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Binary Signaling of Correlated Sources
Over Orthogonal Multiple Access Channels
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Abstract—The optimal energy allocations for minimizing the
joint symbol-error rate for binary signaling of two correlated
sources over the orthogonal multiple access Gaussian channel
(OMAGC) under joint maximum a priori (MAP) detection are
determined. An exact expression for the system’s probability
of joint symbol error, as well as its union bound, is derived.
Analytic minimization of the union bound reveals that the optimal
energy allocation coincides with that of non-uniform binary
signaling over the single-user additive white Gaussian noise
(AWGN) channel. It is also shown numerically that the optimal
energies which minimize the union bound also minimize the
exact probability of error. Lastly, it is shown via simulations for
strongly biased sources that the use of joint MAP detection over
two independent single-user systems leads to significant gains.

Index Terms—Error analysis, joint source-channel coding,
MAP detection, multiple access channels, non-uniform sources.

I. INTRODUCTION

We consider the joint source-channel coding problem of
designing an optimal source-matched modulation scheme for
the reliable transmission of binary correlated sources over
the orthogonal multiple access Gaussian channel (OMAGC)
without the explicit use of data compression or error-correcting
codes. The construction of such low-delay, low-complexity
signaling schemes has pertinent applications to wireless sensor
networks where multiple sensors observe correlated data and
relay them in real-time to the base station [1]. In such
wireless systems, delay, power, complexity, and scalability
constraints often restrict the use of powerful coding and signal
processing methods, and thus each sensor often performs a
simple signaling function when sending the data it senses.

In a related prior work, considering orthogonal and
nonorthogonal signaling separately, Korn et. al. [2] derive
optimal energy allocations for uncoded single-user binary
communications over a point-to-point AWGN channel with
non-equal symbol probabilities. In a follow-up work, Ipatov
[3] re-derives the results of [2] for coherent detection using
a simplified treatment. Motivated by applications to sensor
networks and the fact that nonuniform sources are good
models for many types of data (e.g., see [4]), in this letter
we extend the coherent detection results from [2], to the two-
user OMAGC and a two-dimensional nonuniform correlated
source. In other related works, various signal set designs for
systems with non-equal symbol probabilities were studied in
[5]–[9] (to name a few); see also [10]–[12] for works on the
error analysis of such systems.
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The contributions of this work are organized as follows.
In Section II, the system set-up is presented. In Section III,
an exact expression for the system’s joint symbol error rate
under joint MAP decoding and the union upper bound on the
symbol error rate are established. Making use of its simplified
form, the union bound is analytically minimized over the set of
signaling energies. It is then shown numerically that the signal-
ing energies that optimize the union bound also minimize the
exact symbol error rate and are hence optimal. Performance
results illustrating the benefits of using the optimal energy
signaling schemes under joint MAP detection are presented in
Section IV. Section V concludes the letter.

II. SYSTEM MODEL

The system consists of Transmitters 1 and 2, two indepen-
dent AWGN channels, and a joint MAP detector. Transmitter i
(with i = 1, 2) can be described as follows: let

si0(t) =
√
Ei0ψ

(i)
1 (t) and si1(t) =

√
Ei1ψ

(i)
2 (t)

be arbitrary binary transmission signals with energies Ei0 and
Ei1, respectively, such that si0 has probability pi with 0 ≤
pi ≤ 0.5 and si1 has probability 1−pi, for i = 1, 2, and where
ψ
(i)
j : [0, T ] 7→ R has unit energy for i, j = 1, 2. Further, ψ(i)

1

and ψ(i)
2 have correlation

γi =

∫ T

0

ψ
(i)
1 (t)ψ

(i)
2 (t)dt.

Thus, Transmitter i will have an average energy per symbol
of

Ei = Ei0pi + Ei1(1− pi), (1)

i = 1, 2. At each transmission instance, Transmitters 1 and
2 send S1 ∈ S1 = {s10, s11} and S2 ∈ S2 = {s20, s21},
respectively, over the independent AWGN channels, where
the random source pair (S1, S2) has joint probability mass
function given by

pS1,S2
(s10, s20) = 1− (1− p1)− (1− p2) + p11

pS1,S2
(s10, s21) = (1− p2)− p11

pS1,S2
(s11, s20) = (1− p1)− p11

pS1,S2
(s11, s21) = p11.

