antipodal Signaling for STOB Codes/MRC

In this section we consider binary antipodal signaling and optimize it in the sense of minimizing the

BER given by

BER = P (c1 → c2) · p(c1) + P (c2 → c1) · p(c2). (26)

Normally, one should use the averaged PEP in (26) withc1 = a and c2 = −b and find the optimala

andb via differentiation. However, this can be a tedious job in view of the PEP given in (25). Therefore,

we use the PEPs at thereceiverside, i.e., givenH, to find the solution in an easier way. The optimal

constellation derived in this way will not depend onH, justifying our approach.
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Let us assume thatp(c1) = p, and the bits 0 and 1 are mapped toc2 = −b and c1 = a, respectively.

Letting β =
√

2gγs

K
,
√

A = β (a+b)
2

√
Y , andB = 1

2
ln 1−p

p
, with Y as defined below (22), we can write the

BER conditioned onH as

BERY = pQ

(√
A − B√

A

)

+ (1 − p)Q

(√
A +

B√
A

)

. (27)

It is easy to verify that the BER is a strictly decreasing function of A (for any fixedB). Hence, given

a constellation energyEs andp, in order to minimize the BER, one has to maximizeA. Note thatA is

a scaled distance between the constellation points; therefore, signaling schemes with the same distance

between their signals have identical performance. It is clear that the constellation with constant average

signal energyEs which maximizesA is the zero-mean constellation, because a constellation with a non-

zero mean can simply be shifted to reduce its energy without performance loss.

From the zero-mean condition, we haveb = p
1−p

a, and the average energy condition requires that

pa2 + (1 − p)b2 = Es.

The above two equalities result in

(−b, a) =
√

Es

(

−
√

p

1 − p
,

√

1 − p

p

)

,

which is therefore the optimal binary antipodal constellation. The above constellation is identical to the

antipodal signaling result in [16] for the case of the AWGN channel. As mentioned in Section II, we set

Es = 1.

C. Linear Dispersion Code Design for MAP Decoding

Linear dispersion (LD) codes (introduced in [13]) constitute an important class of space-time block

codes. Every entry of an LD codeword is a weighted sum of the baseband signals with the weights

chosen such that the mutual information between the channelinput and output is maximized given the

number of transmit and receive antennas. An LD codeword is written as

S =
M∑

m=1

(αmAm + jβmBm),

whereAm andBm areK ×w matrices (similar to [13], we assume thatAm andBm have real entries),

cm = αm + jβm is a symbol to be encoded (j =
√−1), andM is the block length in symbols (i.e., the

number of data symbols to be encoded at a time).
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Instead of maximizing the mutual information, here we opt todesign LD codes via minimizing the

union upper bound on the frame (block) error rate which is given by

∑

S

p(S)
∑

Ŝ 6=S

P (S → Ŝ).

This bound can be computed using the codeword PEP formula given in (12).

There are a maximum of two distinct eigenvalues for a system with two transmit antennas. It can be

verified that the following cases are possible:

• Only one non-zero eigenvalue (Z = 1 in (6)):

In this case the eigenvalues can be equal (nk = 2) or one of them is zero (nk = 1). For the first case,

we have

α2L,1 = p2L
1 ,

andαi,k = 0 otherwise, and for the second case, we have

αL,1 = pL
1 ,

andαi,k = 1 for i < L or k = 2.

• Two distinct non-zero eigenvalues (Z = 2 in (6)):

We haven1 = n2 = 1 and

αL−p,1 =
(−1)p∏p

j=1(L + j − 1)

p!(p2 − p1)L+p
pp

1p
L
2 , p = 0, 1, · · · , L − 1

αL−p,2 =
(−1)p∏p

j=1(L + j − 1)

p!(p1 − p2)L+p
pL

1 pp
2, p = 0, 1, · · · , L − 1

Our design method is as follows: to guarantee maximum throughput and to make sure that the per-

formance is always better than V-BLAST, we begin with theAm andBm matrices which correspond to

V-BLAST and are given by [11], [13]

