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Abstract

Designing machine learning algorithms that are accurate yet fair, not discriminating

based on any sensitive attribute, and also private, not revealing users’ personal infor-

mation, has become of paramount importance for society to accept the widespread

use of artificial intelligence (AI) for critical applications. In this thesis, we investi-

gate the use of variational Information Bottleneck (IB) methods for fair and private

machine learning.

We present a novel fair representation learning method termed Rényi Fair Infor-

mation Bottleneck (RFIB) which incorporates constraints for utility, fairness, and

compactness of representation. In contrast to prior work, we consider both demo-

graphic parity and equalized odds as fairness constraints, allowing for a more nu-

anced satisfaction of both criteria. We use the Rényi divergence in developing a loss

function involving classical IB measures and show that its parameter α provides an

extra degree of freedom that results in performance benefits. Applying the method to

image classification, we study the influence of the α parameter and two other tunable

IB parameters on achieving utility/fairness trade-off goals, and evaluate it using var-

ious utility, fairness, and compound utility/fairness metrics on three different image

datasets (EyePACS, CelebA, and FairFace), showing that RFIB outperforms current

state-of-the-art approaches.
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Furthermore, we investigate how the problem of privacy relates to the problem of

fairness and present a related method to jointly improve fairness and privacy termed

Rényi Fair and Private Information Bottleneck (RFPIB). Using the Rényi divergence

and IB measures, we develop a loss function designed to improve both privacy and

multiple fairness metrics while also ensuring utility. Experimenting on the CelebA

and EyePACS datasets, we study trade-offs between fairness, privacy, and utility. We

significantly outperform a baseline ResNet50 network and show that tuning the Rényi

divergence’s α parameter can be used to simultaneously achieve these three desired

criteria.
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Chapter 1

Introduction

Machine learning algorithms are used for a variety of high stake applications such

as loan approvals, police allocation, admission of students, and disease diagnosis. In

spite of their vast benefits, the use of automated algorithms that are not designed

to also address potential bias and fairly serve members of diverse groups can lead to

harm and exacerbate social inequities, while using algorithms that are not designed

to preserve privacy can lead to privacy breaches where an adversary gains access to

private, personal information. The problem of developing algorithms that are both

accurate and fair, i.e., do not discriminate against individuals because of their gender,

race, age, or other protected attributes, as well as private, i.e., do not reveal a user’s

personal information, has now become paramount to the deployment of production-

grade AI systems that could be accepted and adopted by society as a whole.

Fair machine learning methods have been developed for multiple domains such

as automated healthcare diagnostics and treatments delivery [56], natural language

processing [10], and others [98, 76, 56, 13], while private machine learning methods

include the Privacy Funnel [18, 64] and the Conditional Privacy Funnel [80]. One way
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to create such fair or private machine learning methods is through learning fair repre-

sentations or private representations that can be used with existing machine learning

architectures instead of the raw input data. These representations would allow for

making accurate predictions while ensuring fairness or privacy. However, developing

fair or private representations is difficult as it may involve trade-offs between fairness

and accuracy or privacy and accuracy and is further complicated by the existence

of various metrics for measuring fairness outcomes, often tailored towards different

applications and settings.

1.1 Contributions

Firstly, our work entails the development of a fair representation learning method

termed Rényi Fair Information Bottleneck (RFIB) that addresses a number of trade-

offs. Unlike most prior studies that tend to focus on satisfying a single type of fairness

constraint, we consider here how to jointly address and balance two of the arguably

most important definitions for fairness, demographic parity and equalized odds. We

also examine different classical trade-offs between fairness and utility (commonly mea-

sured via accuracy) arising as a result of interventions on models or data to make

models more fair, which may yield decreased bias, but may also result in affecting util-

ity. We study how these trade-offs are impacted by “compactness.” More specifically,

we develop a variational approach taking into account different information-theoretic

metrics that balance the above two constraints on fairness with utility and com-

pactness. We also show how to analytically simplify the resulting loss function and

relate it to the Information Bottleneck (IB) principle [90], and then exploit bounds

to compute suitable metrics.
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Secondly, we extend this method to jointly improve privacy and fairness, devel-

oping a method we call Rényi Fair and Private Information Bottleneck (RFPIB). We

derive a cost function that incorporates fairness, privacy, utility, and compactness

constraints, using a variational approach that maintains the use of the Rényi diver-

gence of order α to create an upper bound on the mutual information between the

data and its representation. Applying the method to image classification, we experi-

ment on the CelebA and EyePACS datasets, investigating trade-offs between fairness,

privacy, and accuracy.1

We thus make the following novel contributions:

1. We develop a novel variational method, RFIB, that balances a triplet of ob-

jectives, consisting of utility (accuracy), fairness (itself balancing two types of

fairness constraints), and compression/compactness. Specifically, in contrast

to prior work on fairness which narrowly uses either the demographic parity

or equalized odds constraints, our loss includes both types of constraints. We

relate analytically the resulting loss function to the classical IB method.

2. Operationally, we derive an upper bound on the mutual information between

the data and its representation in terms of the Rényi divergence of order α. We

study the effect of this added flexibility on achieving a balance between fairness

and accuracy.

3. We compare, using various datasets such as CelebA, EyePACS, and FairFace,

with methods of record that intervene on the model or methods that intervene

on training data. We show that our RFIB method overall performs best. We

establish these comparisons via a number of metrics that measure utility and

1Code to reproduce our experiments can be found at https://github.com/AGronowski/RFPIB.

https://github.com/AGronowski/RFPIB
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fairness individually or in a combined metric, including two different types of

fairness constraints.

4. We extend RFIB to also improve privacy, developing the novel variational

method of RFPIB that balances objectives consisting of utility, multiple fairness

criteria, and privacy.

5. We examine how tuning the Rényi divergence’s α parameter and three IB pa-

rameters affects trade-offs between fairness, utility, and privacy. We evaluate

the method using metrics for privacy, multiple definitions of fairness, and util-

ity (accuracy). We show that RFPIB is able to improve upon all three of these

criteria compared to a baseline on the CelebA amd EyePACS datasets.

1.2 Literature Review

We discuss different fairness methods as well as information bottleneck methods and

other related work.

1.2.1 Fairness Approaches

We summarize existing work on fair machine learning in three categories. For a

broad-strokes categorization of fairness approaches, one can think along the lines of

interventions made either on: a) the model output, b) the training data, or c) the

model itself. Each of these are motivated by different inductive biases.

Interventions on Model Outputs Including Recalibration and Thresholding

The inductive bias here is that irrespective of the cause of bias, fairness can be ad-

dressed at the output of the model. Some of these methods intervene on the model
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output via altering the decision threshold so that equal odds constraints are achieved,

as in [40] by selecting an operating point where the receiver operating characteristic

curves for different populations intersect (or variations on this approach). Alterna-

tively, [75] uses re-calibration across subpopulations to debias models. While these

methods are often effective – especially in case of debiasing models operating on

categorical data – they have limitations in that they do not make more consequent

changes on the data and the model itself to address the root causes of bias, as was

argued also in [40]. This may especially be an issue for image/video applications and

is the reason why an alternate path is pursued herein.

Interventions on Data Including Generative Models and Style Transfer

Such methods proceed from the inductive bias that interventions be carried on data,

since data imbalance is a potential cause of biased models. Methods that modify

the training data perform various operations, ranging from censoring sensitive in-

formation in the image domain to making it blind to protected factors, performing

data augmentation, or using re-weighting of the data to achieve re-balancing either

via data re-sampling or reweighing of the loss function. Data augmentation meth-

ods use generative models or style transfer/image translation. Notable approaches

using generative models and based on generative adversarial networks (GANs) in-

clude [50, 39, 72]. In [77], image translation between protected populations was used

to achieve normalized appearances. Translation and style transfer methods however

have limitations in that they tend to collapse to using only a single style, a form of

mode collapse, which may be an issue if data representative of a subpopulation entails

“variations of styles,” such as in images. As will be discussed later, these methods
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are also related to interventions used for domain adaptation and use cases of distri-

butional shift and prior shift. Alternatively, [47] uses variational autoencoders for

augmentation. Other examples of such generative methods for fairness include [86].

The methods in [72] use instead adversarial training along with a form of gradient

descent in latent space to manipulate images and generate more data.

Generation of data using all of the above generative approaches has limitations

as it may be hard to control the exact image markers that correspond to a specific

protected factor without changing other markers (a problem known as entanglement).

Also generation of images for canonical domains (faces, retinas, chest X-rays) tends

to be relatively easily accomplished at present [51], but it may be more complicated

for other domains. Generative methods may also yield artifacts in synthetic images,

which could lead to a decrease in performance and in overall utility when debiasing

without necessarily achieving significant gains in fairness. Aligned with these obser-

vations, it is suggested in [72] that for this reason model-altering fairness methods

may outperform data-altering methods via generative models. These limitations mo-

tivate our approach, which falls in the category of interventions to the model itself,

described next.

Interventions on Models via Adversarial and Variational Approaches

Such methods are grounded on the inductive bias that dependence of the prediction

on protected factors is a cause of lack of fair predictions; as a result, these methods

generally aim to remedy this dependence at the encoding of the data, rendering them

blind to protected factors.

