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Abstract—We consider the problem of joint recovery of a
bivariate Gaussian source and of interference over the two-
user Gaussian degraded broadcast channel in the presence of
common interference. The interference, that is available non-
causally at the encoder, is assumed to be Gaussian and correlated
to the sources. The tradeoff between the distortion of the sources
and the interference estimation error is studied; information-
theoretic outer and inner bounds based on ideas from rate-
distortion theory and hybrid coding are derived, respectively.
More precisely, the outer bound is found by assuming additional
knowledge at each user; the inner bound, however, is obtained
by analyzing the distortion of a layered hybrid scheme based on
proper power splitting, Costa and Wyner-Ziv coding. Low delay
and complexity coding schemes based on analog mapping are next
proposed. More specifically, parametric mappings based on linear
and sawtooth curves are studied and optimized by minimizing an
upper bound on the system’s distortion; nonparametric mappings
based on joint optimization between the encoder and the decoder
using an iterative algorithm are designed. Numerical results show
that for the special cases that are previously considered in [1]
and [2] (with no fading), the derived outer bound is tighter and
the proposed hybrid scheme has a lower complex structure with
no loss in performance. In addition, the proposed low delay
nonlinear schemes outperform the linear scheme and perform
relatively close to the inner bound under certain system settings.

Index Terms—Joint source-channel coding, distortion region,
correlated interference, dirty paper coding, Shannon-Kotel’nikov
mapping, low delay coding, degraded broadcast channels.

I. INTRODUCTION

NE main problem that arises in ad-hoc wireless networks

is that different source-destination pairs interfere with
each other. One such example, which consists of a network
with five nodes, is illustrated in Fig. 1. In this network, node 1
collects three correlated measurements and aims to transmit
them over two time instants. At the first time instant, node 1
transmits to node 5 with low transmission power (node 5 being
close to the source node) one of the collected measurements.
This transmission is also overheard by node 4 but not by
nodes 2 and 3; note that nodes 2 and 3, being destination
nodes, are also interested in the transmitted signal. At the fol-
lowing time instant, node 1 boosts its power and communicates
the remaining two measurements to nodes 2 and 3. At the
same time, node 4 acts as a relay and amplifies the overheard
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information (from the previous time instant) to nodes 2 and 3;
this transmission interferes with the transmission from node 1
(the main source). Considering this scenario and assuming
that node 1 uses an uncoded scheme (which is optimal for a
Gaussian channel) at the first time instant, the main question
is how to choose the coding structure (for the second time
instant) at node 1 given that the transmission from node 4
is known to the source node 1. In this work, we develop a
Gaussian model for this scenario and quantify its information-
theoretic bounds. Practical low delay coding schemes based on
analog techniques are also studied.

Destination 2

1 Interferer node

Source

Destination 1
Fig. 1. Ad-hoc wireless networks with 5 nodes.

Transmission of information over noisy channels in the
presence of interference has been widely studied. As men-
tioned above, one interesting problem is when the interfer-
ence is known non-causally to the encoder. This problem is
considered by Gel’fand and Pinsker for discrete memoryless
channels [3]. In [4], Costa extends this result to the Gaussian
case with additive interference. The authors in [5] investi-
gate the transmission of a Gaussian source over a Gaussian
channel with additive interference that is correlated to the
source. In [6], the authors consider the joint transmission of
source and interference over a Gaussian channel with additive
interference known non-causally to the encoder; the optimal
tradeoff between the source rate transmission and the mean
square error (MSE) distortion from estimating the interference
is characterized. In [7], the authors consider the same problem
as in [6] but with imperfect knowledge of the interference
at the transmitter side. In [2], we extend the joint source-
interference transmission problem to the case of correlated
source-interference and fading channels.

The traditional approach for analog source transmission
over noisy channels is to use separate source and channel
coders, also known as tandem coding [8]. This approach is
optimal for point-to-point communications given unlimited
delay and complexity in the coders. There are, however,



two disadvantages associated with digital transmission: 1) the
threshold effect and 2) the levelling-off effect. A family of
hybrid digital-analog (HDA) schemes are introduced in [9]-
[11] to overcome the threshold and the levelling-off effects.
In [12]-[14], HDA schemes are also proposed for broadcast
channels and Wyner-Ziv systems.

With the increasing popularity of wireless sensor networks,
reliable transmission with low delay and complexity con-
straints is more relevant than ever. A sensor node, often
conceived as having limited lifetime and processing power,
communicates its sensed field information to a fusion centre
over a noisy wireless channel. To meet these challenges,
low delay analog coding, which tends to promote low power
implementation, has been considered for several communi-
cation scenarios [15]-[21]. Memoryless low delay strategies
are proposed for two-way relay channels in [22]. In [23], we
propose to use analog coding techniques for the transmission
of Gaussian sources over fading channels in the presence of
interference. In [24], we tackle the problem of joint transmis-
sion of source and interference over a Gaussian channel in the
presence of interference and propose to use low delay analog
mappings. In [25], the authors propose low delay mappings for
the problem of transmitting Gaussian sources over Gaussian
channels in the presence of interference that is independent of
the source.

For multi-terminal systems, tandem coding is no longer
optimal; a joint source-channel coding (JSCC) scheme may
be required to achieve optimality. One simple scenario where
the tandem scheme is suboptimal concerns the broadcast of
Gaussian sources over Gaussian channels [26]. For a single
Gaussian source sent over a Gaussian broadcast channel
with matched source-channel bandwidth, the optimal distor-
tion region is known, and can be realized using a linear
scheme [26]. For mismatched source-channel bandwidth, the
best known coding schemes are based on JSCC with hybrid
signalling [27]-[29]. One extension to this problem is the
broadcasting of two correlated sources to two users, each
of which is interested in recovering one of the two sources;
in [30], it is proven that the linear scheme is optimal when the
systems signal-to-noise ratio is below a certain threshold under
matched bandwidth. In [31], a hybrid digital-analog scheme
is proposed for the same matched bandwidth system and is
shown to be optimal whenever the linear scheme of [30] is not,
hence providing a complete characterization of the distortion
region. Under mismatched bandwidth, various HDA schemes
are proposed in [32], consisting of different combinations of
several coding techniques using either superposition or dirty
paper coding. Recently, in [33], a tandem scheme based on
successive coding is studied and shown to outperform the HDA
schemes of [32]. In [34], the authors extend the broadcast
scenario to the case when the sources are vectors. In [1]
we consider the transmission of a bivariate Gaussian source
over a two-user channel in the presence of interference that is
correlated to the sources; we derive inner and outer bounds
on the source distortion region. In [35], [36], the authors
investigate the problem of transmission of both messages
and source/state sequences over broadcast and point-to-point
channels, respectively.

