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Abstract—A channel optimized vector quantizer (COVQ)
scheme is studied and evaluated for a recently introduced discrete
binary-input 2q-ary-output channel with Markovian ergodic
noise based on a finite queue. This channel can effectively
model binary-modulated correlated Rayleigh fading channels
with output quantization of resolution q. It is shown that the
system can successfully exploit the channel’s memory and soft-
decision information. Signal-to-distortion gains of up to 2.3
dB are obtained for only 2 bits of soft-decision quantization
over COVQ schemes designed for a hard-decision (q = 1) de-
modulated channel. Furthermore, gains as high as 4.6 dB can
be achieved for a highly correlated channel, in comparison
with systems designed for the ideally interleaved (memoryless)
channel. Finally, the queue-based noise model is validatedas an
effective approximation of correlated fading channels by testing a
COVQ trained using this model over the Rayleigh fading channel.

I. I NTRODUCTION

In the presence of complexity and delay constraints, Shan-
non’s separate treatment of source and channel coding [1], [2]
is no longer optimal and the need arises for more efficient
joint source-channel coding (JSCC) schemes. Channel opti-
mized vector quantization (COVQ) is a well-known low-delay
robust lossy JSCC scheme which incorporates the channel’s
statistics in the vector quantization design without the use
of explicit (algebraic) channel coding [3] . It is also known
that memory increases capacity for a well-behaved (ergodic)
channel in the sense that the capacity of such a channel
is strictly larger than that of the corresponding memoryless
channel (with identical one-dimensional transition distribution)
realized under ideal (infinite) interleaving [4], [5]. Indeed,
it has been observed in [6] that incorporating the channel’s
memory into the COVQ design for the case of binary (hard-
demodulated) channels can significantly improve performance
over the case where the channel’s memory is ignored and the
COVQ is designed for the interleaved memoryless channel. On
the other hand, it has been shown that using the channel’s soft-
decision information improves capacity (and potentially the
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performance of the coding system) relative to hard-decision
decoding for several channel models [7]–[9]. Furthermore,
it is known that for uncoded Gaussian channels (with or
without fading), increasing the channel’s mutual information
as a function of signal-to-distortion ratio (SNR) decreases the
system’s minimum mean-square-error (MSE) distortion (e.g.,
cf. [10]). Although the channel model employed here is not
identical (as it is coded and its output is quantized), we observe
numerically that a similar relationship holds in the sense that
increasing the channel’s capacity using the channel’s memory
and soft-decision information, improves the system’s signal-
to-distortion ratio (SDR) performance.

In this work, we design and implement a COVQ for the
recently introduced channel model in [11] to exploit both
the channel’s memory and soft-decision information. This
channel model is called the non-binary noise discrete channel
(NBNDC). We use the queue-based noise introduced in [11]
as the noise process in the NBNDC model to provide closed
form expressions for the channel transition distribution,and
then use the obtained model as an alternative representation of
a Rayleigh discrete fading channel (DFC). Note that in contrast
to the NBNDC with queue-based noise model (which we refer
to as NBNDC-QB), for the Rayleigh DFC no closed form
transition distribution expression can be provided for block
lengths of greater than 3, so that it can only be determined
via numerical methods. We test the system designed for the
NBNDC model over the equivalent correlated Rayleigh DFC
to simulate its performance in wireless communications. To
design the COVQ, we adapt the algorithm introduced in [12],
[13] and improved in [14].

The rest of the paper is organized as follows. In Section II,
the channel models are explained. In Section III, the problem
is defined and the details of the system implementation are
provided. Section IV is devoted to numerical results. Conclu-
sions are given in Section V.

II. NBNDC-QB AND DFC CHANNELS

In this section we review the NBNDC-QB and the Rayleigh
DFC channel models.



A. NBNDC with queue-based noise

The NBNDC-QB model has binary-input and2q-ary-output.
Its noise is modeled via a2q-ary M th-order Markovian
stationary ergodic process with2q+2 independent parameters.
Note that the number of model parameters is independent of
the memory orderM , which is key to keep the complexity of
the model low for arbitrarily large memory (typical values for
the soft-decision resolutionq areq = 2 andq = 3).

Specifically, the input data bits are affected by noise via the
relation

Yj = (2q − 1)Xj + (−1)XjZj , (1)

Yj , Zj ∈ {0, 1, . . . , 2q − 1} for j = 1, 2, . . ., where{Yj} is
the channel output process,{Xj} denotes the channel input
binary process, and{Zj} is the noise process assumed to
be independent of{Xj}. To calculate then-fold transition
probability distribution, note that since the noise process is
independent of{Xj},

P (Y n = yn | Xn = xn) = P (Zn = zn) (2)

where, according to (1),

zk =
yk − (2q − 1)xk

(−1)xk
, k = 1, 2, . . . , n.