Studies such as [93] and [100] use an adversarial network to penalize the prediction
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network if it could predict a protected factor. Other works employ adversarial repre-

sentation learning to remove protected factor information from latent representations,

including [21, 7, 63, 81, 104, 48]. Applications using this principle include [74] which

uses adversarial learning to develop fair models of cardiovascular disease risk, while

[29] explores the statistical properties of fair representation learning and [36] applies

an adversarial approach for continuous features. Similar to our work, [88] employs an

information-theoretic approach to learn fair representations. But in contrast to the

above methods that are based on an adversarial approach, our method does not use

adversarial training.

In addition to the above methods, there also exist non-adversarial methods that

modify the model via incorporation of multiple constraints in a variational setting.

Many of these are closely related to the IB method that we discuss next.

1.2.2 Information Bottleneck Methods

The IB method, originally proposed by Tishby et al. [90], is a method that seeks

to develop representations that are both compact and expressive by minimizing and

maximizing two mutual information terms. Alemi et al. first developed a variational

approximation of the IB method by parameterizing it using neural networks and

this was followed by multiple variations such as the nonlinear information bottleneck

[57] and conditional entropy bottleneck [24]. Many recent generalizations of the IB

method have been developed including [64, 89, 46, 3, 94] while [32, 97] investigated

its connections to deep learning theory and privacy applications. Many applications

of the IB method to machine learning are included in the special issue [26].
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Techniques related to the information bottleneck have been used for fair repre-

sentation learning. First proposed by [98], fair representation learning consists of

mapping input data to an intermediate representation that remains informative but

discards unwanted information that could reveal the protected sensitive factors. This

is related to the IB problem and several works have explored the connection between

the two, such as Ghassami et al. [27] and Rodŕıguez-Gálvez et al. [80] where fair

representations are acquired through the minimization and maximization of various

mutual information terms.

Our work is closest to [80] but we depart from it in several important ways, includ-

ing through the use of a more general loss formulation, satisfying broader constraints

of fairness, classifying images rather than focusing solely on tabular data, and en-

tailing the use of Rényi divergence. There have been several recent works based on

Rényi information measures and its variants, but to our knowledge, we are the first

to use Rényi divergence for fair representation learning. These include an IB prob-

lem under a Rényi entropy complexity constraint [94], bounding the generalization

error in learning algorithms [22], Rényi divergence variational inference [60], Rényi

differential privacy [69] and the analysis and development of deep generative adver-

sarial networks [8, 85, 71, 58]. In addition, Baharlouei et al. [4] developed a fair

representation method but one based on Rényi correlation rather than divergence.

1.2.3 Connections to Other Work

Fairness is related to domain adaptation (DA) [6, 25, 62, 101] which consists of train-

ing a neural network on a source dataset to obtain good accuracy on a target dataset

that is different from the source. This is especially true for the case of a severe data
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imbalance that we consider in this work where training data is completely missing for

a protected subgroup. In this case, achieving fairness is similar to the DA problem

of improving performance on a complete target dataset that includes all groups after

training on an incomplete source dataset.

Our work is also related to group distributionally robust optimization (GDRO)

methods [84, 87] that address the problem of performance disparity among different

subgroups by minimizing the worst-case loss among different subgroups. Reducing

these accuracy differences among subgroups is something our method also addresses,

but while this is the sole objective for GDRO methods, we consider this problem in

relation to multiple other fairness criteria.

There are some other work that investigated finding a balance between accuracy

and fairness such as Zhang et al. [102]. However, they achieved this objective by

finding early stopping criteria rather than through a fair representation preprocessing

method like we use here; also, unlike our method, finding a balance between multiple

fairness constraints is not investigated.

Finally, there are hybrid methods, such as the one proposed by Paul et al. in [72],

that use a combination of the previously discussed techniques of interventions on data,

model, or output. However, such techniques are quite limited in scope compared to

the more varied objectives considered here which involve jointly achieving utility,

fairness, and compactness.

1.3 Outline

In the end of this chapter, we introduce preliminary background on information mea-

sure. In Chapter 2, we provide extensive background material on neural networks. In
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Chapter 3 and Chapter 4, we discuss the Variational Autoencoder and the Informa-

tion Bottleneck Method, two deep learning techniques that are related to our work.

Chapter 5 examines the problem of fairness in machine learning and presents our

fairness method, RFIB. In Chapter 6, we consider the problem of privacy in machine

learning, how it relates to fairness, and present our method to jointly improve privacy

and fairness, RFPIB. We finish with a conclusion in Chapter 7.

1.4 Information Measures

We describe information measures used in this work. For more details, see the texts

[1] and [14]. In this thesis, we assume that 0 log 0 = 0 and x log x
0
=∞ for all x > 0,

which is justified by continuity, since x log x→ 0 as x→ 0.

Definition 1 (Entropy). The entropy of a discrete random variable X with probability

mass function PX taking values in finite alphabet X is defined as

H(X) := −
∑
x∈X

PX(x) logPX(x). (1.1)

Entropy is a measure of uncertainty or average amount of information contained

by a random variable. It is nonnegative (H(X) ≥ 0), with equality holding if and

only if X is deterministic.

Definition 2 (Conditional entropy). Given a pair of random variables (X, Y ) with

a joint probability mass function PX,Y defined on X × Y , the conditional entropy of

X given Y is defined as

H(X|Y ) := −
∑

(x,y)∈(X×Y)

PX,Y (x, y) logPX|Y (x|y), (1.2)
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where PX|Y (·|·) is the conditional probability mass function of Y given X.

Definition 3 (Joint entropy). The joint entropy of two discrete random variables X

and Y with a joint probability mass function PX,Y defined on X × Y is defined as

H(X, Y ) := −
∑

(x,y)∈(X×Y)

PX,Y (x, y)PX,Y (x, y). (1.3)

Definition 4 (Cross entropy). The cross entropy of two probability distributions PX

and QX defined on a common discrete alphabet X is defined as:

H (PX ;QX) := −
∑
x∈X

PX(x) logQX(x). (1.4)

Note that with a small abuse of notation, similar notation is used in the literature

for joint entropy and cross entropy.

Cross entropy is the average number of bits necessary to encode symbols from PX

using QX . Some of its properties include:

• H (PX ;PX) = H (PX) .

• H (PX ;QX) ≥ H (PX) .

• H (PX ;QX) ̸= H (QX ;PX) for any PX ̸= QX (non-symmetric).

Definition 5 (Kullback-Leibler (KL) divergence). The KL divergence between dis-

crete distributions PX and QX taking values on a common discrete alphabet X is

defined as

DKL (PX∥QX) :=
∑
x∈X

PX(x) log
PX(x)

QX(x)
. (1.5)
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KL divergence can be thought of as a measure of distance or dissimilarity between

two probability distributions. It is the amount of information lost when a distribution

PX is approximated byQX . It is always nonnegative; DKL (PX∥QX) ≥ 0 with equality

if and only if the two distributions are equal, PX(x) = QX(x) for all x ∈ X , and it is

nonsymmetric.

KL divergence is related to cross entropy in that

D(PX∥QX) = H(PX ;QX)−H(PX). (1.6)

While cross entropy is the average number of bits necessary to encode symbols

from PX using QX , KL divergence is the average number of additional bits needed to

encode symbols from PX using QX . In practice, it is often desired to minimize the

KL divergence. In the machine learning community, the cross entropy H(PX ;QX)

term is often considered instead of the KL divergence, but the objective is still finding

a distribution QX that minimizes the KL divergence; clearly, minimizing the cross

entropy is equivalent to minimizing the KL divergence.

Definition 6 (Rényi divergence [79]). For α > 0, α ̸= 1, the Rényi divergence of

order α between discrete distributions PX and QX taking values on a common discrete

alphabet (support) X is defined as 2

Dα(PX∥QX) :=
1

α− 1
log

(∑
x∈X

PX(x)
αQX(x)

1−α

)
. (1.7)

Rényi divergence is a generalization of KL divergence. Like KL divergence, it is

2If P and Q are probability density functions with common support X , then Dα(P ||Q) =
1

α−1 log
(∫

X P (x)αQ(x)1−α dx
)
.
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nonnegative; Dα (PX∥QX) ≥ 0 with equality if and only if PX(x) = QX(x) for all

x ∈ X . It is non-decreasing in α.

Theorem 1. For two distributions PX and QX with common alphabet, we have that

lim
α→1

Dα (PX∥QX) = DKL (PX∥QX) . (1.8)

Definition 7 (Mutual information). The mutual information of two random variables

X and Y with joint distribution PX,Y and marginal distributions PX and PY is defined

as:

I(X;Y ) := DKL (PX,Y (x, y)∥PX(x)PY (y)) . (1.9)

Mutual information is the average amount of information that X contains about

Y and vice-versa. Equivalently, it is the reduction in the uncertainty of Y due to the

knowledge X and vice-versa, as it can be written as

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X). (1.10)

Mutual information is symmetric; I(X;Y ) = I(Y ;X) and I(X;Y ) = 0 if and only if

X and Y are independent.

Definition 8 (Conditional mutual information). For three discrete random variables

X, Y , and Z the conditional mutual information of X and Y given Z is defined as

I(X;Y |Z) :=
∑
z∈Z

PZ(z)DKL

(
PX,Y |Z(x, y|z)∥PX|Z(x|z)PY |Z(y|z)

)
. (1.11)
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Definition 9 (Markov Chain). Random variables X, Y, Z form a Markov chain

denoted by X → Y → Z if

PZ|X,Y (z|x, y) = PZ|Y (z|y) ∀x, y, z, (1.12)

or equivalently,

• X and Z are conditionally independent given Y.