In this work, we tackle the problem of joint recovery of a
bivariate Gaussian source and of interference over the two-user
broadcast channel in the presence of Gaussian interference
that is known non-causally to the transmitter and is correlated
to the source. More precisely, information theoretical limits
are derived and low delay and complexity coding schemes
are proposed based on analog coding. Different from previous
work, our scenario considers broadcast channels, correlated
interference and interference estimation at the receiver side.
The recovery of source and interference finds application in
sensor networks and relay channels. As illustrated in Fig. 1,
the relay node amplifies the “interference” (another version
of the main source) which interferes with the transmission
of the source node; the sink node estimates all versions of
the source (the main source and the interference). The rest of
the paper is organized as follows. In Section II, we present
the problem formulation and state the main contributions.
In Section III, we derive an asymptotic outer bound on the
system’s distortion. In Section IV, we derive an asymptotic
inner bound (achievable distortion region) by proposing a
layered hybrid coding scheme. Section V presents practically
implementable low-delay analog codes. Numerical results are
included in Section VI. Finally, conclusions are drawn in
Section VII.

II. PROBLEM FORMULATION AND MAIN CONTRIBUTIONS

We consider the transmission of a pair of correlated Gaus-
sian sources (Vi¥, V) over a two-user Gaussian broad-
cast channel in the presence of Gaussian interference S
known non-causally to the transmitter (see Fig. 2), where
VE = (V;(1),...,Vi(K)) € RE is composed of independent
and identically distributed (i.i.d.) samples, for ¢ = 1, 2;
SX is similarly defined. The source pair vector (Vi V;K)
and the interference SX are transformed into a K dimen-
sional channel input X* € RX via a(-), a mapping from
(RE x RE x RK) — RX, User i (i = 1,2) receives the
transmitted signal corrupted by additive white Gaussian noise
WX and interference S¥. The received vector at user i is
given by

YE = xK 4 gK L WK (1)

where addition is component-wise, XX = (VX VK §K),
each sample in the interference vector S follows an i.i.d.
Gaussian distribution with variance 0% (S ~ N(0,0%)) and
each sample in the additive noise W/ is drawn from an i.i.d.
Gaussian distribution with variance o, (W; ~ N(0,07,))
independently from both sources and interference.

Each user i aims to recover both the source V;X and the state
interference S the reconstructed source and interference
at user ¢ are denoted by IA/Z-K and SlK , respectively. In this
work, we assume that (V1(4), Va(3),S(7)), i = 1,..., K, are
correlated via the following covariance matrix

2
Oy, PViVaOVi 0V,  PVSOV, 08
Evives = | PVivaOVi 0V, Ty, PV280v,05 | (2)
2
PViSOV, 08 PVoSOV, 08 Og

where 0‘2/1 and 0‘2/2 are the variances of V; and V5, respectively,
PVivas Pvis and py,s are the correlation coefficients between



Vi and Vo, S and V; and S and V5, respectively. The
covariance matrix in (2) being assumed to be positive definite
restricts the possible values of py,v,, pv;s and py,s.

SK

XK

Fig. 2. System model structure.

The system operates under an average power constraint P
given by
E[l|a(Vi", V5%, S%)I1?]
K
where [E[(-)] denotes the expectation operator. The re-
constructed source and interference signals are given by
(VK SK) = (V%) = (7 (v5), 4 (VX)), where the
decoder functions ~;(.) are mappings from RX — (RE RK),
In this paper, we aim to find a source-channel encoder «
and decoders 7; (¢ = 1,2) that optimize the MSE distortion
tradeoff from reconstructing the source and the state inter-
ference at both users. We first derive theoretical (outer and
inner) asymptotic bounds on the optimal distortion region;
these bounds give us a good understanding on the optimal
system’s behaviour (i.e., the optimal theoretical performance).
We then construct efficient analog low-delay coding schemes
that promote low power implementation and low complexity.
At user ¢, the MSE distortion from reconstructing the source
and the interference are denoted by

E[|V;"* — V&IP] _ E[Is* - SFI1% @
K T K
for ¢+ = 1, 2. We assume a degraded broadcast channel with
J%Vl > 012,[,2; hence user 1 is the weak user and user 2 is
the strong one. For a given power constraint P, the distortion
region is defined as the closure of all distortion quadruple
(D, , Doy, Dy, , Dy,) for which (P, D,,,D,,,Ds,,Ds,) is
achievable, where a power-distortion set is achievable if for
any § > 0, there exist sufficiently large integer K, encoding
and decoding functions (a,7y1,72) satisfying (3), such that
D,, < Dy, +6 and D,, < D, + 6,for i = 1, 2. Our main

ontrlbutlons can be summarlzed as follows:

<P 3)

D,, =

e« We derive an outer bound on the system’s distortion
region for a Gaussian broadcast channel in the presence
of interference. The outer bound on the distortion from
reconstructing the source pairs is found by assuming
additional knowledge about the source and the interfer-
ence at the receiver side of each user; no additional
knowledge is assumed when deriving a bound on the
distortion from estimating the interference. The derived
bound generalizes the one in [35] for the case of Gaussian
correlated source-interference. Note that our problem
resorts to several interesting scenarios studied in [1], [2],

[6], [35]; numerical results show that the new derived
outer bound is tighter than the ones obtained in [1] and [2]
and is optimal for the Gaussian version of the problem
considered in [6].

o Inner bounds are derived by proposing a hybrid coding
scheme based on superposition coding [37], proper com-
bination of power splitting, Wyner-Ziv [38] and Costa
coding [4]. The proposed scheme reduces to the one in
[31] which is optimal for the transmission of correlated
sources over a Gaussian broadcast channel (with no
interference) and to the one in [6] for the state amplifica-
tion problem (for the case of uncorrelated interference).
Moreover, the proposed encoder structure has a lower
complexity than the one proposed in [1] with no loss in
performance.

o After deriving information theoretical bounds, we pro-
pose low delay and complexity coding schemes based on
analog coding. We first study a linear scheme and prove
that the performance of any linear scheme is achieved
using a single-letter linear code. To benefit from non-
linearity whenever possible, we then study a parametric
analog mapping based on the sawtooth (modulo) function.
We derive an upper bound on the system’s distortion by
assuming a suboptimal decoder at the receiver side; the
optimized system parameters are found by minimizing
the derived upper bound expression. Finally, whenever
storage and offline design complexity are not an issue, a
nonparametric mapping is designed; this is done by deriv-
ing the necessary conditions for optimality and proposing
an iterative algorithm based on joint optimization between
the transmitter and the receivers.

