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Abstract

We examine bit and symbol interleaving strategies for linear non-binary block codes (under bounded distance

decoding) over the family of binary additive noise finite-state Markov channel (FSMC) models with memory. We

derive a simple analytical sufficient condition under whichperfect (i.e., with infinite interleaving depth) symbol

interleaving outperforms perfect bit interleaving in terms of the probability of codeword error (PCE). It is shown

that the well-known Gilbert-Elliott channel (GEC) with positive noise correlation coefficient as well as the recently

introduced Markovian queue-based channel (QBC) of memoryM satisfy this condition. This result has been

widely illustrated numerically (without proof) in the literature, particularly for the GEC. We also provide examples

of binary FSMC models for which the reverse result holds, i.e., perfect bit interleaving outperforming perfect

symbol interleaving. Finally, a numerical PCE study of imperfect symbol-interleaved non-binary codes over the

QBC indicates that there is a linear relationship between the optimal interleaving depth and a function of a single

parameter of the QBC.

Index Terms

Additive noise channels, binary finite-state Markov channels, Gilbert-Elliott channel, Markovian queue-based

channel, Reed-Solomon and non-binary block codes, symbol and bit interleaving.

I. INTRODUCTION

An important class of non-binary error correcting codes used widely in data transmission and storage

systems is the family of Reed-Solomon (RS) codes [1]. A commonly used strategy to employ an RS code

to correct errors generated by a channel with (statistical)memory is to incorporate block interleaving into

the communication system. It is also known that binary modulated time-correlated flat fading channels
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used in conjunction with hard-decision demodulation can berepresented by stationary binary (modulo-2)

additive noise channels with memory (e.g., see [2], [3]). When non-binary codewords are sent over such

channels, two interleaving strategies are worth considering [4], [5]: (i) interleaving the code symbols; (ii)

interleaving the code (or channel) bits which, under perfect or infinite interleaving depth, reduces the

channel to the memoryless binary symmetric channel (BSC) [6].

In prior works, the performance of non-interleaved RS codesover correlated fading channels is analyzed

in [7]–[9] using a two-step procedure. First, a binary finitestate Markov channel (FSMC) model is

introduced for the generation of the bit or symbol error process, and then a formula for the probability

of codeword error (PCE) under bounded distance decoding is derived for the proposed model. In [7],

the channel is modeled via the Gilbert-Elliott channel (GEC) [6] whose parameters are calculated using

a simple threshold model. In [8], level crossing statisticsare applied to characterize the fading arrival

process and the fading durations, and the PCE is expressed interms of the probability distribution

of the fading durations. In [9], the bit error process resulting from the hard-decision demodulation of

binary frequency-shift keying modulated signals over correlated Rician fading channels is modeled via a

Fritchman channel [10]. Imperfect (finite-length) symbol interleaving is also considered in [8], [9]. In a

recent work [11], the performance of symbol-interleaved RScodes over fading channels modeled via the

GEC is examined in the context of CDMA2000 Broadcast and Multicast Services.

A numerical study of the superiority of symbol-interleaved(over bit-interleaved) RS codes is given

in [4] for the case of slow fading channels. This result motivated the authors of [8] to consider only

symbol interleaving in their investigations. An analytical expression for the PCE of RS codes over binary

FSMC models under imperfect bit- and symbol-interleaving is derived in [5] for two decoding strategies

(bounded distance decoding and error-forecasting decoding). The study conducted in [5] to compare the

performance of these two interleaving strategies for the GEC corroborates the superiority of symbol-

interleaving found in previous numerical studies. However, since there is no known analytical proof in the

literature for this result, it is natural to investigate whether perfect symbol interleavingalwaysoutperforms

perfect bit-interleaving for a given class of binary FSMC models or if there exist conditions on the channel

parameters under which bit-interleaving provides better PCE performance.

In this work, we analytically investigate the merits of perfect symbol and bit interleaving for linear

non-binary block codes under bounded-distance decoding over the class of binary FSMCs (with additive

stationary hidden Markovian noise). This class of FSMC models includes the GEC (which has been widely

shown to be a good model for flat fading channels [2], [3]) and the recently introduced queue-based channel
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(QBC) [12]. The QBC, which features anM th-order additive Markov noise process generated via a finite

queue, has only four parameters (like the GEC), while allowing its memory order to be arbitrarily large.

