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Abstract

We study the problem of zero-delay coding for the transmission a Markov

source over a noisy channel with feedback and present rigorous finite model

approximations and reinforcement learning solutions which are guaranteed to

achieve near-optimality. To this end, we formulate the problem as a Markov

decision process (MDP) where the state is a probability-measure valued pre-

dictor/belief and the actions are quantizer maps. This MDP formulation has

been used to show the optimality of certain classes of encoder policies in prior

work. Despite such an analytical approach in determining optimal policies,

their computation is prohibitively complex due to the uncountable nature of

the constructed state space and the lack of minorization or strong ergodicity

results which are commonly assumed for average cost optimal stochastic con-

trol. These challenges invite rigorous reinforcement learning methods, which

entail several open questions addressed in our paper. We present two comple-

mentary approaches for this problem. In the first approach, we approximate

the set of all beliefs by a finite set and use nearest-neighbor quantization to

obtain a finite state MDP, whose optimal policies become near-optimal for
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the original MDP as the quantization becomes arbitrarily fine. In the second

approach, a sliding finite window of channel outputs and quantizers together

with a prior belief state serve as the state of the MDP. We then approximate

this state by marginalizing over all possible beliefs, so that our policies only

use the sliding finite window term to encode the source. Under an appropri-

ate notion of predictor stability, we show that such policies are near-optimal

for the zero-delay coding problem as the window length increases. We give

sufficient conditions for predictor stability to hold. For each scheme, we pro-

pose a reinforcement learning algorithm to compute near-optimal policies.

We provide a detailed comparison of the two coding policies in terms of their

approximation bounds and reinforcement learning implementation, in terms

of their performance, as well as conditions for reinforcement learning conver-

gence to near-optimality. We include key differences between the noisy and

noiseless channel cases, as well as supporting simulation results.
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Chapter 1

Introduction

1.1 Motivation

In this thesis, we study the zero-delay coding problem, in which we wish

to encode and transmit an information source at a fixed rate over a noisy

channel with feedback and without delay, while minimizing the expected dis-

tortion at the receiver. In particular, we study the case where the information

source is Markov and the noisy channel is memoryless. The zero-delay restric-

tion is of practical relevance in many applications, including live-streaming

and real-time sensor networks, or more generally any problem in which one

wishes to communicate information quickly over a noisy channel. However,

this restriction means that classical Shannon-theoretic methods [2], which

require collecting large sequences of source symbols and compressing them

at once, are not viable as they induce a large delay. While there exist several
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zero-delay coding algorithms which perform well in practice, they are usually

heuristic and lack rigorous proofs of optimality. Our emphasis in this the-

sis is the development of zero-delay codes which are guaranteed to perform

optimally or near-optimally.

Although zero-delay coding is an information-theoretic problem, several

results in the literature have had success in using tools from the theory

of stochastic control; this has yielded important theoretical results on the

structure and existence of optimal codes. However, this approach has so far

lacked effective algorithms for computing these optimal codes, perhaps due

to the absence of the necessary results from the stochastic control literature.

Recently, there have been several results which generalize algorithms from

stochastic control to settings which include the zero-delay coding problem. It

is then natural to revisit this problem from a stochastic control perspective

and attempt to apply these new results to obtain concrete algorithms for the

zero-delay coding problem.

1.2 Problem Setup

Notation: In general, we will denote random variables by capital letters and

their realizations by lowercase letters. There are a few exceptions to this;

in particular we will always use lowercase π and uppercase Q in order to

avoid a conflict of notation with existing results in the literature. It will

be clear from the context for these variables whether we are referring to a
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random variable or its realization. To denote the set of probability mea-

sures over a measurable space (X ,B(X )), we use P(X ), and to denote a

contiguous tuple of random variables (X0, X1, . . . , Xn) we will use the no-

tation X[0,n] (and its realization by x[0,n]). Probabilities and expectations

will be denoted by P and E, respectively. When the relevant distributions

depend on some parameters, we include these in the superscript and/or sub-

script. For probabilities involving finite spaces, we will often use the short-

hand P (yt|xt) = P (Yt = yt|Xt = xt), or simply P (y|x), when the time index

is not important. Also note that, even for a finite set Y , we sometimes write

for consistency of notation
∑

Y f(y)P (y|x) =
∫
Y f(y)P (dy|x), where we use

the counting measure over Y .

Describing our problem setup, let our information source be a time-

homogeneous Markov process (Xt)t≥0 taking values in X , which we assume

is finite. At each time t ≥ 0, we wish to encode Xt as some channel inputMt

and send it over a noisy channel, which yields outputM ′
t . The channel input

and output alphabets will be denoted by M and M′, respectively. We then

wish to decode M ′
t into some reproduction symbol X̂t, which takes values

in the finite set X̂ . The block diagram of the system is given in Figure 1.1

(note that we allow the encoder to have access to (noiseless) feedback from

the channel).

We assume that the source (Xt)t≥0 is irreducible and aperiodic. Accord-

ingly, it admits a unique invariant measure, which we denote by ζ. We will

denote the transition matrix of (Xt)t≥0 by T (x′|x) := P (Xt+1 = x′|Xt = x).

3



Xt Encoder Channel Decoder X̂t

Mt M ′
t

Figure 1.1: Source-channel coding with feedback

Let X0 ∼ π0 (we will also call π0 the prior). We also assume our channel

is memoryless in the sense that M ′
t is conditionally independent of (X[0,t−1],

M[0,t−1],M
′
[0,t−1]) givenMt and the channel is time invariant, and thus can be

fully described by the transition matrix O(m′|m) := P (M ′
t = m′|Mt = m).

Our admissible encoder and decoder have the following form: consider

sequences of functions γe := (γet )t≥0, which we call the encoder policy, and

γd := (γdt )t≥0, which we call the decoder policy. In addition to the current

source symbol, the encoder has access to all past source symbols and channel

inputs, and all past channel outputs in the form of feedback. In addition to

the current channel output, the decoder has access to all previous channel

outputs. That is, (γet )t≥0 and (γdt )t≥0 are such that

γet : X t+1 ×Mt × (M′)
t → M γdt : (M′)

t+1 → X̂

(X[0,t],M[0,t−1],M
′
[0,t−1]) 7→Mt M ′

[0,t] 7→ X̂t.

We consider two performance criteria for the zero-delay coding problem. We

wish to find encoder and decoder policies such that one of the following
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distortion quantities is minimized: the discounted distortion,

Eγe,γd

π0

[
∞∑
t=0

βtd(Xt, X̂t)

]
, (1.1)

or the average distortion,

lim sup
T→∞

Eγe,γd

π0

[
1

T

T−1∑
t=0

d(Xt, X̂t)

]
, (1.2)

where d : X × X̂ → R+ is a given distortion function and β ∈ (0, 1) is

a given discount factor. We use Eγe,γd

π0
and P γe,γd

π0
to denote expectations

(respectively, probabilities) under encoder policy γe, decoder policy γd, and

prior π0, noting that these parameters induce a distribution on X Z+ × X̂ Z+ .

We refer to the minimization of (1.1) as the discounted distortion problem

and of (1.2) as the average distortion problem. Note that for a fixed encoder

policy γe, it is straightforward to show that the optimal decoder policy, for

all t ≥ 0, is given by

γd∗t (M ′
[0,t]) = argmin

x̂∈X̂
Eγe

π0

[
d(Xt, x̂)|M ′

[0,t]

]
. (1.3)

Accordingly, we assume that we use an optimal decoder policy for a given

encoder policy. With an abuse of notation, we then denote γ := γe and

denote by Γ the set of all encoder policies. We can then write (1.1) and (1.2)
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as

Jβ(π0, γ) := Eγ
π0

[
∞∑
t=0

βtd(Xt, X̂t)

]
(1.4)

and

J(π0, γ) := lim sup
T→∞

Eγ
π0

[
1

T

T−1∑
t=0

d(Xt, X̂t)

]
, (1.5)

and the optimal respective costs by

J∗
β(π0) := inf

γ∈Γ
Jβ(π0, γ) (1.6)

and

J∗(π0) := inf
γ∈Γ

J(π0, γ). (1.7)

We will also consider policies which obtain the above infima within some

threshold ϵ > 0; we say that a set of policies {γ} depending on some param-

eter set is near-optimal for the discounted distortion problem (respectively,

average distortion problem) if for any ϵ > 0, there is some choice of pa-

rameters such that the resulting policy γ satisfies Jβ(π0, γ) ≤ J∗
β(π0) + ϵ

(respectively, J(π0, γ) ≤ J∗(π0) + ϵ).

Note that in the zero-delay coding problem, we are usually concerned

with the average distortion problem. However, we will show that as β → 1,

a policy that is near-optimal for the discounted distortion problem is also

near-optimal for the average distortion problem.
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1.3 Literature Review

From an information-theoretic perspective, several strategies have been used

to approach this problem, including mutual information constraints, entropy

coding, and Shannon lower bounding techniques. Studies to this end include

[3]–[5]. Within the context of linear systems, [6]–[10] use sequential rate-

distortion theory. Some of these works give applicable codes for zero-delay

coding for Gaussian sources over additive-noise Gaussian channels, and some

give upper and/or lower performance bounds; see also [11] and [12] for further

studies.

Furthermore, learning theoretic methods have attracted significant inter-

est in source-channel coding theory both in the classical literature and the

recent literature, see for example [13]–[15] for the noiseless channel (quan-

tization) case among several classical results, although usually restricted to

independent and identically distributed (i.i.d.) sources. We note that our

results are directly applicable for i.i.d. sources as well, since an optimal zero-

delay code for an i.i.d. source is a memoryless code [16]–[18] (see also, for

related discussions in a different causal coding context [19]–[22]).

More recently, deep learning is employed to construct powerful joint

source-channel codes (see [23]–[26]), and reinforcement learning is used as

a tool to estimate feedback capacity in [27], [28]. Although effective in prac-

tice, these machine learning methods are generally experimental and do not

provide a formal proof of convergence or optimality. Conversely, our rein-
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forcement learning approach will be rigorously shown to converge to near-

optimality.

There have been several studies about the zero-delay coding problem

using stochastic control techniques. In particular, [16], [17], [29] consider

Markov sources with finite alphabets and finite time horizons and show opti-

mality of structured classes of policies. Similar optimality and existence re-

sults are presented for infinite time horizons in [18] (with feedback) and [30]

(without feedback). The continuous-alphabet infinite-horizon case is exam-

ined in [31], although only over a noiseless channel. These results often rely

on formulating the problem as a Markov decision process (MDP) in order

to utilize existing results from stochastic control theory, such as dynamic

programming and value iteration methods (see [32], [33] for detailed infor-

mation on such methods). However, in the formulation of the MDP, these

results utilize a state space that is probability measure-valued (this state is

often called the “predictor” in the literature) and an action space involving

quantizers. These spaces are computationally difficult to work with, both in

terms of complexity and implementation. Thus, while numerous existence

and structural results have been established for this problem, the explicit de-

velopment of effective coding schemes for a given zero-delay coding problem

is still an open problem.

We will see in our development of the sliding finite window scheme that

our method bears some resemblance to a trellis encoding scheme. Trellis

codes (see e.g., [34]–[37]) use a sliding finite window combined with a tree-
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search algorithm to determine the optimal channel input, based on dynamic

programming principles, while using an optimal filter at the decoder (note

that trellis source coding generally performs the tree search at the encoder,

while trellis channel coding generally performs it at the decoder [35]). Sev-

eral joint source-channel coding theorems have been proven for trellis codes,

including [36], which shows that trellis codes become optimal as the window

length becomes large. Although trellis codes are not in general suitable for

a zero-delay coding scheme (for the same reason as block codes), our en-

coder/decoder scheme may be seen in some sense as a modification of trellis

codes to the zero-delay setting.

1.4 Markov Decision Processes

As our analysis will rely on the existing literature for MDPs, we give an

introduction to the topic here and provide some important supporting results.

Definition 1.4.1. We define a Markov decision process (MDP) as a 4-tuple

(Z,U , P, c), where:

1. Z is the state space, which we assume is Polish (a Borel subset of a

complete, separable metric space).

2. U is the action space, also Polish.

3. P : Z × U → P(Z) is the transition kernel, such that (z, u) 7→

P (dz′|z, u).
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4. c : Z × U → [0,∞) is the cost function.

Given Z0 = z0 ∈ Z, the objective is to minimize

Jβ(z0, f) := Ef
z0

[
∞∑
t=0

βtc(Zt, Ut)

]
,

which we call the discounted cost problem, or

J(z0, f) := lim sup
T→∞

Ef
z0

[
1

T

T−1∑
t=0

c(Zt, Ut)

]
,

which we call the average cost problem, over all f , where f = (ft)t≥0 and

Ut = ft(Z[0,t], U[0,t−1]).

The following is a classical result from the stochastic control literature

Theorem 1.4.2. [32, Theorem 4.2.3] Let Z and U be finite, and define the

discounted cost optimality equation (DCOE) as

J∗
β(z) = min

u

{
c(z, u) + β

∑
z1

J∗
β(z1)P (z1|z, u)

}
.

A function satisfies the DCOE if and only if it is the optimal discounted cost;

i.e. J∗
β(z) = inff Jβ(z, f).

A Note on MDP Notation

The notation in the following sections can get intricate, so we first introduce

some additional notation to be used in the context of MDPs. Some of the
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concise discussion below will be expanded upon and made more specific in

the following sections.

1. When discussing approximations of an MDP state we use a caret sym-

bol. For example, we use Ẑt to denote an approximation of Zt. Ac-

cordingly we use f̂ to denote a policy that maps Ẑt to Ut and we use

Ĵβ(Ẑ0, f̂) to be some appropriately defined discounted cost under that

policy. Furthermore, when the approximation depends on some pa-

rameter N , we denote such a policy by f̂N ; when used in this way, we

assume the policy is stationary, and thus the subscript N should not

be confused with a time index.

2. To denote optimality we use an asterisk symbol. For example, we

denote J∗
β(z0) := inff Jβ(z0, f), and we denote a policy achieving this

infimum by f ∗.

3. Finally, when we extend an approximation back to the original state

space, we use a tilde symbol. For example, if we wished to take f̂ and

appropriately modify it to take Zt as an input rather than Ẑt, we would

call the resulting policy f̃ .

Note that this notation is presented in order of operation. For example,

Ĵ∗
β(ẑ0) should be taken as the following: first we take an approximation of

the MDP, then find the optimal discounted cost of this approximation. It

is not the approximation of the optimal discounted cost J∗
β(z0), although

under some conditions to be presented later it may be interpreted as such.
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Accordingly, J̃∗
β(z0) should be taken as the extension of Ĵ∗

β(ẑ0) (as a function

of ẑ0) to all of Z, not as the optimal discounted cost for some “extended”

MDP.

1.4.1 MDP Approximation

We first recall some results from [38] on approximation of MDPs. The fol-

lowing is an important property of transition kernels.

Definition 1.4.3. We say a transition kernel P (dz′|z, u) is weakly continuous

if for all continuous and bounded f : Z → R

∫
f(z′)P (dz′|z, u)

is continuous in (z, u).

We note that MDPs with weakly continuous transition kernels as above

are often called weak Feller. We assume the following:

Assumption 1.4.4. (i) The cost function c is continuous and bounded.

(ii) The transition kernel P is weakly continuous.

(iii) Z and U are compact.

Let dZ be the metric on Z. By compactness, there exists a sequence of

finite grids ZN = {ẑN,1, . . . , ẑN,mN
} ⊂ Z such that

max
z∈Z

min
i=1,...,mN

dZ(z, ẑN,i) → 0

12



as N → ∞. Here N may be interpreted as a resolution parameter of the

approximation, which we allow to become arbitrarily high. Then, recalling

the notation in Section 1.4, we define ẑ as

ẑ := argmin
z′∈ZN

dZ(z, z
′).

That is, ẑ is the nearest neighbor of z in ZN , where ties are broken so that

the map z 7→ ẑ is measurable. This map induces a partition {BN,i}mN
i=1 of Z

where BN,i = {z ∈ Z : q(z) = ẑN,i}, where we have used q to denote the

nearest neighbor map.