• PX,Y,Z(x, y, z) = PX(x)PY |X(y|x)PZ|Y (z|y) = PZ(z)PY |Z(y|z)PX|Y (x|y), for all

x, y, z.

Note that X → Y → Z implies Z → Y → X, thus the Markov chain can also be

expressed as X ↔ Y ↔ Z.
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Chapter 2

Neural Networks

Artificial neural networks are computing systems inspired by the way the human brain

processes information. They consist of interconnected layers of nodes called artificial

neurons, with the terms node, artificial neuron, and neuron used interchangeably.

They consist of several interconnected layers of nodes, with the first layer called the

input layer, the last layer called the output layer, and layers in between called hidden

layers. Information, for example the pixel values of an image, is passed into the input

layer then processed through the network until reaching the output layer.

A deep neural network or DNN is one that has multiple hidden layers whereas a

shallow neural network has only one hidden layer. A feedforward neural network, also

called a multilayer perceptron or MLP, is the simplest type where information flows

in only one direction from the input layer to the output layer, as opposed to other

types of neural networks called recurrent neural networks that contain loops back to

previous layers; see Figure 2.1 for an illustration of a feedforward neural network.

The structure of a neural network is called its architecture and the network itself is

often referred to as a machine learning model. In theory, there is no limit to how

many layers a neural network can contain; this is limited only by computing power.
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It can be shown that a neural network can approximate any continuous function [59].

Figure 2.1: A feedforward deep neural network with three hidden layers.

An artificial neuron is a mathematical function that takes a weighted sum of

its inputs, adds a bias term, and then passes the sum into a non-linear activation

function:

Definition 10 (Neuron). A neuron is a function f : Rn×Rn×R→ R such that for

inputs x = (x1, . . . , xn) ∈ Rn, weights w = (w1, . . . , wn) ∈ Rn, and bias b ∈ R,

f(x,w, b) = σ

(
n∑

k=1

xkwk + b

)
, (2.1)

where σ : R→ R is an activation function.

Each input xi has an associated weight wi which can be thought of as the strength

of the connection to the neuron, with a higher weight meaning that the associated

input has a higher importance and greater effect on the neuron.
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Each neuron has a bias term b which can be thought of as the negative of a

threshold that has to be exceeded for the neuron to activate, with an active neuron

being one that has an output greater than 0. The higher the bias, the easier for the

neuron to activate. Figure 2.2 shows a representation of a neuron.

Figure 2.2: A neuron with three inputs.

The weighted sum of the inputs with added bias is then passed into the activa-

tion function, denoted σ : R → R, which is a continuous function that is typically

non-linear, monotonic, and continuously differentiable. The activation function deter-

mines whether the neuron is active and its main purpose is to introduce non-linearity

to the network in addition to bounding the neuron’s output within a threshold.

2.1 Activation Functions

There exist many activation functions, each with different advantages and disadvan-

tages. We herein describe some of the most commonly used ones:

• Sigmoid Function: σ : R→ (0, 1) defined by:

σ(x) =
1

1 + e−x
. (2.2)
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This is a smoothed out version of a binary step function that gives an output

of 1 for a large input and an output of 0 for a small output. It approaches 1

as x→∞ and approaches 0 as x→ −∞. It has the disadvantage of saturating

when the argument becomes a very positive or very negative value, becoming

flat and insensitive to small changes of the argument.

• Tanh Function: σ : R→ (−1, 1) defined by:

σ(x) =
2

1 + e−2x
− 1. (2.3)

This is a scaled version of the sigmoid function with a steeper slope and output

centred at 0.

• Rectified Linear Unit (ReLU): σ : R→ [0,∞) defined by:

σ(x) =


x, if x ≥ 0,

0, if x < 0.

(2.4)

This is currently one of the most commonly used activation functions and has

the advantage of being less computationally expensive than the sigmoid and

tanh functions.

• Leaky ReLU: σ : R→ [0,∞) defined by:

σ(x) =


x, if x ≥ 0,

−ϵx, if x < 0,

(2.5)
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where ϵ ∈ R>0. This is a variation of the ReLU function designed to address

the dying ReLU problem where too many negative inputs can cause a neuron to

become permanently inactive. For a negative input x, the function has a small

negative slope ϵ (typically 0.01, though this number is somewhat arbitrary)

rather than 0, preventing the neuron from “dying.”

• Softmax: The softmax function is a special activation function that is typically

only used for the neurons in the final output layer, with the output of the

softmax being the final output of the neural network. In addition to adding

non-linearity like the other activation functions, the purpose of the softmax is

to normalize the network’s output to a probability distribution, ensuring the

outputs of all the nodes in the final layer sum to 1.

Let z ∈ Rnl denote the vector of all weighted inputs to a layer l of a neural

network, with nl denoting the number of nodes in layer l, and zi the weighted

input to the ith node of layer l, where

zi =

nl−1∑
k=1

xkwik + bi. (2.6)

Here nl−1 is the number of nodes in the previous layer l − 1, x ∈ Rnl−1 is the

outputs of layer l − 1 and inputs to current layer l, wi ∈ Rnl−1 is the weights

between all the elements of x and node zi, and bi ∈ R is the bias of node zi.

Then the softmax function σ : Rnl → Rnl is defined element-wise by

σ (z)i =
ezi∑nl

j=1 e
zj

for i ∈ {1, . . . , nl} . (2.7)
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The weighted input of every neuron in the layer is summed in the denominator.

This results in all the outputs of the function summing to 1:

nL∑
i=1

σ (z)i =

nL∑
i=1

ezi∑nl

j=1 e
zj

=

∑nL

j=1 e
zi∑nl

j=1 e
zj

= 1. (2.8)

Also, 0 < σ (z)i ≤ 1, for all i ∈ {1, . . . , nl}, as the denominator is greater than

or equal to the numerator. This results in σ (z) forming what can be thought

of as a probability distribution.

2.2 Training a Neural Network

For supervised learning, the goal of using a neural network is to produce a desired

output from an input. This output is called the network’s prediction. For example, an

input can be an image of a digit and the desired output can be the digit represented

in the image. The network has to be trained to predict this desired output, with

the terms training or learning meaning adjusting all the weights and biases of the

network to minimize the difference between the network’s prediction (actual output)

and the desired output.

Definition 11. An example is a pair (x,y) where x ∈ Rn is the input to the network

and y ∈ Rm is the desired output.

An example is also called a data point or sample. The input x is also called a

collection of features, where each entry xi is a feature, and the desired output y is also

called a label, ground truth label, or simply the ground truth. This label is typically

encoded as a one-hot encoding.
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Definition 12 (One-hot encoding). A one-hot encoding y ∈ Rm is a vector where one

component is equal to 1, its index representing a value, and every other component is

equal to 0.

For example, for the basic task of classifying digits ranging from 0-9, the label 5

is encoded as y = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)T , with y5 = 1, using indices starting at 0.

For this task, since there are 10 different digits to be classified, the network’s output

layer will have 10 nodes, with each node representing 1 of the 10 classes.

Definition 13 (Training set). A training set D
{(

x{i},y{i})}N
i=1

is a set of training

examples, where N is the number of examples.

Examples are called training examples when they are used for training as part

of a training set. The training process consists of iterating over a training set and

adjusting the network’s weights and biases each time. The goal is for the neural

network to approximate an unknown function f that maps the input x to the desired

output y. Letting θ ∈ Rs denote all the weights and biases in the neural network

(also called the network’s parameters), learning consists of finding the optimal θ that

produces the best approximation f̂ of f such that ŷ = f̂(x;θ), where ŷ is the neural

network’s prediction. Here f̂(x;θ) is produced by the neural network, and as expected

is a function of both the input and the weights and biases.

2.2.1 Cost Functions

To determine how close the approximation is, a cost function is used (also called a loss

function or objective function). A cost function is a continuous function C : Rs → R

which measures the average difference between the network’s output ŷ = f̂(x;θ) and
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the desired output y over all samples in the training set. Cost functions should satisfy

two properties:

1. C(θ) ≥ 0, for all θ.

2. C(θ)→ 0 as ŷ → y, and C(θ) = 0 when ŷ = y.

A typical choice for the cost function is the average loss given by

C(θ) = E(x,y)∼p̂dataL(f̂(x;θ),y), (2.9)

where L(ŷ,y) is the loss of an individual example and the expectation is over all

samples in the empirical distribution of the dataset, p̂data. Note that the cost function

is sometimes written as a function of the output and desired output, C(ŷ,y), or the

output, desired output, and parameters, C(ŷ,y,θ), but here we regard the training

points as fixed and simply write the cost function as a function of the weights and

biases θ.

Two functions commonly used to find the loss of each example are the quadratic

(or mean squared error) loss and the cross-entropy (or negative log-likelihood) loss:

• Quadratic Loss:

L(ŷ,y) = ||ŷ − y||22. (2.10)

• Cross-entropy Loss:

L(ŷ,y) = −
m∑
j=1

yj log ŷj (2.11)

where the summation is over each element j of the vectors ŷ and y of length

m.
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Using these per-example loss functions as part of a cost function, we get:

• Quadratic Cost:

C(θ) =
1

2N

N∑
i=1

||f̂(x{i};θ),y{i}||22 (2.12)

where (x{i},y{i}) is one training example out of N total. The factor of 1
2
is not

necessary but is often included for convenience as it simplifies matters when

differentiating during backpropagation, which we discuss later.