It also offers (unlike the GEC) closed form expressions for the block transition probability, capacity and

autocorrelation function [12]. Furthermore, it has been shown that the QBC can accurately approximate the

GEC [12] as well as (uncoded and RS coded) hard-decision demodulated Rician flat fading channels [13],

[14].

Imperfect (i.e., with finite interleaving depth) interleaving is an important issue in practice. In particular,

for non-binary block codes over the GEC it was found in [5] that perfect interleaving can be realized when

the interleaving depth is a multiple of the channel’s average burst length (e.g., the typical interleaving

depth needed to achieve perfect symbol and bit interleavingis double and four times the average burst

length of the GEC, respectively [5]). Another motivation for this work is to verify if a similar result also

holds for the QBC. We provide PCE numerical results when imperfect symbol interleaved RS codes are

sent over the QBC and investigate the choice of the optimal interleaving depth in terms of the parameters

of this channel.

The contributions of this correspondence are summarized asfollows. In Proposition 1, we establish a

simple explicit condition (in terms of the FSMC noise statistics) under which perfect symbol interleaving

results in a lower PCE compared to perfect bit interleaving for any linear non-binary block code used

over the FSMC with bounded-distance decoding.1 We analytically show that both the GEC with positive

noise correlation coefficient (i.e., with persistent memory [6]) and the QBC satisfy this condition; see

Propositions 2 and 3. Interestingly, we note an opposite behavior for the simplified Gilbert channel

(SGC) [15] (i.e., the first-order Markov noise channel) whenits noise correlation coefficient is negative2

(this channel is a special instance of the GEC with oscillatory memory [6]); in this case, we show that

perfect bit-interleaved non-binary codes outperform perfect symbol-interleaved ones. We also provide

other examples of FSMC models (Fritchman channels with negative noise correlation coefficient) where

bit interleaving can be better than symbol interleaving. Hence for some classes of channels (such as the

GEC), the choice of the best interleaving strategy is directly related to the sign of the noise correlation

coefficient. Finally, we conduct a numerical study to analyze the sensitivity of the QBC and interleaving

1It is worth pointing out that the result in Proposition 1 doesnot require that the noise process be hidden Markovian (we only need that

the noise be stationary). We however restrict it be hidden Markovian since FSMC models are widely used to model fading channels.
2Note that the case of negative noise correlation coefficientcan reflect situations involving very fast correlated Rician fading (cf. Remark 1).

Even if such fast fading situations may occur rarely in practice, the fact that negative noise correlation leads to bit interleaving outperforming

symbol interleaving (i.e., the reverse result of Propositions 1-3) is at least of conceptual interest.
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parameters with respect to the PCE. We found that, similarlyto the GEC, there is a linear relationship

between the optimal interleaving depth and a function of a single parameter of the QBC.

II. SYSTEM DESCRIPTION

We consider a coded communication system where non-binary transmitted symbols, assuming values

from the Galois field GF(2b), b ≥ 2, are mapped one-to-one to a binaryb-tuple and are transmitted across

a binary FSMC model. Thekth received binary symbolYk is described byYk = Xk ⊕ Zk, k = 1, 2, · · · ,

where⊕ denotes addition modulo-2,Xk ∈ {0, 1} is thekth transmitted symbol andZk ∈ {0, 1} is thekth

channel noise symbol. We assume that the noise process{Zk}
∞

k=1 is a stationary hidden Markov source

and is independent from the transmitted process{Xk}
∞

k=1 . Two channel models considered in this letter

(one with anM th-order Markovian noise and one with a hidden Markovian noise), which belong to the

class of binary FSMC models, are next briefly described.

