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LP Decoding for Joint Source-Channel Codes
and for the Non-Ergodic Polya Channel∗

Adam Cohen, Fady Alajaji, Navin Kashyap, Glen Takahara

Abstract— Linear programming (LP) decoding of low-density
parity-check codes over discrete memoryless symmetric channels
was introduced by Feldmanet al. in [1]. Here, we extend the LP
decoding paradigm by applying it to two additional scenarios:
joint source-channel (JSC) coding and decoding over the infinite-
memory non-ergodic binary Polya-contagion channel. Simulation
results indicate that the JSC LP decoder yields significant
gains over the standard LP decoder for non-uniform sources.
Simulations also show that the LP decoder for the Polya channel
performs moderately well in relation to the ǫ-capacity limit.

Index Terms — LP decoding, joint source-channel coding, non-
ergodic Polya channel, systematic and non-systematic codes.

I. I NTRODUCTION

In [1], Feldman et al. introduce the notion of decod-
ing low-density parity-check (LDPC) codes over memoryless
channels using linear programming (LP).1 They present a
straightforward method of defining an efficient LP relaxation
of maximum-likelihood (ML) decoding of LPDC codes. LP
decoding enjoys certain benefits when compared to standard
belief-propagation (BP) decoding techniques; for example,
the decoder always converges, and when it converges to an
integer solution, it is guaranteed to yield the ML solution.
Also, LP decoding is relatively easier to analyze than BP
decoding. For example, LP decoding has been shown to correct
a constant fraction of errors [2]. Although the algorithm
is computationally demanding when compared to iterative
decoding algorithms, recent improvements in efficiency have
been obtained,e.g., [3].

Here, we extend the LP decoding paradigm to include sce-
narios other than channel decoding for uniformly distributed
memoryless sources transmitted over memoryless channels.
First, we apply LP decoding in the context of joint source-
channel (JSC) decoding by using systematic LDPC codes for
non-uniform memoryless sources sent over binary memoryless
channels. The LP decoder’s cost function is modified to
incorporate thea-priori source information. This scheme is
further enhanced by using a non-systematic code obtained
by puncturing a lower-rate systematic code and using an
“extended decoding polytope.” As expected, simulation results
demonstrate gains vis-a-vis the standard LP decoder which
does not incorporate the source statistics.

Next, we discuss the application of LP decoding to the
non-ergodic infinite-memory binary Polya-contagion channel,
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1LP is used throughout to stand for both “Linear Programming”and “Linear
Program,” and this will be clear from the context.

introduced in [4]. It is shown in [4] that this channel belongs to
the class of averaged channels with memory, admits a closed-
form expression for itsǫ-capacity, and has a straightforward
formulation for ML decoding. Thus, the infinite-memory Polya
channel provides an interesting tool for modeling2 non-ergodic
fading channels since the class of averaged channels with
memory has recently been actively studied in the context
of (non-ergodic) wireless fading channels and their outage
capacity [6]. Simulation results demonstrate that the proposed
LP decoder performs well vis-a-vis the channel’sǫ-capacity.

II. LP DECODING FORJSC CODES

The recent work of Feldman, Wainwright and Karger [1]
shows that ML decoding of a binary linear code over a
discrete memoryless channel can be formulated as an LP
which can be “relaxed” to a form with easily expressible
constraints and with manageable complexity. Given a length-
n codeC, receivedn-vector y and a spanning subsetH of
the dual code,C⊥, relaxed LP decoding is performed by
selecting the decoded vector̂x to achieve the LP optimum
maxx∈Q(H) γ · x, whereγ = (γ1, . . . , γn) is defined byγi =

log
(

P (yi|xi=1)
P (yi|xi=0)

)
, 1 ≤ i ≤ n. The relaxed codeword polytope

Q(H) is defined asQ(H) =
⋂

h∈H P(h⊥), whereP(h⊥) is

the convex hull inRn of the codeh⊥ = {c ∈ {0, 1}n : h·c ≡ 0
(mod 2)}. It is easy to show that the set of integral vertices
of Q(H) coincides exactly withC.

In the following, we assume a non-uniform, memoryless
source with the probability of1 and0 beingp1 andp0 = 1−p1,
respectively. The source is channel-coded using a systematic
(n, k) LDPC code and transmitted over a memoryless binary
symmetric channel (BSC), withy being the received vector.

Decoding Systematic Codes: The optimal decoding rule (in
the sense of minimizing the codeword error probability) is the
maximuma-posteriori probability (MAP) rule. The following
set equality can be shown, and hence MAP decoding can be
performed by selecting the decoded vector to be in the set on
the right hand side of

argmax
x∈C

P (x)P (y|x) = argmax
x∈C

γ′ · x,

whereγ′ = (γ′
1, . . . , γ

′
n) is defined as

γ′
i =

{
log

(
p1

p0

)
+ γi, for 1 ≤ i ≤ k

γi, for k < i ≤ n.