Finally, let (νN)N≥0 ⊂ P(Z) be such that νN(BN,i) > 0 for all N, i and

let

νN,i(·) =
νN(·)

νN(BN,i)
.

Then we approximate the MDP (Z,U , P, c) with a new MDP

(ZN ,U , PN , cN), where PN and cN are the averages of P and c over the

appropriate BN,i with respect to νN,i. That is,

PN(ẑN,j|ẑN,i, u) =
∫
BN,i

P (BN,j|z, u)νN,i(dz)

cN(ẑN,i, u) =

∫
BN,i

c(z, u)νN,i(dz). (1.8)

Note that the new MDP has a finite state space. We denote this new

MDP by MDPN := (ZN ,U , PN , cN). Finally, note that we can extend any

policy f̂N defined for MDPN to the original MDP by making it constant

13



over the BN,i. Again recalling our notation in Section 1.4, we denote this

extension by f̃N ; that is,

f̃N(z) = fN(ẑ).

The following is a key result by [38], which states that policies which are

optimal for MDPN , when appropriately extended, become near-optimal for

the true MDP as N gets large. According to the notation in Section 1.4, we

denote the optimal policy for MDPN by f̂ ∗
N and its extension to all of Z by

f̃ ∗
N

Theorem 1.4.5. [38, Theorem 4.3] Let Assumption 1.4.4 hold. Then for all

z0 ∈ Z and β ∈ (0, 1),

lim
N→∞

|Jβ(z0, f̃ ∗
N)− J∗

β(z0)| = 0.

1.4.2 Q-learning Convergence

We now recall some recent results from [39] regarding the convergence of

certain “Q-learning” iterations. Let (St)t≥0, (Ut)t≥0, and (Ct)t≥0 be S-valued,

U -valued, and R-valued stochastic processes, respectively. Define Vt : S ×

U → R by

Vt+1(St, Ut) = (1− αt(St, Ut))Vt(St, Ut) + αt(St, Ut)

(
Ct + βmin

u∈U
Vt(St+1, u)

)
Vt+1(s, u) = Vt(s, u) for all (s, u) ̸= (St, Ut), (1.9)
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where

αt(s, u) =
1

1 +
∑t

k=0 1(Sk = s, Uk = u)
.

The following ergodicity assumptions are sufficient for the convergence of

Vt.

Assumption 1.4.6. [39, Assumption 2.2] the process (St+1, St, Ut, Ct)t≥0 is

such that almost surely,

(i) For all (s, u),
∑

t≥0 αt(s, u) = ∞.

(ii) ∑t
k=0Ck1(Sk = s, Uk = u)∑t
k=0 1(Sk = s, Uk = u)

→ C∗(s, u)

for some C∗ : S × U → R.

(iii) ∑t
k=0 f(Sk+1)1(Sk = s, Uk = u)∑t

k=0 1(Sk = s, Uk = u)
→
∫
f(s1)P

∗(ds1|s, u)

for any f : S → R and some P ∗ : S × U → P(S).

Theorem 1.4.7. [39, Theorem 2.1] Under Assumption 1.4.6, for every (s, u),

Vt(s, u) converges to V
∗(s, u) satisfying

V ∗(s, u) = C∗(s, u) + β
∑
S

min
u
V ∗(s1, u)P

∗(s1|s, u) (1.10)
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Remark 1.4.8. By taking the minimum of V ∗ over U , we recapture exactly

the DCOE from 1.4.2, and thus the policy γ∗(s) := argminu V
∗(s, u) is opti-

mal (in discounted cost) for the MDP defined by (S,U , P ∗, C∗). Note that

we do not require that St is actually distributed according to P ∗(·|s, u), only

that its long-term sample average converges to P ∗ in the sense of (iii).

1.4.3 Zero-delay Coding as an MDP

Returning to our zero-delay coding problem, for fixed x[0,t−1], m[0,t−1] and

m′
[0,t−1], consider the function

γ(·, x[0,t−1],m[0,t−1],m
′
[0,t−1]) : X → M.

Such a function (that is, a mapping from X to M) is called a quantizer. We

denote the set of all quantizers byQ. Thus we can view a policy γ as selecting

a quantizer Qt ∈ Q based on the information (X[0,t−1],M[0,t−1],M
′
[0,t−1]), then

generating the channel input Mt as Qt(Xt), as in [40].

Recall that we used O(m′|m) to denote our channel transition kernel.

Let OQ(m
′|x) denote the kernel induced by a quantizer Q ∈ Q; that is,

OQ(m
′|x) = O(m′|Q(x)). Now let ψ ∈ P(M′) be such that OQ(·|x) ≪ ψ

for all x ∈ X , Q ∈ Q, where we use “≪” to denote absolute continuity

(that is, ψ(B) = 0 =⇒ OQ(B|x) = 0 for any Borel B ⊂ M′). Since

M′ is finite in our setup, we will take ψ to be the uniform measure on

M′, but note that such measures also exists in uncountable setups for most
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practical channels. Then let gQ(x,m
′) :=

dOQ

dψ
(x,m′) be the Radon-Nikodym

derivative of OQ with respect to ψ. In particular for a uniform ψ, we have

gQ(x,m
′) = |M′|OQ(m

′|x)

Also, let πt, πt ∈ P(X ) be defined as

πt(·) = P γ
π0
(Xt ∈ ·|M ′

[0,t−1]) (1.11)

πt(·) = P γ
π0
(Xt ∈ ·|M ′

[0,t]), (1.12)

recalling that X0 ∼ π0. We have dropped the policy γ for notational sim-

plicity, but it should be noted that πt and πt are policy-dependent. In the

literature, πt is called the predictor and πt is called the filter. Note that

throughout the thesis, we will refer to the predictor as the belief, although

in the POMDP literature the term belief is typically saved for filters. With

a slight abuse of notation, we also let the source transition kernel T act as

an operator on probability measures as follows:

T : P(X ) → P(X )

π(x) 7→
∑
X

T (x′|x)π(x).

Then given π0, the above measures can be computed in a recursive manner

as follows (see [41, Proposition 3.2.5]).

πt(x) =
gQt(x,M

′
t)πt(x)∑

X gQt(x,M
′
t)πt(x)

,
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πt+1 = T (πt). (1.13)

We denote N(m′, Q) :=
∑

X gQ(x,m
′)πt(x). Note that N(M ′

t , Qt) is non-

zero P γ
π0

almost surely (a.s.). Thus inside of P γ
π0

expectations we assume

N(M ′
t , Qt) is non-zero.

Using the above update equations, one can compute πt given

(M ′
[0,t−1], Q[0,t−1]), so that policies of the form Qt = γt(πt) are valid. These

policies form a special class.

Definition 1.4.9. [18] We say a policy γ = {γt}t≥0 is of theWalrand-Varaiya

type if, at time t, γ selects a quantizer Qt = γt(πt) and Mt is generated as

Mt = Qt(Xt). Such a policy is called stationary if it does not depend on

t (that is, γt = γ for some γ and all t ≥ 0). The set of all stationary

Walrand-Varaiya policies is denoted by ΓWS.

The following are key results, originally from Walrand and Varaiya [16]

for a finite time horizon and extended to the infinite-horizon case in [18].

Proposition 1.4.10. [18, Proposition 2] For any β ∈ (0, 1), there exists γ∗ ∈

ΓWS that solves the discounted distortion problem (that is, it minimizes (1.1))

for all priors π0 ∈ P(X ).

Proposition 1.4.11. [18, Theorem 3] There exists γ∗ ∈ ΓWS that solves

the average distortion problem (that is, it minimizes (1.2)) for all priors

π0 ∈ P(X ).
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Proposition 1.4.12. Under any γ ∈ ΓWS, the zero-delay coding problem is

an MDP, where:

1. Z = P(X ).

2. U = Q.

3. P = P (·|π,Q) is induced by the update equations in (1.13).

4. c(π,Q) =
∑

M′ minx̂∈X̂
∑

X d(x, x̂)OQ(m
′|x)π(x).

This follows directly from the update equations in (1.13) and the fact

that, under any γ ∈ ΓWS, πt completely determines Qt. The choice of c is

due to the following result.

Lemma 1.4.13. If an optimal decoder is used, the expected distortion at the

encoder (that is, before sending Mt) is given by

c(πt, Qt) =
∑
M′

min
x̂∈X̂

∑
X

d(x, x̂)OQt(m
′|x)πt(x). (1.14)

Proof. Recall that, for a fixed Qt, the optimal decoder γd∗ chooses X̂t ac-

cording to

γd∗t (M ′
[0,t]) = argmin

x̂
Eγ
π0

[
d(Xt, x̂)|M ′

[0,t]

]
= argmin

x̂

∑
x

d(x, x̂)πt(x).

By the update equations in (1.13), we have

πt(x) =
gQt(x,M

′
t)πt(x)

N(M ′
t , Qt)

,
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so that at the decoder the expected distortion is given by

min
x̂

∑
x

d(x, x̂)
gQt(x,M

′
t)πt(x)

N(M ′
t , Qt)

.

However, at the encoder we must take the further expectation over M ′
t

(conditioned on M ′
[0,t−1]), since we do not yet have access to M ′

t . Thus, at

the encoder the expected distortion is

∑
m′

min
x̂

∑
x

d(x, x̂)
gQt(x,m

′)πt(x)

N(m′, Q)
P γ
π0
(m′|M ′

[0,t−1])

=
∑
m′

min
x̂

∑
x

d(x, x̂)
gQt(x,m

′)πt(x)

N(m′, Qt)

∑
x

πt(x)OQt(m
′|x)

=
∑
m′

min
x̂

∑
x

d(x, x̂)OQt(m
′|x)πt(x).

The first equality holds by marginalizing over Xt and using conditional

probability rules, and the second by using the definitions of gQ(x,m
′) and

N(m′, Q).

By this lemma, we have that the expected distortion at the encoder (as-

suming an optimal decoder), satisfies for all T ≥ 1,

Eγ
π0

[
T−1∑
t=0

c(πt, Qt)

]
= Eγ

π0

[
T−1∑
t=0

d(xt, x̂t)

]
.

Thus, this choice of c ensures that solving the MDP defined in Proposi-

tion 1.4.12 over all γ ∈ ΓWS (that is, minimizing Jβ(π0, γ) or J(π0, γ)) is
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equivalent to solving the zero-delay coding problem. Accordingly, we here-

after consider the discounted and average cost problems (rather than the

discounted and average distortion problems). This allows us to use strate-

gies from the literature of stochastic control; however, several complexities

have been introduced:

• While the source alphabet X is finite, the state space of the MDP,

P(X ), is uncountable. Furthermore, while our source process (Xt)t≥0

is irreducible and aperiodic (and hence has a unique invariant measure),

there is no a priori reason for the MDP state process (πt)t≥0 to inherit

these properties; in particular, irreducibility is too demanding.

• While we assume knowledge of the source transition kernel T , the calcu-

lation of the transition kernel P (dπ′|π,Q) is computationally demand-

ing.

Thus even if one can approximate the MDP state space P(X ) by some

finite one, implementation of traditional MDP methods such as dynamic pro-

gramming is difficult for this problem. This motivates the use of a reinforce-

ment learning approach in which the calculation of these transition proba-

bilities is unnecessary. Finally, although explicit computation of P (dπ′|π,Q)

is difficult, the following key structural result was obtained in [40].

Lemma 1.4.14. [40, Lemma 11] The transition kernel P (dπ′|π,Q) is weakly

continuous (recall Definition 1.4.3).
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Here, we endow P(X ) with the weak convergence topology and Q with

the Young topology (see [40]). Alternatively, sinceQ is finite here the discrete

topology would also suffice.

Finally, we conclude our MDP discussion by presenting a connection be-

tween the discounted cost problem and the average cost problem in the con-

text of zero-delay coding, which was established in [1]. It implies that, for the

zero-delay coding problem, a policy which is near-optimal for the discounted

cost problem for β sufficiently close to 1, is also near-optimal for the average

cost problem.

Theorem 1.4.15. [1, Theorem 5] For every ϵ > 0, there exists β′ such that

for all β ∈ (β′, 1), if γβ ∈ ΓWS satisfies Jβ(π0, γβ) ≤ J∗
β(π0) + δ, then

J(π0, γβ) ≤ J∗(π0) + ϵ+ (1− β)δ.

Remark 1.4.16. This result is important since from a zero-delay coding

perspective, the objective is usually the average cost problem. However, the

discounted cost problem is much easier to tackle from a reinforcement learn-

ing standpoint, and crucially will allow us to use Theorem 1.4.7. Accordingly,

the majority of this thesis will address near-optimality for the discounted cost

problem, and then near-optimality for the average cost follows from Theorem

1.4.15.
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1.5 Filter and Predictor Stability

A key property that we use is filter/predictor stability (recall from Definition

1.11 that the predictor is given by πt and the filter by πt).

Definition 1.5.1. The total variation distance between two probability mea-

sures µ, ν defined over X is given by

||µ− ν||TV := sup
||f ||∞≤1

∣∣∣∣∫
X
f(x)µ(dx)−

∫
X
f(x)ν(dx)

∣∣∣∣ ,
where the supremum is over all measurable real functions such that ||f ||∞ =

supx∈X |f(x)| ≤ 1.

Note that the total variation distance is equivalent to the L1 metric when

X is finite. Recall the update equations in (1.13) and note that they are

sensitive to the value of π0. Accordingly, we use πµt to denote the predictor

when π0 = µ. The question of predictor stability is the following: under

what conditions is (πt)t≥0 insensitive to its initialization, in the sense that

limt→∞ ||πµt −πνt ||TV = 0 when πµt and πνt are updated with the same sequence

M ′
[0,t−1]? We will study several types of predictor stability in this thesis.

We can ask a similar question for the filter process (πt)t≥0; in fact, the

problem of filter stability (in various senses) is a classical problem in prob-

ability and statistics, where it is typically established in two ways: (i) The

transition kernel of the underlying state is in some sense sufficiently ergodic,

so that regardless of the observations, the filter process inherits this ergod-
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icity and forgets its prior over time. (ii) The observations are in some sense

sufficiently informative, so that, regardless of the prior, the filter process

tracks the true state process. For a detailed review of these filter stability

methods, see [42]. However, we will need slightly more general results in our

case, since it is usually assumed in the filter stability problem that the obser-

vation kernel is time-invariant; here OQt depends on Qt and hence changes

with time, and accordingly additional analysis is needed.

1.6 Contributions

In this thesis, we present two rigorous approximation methods to simplify

the resulting MDP, and we use these approximations to obtain near-optimal

coding schemes for the zero-delay coding problem via a reinforcement learn-

ing approach. We emphasize that we provide guaranteed approximation

and convergence results. In particular, we build on methods used in [43]

and [44], which were originally used to study partially observed Markov de-

cision processes (POMDPs). The first is a discretization (or quantization)

of the probability measure-valued state space using a nearest-neighbor map,

and the second is based on an approximation of the probability measure using

a sliding finite window of past observations.

The former method was used in [1] to study the noiseless channel (quan-

tization) problem and similarly obtain near-optimal codes. In this work, we

significantly extend those results to the noisy channel case, which requires
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some additional analysis, due to the fact that under the noiseless channel

setup the filter/predictor process always admits a recurrent state under a

uniform exploration policy, making the stochastic analysis on the ergodicity

properties less demanding. More importantly, we introduce an alternative

and more practical finite sliding window method, which was not covered

in [1], and we present several mathematical and algorithmic results about its

near-optimal performance.

For both methods, we analyze and rigorously establish the convergence of

a simple reinforcement learning algorithm to obtain near-optimal codes for

the original zero-delay coding problem, facilitated by the approximations.