A. Queue-Based Channel

The queue-based channel (QBC) uses a simple approach to model an M th-order Markov noise process

via a finite queue [12]. At thekth time, the channel generates a noise outputZk that depends on four

parameters: the size of the queue,M , the channel bit error rate (BER),p = Pr(Zk = 1), and correlation

parametersε and α, where0 ≤ ε < 1, α ≥ 0. First, one of two parcels (an urn and a queue of size

M) are selected with probability distribution{ε, 1 − ε}. If the urn is selected, the model generates an

error (Zk = 1) with probability p. If the queue is selected, a binary noise symbol is selected with a

probability distribution that depends onM and on the parameterα (α determines the bias for operating

on the last cell of the queue of lengthM and is equal to 1 whenM = 1 [12]). The channel state process

{Sk}
∞

k=−∞
, whereSk , (Zk, Zk−1, · · · , Zk−M+1) is a homogeneous first-order Markov process with an

alphabet of size2M with 2M × 2M transition probability matrixP = [pij ] given by [12, Eq.(4)] and state

stationary distribution column vectorΠ = [πi] given by [12, Eq.(5)]. The QBC allows simple closed-

form expressions for several statistics. In particular, the channel noise block probabilityPr(Z1 = z1, Z2 =

z2, · · · , Zn = zn) = Pr(Zn = zn) is expressed as [12]

• For blocklengthn ≤ M ,

Pr(Zn = zn) =

∏n−dn
1−1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏dn

1−1
j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=M−n

[

1 − (α + j) ε
M−1+α

] (1)

wheredb
a = zb + zb−1 + · · · + za (db

a = 0 if a > b), and
∏a

j=0(·) , 1 if a < 0.
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• For blocklengthn ≥ M + 1,

Pr(Zn = zn) = L(M)
n
∏

i=M+1

[

(

di−1
i−M+1 + αzi−M

) ε

M − 1 + α
+ (1 − ε)p

]zi

{

[(

M − 1 − di−1
i−M+1

)

+ α(1 − zi−M )
] ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

(2)

where

L(M) =

∏M−1−dM
1

j=0

[

j ε
M−1+α

+ (1 − ε)(1 − p)
]
∏dM

1
−1

j=0

[

j ε
M−1+α

+ (1 − ε)p
]

∏M−1
j=0

[

1 − (α + j) ε
M−1+α

] .

The noise correlation coefficient, Cor, for the QBC is a non-negative quantity given by

Cor =
E[Z1 Z2] − E[Z1]E[Z2]

E[Z2
1 ] − (E[Z1])2

=
ε

M−1+α

1 − (M − 2 + α) ε
M−1+α

whereE[·] denotes expectation. Whenε = 0 (Cor = 0), the resulting model reduces to the memoryless

BSC with crossover probabilityp.

B. Gilbert-Elliott Channel

The GEC is driven by an underlying stationary ergodic two-state Markov chain composed of state 0,

which produces errors with probabilitypG, and state 1, where errors occur with probabilitypB, where

pG < pB. The transition probabilities of the Markov chain arep01 = Q and p10 = q, where0 < Q < 1

and0 < q < 1. Mushkin and Bar-David [6] defined the “memory” of the GEC asµ = 1− q−Q. If µ > 0

the channel has persistent memory, or ifµ < 0 the channel has oscillatory memory [6]. Whenµ = 0 the

model reduces to the memoryless BSC. We define two matricesP(0) andP(1), P(0)+P(1) = P, where

the (i, j)th entry of the matrixP(z), z ∈ {0, 1} is Pr(Zk = z, Sk = j | Sk−1 = i). The state stationary

distribution vector is Π = [π0, π1]
T = [q/(q + Q), Q/(q + Q)]T (where the superscript[·]T indicates

transposition), and the matricesP(0) andP(1) are given by

P(0) =





(1 − Q) (1 − pG) Q (1 − pB)

q (1 − pG) (1 − q) (1 − pB)



 P(1) =





(1 − Q) pG Q pB

q pG (1 − q) pB



 .

The channel noise block probability can be expressed in matrix form as

Pr(Zn = zn) = Π
T

(

n
∏

k=1

P(zk)

)

1 (3)

where1 is a column vector of ones of length 2. For example, an expression for p0 , Pr(Zk = 0) is

p0 = 1 − BER = π0(1 − pG) + π1(1 − pB). (4)
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The noise correlation coefficient for the GEC is expressed as

Cor =
µ(BER− pG)(pB − BER)

BER(1 − BER)
. (5)

The SGC [15] can be obtained from the GEC by settingpG = 0 andpB = 1. As a result, the SGC with

BER p and noise correlation coefficientµ is a two-state first-order Markov noise channel with parameters

Q = (1 − µ)p andq = (1 − µ)(1 − p). It directly follows from (4) and (5) that Cor andµ have identical

signs.