Therefore, one only needs to calculate then-fold noise distri-
bution :P (n)

NBNDC(z
n) = PNBNDC{Z1 = z1, Z2 = z2, . . . , Zn =

zn}. The noise process is a non-binary generalization of the
queue-based (QB) noise in [5], where the noise symbol is
either selected from an urn with2q different colors of balls
(representing different error symbols) and according to the
probability distribution(ρ0, ρ1, . . . , ρ2q−1), or it is selected
from a finite queue of lengthM , which is updated every
time a noise symbol is generated (see [5], [11] for a detailed
description of the procedure). The resulting QB noise process
is a stationaryM th order Markov process described by only
2q + 2 independent parameters: the size of the queue,M , the
probability distribution of the balls in the urn, and correlation
parameters0 6 ε < 1 and α > 0. The channel transition
probability is given in (17) of [11] and the channel correlation
is given by (9) of [15].

B. DFC.

Consider a discrete fading channel composed of a binary
phase-shift keying (BPSK) modulator, a time-correlated flat
Rayleigh fading channel with AWGN, and aq-bit soft-
quantized demodulator. Let the input and output alphabets be
X = {0, 1} andY = {1, 2, . . . , 2q−1}, respectively. Denoting
the DFC binary input as{Xk}, k = 1, 2, . . ., the received
channel symbols are given by

Rk =
√

EsAkSk +Nk, k = 1, 2, . . .

where Es is the energy of signal sent over the channel,
Sk = 2Xk − 1 ∈ {−1, 1} is the BPSK modulated signal,
and Nk is a white Gaussian noise with varianceN0/2 and
independent of the input process.{Ak} is the channel’s fading
process withAk = |Gk|, where Gk is a time-correlated

Fig. 1. Block Diagram of a COVQ system
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complex wide-sense stationary Rayleigh process with auto-
correlation function given byR[k] = J0(2πfDT |k|) from
Clarke’s model [16], wherefDT is the normalized maximum
doppler frequency andJ0(·) is the zeroth-order Bessel function
of first kind. Therefore,Ak is Rayleigh distributed, with unit
second moment. The fading process{Ak} is assumed to be
independent of the noise and input processes. The channel
SNR is given by SNR= Es/N0.

The output Rk is then fed to a uniform soft-decision
quantizer of resolutionq-bits with step-size∆ to yield the
discrete channel output

Yk = j, if Rk ∈ (T ′

j−1, T
′

j),

whereT ′

j are uniformly spaced thresholds with step-size∆,
such that

T ′

j =







−∞, if j = −1
(j + 1− 2q−1)∆, if j = 0, 1, . . . , 2q − 2
∞, if j = 2q − 1.

Let δ , ∆/
√
Es and Tj , T ′

j/
√
Es. The channel block

conditional probability for the DFC,

P
(n)
DFC(y

n | xn) , Pr(Y n = yn | Xn = xn), (3)

can be calculated via (2) in [11]. Forn 6 3, P (n)
DFC(y

n | xn)
can be calculated in closed form. Forn > 3, since the joint
probability density function of arbitrarily correlated Rayleigh
and Rician random variables is not known in closed form,
it can only be determined via numerical methods. It can be
shown that the DFC is actually an NBNDC as given by
(1) with a stationary ergodic noise process [11]. To model
a given Rayleigh DFC via the NBNDC-QB, we match the
noise one-dimensional probability distributions by settingρj =
P

(1)
DFC(j), wherej = y−(2q−1)x

(−1)x ∈ Y andP
(1)
DFC(j) is given

by (3) in [11], in terms ofδ, q, and SNR, and match the noise
correlation coefficients. The remaining QB parameters (M, ε)
are estimated by minimizing the Kullback-Leibler divergence
rate between the two (2q-ary) noise processes.

III. COVQ FOR THENBNDC-QB MODEL

Consider the communication system depicted in Fig 1. The
input source to the COVQ encoder is a real-valued stationary
and ergodic process{Vi}∞i=1. The encoder mappingγ takes
a vector ofk source symbolsv ∈ R

k and outputs a binary



vectorx ∈ {0, 1}n, such thatγ(v) = x if v ∈ Sx, where
{Sx : x ∈ {0, 1}n} is a partition ofRk. Thenx is sent over
the NBNDC-QB.

The decoder is a mappingβ that maps the receivedn-tuple
2q-ary blocksy to code-levels of the quantizer codebook:

β(y) = cy, cy ∈ R
k, y ∈ {0, 1, . . . , 2q − 1}n.