• Cross entropy Cost:

C(θ) = − 1

N

N∑
i=1

m∑
j=1

y
{i}
j log f̂(x{i};θ)j. (2.13)

The cross entropy cost is related to cross entropy; see Definition 4. The cross

entropy cost function is typically used in conjunction with the softmax activa-

tion function, meaning that all the elements of the output vector ŷ = f̂(x;θ)

sum to 1 and 0 ≤ ŷi ≤ 1 for all i ∈ {1, . . . ,m}, and thus ŷ can be thought of

as a probability distribution. Similarly, as the vector y is typically a one-hot

encoding, one of its components is a 1 and the rest are 0, and so it also sat-

isfies the previous two properties of a probability distribution, although it is a

deterministic one. Thus, the vectors y and ŷ can be thought of as representing

the distributions PX and QX , respectively, in the original definition of cross

entropy. Training the neural network can thus be thought of as finding the θ

that results in the ŷ that minimizes cross entropy.

Example 1. For a task classifying digits from 0-9 where we train using a single
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training example consisting of an image of the digit 7 and the label 7, assuming the

network predicts the digit is a 7 with a probability of 0.30872, the cross entropy loss

is

C(θ) = −
9∑

j=0

yj log ŷj = − log ŷ7 = − log(0.30872) = 1.1753. (2.14)

The label 7 is one-hot encoded as y = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0)T and thus all the

terms in the summation where j ̸= 7 are 0.

Example 2. Assume the same task as the previous example except this time there is

a second image, an image of the digit 2 that is classified as a 2 with a probability of

0.31604; see Figure 2.3 for an illustration of this example. Then the cross entropy

loss is

C(θ) = −1

2

2∑
i=1

9∑
j=0

y
{i}
j log ŷ

{i}
j = −1

2
(log(0.23086) + log(0.31604)) = 1.3089. (2.15)

2.3 Gradient Descent

As the cost function is typically very high dimensional and non-convex, finding the

global minimum is typically non-feasible. Instead, an iterative optimization algorithm

or optimizer is used, typically gradient descent or a related variation.

For the most basic version of gradient descent, sometimes called vanilla gradient

descent, the network’s parameters θ are iteratively adjusted in the negative direction

of the cost function’s gradient. Letting t ∈ Z>0 be a timestep, ∇θtC(θt) be the

gradient of the cost function at timestep t with respect to the parameters θ, and

η ∈ R>0 be the learning rate (also known as the step size), an iteration of the
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Figure 2.3: Images of the digits of 7 and 2 from the MNIST database [16] (left),
predictions ŷ from a neural network (centre), and desired output y (right). The
network has 10 output nodes, each representing a digit from 0 to 9, and the digit
corresponding to the node with the highest value is the network’s prediction; ideally,
that node should ouput a 1 and all others output a 0. For the digit of a 7 (top row),
the network is correct in its prediction, as node corresponding to 7 has the highest
value of 0.231, whereas for the digit of a 2 (bottom row) the network is incorrect as
the node corresponding to 6 has a value of 0.429, higher than the node corresponding
to the 2.

gradient descent algorithm is given by:

θt+1 ← θt − η∇θtC(θt). (2.16)

The process continues until a stopping condition representing a desired level of

accuracy is reached. Note that for a η small enough, gradient descent is guaranteed

to decrease the cost [70]. If we adjust θ by a small amount, denoted ∆θ, then the
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change in C(θ), denoted ∆C(θ), can be approximated by

∆C(θ) ≈ ∂C(θ)

∂θ1
∆θ1 + · · ·+

∂C(θ)

∂θm
∆θm = ∇θC(θ) ·∆θ. (2.17)

Letting ∆θ = −η∇θC(θ), for an η small enough that the approximation is valid,

∆C(θ) ≈ −η∇θC(θ) · ∇θC(θ) = −η∥∇θC(θ)∥2 ≤ 0. (2.18)

Thus, as long as η is small enough, the algorithm will converge to a minimum

or saddle point where the gradient is 0. It is however not guaranteed to reach a

global minimum and the possibility of reaching a saddle point is a potential problem.

While this could be avoided by computing the Hessian ∇2
θC(θ), this is usually not

done in practice due to the increased computational requirements. Although it is not

guaranteed to converge to a useful minimum, the gradient descent algorithm typically

gives good results and is often used in practice.

2.3.1 Stochastic Gradient Descent

Gradient descent has the disadvantage of requiring gradients to be computed for all

N training examples:

∇θC(θ) =
1

N

N∑
i=1

∇θL
(
f̂
(
x{i};θ

)
,y{i}

)
. (2.19)

As N is typically a large number, this is computationally expensive. In practice,

stochastic gradient descent (SGD) is typically used instead. SGD, also sometimes

called mini-batch gradient descent, is a stochastic approximation of gradient descent
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that uses an estimate of the gradient computed from a randomly selected subset of

the dataset.

For SGD, first the dataset is randomly shuffled and then subdivided into subsets

called mini-batches. The gradient is then computed over all training examples in the

selected minibatch, and used as an estimate of the true gradient over all training

examples. The same iterative algorithm as for gradient descent is used as in (2.16),

except the gradient of the cost is estimated as

∇θC(θ) ≈ 1

M

M∑
i=1

∇θL
(
f̂
(
x{i};θ

)
,y{i}

)
, (2.20)

where M ≤ N is a positive integer, resulting in one iteration of SGD being given by:

θt+1 ← θt −
η

M

M∑
i=1

∇θtL
(
f̂
(
x{i};θt

)
,y{i}

)
. (2.21)

Typically N = kM for some k ∈ Z>0, and the training set is divided into k

mini-batches. Running the SGD algorithm for k iterations, passing through all the

examples in the training set one time, is called completing one epoch of training.

After an epoch is completed, the training set is randomly shuffled again, split into

different mini-batches, and the process continues.

Note that sometimes stochastic gradient descent is used to refer to only a mini-

batch size of M = 1, with mini-batch stochastic gradient descent referring to a mini-

batch size where 1 < M < N. Here we take stochastic gradient descent to mean any

mini-batch size where M < N.

There currently does not exist a universally accepted way to calculate an optimal

mini-batch size. In practice, mini-batch sizes are usually powers of 2, with typical
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sizes ranging from 32 to 256. This is done to decrease computational time as some

hardware devices, especially graphics processing units (GPUs), offer better runtime

on batch sizes that are powers of 2. While it would be expected that a larger batch

size is better as it provides a more accurate estimate of the gradient, this is not

necessarily the case and some, such as [65], argue that smaller mini-batch sizes from

2 to 32 yield best performance. One possible reason is that smaller batches can offer a

regularization effect due to the noise they add to the training process, helping reduce

generalization error [96], something we discuss later.

2.3.2 Momentum

There exist many other optimization algorithms that are variations of stochastic gra-

dient descent. One is called momentum (or gradient descent with momentum). Mo-

mentum is a technique designed to accelerate learning, leading to faster convergence.

This algorithm accumulates an exponentially decaying moving average of past gradi-

ents.

We introduce a new update vector, m ∈ Rs which keeps track of past gradients,

as well as a hyperparameter β ∈ [0, 1) which controls how quickly the past gradients

decay exponentially. An iteration of momentum is then given by:

mt+1 ← βmt + (1− β)∇θtC(θt), (2.22)

θt+1 ← θt −mt+1. (2.23)

This can be thought of as giving stochastic gradient descent memory. An analogy

used is pushing a ball down a hill that accumulates momentum as it rolls downhill,

increasing its velocity on the way [82]. The gradient can be though of as something
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that changes the ball’s velocity rather than its position as in SGD.

If β = 0, this results in regular stochastic gradient descent. But for higher values of

β, higher weight is placed on the previous gradients to determine the current direction.

In practice, large values of β are typically used, such as β = 0.9 or β = 0.99, which

results in what’s called acceleration. Momentum results in reducing oscillations and

typically results in faster convergence, giving up to a quadratic boost in speed for

many functions compared to SGD [31].

2.3.3 AdaGrad

The learning rate η has a very large effect on the learning process. While the previ-

ously discussed optimizers update all the parameters θ at the same rate, there exist

adaptive algorithms that use a different learning rate for each parameter θi at each

timestep t. AdaGrad [19], short for adaptive gradient, is one such algorithm.

To simplify notation, we let gt,i be the gradient of the cost function with respect

to the parameter θi at timestep t,

gt,i =
∂C (θt)

∂θt,i
. (2.24)

Then one iteration of AdaGrad is given by:

θt+1,i ← θt,i −
η√∑t
τ=1 g

2
τ,i

· gt,i, i = 1, . . . , d. (2.25)

This results in smaller updates being performed for parameters with a history

of large gradients, and larger updates for parameters with small gradients. This is

especially helpful for dealing with sparse data, as more weight can be shifted onto
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parameters associated with inputs that occur infrequently. The learning rate de-

creases faster for parameters that change frequently and slows down for parameters

that only change occasionally [99]. AdaGrad also has the benefit that there is no need

to manually tune η with most implementations using a default value of 0.01 with no

changes.

