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Abstract— Linear programming (LP) decoding of low-density introduced in [4]. It is shown in [4] that this channel beleng
parity-check codes over discrete memoryless symmetric chaels  the class of averaged channels with memory, admits a closed-
was introduced by Feldmanet al. in [1]. Here, we extend the LP ¢,y expression for its-capacity, and has a straightforward

decoding paradigm by applying it to two additional scenarics: . . .
joint source-channel (JSC) coding and decoding over the inite- formulation for ML decoding. Thus, the infinite-memory Paly

memory non-ergodic binary Polya-contagion channel. Simation channel provides an interesting tool for modefimgn-ergodic
results indicate that the JSC LP decoder yields significant fading channels since the class of averaged channels with

gains over the standard LP decoder for non-uniform sources. memory has recently been actively studied in the context
Sler:]fglr?:sorr]r?oe(lilZ?afehlowwtehlﬁtir:hrilgfi)o?wefooijr?er f‘?g;h‘;cﬁ’tohl’% ?tharm of (non-ergodic) wireless fading channels and their outage
P y e-capacly ' capacity [6]. Simulation results demonstrate that the psep

Index Terms — LP decoding, joint source-channel coding, non- | P decoder performs well vis-a-vis the channelsapacity.
ergodic Polya channel, systematic and non-systematic casle

IIl. LP DECODING FORJSC DES

The recent work of Feldman, Wainwright and Karger [1]
shows that ML decoding of a binary linear code over a
Wscrete memoryless channel can be formulated as an LP
which can be “relaxed” to a form with easily expressible
constraints and with manageable complexity. Given a length

I. INTRODUCTION

In [1], Feldman et al. introduce the notion of decod-
ing low-density parity-check (LDPC) codes over memoryle
channels using linear programming (LP)They present a
straightforward method of defining an efficient LP relaxatio
of ma>_<|mum_—l|kel|hood_ (ML) d(_ecodlng of LPDC codes. LPn 8odeC, receivedn-vectory and a spanning subséf of
decoding enjoys certain benefits when compared to stanthre dual codeC, relaxed LP decoding is performed by
belief-propagation (BP) decoding techniques; for eXar’nplseelecting the (iecc;ded vectgrto achieve the LP optimum
the decoder always converges, and when it converges to_an ~

integer solution, it is guaranteed to yield the ML solutionlpaxﬁlfgiﬂ)__ll;% wherey = (71, ...,7,) is defined byy; =
( (g |zi= ) ,1 < i < n. The relaxed codeword polytope

Also, LP decoding is relatively easier to analyze than BIPS | 5(y.[zi=0)
decoding. For example, LP decoding has been shown to correty) is defined asQ(H) = ﬂheHP(QL), whereP(h') is
a constant fraction of errors [2]. Although the algorithmne convex hull inR™ of the code — {ce{0,1}" :hec=0

is computationally demanding when compared to iteratiyg,,q 2)1. It is easy to show that the set of integral vertices
decoding algorithms, recent improvements in efficiencyehaws (77 coincides exactly witrC.

been obtainede.g., [3]. In the following, we assume a non-uniform, memoryless

Here, we extend the LP decodi_ng paradigm to inqluo_le SC&urce with the probability af ando beingp; andpy = 1—p1,
narios other than channel dgcodmg for uniformly distrialit respectively. The source is channel-coded using a systemat
memoryless sources transmitted over memoryless channglzs’.k) LDPC code and transmitted over a memoryless binary

First, we apply LP decoding in the context of joint sourcesymmetric channel (BSC), with being the received vector.
channel (JSC) decoding by using systematic LDPC codes for —

non-uniform memoryless sources sent over binary memayle Decoding 53’5Fe'7‘3“.° Codes: The optimal decodlng_r.ule.(m
channels. The LP decoder's cost function is modified {ge sense of minimizing the codeword error probabilityyis t
m

incorporate thea-priori source information. This scheme is aximuma-posteriori probability (MAP) rule. The following

further enhanced by using a non-systematic code obtairsd equality can be .shown, and hence MAP dechlng can be
by puncturing a lower-rate systematic code and using ﬁrformed by selecting the decoded vector to be in the set on

“extended decoding polytope.” As expected, simulatiomltss the right hand side of

demonstrate gains vis-a-vis the standard LP decoder which arg max P(z)P(ylz) = argmaggl’ -z,
does not incorporate the source statistics. e €
Next, we discuss the application of LP decoding to theherey’ = (v1,...,7,) is defined as

non-ergodic infinite-memory binary Polya-contagion chelnn
, 1og(p—1)—|—7i, for1<i<k
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1P is used throughout to stand for both “Linear Programmiamgi “Linear  ization based on a finite queue have been recently shown twasety model