Note that p11 can be expressed as

p11 = ρ
√
p1(1− p1)p2(1− p2) + (1− p1)(1− p2)

where ρ is the correlation coefficient of the underlying jointly
distributed binary source pair (U1, U2) ∈ {0, 1}2 defined by
letting Ui = 0 if Si = si0 and Ui = 1 if Si = si1 for i = 1, 2.
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The received information at the output of the matched filter
is given by the random pair (R1, R2) such that Ri = si +Ni,
where si ∈ Si and Ni is zero-mean Gaussian noise with
variance σ2

i , for i = 1, 2, such that N1 and N2 are inde-
pendent. The joint MAP detector, which is optimal in terms
of minimizing the probability of joint symbol error, receives
(r1, r2) — the realizations of (R1, R2) — and implements the
following MAP decision rule

ŝ = arg max
(s1,s2)∈S1×S2

P (S1 = s1, S2 = s2|R1 = r1, R2 = r2)

= arg max
s∈S1×S2

h(s)

where s = (s1, s2) and

h(s) = ln pS1,S2
(s1, s2)− s21 − 2r1s1

2σ2
1

− s22 − 2r2s2
2σ2

2

(2)

so that ŝ = (ŝ1, ŝ2) ∈ S1 × S2 is the MAP estimate of the
transmitted pair. Note that s21 = E1i and s22 = E2j are the
energies of the respective signals, where i, j ∈ {0, 1}.

III. PROBABILITY OF SYMBOL ERROR ANALYSIS

A. Probability of Symbol Error

A symbol error event, e, occurs when s 6= ŝ, where s
and ŝ are defined above. Setting s00 = (s10, s20), s01 =
(s10, s21), s10 = (s11, s20), and s11 = (s11, s21), the prob-
ability of error, P (e), can be expressed as

P (e) =
∑

k∈{0,1}2
P (ŝ 6= sk|k)P (sk)

= 1−
∑

k∈{0,1}2
P (ŝ = sk|k)P (sk) (3)

where P (ŝ = sk|k) is the probability of correct detection
given that sk , (s1k1 , s2k2), where k , (k1, k2) ∈ {0, 1}2,
was transmitted, and P (sk) is the probability that sk was
transmitted. Let

h̃(s) = ln pS1,S2
(s1, s2)− s21 − 2R1s1

2σ2
1

− s22 − 2R2s2
2σ2

2

be our MAP detection metric based on (2). Then, we can write

P (ŝ = sk|k) = P

(
h̃(sk) = max

j∈{0,1}2
h̃(sj)

∣∣∣k)
= P

( ⋂
j 6=k

{h̃(sk) > h̃(sj)}
∣∣∣k)

= P
( ⋂

j 6=k

{V (k)
j < 0}

∣∣∣k) (4)

where V (k)
j = h̃(sj)−h̃(sk) for j,k ∈ {0, 1}2. Each V (k)

j is a
random variable. Moreover, since for i = 1, 2, Ri is Gaussian
given k, each V

(k)
j is Gaussian given k. Further, since N1

and N2 are independent, R1 and R2 are independent, given
k. Now define k′ ∈ {0, 1} such that k′ = k⊕ (1, 1), where ⊕
denotes component-wise modulo 2 addition. Then, we have

V
(k)
k′ = αk +

∑
j 6=k,k′

V
(k)
j (5)

where

αk =

{
ln P (s00)P (s11)

P (s10)P (s01)
if k = (0, 0), (1, 1)

ln P (s10)P (s01)
P (s11)P (s00)

if k = (0, 1), (1, 0).

Thus, using (5), we can write (4) as

P
(
{V (k)

k′ < 0}
⋂
∩j 6=k,k′{V (k)

j < 0}
∣∣∣k). (6)

For example if k = (0, 0), then (6) is given by

P (V
(00)
10 < 0, V

(00)
01 < 0, V

(00)
10 +V

(00)
01 +α00 < 0|k = (0, 0)).

By independence of N1 and N2, for j 6= k,k′ we have

µ
(k)
j , E[V

(k)
j |k]

= ln
P (sj)

P (sk)
+
s21k1 − s

2
1j1

2σ2
1

+
s22k2 − s

2
2j2

2σ2
2

+
s1j1 − s1k1

σ2
1

s1k1 +
s2j2 − s2k2

σ2
2

s2k2

and(
σ
(k)
j

)2
, Var

(
V

(k)
j

∣∣∣k) =
(s1k1 − s1j1)2

σ2
1

+
(s2k2 − s2j2)2

σ2
2

.

