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Abstract—We design a channel optimized vector quantizer soft-decision information is used) are based on maximum
(COVQ) for symbol-by-symbol maximum a posteriori (MAP) |ikelihood (ML) decoding and have relatively low decoding
hard-decision demodulated channels. The main objective ® ex- computational complexity (although SDD COVQ can have

ploit the non-uniformity of the indices representing the quantized . . . .
source via the MAP decoder and iteratively optimize the oveaill considerably high storage requirements at the decodethidn

discrete channel (at the symbol level) jointly with the quatizer. WOrk, we relax the constraint on decoding complexity sinee w
We consider memoryless Gaussian and Gauss-Markov sourcesare interested in scenarios where, unlike the transméter,(a

transmitted over a binary phase-shift keying modulated Rajeigh  |ow-powered wireless sensor node), the receiver (e.ghaise
fading channel. Our scheme has less encoding computanonalstation) has more than sufficient processing power. We il f

and storage complexity (particularly for noisy channel comli- . . - .
tions) than both conventional and soft-decision COVQ systas, cus on binary phase shift keying (BPSK) modulated Rayleigh

which use hard-decision and soft-decision maximum likelibod ~fading channels, although the algorithm can also be applied
demodulation, respectively. Furthermore, it provides a ntable to other channels [3]. We iteratively optimize the model DMC
signal-to-distortion ratio gain over the former system, aml in  (having identical input and output alphabets) represgrttie
some cases it matches or outperforms the latter one. concatenation of the modulator, channel and hard-decigen
Index Terms—Joint source-channel coding, channel optimized modulator together with its correspondingly designed COVQ
vector quantization, MAP decoding, encoding computationband  encoder/decoder pair. This is achieved by using a symbol-by
storage complexity, hard and soft-decision demodulation. symbol MAP hard-decision detector instead of the standard
maximum likelihood (ML) detector, motivated by the fact
. INTRODUCTION that the COVQ encoder indices arriving at the modulator are

Joint source-channel coding (JSCC) has recently attracfe@n-uniformly distributed (hence MAP decoding outperferm
considerable attention as it aims to surmount the limitetioML decoding as it minimizes the discrete channel’s symbol
of classical tandem source-coding systems that are ba§&Pr rate). We propose an iterative three-phase COVQ desig
on Shannon’s separation theorem. Channel optimized vecdgorithm which is based on first designing a conventional
guantization (COVQ) is a JSCC technique in which an analégPVQ, then computing the input (quantizer index) distritt
source is quantized by taking into consideration the charder the use in MAP decoding, and finally redesigning the
teristics of both the source and the channel. COVQ has beeRVQ for the new channel defined in terms of the updated
thoroughly studied under different approaches (e.g., e [ transition matrix.

[6] and [8] - [10]). Numerical results indicate notable signal-to-distortiatio

COVQ designs usually employ a discrete memoryless ch48DR) and encoding complexity gains for the proposed scheme
nel (DMC) corresponding to a memoryless continuous-valuéder the conventional and SDD COVQ schemes.
channel used in conjunction with hard-decision demodurati
However, in these designs, little attention has been paid to Il. COVQ SYSTEM
optimize the discrete channel by exploiting the non-umifiby
of the source encoder indices arriving at the channel inpput. _ : >
notable exception is [10] where non-iterative (one stepjtha F19- 1. The purpose of the system is to transmit the random
decision maximum a posteriori (MAP) decoding is considerefCtor X» € R” of dimensionk over the noisy channel and

In this work, we examine how to improve the performanc@m an estimateX;, of X,, based on the channel outpi,,
of COVQ systems for hard-decision demodulated channéidch that the distortiof||X,, — X,[|" is minimized. Herep
while decreasing the encoding computational and storak@Presents the time index of the vector which consistg of
complexity. This is beneficial for wireless uplink commuaic Single source outputs. The sourfX,,} € R is assumed to
tion applications (including sensor networks) where thansc Pe a stationary and ergodic process, with zero mean and unit
resources of the transmitter need to be efficiently utilize¥ariance. The COVQ encoder encode, } at a rate ofr bits
The conventional COVQ [5] and the soft-decision demodder sample (bps). Therefore, the COVQ encoder is a mapping
lation (SDD) COVQ [1], [2] and [6] (in which the channel® : R¥ — Z, £ {0,1,--- , N. — 1}, such that&'(X,,) = I,

is sent over the channel after modulatioN, = 2*7). The
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thors are with the Department of Mathematics and Statjsti@seen’s h di leX — £(X 1i0. N h
University, Kingston, ON K7L 3N6, Canada. (e-majfhami d, fady, the encoding ruleX, € &; = I, = (Xn) = i. Note that

I'i nder }@mast . queensu. ca). for simplicity, we also identify the indeX,, and the index