However, AdaGrad has a weakness in the accumulation of squared gradients in

the denominator. As every added term is positive, the sum keeps growing at every

iteration t, eventually causing the learning rate to become infinitesimally small and

the algorithm no longer making any updates to θ.

To combat this weakness, RMSProp was developed, an unpublished algorithm

proposed by Geoffery Hinton in Lecture 6e of a Coursera class [45]. It replaces

AdaGrad’s summation of squared gradients in the denominator with an exponentially

decaying average of squared gradients.

We let v ∈ Rs be this exponentially decaying average, and β ∈ [0, 1) control the

rate of decay. To simplify notation, we drop the i subscript and vectorize the equation,

with all operations performed element-wise. Then an iteration of RMSProp is given

by:

vt+1 ← βvt + (1− β)g2
t+1, (2.26)

θt+1 ← θt −
η

√
vt+1

gt+1. (2.27)

2.3.4 Adam Optimizer

The Adam optimizer [52] is currently one of the most commonly used optimizers. It

is a continuation of the previously discussed techniques, and can be thought of as a
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combination of RMSProp with momentum, with bias correction added.

It involves two exponential moving averages, one of the gradient, similar to SGD

with momentum, and one of the gradient squared, similar to RMSProp. As before,

we use m for the running average of the gradient with the rate of decay controlled by

β1 ∈ [0, 1), and v for the running average of the squared gradient, with rate controlled

by hyperparameter β2 ∈ [0, 1).

First, we initialize m and v to the all-zero vector, m = 0 and v = 0. Then the

first stage of the algorithm is to compute the running averages of the gradient and

squared gradient:

mt ← β1mt−1 + (1− β1)gt, (2.28)

vt ← β2 · vt−1 + (1− β2)g
2
t . (2.29)

These two running averages are estimates of the first and second moment of the

gradient. However, since both m and v are initialized as 0 the estimate will be biased

toward 0. The bias is especially high during the initial timesteps and with small decay

rates where the two β values are close to 1.

The second stage of the algorithm is to use a bias-correction technique to counter-

act this initialization bias. We use m̂ and v̂ to denote the bias-corrected exponential

moving averages of the gradient and squared gradient. This is done by:

m̂t ←
mt

(1− βt
1)
, (2.30)

v̂t ←
vt

(1− βt
2)
. (2.31)

A proof of how this bias correction technique works is given later.
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Finally, we use these two bias corrected quantities to give one iteration of the

Adam optimizer:1

θt ← θt−1 − η
m̂t√
v̂t + ϵ

. (2.32)

The parameters are updated by the learning rate η multiplied by the bias corrected

exponential moving average of the gradient divided by the square root of the bias

corrected exponential moving average of the squared gradient. We also introduce a

new term of ϵ ∈ Rs
>0 in the denominator, which is chosen to be close to the zero

vector and is included simply to prevent division by 0. Default values of ϵi = 10−8 for

all components of ϵ are suggested. Combining these steps, we get the full algorithm

for the Adam optimizer, given below as Algorithm 1. The authors of the original

work [52] recommend default values of η = 0.001, β1 = 0.9, and β2 = 0.999, and these

values are rarely changed in practice.

Next we show that m̂t and v̂t are unbiased estimators of gt and g2
t , respectively,

assuming E[gt] and E[g2
t ] are constant for all timesteps t ∈ {1, . . . , T}. If this condi-

tion is not met, the estimators are biased by a small error term ζ ∈ Rs.

Theorem 2. E[m̂t] = E[gt] + ζ1 and E[v̂t] = E[g2
t ] + ζ2, where ζ1 = 0 and ζ2 = 0 if

E[gt] = a and E[g2
t ] = b for all timesteps t ∈ {1, . . . , T}, where a and b are constant

vectors.

Proof. First, note that one can inductively conclude that

mt = (1− β1)
t∑

i=1

βt−i
1 gi. (2.33)

1Note that all operations in the algorithm including the division and square root are performed
element-wise.
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Algorithm 1 Adam optimizer

Require: η ▷ Learning rate (stepsize)
Require: β1, β2 ∈ [0, 1) ▷ Exponential decay rates for moment estimates
Require: C(θ) ▷ Objective function with parameters θ
Require: θ0 ▷ Initial parameter vector
1: m0 ← 0 ▷ First moment initialized to 0
2: v0 ← 0 ▷ Second moment initialized to 0
3: t← 0 ▷ Timestep initialized to 0
4: while t ∈ {0, . . . , T} do
5: t← t+ 1 ▷ Increment timestep
6: gt ← ∇θt−1Ct(θt−1) ▷ Calculate gradient of objective at timestep t
7: mt ← β1mt−1 + (1− β1)gt ▷ Update exponential moving average of gradient
8: vt ← β2vt−1 + (1− β2)g

2
t ▷ Update exponential moving average of squared

gradient
9: m̂t ←mt/(1− βt

1) ▷ Correct for bias
10: v̂t ← vt/(1− βt

2) ▷ Correct for bias
11: θt ← θt−1 − η · m̂t/(

√
v̂t + ϵ) ▷ Update parameters

12: end while
13: return θt ▷ Return parameters that minimize objective C(θ)

Using this formula,

E [m̂t] = E

[
1− β1

1− βt
1

t∑
i=1

βt−i
1 gi

]
. (2.34)

Next we make an approximation and assume that gi = gt for all t ∈ {1, . . . , T}.

This approximation introduces the error term ζ1 which is 0 when the true moment

E[gi] is stationary. As β1 is typically large, with a default value of β1 = 0.9, the

gradient terms for values of i < t will be small, and thus the approximation error ζ1

will also be small. Making this approximation allows us to move the gradient outside

the summation as it no longer depends on i:

E [m̂t] = E [gt] ·
1− β1

1− βt
1

t∑
i=1

βt−i
1 + ζ1. (2.35)

Finally, we use the formula for a sum of a finite geometric series to rewrite the
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summation:

E [m̂t] = E [gt] ·
1− β1

1− βt
1

βt
1β

−1
1 (1− β−t

1 )

1− β−1
1

+ ζ1

= E [gt] ·
1− β1

1− βt
1

βt
1 − 1

β1 − 1
+ ζ1

= E [gt] + ζ1.

(2.36)

To show that E[v̂t] = E[g2
t ] + ζ2, an expression for vt can be found in the same

way as for mt:

vt = (1− β2)
t∑

i=1

βt−i
2 g2

i , (2.37)

and the proof is entirely analogous.

2.4 Backpropagation

To compute the gradient ∇C(θ), the backpropagation algorithm is used. The purpose

of backpropagation is to efficiently compute all the partial derivatives of the cost

function with respect to every weight and bias, ∂C
∂θi

for every i ∈ {1, . . . , s}, showing

how quickly the cost changes based on changing a weight or bias. To simplify notation,

we write the cost function as C. Before we give the equations of backpropagation, we

introduce some new notation.

Suppose a neural network has L layers indexed by l, with l = 1 the input layer

and l = L the output layer. Let a
(l)
j denote the activation of the jth neuron in the lth

layer (where activation is the neuron’s output), b
(l)
j denote the bias of the jth neuron

in the lth layer, and w
(l)
jk denote the weight between the jth neuron in layer l and a

kth neuron in previous layer l − 1. Let nl be the number of neurons in layer l and σ
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be an activation function as previously defined. Then

a
(l)
j = σ

(
nl−1∑
k=1

w
(l)
jka

(l−1)
k + b

(l)
j

)
, l ∈ {2, . . . , L} (2.38)

where the sum is over all nl−1 neurons k in layer l − 1.

This expression can also be written in matrix form. Let W (l) ∈ Rnl×nl−1 be a

matrix containing all the weights for layer l, with each row j containing the weights

of the jth neuron in layer l with all nl−1 neurons in layer l − 1. Let b(l) ∈ Rnl

be a vector containing the biases of all nl neurons in layer l and a(l) ∈ Rnl be a

vector containing the activations of all nl neurons in layer l. Next, we vectorize the

activation function σ as σ(v): Rnl → Rnl , where σ is applied to each component of

v, i.e. σ(v)j = σ(vj). Then

a(l) = σ
(
(W (l)a(l−1) + b(l)

)
, l ∈ {2, . . . , L}. (2.39)

We use z(l) ∈ Rnl to denote the vector of all weighted inputs to nodes in layer l,

z(l) = W (l)a(l−1) + b(l), l ∈ {2, . . . , L} (2.40)

Next we define a new intermediate quantity.

Definition 14 (Error [44]). The error of the jth neuron in layer l is given by

δ
(l)
j :=

∂C

∂z
(l)
j

, for 1 ≤ j ≤ nl, 2 ≤ l ≤ L. (2.41)

The error quantifies how sensitive the cost function is to its corresponding neuron.

Note that the usage of the term error is somewhat misleading since it is unclear how
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much each individual neuron is responsible for misclassifications that occur in the

network’s final output layer. This usage has arisen since the cost function can only

reach a minimum when all partial derivatives are 0, so it is desired to achieve an error

of 0 for all neurons [44]. We express the errors as a vector, where δ(l) ∈ Rnl is the

vector containing all the errors in layer l.