It can be shown that (6) can be calculated as∏
j 6=k,k′

Q

(
µ
(k)
j

σ
(k)
j

)
−∆k

where
Q(x) ,

1

2π

∫ ∞
x

e−
t2

2 dt

is the Gaussian Q-function and ∆k given by

∆k =

∫ 0

−αk

∫ 0

−v1−αk

fVk
(v1, v2)dv1dv2

if αk > 0 and zero otherwise, where

fVk
(v1, v2) =

1

2π
∏

j 6=k,k′ σ
(k)
j

exp

−1

2

∑
j 6=k,k′

(vi − µ(k)
j )2

(σ
(k)
j )2

 .

where

i =

{
1 if j ⊕ k = (1, 0)

2 if j ⊕ k = (0, 1).
(7)

Thus, we have

P (e) = 1−
∑

k∈{0,1}2

 ∏
j 6=k,k′

Q

(
µ
(k)
j

σ
(k)
j

)
−∆k

P (sk). (8)

B. Analytic Optimization of the Union Bound

From (3) the union bound on P (e), which we denote by
PUB(e), is given by

P (e) ≤ PUB(e) ,
∑

k∈{0,1}2
P (sk)

∑
j 6=k

P (ejk)

where ejk is the event that sj has a higher MAP metric then
sk, and P (ejk) = P

(
h̃(sj) > h̃(sk)

)
= 1 − P (V

(k)
j < 0).

Further,

1− P (V
(k)
j < 0) = 1−Q

(
µ
(k)
j

σ
(k)
j

)
.
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Thus, the union bound on the probability of symbol error
becomes

PUB(e) =
∑

k∈{0,1}2
P (sk)

∑
j 6=k

1−Q
(
µ
(k)
j

σ
(k)
j

) . (9)

In (9), when j = k′, we have that µ(k)
k′ is the conditional

expectation of (5) given k and satisfies

µ
(k)
k′ = E

αk +
∑

j 6=k,k′

V
(k)
j

∣∣∣∣∣k
 = αk +

∑
j 6=k,k′

µ
(k)
j

and (σ
(k)
k′ )2 is the conditional variance of (5) given k, satis-

fying
(σ

(k)
k′ )2 = Var

(
σ
(k)
k′

∣∣k) =
∑

j 6=k,k′

(σ
(k)
j )2.

Observe that when j 6= k′, in (9) we have

µ
(k)
j

σ
(k)
j

=
σi ln[P (sj)/P (sk)]√

(si1 − si0)2

+
s2i0 − s2i1

2σi
√

(si1 − si0)2
+

si1 − si0
σi
√

(si1 − si0)2
si0 (10)

where i is determined by (7). Now, letting

Ai =
s2i0 + s2i1 − 2γi

√
s2i0s

2
i1

σ2
i

(11)

for i = 1, 2, (10) can be written as

µ
(k)
j

σ
(k)
j

=
ln[P (sj)/P (sk)]√

Ai
−
√
Ai
2

(12)

where i is determined, again, by (7). Further, when j = k′ in
(9) we have that

µ
(k)
k′

σ
(k)
k′

=
αk +

∑
j 6=kk′ ln[P (sj)/P (sk)]
√
A1 +A2

−
√
A1 +A2

2
. (13)

Hence, each term of the inner sum of (9) can be written in
terms of A1 and A2. More specifically, (9) is decreasing in
both A1 and A2. Thus, to minimize (9) we must maximize
A1 and A2. Hence, to determine the optimal energy allocations
E10 and E20, we can maximize A1 and A2 under the average
energy constraint given by (1).

We also notice that (11) is analogous to [2, Eq. (7)] and,
with the appropriate modifications, to [3, Eq. (1)]. Thus, to
minimize (9) one can use the methods from [2], [3] to show
that the optimal energy allocation of Transmitter i is given by

Ei0 =
Ei
2pi

[
1 +

1− 2pi√
1− 4pi(1− pi)(1− γ2i )

]
(14)

Ei1 =
Ei

2(1− pi)

[
1− 1− 2pi√

1− 4pi(1− pi)(1− γ2i )

]
(15)

when γi ∈ [−1, 0) and

Ei0 = Ei/pi and Ei1 = 0 (16)

when γi ∈ [0, 1].