2Note that the finite-memory version of the Polya channel and its general-
ization based on a finite queue have been recently shown to accurately model
ergodic Rician fading channels, e.g., see [5].
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andγi is the same as above.
The cost functionγ′ is linear in the variablesxi and

accounts for thea-priori probability of a given codeword. Note
that this cost function depends on the code being systematic.
Given a cost function of this form, we can convert the
MAP problem to an LP by constructing the relaxed codeword
polytope,Q(H), with H corresponding to the rows of a parity-
check matrix ofC, and optimizing over that polytope. So, we
can select a vector̂x in the set

arg max
x∈Q(H)

γ′ · x. (1)

If x̂ is an integral vector, then it is selected as the decoded
vector, and it is known that this is the MAP codeword. This
follows as the integral vertices ofQ(H) coincide exactly with
C. In the case that̂x is non-integral, we simply round to get
the nearest integral vector as our decoding selection. Rounding
x̂ is a heuristic alternative to declaring decoding failure.

Extended Polytope: The proposed technique works; how-
ever, it has been demonstrated (see [7],[8] and other works)
that in scenarios with strong non-uniformity at the source,
systematic codes perform worse than non-systematic codes.

We next modify the above scheme in an attempt to account
for this. One way to incorporate thea-priori codeword infor-
mation into an LP decoder without transmitting a systematic
code is to encode using a systematic code of rate lower
than desired, and then puncture the systematic bits before
transmission. More precisely, suppose that we wish to use
an LDPC code of rateR = k

n
, and blocklengthn. First, we

select a systematic(n + k, k) LDPC code,C̃. Now, suppose
we encode a source words usingC̃, but, before transmission,
we strip away the firstk (systematic) bits from the encoded
block. That is, we transmit only the lastn bits of the encoded
block. Given that then-vector y is received, MAP decoding
can be achieved by selecting an(n + k)-vector x̂ in the set

arg max
x∈ eC

k∏

i=1

P (xi)
n+k∏

i=k+1

P (yi−k|xi) = argmax
x∈ eC

γ∗ · x,

whereγ∗ = (γ∗
1 , . . . , γ∗

n+k) is defined as

γ∗
i =





log
(

p1

p0

)
, for 1 ≤ i ≤ k

log
(

P (yi−k|xi=1)
P (yi−k|xi=0)

)
, for k < i ≤ n + k.

Now, if we selectH̃ ⊂ C̃⊥ corresponding to the rows
of a parity-check matrix ofC̃, we can construct the relaxed
polytopeQ(H̃), as before. Decoding can then be performed
by selecting somêx in the set

arg max
x∈Q( eH)

γ∗ · x. (2)

As before, if x̂ is an integral vector, then it is known to be
the MAP solution. Essentially, the “extended codeword poly-
tope”, Q(H̃), allows the systematic bits (and hencea-priori
information) to be associated with the punctured codewords
during decoding without having to transmit them.

Simulation Results: The decoders (1) and (2) were imple-
mented and evaluated in terms of the probability of codeword
error (PCE). Fig. 1 compares the two methods. At a PCE of
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Fig. 1. The top curve shows the PCE performance of a systematic (200, 100)
LDPC code with the standard LP decoder. The middle curve shows the same
code with the decoder (1). The bottom curve shows a systematic (300, 100)
LDPC code with the first 100 (systematic) bits punctured and decoded using
the “extended polytope” decoder (2). All three schemes havean effective
redundant rate of1

2
, p1 = 0.9, and are transmitted over the BSC with bit

error rate (BER)ρ.

10−2, we see a20% gain (in terms of the channel bit error
rate (BER)ρ) in favour of the “extended polytope” decoder (2)
as compared to decoder (1). It should be noted that for less
biased values ofp1 (e.g., p1 = 0.7), the punctured code in
fact performs worse than the systematic code [9]. Fig. 1 also
displays the performance of an LDPC code using the standard
LP decoder which does not exploit the non-uniformity of the
source distribution. We note that incorporating the sourcedis-
tribution into the decoder yields significant gains, as expected.

III. LP D ECODING FOR THEPOLYA CHANNEL

The infinite-memory Polya-contagion communication chan-
nel was introduced in [4, Sections II-V]. It is a non-ergodic
binary channel in which the noise is modeled by Polya’s urn
scheme for the spread of disease in a population. Specifically,
the channel is described byyi = ci ⊕ zi, where addition is
modulo-2, andci, zi andyi are the input, noise and output bits,
respectively at timei. The noise process{zi}

∞
i=1, generated by

Polya’s contagion urn scheme, is a stationary binary process
with correlation coefficient δ

1+δ
and BERP (zi = 1) = ρ,

where δ ≥ 0 and 0 < ρ < 1 [4]. If δ = 0, {zi} becomes
memoryless and the channel reduces to a BSC with cross-over
ρ. For δ > 0, the process{zi} is non-ergodic as its sample
average converges (almost surely) to a Beta-distributed random
variable with parametersρ

δ
and 1−ρ

δ
.