The general block diagram of the system is depicted in



Equivalent Discrete Memoryless Channel (DM

making sure that the procedure ends up with a locally optimal
solution. Thus, in the first phase, we use the COVQ design
x,, ER [ covommmm] 1 €O g W, e {-L+1}"  algorithm [5] where2; is fixed and4’ and %, are optimized

e 1) Moduiator in an iterative fashion. Note that in the first step of thesitiem,
we assume a uniform input index distribution resulting in ML
Channel decoding. In this case, the DMC is a binary symmetric channel
Decoder Set (BSC) usedkr times.
Y Second phase: Once Phase 1 is complete, the encoder index
a0 e . distribution is fed to the MAP decoder to start the secondpha
ek ' hefon” = Ro e &Y of the algorithm. We use the computed input distribution to

replace the ML detector by a symbol based MAP decoder and
redesign the COVQ. Givety, and& from the first phase, we

Fig. 1. Block diagram of the iterative MAP decoded COV te .
g g Q sy find 2, such that

setZ,, with their binary representations (e.d,, = {0, 1}’”). Jo = arg max P(I|Ru,h) = argmax P(Ru|l,, )P
The input index probability distribution is denoted B for " I,.€1, ne T, nem "
i =0,1,---,N. — 1. We use BPSK modulation, although = arg max PH{v=R,—hoW,(I,)}| I,,h) P,
other memoryless modulation techniques can also be consid- e 1

ered. The concatenation of the modulator, the actual channe = arg min |—|R, —hOW,||> ~InP; |, (1)
and the detector (at the symbol level) forms a DMC, for which IneZn | No

the COVQ is designed. We refer to this discrete channel a#erew,, (I,,) denotes the symbol corresponding to indgx
the “equivalent DMC.” The DMC is defined in terms of itsh andv denote the fading and noise vectéts, ha, - - - , hy;)
input alphabetZ, = {0,1,---, N, — 1}, transition matrix and(vy,vs,--- , vk, ), respectively, and represents element-
Py x and the output alphabet, = {0,1,---, Ng—1}. Since wise vector multiplication.
the system uses hard-decision demodulati@p,= Z,, and Based on the above MAP metric, the new transition matrix
Ng= N.= N. (In SDD COVQs ( [1], [2] and [6]), one has of the equivalent DMC is empirically computed. It can be
Na = N.* > N.. This is achieved by a soft-decisi@fi-level seen that the transition matri; |,, is a function ofh and is
uniform scalar quantizer at the decoder). thus time-variant. Using these transition matrices woeklt
The decoder is the composition of two functios and in separate decoder for each valuelpfa clearly unfeasible
P,. Thus the decoder can be written @&s= %, o &, where solution. Hence to curb the complexity of the system, for

D R~ 7, = I, ={0,1,--- ,N. — 1}, %, : J, — design purposes, we compute and use the average of the
C C Rk, o denotes function composition ardtlis called the channel transition distribution matrices over severalirfgd
codebook and its entries are called codevectors. vectors (i.e., we computéy (Py, 1, ))-

The BPSK modulated bits with unit energy to be After updating the detector, which results in a new DMC,
sent over the Rayleigh fading channel are denoted bwd finding an updated codebook (based on the new DMC
WL, W2, ... Wk and form the vectoW, € {—1,+1}*". probability distribution), we design the new COVQ (the pair
At the output of the channel, the received ved®y consists {%-,&}), using the updated codebook found previously as the

of kr componentsk., R?,--- | RF" that can each be written initial codebook of the GLA. We calculate the distortidp,
asRt, = bWt + v, fort =1,2,---  kr, where{v;} is the at the end of the second phase.
independent and identically distributed (i.i.d) Gaussiaise: Third phase: In the third phase, we iterate Phase 2 and

v, ~ N(0,%2), and {h,} is the i.i.d Rayleigh distributed terminate when th&DR is maximized.
fading process withE [h7] = 1. We also assume that the

processes;, v; and W are independent of each other and IV. ENCODERCOMPLEXITY

that the fading amplitude valués are perfectly known at the  An important advantage of the IMD COVQ is its reduced
receiver (i.e., we assume perfect channel side informattonencoding computational and storage complexity when com-
the decoder side). pared with other schemes. We measure the computational com-
plexity by the number of multiplications required to encode
one source sample (as in [7]), while the storage requirement
is measured by the total number of scalars needed to be stored
at the encoder [7].

The main contribution of this paper is a simple algorithm ¢ js important to note that the encoding computational
that jointly optimizes2, and the pair{Z,&}. The IMD  complexity of COVQ systems changes with the channel signal-
algorithm consists of three phases as follows. to-noise ratio §NR). It is well known (e.g., [5] and [3])

First phase: The first phase is the ordinary COVQ desigihat in COVQ systems, the number of non-empty encoding

algorithm. The problem of designing COVQ for a DMC iscellst considerably decreases for very lI08NRs and the
well known (e.g., see [4], [5] and [6]). Starting from a sbiga

initial codebook (decoder) the COVQ encoder and decoder aréAn empty cell (as opposed to a non-empty cell) refers to aesponding
encoding region of an index for which for every input tramimector there

'terat!\{ely and altema.t'ngl_yppt'm'ZEd based on two neaQ_S is at least one other index with smaller encoding functiorrimeThis index
conditions [5] for minimizing the squared-error distortjo is not sent at all and its corresponding region is empty.