We also define the Hadamard product:

Definition 15 (Hadamard product). Given two vectors x, y ∈ Rn, then x⊙y ∈ Rn

is defined element-wise by:

(x⊙ y)i = xiyi. (2.42)

Using this notation, we introduce four equations of backpropagation which are

consequences of the chain rule.

Theorem 3. The backpropagation equations of a neural network are

δ(L) = ∇Ca(L) ⊙ σ′(z(L)), (2.43)

δ(l) = (W (l+1))Tδ(l+1) ⊙ σ′(z(l)), l ∈ {2, . . . , L− 1}, (2.44)

∂C

∂b
(l)
j

= δ
(l)
j , l ∈ {2, . . . , L}, (2.45)

∂C

∂w
(l)
jk

= δ
(l)
j a

(l−1)
k , l ∈ {2, . . . , L}, (2.46)

where ∇Ca(L) is the gradient vector of C with respect to the activations of layer L.

Proof. We begin by proving (2.43). Recall that the cost function compares the dif-

ference between the network’s desired output y and true output ŷ. The true output
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is the activation of the neurons in the final layer,

ŷ = a(L) = σ(z(L)). (2.47)

Then
∂a

(L)
j

∂z
(L)
j

= σ′
(
z
(L)
j

)
, (2.48)

and since C depends on z through a, by the chain rule,

δ
(L)
j =

∂C

∂z
(L)
j

=

nL∑
k=1

∂C

∂a
(L)
k

∂a
(L)
k

∂z
(L)
j

=
∂C

∂a
(L)
j

σ′(z
(L)
j ), (2.49)

where the final equality follows since
∂a

(L)
k

∂z
(L)
j

= 0 when k ̸= j. This is the component-wise

form of (2.43).

To prove (2.44), we start by rewriting δ
(l)
j in terms of δ

(l+1)
k using the chain rule:

δ
(l)
j =

∂C

∂z
(l)
j

=

nl+1∑
k=1

∂C

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=

nl+1∑
k=1

δ
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

. (2.50)

Recall that

z
(l)
j =

nl−1∑
k=1

w
(l)
jka

(l−1)
k + b

(l)
j =

nl−1∑
k=1

w
(l)
jkσ(z

(l−1)
k ) + b

(l)
j , (2.51)

z
(l+1)
k =

nl∑
j=1

w
(l+1)
kj σ(z

(l)
j ) + b

(l+1)
k , (2.52)

and thus

∂z
(l+1)
k

∂z
(l)
j

= w
(l+1)
kj σ′(z

(l)
j ). (2.53)
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Substituting (2.53) back into (2.50), we get

δ
(l)
j =

nl+1∑
k=1

δ
(l+1)
k w

(l+1)
kj σ′(z

(l)
j ), (2.54)

the component-wise form of (2.44). To prove (2.45), by (2.52),

∂z
(l)
j

∂b
(l)
j

= 1, (2.55)

and thus by the chain rule,

∂C

∂b
(l)
j

=
∂C

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

∂z
(l)
j

∂b
(l)
j

=
∂C

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

(1) =
∂C

∂z
(l)
j

= δ
(l)
j . (2.56)

Similarly, to prove (2.46), by (2.52),

∂z
(l)
j

∂w
(l)
jk

= a
(l−1)
k , (2.57)

and by the chain rule,

∂C

∂w
(l)
jk

=
∂C

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

=
∂C

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

a
(l−1)
k = δ

(l)
j a

(l−1)
k . (2.58)

Using these four fundamental equations, all partial derivatives of C are computed.

First, for each training point, a forward pass is taken through the network, comput-

ing the activations and weighted inputs starting from the first layer and progressing

toward the last layer, in the order a(1), z(2),a(2), z(3),a(3), . . . ,a(L). Next, a backward

pass is taken, computing partial derivatives and finding the error terms starting from
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the last layer and progressing toward the first layer, in the order δ(L), δ(L−1), . . . , δ(2).

The first error δ(L) is given by (2.43) and the remaining errors are then found using

(2.44). Finally, the partial derivatives of the gradient vector are found by (2.45) and

(2.46).

This backpropagation technique combined with mini-batch stochastic gradient

descent or other related optimizers form the essence of how neural networks work.

2.5 Evaluation and Overfitting

The goal of training a neural network is to not only achieve good accuracy on the

training set but also to “generalize”, i.e. to achieve good accuracy on new data

not in the training set, making it more difficult than in optimization settings. To

evaluate how the network performs on unseen data, after training on the training set

is completed, the network is evaluated on a test set.

Definition 16 (Test set). A test set T
{(

x{i},y{i})}M
i=1

is a set of examples, where

M is the number of examples. The examples are taken from the same distribution as

those in the training set.

The training set and test can be thought of as two disjoint partitions of a larger set

containing examples
(
x{i},y{i}) . The i.i.d. assumptions are typically made on these

datasets, with it being assumed that all samples are independent from each other and

drawn from the same probability distribution. Typically about 70% of examples are

used for the training set and 30% for the test set. Ultimately, the goal of machine

learning is to find the weights and biases θ that minimize the error on the test set

(maximize accuracy).
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Definition 17. Error is the percentage of examples classified incorrectly,

Error =
1

M

M∑
i=1

[
ŷ{i} ̸= y{i}

]
. (2.59)

Definition 18. Accuracy is the percentage of examples classified correctly,

Accuracy =
1

M

M∑
i=1

[
ŷ{i} = y{i}

]
. (2.60)

The expected test error will always be greater than or equal to the training error.

In order to attain the overall goal of minimizing the test error, the neural network

must achieve two goals:

1. Minimize the training error.

2. Minimize the gap between the test error and training error.

These two critera correspond to two possible problems:

1. Underfitting: The training error is too large.

2. Overfitting: The gap between test and training error is too large.

Overfitting is a more common problem. Since neural networks can be very pow-

erful with millions of parameters, it is possible for them to simply memorize the

training data, allowing them to achieve high accuracy on the training set but gen-

eralize poorly. There exist several techniques to reduce overfitting; one is to simply

increase the amount of training data, assuming the data is randomly sampled and

there is no repetition of samples. However, datasets are often limited and this is not

always possible. Another way is to modify the algorithm by adding a regularization



2.5. EVALUATION AND OVERFITTING 41

term to the cost function. This term is designed to constrain the model to some-

thing more simple, penalizing overly complex models. There exist many different

regularization methods including ridge regression and lasso regression.

2.5.1 Early Stopping

One of the most common ways to reduce overfitting is called early stopping. As

training progresses over time, the loss and error rate on the training set typically

continues to decrease but at some point the loss and error on the test set begins to

increase as the network begins to overfit. This is illustrated in Figure 2.4.

Figure 2.4: Loss (left) and accuracy (right) classifying images from the MNIST
dataset [16]. On the training set, the loss continues to decrease and accuracy contin-
ues to increase as training progresses. On the test set, loss decreases and accuracy
increases during the initial epochs of training, but after a certain number of epochs
performance begins to worsen.

The goal of early stopping is to find the point in time where overfitting begins
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and to stop training. This is done by continuously evaluating the performance of the

network (typically loss or error rate) after each epoch or a certain number of epochs

of training. If the performance stops improving, training is stopped. This evaluation

is done on a new, separate partition of the data set called the validation set.

A validation set V
{(

x{i},y{i})}P
i=1

, where P is the number of examples, is a

third partition of the dataset in addition to the training set and test set. Adding a

validation set has the disadvantage of reducing the amount of data available for the

training and test sets but is necessary in order to use the network’s performance on

unseen data to adjust training. Like the test set, the validation set is used to evaluate

how the model performs on new, unseen data, but in this case the data influences

training, so it is best practice to use a validation set completely disjoint with the test

set for the evaluation on the test set to be fair. In general the training set will contain

the most data, followed by the test set and then the validation set. The is no optimal

split percentage but a common combination is 70% for the training set, 20% for the

test set, and 10% for the validation set.

The main parameter of the early stopping algorithm is the patience: the number

of epochs with no performance improvement before training is ended. For exam-

ple, a patience of 5 means that 5 epochs with no improvement triggers stopping.

These epochs can be non-consecutive. Another is min delta: the minimum change

in the monitored quantity between epochs to qualify as an improvement. By default,

min delta = 0, meaning that no change will not count towards triggering early stop-

ping, but a decrease in performance will. Increasing min delta allows early stopping

to also trigger when very minor, negligible improvements occur.
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2.6 Preprocessing

Before input data is fed into a neural network, the data usually requires some prepro-

cessing. It is important that all input values have the same scale and a small variance.

Extremely large or small values and values with a large variance can hurt training.

Images consist of pixel values that are typically 8 bits, meaning each pixel has

28 = 256 possible values. Thus when x ∈ Rn is an input image, each component

of the vector represents a pixel value, xi ∈ {0, . . . , 255}, for all i ∈ {1, . . . , n}. The

most simple preprocessing method is to scale the data by normalizing it so that the

pixel values are in the range [0, 1]. This is done simply by dividing each value by 255.

Letting x∗ be the scaled data,

x∗ =
1

255
x. (2.61)

More generally, any input data can be scaled to any range [l, u] by

x∗
i =

xi − xmin

xmax − xmin

(u− l) + l, ∀i ∈ {1, . . . , n}, (2.62)

where xmin is the smallest component of x, xmax is the largest component of x, u is

the upper value of the new range, and l is the lower value of the new range. The

range [−1, 1] is a common alternative to [0, 1].