These two schemes are complementary: the quantization approach requires

weaker assumptions, but comes at the cost of additional computational com-

plexity, and sensitivity to initialization. In particular, the approximations

are near-optimal as long as the source has a unique invariant distribution,

but the resulting policy is only valid when the source starts from this invari-

ant distribution. The sliding finite window approach has stricter conditions,

but is very simple to implement. In particular, it requires Dobrushin coef-

ficient conditions on the source and channel, but the resulting policy is less

computationally complex and it is valid for any initial window (see Table

5.1).

25



1.7 Organization of Thesis

Chapter 2 is a preliminary chapter in which we cover the noiseless channel

case; this chapter is based on the results in [1].1 While not the main con-

tent of the thesis, this chapter will form the basis for the analysis presented

in later chapters. We review the MDP formulation of the problem in this

case, and present a quantization-based approximation scheme. We also give

reinforcement learning results, which are greatly facilitated by the lack of

channel noise.

In Chapter 3, we extend the results of Chapter 2 to the case of a noisy

channel, which in particular requires additional analysis of the ergodic prop-

erties of the predictor. We present asymptotic near-optimality results under

very weak assumptions.

In Chapter 4, we provide a new approximation scheme using a sliding

finite window of past observations. We show a stronger exponential conver-

gence to optimality, but at the cost of stricter assumptions on the source and

channel. As supporting results, we extend several filter stability results in

the literature to the zero-delay coding setup.

In Chapter 5 we present a detailed comparison of the approximation

schemes in Chapters 3 and 4, both from a theoretical and implementation

perspective. Finally, we provide conclusions and suggest future research di-

rections in Chapter 6.

1This was performed in part when the author was a USRA student from May-August
2022.
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Chapter 2

Preliminary Results:

Belief-Quantization Based

Coding for Noiseless Channels

2.1 Near-Optimality Results via a Finite MDP

Approximation

In the noiseless channel case, our channel matrix O(m′|m) is the identity

matrix, and in this case our update equation in (1.13) simplifies to

πt+1(x
′) =

1

πt(Q
−1
t (Mt))

∑
x∈Q−1

t (Mt)

T (x′|x)πt(x), (2.1)
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and our cost given in (1.14) simplifies to

c(π,Q) =
∑
m∈M

min
x̂∈X̂

∑
x∈Q−1(m)

d(x, x̂)π(x). (2.2)

Note that feedback is not needed in this case, since Mt =M ′
t for all t ≥ 0.

Following the MDP approximation scheme in Section 1.4.1, we approx-

imate our state space P(X ) by the following finite set. Given N ∈ Z+,

define

PN(X ) =

{
π̂ ∈ P(X ) : π̂ =

[
k1
N
, . . . ,

k|X |

N

]
, ki = 0, . . . , N, i = 1, . . . , |X |

}
,

(2.3)

and given π ∈ P(X ), let π̂ be the nearest neighbor (in Euclidean distance)

of π in PN(X ). We clearly have that maxπ d(π, π̂) → 0 as N → ∞ (explicit

calculations for this maximum are given in [45, Proposition 2] under several

norms). Accordingly, define PN(π̂j|π̂i, Q) and cN(π̂i, Q) as

PN(π̂j|π̂i, Q) =
∫
Bi

P (Bj|π,Q)νN,i(dπ)

cN(π̂i, Q) =

∫
Bi

c(π,Q)νN,i(dπ), (2.4)

where Bj and Bi are the bins (under the nearest neighbor map) corresponding

to π̂j and π̂i, respectively. In order to apply Theorem 1.4.5 to MDPN :=

(PN(X ),Q, PN , cN), we must show that Assumption 1.4.4 holds for the true

zero-delay coding MDP given by (P(X ),Q, P, c), which we formalize in the
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following lemma.

Lemma 2.1.1. The zero-delay coding MDP (P(X ),Q, P, c) meets Assump-

tion 1.4.4.

Proof. (i) holds by noting that c(π,Q) in (2.2) is continuous in π and that Q

is finite. Since X is finite, P(X ) is compact and so we also have boundedness.

(ii) follows from Lemma 1.4.14. Finally, (iii) holds since X and M are finite,

which implies compactness of P(X ) and finiteness of Q.

The following is then simply an application of Theorem 1.4.5 to the zero-

delay coding MDP.

Corollary 2.1.2. Let MDPN = (PN(X ),Q, PN , cN). Let γ̂∗N ∈ ΓWS be

optimal for MDPN , and for any π let γ̃∗N(π) = γ̂∗N(π̂), where π̂ is the nearest

neighbor of π in PN(X ). Then for all π0 ∈ P(X ) and β ∈ (0, 1),

lim
N→∞

|Jβ(π0, γ̃∗N)− J∗
β(π0)| = 0.

That is, γ̃∗N is near-optimal for the zero-delay coding problem under the dis-

counted distortion criterion.

29



2.2 Q-learning and its Convergence to a Near-

Optimal Finite MDP

We now present a reinforcement learning algorithm to compute the policy γ̂∗N

from the previous corollary, based on the results in Section 1.4.2. Consider

the following algorithm for computing the sequences (π̂t)t≥0, (Qt)t≥0, and

(Ct)t≥0.

Algorithm 1: Quantized Q-learning for noiseless channel

Require: initial distribution π0, transition kernel T , quantizer set Q

1: Sample X0 ∼ π0

2: Choose Q0 uniformly from Q

3: M0 = Q0(X0)

4: Compute C0 = c(π0, Q0) using (2.2)

5: for t ≥ 1 do

6: Compute πt using (2.1)

7: Sample Xt ∼ T (·|Xt−1)

8: Choose Qt uniformly from Q

9: Mt = Qt(Xt)

10: Compute Ct = c(πt, Qt) using (2.2)

Then consider the sequence (Vt)t≥0, where Vt : PN(X )×Q → R+, defined

by

Vt+1(π̂t, Qt) = (1− αt(π̂t, Qt))Vt(π̂t, Qt) + αt(π̂t, Qt)

(
Ct + βmin

Q∈Q
Vt(π̂t+1, Q)

)
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Vt+1(π̂, Q) = Vt(π̂, Q) for all (π̂, Q) ̸= (π̂t, Qt), (2.5)

where

αt(π̂, Q) =
1

1 +
∑t

k=0 1(π̂k = π̂, Qk = Q)
.

In order to apply Theorem 1.4.7, we need to show that Assumption 1.4.6

holds for the sequence (St+1, St, Ut, Ct)t≥0 := (π̂t+1, π̂t, Qt, Ct)t≥0. The re-

mainder of this section is dedicated to proving this result. Recall that (πµt )t≥0

is used to denote the predictor process with initialization π0 = µ.

Lemma 2.2.1. Let Qt be chosen uniformly and randomly for all t ≥ 0, as

in Algorithm 1. Then there exists an element π∗ ∈ P(X ) such that

τ := inf{t ≥ 0 : πt = π∗}

satisfies Pπ0(τ <∞) = 1 for all π0 ∈ P(X ).

Proof. Consider a quantizer Q ∈ Q such that for some x ∈ X and m ∈ M,

we have Q−1(m) = {x}. That is, Q quantizes at least one element of X

without any loss. By direct computation using (2.1), when Qt = Q and

Xt = x, we have

πt+1(x
′) = T (x′|x).

That is, πt+1 becomes the row of T corresponding to x, regardless of πt.

But since X and Q are finite, and since (Xt)t≥0 is irreducible and aperiodic,

the event (Xt, Qt) = (x,Q) for some t ≥ 0 happens almost surely. Letting
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π∗ = T (·|x) in the lemma statement, the result follows.

Remark 2.2.2. Note that this lemma gives a very strong type of recurrence

which crucially uses the fact that the channel is noiseless; in the general noisy

case, such an element π∗ is not guaranteed to exist.

Lemma 2.2.3. Let Qt be chosen uniformly and randomly for all t ≥ 0, as

in Algorithm 1. Then the following hold:

(i) The predictor process (πt)t≥0 admits a unique invariant measure ϕ.

(ii) For any initialization π0 = µ and for any measurable and bounded

function f : P(X ) → R, we have

1

T

T−1∑
t=0

f(πµt ) →
∫
fdϕ

P µ almost surely as T → ∞.

Proof. To show (i), note that when Qt is chosen randomly and independently

of πt, the induced transition kernel P (dπ′|π) becomes weakly continuous.

Since every Markov process with a weakly continuous transition kernel on a

compact state space admits an invariant measure [46, Theorem 7.2.3], (πt)t≥0

has an invariant measure. Thus, we are left with proving uniqueness.

Now suppose there exist two distinct invariant measures for (πt)t≥0. This

implies (see for example [46, Lemma 2.2.3]) that there exist two mutually

singular invariant measures ϕ1, ϕ2 and two disjoint sets B1, B2 ⊂ P(X ) such
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that ϕ1(B1) = ϕ2(B2) = 1 and

Pπ0(πt ∈ B1) = 1 for all π0 ∈ B1

Pπ0(πt ∈ B2) = 1 for all π0 ∈ B2.

However, by Lemma 2.2.1, this implies that B1 and B2 both contain π∗,

which is a contradiction. Thus, there must be a unique invariant measure ϕ

for (πt)t≥0.

To prove (ii), first we have that by (i) and the pathwise ergodic theorem

(see for example [46, Corollary 2.5.2]) that there exists some ν ∈ P(X ) such

that for any measurable and bounded function f : P(X ) → R, we have

1

T

T−1∑
t=0

f(πνt ) →
∫
fdϕ

P ν almost surely as T → ∞. But by Lemma 2.2.1 we have that τν :=

inf{t ≥ 0 : πνt = π∗} < ∞, and for any prior µ ∈ P(X ) we have that

and τµ := inf{t ≥ 0 : πµt = π∗} < ∞ almost surely. Thus we have that

limT→∞
1
T

∑T−1
t=0 f(π

ν
t ) = limT→∞

1
T

∑T−1
t=0 f(π

µ
t ), and the result follows.

Remark 2.2.4. Lemma 2.2.1 also gives some other desirable properties of

the process (πt)t≥0, such as exponential convergence to the invariant measure

(see for example [47, Theorem 3.2]), but for our purposes Lemma 2.2.3 will

be sufficient.
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Recall the definition of PN(X ) from (2.3), and let BN be the set of bins

on P(X ) induced by the nearest neighbor map from P(X ) to PN(X ). Then

consider the following set, where ϕ is the unique invariant measure from

Lemma 2.2.3,

Bϕ
N := {B ∈ BN : ϕ(B) > 0}. (2.6)

Also consider the corresponding reproduction values in PN(X ), given by

Pϕ
N(X ) := {π̂ ∈ PN(X ) : f−1(π̂) ∈ Bϕ

N}, (2.7)

where we have used f to denote the nearest neighbor map from P(X ) to

PN(X ). We now explicitly identify the measures νN,i used in (2.4) by defining,

for all Bi ∈ Bϕ
N and A ∈ B(P(X )),

ϕN,i(A) :=
ϕ(A)

ϕ(Bi)
.

The equations from (2.4) now become

PN(π̂j|π̂i, Q) =
∫
Bi

P (Bj|π,Q)ϕN,i(dπ)

cN(π̂i, Q) =

∫
Bi

c(π,Q)ϕN,i(dπ). (2.8)

The following will allow us to apply Theorem 1.4.7 to the process (Vt)t≥0

from (2.5).

Lemma 2.2.5. For any initialization π0 in Algorithm 1 and for all (π̂, Q) ∈
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Pϕ
N(X )×Q, the process (π̂t+1, π̂t, Qt, Ct)t≥0 is such that almost surely,

(i) (π̂t, Qt) = (π̂, Q) infinitely often, and thus
∑

t≥0 αt(π̂, Q) = ∞.

(ii) ∑t
k=0Ck1(π̂k = π̂, Qk = Q)∑t
k=0 1(π̂k = π̂, Qk = Q)

→ cN(π̂, Q).

(iii) ∑t
k=0 f(π̂k+1)1(π̂k = π̂, Qk = Q)∑t

k=0 1(π̂k = π̂, Qk = Q)
→
∫
Pϕ
N (X )

f(π̂1)PN(dπ̂1|π̂, Q)

for any f : Pϕ
N(X ) → R.

That is, Assumption 1.4.6 holds for the process (St+1, St, Ut, Ct)t≥0 :=

(π̂t+1, π̂t, Qt, Ct)t≥0.

Proof. First note that since Qt is chosen randomly and uniformly from πt,

Lemma 2.2.3 (ii) also implies a similar result for (πt, Qt)t≥0, with unique

invariant measure given by 1
|Q|ϕ; that is, for any initialization π0 and mea-

surable and bounded function f : P(X )×Q → R, we have

1

T

T−1∑
t=0

f(πt, Qt) →
1

|Q|

∫
f(π,Q)ϕ(dπ)

almost surely as N → ∞. By letting f be the respective functions in (i)-(iii),

the result follows.

With Lemma 2.2.5, we are now able to apply Theorem 1.4.7 to obtain

the following:
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Corollary 2.2.6. For each (π̂, Q) ∈ Pϕ
N(X ) × Q, Vt(π̂, Q) defined in (2.5)

converges almost surely to V ∗(π̂, Q) satisfying,

V ∗(π̂, Q) = cN(π̂, Q) + β
∑

π̂1∈Pϕ
N (X )

min
Q
V ∗(π̂1, Q)PN(π̂1|π̂, Q). (2.9)

Note that minQ V
∗(π̂, Q) has exactly the form of the DCOE in 1.4.2,

however it is only true for each π̂ ∈ Pϕ
N(X ) (i.e., the bins with ϕ-positive

measure). The following result shows that, for certain initializations, it is

enough to only consider Pϕ
N(X ). Note that the following result holds for any

γ ∈ ΓWS, not just the random uniform policy in Algorithm 1. In particular,

it will be true for our learned optimal policy.

Lemma 2.2.7. Let π0 = π∗, where π∗ is as in Lemma 2.2.1. Under any

encoding policy γ ∈ ΓWS, we have that for all t ≥ 0, π̂t ∈ Pϕ
N(X ) almost

surely.

Proof. Since all our underlying alphabets are finite, from π0 = π∗ there are

only finitely many possible values of π1; similarly, there are only finitely many

possible values of πt for each t ≥ 0. Now, under a uniform selection of Qt, by

Lemma 2.2.1, the return time from each of these (finitely many) values back

to π∗ is almost surely finite. This implies that the support of ϕ is countable,

and that this support is exactly the set of reachable points from π∗ under

any sequence (Qt)t≥0.

But this is in particular true for the sequence (Qt)t≥0 resulting from some

γ ∈ ΓWS, and thus any π satisfying P γ
π∗(πt = π) > 0 must be in the support of
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ϕ and therefore satisfy ϕ(π) > 0. The result then follows from the definition

of Pϕ
N(X ).

We can now state the main result of this chapter.

Theorem 2.2.8. Fix any π0 and let (π̂t)t≥0, (Qt)t≥0, and (Ct)t≥0 be generated

through Algorithm 1, and let Vt be as in (2.5). Then the following hold:

(i) Vt converges almost surely to a limit V ∗.

(ii) The policy defined by

γ̂∗N(π̂) := argmin
Q∈Q

V ∗(π̂, Q) (2.10)

is optimal for MDPN := (Pϕ
N(X ),Q, PN , cN) for the discounted cost

criterion.

(iii) The policy defined by

γ̃∗N(π) := γ̂∗N(π̂),

where π̂ is the nearest neighbor of π in PN(X ), satisfies

lim
N→∞

∣∣Jβ(π∗, γ̃∗N)− J∗
β(π

∗)
∣∣ = 0,

where π∗ is as in Lemma 2.2.1.

Proof. (i) By Lemmas 2.2.1 and 2.2.7, we have that in finite time (π̂t)t≥0 will

hit π∗, and afterwards will stay within Pϕ
N(X ). Thus outside of Pϕ

N(X )×Q,
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Vt(π̂, Q) will eventually be constant, and on Pϕ
N(X )×Q convergence follows

by Corollary 2.2.6.

(ii) Note that this MDP is restricted to Pϕ
N(X ), and this is exactly the

set on which we have the DCOE equation (2.9), so we have optimality by

Theorem 1.4.2.