AK(τ−1)+k = BK(τ−1)+k = cτd
T
k , τ = 1, ..., w, k = 1, ..., K,

wherecτ anddk arew-dimensional andk-dimensional column all-zero vectors except for a 1 in theτ th

andkth entries, respectively. We then improve the code by adding zero-mean Gaussian noise to theAm

and Bm matrices, normalizing theAm and Bm matrices to satisfy the power constraint which, in the

uniform-source case, is given by [13, equation(18)]

∑

m

(trA†
mAm + trB†

mBm) = 2wK, (28)
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and updating the code if the new FER union bound decreases. Wehave chosen the variance of the additive

noise to decrease according to

σ2
n = 0.25

(

1 − i

Imax

)3

, i = 1, 2, ..., Imax,

wherei is the iteration number. This regime is chosen following [32] due to its fast convergence rate and

good results.

Note that this new code is still a linear dispersion code. Therefore:

1) Similar to [13], we have noticed that the performance of the resulting codes is not sensitive to the

design CSNR. Therefore, to avoid numerical problems resulting from the addition of very small

numbers, we set the design CSNR at 5 to 10 dB, depending on the number of antennas.

2) The design criterion in [13] is to maximize the mutual information between channel input and output

under the assumption that the real and imaginary parts of thesignal set haveN (0, 1
2
) distribution,

which may be far from the particular signaling scheme and non-uniform distribution to be used. In

our method, we optimize the code for the particular signaling scheme and prior probabilities which

are going to be used. Obviously, the design method works as well with the assumption of having

N (0, 1) distribution for the signals.

3) The power constraint (28) can be made more restrictive. For example, one could useA†
mAm =

B
†
mBm = w

M
IK for m = 1, ..., M . It is noted in [13] that this power constraint generally leads to

lower error rates, but we have used (28) in our design to “relax” the condition as much as possible

and let the search algorithm converge to any local minimum which satisfies the power constraint.

4) Obviously, the search method is random and may converge toa local minimum. The variance of

the additive noise is large at the initial loops to allow large improvements, but it reduces with the

iterations to allow convergence and small refinement. We have observed that many small changes

are made at lower noise variances.

5) In order to have the possibility of finding better minima, we run the algorithm twice with the second

round initialized with the results of the first. This allows “escaping” from a bad local minimum at

the beginning of the second round, when the variance of the additive noise is large.

VI. NUMERICAL RESULTS

A. Binary Antipodal Signaling

It suffices to study the BER of binary antipodal signaling to show the exactness of our symbol PEP

formula in (25). We simulate the transmission of an i.i.d. bit sequence over MIMO channels. The length
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of the bit-sequence ismax( 100
BER, 106) bits.

We consider a system with two transmit and one receive antennas (which uses Alamouti’s code [4]) in

Figure 1 with various values ofp0. Another system with three transmit and various numbers of receive

antennas (and the codeG3 in [28]) is considered in Figure 2. It is observed that the analysis and simulation

curves coincide everywhere. In Figure 3, we compare four systems: two systems with BPSK signaling

and ML or MAP decoding, and two systems with optimum signaling and ML or MAP decoding. These

systems are indicated by ML BPSK, MAP BPSK, ML optimum, and MAP optimum, respectively. The

source is an i.i.d. bit-stream withp0 = 0.9. At a BER of10−6, the gain of using the modified constellation

and MAP detection is about 6 dB over the ML decoded system withBPSK modulation. For the same

BER, the gain over the MAP decoded BPSK system is 4.7 dB. We also observe that if the CSNR is high

enough, optimum signaling and ML detection outperforms BPSK and MAP detection.

When the additive noise at the receiver is strong (i.e., at low γs), the second term in the argument

of the Q(·) function in (22) has the dominant effect; hence MAP decodingwith BPSK signals is more

effective than ML decoding with optimum signals. In less noisy channel conditions (highγs), the first

term in the argument of theQ(·) function becomes dominant and hence ML decoding with optimum

signaling outperforms MAP decoding with symmetric signals. As previously mentioned, MAP decoding

with optimum signaling is always better than other systems.