III. PERFECT BIT INTERLEAVING VS PERFECT SYMBOL INTERLEAVING FOR NON-BINARY CODES

The objective of this section is to analytically compare theperformance of non-binary codes under both

perfect symbol interleaving and perfect bit interleaving when transmitted over the binary FSMC model

described at the beginning of the previous section.

Let C be any non-binary linear block code over the Galois field GF(2b) with length n and error

correction capabilityt (e.g., a Reed-Solomon code). A transmitted symbol is received correctly if the

stationary noise corrupting it is a sequence of zeros of length b, denoted as0b. Otherwise, the transmitted

symbol is received incorrectly and a symbol error occurs. Let the probability that the channel produces

the b-tuple all zeros be denoted byF (b) = Pr(Zb = 0b). Then the probability of correct decoding under

bounded distance decoding, denotedPc, for the perfect symbol-interleaved system is given by

Pc =
t
∑

i=0

(

n

i

)

(1 − F (b))i(F (b))n−i. (6)

On the other hand, for the perfect bit-interleaved non-binary code, denote the probability of correctb

transmissions byG(b) , Pr(Z = 0)b. Hence the probability of correct decoding for this interleaving

scheme is given by (6) with replacingF (b) by G(b). The performance comparison carried out in this

section is done in terms ofPc, or equivalently, in terms of PCE= 1 − Pc.

Proposition 1: If F (b) > G(b) for the binary FSMC model, then perfect symbol interleavingoutper-

forms perfect bit interleaving for the transmission ofC under bounded distance decoding.

Proof: 3 If x denotes the symbol error probability, then the PCE (under bounded distance decoding)

can be expressed as a function ofx as follows:

PCE(x) =

n
∑

i=t+1

(

n

i

)

xi (1 − x)n−i = Ix(t + 1, n − t)

3This proof, which is based on expressing the PCE (which is thebinomial complementary cumulative distribution function) in terms of

the regularized incomplete Beta function, is due to one of the anonymous reviewers (Reviewer 1). We herein include it in lieu of our original

proof as it is simpler.
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whereIx(a, b) is the regularized incomplete Beta function given by

Ix(a, b) =
1

B(a, b)

∫ x

0

ya−1 (1 − y)b−1 dy =
a+b−1
∑

i=a

(

a + b − 1

i

)

xi (1 − x)a+b−1−i

for a > 0, b > 0 andB(a, b) =
∫ 1

0
ya−1 (1 − y)b−1 dy is the Beta function and is positive for all positive

pairs (a, b). The functionIx(a, b) is monotonically increasing with respect tox in the range0 < x < 1,

since
dIx(a, b)

dx
=

xa−1(1 − x)b−1

B(a, b)
> 0.

Therefore, the PCE under perfect symbol interleaving, PCE(1 − F (b)), is smaller than the PCE under

perfect bit interleaved, PCE(1 − G(b)), wheneverF (b) > G(b).

In light of Proposition 1, we next show that perfect symbol interleaving is always better compared to

perfect bit interleaving when the non-binary code is transmitted over either the QBC or the GEC with

positive memory.

A. Queue-Based Channel

Proposition 2: Under bounded distance decoding, perfect symbol interleaving outperforms perfect bit

interleaving when non-binary codes over GF(2b) are transmitted over the QBC, forε > 0 andp > 0.

Proof: From Proposition 1, it is enough to show thatF (b) > G(b) for the QBC. For this channel,

G(b) = (1 − p)b and forb ≤ M we expressF (b) using (1) as

F (b) =

b−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

.

For eachj > 0 we notice that forp > 0,

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

> (1 − p).

Becauseb > 1 (for non-binary codes), we get

b−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

> (1 − p)b

which implies thatF (b) > G(b). Whenb > M , F (b) is expressed using (2) as

F (b) =

M−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

(ε + (1 − ε)(1 − p))b−M .

We already remarked that
j ε

M−1+α
+(1−ε)(1−p)

1−(α+M−1−j) ε

M−1+α

> (1 − p) for j > 0. We also note that

ε + (1 − ε)(1 − p) = (1 − p) + εp ≥ (1 − p)
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with equality if and only if eitherp = 0 or ε = 0. Therefore, we combine the above two inequalities to

get that
(

M−1
∏

j=0

j ε
M−1+α

+ (1 − ε)(1 − p)

1 − (α + M − 1 − j) ε
M−1+α

(ε + (1 − ε)(1 − p))b−M

)

> (1 − p)M(1 − p)b−M = (1 − p)b.