(iii) This follows immediately from (ii), Corollary 2.1.2, and the fact that

starting at π0 = π∗, by Lemma 2.2.7, (π̂t)t≥0 ⊂ Pϕ
N(X ).

The following is then an immediate corollary of the previous theorem and

Theorem 1.4.15.

Corollary 2.2.9. For every ϵ > 0, there exists some β′ such that for all

β ∈ (β′, 1) and all N ≥ Nβ,

J(π∗, γ̃∗N,β) ≤ J∗(π∗) + ϵ,

where γ̃∗N,β is the policy from Theorem 2.2.8 (iii) when we compute Vt+1 using

discount parameter β.

Remark 2.2.10. Note that in the average cost case, we can easily modify

γ̃∗N,β to be near-optimal for any initial distribution, instead of just π0 = π∗.

Indeed, consider applying a quantizer Q such that Q−1(m) = {x}, as in the

proof of Lemma 2.2.1. In finite time, this will lead to πt = T (·|x), which

is a valid value for π∗, and afterwards we apply γ̃∗N,β. In the average cost,

the suboptimal cost over this finite time disappears, and we obtain near-

optimality.
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Chapter 3

Belief-Quantization Based

Coding for Noisy Channels

As in Chapter 2, we consider an approximation scheme in which the underly-

ing probability space is quantized to some finite set, and present a Q-learning

algorithm facilitated by this approximation. We will prove analogous results

for the case of a noisy channel. However, some results will be significantly

more involved and some statements will be weaker. This is due to the lack of

recurrence conditions that were present in the noiseless channel setup which

greatly simplified the stochastic analysis both with regard to conditions for

Q-learning convergence and implementation for an arbitrary initialization.
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3.1 Near-Optimality Results via a Finite MDP

Approximation

We recall the definitions of PN(X ), PN , and cN from Section 2.1, which are

identical for the noisy channel setup (and where we recall the definitions of

P and c from Proposition 1.4.12).

PN(X ) =

{
π̂ ∈ P(X ) : π̂ =

[
k1
N
, . . . ,

k|X |

N

]
, ki = 0, . . . , N, i = 1, . . . , |X |

}
,

PN(π̂j|π̂i, Q) =
∫
Bi

P (Bj|π,Q)νN,i(dπ),

cN(π̂i, Q) =

∫
Bi

c(π,Q)νN,i(dπ),

for all π̂j, π̂i ∈ PN(X ), where Bj, Bi are the bins of π̂j, π̂i, respectively.

The following results hold using the same arguments as Lemma 2.1.1 and

Corollary 2.1.2.

Lemma 3.1.1. The zero-delay coding MDP (P(X ),Q, P, c) meets Assump-

tion 1.4.4.

Corollary 3.1.2. Let MDPN = (PN(X ),Q, PN , cN). Let γ̂∗N ∈ ΓWS be

optimal for MDPN and let γ̃∗N(π) = γ̂∗N(π̂). Then for all π0 ∈ P(X ) and

β ∈ (0, 1),

lim
N→∞

|Jβ(π0, γ̃∗N)− J∗
β(π0)| = 0.

That is, γ̃∗N is near-optimal for the zero-delay coding problem under the dis-
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counted distortion criterion.

3.2 Q-learning and its Convergence to a Near-

Optimal Finite MDP

Consider the following algorithm to compute the sequences (π̂t)t≥0, (Qt)t≥0,

and (Ct)t≥0.

Algorithm 2: Quantized Q-learning for noisy channel

Require: initial distribution π0, transition kernel T , channel kernel O, quan-

tizer set Q

1: Sample X0 ∼ π0

2: Choose Q0 uniformly from Q

3: M0 = Q0(X0)

4: Compute C0 = c(π0, Q0) using (1.14)

5: Sample M ′
0 ∼ O(·|M0)

6: for t ≥ 1 do

7: Compute πt using (1.13)

8: Sample Xt ∼ T (·|Xt−1)

9: Choose Qt uniformly from Q

10: Mt = Qt(Xt)

11: Compute Ct = c(πt, Qt) using (1.14)

12: Sample M ′
t ∼ O(·|Mt)

41



Then consider the sequence (Vt)t≥0, where Vt : PN(X )×Q → R+, defined by

Vt+1(π̂t, Qt) = (1− αt(π̂t, Qt))Vt(π̂t, Qt) + αt(π̂t, Qt)

(
Ct + βmin

Q∈Q
Vt(π̂t+1, Q)

)
Vt+1(π̂, Q) = Vt(π̂, Q) for all (π̂, Q) ̸= (π̂t, Qt), (3.1)

where

αt(π̂, Q) =
1

1 +
∑t

k=0 1(π̂k = π̂, Qk = Q)
.

Whereas in the noiseless channel case we used the recurrence condition

in Lemma 2.2.1 to prove unique invariance (among other results), instead

we will use the stability of the predictor process. Recall the discussion of

filter and predictor stability in Section 1.5, and recall that (πµt )t≥0 is used to

denote the predictor process with initialization π0 = µ. We will prove the

following type of stability:

Definition 3.2.1. We say that the predictor process (πt)t≥0 is stable in total

variation almost surely if, for every µ, ν, κ ∈ P(X ), we have that Pκ almost

surely,

lim
t→∞

∥πµt − πνt ∥TV = 0.

Note that here Pκ is the measure on M ′
[0,t−1] induced by X0 ∼ κ. We

make an equivalent definition for the filter process (πt)t≥0.

Theorem 3.2.2. Under Algorithm 2, the predictor process is stable in total

variation almost surely.
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We prove Theorem 3.2.2 with the aid of the following supporting results.

Lemma 3.2.3. If the filter process is stable in total variation almost surely,

then the predictor process is stable in total variation almost surely.

Proof. Consider the source transition kernel T (x′|x). We have that πµt+1(x
′) =∑

x T (x
′|x)πµt (x). By a classical result of Dobrushin [48], this implies that

∥πµt+1 − πνt+1∥TV ≤ ∥πµt − πνt ∥TV . The result follows.

Lemma 3.2.4. [49, Corollary 5.5] Let (At)t≥0 be a discrete-time Markov

chain and (Bt)t≥0 be a stochastic process such that the Bt are conditionally

independent given (At)t≥0. Also assume P (Bt|A[0,∞)) = P (Bt|At), and that

P (Bt|At) has the form

P (Bt ∈ B|At) =
∫
B

g(At, b)ψ(db),

where g(a, b) is a probability density with respect to the σ-finite measure ψ

for any a. If g is strictly positive, and (At)t≥0 is aperiodic and Harris re-

current (that is, it visits every state infinitely often with probability one [46,

Definition 4.2.10]), then the filter πt(A) := P (At ∈ A|B[0,t]) is stable in total

variation almost surely.

Lemma 3.2.5. Under Algorithm 2, the filter process (πt)t≥0 is stable in total

variation almost surely.

Proof. We apply Lemma 3.2.4 to (Xt)t≥0 and (M ′
t)t≥0. Note that under a
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uniform choice of Qt, P (M
′
t|X[0,∞)) = P (M ′

t|Xt), and we have

P (M ′
t = m′|Xt = x)

=
∑
Q

P (M ′
t = m′|Xt = x,Qt = Q)P (Qt = Q|Xt = x)

=
∑
Q

O(m′|Q(x))P (Qt = Q|Xt = x)

=
∑
Q

O(m′|Q(x))P (Qt = Q),

where the second equality follows from the fact that Mt = Qt(Xt) is deter-

ministic, and the last equality from the fact that Qt is chosen independently

of Xt in Algorithm 2.

Now, since we are considering the set of all possible quantizers and we

choose them all with positive probability, the above expression is always

positive (if this were not the case, there is some m′ such that O(m′|m) = 0

for all m ∈ M, which implies it is not a valid channel output). This implies

the function g in Lemma 3.2.4 is positive. Finally, note that (Xt)t≥0 evolves

independently of the encoding policy; it is always irreducible and aperiodic

(thus, since X is finite, it is Harris recurrent and aperiodic). The result

follows from Lemma 3.2.4.

Lemmas 3.2.3 and 3.2.5 immediately imply Theorem 3.2.2. In the follow-

ing result, we use predictor stability to prove the uniqueness of an invariant

measure for the predictor process.
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Theorem 3.2.6. Under Algorithm 2, (πt)t≥0 admits a unique invariant mea-

sure ϕ.

Proof. The proof slightly generalizes an argument presented in [50, Corollary

3]. Throughout, we use the notation ν(f) :=
∫
fdν. Note that, under Algo-

rithm 2 (where Qt is chosen randomly), the processes (πt)t≥0 and (Xt, πt)t≥0

are Markov, and that as in the noiseless case, by weak continuity and the

compactness of P(X ) we know that (πt)t≥0 has an invariant measure. Thus,

we are left with proving uniqueness.

Recall that ζ is the unique invariant measure of our source (Xt)t≥0. As-

sume that m1,m2 ∈ P(X ×P(X )) are two invariant measures for (Xt, πt)t≥0.

Then their projections on X are invariant for (Xt)t≥0. Then, by unique

invariance of ζ we have

m1(dx, dµ) = Pm1(dµ|x)ζ(dx)

m2(dx, dν) = Pm2(dν|x)ζ(dx)

We now show that m1(F ) = m2(F ) for each F on a set of measure-

determining functions: F (x, ν) = φ(x)H(ν(φ1), . . . , ν(φl)), where φ, φ1, . . . , φl :

X → R, are continuous and bounded and H : Rl → R is bounded and Lips-

chitz continuous with constant LH , and where l ∈ Z+ [50].

By invariance we have that

m1(F ) =

∫
F (xt, π

µ
t )P (dxt, dπ

µ
t |x0, µ)Pm1(dµ|x0)ζ(dx0),
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and

m2(F ) =

∫
F (x′t, π

ν
t )P (dx

′
t, dπ

ν
t |x0, ν)Pm2(dν|x0)ζ(dx0),

where P (dxt, dπ
µ
t |x0, µ) denotes the t-step transition probability given by

P (dxt, dπ
µ
t |x0, µ) :=

∫
(X×P(X ))t−1 P (dxt, dπ

µ
t |xt−1, π

µ
t−1) . . . P (dx1, π

µ
1 |x0, µ), and

noting that πµ0 = µ by definition. Thus,

|m1(F )−m2(F )|

≤
∫

|F (xt, πµt )− F (x′t, π
ν
t )|P (dxt, dπ

µ
t |x0, µ)P (dx′t, dπνt |x0, ν)

· Pm1(dµ|x0)Pm2(dν|x0)ζ(dx0)

≤LH∥φ∥
∫ l∑

i=1

|πµt (φi)− πνt (φi)|P (dxt, dπ
µ
t |x0, µ)P (dx′t, dπνt |x0, ν)

· Pm1(dµ|x0)Pm2(dν|x0)ζ(dx0).

(3.2)

Then note that

P (dxt, dπ
µ
t |x0, µ) =

∫
(M′)t

P (dxt, dπ
µ
t , dm

′
[0,t−1]|x0, µ)

=

∫
(M′)t

P (dxt, dπ
µ
t |x0, µ,m′

[0,t−1])P (dm
′
[0,t−1]|x0, µ)

=

∫
(M′)t

P (dxt, dπ
µ
t |x0, µ,m′

[0,t−1])P (dm
′
[0,t−1]|x0),

where the last line follows from the fact that given X0 = x0 (and under a

random choice of Q[0,t−1]), the joint measure on M ′
[0,t−1] no longer depends
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on the initial distribution µ. Thus, we can rewrite (3.2) as

LH∥φ∥
∫ l∑

i=1

|πµt (φi)− πνt (φi)|P (dxt, dπ
µ
t |x0, µ,m′

[0,t−1])

· P (dx′t, dπνt |x0, ν,m′
[0,t−1])P (dm

′
[0,t−1]|x0)Pm1(dµ|x0)Pm2(dν|x0)ζ(dx0)

Note that now the measures on πµt and πνt are conditioned on the same

m′
[0,t−1], so we can invoke Theorem 3.2.2 to claim that the integrand,

∫
|πµt (φi)− πνt (φi)|P (dxt, dπ

µ
t |x0, µ,m′

[0,t−1])P (dx
′
t, dπ

ν
t |x0, ν,m′

[0,t−1])

· P (dm′
[0,t−1]|x0)Pm1(dµ|x0)Pm2(dν|x0),

goes to zero as t → ∞ for every x0 and for every i = 1, . . . , l. Thus, by the

dominated convergence theorem, we have that (3.2) goes to zero as t → ∞,

and we have that m1 and m2 are in fact the same measure.

Next we show that (πt)t≥0 admits at most one invariant measure. As-

sume that v1, v2 ∈ P(P(X )) are two different invariant measures for (πt)t≥0.

Then there exists a continuous and bounded f : P(X ) → R such that

v1(f) ̸= v2(f). Now for j = 1, 2, let (Xj
t , π

j
t )t≥0 be the process with ini-

tial law π(dx)vj(dπ). Since X is finite, P (Xj
t ∈ · , πjt ∈ · ) is tight.

Now, since X is finite, we also have that (Xt, πt)t≥0 has a weakly contin-
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uous transition kernel. Thus the time average

1

T

T−1∑
t=0

P (Xj
t ∈ · , πjt ∈ · )

converges weakly to an invariant measure ηj for (Xt, πt)t≥0 [33, Theorem

3.3.1].

Then for F (x, π) = f(π), we have η1(F ) = v1(f) ̸= v2(f) = η2(F ). But

then η1 and η2 are two different invariant measures for (Xt, πt)t≥0, which is

a contradiction. Thus (πt)t≥0 admits at most one invariant measure.

Unlike in the noiseless channel case, we cannot explicitly identify an ele-

ment of ϕ-positive measure. However, the following lemma shows that ζ, the

invariant distribution of the source, is in the support of ϕ. Thus ζ will play

a similar role to the π∗ of Lemma 2.2.1.

Lemma 3.2.7. We have ζ ∈ supp(ϕ), where supp(ϕ) denotes the support of

ϕ in P(X ).

Proof. Consider some open neighborhood of radius δ containing ζ, sayNδ(ζ) ⊂

P(X ). Now consider a totally “uninformative” quantizer Q ∈ Q; that is

Q(x) = i for all x ∈ X and some i ∈ M. Via the update equation (4), if

Qt = Q, we have that πt+1 = πtP , where we have used the matrix notation

P (i, j) := P (Xt+1 = j|Xt = i). Since (Xt)t≥0 is irreducible and aperiodic,

πP T converges in total variation to ζ as T → ∞, and so there exists some

T > 0 such that for all π ∈ P(X ), πP T ∈ Nδ(ζ). Thus, if Qt = Q for
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t = 0, . . . , T − 1, then we have πT ∈ Nδ(ζ).

But under Algorithm 2, we have some fixed positive probability of choos-

ing Q, say P (Qt = Q) = p > 0. In particular, for all t ≥ T , P (πt ∈

Nδ(ζ)|π0 = π) ≥ P (Q[t−T,t−1] = (Q,Q, . . . , Q)) = pT . This implies that ζ

is “accessible” (since any neighborhood of this element will be visited with

positive probability from any initial prior, see [51, Definition 2.1]) and hence

that ζ ∈ supp(ϕ) [51, Lemma 2.2].

For technical reasons, we require the following assumption on the unique

invariant measure ϕ. Recall that BN is the set of bins under the nearest

neighbor map from P(X ) to PN(X ).

Assumption 3.2.8. For all B ∈ BN , we have ϕ(∂B) = 0, where ∂B denotes

the boundary of B.

Remark 3.2.9. Assumption 3.2.8 is in general not easy to verify directly.