Relating Fig. 2 to Fig. 1, the interference SX represents the
transmission from the interferer node (which is an amplified
version of the first sample of the collected measurements);
the source pair (V/¥, V;/), however, represents the remaining
two samples of the collected measurements. Note that all
measurements are correlated.

III. DISTORTION OUTER BOUND

In [39] and [32], outer bounds on the distortion region for
sending correlated sources over the Gaussian degraded broad-
cast channel are obtained for the matched and mismatched
source-channel bandwidth cases, respectively; this is done by
assuming additional knowledge of the source V;X at the strong
user. In [5], [40], several bounds are derived for Gaussian
channels in the presence of interference that is known non-
causally to the transmitter and correlated to the source. In [2],
we derive an outer bound for the joint source-interference
transmission problem over fading channels in the presence of
interference. In [1], we derive an outer bound for the source
transmission problem over Gaussian broadcast channels in the
presence of interference. We herein generalize the problem
considered in [1] and establish an outer bound on the distor-
tion region of (V¥ VX SK) for the interference broadcast
channel. Since S(¢) and V;(i) are correlated for i = 1, ..., K,
we have S(i) = S;(i) + Sp(i), with Sp(i) = mV( )
and S; ~ N(0,(1 — p},g)o%). Note that S; and 'Sp are



independent of each other. To derive a bound on D,,, and D,,,
we assume knowledge of a noisy version of V/¥ at the strong
user and S , a partial knowledge about the interference, at
both users, where SX = B1SE + B,SK, By and 3y are real
parameters with 8 # 0; the noisy version of V/¥ is denoted by

= (VE+VE, where ¢ € [O 1] and each sample of VX is
1. d Gaussian with variance UV1 (1—¢?) that is independent of
the source and the interference. The bounds on D,, and D,
are obtained by bounding the mutual information I(S*; SX)
fori=1,2.

Definition 1 Let MSE(Yg;Vl,S) be the distortion incurred
from estimating Yo based on (f/l, S’) using a linear minimum
MSE (LMMSE) estimator denoted by ’y]mse(Yg\f/l, S') and
MSE(Yq; 5’) be the distortion incurred from estimating Y1 us-
ing an LMMSE estimator based on S denoted by Yimse (Y1 |5' ).
These distortions, which are a function of 31, B2, ¢, E[X S]]
and E[XSp]|, are given by MSE(Y3; Vi, S) = E[(Y2 —
Yimse(Ya|Vi,5))?] = E[YF] — DyAy <y and MSE(Y1; S) =
E[(Y1 — Yimse(Y1]9))?] = (E[Yf] — (E]Ei}[ﬁsf]w), where Ty, is
the correlation vector between Yy and [Vi S), Ay, 5 is the
covariance matrix of [Vi S, E[Y?] =P+ 0% +2(E[XS; +
XSp)) + O'%/Vi fori=1,2, E[Y1S] = E[X (8151 + 825p)] +
E[81S7 + $253] and E[S?] = E[3S? + £35%]. The set A
denotes all i.i.d. Gaussian channel inputs X such that

K
h(Y|SK) ) log 2me(n P + oy,

K
h(YQK\VlK,SK) = Elog27re(n2P+J‘2,V2) (®)]

for some 1 € [0, 1] and 12 € [0, m]. These terms will be
used next in Theorem 1.

Theorem 1 The outer bound on the distortion region can be
expressed as follows

Var(V2|V1, 5')0124,

Pz SupE[XSILJE[XSD]:XeAMSE(Y2§‘7173)7
D, o%(mP + ojy,) 1
" T Ptok+od, +2\/0(1—nm)P’ o
I VL e D
SUPE[x 5] EIX Sp):xe.a MSE(Y1; 5)
(6)
where Var(Va|V1,8) = o, — T Avlsrf is the variance of

V, given (‘717 S ) with T, being the correlation vector between

oG & 2 B30, s
Vo and [V 5], Var(V1|S) = oy, (1 T B, )+
is the variance of Vy given S, m1 € [0,1] and 12 € [0,m1]. Note
that we need to optimize the outer bound over the parameters

ﬁl? 62 and <

Proof: To ﬁnq a lower bound on D,,,, we assume knowl-
edge of VX and S¥ at the strong user (user 2). As a result,

we can write the following

K Vi
LS ar(15|V1, S) (@

<IV
2 D,, (V"

2K|V1K7§K)
I(V2K5Y2K|‘~71Ka§K) R ~

= h(YQK“/lK) SK) - h(}/QK‘VlKa ‘/QKv SK)

(2 h (YQK - ’Ylmse(i/ZK“}lKv SK)|‘~/1K5 SK)

—h(YS |, 1, 85

>~ 2 ’Ylmse( 2 | 1 > )

_h(Yv2K|‘71K7‘/2K7‘S~’K7V1K)

= (Y4 = e (VI 55 ) = BV VS, S5, V)

A
AN

K -
sup — log 27eMSE(Y>; V4, S)

E[XS[],E[XSp]: X€A
K
3 log 2me(oyy,)

K su xea MSE(Y3; V4, 8
_ K PE[XS;].E[X Sp]: X €A (Ya; V1, 9) o

2
2 iy,

where (a) follows from the rate-distortion theorem, (b) holds
by the data processing inequality, (c) uses the fact that
differential entropy is invariant under translations and 7, s¢ iS
a symbol-by-symbol LMMSE estimate, (d) follows from the
fact that conditioning reduces differential entropy and (e) uses
the fact that the Gaussian distribution maximizes differential
entropy; the set A is as given in Definition 1. The reason for
restricting the search space of the supremum over the set A is
detailed later; solving the two constraints of set A, as given
in (5), leads to the following equations

E[XS]* = 0%(1 - 77;)
EXWi]*  EXSi* .

Note that the constraint on the conditional differential entropy
h(YS|SE) of the set A uses the fact that we can bound
h(Y|SE) as follows

K
- log 2meay, < h(YL|ST) < (XK +Wf)

K
< 5 log 2me(P + o7y,). ©)
Hence, there exists a parameter 7; € [0, 1] such that
h(YF|SE) = Klog2me(m P+ oy,). Similarly, the con-
straint on h(Y3Y |V, SK) of the set A can be obtained by
noting that

K
310g 271'60"2/[/2 < WYV SKY < h(Yv|sK)

K
= 3 log 2me(m P + o7y,). (10)
As a result, there exists a parameter 72 € [0, 71] such
that h(YyV [V, S%) = L log2me(naP + ofy,). These two
constraints (or equalities) are used later to bound the distortion
from reconstructing the source V; and the interference S at the



weak and the strong user, hence the reason for restricting the
supremum search space over these two constraints in (7).