ThereforeF (b) > G(b) (the inequality is strict because we assume that bothp andε 6= 0).

B. Gilbert-Elliott Channel

For the GEC model,G(b) = pb
0, wherep0 is given by (4). We do not derive an explicit expression for

F (b). Alternatively, we define the generating series forF (b) as

F(z) ,

∞
∑

b=0

F (b)zb.

It follows from (3) thatF (b) = Π
T
P

b(0)1. Then [16]

F(z) = Π
T (I − P(0)z)−1

1 (7)

whereI is the identity matrix. For the GEC,F(z) in (7) becomes

F(z) =
1 + a1z

1 + b1z + b2z2
(8)

where

a1 = −µ [π1(1 − pG) + π0(1 − pB)], b1 = −[(1 − µ)p0 + µ(2 − pG − pB)], b2 = µ (1 − pG)(1 − pB).

The following recursion formula is derived directly from (8)

F (b) = −b1F (b − 1) − b2F (b − 2) (9)

for b ≥ 2, with initial conditionsF (0) = 1 andF (1) = p0. The condition stated in Proposition 1 holds

for the GEC in light of the next lemma.

Lemma 1: The following relation is satisfied for the GEC withµ > 0

F (b)

F (b − 1)
> p0, for b ≥ 2. (10)

Proof: The proof is by induction onb. For b = 2, the expressions forp0 and p00 , Pr(Zk =

0, Zk+1 = 0) calculated from (3) yield

F (2)

F (1)
=

p00

p0
= −b1 −

b2

p0
= p0 + µ

π0π1(pB − pG)2

p0
> p0
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sinceµ > 0. Next assume that the statement (10) is true for a fixedb ≥ 2. It follows from (9) that

F (b + 1) = −b1F (b) − b2F (b − 1)

or
F (b + 1)

F (b)
= −b1 − b2

F (b − 1)

F (b)
.

We conclude from the inductive hypothesis thatF (b − 1)/F (b) < 1/p0, and sinceb2 > 0 for µ > 0, we

obtain that
F (b + 1)

F (b)
> −b1 −

b2

p0
=

F (2)

F (1)
> p0.

By using (10) repeatedly for increasing values ofb, we obtain a chain of inequalities of the formF (b) >

F (b − x)px
0 . In particular, whenx = b, F (b) > G(b). Thus, we have proved the following proposition.

Proposition 3: Perfect symbol interleaved transmission ofC performs better than the perfect bit inter-

leaved one over the GEC withµ > 0, assuming bounded distance decoding.

C. Channels with Negative Noise Correlation Coefficient

We next observe that for some classes of FSMC models with negative noise correlation coefficient,

perfect bit interleaving can be better than perfect symbol interleaving.

Remark 1:The noise correlation coefficient of a communication fadingsystem is generally (but not

always) a positive quantity. To illustrate this, let us model (using the fitting method of [13]) via a

GEC a discrete channel with binary frequency-shift keying modulation, Rician fading with Clarke’s

autocorrelation function, and hard quantized non-coherent demodulation [13]. For the case of Rayleigh

fading, the correlation coefficient of this discrete channel is always non-negative. However, when the

fading is Rician, there exists a range of fading parameters that yield a GEC with negative memoryµ

(or negative noise correlation coefficient). For example, for a discrete fading channel with signal-to-noise

ratio (SNR) 13 dB, normalized Doppler frequencyfDT = 0.6 and Rician factorKR = 3 dB, we obtain

a fitting GEC with parameterspG = 0.0014, pB = 0.06, q = 0.923, Q = 0.6175. The resulting GEC

BER is 0.025 andµ = −0.54; also the capacity of the GEC and the (equivalent) BSC (underperfect bit

interleaving) are 0.8323 and 0.8319 bits/channel use, respectively.

Remark 2:Note that in Proposition 1, ifF (b) < G(b), then we get the opposite result compared to the

positive noise correlation case; i.e., perfect bit interleaving outperforms perfect symbol interleaving. For

the simplified Gilbert channel,F (b) andG(b) are given by

F (b) =
[

(1 − p)(µ + (1 − µ)(1 − p))b−1
]

and G(b) =
[

(1 − p)b
]

.
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Note that ifµ < 0, thenF (b) < G(b).