In [4], a formulation for ML decoding over the Polya
channel was derived in which either the minimum or maximum
Hamming distance codeword (with respect to the received
vector) is selected depending on the channel parameters and
the distances of the minimum and maximum distance code-
words to the received vector. The following Lemma provides
a simplification of this formulation for linear codes containing
the all-ones codeword.

Lemma: For a linear code containing the all-ones codeword,
if ρ ≤ 0.5 then ML decoding over the Polya channel reduces
to minimum Hamming distance decoding.
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The proof is omitted, but the result is obtained by a
relatively straightforward extension of the original formulation
in [4]. It is possible to formulate minimum distance decoding
using an LP. Selecting the decoded vectorx̂ in the set
arg minx∈C γ+ ·x is equivalent to minimum distance decoding
[10], whereγ+

i = −1 if yi = 1, andγ+
i = 1 if yi = 0.

Having a linear cost function corresponding to minimum
distance decoding, we can formulate a relaxed LP decoder
corresponding to ML decoding for the Polya channel for linear
codes with the all-ones codeword. First, we select an(n, k)
LDPC code containing the all-ones codeword (i.e., an LDPC
code with even row degree),C, andH ⊂ C⊥ corresponding
to the rows of a parity-check matrix ofC, and construct its
relaxed codeword polytope,Q(H), as described in Section II.
Then, minimum distance decoding can be expressed as an LP
by selectinĝx in the setargminx∈Q(H) γ+ ·x. The vector̂x is
rounded (as there is the possibility of obtaining a non-integral
vertex) and the result is used as the decoded vector.

Simulation Results: Since there are no known simulation
results for decoding over the infinite-memory Polya channel, it
is natural for us to compare simulation results to the theoretical
performance limit, which is the channelǫ-capacity.3

For a givenǫ > 0, theǫ-capacity,Cǫ, of a channel is defined
as the maximumǫ-achievable rate. That is, the maximum rate,
R, for which there exist, given sufficiently large block length,
codes having rate arbitrarily close toR and probability of error
at mostǫ [4]. A closed-form expression for theǫ-capacity,Cǫ,
of the infinite-memory Polya channel is given in [4, Equation
(8)] as a function ofǫ, ρ andδ. For the purpose of comparison,
givenρ, δ and rateR′, we can determine theǫ for which R′ is
the maximum achievable rate (i.e., theǫ-capacity) by solving
Cǫ = R′ over ǫ. This value ofǫ is thus a theoretical lower
bound on the PCE of a rate-R′ code over the infinite-memory
Polya channel with parametersρ andδ.

An issue that needs to be carefully considered is exactly
how one should simulate communications over a non-ergodic
channel. Simulating over a single instance4 of the channel is
certainly not correct, as this would demonstrate only one of
many possible behaviours of the channel. Instead, results were
obtained by repeatedly initializing the channel and transmitting
a fixed number of codewords in each instance. This allowed
for the overall (Beta) distribution of possible channel outcomes
to be explored.

Fig. 2 compares the theoretical limits to our simulation
results over a range of values of the channel BERρ and
for δ = 2. A (200,100) LDPC code under the decoding rule
described above was used. Forδ = 2 and at a PCE of10−2,
the proposed decoder performs within39% of the ǫ-capacity
in terms of the BERρ. For comparison purposes, we also
include the code performance over the BSC (i.e., whenδ = 0),
corresponding to the situation where an ideal (infinite-depth)
interleaver is applied to the channel. From Fig. 2 we observe

3Note that since the infinite-memory Polya channel is a (non-ergodic)
averaged channel with BSC components governed by the Beta distribution, its
channel capacity is zero; however, itsǫ-capacity is strictly positive forǫ > 0
and strictly decreasing to zero asǫ ց 0 [4].

4By “single instance” we mean a single realization of the infinite-memory
non-ergodic Polya noise process.
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Fig. 2. Simulation vs.ǫ-capacity curves for a systematic (200,100) LDPC
code over the Polya channel withδ = 2 and BERρ. Simulation over the BSC
(i.e., the Polya channel withδ = 0), which represents the ideally-interleaved
Polya channel.

that for moderate to high BERs (approximatelyρ > 0.05),
interleaving will result in worse performance (in additionto
introducing large encoding/decoding delay); hence, exploiting
the channel’s memory in the LP decoder can result in improved
performance over interleaving.

Finally, we mention that LDPC codes without the all-ones
codeword have been tested over the Polya channel using a
modified LP decoder which uses approximate minimum and
maximum distance decoding (based on the ML decoding for-
mulation in [4]) and have demonstrated superior performance
when compared to using approximate minimum distance de-
coding with codes containing the all-ones codeword [9].

Future work may include the comparison of our JSC LP
decoder with BP JSC decoding [8] and the design of a BP type
decoder for the non-ergodic Polya channel. Another interesting
future direction is the study of JSC LP decoding over the non-
ergodic Polya channel.
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