B. Tandem versus Joint Source-Channel Coding

Figure 4 compares a MAP decoded system with two tandem systems (under an identical overall rate)

for a dual-transmit single-receive channel with 16-QAM modulation. The input bit-stream is i.i.d. with

p0 = 0.89 so that the source entropy isH(X) = 0.5. The tandem systems consist of 4th order Huffman

coding followed by one of a 16-state or 64-state rate-1/2 convolutional coding blocks. The convolutional

codes are non-systematic and chosen from [15]. The length ofthe input bit-stream is2 × 106 bits. The

test is repeated 500 times and the average BER is reported. Itis observed that the tandem system breaks

down (due to error propagation in the Huffman decoder) for CSNR < 25 dB. The MAP-decoded system

outperforms the 16-state tandem coded system for BER> 2 × 10−7. It also outperforms the 64-state

tandem coded system for BER> 3× 10−7. Therefore, the jointly coded system has superior performance

for the BER range of interest in many systems in practice. This is a typical behavior of to-date joint

source-channel coding designs (that do not employ Turbo/LDPC codes): they are superior to tandem

systems for a (sometimes wide) range of CSNRs below a certainthreshold [2], [3], [5], [17]. A similar

study as in [34] can also be done, where it is shown that joint source-channel Turbo codes outperform
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tandem systems that use source coding (Huffman coding) and classical (channel-coding based) Turbo

codes.

C. Constellation Mapping with STOB Codes

We next demonstrate that a large gain can be achieved via signal mappings designed according to

the source non-uniform distribution over Gray and quasi-Gray mappings. The M1 mapping is introduced

in [26] and is designed for the transmission of non-uniform binary sources over single antenna AWGN

channels. It minimizes the SER union bound for single antenna Rayleigh fading channels withM-ary

PSK and square QAM signaling. Here we use the guidelines in [26] with the symbol PEP formula in (25)

to obtain the M1 mapping for the Star 8-QAM (shown in Figure 5 together with the Gray signal labeling)

and 64-QAM (shown in [26, Fig. 9] also together with the Gray signal labeling) signal sets. Figures 6 and

7 compare the SER curves for the Gray and M1 mappings for the Star 8-QAM and 64-QAM signal sets,

respectively. These figures show that the M1 map performs very well for STOB coded MIMO channels,

even for small signal sets such as Star 8-QAM. The gain of the M1 mapping over Gray mapping is 1.4

dB for Star 8-QAM and 3.7 dB for 64-QAM at SER =10−3. The gain due to source redundancy is 10.4

dB for 64-QAM signaling.

D. Linear Dispersion Code Design

Figures 8 and 9 demonstrate the FER and BER performance of ourLD code search method for a

non-uniform binary i.i.d. source withp0 = 0.9, respectively, for a dual-transmit dual-receive antenna

system.

As mentioned in Section V-C, we start from a V-BLAST structure, soM = 4. It is observed that the

new code significantly outperforms V-BLAST and its gain overV-BLAST continues to grow as the CSNR

increases. We believe that this behavior is due to the largerdiversity order of LD codes over V-BLAST,

as the LD codes send each signal over all transmit antennas while in V-BLAST each signal is sent once

from only one transmit antenna, so it experiences only one fading coefficient.

The new code, which will hereafter be referred to as LDC4, is found as

A1 =






0.65782454 −1.30819861

−0.10725738 0.20531537




 , A2 =






0.25968977 0.60373361

0.97828103 −0.51361949




 ,

A3 =






−0.04899691 0.56160243

−0.81070085 −0.35572984




 , A4 =






−0.70479974 0.22760978

0.04377761 0.68613179




 ,
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and

B1 =






1.19165069 −0.11729547

0.25381635 1.74228787




 , B2 =






−0.98310451 −1.02226963

−0.26612417 −1.03714274




 ,

B3 =






−0.37841861 2.14539824

−0.44476603 1.10551397




 , B4 =






−0.98806533 0.27960017

0.58266695 1.40274305




 .