Remark 3:Finally, note that we can construct examples of a simplified Fritchman channel [10] of

negative noise correlation coefficient and with two good states and one bad state such thatF (2) < G(2)

but F (3) > G(3). 4 Thus, for this channel, neither perfect symbol interleaving nor perfect bit interleaving

is always better, since this comparison depends on the code’s field size2b.

Propositions 1-3 consider the PCE performance of non-binary codes under perfect interleaving. The next

section provides a practical guideline to design the optimal interleaving depth (e.g. the typical interleaving

depth needed to achieve perfect interleaving) for the QBC.

IV. PERFORMANCE EVALUATION UNDER IMPERFECT INTERLEAVING

In this section, we conduct a numerical PCE study of imperfect interleaved non-binary block codes

(under bounded distance decoding) over the QBC. The performance is evaluated via the derivation of

the probability ofm errors in a block of lengthn, namelyP (m, n), yielding a PCE given by PCE=
∑n

m=t+1 P (m, n). For our purposes, we numerically calculateP (m, n) and the PCE using the method

of [9]; however the recent analytical method of [5] can also be used. We consider an(n, k) RS code over

GF(2b) with codewords of lengthn and k information symbols. We assume block symbol interleaving

with nb columns (codeword length in bits) andId (interleaving depth) rows. Theb bits within each symbol

are transmitted consecutively through the channel.

The superiority of imperfect symbol-interleaved to imperfect bit-interleaved non-binary codes over the

GEC was observed in [5]. Similar results can be obtained for the QBC; see, for example, Fig. 1. This

figure presents PCE versusId a bit and symbol interleaved shortened (73,57) RS code (withb = 7, t = 8

symbols) over the QBC with parametersM = 2, α = 1, p = 0.007, and two values of Cor, Cor= 0.75, 0.9.

We observe that imperfect symbol interleaving outperformsimperfect bit interleaving for all values of

Id. In particular, for sufficiently largeId, these curves corroborate the result presented in Proposition 2.

Motivated by these results we hereafter focus on symbol interleaving and our objective is to investigate

the existence of a relationship between the optimal interleaving depth and the QBC parameters.

Fig. 2 presents PCE versusId for a symbol interleaved shortened (73,57) RS code (withb = 7, t = 8

symbols) over the QBC. The parameters of the QBC areM = 1 (α = 1), p = 0.007, and four values of

Cor (or ε), Cor= 0.5, 0.9, 0.95, 0.98. For a given value of Cor, we observe that the PCE decreases asId

increases until a threshold point at which it is no longer possible to improve the PCE. We denote this

4Using the notation of [10], consider for example a Fritchmanchannel with parametersp11 = 0.11, p22 = 0.82, p31 = 0.42 andp32 = 0.3;

its noise correlation coefficient is -0.057. For this channel, we haveF (2) < G(2) andF (3) > G(3).
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value ofId that renders the channel block memoryless (i.e., achievingperfect symbol-interleaving) byI⋆
d .

The approximate values ofI⋆
d found from each curve of this figure are listed in Table I. We notice from

this table a linear relationship betweenI⋆
d and1/(1 − ε) which is expressed asI⋆

d = 1
1−ε

. We conduct in

the following a similar analysis for a QBC with higher memoryordersM .

Fig. 3 presents PCE versusId for a symbol interleaved shortened (73,57) RS code over the QBC

with M = 4, ε = 0.8, p = 0.007, and two values of Cor, Cor= 0.22 (α = 11.2), 0.5 (α = 1). The

values ofI⋆
d are roughly the same for each curve, which allow us to conclude that, for a fixedε, I⋆

d is

weakly dependent on the parameterα. A similar conclusion can be derived for the parameterp (curves

not shown). We now fixα = 1, p = 0.007, and plot in Fig. 4 the PCE versusId for a QBC withM = 4

and Cor= 0.2 (ε = 0.5), 0.5 (ε = 0.8), 0.69 (ε = 0.9), 0.83 (ε = 0.95). A similar curve is presented in