To get a bound on D,,, we can write the following

K 2 (a) )
5 log 2 < I(S™:85) < 1(5%:)
S2

= h(YS) - (V]SS

(©) K

<  sup {logQwe(P—&—a% + oy, +2E[XS})}
E[XS]: XeA
K 2

-5 log 2me(m P + oy, )
K. P+4oi+oy, +2y/ci(1—m)P

=2 log S W / s1—m) (11)
2 771P+0’W2

where (a) follows from the rate-distortion theorem, (b) holds
by the data processing inequality, (c¢) follows from the fact
that the Gaussian distribution maximizes differential entropy
and by using the constraint in (8). Note that the last inequality
in (11) uses the fact that there exists an 7; € [0 1] such that
h(YF|SK) = Klog2me(m P + o}y,,) as shown previously
using (9).

To get a bound on the distortion from estimating V¥, we
assume knowledge of SK at the weak user. As a result, we
can write the following

3) (a) A e e (D) -
B 1o YIS v, 0157 € 0187
vy
=h Y1K|§K) - h(Y1K|V1Ka gK)

(
(Y |S%) — n(YF|VE, §5)

—~
3]

)

IA
>

(YlK - 7l7nse(Y1K|SK)) - h(YlK‘VlKv SK)

—
Sy
=

K
) log 2reMSE(Y7; S)

IN

sup
E[XS;],E[XSp]:X €A

K
) log 2me(n2 P + oy, )
K su . MSE(Y;; S
_ K p]E[XSI],]E[XSD].XEé( (Y1;5)) 12)
2 ’172P+ UW1

where (a) follows from the rate-distortion theorem, (b) holds
by the data processing theorem, (c¢) follows from the fact that
conditioning reduces differential entropy and ;s (Y{<|S)
is the symbol-by-symbol LMMSE estimate of Y;* based on
SK and in (d) we use the facts that the Gaussian distribution
maximizes differential entropy and that h(Y{¥|VE SE) >
%log 2me(ny P + oy, ); this can be proved by noting that
Vi€ = Y + ZK with Z ~ N(0,0% = o3y, — ofy,) is
independent of Y5 (degraded broadcast channel) and using the
entropy power inequality as follows

Q%h(le“ﬁK’SK) > Q%h(YQK‘VlK’SK) + Q%h(ZK“/lK»SK)

= 2me(n2P +oyy,) + 2me(oy).  (13)

After some manipulation, (13) can be written as

h(Y{|VE,SK) > Klog2me(ne P + oy,).

To get a bound on Dy, , we first write the following

K U%

5 log —DSI

= h(YlK) - h(Y1K|SK)

<)

< sup
E[XS]:Xe€A

(a) )]
< I(S";81) < I(S™; YY)

—

{K log 2me(P + 0% + oy, + 2]E[XS])}

K
-5 log 2me(m P + ofy, )

K. P+4oi+o? +20%(1—n)P
— 2o s Wi / (L —m) (14)
2 171P—|—0W2

where (a) follows from the rate-distortion theorem, (b) holds
by the data processing theorem and (c¢) holds since the Gaus-
sian distribution maximizes differential entropy; we also use
in (c) the fact that h(Y{¥|SK) > & log 2me(n; P + oty ) due
to the entropy power inequality and since V¥ = Y& + ZK.

|

Remark 1 Recall that in our problem, the interference and
the source pair are considered as correlated measurements
collected by a sensor node. Interference is called as such due
to the relay setup considered in Fig. 1. Hence, as already
stated, in this work we present results related to estimating
both source pair and interference. Moreover, our problem
reduces to several problems considered in the literature under
certain system settings. The derived outer bound given by (6)
can indeed be simplified to get outer bounds for those special
cases. More specifically, by properly choosing the system
parameters, our bound in (6) recovers the distortion bounds
of the special cases considered in [6], [31], [32] [40].
Furthermore, in comparison with the bounds derived in [1],
[5], our bound is observed numerically to be tighter! We
herein specify the conditions under which the bound in (6)
reduces to existing bounds.

o In [6], the authors consider the transmission of both
source and interference over single-user channels where
the source and the interference are independent from each
other. By focusing on (D, , Ds) in our bound and setting
m=n=0 01 =0=1and Y1 = Y5 in (6), we get
the optimal bound derived in [6]. Note that in [7] the
authors assume noisy knowledge of the interference; this
is the main difference from the problem setup in [6].

o In [31], [32] the authors consider the broadcasting
of bivariate Gaussian sources over Gaussian channels;
no interference is assumed. The bound on the source

reconstruction can be derived by setting 1 = 1 and
S = 0 in (6). Note that this bound is optimal over certain
regions.

o In [40], the authors consider the transmission of the
source over single-user channels in the presence of in-
terference that is correlated to the source. Focusing on
D, and setting 13 = 0 and Y1 = Y5 in (6) yield the
bound derived in [40].

!For example, see Fig. 6 for a comparison with the bound in [1].



IV. DISTORTION INNER BOUND

In this section, we present a distortion inner bound (achiev-
able distortion region) on (D, , D,,, Ds,, Ds,) by proposing
a hybrid scheme that uses superposition, Wyner-Ziv and Costa
coding.

A. Hybrid Scheme

As shown from the encoder structure in Fig. 3, this
scheme has four layers that are merged to output X’ The
first layer which outputs XX = /a(ap Vi + apVif +
aq39K ), a linear combination (LC) of the sources and the
interference, is meant for all receivers and benefit from
the correlation between the sources and the interference,
where parameters 11,12, a3 € [—1, 1] and a =
Pa/(aflo—%/l + a%QU%/Q + Q%SO—% + 2a11a12pV1V20V1JV2 +
2011013pv, 80,08 + 2012013pv,50v,05) is a gain factor
related to power constraint P,. The second layer which outputs
X f employs a source-channel quantizer on the source V{¥;
the output of this layer is given by X = (VX + UK),
where 1 > 0 is a gain factor related to the power constraint
and each sample in UqK follows a zero mean i.i.d. Gaussian
that is independent of the sources and the interference and
has a variance (). A similar vector quantizer (VQ) encoder
was used in [31] for the broadcast of bivariate sources and
in [41] for the multiple access channel. In what follows, we
summarize the encoding process of the VQ layer

o Codebook Generation: Generate a K-length i.i.d. Gaus-
sian codebook X, with 25 F4 codewords with R, defined
later. Every codeword is generated following the random
variable X f ; this codebook is revealed to both encoder
and decoders.

e Encoding: The encoder searches for a codeword X f in
the codebook that is jointly typical with Vi¥. In case of

success, the transmitter sends X f .

SK
XK
LC1 z
XK
vQ d
Encoder
v K K K
X HDA Costa X T _,X
p—> LC2 Encoder
VK X'K
P “ZI'Wyner-Ziv Costa XK
LC3 Encoder Encoder
)
ol L
SK

Fig. 3. Encoder structure. LC represents the linear combination operation.
X;K, X,f, Xf and Xf are the output of the first, second, third and fourth
layers, respectively.