In order to have the same information rate (of 4 bits/channeluse) in our comparison, we use 16-QAM

signaling for Alamouti’sG2 code, and Q-PSK signaling otherwise. At FER =10−2, the CSNR gain for

LDC4 is 12.3 dB overG2, 3.5 dB over V-BLAST, and 1.1 dB over the code of [13, eq. (31)]. At BER

= 10−3, the CSNR gain is 13 dB overG2, 4.3 dB over V-BLAST, and 2.4 dB over the code of [13, eq.

(31)], respectively.

When the source is uniform, Alamouti’s code offers however asuperior performance for 2 transmit

antennas and a small number of receive antennas. For this case (p0 = 0.5), we again considered a 2×2

system. When initialized with Alamouti’s code and Q-PSK modulation, our search algorithm could not

find a code with lower FER union bound. However, when we initialized our algorithm with V-BLAST

and BPSK, the algorithm converged to

A1 =






0.74342773 −0.08692446

0.40936511 0.50797666




 , A2 =






−0.36902827 0.54303939

0.75611440 −0.00025825




 ,

A3 =






0.30229420 0.83952155

−0.45246174 0.09078508




 , A4 =






−0.47303478 −0.03771225

−0.21804135 0.85410106




 ,

and Bi = 02×2, i = 1, ..., 4 (because the signals are real). At FER =10−3, the CSNR gain in using the

above code is 4.2 dB over V-BLAST and 1.2 dB over the LD code of [13, eq. (31)]. Alamouti’s code,

however, demonstrates a 1.4 dB CSNR gain over our code above.

E. Bit-to-Signal Mapping and Trellis Coding

The system considered here has one transmit and two receive antennas. The frame length is 120 bits

and the test is repeated 200000 times. A frame error is counted when the decoded and transmitted symbol

streams do not exactly match.

Figure 10 demonstrates the performance of a rate-3/4 8-state 16-QAM trellis coded system. We optimize

the bit-to-signal mapping for a fixed convolutional encoderstructure using the symbol PEP formula in (25)

and the guidelines of [26], which result in the M1 mapping of [26, Figure 8]. We compare the M1 and

Gray mapped systems for the same encoder structure specifiedby (h0, h1, h2) = (11, 2, 4). It is observed
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that, since the M1 mapping is more energy-efficient, it achieves a 1 dB CSNR gain over Gray mapping

with MAP decoding at FER =10−3, and an additional 0.8 dB CSNR gain over ML decoding; i.e., 1.8

dB gain in CSNR over the conventional which use Gray mapping and ML decoding.

VII. CONCLUSION

In this paper, we addressed the maximuma posteriori decoding of non-uniform i.i.d. sources in a

multiple-antenna setting. We derived closed-form expressions for the codeword pairwise error probability

of general multi-antenna codes as well as the PEP of symbols undergoing space-time orthogonal block

coding. It was shown that, similar to ML decoding, detectionof symbols is decoupled under MAP

decoding. We also explored some applications of the PEP formulas. For example, we proved that the

binary antipodal signaling scheme which minimizes the bit error rate in AWGN channels also minimizes

the BER under STOB coding. Moreover, we designed space-timeLD codes which were optimized for

the source distribution. Two typical codes were given whichoutperformed V-BLAST and the LD codes

of [13] by a wide margin. We also addressed the issue of bit-to-signal mapping in STOB coded scenarios

as well as trellis-coded MRC systems. Another application is the establishment of tight Bonferroni-type

bounds for the SER and BER of MIMO systems which employ MAP decoding (see [8]).

Extensions of this work may include computation of the exactSER and BER of STOB coded channels

under MAP decoding following the approach of [25], [24] (which is implemented for the AWGN channel)

using the PEP formulas in [8] and optimization of bit-to-signal mapping for STOB coded channels. Optimal

quaternary constellation design could also be studied as in[21] for STOB coded channels using the error

bounds of [8]. Another direction is to use (12) to find trellisencoders and signal mappings which, when

used with the MAP decoding rule in (2), will reduce the FER and/or BER of a trellis-coded system.