C. Comparison of the Union Bound and the Error Probability

There appears to be no simple way for analytically optimiz-
ing the probability of symbol error P (e) given in (8). We can
however show numerically that the values which minimize the
union bound PUB(e) in (9), also minimize (8).

In Figs. 1 and 2, we use E1 = E2 = 10 and 2E1 =
E2 = 20, respectively. Also, p1 = p2 = 0.1, ρ = 0.9, and
σ1 = σ2 = 4 and γ1 = γ2. In these plots the ‘∗’ point shows
the location of the numerically determined minimum achieved
on the interval [0, Ei/pi]. For these test values we conclude
that the optimal energy allocations seen in (14)–(16), which
minimize (9), also minimize (8). It should be noted that the
numerical optimization was also performed for many other
values of the system parameters including when γ1 6= γ2.
In all cases, we obtained that the optimal energy allocation
determined by minimizing the union bound also minimizes
the probability of error.
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Fig. 1. Numerical analysis under the average energy constraint of E1 =
E2 = 10. Here, p1 = p2 = 0.1, ρ = 0.9, and σ1 = σ2 = 4. Note that in
this plot the grey and black lines overlap exactly.
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Fig. 2. Numerical analysis under the average energy constraint of 2E1 =
E2 = 10. Here, p1 = p2 = 0.1, ρ = 0.9, and σ1 = σ2 = 4.
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IV. PERFORMANCE ANALYSIS

We have shown that the optimal energy allocations for
binary non-uniform signaling over a single-user system and
over the OMAGC coincide. In this section, we assess the
benefits, via simulation, of the OMAGC system over inde-
pendent single-user systems. For the simulations we denote
by Scheme 1 and Scheme 2 the two independent single-user
systems and the OMAGC system, respectively. Note that both
schemes implement the optimal energy allocations; thus, the
difference between the two schemes is that the decoder of
Scheme 2 exploits the dependence in the source components.
In particular, with the true underlying source correlation set
at ρ = 0.9, Schemes 1 and 2 use a knowledge of ρ for
their decoders given by ρ̂1 = 0 and ρ̂2 = 0.9, respectively
(i.e., Scheme 1 uses two independent MAP detectors, while
Scheme 2 employs joint MAP detection). The following
parameters are used in the simulation: p1 = p2 = 0.1, and
σ1 = σ2 = 2. In Fig. 3 we use E1 = 2 and in Fig. 4 we
use 2E1 = E2. We choose to show the results for 2E1 = E2

since it has similar performance to E1 = E2 (not shown here).
The value E1 is held constant in Fig. 3 since as the signal-to-
noise ratio (SNR), defined by (E1 +E2)/(σ2

1 +σ2
2), increases,

the difference in average energy between the two transmitters
also increases, and thus this setting gives a boundary case at
high SNRs. Note that choosing a value for E1 that is larger
than 2 provides similar performance trends with an error floor
forming at higher SNRs than in the case of E1 = 2. In
summary, when E2 = 2E1, as seen in Fig. 4, Scheme 2
realizes over Scheme 1 a gain ranging from 0.67 to 0.8 dB
(depending on the value of γ) at high SNRs. Similar gains are
achievable when E1 = E2. However, when E2 � E1, as seen
in Fig. 3, the performance improvement is quite large, with a
minimal gain of 5.8 dB for γ = −1 and P (e) ≈ 10−1.2; the
gains are much larger for smaller P (e) target values.
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Fig. 3. Performance comparison of Schemes 1 and 2 when E1 = 2.

V. CONCLUSION

Based on the analysis of the probability of joint symbol
error and the corresponding union error bound derived for
the OMAGC channel, we have shown that the optimal energy
allocations coincide with the single-user case from [2], [3].
This result can be intuitively inferred by noting that as the two
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Fig. 4. Performance comparison of Schemes 1 and 2 when 2E1 = E2.

transmitters have no capacity to communicate with each other,
the non-interfering (orthogonal) nature of the channel makes
the optimal energy allocation dependent only on the marginal
distribution of the source. Also, through simulation we have
shown that the use of joint detection as implemented in the
OMAGC is everywhere better that two independent single-
user systems. In particular, when E2 = 2E1 or E1 = E2, we
have a performance gain of up to 0.8 dB at high SNRs. When
E2 � E1, the performance gain is drastically increased with
a smallest realizable gain of 5.8 dB. Future work will include
similar analysis to that seen in this letter on the traditional
multiple access Gaussian channel where the two users interfere
with each other.
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