The third layer first forms a linear combination of the sources
and the interference X,ﬁ{ = az V& +asa VoF +a335K, where
a1, a3 and ass € [—1, 1]; this linear combination X,f( is
then encoded using an HDA Costa encoder [42] which treats

XX and SE as known interference and is meant for both
users. The HDA Costa encoder, which uses an average power
of P, forms a codebook Uf;, with codeword length K and
2KEn codewords, where R), is defined later. Each codeword
follows the auxiliary random variable

UF = XE + apS'% + kp X< (15)

where S'K = (XX + SK) is the interference, the samples
in XX are i.i.d. Gaussian with variance Py, a, = P, /(P —
E[(Xq + Xg)?] + 0}y, ) and £y, is defined later. Motivated by
the work of Costa [4], the coefficient «y, is chosen such that
ap(Xp+Xa+W1) is the MMSE estimator of X, given (X, +
X4+ W1), where X is the output of the last layer in Fig. 3.
The fourth layer is purely digital and is meant for the strong
user only. This layer starts by forming a linear combination
of the source VX and the interference S denoted by XX =
g Vi + g SE, where ayy and ays € [—1, 1]. The output
of the linear combination LC3, f(gz, is then encoded using a
Wyner-Ziv [38] with rate R, followed by a Costa coder. The
Costa coder uses an average power of P; and treats X<, XX
and S¥ as known interference. The Wyner-Ziv encoder forms
an auxiliary random variable as follows

TE = s Xuws + HE (16)

where the samples in H* are zero mean i.i.d. Gaussian, the
parameter «,,, and the variance of H are defined later. The
encoding process of the Wyner-Ziv starts by generating a K
length ii.d. Gaussian codebook 7 of size 25!(TiXw:) and
randomly assigning the codewords into 2%%¢ bins with Ry
defined later. For each realization X X, the Wyner-Ziv encoder

wz?

searches for a codeword TX € T such that (XX, TK) are

wz?

jointly typical. In the case of success, the Wyner-Ziv encoder
transmits the bin index of this codeword using Costa coding

Py
2
Tw.

with rate Ry = %log (1 + ) The Costa coder that treats

SK = XK 4+ x K + SK as known interference, forms the
following auxiliary random variable

UK = XK +q.5K (17)

where each sample in XX follows N (0, P;) that is indepen-
dent of the sources and the interference and o, = Py/(P; +
0‘2,[,2 ). In a nutshell, the intuition of using such layered scheme
is to benefit from the correlation between the sources and the
interference; this is manifested by using a linear layer and a
VQ layer which are beneficial for transmitting over broadcast
channels. The third layer, on the other hand, is needed to
“mitigate” the channel interference. The last layer which has a
similar effect as the third layer is used to refine the estimates
at the strong user.

As shown from the receiver structure of the weak user in
Fig. 4, the VQ decoder estimates Xf by searching for a
codeword X qK € A, that is jointly typical with the received
signal Y;¥. Following the error analysis in [31], the error
probability of decoding X f goes to zero as K — oo
by choosing the rate I, to satisfy the following constraint
I(Vi; Xy) < Ry < I(X,4;Y1). The variance @) of the random
variable U, has to be chosen to satisfy the above rate con-
straint. Furthermore, to ensure the power constraint we need



1 to satisty Po+p? (07, +Q)+2uE[V1 X4]+Py+Py < P. The
HDA Costa decoder then searches for a codeword Uh that is
jointly typical with VX =YX — XX and X*. The parameter
kp in (15) has to be chosen to satisfy the rate constraint
I(Uh;S/,Xh) < Ry < I(Uh;Yl,Xq). Using the above
constraint on the rate Ry, the error of probability of decoding
Uh goes to zero as K — oo. We then employ a linear
MMSE estimator based on Y1 ,X K and U to obtain an
estimate of V¥ and S¥ at the weak user. Mathematlcally, the
estlmate of the source and the 1nterference are given by V1 =
T, AT X, Up Yi] and SE =T, A7YX, Uh Yl] where
Ty, is the correlation vector between V; and [X Uh Yl]
T, is the correlation vector between S and [X, U Yi]
and A1 is the covariance matrix of [X Uy, Yl] As a result,
the achievable distortion at the weak user can be expressed as
follows

DD =g, — Ty AT,
D{Hubrid) o — T, AT'TT. (18)
YK oK y K
1 vQ [ X - -+ Y DA Cosi
Decoder U Decoder
hl Ui
TK OK
LmmsE | (V151
Estimator

Fig. 4. Decoder structure of the weak user.

As shown from the receiver structure in Fig. 5, the strong
user, that is able to decode all codewords used by the weak
user, can refine the estimates of its source V; and interference
SK using Wyner-Zlv decoder. First an estimate of XX

wz?
denoted by XX , is obtained using an LMMSE estimator
based on the decoded codewords XX, U/ and Yy, where

V¥ = Y — XK. The distortion from reconstruction X,
can be expressed as follows
D’ffwz = ]E[Xiz} Fwszm_wz Ty (19)

is the correlation vector between X,, and
and Az _ is the covariance matrix of

where Tz, . is
[)gq AUh N YQ] Tz
[X, U, Y;]. The Wyner-Ziv decoder then estimates the
codewprd ES by searching for a TK € T thatis jointly typical
with Xffz. The error probability of decoding 7% vanishes as
K — oo with the chosen rate R;. Note that a better estimate
of X,,. can be obtained using the Wyner-Ziv codeword. The

distortion from reconstructing XX is given by
D;
Diwe =700 (20)
+ =

This distortion can be achieved using a linear MMSE esti-
mator based on XX UK, T5 Y/* and by choosing . =

\/@ and H ~ N (0, Dz,_) in (16). To get an estimate

of V& and S¥ at the strong user, a linear MMSE estimator
is then used based on the decoded codewords X f , U,{{ ,TK
and Y;X. The distortion from reconstructing V< and S at
the strong user can then be expressed as follows

10T 2 —1T

Dy, =0y, —Ty,Ay T, Ds, =05 —T,A;° T, (21)
where I',, is the correlation vector between V> and
[(Xq Un T Yg] I's, is the correlation vector between

S and [X, U, TX Y] and A, is the covariance matrix of
(X, U, TX Y3]. After some manipulations, the distortions
in (21) can be simplified as follows

_D~
2 2 Twz
Oy, {1 - p\/gf(wz (1 - ]E[XE)Z]>:|
ptweria) g2y 2 (o Dae. (22)
. oL R U R

where py,

D(Hybrid)
Vo

is the correlation coefficient between V5 and

Xuwz and pgx s the correlation coefficient between S and

X’LUZ'
(X508
5K q *~h
Xy
K - v K K . .