Program,” and this will be clear from the context. ergodic Rician fading channels, e.g., see [5].



and~; is the same as above. iy
The cost functiony’ is linear in the variablesr; and

accounts for tha-priori probability of a given codeword. Note
that this cost function depends on the code being systematic
Given a cost function of this form, we can convert the
MAP problem to an LP by constructing the relaxed codeword
polytope,Q(H ), with H corresponding to the rows of a parity-
check matrix ofC, and optimizing over that polytope. So, we
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can select a vectat in the set
/
arg max - T 1
gEGQ(H)l - @
. . - 10°E - @ - Standard LP Decoder
If Z is an integral vector, then it is selected as the decoded =& Sysematc Lp Decoder
. . . . . =—8— Non-Systematic ecoder|
vector, and it is known that this is the MAP codeword. This
follows as the integral vertices @(H) coincide exactly with wl . . . - - - J
C. In the case that is non-integral, we simply round to get e

the nearest integral vector as our decoding selection. éRogn Fig. 1. The top curve shows the PCE performance of a systei2at, 100)

% is a heuristic alternative to declaring decodina failure. LDPC code with the standard LP decoder. The middle curve stibe&v same
L 9 9 code with the decoder (1). The bottom curve shows a syster(giD, 100)

Extended Polytope: The proposed technique works; how4DPC code with the first 100 (systematic) bits punctured aecbded using

ever, it has been demonstrated (see [7],[8] and other WOI’E&? ‘extended polytope” decoder (2). All three schemes Faveeffective
. R L h : redundant rate 0%, p1 = 0.9, and are transmitted over the BSC with bit

that in scenarios with strong non-uniformity at the sourCgyor rate (BER)p:

systematic codes perform worse than non-systematic codes.

We next modify the above scheme in an attempt to accou® >, We see &0% gain (in terms of the channel bit error
for this. One way to incorporate thepriori codeword infor- rate (BER)p) in favour of the “extended polytope” decoder (2)
mation into an LP decoder without transmitting a systemat®s compared to decoder (1). It should be noted that for less
code is to encode using a systematic code of rate lowipsed values op, (e.g.,p1 = 0.7), the punctured code in
than desired, and then puncture the systematic bits beffet performs worse than the systematic code [9]. Fig. 1 also
transmission. More precisely, suppose that we wish to udisplays the performance of an LDPC code using the standard
an LDPC code of ratR = % and blocklengthn. First, we LP decoder which does not exploit the non-uniformity of the
select a systematier + &, k) LDPC code,C'. Now, suppose Source distribution. We note that incorporating the soalise
we encode a source Wogdusingé, but, before transmission, tribution into the decoder yields significant gains, as expe.
we strip away the firsk (;ystematic) bits_ from the encoded l1l. LP DECODING FOR THEPOLYA CHANNEL
block. That is, we transmit only the lastbits of the encoded
block. Given that then-vectory is received, MAP decoding
can be achieved by selecting &m+ k)-vectorz in the set

The infinite-memory Polya-contagion communication chan-
nel was introduced in [4, Sections 1I-V]. It is a non-ergodic

k ntk binary channel in which the noise is modeled by Polya’s urn

arg maZ(HP(xi) H P(yi_x|z;) = argmax~y* -z, scheme for the spread of disease in a population. Spegficall
zeC ;7 i—kt 1 zeC ™ the channel is described by = ¢; ® z;, where addition is

wherey* = (7%, .+, is defined as modulo_—2, and:iZ z; andy; are the input, noise and output bits,

- Ly Intk respectively at time. The noise procesg:; }52,, generated by

log (P_l) ’ for1<i<k Polya’s contagion urn scheme, is a stationary binary psces

V= P(y;i’“’m::l) ' with correlation coefficient~ and BERP(z; = 1) = p,

log (m)’ fork<i<n+k. whered > 0 and0 < p < 1 [4]. If § = 0, {2} becomes

. ~ -~ . memoryless and the channel reduces to a BSC with cross-over
Now, if we selectd C C corresponding to the rows , pqr s - , the procesyz) is non-ergodic as its sample

of & parity-check matrix ol’, we can construct the relaxed;yerage converges (almost surely) to a Beta-distributedm
polytope Q(H), as before. Decoding can then be performeg,  izple with parameter§ and 1%,3_

by selecting some in the set In [4], a formulation for ML decoding over the Polya
arg max ~* - z. 2) channglwa; derived in which eithgrthe minimum or maxim_um
z€Q(H) ™ Hamming distance codeword (with respect to the received

As before, ifz is an integral vector, then it is known to bevecto_r) is selected depquing on the ch.annel parameters and
the MAP solution. Essentially, the “extended codeword polyn€ distances of the minimum and maximum distance code-
tope”, Q(ﬁ)’ allows the systematic bits (and henaeriori words to the received vector. The following Lemma provides
information) to be associated with the punctured codeword@ssimplification of this formulation for linear codes comiaig
during decoding without having to transmit them. the all-ones codeword.