The COVQ training algorithm aims to select the codebook
C = {ci, i ∈ {0, 1, . . . , 2q − 1}n} and the partition setP =
{Si, i ∈ {0, 1}n} so that to minimize the following distortion-
per-sample measure:

D(C,P) =
1

k

∑

x

∑

y

P (y | x)
∫

Sx

p(v)‖v − cy‖2dv, (4)

whereP (y | x) is calculated via (17) in [11] andp(v) is
the source probability density function. LettingP∗ = {S∗

X}
be the optimal partition for a givenC, and C∗ the optimal
partition for a givenP , the optimal distortion is minimized by
satisfying the following two (necessary) optimality conditions
iteratively:

S∗

X =

{

v :
∑

y

P (y|x)‖v − cy‖2 ≤
∑

y

P (y|x̃)‖v − cy‖2
}

(5)
which can be directly obtained from (4), and

c∗y =

∑

x P (y|x)
∫

Sx

vf(v)dv
∑

x P (y|x)
∫

Sx

f(v)dv
(6)

from [14]. It can be shown that the algorithm will always
converge to a local optimum. To select the initial codebook and
assigning indices to code levels, we have used the splittingand
the simulated annealing algorithms respectively, as suggested
in [3]. To be more specific, at first we consider the error
free channel and train the COVQ with the initial codebook
obtained from the splitting algorithm, followed by simulated
annealing for a locally optimum index assignment. Then we
use the resulting codebook as the initial state for a channel
with high SNR. Afterwards, we gradually decrease the channel
SNR while each time we set the previously found codebook
(for higher SNR) as the current initial state, until we eventually
reach the desired channel SNR.

Note that the training is off-line and after finding the optimal
mappingsγ andβ, the system will perform with the only delay
of receivingk symbols from source, mapping it ton binary
digits, and then mapping each2q-ary n-tuple received at the
output of the NBNDC ontok real-valued symbols to yield the
reconstruction vector.

IV. RESULTS AND COMPARISON

We herein present the numerical results obtained using the
training algorithm and channel model described in the previous
sections.

Several source distributions were tested, including indepen-
dent and identically distributed (i.i.d.) Gaussian and Laplacian
sources and correlated Gauss-Markov sources. All of the
source models had zero mean and unit variance. For a given

DFC (with fixed SNR andfDT ) andq, we choose the value
of δ that maximizes the DFC’s capacity. We also choose
the parameters of the NBNDC-QB,(ρ0, ρ1, · · · , ρ2q−1),M ,ǫ
andα, so that the two channel models are as close to each
other as possible. We have used the values given in [15] in
which the Kullback-Leibler divergence rate between the two
channel (2q-ary) noise processes is minimized overM, ε, α
for fDT ∈ {0.005, 0.01}, SNR(dB) ∈ {2.0, 5.0, 10.0, 15.0},

q = 2, ρj = P
(1)
DFC(j) from (3), and theδ value which

maximizes the capacity.
For each source model, the COVQ was trained using

500,000 source vectors. The resulting channel optimized quan-
tizer’s performance was then tested over the aforementioned
DFC channel. For generating the fading coefficients, we used
the modified Clarke’s method introduced in [17]. Training and
simulation results (over the NBNDC-QB and Rayleigh DFC
channels) in terms of SDR are shown in Tables I and II for
an i.i.d. Gaussian source and in Table III for an i.i.d Laplace
source . The channel parameters used for training/simulation
are given in Table II of [15].

Table I depicts COVQ training results for a memoryless
and highly correlated NBNDC-QB. Note that for the mem-
oryless case (with Cor=0), the NBNDC-QB is identical to
the DFC. Comparing Tables I with Cor= 0 and II (where
Cor = 0.35, 0.32, 0.29, 0.22 for SNR= 15, 10, 5, 2 respec-
tively), one can see that interleaving (as a means to realize
the memoryless channel) may outperform the low correlated
channels, especially when the channel SNR is low and block
lengthn is high. Since the capacity of the correlated channel
is strictly higher than that of the memoryless channel, this
degradation may be due to poor selection of initial points for
the vector quantizer. Nevertheless, it can be seen in Table Ithat
for a highly correlated NBNDC-QB, except for rateR = 1
and k = 1, 2, the resulting COVQ consistently outperforms
the memoryless case, with the maximum gains obtained for
the case ofq = 1, R = 3, k = 3. Note that since the COVQ
only makes use of intra-block memory, for rateR = 1 and
low dimensionsk, the block length is so small that there is
not much channel memory to be harnessed. Additionally, it is
observed in Table I that the system considerably outperforms
hard-quantization (q = 1), by as much as 2.3 dB forR = 3,
k = 1, Cor= 0 when using only a 2-bit soft-decision quantizer
(q = 2).