I1l. THREE-PHASE ITERATIVE MAP DECODED (IMD)
ALGORITHM



Channel SDR (dB) Number ofNon-Empty Cells {z) ChannelSNR (dB)

SNR IMD SDD COVQ IMD SDD COVQ covQ 0.94]1.40(1.93]260] 3.36| 4.22

(dB) covQ covQ (=2 covQ covQ @=2 SDR (dB) IMD COVQ 123 1.86| 297 3.88] 5.15| 5.69
p=00 p=09 p=00[p=09]p=00]p=09{p=00 p=09 p=00 p=09 p=00 p=0.9 SDD COVQ ¢=2) | 1.32]1.94] 2.88| 3.79| 4.89| 5.78

80 493 660 528(746|563731| 16 11 13 8§ 16 11 fuumgefty lMg%\gQ 2‘11 2421 gg 22 gi gg

6.0 408 555 443|653|475(630| 16 10 13 8 16 10 of Non-tmp

40 323 445 366/543|384|543| 16 9 11 7 14 9 Cells (Vz) [SDDCOVQ =2 | 52 | 49 | 58 | 59 | 64 | 64

30 283 392 323|484|34148| 16 9 11 7 14 9 TABLE I

20 246 343 285)431|300(428) 16 8 11 7 14 8 SDR AND THE NUMBER OF NON-EMPTY ENCODING CELLS(ENCODING

10 213 294 249|367|274/372) 16 8 11 7 14 8 COMPLEXITY) FOR THE MEMORYLESSGAUSSIAN SOURCE(p = 0.0) AND

00 185 270 211|342|230321| 16 7 11 6 14 7 DIFFERENTCOVQSYSTEMS THE ENCODER RATE IS = 2 BPS AND THE

-1.0 157 233 175)288|197273) 16 7 11 6 14 7 QUANTIZATION DIMENSION IS k& = 3.

20 132 193 149|254|168|231| 15 6 11 5 14 6 . . . . s e

30 110 177 121 214 141194 14 6 11 5 14 &6 Table II). This gain increases for higher correlation cagdfits

40 090 151 101]183[123[177| 14 6 11 5 14 5 and higher values ofkr. Interestingly, we observe that in

60 061 099 069]|123/079122/ 12 5 9 5 14 5 general, after applying the IMD algorithm, the non-uniform

TABLE | input distribution, tends to be even more non-uniform which
SDR AND THE N)UMBER OF NON-EMPTY zCODING C(ELLS(E';CODING is desirable [5], thus improving the IMD COVQ system over
COMPLEXITY) FOR THE MEMORYLESSGAUSSIAN (p = 0.0) AND : :
GAUSS-MARKOV (p = 0.9) SOURCES AND DIFFERENTCOVQSYSTEMS the convgntlonal COVQ and SDD C.OVQ systems in _terms
THE ENCODER RATE ISr = 2 BPS AND THE QUANTIZATION DIMENSION s~ Of encoding computational complexityVg) and encoding

k=2 storage requirementsk + 1)Ng). In terms of the number

computational complexity is proportional to the number o'z Of non-empty cells, IMD COVQ outperforms both the
non-empty regions, which we denote ;. From the form conventional COVQ and the SDD COVQ considerably (up
of the encoder function?, it can be shown [3] that the © 53% reduction over conventional COVQ and up 6%

computational complexity for each of the COVQ, IMD covgeduction over SDD COVQ forSNR = 0 dB as shown
and SDD COVQ systems equals,. It can also be shown that" Table ). Since ther_e are already many empty decision
the encoding storage requirement for each of the COVQ, IM§gions for the conventional COVQ at very INRs (less
COVQ and SDD COVQ systems is given by + 1)N [3]. tha_\n —2_ dB)Z the IMD algorithm does not prow_de much
Thus we use the parametat, as a criterion to compare the9&in (either in performance or encoder complexity) in that

encoding computational and storage efficiency of the systerff9ion. However, forSNR ranging from -2 dB to 4 dB,
it gives maximum gain over the other schemes. For high

V. NUMERICAL RESULTS SNRs, MAP decoding does not yield much gain compared

i - ith ML decoding as in this case these two decoding methods
hln th? first phasle ((i:r?V? for_t_hard-d?<_:|5|((j)n .Mla(}le;:]de re nearly equivalent. Finally, it is worth pointing out tha
¢ anni), ‘évg Cem.F:hOY € transi 'Ot? tr)nlz':: rix derived Ir while we cannot analytically guarantee the convergenchef t
uses ora with crossover probability proposed algorithm, we did observe a rapid convergence in
En [Py, 1, (1]0)] = Ep [P(v; > hy)] = s [Q(hJSNR)} . our experiments, with the final solution reached in only a few
e (up to 4) steps [3].
whereSNR = E [W?] /E [1,?] = & andQ(-) is the comple-
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