Fig. 5 for M = 6 and Cor= 0.14 (ε = 0.5), 0.4 (ε = 0.8), 0.6 (ε = 0.9), 0.76 (ε = 0.95). The values

of I⋆
d achieved for eachε in these figures are shown in Table II, which can be expressed as I⋆

d = Γ
1−ε

,

whereΓ = 1.5 for M = 4 and Γ = 2.0 for M = 6. Thus, for fixed(α, p, M), a linear relationship

betweenI⋆
d and1/(1− ε) is valid for the QBC, where the proportional constantΓ increases withM . The

same trend is observed for other values of code parameters (figures are not herein shown due to space

limitations). This result provides the communication system designer with some insight for the practical

interleaving design for the QBC. For example, in a recent work [14], QBC models at the packet level

were developed for a non-interleaved RS coded communication system with time-correlated flat fading

channel. ForfDT = 0.0005, SNR = 15 dB, and Rayleigh fading, an accurate QBC has parametersM = 4

andε = 0.8773 (cf. Table I in [14]). The results of this section indicate that I⋆
d = 12 for this QBC.

V. CONCLUSIONS

In this work, we mathematically demonstrate that for a classof binary additive noise finite-state channels

satisfying an explicit (sufficient) condition expressed interms of the channel noise statistics, perfectly

interleaving the channel at the (code) symbol level always outperforms perfectly interleaving it at the

bit level when transmitting non-binary linear block codes over such channels. We show that the Gilbert-

Elliott channel (GEC) with positive noise correlation and the recently introduced Markovian queue-based

channel (QBC) are two finite-state channels for which the condition holds. Both of these channels have

been previously shown to accurately model hard-decision demodulated time-correlated Rayleigh fading

channels as well as slow fading Rician channels (e.g., see [3], [13]). Furthermore, we remark that there

exist finite-state channels (such as the GEC and Fritchman channels with negative noise correlations

which can model Rician channels with fast fading) for which areverse result holds; i.e., for which bit-
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interleaving outperforms symbol-interleaving. Finally,we conduct a numerical study to evaluate the effects

of finite-length (imperfect) symbol-interleaving on the performance of Reed-Solomon codes sent over the

QBC. We observe that, as for the case of the GEC [5], there exists a simple linear relationship between

the optimal interleaving depth and a function of a channel correlation parameter; such property provides

useful interleaving design criteria when operating over the QBC and the underlying fading channels it

represents.

VI. A CKNOWLEDGMENTS

We are grateful to all the anonymous reviewers for their helpful comments which helped improve this

manuscript. We are particularly grateful to Reviewer 1 who has indicated to us an alternative proof for

Proposition 1 which is simpler than the one we originally presented.

REFERENCES

[1] S. Lin and D. Costello Jr.,Error Control Coding: Fundamentals and Applications, 2nd edition, New Jersey: Prentice-Hall, Inc., 2004.

[2] L. Wilhelmsson and L. B. Milstein, “On the effect of imperfect interleaving for the Gilbert-Elliott channel”,IEEE Trans. Commun.,

vol. 47, pp. 681-688, May 1999.
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Fig. 1. PCE versusId for (73,57) RS,b = 7, t = 8, over the QBC with parametersM = 2, α = 1, p = 0.007, Cor= 0.75, 0.90. Symbol

and bit interleaving.

TABLE I

OPTIMAL INTERLEAVING DEPTH FOR THEQBC WITH PARAMETERSM = 1, α = 1, p = 0.007.

ε I⋆

d

0.5 2

0.9 10

0.95 20

0.98 50

TABLE II

OPTIMAL INTERLEAVING DEPTH FOR THEQBC WITH M = 4 AND M = 6 DERIVED FROM FIGS. 4 AND 5

ε I⋆

d (M = 4) I⋆

d (M = 6)

0.5 3 4

0.8 8 10

0.9 15 20

0.95 30 40
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Fig. 2. PCE versusId for (73,57) RS,b = 7, t = 8, over the QBC with parametersM = 1, α = 1, p = 0.007. Cor= 0.5, 0.9, 0.95, 0.98.

Symbol interleaving.
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Fig. 3. PCE versusId for (73,57) RS,b = 7, t = 8, over the QBC with parametersM = 4, ε = 0.8, p = 0.007, Cor = 0.22, 0.5. Symbol

interleaving.
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Symbol interleaving.
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