However, note that if Assumption 3.2.8 does not hold, we have ϕ(∂B) > 0,

while λ(∂B) = 0. Further, we have that the update equation (1.13) can

be rewritten as some matrix equation πt+1 = πtMQ,m′ , where MQ,m′ is the

update matrix corresponding to Qt = Q and M ′
t = m′. If we could show

that rank(MQ,m′) ≥ |X | − 1 for all Q and m′, this would imply that the

preimage of ∂B, say BQ,m′ := M−1
Q,m′(∂B), also satisfies ϕ(BQ,m′) > 0 and

λ(BQ,m′) = 0. This implies that the support of ϕ, say supp(ϕ), would also

satisfy λ(supp(ϕ)) = 0. Therefore, if instead of the bin boundaries induced by

PN(X ), one uniformly chose the bin boundaries from the respective spaces,
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then Assumption 3.2.8 would hold almost surely. We leave this as an inter-

esting future research direction.

Lemma 3.2.10. Let Assumption 3.2.8 hold. Then under Algorithm 2 and

for any belief quantization bin B, as T → ∞,

1

T

T−1∑
t=0

1B(π
ζ
t ) → ϕ(B) Pζ-a.s..

That is, starting from π0 = ζ, the empirical occupation measures of the pre-

dictor process will converge to its invariant distribution on the belief quanti-

zation bins.

Proof. By the pathwise ergodic theorem (see [46, Corollary 2.5.2]), for ϕ-

almost every µ ∈ P(X ), we have that as N → ∞,

1

T

T−1∑
t=0

1B(π
µ
t ) → ϕ(B) Pµ-a.s. (3.3)

Note that the above also holds for ψ-almost every µ for any ψ ≪ ϕ.

Accordingly, define ψk to be the restriction of ϕ to the open ball of radius 1
k

centered at ζ:

ψk(A) =
ϕ(A)

ϕ(Nk(ζ))

where Nk is the open ball of radius 1
k
around ζ and for any measurable

A ⊂ Nk(ζ). Note that ϕ(Nk(ζ)) > 0 for all k ≥ 1 by Lemma 3.2.7. Now,

by definition ψk ≪ ϕ for all k ≥ 1. Therefore, for all k ≥ 1, there exists at

least one µk ∈ Nk(ζ) such that (3.3) holds with µ = µk. This implies the
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existence of a sequence (µk)k≥0 such that (3.3) holds for all k and such that

||µk − ζ||TV → 0.

Since the transition kernel P (dπ′|π,Q) is weakly continuous (Lemma

1.4.14), so is P (dπ′|π) when Qt is chosen uniformly. Thus the empirical oc-

cupation measures given by ν
(n)
k (A) := 1

N

∑N−1
t=0 1A(π

µk
t ) → 1

N

∑N−1
t=0 1A(π

ζ
t )

weakly as k → ∞. By the Portmanteau theorem [32, Theorem 1.4.16], we

have that weak convergence implies convergence on any set A ⊂ P(X ) with

ϕ(∂A) = 0. Under Assumption 3.2.8, this holds in particular for every belief

quantization bin B, and the result follows.

Recall (2.6) and (2.7) from the noiseless channel case, which are defined

identically for the noisy channel case:

Bϕ
N := {B ∈ BN : ϕ(B) > 0}

and

Pϕ
N(X ) := {π̂ ∈ PN(X ) : f−1(π̂) ∈ Bϕ

N}.

We similarly define ϕN,i, PN , and cN as:

ϕN,i(A) :=
ϕ(A)

ϕ(Bi)

PN(π̂j|π̂i, Q) =
∫
Bi

P (Bj|π,Q)ϕN,i(dπ)

cN(π̂i, Q) =

∫
Bi

c(π,Q)ϕN,i(dπ).
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The following is then the analog of Lemma 2.2.5 from the noiseless channel

case. Note that here we enforce that π0 = ζ, whereas in Lemma 2.2.5 π0

could be arbitrary.

Lemma 3.2.11. Let π0 = ζ in Algorithm 2 and let Assumption 3.2.8 hold.

Then for all (π̂, Q) ∈ Pϕ
N(X )×Q, the process (π̂t+1, π̂t, Qt, Ct)t≥0 is such that

almost surely,

(i) (π̂t, Qt) = (π̂, Q) infinitely often, and thus
∑

t≥0 αt(π̂, Q) = ∞.

(ii) ∑t
k=0Ck1(π̂k = π̂, Qk = Q)∑t
k=0 1(π̂k = π̂, Qk = Q)

→ cN(π̂, Q).

(iii) ∑t
k=0 f(π̂k+1)1(π̂k = π̂, Qk = Q)∑t

k=0 1(π̂k = π̂, Qk = Q)
→
∫
Pϕ
N (X )

f(π̂1)PN(dπ̂1|π̂, Q)

for any f : Pϕ
N(X ) → R.

That is, Assumption 1.4.6 holds for the process (St+1, St, Ut, Ct)t≥0 :=

(π̂t+1, π̂t, Qt, Ct)t≥0.

Proof. The proof follows identically to Lemma 2.2.5, but invoking Lemma

3.2.10 (and requiring Assumption 3.2.8) instead of Lemma 2.2.3.

We can then apply Theorem 1.4.7 to obtain the noisy-channel version of

Corollary 2.2.6.
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Corollary 3.2.12. For each (π̂, Q) ∈ Pϕ
N(X )×Q, Vt(π̂, Q) defined in (3.1)

converges almost surely to V ∗(π̂, Q) satisfying,

V ∗(π̂, Q) = cN(π̂, Q) + β
∑

Pϕ
N (X )

min
Q
V ∗(π̂1, Q)PN(π̂1|π̂, Q). (3.4)

We now present a result similar to Lemma 2.2.7 in the sense that it allows

us to restrict our state space to Pϕ
N(X ), but the result is slightly weaker and

the proof is more involved.

Lemma 3.2.13. Under any γ ∈ ΓWS, for any π ∈ P(X ) which is reachable

from µ ∈ supp(ϕ) (that is, any π with P γ(πt = π|π0 = µ) > 0), we have

either

(i) π ∈ B for some B ∈ Bϕ
N , or

(ii) π is on the boundary of some B ∈ Bϕ
N .

Proof. Let {Nk}k≥0 ⊂ P(X ) be a sequence of open balls centered at µ such

that
⋂∞
k=0Nk = µ and let {ψk}k≥0 be defined as ψk(A) =

ϕ(A)
ϕ(Nk)

for all A ⊂ Nk;

that is, ψk is the restriction of ϕ to Nk. Note that by definition, ϕ(Nk) > 0

and ψk ≪ ϕ for all k. We also have by weak continuity of P (dπ′|π,Q) that

Pψk
(dπt|Q[0,t−1] = Q) converges weakly to Pµ(dπt|Q[0,t−1] = Q), where we

have used Pµ to denote the conditional measure on πt induced by π0 = µ and

Pψk
to denote (with an abuse of notation) the measure induced by π0 ∼ ψk.
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That is,

Pψk
(dπt|Q[0,t−1] = Q) =

∫
ψk(dπ)P (dπt|π0 = π,Q[0,t−1] = Q)

Pµ(dπt|Q[0,t−1] = Q) = P (dπt|π0 = µ,Q[0,t−1] = Q)

Now let B ⊂ P(X ) be open. By the Portmanteau theorem (e.g., [46,

Theorem 1.4.16]), we have that

lim inf
k→∞

Pψk
(πt ∈ B|Q[0,t−1] = Q) ≥ Pµ(πt ∈ B|Q[0,t−1] = Q). (3.5)

Now by invariance of ϕ, we have that for any T ≥ 1,

ϕ(B) =
1

T

T−1∑
t=0

∑
Q∈Qt

1

|Q|t

∫
ϕ(dπ)P (πt ∈ B|π0 = π,Q[0,t−1] = Q), (3.6)

where the 1
|Q|t is due to marginalizing over all Q[0,t−1] and since we choose Qt

uniformly from Q at each t ≥ 0. But we also have for each ψk,

Pψk
(πt ∈ B|Q[0,t−1] = Q) =

∫
ψk(dπ)P (πt ∈ B|π0 = π,Q[0,t−1] = Q). (3.7)

Thus we have the following chain of implications for all sufficiently large k,

Pµ(πt ∈ B|Q[0,t−1] = Q) > 0 ⇒ Pψk
(πt ∈ B|Q[0,t−1] = Q) > 0 ⇒ ϕ(B) > 0

where the first follows from (3.5), and the second from (3.6), (3.7), and the
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fact that ψk ≪ ϕ for all k ≥ 0.

But since Q was arbitrary, this also holds for any policy γ ∈ ΓWS. Thus,

P γ
µ (πt ∈ B) > 0 ⇒ ϕ(B) > 0.

Finally, let π be reachable under γ, i.e., P γ
µ (πt = π) > 0. Then the above

implies that, for any open neighborhood N(π) around π, we have ϕ(N(π)) >

0. This implies that π must satisfy either (i) or (ii).

Corollary 3.2.14. Let π0 = µ ∈ supp(ϕ) and γ ∈ ΓWS, and consider the

resulting process (πµt )t≥0. Let (π̂µt )t≥0 be the corresponding nearest neighbors

in PN(X ). Then with an appropriate choice of tie-breaking rules on the

nearest neighbor map, we have that (π̂µt )t≥0 ⊂ Pϕ
N(X ).

Proof. The result follows immediately from Lemma 3.2.13 by recognizing

that, with an appropriate choice of tie-breaking rule, we can enforce that

only case (i) occurs.

For the remainder, we assume that such a tie-breaking rule is used, and

provide a simple method for obtaining one such rule at the end of this chapter.

The following is then the analog of Theorem 2.2.8.

Theorem 3.2.15. Let π0 = ζ and let Assumption 3.2.8 hold. Let (π̂t)t≥0,

(Qt)t≥0, and (Ct)t≥0 be generated through Algorithm 2, and let Vt be as in

(3.1). Then the following hold:

(i) Vt converges almost surely to a limit V ∗.
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(ii) The policy defined by

γ̂∗N(π̂) := argmin
Q∈Q

V ∗(π̂, Q) (3.8)

is optimal for MDPN := (Pϕ
N(X ),Q, PN , cN) for the discounted cost

criterion.

(iii) The policy defined by

γ̃∗N(π) := γ̂∗N(π̂),

where π̂ is the nearest neighbor of π in PN(X ), satisfies

lim
N→∞

∣∣Jβ(ζ, γ̃∗N)− J∗
β(ζ)

∣∣ = 0.

Proof. The results follow from the same arguments in the proof of Theorem

2.2.8, by invoking the relevant theorems from this section. In particular, (i)

follows from Corollary 3.2.12, (ii) follows from (3.4) and the DCOE, and (iii)

follows from part (ii), Corollary 3.1.2, and Lemmas 3.2.7 and 3.2.13.

The following is then an immediate corollary of the previous theorem and

Theorem 1.4.15.

Corollary 3.2.16. For every ϵ > 0, there exists some β′ such that for all

β ∈ (β′, 1) and all N ≥ Nβ,

J(ζ, γ̃∗N,β) ≤ J∗(ζ) + ϵ,
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where γ̃∗N,β is the policy from Theorem 3.2.15 (iii) when we compute Vt+1

using discount parameter β.

Remark 3.2.17. To determine the tie-breaking rule in Corollary 3.2.14,

note that by Lemma 3.2.10 we have that with probability one, the average

empirical occupation times of each π̂ ∈ Pϕ
N(X ) will converge to a positive

value, while those of π̂ ∈ PN(X ) \Pϕ
N(X ) will converge to zero. Accordingly,

for the tie-breaking rule in Corollary 3.2.14, one can simply break ties by

choosing the bin with a greater empirical occupation time in order to ensure

we always stay within Pϕ
N(X ).
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Chapter 4

Sliding Finite Window Scheme

4.1 Approximation

Under this scheme we approximate πt using a sliding finite window, rather

than a nearest neighbor scheme. The analysis in this section is inspired

by [44], which used a similar construction to study sliding finite window

policies for partially observed Markov decision processes (POMDPs).

4.1.1 An Alternative Exact MDP and its Optimality

First, we must define a slightly different MDP than the previous chapters,

where we studied (P(X ),Q, P, c). Fix some window size N ∈ Z+. Recall the

channel outputs (M ′
t)t≥0 and the quantizers (Qt)t≥0. We define the following:

It := (M ′
[t−N,t−1], Q[t−N,t−1])
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Wt := (πt−N , It).

Note that we can compute πt given Wt by applying the update equations

in (1.13) N times. Denote this mapping by

φ : W → P(X )

Wt 7→ πt

where W = P(X )×(M′)N×QN , endowed with the product topology, where

we use the weak convergence topology on P(X ) and standard coordinate

topologies on M′ and Q.

We call Wt the sliding finite window belief term, and call policies of the

form Qt = γt(Wt) sliding finite window belief policies (with window size

N). If it does not depend on t, we call it stationary. Denote the set of all

stationary sliding finite window belief policies by ΓFS.

Remark 4.1.1. This approach assumes that we start at time t ≥ N ; al-

though for a general MDP the first N steps may be significant, for the zero-

delay coding problem we are interested in taking β → 1, so these first N

steps will not be crucial. Accordingly, we assume that N steps have already

been completed with some arbitrary γ ∈ ΓWS. For notational simplicity, we

assume that these steps have occurred from t = −N, . . . ,−1 and thus the

process starts from W0 (and the prior would now be π−N).

This sliding finite window belief construction inherits the MDP properties
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of the original setup. Indeed, it is straightforward to show that the process

(Wt)t≥0 is controlled Markov, with control (Qt)t≥0. That is, for all t ≥ 0,

P (Wt+1|W[0,t], Q[0,t]) = P (Wt+1|Wt, Qt). (4.1)

Proposition 4.1.2. Under any γ ∈ ΓFS, the zero-delay coding problem is

an MDP, where:

1. Z = W.

2. U = Q.

3. P = P (dw′|w,Q).

4. c(w,Q) =
∑

M′ minx̂∈X̂
∑

X d(x, x̂)OQ(m
′|x)φ(w)(x),

where we recall the notation OQ(m
′|x) = O(m′|Q(x)).

Note that the cost function is exactly the cost function we had in Proposi-

tion 1.4.12, by simply replacing π = φ(w). Then an analog to Lemma 1.4.13

holds, and we indeed have that solving the MDP from Proposition 4.1.2 is

equivalent to solving the zero-delay coding problem. That is, we can equiv-

alently consider J∗
β(w0) = infγ∈ΓFS

Jβ(w0, γ).

The next proposition follows immediately from Proposition 1.4.10 and

the fact that πt = φ(Wt).

Proposition 4.1.3. For any β ∈ (0, 1) and N ∈ Z+, there exists γ∗ ∈ ΓFS
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that solves the discounted cost problem; that is, one that satisfies

Jβ(w0, γ
∗) = J∗

β(w0)

for all w0 ∈ W.

4.1.2 Near-Optimal Finite Model (SlidingWindow) Ap-

proximation of the Alternative MDP

The above representation is still not particularly useful, as it still requires

one to compute πt−N . Instead, fix the first coordinate to ζ and let

Ŵt = (ζ, It) (4.2)

π̂t = φ(Ŵt). (4.3)

That is, we obtain π̂t by applying the update equations N times, but starting

from an incorrect (fixed) prior ζ. Equivalently,

πt(x) = P γ
πt−N

(Xt = x|M ′
[t−N,t−1], Q[t−N,t−1])

π̂t(x) = P γ
ζ (Xt = x|M ′

[t−N,t−1], Q[t−N,t−1]).

The key idea, which will be discussed in detail later, is that under predictor

stability the correct predictor πt = φ(Wt) and the incorrect predictor π̂t =

φ(Ŵt) will be close for large enough N , since the predictor will be insensitive

61



to the prior.

The benefits of such an approximation are evident: rather than deal with

all of W , which is uncountable due to P(X ), we only have to deal with the

finite set WN := {ζ} × (M′)N × QN . Furthermore, we no longer need to

compute πt−N , which can save significant computation resources especially

when the relevant alphabets are large.