A possible approach is to approximate the union upper bound,similar to the work in [17] for AWGN

channels. The study of (12) to identify key parameters and toderive design criteria for space-time codes

could be another extension of this work. It would also be interesting to find the codeword PEP for the

case where the source has memory in addition to non-uniformity.
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APPENDIX

Here we derive thenth derivative of (11) with respect tos. First, we present a lemma which can be

proved easily via induction.

Lemma–The following hold

a) dn

dsn

(
1
s

)

= (−1)nn!
sn+1

b) dn

dsn (2s + 1)
p

2 = (2s + 1)
p

2
−n

n−1∏

i=0

(p − 2i)

c) dn

dyn e−(a+by) = (−1)nbne−(a+by).

The derivative of the first term in (11) may be found via (a). Asfor the product term, we use the

Leibniz’s formula [1, Eq. 3.3.8] to treat the two terms separately. The formula is

dn

dxn
uv =

n∑

i=0

(

n

i

)

diu

dxi

dn−iv

dxn−i
· (29)

We apply (29) withu = a
s

+ 1
s
√

2s+1
andv = e−(a+b

√
2s+1). Using (29) again to find theith derivative

of the second term inu with u1 = 1
s

andv1 = 1√
2s+1

, and applying (a) and (b) withp = −1 results in

di

dsi

(

a

s
+

1

s
√

2s + 1

)

=
(−1)ii!a

si+1
+

i∑

j=0

(−1)ii!

(i − j)!

∏i−j
l=1(2l − 1)

sj+1(2s + 1)i−j+ 1

2

=
(−1)ii!a

si+1
+

(−1)ii!

si+1

i∑

k=0

(

2k

k

)

sk

2k(2s + 1)k+ 1

2

· (30)

As for the exponential term, we use a result from [12] which states that forf(x) = F (y), y = φ(x),

we have
dn

dxn
f(x) =

n∑

i=1

Ui

i!
F (i)(y), where Ui =

i−1∑

k=0

(

i

k

)

(−1)kyk dn

dxn
yi−k. (31)

Letting F (y) = e−(a+by) andy =
√

2s + 1, we use (31), (b), and (c) to get

dn−i

dsn−i
e−(a+b

√
2s+1) = e−(a+b

√
2s+1)

n−i∑

j=1

(2s + 1)
j

2
−n+ibj

j!

j−1
∑

k=0

(

j

k

)

(−1)j+k
n−i−1∏

l=0

(j − k − 2l). (32)

Using (30) and (32) in (29) witha = λij and b = |λij| yields thenth derivative of (11) as

dn

dsn
FMAP(s) =

(1 − sgn(λij))(−1)nn!

2sn+1
− 1

2
e−(λij+|λij |

√
2s+1) ×

n∑

k=0

(

n

k

)

(−1)kk!

sk+1

(

−sgn(λij) +
k∑

m=0

(

2m

m

)

sm

2m(2s + 1)m+ 1

2

)

×
n−k∑

l=1

|λij|l
l!(2s + 1)n−k− l

2

l−1∑

p=0

(

l

p

)

(−1)l+p
n−k−1∏

q=0

(l − p − 2q). (33)
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Fig. 1. Results for BPSK signaling,K = 2, L = 1, and theG2 STOB code.
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Fig. 2. Results for BPSK signaling,K = 3, L varying, and theG3 STOB code.
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Fig. 3. Comparison between BPSK and optimum signaling schemes forp0 = 0.9, K = 2, L = 1, and theG2 STOB code.
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Fig. 4. Comparison between tandem and MAP-decoded schemes.16-QAM signaling,K = 2, L = 1, p0 = 0.89, and theG2 STOB code.
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for G2) and MAP decoding withp0 = 0.9.
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Fig. 9. Comparison between V-BLAST,G2, the LD code of [13, eq. (31)], and the new code;K = 2, L = 2. Q-PSK modulation (16-QAM

for G2) and MAP decoding withp0 = 0.9.
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The input is an i.i.d. bit-stream withp0 = 0.9.