Another way to scale the data is to standardize it so that its mean is 0 and

standard deviation is 1. This is done by

x∗
i =

xi − µ

σ
, ∀i ∈ {1, . . . , n}. (2.63)

Note that here we overload notation and let σ ∈ R>0 be the standard deviation
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(rather than an activation function). We let µ ∈ R be the mean, calculated as

µ =
1

n

n∑
i=1

xi, (2.64)

and calculate the standard deviation

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2. (2.65)

Scaling the data is by far the most important form of preprocessing but there exist

some other, such as cropping and centering images to ensure they have the same size

and aspect ratio.

2.7 Weight Initialization

At the very beginning of training, all weights and biases in the network are initialized

at random. There are many different initialization schemes with different advantages

and disadvantages. Weights are typically chosen from either a normal or a uniform

distribution. One criteria that should be fulfilled is that all inputs to a node should

be given a different initial weight. Initialization is important and can greatly effect

the time it takes for the network to converge. Weights that are too small can cause

an input to “vanish” or become so small it is no longer useful, while weights that are

too large can cause the input to “explode” or become so large it is no longer useful.

One of the most common initialization schemes is Xavier initialization [30], also

called Glorot initialization (named after Xavier Glorot who proposed the method).

The goal of this method is initialize weights such that the variance of inputs is the

same in each layer, V ar(z
(l−1)
i ) = V ar(z

(l)
j ),∀i ∈ {1, · · · , nl−1}, j ∈ {1, · · · , nl},
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l ∈ {2, · · · , L}. This constant variance helps prevent gradients from vanishing or

exploding. There is both a Xavier Normal and Xavier Uniform version of this ini-

tialization scheme, which uses a normal distribution and a uniform distribution, re-

spectively. Xavier Normal initialization consists of initializing weights in a network’s

layer l using a normal distribution with 0 mean and a variance of 2
nl−1+nl

,

w
(l)
ij ∼ N

(
0,

2

nl−1 + nl

)
, (2.66)

recalling that nl is the number of nodes in layer l. Xavier Uniform initialization

consists of initializing these weights using a uniform distribution with a variance of

2
nl−1+nl

,

w
(l)
ij ∼ Uniform

[
−

√
6√

nl−1 + nl

,

√
6√

nl−1 + nl

]
. (2.67)

The key idea behind these initialization schemes is that the variance of the distribution

is 2
nl−1+nl

; the normal and uniform versions are used interchangeably in practice and

it remains unclear if one is better than the other.

A second common initialization scheme is He initialization [41], also called Kaim-

ing initialization (named after its creator Kaiming He). This scheme has the same

goal as Xavier initialization of keeping the variances of inputs constant across layers

but is better adapted to the ReLU activation function, while Xavier initialization is

better adapted to the tanh or sigmoid activation function. Like Xavier initialization,

there exists both a He Normal and He Uniform version of this initialization scheme

that uses a normal distribution and a uniform distribution. Both distributions have
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the same variance of 2
nl−1

. These two initialization schemes, respectively, are

w
(l)
ij ∼ N

(
0,

2

nl−1

)
, (2.68)

w
(l)
ij ∼ Uniform

[
−

√
6

nl−1

,

√
6

nl−1

]
. (2.69)

2.8 Convolutional Neural Networks

For classifying images or other data in grid-like patterns, convolutional neural net-

works (CNNs) are typically used rather than the fully-connected neural networks

previously discussed. In fully connected networks, each node is connected to every

node in the next layer with a unique weight, and regular matrix multiplication takes

place between an input matrix and a weight matrix. By contrast, convolutional neural

networks contain layers where instead a convolution operation is performed between

the input matrix and weight matrix. As we are working with discrete image data, we

consider discrete convolution.

Definition 19 (Discrete convolution). For two functions x(t) and w(t) defined on a

discrete integer t, the discrete convolution (x ∗ w)(t) is defined as

(x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a), (2.70)

where a ∈ Rn and the summation is over all dimensions.

The first argument x to the convolution operation is called the input and the

second argument w is called the kernel or the filter. The input x consists of image

pixel values while w consists of weights.
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For a two dimensional image I as the input, a two dimensional kernelK is typically

used, and the convolution is

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.71)

or equivalently

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.72)

as convolution is commutative.

Typically the kernel is much smaller than the input, which reduces memory usage

and computational power compared to fully-connected networks. Just like with fully-

connected networks, the output of the convolution is passed through a non-linear

activation function and the weights of the kernel are learned with gradient descent

and backpropagation. This final output out of a convolutional layer is known as a

feature map. Convolution can be viewed as multiplication by a matrix where several

entries are constrained to be equal to other entries, such as a Toeplitz matrix or

circulant matrix [33].

Typically pooling layers are used in conjunction with convolutional layers. A

pooling layer takes in the output of a convolutional layer and gives averages across

different rectangular neighbourhoods of this output. Popular pooling layers include

the max pooling layer which returns the maximal pixel value in each neighbourhood,

the average pooling layer which returns the mean of the values, and the L2 pooling

layer which returns the L2 norm of the values in the neighbourhood. Max pooling is

the one used most commonly.

In addition to reducing the size of the output which reduces memory usage and
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computational power since the next layer has less inputs to process, pooling has

the benefit of making the convolutional operation approximately invariant to small

translations of the input. This is useful for applications where the exact location of a

feature can slightly vary. For example, when classifying faces, the location of the eye

can vary by several pixels on each image. The network needs to determine whether

or not the eye is present in the image but the exact location is not important [33].

2.9 ResNet

One of the most widely used type of neural network is ResNet [42], short for residual

neural network. ResNet is a variation of convolutional neural networks. ResNet

adds shortcut connections between layers, also known as skip connections. These

connections consist of the identity mapping, and their output is added to a layer

further in the network, allowing input data to “skip” several layers.

Definition 20 (Residual function). If x is the input to a neural network’s layer and f

is the function that the several layers of that network are fitting, then h(x) = f(x)−x

is the residual function.

The original function is then calculated as f(x) = h(x) + x. The network learns

the residual function h(x) and x is added as the skip connection rather than the

network directly learning f(x). In the original work [42], the authors hypothesize

that it is easier to optimize the residual function compared to the original mapping.

For example, in the case where the optimal mapping is the identity, it is easier for

neural network to learn the 0 mapping for h(x) rather than directly learning the

identity mapping for f(x). Figure 2.5 shows an example of two layers in a residual

neural network with a skip connection.
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Figure 2.5: The two hidden layers of the network learn the residual mapping h(x) and
then x is added to the output, with the identity mapping skip connection bypassing
the two layers. This results in a final output of h(x) + x.

Note that the dimension of x must be equal to the dimension of h(x). If this is

not the case, a linear projection Ws is performed on the identity skip connection so

that the dimensions match, and the output of the block is given by

z = h(x) +Wsx. (2.73)

Typically the skip connection is used over two or three layers, though it is possible to

use it over a higher number of layers. There is no advantage to using it over a single

layer. ResNet was shown to outperform other methods, achieving state of the art

results on ImageNet [15], a dataset containing more than 14 million images in over

20,000 categories that is used in computer vision competitions [83].

While residual neural networks can have any number of layers, ResNet typically

refers to specific network architectures described in the original ResNet paper [42].

These are known as ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152,

where the number is the total number of layers in the network. Each of these networks

consist of several blocks of convolutional layers with skip connections. The best
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accuracy was achieved on the largest networks with the most layers; however using

a larger network comes at the expense of requiring significantly more computational

power and accuracy improvements become minor amongst the largest networks.

2.9.1 Transfer Learning

Rather than learning a model from scratch, it is possible to begin with a ResNet

model pretrained on ImageNet and then just perform a minor amount of training

to adapt the model to a specific application. This is a form of transfer learning,

applying knowledge learned from one setting to a different setting [33]. The idea

behind transfer learning is that some features are common in all images so a neural

network trained to recognize them does not need to be retrained for new datasets. It

is thought that initial layers of the network learn more generic features of images and

the final layers learn more specific features. Thus, when presented with a new dataset,

it is possible to take a pretrained ResNet network, remove the last several layers and

replace them with new ones, and then only train these layers rather than training the

entire network. This has the benefit of significantly reducing computational time as

only a few layers need to be trained.



51

Chapter 3

Variational Autoencoders

Variational Autoencoders (VAEs) [53, 54] are a type of deep learning architecture

that encodes data into a new representation and then decodes it to generate data

similar to the original. Along with Generative Adversarial Networks (GANs) [34],

VAEs are one of the most popular generative models that can be used to create new,

realistic content such as images, text, video, or sound.

3.1 Variational Autoencoder Objective

The variational autoencoder is a latent variable model.

Definition 21 (Latent variable). A latent variable z ∈ Rm is a hidden variable that

is part of the model but is not directly observed and not part of the dataset.

As before, we assume we have a dataset of input data D
{
x{i}}N

i=1
containing N

i.i.d. samples of a random variable x. We also assume the data is generated by a ran-

dom process involving an unobserved latent random variable z, and all distributions

are parameterized by θ. Note that as before, when we represent a distribution by a

neural network then θ is the network’s weights and biases, but we overload notation
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to have z be a latent variable rather than a weighted input to a neural network’s

layer.

The generative process can be described as follows. For each datapoint i ∈

{1, . . . , N},

• We draw the latent variable z{i} ∼ PZ(z;θ).