Consider the following transition kernel,

PN(ŵ1|ŵ, Q) := P (P(X ), i1|ŵ, Q), (4.4)

where P is the transition kernel of the sliding finite window belief MDP and

ŵ1 = (ζ, i1), and cost function

cN(ŵ, Q) :=
∑
M′

min
x̂∈X̂

∑
X

d(x, x̂)OQ(m
′|x)π̂(x). (4.5)

Then, our approximate MDP becomes MDPN = (WN ,Q, PN , cN). De-

note the discounted cost for this MDP under a given policy (from WN to Q)

by Ĵβ(ŵ0, γ̂), and the optimal discounted cost by Ĵ∗
β(ŵ0), with minimizing

policy γ̂∗N . The relevant extensions (which are obtained by making the pre-

vious functions constant over P(X )) are then J̃∗
β(w0) and γ̃

∗
N . The following

is a key loss term:

LNt := sup
γ∈ΓWS

Eγ
πt−N

[||πt − π̂t||TV ] . (4.6)
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We now present our main results for this approximation scheme, which give

a bound on the performance loss when using the given window length N .

Note that here we take an expectation with respect to some policy acting on

the previous N steps (and hence generates W0), and with respect to some

prior π−N . Also, define ||d||∞ := maxx,x̂ d(x, x̂), where we recall that d is the

distortion measure for the zero-delay coding problem.

Theorem 4.1.4. For any γ ∈ ΓWS acting on N time steps to generate W0

and any prior π−N ∈ P(X ), we have

Eγ
π−N

[∣∣∣J̃∗
β(W0)− J∗

β(W0)
∣∣∣] ≤ ||d||∞

1− β

∞∑
t=0

βtLNt .

Theorem 4.1.5. For any γ ∈ ΓWS acting on N time steps to generate W0

and any prior π−N ∈ P(X ), we have

Eγ
π−N

[∣∣Jβ(W0, γ̃
∗
N)− J∗

β(W0)
∣∣] ≤ 2||d||∞

1− β

∞∑
t=0

βtLNt .

The proofs for Theorems 4.1.4 and 4.1.5 are given at the end of this

chapter.

4.1.3 Bounds on the Loss Term

The loss term LNt in the previous theorems is related to the question of

predictor stability (recall Section 1.5). Indeed, the term within the supremum
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is exactly

Eγ
µ [||π

µ
t − πνt ||TV ] (4.7)

when µ = πt−N and ν = ζ, and under some γ ∈ ΓWS. Thus bounding this

term over all γ will give us a bound on LNt . We note that any notion of

predictor stability could be used to give a bound on LNt (and thus on the

performance of γ̃∗N). In the following section, we give one such condition

which is sufficient (but by no means necessary) to apply the above theorems.

Dobrushin Coefficient Conditions

The following results are inspired by the analysis in [52], which uses joint

contraction properties of the state and observation kernels to bound (4.7).

First we introduce some notation. For standard Borel spaces A1,A2 and

some kernel K : A1 → P(A2), we define the Dobrushin coefficient as

δ(K) := inf
n∑
i=1

min(K(Bi|x), K(Bi|y)),

where the infimum is over x, y ∈ A1 and all partitions {Bi}ni=1 of A2. In par-

ticular, for finite spaces, the Dobrushin coefficient is equivalent to summing

the minimum elements between every pair of rows, then taking the minimum
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of these sums. For example, take

K =



1
2

1
2

0 0

1
3

1
3

1
3

0

1
3

1
3

0 1
3

1
4

1
4

1
4

1
4


.

Between the first and second rows, the sum of the minimum elements gives 2
3
,

between the third and fourth gives 3
4
, etc. One can verify that the minimum

of such sums is 1
2
, so δ(K) = 1

2
(note that δ(K) ≤ 1 by definition).

The following is then a counterpart of [52, Theorem 3.6]. Note that in

our case, the channel is not time-invariant, unlike in [52], but the analysis

follows similarly. The proof is provided at the end of the chapter.

Theorem 4.1.6. For any γ ∈ ΓWS and for any µ≪ ν, we have

Eγ
µ

[
||πµt+1 − πνt+1||TV

]
≤ (1− δ(T ))(2− δ̃(O))Eγ

µ [||π
µ
t − πνt ||TV ] ,

where δ̃(O) = minQ∈Q(δ(OQ)).

We can arrive at a simpler bound by using δ(O) directly rather than

δ̃(O). To see this, note that for a given quantizer Q, the kernel OQ(m
′|x) =

O(m′|Q(x)) only contains rows from the kernel O, thus δ(O) ≤ δ(OQ) for all

Q. Thus we arrive at the following corollary.

Corollary 4.1.7. Assume α := (1 − δ(T ))(2 − δ(O)) < 1. Then for any
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γ ∈ ΓWS and for any µ≪ ν, we have

Eγ
µ

[
||πµt+1 − πνt+1||TV

]
≤ αEγ

µ [||π
µ
t − πνt ||TV ] .

That is, the predictor process is exponentially stable in total variation in

expectation. Furthermore, if δ(T ) > 1
2
, then the above is true with α =

1− δ(T ) regardless of the channel O.

Applying this to the LNt term, we have

LNt = sup
γ∈ΓWS

Eγ
πt−N

[||πt − π̂t||TV ]

≤ αN ||πt−N − ζ||TV ≤ 2αN . (4.8)

Note that, in many applications of the zero-delay quantization problem,

the requirement that (1 − δ(T ))(2 − δ(O)) < 1 is too strong. In particular,

in the special case where the channel is noiseless, we will always have that

δ(O) = 0. Thus we can only use Corollary 4.1.7 if δ(T ) > 1
2
.

This is not surprising given the nature of Dobrushin-type conditions. At

a high level, the Dobrushin coefficient tells us how similar the conditional

measures OQ(m
′|x) and OQ(m

′|y) are for different x, y ∈ X . The more

similar they are, the closer the coefficient is to 1. Therefore, such Dobrushin-

type conditions prioritize uninformative kernels, as these will have Dobrushin

coefficients closer to 1. Conversely, the goal of the zero-delay coding problem

is to use quantizers that create informative kernels. Nevertheless, the above
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conditions give an easy-to-verify condition for predictor stability, and give us

a rather strong form of stability (exponential).

Combining Theorem 4.1.5 and the bound in (4.8), we obtain the following

result.

Corollary 4.1.8. Assume α := (1 − δ(T ))(2 − δ(O)) < 1. Then for any

γ ∈ ΓWS which acts on N time steps to generate w0 and any prior π−N , we

have

Eγ
π−N

[∣∣Jβ(W0, γ̃
∗
N)− J∗

β(W0)
∣∣] ≤ 4||d||∞

(1− β)2
αN .

4.2 Q-Learning and its Convergence to the

Sliding Finite Window Model MDP

As in previous chapters, we present an algorithm to compute three sequences.

However, in this algorithm, our three sequences are (Ŵt)t≥0, (Qt)t≥0, and

(Ct)t≥0. Note also the time shift - we assume that the algorithm starts at

time t = −N .

Algorithm 3: Sliding finite window Q-learning

Require: initial distribution π−N , transition kernel T , channel kernel O,

quantizer set Q

1: Sample X−N ∼ π−N

2: Choose Q−N uniformly from Q

67



3: M−N = Q−N(X−N)

4: Sample M ′
−N ∼ O(·|M−N)

5: for t = −N + 1, . . . ,−1 do

6: Sample Xt ∼ T (·|Xt−1)

7: Choose Qt uniformly from Q

8: Mt = Qt(Xt)

9: Sample M ′
t ∼ O(·|Mt)

10: for t ≥ 0 do

11: Compute Ŵt using (4.2)

12: Sample Xt ∼ T (·|Xt−1)

13: Choose Qt uniformly from Q

14: Mt = Qt(Xt)

15: Compute Ct = cN(Ŵt, Qt) using (4.5)

16: Sample M ′
t ∼ O(·|Mt)

Then consider the sequence (Vt)t≥0, where Vt : WN ×Q → R+, defined by

Vt+1(Ŵt, Qt) = (1− αt(Ŵt, Qt))Vt(Ŵt, Qt) (4.9)

+ αt(Ŵt, Qt)

(
Ct + βmin

Q∈Q
Vt(Ŵt+1, Q)

)
Vt+1(ŵ, Q) = Vt(ŵ, Q) for all (ŵ, Q) ̸= (Ŵt, Qt), (4.10)

where

αt(ŵ, Q) =
1

1 +
∑t

k=0 1(Ŵk = ŵ, Qk = Q)
.
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Remark 4.2.1. For the nearest neighbor scheme, we used the “true” cost

c(πt, Qt), since computing the approximate cost cN from (2.3) is difficult

for two reasons: (i) the map from P(X ) to PN(X ) makes computing the

corresponding bins somewhat complicated, and (ii) more importantly, we do

not know the measures ϕN,i in (2.4), only that they exist. For the sliding finite

window scheme, we wish to avoid computing πt (since it is not needed for the

approximation), and computing cN is straightforward via (4.5). Accordingly,

we use the “approximate” cost cN(ŵt, Qt). Further advantages/disadvantages

of this approach will be discussed in the following chapter.

Note that not every element of WN has positive probability of occurring

- some sequences of channel outputs and quantizers may be impossible (for

any prior) depending on our source and channel. Note that having zero

probability under any prior π−N is equivalent to having zero probability under

ζ, since π ≪ ζ for all π. Accordingly, we define the following set, which will

play a similar role to Pϕ
N(X ) in Chapters 2 and 3.

W+
N := {ŵ ∈ WN : Pζ(Ŵ0 = ŵ) > 0}.

Theorem 4.2.2. Under Algorithm 3, for any π−N and for all (ŵ, Q) ∈

W+
N ×Q, the process (Ŵt+1, Ŵt, Qt, Ct)t≥0 is such that almost surely,

(i) (Ŵt, Qt) = (ŵ, Q) infinitely often, and thus
∑

t≥0 αt(ŵ, Q) = ∞.
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(ii) ∑t
k=0Ck1(Ŵk = ŵ, Qk = Q)∑t
k=0 1(Ŵk = ŵ, Qk = Q)

→ cN(ŵ, Q).

(iii) ∑t
k=0 f(Ŵk+1)1(Ŵk = ŵ, Qk = Q)∑t

k=0 1(Ŵk = ŵ, Qk = Q)
→
∫
W+

N

f(ŵ1)PN(dŵ1|ŵ, Q)

for any f : W+
N → R.

Proof. To show (i), note that since the source (Xt)t≥0 is positive Harris

recurrent (with invariant measure ζ), the marginals on Xt are such that

||P (Xt ∈ ·) − ζ||TV → 0 as t → ∞. Accordingly, every ŵ ∈ W+
N will even-

tually satisfy Pπt−N
(Ŵt = ŵ) > 0 for all sufficiently large t, and since there

are only finitely many this implies that each is hit infinitely often by Ŵt. We

have (ii) directly by Ck = cN(Ŵk, Qk).

(iii) follows from a similar argument to (i); by noting that the marginals

on Xt converge to ζ, we must have for any f : (M′)N ×QN → R,

∑t
k=0 f(Ik+1)1(Ik = i, Qk = Q)∑t

k=0 1(Ik = i, Qk = Q)
→
∫
f(i1)P (P(X ), i1|ζ, i, Q),

where P (P(X ), i1|ζ, i, Q) is the kernel from (4.1). But this is exactly the

definition of PN , so the result follows.

We can then apply Theorem 1.4.7 to obtain an analogous result to Corol-

laries 2.2.6 and 3.2.12,
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Corollary 4.2.3. For each (ŵ, Q) ∈ W+
N × Q, Vt(ŵ, Q) defined in (4.10)

converges almost surely to V ∗(ŵ, Q) satisfying,

V ∗(ŵ, Q) = cN(ŵ, Q) + β
∑
W+

N

min
Q
V ∗(ŵ1, Q)PN(ŵ1|ŵ, Q). (4.11)

Thus we obtain the following analogous result to Theorems 2.2.8 and

3.2.15, and the proof follows identically.

Theorem 4.2.4. Fix any π−N and let (Ŵt)t≥0, (Qt)t≥0, and (Ct)t≥0 be gen-

erated through Algorithm 3, and let Vt be as in (4.10). Further, assume that

the source and channel kernels satisfy α := (1− δ(T ))(2− δ(O)) < 1. Then

the following hold:

(i) Vt converges almost surely to a limit V ∗.

(ii) The policy defined by

γ̂∗N(ŵ) := argmin
Q∈Q

V ∗(ŵ, Q) (4.12)

is optimal for MDPN := (W+
N ,Q, PN , cN) for the discounted cost crite-

rion.

(iii) The policy defined by

γ̃∗N(w) := γ̂∗N(ŵ),
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where ŵ = (ζ, i) and w = (π, i) agree on their i coordinates, satisfies

Eγ
π−N

[∣∣Jβ(W0, γ̃
∗
N)− J∗

β(W0)
∣∣] ≤ 4||d||∞

(1− β)2
αN ,

and thus for each w0 ∈ W+
N ,

lim
N→∞

∣∣Jβ(w0, γ̃
∗
N)− J∗

β(w0)
∣∣ = 0.

The following is then an immediate corollary of the previous theorem and

Theorem 1.4.15.

Corollary 4.2.5. For every ϵ > 0, there exists some β′ such that for all

β ∈ (β′, 1), all N ≥ Nβ, and all w0 ∈ W+
N ,

J(w0, γ̃
∗
N,β) ≤ J∗(w0) + ϵ,

where γ̃∗N,β is the policy from Theorem 4.2.4 (iii) when we compute Vt+1 using

discount parameter β.

4.3 Proofs of Theorems 4.1.4 and 4.1.5

Lemma 4.3.1. Recall It = (M ′
[t−N,t−1], Q[t−N,t−1]), Wt = (πt−N , It), Ŵt =

(ζ, It), and π̂t = P γ
ζ (Xt|m′

[t−N,t−1], Q[t−N.t−1]). Then for any wt ∈ W, ŵt ∈
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WN , and Qt ∈ Q we have

||P (M ′
t ∈ ·|wt, Qt)− P (M ′

t ∈ ·|ŵt, Qt)||TV ≤ ||πt − π̂t||TV .

Proof. Let f : M′ → R be measurable with ||f ||∞ ≤ 1. Then,

∣∣∣∣∣∑
M′

f(m′
t)P (m

′
t|wt, Qt)−

∑
M′

f(m′
t)P (m

′
t|ŵt, Qt)

∣∣∣∣∣
=

∣∣∣∣∣∑
X

∑
M′

f(m′
t)P (m

′
t|wt, xt, Qt)P (xt|wt, Qt)

−
∑
X

∑
M′

f(m′
t)P (m

′
t|ŵt, xt, Qt)P (xt|ŵt, Qt)

∣∣∣∣∣
=

∣∣∣∣∣∑
X

∑
M′

f(m′
t)OQt(m

′
t|xt)πt(xt)−

∑
X

∑
M′

f(m′
t)OQt(m

′
t|xt)π̂t(xt)

∣∣∣∣∣
≤ ||πt − π̂t||TV ,

where the third line follows from conditional independence of M ′
t and Wt

given (Xt, Qt), and since Qt is a function of Wt under any γ ∈ ΓWS. The last

line follows from the fact that g(x) :=
∑

M′ f(m′)OQ(m
′|x) is upper bounded

by 1. Taking the supremum over all such f yields the result.