L st | (V. 85

Y Estimator LMMSE {2,

|a Estimator
Costa Wyner-Ziv
Decoder Decoder K

Fig. 5. Decoder structure of the strong user. Note that codewords X f and

U }{( are estimated in a similar way as done at the weak user.

Remark 2 By numerically calculating the distortions in (18)
and (22), we noticed that including the knowledge of S¥
(in the form of linear combination of the sources and the
interference) as an input to the HDA Costa and Wyner-Ziv
coders is not beneficial in most scenarios.

Remark 3 Note that the distortion analysis in this section is
not affected by restricting the linear combination parameters
o [=1, 1]; these parameters can be assumed to take on any
real values. However, from our numerical results, we did not
notice any performance loss due to restraining the values of
these parameters to [—1, 1].

Remark 4 Note that our scheme resorts to the optimal
schemes proposed in [6], [31] for the joint source-interference
recovery over point-to-point Gaussian channels and for the
transmission of bivariate Gaussian sources over degraded
broadcast Gaussian channels, respectively. Moreover, we now
use only one purely digital layer (Wyner-Ziv followed by Costa
coding) as opposed to the scheme we proposed in [1].

V. Low DELAY ANALOG CODES

In this section, we propose low delay coding schemes
(with K = 1) based on analog mappings. The objective is to



design the encoder and decoder structures in order to minimize
the overall weighted MSE distortion

2
D= Z(eviDvi +05,Ds,)

i=1

(23)

subject to the power constraint in (3) and Zle (0y,+0s,) =1,
where D,,, and D, are defined in (4). Note that 6,,, and 6, are
set by the system designer and dictate the operational region
of the system.

A. Linear Scheme

We first assume that the encoder transforms the source pair
(V1,Va) and the interference S into a channel input X using
a linear transformation according to

X = oz(Vl,Vg,S) = \/E(Ollvi +062V2 +0435) (24)
where o1,00,3 € [-1, 1] and ay = P/(afoy, +

307, + 0308 + 200 Q2pv, 1,0V, 0V, + 200Q3py, SOV, 05 +

2a003pv,50v,05) 1s a gain factor related to power constraint

P.In such case, Y; is Gaussian and the MMSE decoders for re-

constructing V; and S are linear estimators. The reconstructed

signals at user 4 (¢ = 1,2) are then found as follows
. _EVY], , _EISY]

Y EpE Y T e

(25)

The resulting distortions (defined in (4)) from reconstructing
the source and the interference at user ¢ can then be expressed
as follows

A E[V;Yi]?
D(Ltnear) 2 111
VTR
. E[SY;)2
Linear 2 ?
D{kinear) = 52 — R (26)

Note that the parameters (a1, aa, av3) are found by minimizing
the overall distortion D(Finear) — $°2 (g pllinear) o
es.Dg.Linear))'

Remark 5 The optimal tradeoff between distortion quadruple
(Dyyy Doy, Ds,, Ds,) for any linear scheme is achieved with
single-letter linear codes (i.e., in a scalar form). Hence,
there is no gain from using a higher dimensional linear
transformation.

Remark 6 For the case of py,v, = pvys = pvos = 1 or
when the users are only interested in the interference, the
linear scheme (in this case, a scaled version of the interference

XK = /P/ciSE) is optimal.

B. Parametric Mapping

In this section, we propose a layered scheme based on
linear coding and sawtooth mapping. Sawtooth mapping has
been used for the relay channels in [43], the multiple access
channels [21], the Gaussian broadcast channels [44] and for
the dirty paper coding problem [24], [25].

1) System Structure: The proposed scheme is composed of
two superposed layers and outputs

X = C(Xl + XQ) (27)

where c is a gain factor related to the power constraint (defined
later). The first layer, which outputs X; = / P/ a%S , simply
scales the interference S, where P, < P represents the power
consumed by this layer. The second layer, starts by forming a
linear combination of the sources (V7, V5) and the interference
S; this is given by X, = a1 V] + axVs + a3S, where aq, as
and a3 are real parameters. We then use a sawtooth mapping
S(+) on X, to output X5 as follows

Xy = 8(X,) = (Xa—2Am) for X, € [A(2m—1), A(2m+1))

(28)
where m is an integer and A is a nonnegative parameter
dependent on the channel condition. The gain factor c in (27) is
given by ¢ = \/P/(PS + E[X3] + 24/ Ps/0%E[SX5]), where
E[X3] can be written as follows

E[X2]+) —4Am/D

2ap(ta)da +4A%m? / p(za)dzs
D

m m

I, I3
(29)
and E[SX5] is given by

E[SX.] - 2Am / /D

where D,, = [A(2m — 1), A(2m + 1)) is the m™ domain
region of S(-), p(+) denotes a probability density function (pdf)
and p(-|-) is a conditional pdf. Note that the integrals in (29)
can be simplified as follows

sp(xals)p(s)dzads  (30)

m

B E[X2] —(A(2m + 1))2
ho= O e ()
—(A(2m — 1))?
*e"p< 2E[X]] )]
_ 1 A@2m+1)\ A(2m —1)
I, = 5 erf<2]E[X§]> erf<2]E[X2]>](3l)

where erf(-) is the Gaussian error function. At the decoder
side, to obtain an estimate of the source and the interference
at each user 7, we use the optimal MMSE estimator (V, =
E[V;]Y;], S; = E[S|Y;]). The use of an optimal decoder comes
at the expense of computational and design complexity. To
lower the design complexity, we resort to a suboptimal method
for choosing the system parameters as described next.

2) System Optimization: We herein optimize the system
parameters by minimizing an upper bound on the system’s
distortion. To get a closed form expression on the system’s
distortion upper bound, we propose the use of a suboptimal
decoder. Let us first note that the sawtooth mapping, which
uses the symmetric modulo function (28) over the interval
[~A A], can be written as S(X,) = X, mod A. To reconstruct
the interference, we simply use an LMMSE estimator based
on the received signal Y;. The distortion from reconstructing



S at each user is given by

| E[SY;]?
(Parametric) _ 2 )
De 75BN
o (C(EIS(X, mod A)] + Vi) + o})?
=0g —

P+ 0% + 03, +2¢(v/Psos + E[S(Xa mod A)))

where E[S(X, mod A)] can be written as in (30).