Comparing the training and simulation performance of the
COVQ (see Tables II and III), we observe that there is
a good conformity between the results of the two channel
models, where the NBNDC-QB is used for training and the
Rayleigh DFC for testing. However, for higher rates, some
degradation between the simulation and training results is
observed. Similar matching results were also observed for
Gauss-Markov sources.

V. CONCLUSION

The performance results show that the COVQ system can
successfully exploit the channel’s memory and soft-decision



TABLE I
COVQ TRAINING SDRRESULTS(IN DB) FOR MEMORYLESS

NBNDC-QBAND HIGHLY CORRELATED NBNDC-QBWITH PARAMETERS

α = 1, M = 1, ε = 0.9; MEMORYLESSGAUSSIAN SOURCE.

SNR (dB)
q R = k Memoryless (Cor=0) Cor=0.9

n/k 15 10 5 2 15 10 5 2
1 4.18 3.77 2.88 2.16 4.18 3.77 2.88 2.16

1 2 4.16 3.75 2.87 2.15 4.16 3.75 2.87 2.15
3 4.23 3.78 2.87 2.15 4.27 3.88 3.64 3.26
1 8.16 6.58 4.23 2.84 8.35 7.05 5.24 5.70

1 2 2 8.33 6.73 4.82 3.66 8.55 7.33 6.82 6.18
3 8.57 7.13 5.12 3.79 8.81 8.29 7.37 6.76
1 11.12 8.10 4.83 4.45 11.71 9.68 9.45 8.04

3 2 11.64 9.28 6.64 4.92 12.09 11.50 10.00 8.83
3 11.99 9.77 6.90 5.09 12.54 12.43 10.76 9.68
1 4.21 3.84 3.04 2.36 4.21 3.84 3.04 2.36

1 2 4.19 3.82 3.03 2.35 4.19 3.83 3.03 2.35
3 4.26 3.86 3.04 2.35 4.30 3.95 3.74 3.38
1 8.29 6.84 4.61 3.21 8.47 7.27 5.51 6.00

2 2 2 8.46 6.98 5.35 4.18 8.68 7.54 7.31 6.40
3 8.70 7.47 5.69 4.30 8.93 7.67 7.52 6.97
1 11.45 8.54 7.13 5.25 11.98 11.10 9.44 8.27

3 2 12.36 10.31 7.61 5.82 12.28 11.37 10.00 8.91
3 12.52 10.69 7.91 5.95 13.02 12.11 11.02 10.16

TABLE II
COVQ TRAINING RESULTS(FOR DFC-FITTED NBNDC-QB) AND

SIMULATION RESULTS (FOR RAYLEIGH DFC) IN TERMS OFSDR (DB);
MEMORYLESSGAUSSIAN SOURCE. fDT = 0.005

SNR (dB)
q R = k Training Simulation

n/k 15 10 5 2 15 10 5 2
1 4.18 3.77 2.88 2.16 4.18 3.76 2.88 2.16

1 2 4.16 3.75 2.87 2.15 4.16 3.75 2.87 2.14
3 4.24 3.81 2.89 2.15 4.23 3.78 2.85 2.14
1 8.23 6.71 4.44 3.02 8.23 6.71 4.36 2.95

1 2 2 8.43 6.88 4.72 3.40 8.39 6.83 4.72 3.42
3 8.67 7.08 4.94 3.59 8.65 7.05 4.96 3.61
1 11.26 8.36 5.17 3.42 11.25 8.29 5.00 3.32

3 2 11.66 8.85 5.98 4.42 11.62 8.88 6.04 4.53
3 11.71 9.13 6.27 4.61 11.46 9.06 6.34 4.72
1 4.23 3.88 3.10 2.43 4.23 3.88 3.10 2.43

1 2 4.21 3.87 3.09 2.42 4.21 3.87 3.08 2.42
3 4.29 3.93 3.11 2.43 4.28 3.90 3.08 2.41
1 8.44 7.12 4.93 3.50 8.47 7.18 4.93 3.50

2 2 2 8.65 7.29 5.34 4.00 8.63 7.29 5.19 3.89
3 8.90 7.49 5.54 4.27 8.87 7.48 5.34 4.07
1 11.86 9.06 6.20 5.03 11.97 9.21 6.05 4.82

3 2 12.25 9.94 7.20 5.54 12.25 9.65 6.58 5.06
3 12.43 10.30 7.68 5.82 11.96 9.23 6.57 5.11

information to combat channel errors while having the ad-
vantage of low encoding/decoding delay. Furthermore, the
NBNDC-QB model, which (unlike the DFC) is mathematically
tractable by virtue of having closed-from statistical expres-
sions, was experimentally shown to be a practical model for
the DFC in terms of COVQ performance.
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