Proof of Theorem 4.1.4

We provide a proof for the case when N = 1, but an analogous proof follows

for N > 1. It can be shown (see [32, Theorem 4.2.3]) that the functions
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Jβ(wt, γ) and J
∗
β(wt) satisfy the following fixed-point equations:

Jβ(wt, γ) = c(wt, γ(wt)) + β

∫
W
Jβ(wt+1, γ)P (dwt+1|wt, γ(wt))

J∗
β(wt) = min

Qt∈Q

(
c(wt, Qt) + β

∫
W
J∗
β(wt+1)P (dwt+1|wt, Qt)

)
,

for all wt ∈ W and γ ∈ ΓFS. Note that although the integral is over W ,

which is uncountable, we can only reach finitely many elements from a given

wt since the observation space M′ is finite. In particular, when N = 1,

we can write wt = (πt−1,m
′
t−1, Qt−1) and wt+1 = (πt,m

′
t, Qt), so the above

becomes

Jβ(wt, γ) = c(wt, γ(wt)) + β
∑

m′
t∈M′

Jβ((πt,m
′
t, γ(wt)), γ)P (m

′
t|wt, γ(wt))

(4.13)

J∗
β(wt) = min

Qt∈Q

(
c(wt, Qt) + β

∑
m′

t∈M′

J∗
β(πt,m

′
t, Qt)P (m

′
t|wt, Qt)

)
. (4.14)

The functions Ĵβ(ŵt, γ̂) and Ĵ∗
β(ŵt) satisfy equivalent fixed-point equa-

tions to (4.14), so that for N = 1,

Ĵβ(ŵt, γ̂) = c1(ŵt, γ̂(ŵt)) + β
∑

m′
t∈M′

Ĵβ(ζ,m
′
t, γ̂(ŵt))P (m

′
t|ŵt, γ̂(ŵt))

Ĵ∗
β(ŵt) = min

Qt∈Q

(
c1(ŵt, Qt) + β

∑
m′

t∈M′

Ĵ∗
β(ζ,m

′
t, Qt)P (m

′
t|ŵt, Qt)

)
. (4.15)
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By definition of the extension J̃∗
β we have Ĵ∗

β(ŵ1) = J̃∗
β(w1). Thus,

β
∑

m′
0∈M′

Ĵ∗
β(ζ,m

′
0, Q0)P (m

′
0|w0, Q0) = β

∑
m′

0∈M′

J̃∗
β(π0,m

′
0, Q0)P (m

′
0|w0, Q0).

We add and subtract the above term and use J̃∗
β(w0) = Ĵ∗

β(ŵ0) to obtain

∣∣∣J̃∗
β(w0)− J∗

β(w0)
∣∣∣

=
∣∣∣Ĵ∗
β(ŵ0)− β

∑
m′

0∈M′

Ĵ∗
β(ζ,m

′
0, Q0)P (m

′
0|w0, Q0)

+ β
∑

m′
0∈M′̃

J∗
β(π0,m

′
0, Q0)P (m

′
0|w0, Q0)− J∗

β(w0)
∣∣∣.

Then applying the fixed-point equations (4.14) and (4.15) to the last and

first terms respectively,

∣∣∣J̃∗
β(w0)− J∗

β(w0)
∣∣∣

≤ max
Q0∈Q

|c1(ŵ0, Q0)− c(w0, Q0)|

+ β max
Q0∈Q

∣∣∣∣∣∣
∑
m′

0

Ĵ∗
β(ζ,m

′
0, Q0)P (m

′
0|ŵ0, Q0)−

∑
m′

0

Ĵ∗
β(ζ,m

′
0, Q0)P (m

′
0|w0, Q0)

∣∣∣∣∣∣
+β max

Q0∈Q

∣∣∣∣∣∣
∑
m′

0

J̃∗
β(π0,m

′
0, Q0)P (m

′
0|w0, Q0)−

∑
m′

0

J∗
β(π0,m

′
0, Q0)P (m

′
0|w0, Q0)

∣∣∣∣∣∣ .
We now bound these three terms in expectation. The expectation is on W0

and Ŵ0, with respect to the prior π−1 and some γ ∈ ΓWS, but we omit these

in the expectation for notational simplicity. For the first term, by definition
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of c and cN we have

E
[∣∣∣c1(Ŵ0, Q0)− c(W0, Q0)

∣∣∣] ≤ ||d||∞E [||π̂0 − π0||TV ] ≤ ||d||∞L1
0, (4.16)

where ||d||∞ = maxx,x̂ d(x, x̂) and we recall the definition of LNt in (4.6); that

is, L1
0 = supγ∈ΓWS

E [||πt − π̂t||TV ]. For the second term, we have

E

max
Q0∈Q

∣∣∣∣∣∣
∑
m′

0

Ĵ∗
β(ζ,m

′
0, Q0)P (m

′
0|Ŵ0, Q0)−

∑
m′

0

Ĵ∗
β(ζ,m

′
0, Q0)P (m

′
0|W0, Q0)

∣∣∣∣∣∣


≤ ||Ĵ∗
β ||∞E

[
max
Q0∈Q

||P (m′
0|Ŵ0, Q0)− P (m′

0|W0, Q0)||TV
]

≤ ||Ĵ∗
β ||∞L1

0,

where the first inequality follows from the definition of the total variation

(since Ĵ∗
β/||Ĵ∗

β ||∞ is bounded by 1) and the second inequality is due to

Lemma 4.3.1. Finally, since both sums in the last term are over the same

measure P (m′
0|W0, Q0), we have

E

max
Q0∈Q

∣∣∣∣∣∣
∑
m′

0

J̃∗
β(π0,m

′
0, Q0)P (m

′
0|W0, Q0)−

∑
m′

0

J∗
β(π0,m

′
0, Q0)P (m

′
0|W0, Q0)

∣∣∣∣∣∣


≤ sup
γ′∈ΓWS

E
[∣∣∣J̃∗

β(W1)− J∗
β(W1)

∣∣∣] ,
where we have used (π0,M

′
0, Q0) = W1. Combining all three bounds (and
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multiplying by β where appropriate) gives us

E
[∣∣∣J̃∗

β(W0)− J∗
β(W0)

∣∣∣]
≤(||d||∞ + β||Ĵ∗

β ||∞)L1
0 + β sup

γ′∈ΓWS

E
[∣∣∣J̃∗

β(W1)− J∗
β(W1)

∣∣∣]

We apply the same process to the final term, then recursively and by the

fact that ||J∗
β ||∞ ≤ ||d||∞

1−β , we have

E
[∣∣∣J̃∗

β(w0)− J∗
β(W0)

∣∣∣] ≤ ||d||∞
1− β

∞∑
t=0

βtL1
t .

Proof of Theorem 4.1.5

As before, we consider N = 1, but analogous arguments follow for N > 1.

We apply a similar strategy, by using the fixed-point equations in the proof

of Theorem 2. Also, let Q∗
0 := γ̃∗1(w0); that is, the action given by making

the optimal policy for MDP1 constant over P(X ). Then, by (4.13),

Jβ(w0, γ̃
∗
1) = c(w0, Q

∗
0) + β

∑
m′

0∈M′

Jβ((π0,m
′
0, Q

∗
0), γ̃

∗
1)P (m

′
0|w0, Q

∗
0)

and using (4.15) and the fact that J̃∗
β(w0) = Ĵ∗

β(ŵ0),

J̃∗
β(w0) = c1(ŵ0, Q

∗
0) + β

∑
m′

0∈M′

J̃∗
β(π0,m

′
0, Q

∗
0)P (m

′
0|ŵ0, Q

∗
0).

77



Using w1 = (π0,m
′
0, Q

∗
0), we add and subtract

∑
m′

0∈M′

J̃∗
β(w1)P (m

′
0|w0, Q

∗
0),

to obtain

∣∣∣Jβ(w0, γ̃
∗
1)− J̃∗

β(w0)
∣∣∣

≤ |c(w0, Q
∗
0)− c(ŵ0, Q

∗
0)|

+ β
∑

m′
0∈M′

∣∣∣J̃∗
β(w1)P (m

′
0|ŵ0, Q

∗
0)− J̃∗

β(w1)P (m
′
0|w0, Q

∗
0)
∣∣∣

+ β
∑

m′
0∈M′

∣∣∣J̃∗
β(w1)− Jβ(w1, γ̃

∗
1)
∣∣∣P (m′

0|w0, Q
∗
0).

Thus, using (4.16) and Lemma 4.3.1,

E
[∣∣∣Jβ(W0, γ̃

∗
1)− J̃∗

β(W0)
∣∣∣]

≤ ||d||∞L1
0

+ β||J̃∗
β ||∞ sup

γ∈ΓWS

E
[
||P (m′

0|Ŵ0, Q
∗
0)− P (m′

0|W0, Q
∗
0)||TV

]
+ β sup

γ∈ΓWS

E
[∣∣∣J̃∗

β(W1)− Jβ(W1, γ̃
∗
1)
∣∣∣]

≤(||d||∞ + β||J̃∗
β ||∞)L1

0 + β sup
γ′

E
[∣∣∣Jβ(W1, γ̃

∗
1)− J̃∗

β(W1)
∣∣∣] .
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Recursively, and using the fact that ||J̃∗
β ||∞ ≤ ||d||∞

1−β ,

E
[∣∣J∗

β(W0, γ̃
∗
1)− J∗

β(W0)
∣∣] ≤ ||d||∞

1− β

∞∑
t=0

βtL1
t . (4.17)

Finally, we have

E
[∣∣J∗

β(W0, γ̃
∗
1)− J∗

β(W0)
∣∣]

≤ E
[∣∣∣J∗

β(W0, γ̃
∗
1)− J̃∗

β(W0)
∣∣∣]+ E

[∣∣∣J̃∗
β(W0)− J∗

β(W0)
∣∣∣]

≤ 2||d||∞
1− β

∞∑
t=0

βtL1
t ,

where the final inequality follows from (4.17) and Theorem 4.1.4. ■

4.4 Proof of Theorem 4.1.6

Lemma 4.4.1. The following holds:

∑
X

∑
M′

||πµt − πνt ||TVOQt(m
′|x)πµt (x) ≤ (2− δ̃(O))||πµt − πνt ||TV ,

where δ̃(O) = minQ∈Q(δ(OQ)).

Proof. The following argument is from [52, Lemma 3.5], adapted to our setup.

Let f : X → R be measurable with ||f ||∞ ≤ 1. Recall the update equations

for πt, πt given in (1.13), and let Nµ(Mt, Qt) denote the normalizing term for

the (πµt )t≥0 process, Nµ(M ′
t , Qt) :=

∑
X gQt(x,M

′
t)π

µ
t (x). Then we have for
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any M ′
t = m′ and Qt = Q,

∣∣∣∣∣∑
X

f(x)πµt (x)−
∑
X

f(x)πνt (x)

∣∣∣∣∣
=

∣∣∣∣∣∑
X

f(x)
gQ(x,m

′)πµt (x)

Nµ(m′, Q)
−
∑
X

f(x)
gQ(x,m

′)πνt (x)

N ν(m′, Q)

∣∣∣∣∣
≤

∣∣∣∣∣∑
X

f(x)
gQ(x,m

′)πµt (x)

Nµ(m′, Q)
−
∑
X

f(x)
gQ(x,m

′)πνt (x)

Nµ(m′, Q)

∣∣∣∣∣
+

∣∣∣∣∣∑
X

f(x)
gQ(x,m

′)πνt (x)

Nµ(m′, Q)
−
∑
X

f(x)
gQ(x,m

′)πνt (x)

N ν(m′, Q)

∣∣∣∣∣
=

1

Nµ(m′, Q)

∣∣∣∣∣∑
X

f(x)gQ(x,m
′)πµt (x)−

∑
X

f(x)gQ(x,m
′)πνt (x)

∣∣∣∣∣
+

∣∣∣∣∣ 1

Nµ(m′, Q)
− 1

Nν(m′, Q)

∣∣∣∣∣ ·
∣∣∣∣∣∑

X

f(x)gQ(x,m
′)πνt (x)

∣∣∣∣∣
≤ 1

Nµ(m′, Q)

∑
X

gQ(x,m
′)|πµt − πνt |(x)

+

∣∣∣∣ 1

Nµ(m′, Q)
− 1

Nν(m′, Q)

∣∣∣∣Nν(m′, Q)

≤ 1

Nµ(m′, Q)

(∑
X

gQ(x,m
′)|πµt − πνt |(x) + |Nµ(m′, Q)−Nν(m′, Q)|

)
,

where in the second last line we have used the notation
∑

X |πµt − πνt |(x) =∑
X (1S+ − 1S−)(πµt − πνt )(x) with S+ = {x|(πµt − πνt )(x) > 0} and S− =

{x|(πµt − πνt )(x) ≤ 0}. Note that
∑

X |πµt − πνt |(x) = ||πµt − πνt ||TV . Taking

the supremum over all f gives

||πµt − πνt ||TV ≤ 1

Nµ(m′, Q)

(∑
X

gQ(x,m
′)|πµt − πνt |(x)

80



+ |Nµ(m′, Q)−N ν(m′, Q)|

)
. (4.18)

Thus, recalling that ψ is some appropriate reference measure over M′,

∑
X

∑
M′

||πµt − πνt ||TVOQt(m
′|x)πµt (x)

=
∑
X

∑
M′

||πµt − πνt ||TV gQt(x,m
′)ψ(m′)πµt (x)

=
∑
M′

||πµt − πνt ||TV

(∑
X

gQt(x,m
′)πµt (x)

)
ψ(m′)

=
∑
M′

||πµt − πνt ||TVNµ(m′, Qt)ψ(m
′)

≤
∑
M′

(∑
X

gQt(x,m
′)|πµt − πνt |(x) + |Nµ(m′, Qt)−Nν(m′, Qt)|

)
ψ(m′)

≤
∑
X

(∑
M′

gQt(x,m
′)ψ(m′)

)
|πµt − πνt |(x)

+
∑
M′

∣∣∣∣∣∑
X

gQt(x,m
′)(πµt − πνt )(x)

∣∣∣∣∣ψ(m′)

≤||πµt − πνt ||TV +
∑
M′

|OQt(π
µ
t )−OQt(π

ν
t )| (m′)

=||πµt − πνt ||TV + ||OQt(π
µ
t )−OQt(π

ν
t )||TV ,

where in the second last line we have used the kernel operator notation

OQ(π)(m
′) =

∑
X OQ(m

′|x)π(x). It is shown in [48] that the Dobrushin

coefficient acts as a contraction coefficient for kernel operators under total
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variation. In particular

||OQt(π
µ
t )−OQt(π

ν
t )||TV ≤ (1− δ(OQt))||π

µ
t − πνt ||TV . (4.19)

Thus,

∑
X

∑
M′

||πµt − πνt ||TVOQt(m
′|x)πµt (x)

≤(2− δ(OQt))||π
µ
t − πνt ||TV

≤(2− δ̃(O))||πµt − πνt ||TV ,

where δ̃(O) = minQ∈Q(δ(OQ)).

Proof of Theorem 4.1.6

Note that, in Eγ
µ expectations of πµt and πνt , it is enough to take the expecta-

tion over only M ′
[0,t], since under any γ ∈ ΓWS, Q[0,t] are deterministic given

µ and M ′
[0,t−1]. Thus,

Eγ
µ [||π

µ
t − πµt ||TV ]

=
∑

(M′)t+1

||πµt − πµt ||TV P γ
µ (m

′
[0,t])

=
∑
(M′)t

∑
X

∑
M′

||πµt − πµt ||TV P γ
µ (m

′
t|xt,m′

[0,t−1])P
γ
µ (xt|m′

[0,t−1])P
γ
µ (m

′
[0,t−1])

=
∑
(M′)t

∑
X

∑
M′

||πµt − πµt ||TVOQt(m
′
t|xt)π

µ
t (x)P

γ
µ (m

′
[0,t−1])
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≤(2− δ̃(O))
∑
(M′)t

||πµt − πνt ||TV P γ
µ (m

′
[0,t−1])

=(2− δ̃(O))Eγ
µ [||π

µ
t − πνt ||TV ] ,

where the third equality follows from the fact that Qt is deterministic given

µ and M ′
[0,t−1], and that given Xt and Qt, M

′
t depends only on the kernel

OQt . For the inequality we used Lemma 4.4.1. Finally, using the Dobrushin

contraction property for kernels (as noted in the derivation of (4.19)), we

have

Eγ
µ

[
||πµt+1 − πνt+1||TV

]
≤ (1− δ(T ))Eγ

µ [||π
µ
t − πµt ||TV ]

≤ (1− δ(T ))(2− δ̃(O))Eγ
µ [||π

µ
t − πνt ||TV ] .
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Chapter 5

Comparison: Belief

Quantization vs Sliding Finite

Window

In this section, we provide a detailed comparison noting explicit benefits

and drawbacks of the schemes in the previous chapters. We also provide

supporting simulations to illustrate some of our key points, as well as to

generally show the performance of the algorithms in the previous chapters.