To get an estimate of the source V;, we first use a modulo
function on the received signal Y; and then apply an LMMSE
estimator. More precisely, we first obtain

Y; = (Yi/c) mod A

| Py 1 W;
= (aﬂ/l +Oé2VQ+(Oé3+ — + )S+> mod A
US C C

Z;

(32)

where the last equality follows from the fact that the modulo
operation satisfies the “distributive law” (i.e., [z mod A +
y] mod A = [x + y] mod A). We then decode V; using an
LMMSE estimator based on Y;. The resulting distortion is

E[V;(Z; mod A))?
E[(Z; mod A)?]

where Z; is defined in (32), E[(Z; mod A)?] is given by

Z2 4AZ / zip(2;) dzz—|—4AQZm/ p(zi)dz;

" (3

(Parametric) __ _2
D'Uz' — YV

(33)

and E[V;(Z; mod A)] can be expressed as follows

E[V;iZ;] —%:QAW /Dm // vip(vils)p(2i|vi, 8)p(s)dvidsdz;

(35
where D, = [A(2m — 1),A(2m + 1)) is the m™ domain
region of S(-). Note that integrals in (34) can be simplified
in a similar way as in (31) and distributions in (35) are
Gaussian. The upper bound on the system’s distortion Dypper
for parametric mapping is then given by

2
Duppe'r‘ = Z {gvi Dv(jfarametric) + gsiDgiParametric)} )

i=1
(36)
Note that (a1, a2, as, Ps, A) are found by minimizing Dypper,
0,, and 0, are set by the system designer.

C. Nonparametric Mappings

We next present a scheme based on joint optimization
between the encoder and the decoders through an iterative
algorithm. Closed form expressions for a(-), vy1(-) and v2(-)
that minimize the distortion D (given in (23)) may not exist;
this makes the optimization of the encoder and decoders diffi-
cult. The rest of this section is dedicated to the design of the
source-channel mapping «(V7, V3, .S) and the decoders ~;(Y;),
for ¢+ = 1, 2. Using the Lagrange multiplier method, the
constrained minimization of the MSE distortion D subject to

the power constraint in (3) can be recast into an unconstrained
minimization via the Lagrange cost function J(a, 71, 72)

ZGE (Vi =" (1)) + 0B [ (5 =~ (v))’]

+AE[a(V7, V2, S)?] (37)

where A is used to control the average power. For a given
A, if the solution of the unconstrained minimization fulfills
the average power constraint in (3), the obtained solution
is also proven to solve the constrained problem [45]. The
above unconstrained minimization is still hard to solve due
to interdependencies between the optimized components. To
solve this, we proceed in a way similar to classical design
problems [46] by deriving necessary conditions for optimality.
This is done by determining the optimal encoder « given the
decoders (7y1,72), and vice versa.

1) Necessary Conditions for Optimality: The optimal en-
coder mapping o* (assuming (v1,72) are fixed) is given by

2
o = argmin{Z@viE[(V
i=1

+AE[a(Vi, Va, )7 }.

— Vi) + 0., E[(S - 8,7

(38)

Using Bayes’ rule, the distortion E[(V; — Vi)z] is given by

//// v, 02, 8)p(ylav1, v2, 5), 5)

(v; — vl) dvidvadsdy;. (39)

Similarly, the distortion E[(S — Si) ] can be expressed as

follows
//// p\v1,02,S yz|a(v1,v2, )7 )

(5 — 4;)2dvidvadsdy;. (40)

The average consumed power is given by

P= ///p(vl,vg,s)a(vl,vg,s)2dvldv2ds. 41)

Since p(v1,v2,s) in (39), (40) and (41) is nonnegative, the
encoder o can be optimized “pointwise” for each vy, vo and
s according to

2
a*(v1,v2, 5) argglelﬂr{}{zg/p(yilx,s)
[0, (v — ©:)% + 05, (s — 8;)°)dy; + Az?} .
(42)
Thus, (42) is a necessary condition for an optimal encoder.
On the receiver side, the optimal decoder 'yi(”) in the MSE
sense (assuming « is fixed) at user ¢ is given by E[V;|y;] as
follows
’Y(U)*( )= fff vip(yi|vi, ve, $)p(v1, va, s)dvidvads
P SIS p(yilv1, va, s)p(vr, v2, s)dvidvads

Similarly, the optimal decoder 7(5) in the MSE sense (assum-
ing « is fixed) at user ¢ is given by E[S]y;] as follows

7(5)*( ) = [[] sp(yilvi, va, s)p(v1, v2, s)dvrduads
! JJ] p(yilvr, va, s)p(v1, v, s)dvidvads

(43)

(44)



2) Design Algorithm: Using the above necessary condi-
tions for optimality, we optimize a, 71 = (1\*,7*)) and
v2 = (¥ (1)7,}/55)) via an iterative process based on (42), (43)
and (44). The update equations (42), (43) and (44) yield a
lower distortion at each iteration step; Thus, with a finite
amount of training data, convergence is guaranteed. The main
problem with such iterative process is that the final solution
depends on the choice of the initial mapping in the algorithm
and convergence to the global optimum is not ensured. The
design Algorithm 1 is as follows:

1) Choose some initial mapping for the encoder a.

2) Find the optimal decoder (1,72) according to (43) and
(44).

3) Set the iteration index i = 0 and the cost J(©) = co.

4) Seti=1i+1.

5) Find the optimal mapping « according to (42).

6) Find the optimal decoder (y1,72) according to (43) and
(44).

7) Evaluate the cost function J(). If the relative improve-

(i=1) _ () ) . .
ment of Z— =" < cori > Lnau stop iterating. Else

JG-1)

go to step 4.
Algorithm 1 is nested inside a “bracketing” Lagrange mul-
tiplier search. We first set A = Xo. If the designed «
produces E[a(V1, V5, 8)?] > P, Ao is increased; else \g is
decreased. The search ends if E[a(V7, Va2, S)?] is close enough
to but less than P. For initialization of the algorithm, we
use the parametric mapping scheme proposed in the previous
subsection.

3) Implementation Aspects: For the implementation of (42),
(43) and (44), some modifications are required. Since it
is intractable to evaluate the formulas for all real-valued
(V1,Va,5), we form as in [47] a set of triplets (V1, Va2, S)
composed of samples drawn from p(vq,vs,s). Since the
channel input and output spaces are real valued, we discretize
them using a pulse amplitude modulation alphabets X and ),
respectively, in each direction. We use

X:y:{_dL;1
(45)

where d and L are the resolution and the cardinality of
the set, respectively. In our simulations, we use 10° triplets
(Vl,VQ,S), € = 1073, Lyur = 15, L = 700 and d =
12/(L — 1). The discretized version of (42) which is used
in the implementation of the design algorithm is expressed as
follows

,—d ,d

d
2 7 2

L-3 L-1
g

Oé*(’Ul,’UQ,S) =

argmm Z Z P(y;|x, s)

=1y, €Y
[6‘1)1' (vi - @2)2 + esi («9 §Z>2] + )\1‘2} .