Simulation Results: The decoders (1) and (2) were implelemma: For a linear code containing the all-ones codeword,
mented and evaluated in terms of the probability of codewoifdp < 0.5 then ML decoding over the Polya channel reduces
error (PCE). Fig. 1 compares the two methods. At a PCE tf minimum Hamming distance decoding.



The proof is omitted, but the result is obtained by a
relatively straightforward extension of the original farfation
in [4]. It is possible to formulate minimum distance decagin
using an LP. Selecting the decoded vectorin the set
arg mingec 7" -z is equivalent to minimum distance decoding
[10], wherev;t = —1if y; = 1, andvy;” = 1 if y; = 0.

Having a linear cost function corresponding to minimum
distance decoding, we can formulate a relaxed LP decodel ¢
corresponding to ML decoding for the Polya channel for Imea
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codes with the all-ones codeword. First, we select(ank) wil

LDPC code containing the all-ones codewor@.( an LDPC ‘

code with even row degreef);, and H C C*+ corresponding ¢ e
to the rows of a parity-check matrix af, and construct its ! 0= ‘PCE 5=0 (BSC)

relaxed codeword polytop&(H ), as described in Section II. i

7

Then, minimum distance decoding can be expressed as an LI o oo o» o5  ow  om  ow  ow  om om0
P

by selectingi in the setarg min,c o) 7+ -z. The vectorz is o 2 Simulat ity ‘ fematic (200,100) LDPC
. e e . ; ig. 2. Simulation vse-capacity curves for a systematic ,

rounded (as there is th_e possibility of obtaining a nongre code over the Polya channel with= 2 and BERp. Simulation over the BSC

vertex) and the result is used as the decoded vector. (i.e, the Polya channel with = 0), which represents the ideally-interleaved

Simulation Results: Since there are no known simulatiorPolya channel.
results for decoding over the infinite-memory Polya chanitel ya¢ for moderate to high BERs (approximately> 0.05),
is natural for us to compare simulation results to the the@e  jnterjeaving will result in worse performance (in addititm
performance limit, which is the channekapacity’ ~ ntroducing large encoding/decoding delay); hence, dtiptp

For a givere > 0, thee-capacityC, of a channel is defined the channel’s memory in the LP decoder can result in improved
as the maximure-achievable rate. That is, the maximum raté,erformance over interleaving.
R, for which there exist, given sufficiently large block lehgt Finally, we mention that LDPC codes without the all-ones
codes having rate arbitrarily closeR?and probability (_errror codeword have been tested over the Polya channel using a
at moste [4]. A closed-form expression for thecapacity.C, modified LP decoder which uses approximate minimum and
of the infinite-memory Polya channel is given in [4, Equatiofyaximum distance decoding (based on the ML decoding for-
(8)] as a function of, p andd. For the purpose of comparison,myation in [4]) and have demonstrated superior performanc
givenp, d and rateR’, we can determine thefor which R"is  \yhen compared to using approximate minimum distance de-
the maximum achievable rate (i.e., theapacity) by solving coding with codes containing the all-ones codeword [9].
C. = R’ overe. This value ofe is thus a theoretical lower Fyture work may include the comparison of our JSC LP
bound on the PCE of a rate* code over the infinite-memory gecoder with BP JSC decoding [8] and the design of a BP type
Polya channel with parametepsand . decoder for the non-ergodic Polya channel. Another intiergs

An issue that needs to be carefully considered is exactture direction is the study of JSC LP decoding over the non-
how one should simulate communications over a non-ergogigyodic Polya channel.

channel. Simulating over a single instahaé# the channel is
certainly not correct, as this would demonstrate only one of

many possible behaviours of the channel. Instead, reseitg w [1] J. Feldman, M. J. Wainright, and D. R. Karger, “Using tmepro-
gramming to decode binary linear codekFEE Trans. Inform. Theory,
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