Unique invariant measure and convergence of Q-learning

• Belief quantization (noiseless): In Theorem 2.2.8, the convergence of

Vt happens regardless of the initial distribution used during learning.

This is due to the strong recurrence property noted in Lemma 2.2.1,

84



which guarantees that the underlying (πt)t≥0 process will converge to its

unique invariant distribution ϕ from any initialization. This property

also made it straightforward to show the uniqueness of ϕ (see Lemma

2.2.3).

• Belief quantization (noisy): Since we lack a recurrence property, prov-

ing the uniqueness of ϕ was more difficult, and it was necessary to use

asymptotic predictor stability. Accordingly, the convergence to ϕ (and

thus, the convergence of Vt in Theorem 3.2.15) only holds for certain ini-

tial distributions (in particular, for ϕ-almost every initial distribution).

However, since we do not know the exact form of ϕ, we relied on weak

continuity and the additional Assumption 3.2.8 to claim convergence

for π0 = ζ.

• Sliding finite window: Since the sliding finite window approximation is

constant over P(X ), the convergence to a unique invariant measure no

longer depends on the (complex) properties of (πt)t≥0, and is instead

inherited directly from the unique invariance of (Xt)t≥0. Furthermore,

since there are only finitely many finite windows, convergence in The-

orem 4.2.4 holds for almost any initial window (under any prior).

Initialization during implementation of learned policy

• Belief quantization (noiseless): Again due to the recurrence property

in Lemma 2.2.1, the near-optimality of the resulting policy holds for
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any of these recurrent elements (in particular, when π0 is any row of

T , as noted in the proof of Lemma 2.2.1).

• Belief quantization (noisy): Since the learned policy is only optimal

over Pϕ
N(X ), we require that the initial distribution during implemen-

tation is in the support of ϕ (in particular, we fix it to ζ). Note that

we also require that the tie-breaking rule on the nearest neighbor map

takes a certain form to ensure that we remain in Pϕ
N(X ), as noted in

Remark 3.2.17.

• Sliding finite window: Although we place restrictions on the source and

channel in this scheme (to be discussed shortly), the initialization w0

can be almost any finite window.

Conditions on the source and channel

• Belief quantization: Theorems 2.2.8 and 3.2.15 hold as long as the

source admits a unique invariant distribution (though with the assump-

tions noted above on initializations).

• Sliding finite window: In order to ensure that the learned policy be-

comes near-optimal, we require a bound on the loss term Lt. In par-

ticular, we enforce that α := (1 − δ(T ))(2 − δ(O)) < 1, which means

our sliding finite window approach is only valid on a restricted class of

sources and channels.
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Computational complexity and need for Bayesian updates

• Belief quantization: In both the noiseless and noisy setups, one must

compute the true belief process (πt)t≥0 using the update equations, then

quantize this to the set PN(X ). This increases the computational com-

plexity of this scheme (and requires explicit knowledge of the system

model), both during the Q-learning algorithm and during implementa-

tion of the learned policy.

• Sliding finite window: The sliding finite window scheme uses the ap-

proximate predictor from a fixed prior and a given history. Since there

are only finitely many such histories, one can compute these offline be-

fore running the Q-learning and before implementation of the learned

policy. They can then be accessed in a lookup table fashion, saving

considerable computation especially when the alphabets are large.

Encoder/decoder implementation

• Belief quantization: In the belief quantization scheme, both the encoder

and the decoder must track the true belief πt. The encoder needs πt to

compute the proper value of π̂t and apply the learned policy, while the

decoder needs it to compute the optimal reproduction value x̂t.

• Sliding finite window: In the sliding finite window scheme the encoder

policy is a constant function in P(X ), so it can directly use the slid-

ing finite window to apply the learned policy. The decoder must still

87



compute π̂t in order to calculate the reproduction value x̂t, however

as in the previous point this can be done in a lookup table fashion.

Note that in this case the decoder used is not strictly optimal for the

encoder (as it uses the approximate π̂t to compute x̂t), but under the

Dobrushin coefficient conditions it is near-optimal for large N .

Rate of convergence to near-optimality

• Belief quantization: The near-optimality in Theorems 2.2.8 and 3.2.15

is only asymptotic as N → ∞.

• Sliding finite window: For the sliding finite window result in Theo-

rem 4.2.4, the convergence is exponential (note that although we only

bound the expectation, since there are only finitely many initial mem-

ories, the convergence is also exponential in N for each initial finite

window).

Quantization

• Belief quantization: To apply Theorem 1.4.5 we only require that

maxπ d(π, π̂) → 0; accordingly, the quantization of P(X ) does not have

to be uniform. Theoretically, this allows a more efficient quantization,

although in our implementation we always use the nearest neighbor

scheme over PN(X ) (which gives a uniform quantization).

• Sliding finite window: The sliding finite window can be seen as a non-
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Belief quantization Sliding finite window

Convergence of
Q-learning and
near-optimality

✓ ✓

General source and
channel ✓ ✗

Insensitive to
initialization ✗ ✓

Exponential
convergence of
performance

✗ ✓

Bayesian update not
needed ✗ ✓

Lookup table
implementation ✗ ✓

Table 5.1: Comparison of the two approximation schemes

uniform quantization of W (since it is constant over the belief coordi-

nate). However, it is uniform over the product space (M′)N×QN , since

the sliding finite window scheme uses every possible finite window.

We summarize some of the key differences between the schemes in Ta-

ble 5.1, considering both the noiseless and noisy channel belief quantization

schemes together.

5.1 Simulations

We now give some examples of zero-delay coding problems and simulate the

performance of the policies resulting from Theorems 2.2.8, 3.2.15, and 4.2.4.

In all of the following, we use a discount factor β = 0.9999 and the distortion
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function d(x, x̂) = (x − x̂)2. The average distortion is calculated over t = 0

to t = 105. The initial distribution is ζ (that is, the invariant distribution

for the source).

Remark 5.1.1. On implementation of the Q-learning algorithms: the theo-

retical upper bound for the possible number of states in each scheme grows

very quickly in their respective parameters. In particular, for the belief quan-

tization approach we have |PN(X )| =
(
N+|X |+1
|X |−1

)
[45], and for the sliding finite

window approach we have |WN | = |M′ ×Q|N . However, the sets actually

visited during Q-learning (that is, Pϕ
N and W+

N) may be much smaller. Thus,

one may wish to add entries to Vt as they are visited by the Q-learning al-

gorithm in a dynamic fashion. Furthermore, note that for certain problems

it may be possible to significantly shrink the set of quantizers Q with no

loss of optimality. For example, for a noiseless channel one can omit those

quantizers with empty bins, or for an i.i.d. source those with non-convex

bins.

5.1.1 Comparison with Lloyd-Max quantizer for i.i.d.

source and noiseless channel

Let X = {0, . . . , 7} and consider an i.i.d. source (Xt)t≥0, such that for all x,

T (·|x) =
(

1
4

1
8

1
8

1
16

1
16

1
16

1
4

1
16

)
.
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Note that in the i.i.d. case, we trivially have δ(T ) = 1, so the sliding finite

window approach is applicable. Indeed, here we have that α = 0, so that for

all N ≥ 1,

Eγ
π−N

[∣∣Jβ(w0, γ̃
∗)− J∗

β(w0)
∣∣] = 0.

That is, the optimal policy for the sliding finite window representation is

optimal (not just near-optimal) for the original problem for any N . This is

not surprising given the i.i.d. nature of the source; the approximation of πt−N

to ζ is without any loss since πt−N can be immediately recovered.

Similarly for the quantization approach, N = 1 is sufficient since πt = ζ

for all t ≥ 0, so increasing N does not change the resulting policy. Ac-

cordingly, we let N = 1 and compare the performance of both approaches

against a Lloyd-Max quantizer when the channel is noiseless. We plot the

performance for N = 1 and several sizes of M. The rate is calculated as

log2 |M|. As expected by the above discussion, our algorithm matches with

this quantizer in each case, which can be seen in Figure 5.1.
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Figure 5.1: Comparison with Lloyd-Max

5.1.2 Comparison with memoryless encoding

Consider now a Markov source with transition kernel given by

T =



1
2

1
6

1
6

1
6

1
3

1
3

1
3

0

1
3

1
3

0 1
3

1
4

1
4

1
4

1
4
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and where the channel is a 4-ary symmetric channel with error probability

0.06:

O =



0.94 0.02 0.02 0.02

0.02 0.94 0.02 0.02

0.02 0.02 0.94 0.02

0.02 0.02 0.02 0.94


.

We have that δ(T ) = 2
3
> 1

2
, so we can apply the finite memory scheme. In

such a setup (where X = M and the channel is symmetric), it was shown

in [16] that “memoryless” encoding (that is, where Mt = Xt) is optimal.

We compare our algorithms against such an encoding policy, shown in Fig-

ures 5.2 and 5.3, and note that both approach the optimum as N increases.

Recall that N represents different parameters in the different approximation

schemes; for the quantized belief method, it represents the common denom-

inator of the finite set PN(X ), while it represents the window length for the

sliding finite window method. Accordingly, we present the schemes on dif-

ferent sets of axes. Note that the convergence of the sliding finite window

scheme to the optimum indeed appears exponential in N , as expected by

Theorem 4.2.4.
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Figure 5.2: Quantized belief scheme vs memoryless encoding

Figure 5.3: Finite memory scheme vs memoryless encoding
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5.1.3 Problem with unknown optimum

Finally, we consider a setup where an optimal encoding scheme is unknown.

Here we have a Markov source with transition kernel given by

T =



0.2476 0.1527 0.0775 0.2219 0.2082 0.0920

0.0805 0.0247 0.0776 0.1290 0.3718 0.3164

0.1510 0.2335 0.2042 0.0107 0.1425 0.2580

0.0056 0.2252 0.2303 0.2173 0.1141 0.2076

0.1357 0.2685 0.0494 0.1981 0.2930 0.0553

0.2373 0.2795 0.0698 0.0399 0.1371 0.2363


.

Note that this transition kernel was randomly generated from the set of

6 × 6 transition matrices. The channel is a 3-ary symmetric channel with

error probability 0.04:

O =


0.96 0.02 0.02

0.02 0.96 0.02

0.02 0.02 0.96

 .

It can be verified that the Dobrushin coefficient conditions of Theorem 4.2.4

are met for this setup. Figures 5.4 and 5.5 give the performance of both

schemes for this problem.
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Figure 5.4: Quantized belief scheme with unknown optimum

Figure 5.5: Finite memory scheme with unknown optimum
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we establish approximation and reinforcement learning results

for the zero-delay coding problem over a possibly noisy channel with feed-

back, building on recent results in the stochastic control literature. The

results crucially rely on the fact that the zero-delay coding problem can be

formulated as a Markov decision process (MDP) with a belief-valued state

and quantizer-valued control. This yields, to our knowledge, the first con-

crete implementation of an algorithm to find a provably near-optimal policy

for this problem.

In Chapter 2, we review the results of [1] which examined the special

case of a noiseless channel and approximate the problem by quantizing the

underlying probability space. We leverage the fact that, under a policy which
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chooses quantizers uniformly, the true belief process admits a recurrent state

from any initial prior. This is used to prove certain ergodic behavior of the

approximate process, leading to the convergence of a Q-learning algorithm

to compute a near-optimal policy.

In Chapter 3, we study the same approximation scheme, but this time

with a possibly noisy channel. In this case, we lose the recurrent states from

the noiseless setup, and instead rely on asymptotic filter stability to prove

the ergodic behavior of the approximate process. As a consequence, there

are some additional assumptions placed on the problem, especially on the

initial distribution.

In Chapter 4, we instead use a sliding finite window of past observations

to approximate the belief term, necessitating an alternative MDP formulation

and the development of several supporting results, which generalize existing

results on filter stability to our setup. We show that this scheme results in

exponential convergence to near-optimality and insensitivity to initialization,

but only for a restricted class of sources and channels.

Finally, in Chapter 5 we discuss several important differences between the

schemes and provided supporting simulation results, comparing our policies

against optimal policies, when these are known. When they are not known,

we show convergent behaviour as expected by the rigorous near-optimality

results earlier in the thesis.
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6.2 Future Work

There are several promising research directions for this problem. Firstly, a

generalization to continuous alphabets; the approximations would then be

done by approximating the continuous source alphabet by a compact one,

then by a finite one, and finally applying similar approximation techniques

to those used in this thesis. In [53] and [54, Section V.C], under certain

assumptions, this was shown to be an efficient method for quantizing proba-

bility measures under a Wasserstein metric, and consequently, the weak con-

vergence topology. The ergodic and weak continuity properties are expected

to follow by similar methods to those used here. However, an important

distinction is that the cost function is now unbounded - this requires addi-

tional analysis as the key MDP theorems used here assume a bounded cost

function.

We also wish to find less stringent filter stability conditions for the sliding

finite window scheme than the Dobrushin coefficient ones given here; this may

be possible via observability-type conditions, such as those in [55]. However,

the dependence on past quantizers makes this analysis difficult.

Finally, a very practical generalization is the controlled case, in which

one wishes to send information over a channel to a controller who takes some

control action. Many of the results here are expected to carry over to this

case, with a modification of the MDP formulation.
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[6] R. Bansal and T. Başar, “Simultaneous design of measurement and

control strategies in stochastic systems with feedback,” Automatica,

vol. 45, pp. 679–694, 1989.

[7] S. Tatikonda, A. Sahai, and S. Mitter, “Stochastic linear control over a

communication channels,” IEEE Transactions on Automatic Control,

vol. 49, pp. 1549–1561, 2004.

[8] T. Tanaka, K.-K. K. Kim, P. A. Parrilo, and S. K. Mitter, “Semidefinite

programming approach to Gaussian sequential rate-distortion trade-

offs,” IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1896–

1910, 2016.

[9] M. S. Derpich and J. Østergaard, “Improved upper bounds to the causal

quadratic rate-distortion function for Gaussian stationary sources,”

IEEE Transactions on Information Theory, vol. 58, no. 5, pp. 3131–

3152, 2012.

[10] P. A. Stavrou and M. Skoglund, “Asymptotic reverse waterfilling algo-

rithm of NRDF for certain classes of vector Gauss-Markov processes,”

IEEE Transactions on Automatic Control, vol. 67, no. 6, pp. 3196–

3203, 2022.

[11] P. A. Stavrou, T. Tanaka, and S. Tatikonda, “The time-invariant mul-

tidimensional Gaussian sequential rate-distortion problem revisited,”

101



IEEE Transactions on Automatic Control, vol. 65, no. 5, pp. 2245–

2249, 2019.

[12] V. Kostina and B. Hassibi, “Rate-cost tradeoffs in control,” IEEE

Transactions on Automatic Control, vol. 64, no. 11, pp. 4525–4540,

2019.

[13] D. Pollard, “Quantization and the method of k-means,” IEEE Trans-

actions on Information Theory, vol. 28, pp. 199–205, 1982.

[14] T. Linder, G. Lugosi, and K. Zeger, “Rates of convergence in the source

coding theorem, in empirical quantizer design, and in universal lossy

source coding,” IEEE Transactions on Information Theory, vol. 40,

no. 6, pp. 1728–1740, 1994.

[15] T. Linder, Learning-theoretic methods in vector quantization. Springer,

Wien, New York, 2002, pp. 163–210.

[16] J. C. Walrand and P. Varaiya, “Optimal causal coding-decoding prob-

lems,” IEEE Transactions on Information Theory, vol. 19, pp. 814–

820, 1983.

[17] H. S. Witsenhausen, “On the structure of real-time source coders,” Bell

Syst. Tech. J, vol. 58, pp. 1437–1451, 1979.

[18] R. G. Wood, T. Linder, and S. Yüksel, “Optimal zero delay coding of
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[41] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov

Models, English. Germany: Springer, 2005.

[42] P. Chigansky and R. Liptser, “Stability of nonlinear filters in non-

mixing case,” Annals of Applied Probability, vol. 14, pp. 2038–2056,

2004.
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