(46)
where P(-) denotes the probability mass function. Note that

the discretized versions of (43) and (44) can be written
similarly.

VI. NUMERICAL RESULTS

In this section we assume that the source pairs with variance
oy, = oy, = 1 are broadcasted to two users that are disturbed
with common interference with variance 0% = 1. The system’s

average power is set to P = 1.

A. Special Cases

Since the quadruple distortion region is difficult to visualize,
we next consider two special cases: 1) the transmission of
bivariate source over a Gaussian degraded broadcast channel
in the presence of interference, referred to as “Case 1”7 and
2) the joint transmission of Gaussian source and interference
over a point-to-point Gaussian channel, referred to as “Case 2”.
To evaluate the performance of these two scenarios, we plot
the inner bound (achievable distortion region of the proposed
hybrid scheme as given by (18) and (22)) and the outer bound
(derived in Theorem 1).

1) Case 1: Fig. 6 shows the distortion region (D,,, D,,)
when users are only interested in estimating the source pair
and not the interference. We can notice that the inner bound
achieved using the HDA scheme is relatively close to the ‘best’
outer bound; moreover, the derived outer bound of Theorem
1 improves on our previous bound derived in [1]. Part of this
improvement is related to restricting the search space over
which the supremum is applied (refer to Theorem 1); the
remaining gain is from assuming a partial (noisy) knowledge
of the source at the strong user instead of full knowledge
when deriving the bound. From Fig. 6, we can see that the
gap between the inner and the outer bounds decreases for
high distortion level D, ; this is because for high distortion
level D,,, the system behave similar to a point-to-point
communication.
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Fig. 6. Case 1: Distortion regions (DU1 ,Dyy) for hybrld scheme for

PV1Vy = 08 PVLS = pV2S = 05 O‘ = 0 dB, UWQ —5 dB and

P = 1. The inner bound is plotted using (118) and (22).

2) Case 2: Fig. 7 focuses on the joint source-interference
recovery over a single-user channel. We can notice that the
derived outer bound is tighter than the one derived previously
in [2]. Moreover, the gap between the inner and outer bounds



decreases for high distortion levels on D, ; in such case, our
system behave as if we are only interested in estimating the
source V5. Note that we were only able to notice some gap
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Fig. 7. Case 2: Distortion regions (sz,DSE) hybrid scher °
an = 1.

v, = 1 1PVAS = PVps = 0.8, Cle = oy, =
The inner bound is plotted using (22).

between the inner and the outer bounds for high noise levels
(0'12/[/1 > 0 dB). For low noise levels (0"2,[,1 < 0 dB), the inner
and the outer bounds overlap for most of the region; this is
illustrated in Fig. 8.
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Fig. 8. Case 2: Distortion regions (Dy,,Ds,) for hybrid scheme for
Pvivy =1, p1v, 8 = prps = 0.5,0%,1 = 05[/2 = —10dB and P = 1. The
inner bound is plotted using (22).

B. General Case

Figs. 9 and 10 show the performance of the proposed
low-delay schemes relative to the theoretical bounds as a
function of correlation values. we assume that the weights
in the distortion measure D in (23) are set to 1/4 (i.e.,
0y, 0s, = 1/4). As we can notice, the nonparametric
and parametric mappings outperform the linear scheme. It is

worth mentioning that the information-theoretic bounds are
asymptotic in the sense of requiring infinite source and coding
block lengths, hence the gap to the proposed low delay scheme
is not surprising. Note that the performance of the parametric
mapping is not shown in Fig. 10; this is due to the fact
that for high noise levels, our parametric mapping behave
similar to the linear one which usually tends to have a good
performance relative to other low delay schemes. Moreover,
the gap between the inner and the outer bounds is relatively
small (~ 0.8 dB).
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Fig. 9. General case Performance of low delay coding versus ﬂv1 s for
pvive = 0.7, O'WL = —10 dB, O'W = —15 dB and P = 1. The
performance of hybrid coding is based on (18) and (22).
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Fig. 10. General case: Performance of low delay coding versus py, s for
pviv, = 0.2 O’W = 0 dB, O'W = —5 dB and P = 1. The performance
of hybrid coding is based on (18) and (22).

Fig. 11 shows the decoder structure of the nonparametric
mapping for two different noise levels. Fig. 12 shows the
encoder-decoder structure for the special case (Case 2) of joint
transmission of Gaussian source and interference over point-
to-point Gaussian channels (i.e., §,, = 5, = 0 and 6§, =



s, = 1/2). It is clear that the encoder and decoder mappings
comprise a piecewise nonlinear function that combines hard
and soft decision signalling. The proposed parametric mapping
uses such combination; this explains the good performance
achieved using parametric mapping. There is always a gain
from using the nonparametric mapping; this is due to the
fact that the nonparametric mapping has a higher degree of
freedom in placing points in space without being restrained to
a specific structure. Such gain comes at the expense of higher
storage and offline design complexity.
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Fig. 11. General case: Decoder mappings structure optimized using Algo-

rithm 1 for pv;v, = 0.7, pvys = pvys = 0.3, a%,l = aZVz =o0% =1and

P = 1. In the figure to the left we assume (02, = —10, 03;/2 = —15) dB
while the one to the right has (cra/1 = —25) dB. Note that

the asterisks show the reconstructed (\71, 5’1) and the small dots are samples
from the distribution of (V7, S).

—20,UW2 =

M (Vzﬁz)
(V2,5) #

Fig. 12. Case 2: Encoder (left) and its corresponding decoder (right) mappings
optimized using Algorithm 1 for 0‘2/‘, = —25dB, py,5 = 0.7, 0y, =05 =
1and P = 1; parametric mapping is used for the initialization of Algorithm 1.
In the figure to the right, the asterisks show the reconstructed (V2,S2) and
the small dots are samples from the distribution of (V2,.5).

VII. CONCLUSIONS

In this paper, we considered the problem of reliable trans-
mission of bivariate Gaussian source and interference recovery
over the two-user Gaussian degraded channel in the presence
of interference that is known non-causally to the transmitter
and correlated to the sources. Information-theoretic outer and
inner bounds using ideas from rate-distortion theory and
hybrid digital-analog coding are derived. Low delay and low
complexity codes based on analog transmission are then pro-
posed. More precisely, parametric mappings based on linear
and sawtooth curves are studied; nonparametric mappings
based on joint optimization between the encoder and the
decoder are designed using an iterative algorithm. Our setting
contains several interesting limiting cases; the derived bounds
resort to the optimal ones in [6], [31] and are tighter than the
ones derived in [1] and [2].
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