• We then draw an input datapoint x{i} ∼ PX|Z(x|z; θ).

Both these distributions are unknown and we parameterize them with neural net-

works. The distribution PX(x;θ) is given by

PX(x;θ) =

∫
PX,Z(x, z;θ)dz =

∫
PX|Z(x|z;θ)PZ(z;θ)dz. (3.1)

When taken as a function of θ, this distribution is also known as the marginal likeli-

hood or the model evidence.

The variational autoencoder aims to solve several different problems:

1. We wish to perform maximum likelihood estimation of the parameters θ. Let-

ting Θ be the parameter space of θ, we want to find the θ̂ that maximizes the

average (or equivalently the sum) of the log-probabilities assigned to the data

by the model:

θ̂ = max
θ∈Θ

N∑
i=1

logPX(x
{i};θ). (3.2)

This allows us to generate new, artificial input datapoints, mimicking the hidden

random process.

2. We wish to find a procedure to encode an input datapoint x into z for a fixed

value of θ. This requires us to find PZ|X(z|x;θ).
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This has to be done without simplifying assumptions about the marginal or pos-

terior probabilities:

• We consider the integral of the marginal likelihood

PX(x;θ) =

∫
PX|Z(x|z;θ)PZ(z;θ)dz (3.3)

to be intractable, so the marginal likelihood cannot be evaluated.

• We also consider the true posterior density PZ|X(z|x;θ) to be intractable. As

PZ|X(z|x;θ) =
PZ,X(z,x;θ)

PX(x;θ)
, (3.4)

and PZ,X(z,x;θ) is tractable, PX(x;θ) being intractable leads to PZ|X(z|x;θ)

being intractable, and vice-versa.

To solve this problem, we use variational inference and introduce a parametric

inference model QZ|X(z|x;ϕ) where ϕ are the parameters of the model, also called

the variational parameters. The distribution QZ|X(z|x;ϕ) is known as the encoder,

as the input x is encoded into a new representation z (which can be thought of as

a code), while PX|Z(x|z;θ) is known as the decoder, as it decodes z back into the

original data x. The distributions QZ|X(z|x;ϕ) and PX|Z(x|z;θ) are each represented

by a neural network, and ϕ and θ are the weights and biases of those networks.

We hope to use QZ|X(z|x;ϕ) as an approximation of PZ|X(z|x;θ), i.e., to find ϕ

such that QZ|X(z|x;ϕ) ≈ PZ|X(z|x;θ). Given this approximation, and using Jensen’s

Inequality, which we recall below, we derive a variational lower bound on logPX(x;θ),

c.f. Theorem 5.
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Theorem 4 (Jensen’s Inequality). Let X ⊂ Rn be a convex subset of Rn, and let X

be a random variable with alphabet in X . If f : X → R is concave over X then

E[f(X)] ≤ f(E[X]). (3.5)

Theorem 5. The following is a lower bound on logPX(x;θ):

logPX(x;θ) ≥ EQZ|X

[
logPX|Z(x|z;θ)

]
−DKL

(
QZ|X(z|x;ϕ)||PZ(z;θ)

)
. (3.6)

Proof. We have

logPX(x;θ) = log

∫
PX|Z(x|z;θ)PZ(z;θ)dz (3.7)

= log

∫
QZ|X(z|x;ϕ)
QZ|X(z|x;ϕ)

PX|Z(x|z;θ)PZ(z;θ)dz

= logEQZ|X

[
PX|Z(x|z;θ)PZ(z;θ)

QZ|X(z|x;ϕ)

]
≥ EQZ|X

[
log

PX|Z(x|z;θ)PZ(z;θ)

QZ|X(z|x;ϕ)

]
= EQZ|X

[
logPX|Z(x|z;θ)

]
+ EQZ|X

[
log

PZ(z;θ)

QZ|X(z|x;ϕ)

]
= EQZ|X

[
logPX|Z(x|z;θ)

]
−DKL

(
QZ|X(z|x;ϕ)||PZ(z;θ)

)
,

where the inequality follows from Jensen’s inequality as the logarithmic function is

concave.

This lower bound is known as the Evidence Lower Bound (ELBO) [54].
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Definition 22. The Evidence Lower Bound (ELBO) is defined as

L(x;θ,ϕ) = EQZ|X

[
logPX|Z(x|z;θ)

]
−DKL

(
QZ|X(z|x;ϕ)||PZ(z;θ)

)
(3.8)

= EQZ|X

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
. (3.9)

The objective of the variational autoencoder is to maximize the ELBO over both

θ and ϕ. This is done as an average for all input datapoints in the dataset - we find

values for θ and ϕ that solve

max
θ,ϕ

N∑
i=1

L(x{i};θ,ϕ). (3.10)

3.2 Computing Gradients

To optimize this objective using stochastic gradient descent, we need to take gradients

with respect to both θ and ϕ. To do this with respect to θ is possible:

∇θL(x;θ,ϕ) = ∇θEQZ|X

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
(3.11)

= EQZ|X

[
∇θ

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]]
(3.12)

≃ ∇θ

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
(3.13)

= ∇θ [logPX,Z(x, z;θ)] . (3.14)

For the third line, we estimate the expectation using a Monte Carlo estimate, given

by

EQZ|X

[
∇θ

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]]
(3.15)
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≃ 1

L

L∑
l=1

∇θ

[
logPX,Z(x, z

{l};θ)− logQZ|X(z
{l}|x;ϕ)

]
, (3.16)

where z{l} ∼ QZ|X . Typically a single sample is used; i.e., L = 1.

However, to take gradients with respect to ϕ is not possible since the expectation

is taken with respect to a function of ϕ. In general,

∇ϕL(x;θ,ϕ) = ∇ϕEQZ|X

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
(3.17)

̸= EQZ|X

[
∇ϕ

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]]
. (3.18)

Therefore, Monte Carlo estimation cannot be used to compute the gradient. For this

to be possible, a change of variables is used called the reparameterization trick [53].

3.3 Reparameterization Trick

Definition 23 (Reparameterization Trick). The reparameterization trick is to express

z ∼ QZ|X as a deterministic function f of another random variable ϵ ∼ PE as well

as x and ϕ, and where the distribution of PE is independent of x and ϕ:

z = f(x, ϵ;ϕ). (3.19)

Example 3. Let z ∈ Rm be a Gaussian random variable z ∼ N (µ(x,ϕ), diag (σ2(x,ϕ)) ,

where µ(x,ϕ) ∈ Rm is the mean and diag (σ2(x,ϕ)) ∈ Rm×m is a diagonal covari-

ance matrix, where the mean and variance σ2(x,ϕ) ∈ Rm are the outputs of a neu-

ral network with parameters ϕ and input x. Then this can be reparameterized as

z = f(x, ϵ;ϕ) = σ(x,ϕ) ⊙ ϵ + µ(x,ϕ), where f is a deterministic function and
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ϵ ∈ Rm is a spherical Gaussian random variable, i.e., ϵ ∼ N (0, Im), where 0 is the

m-dimensional zero vector and Im the m-dimensional identity matrix.

The reparameterization trick allows us to take the gradient of the ELBO (3.9)

with respect to ϕ as the expectation can be rewritten in terms of PE, where PE is a

distribution that is independent of x or ϕ, as follows:

EQZ|X

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
(3.20)

= EPE

[
logPX,Z(x, z = f(x, ϵ;ϕ);θ)− logQZ|X(z = f(x, ϵ;ϕ)|x;ϕ)

]
. (3.21)

This allows the expectation and gradient operators to be commutative, allowing us

to perform Monte Carlo estimation. Letting z = f(x, ϵ;ϕ), we have

∇ϕL(x;θ,ϕ) = ∇ϕEQZ|X

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
(3.22)

= ∇ϕEPE

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
(3.23)

= EPE

[
∇ϕ

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]]
(3.24)

≃ 1

L

L∑
l=1

[
∇ϕ

[
logPX,Z(x, z

{l};θ)− logQZ|X(z
{l}|x;ϕ)

]]
, (3.25)

where z{l} is calculated as the following:

• ϵ{l} is sampled as ϵ{l} ∼ PE.

• z{l} is calculated with the deterministic function z{l} = f(x, ϵ{l};ϕ).

As typically a single sample is used for the Monte Carlo estimation, L = 1, and (3.22)
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simply becomes

∇ϕL(x;θ,ϕ) ≃ ∇ϕ

[
logPX,Z(x, z;θ)− logQZ|X(z|x;ϕ)

]
. (3.26)
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Chapter 4

Information Bottleneck Methods

The Information Bottleneck (IB) Method, originally developed by Tishby et. al.

[90], is an information-theoretic technique to compress a random variable as much as

possible while maintaining information relevant about another random variable. It

has been hypothesized that the IB method provides a theoretical explanation of how

deep learning works [91]. In this section we discuss the IB method and how it can be

applied to neural networks.

4.1 Information Bottleneck Method

Considering two dependent random variables X and Y, the IB method aims to find a

new code Z that maximally compressesX while simultaneously retaining the informa-

tion from X necessary to predict Y. This is expressed in terms of mutual information:

it is desired to find a Z such that I(Z;X) is minimized while I(Z;Y ) is maximized.

This can be thought of as “squeezing” the information that X contains about Y out

through a bottleneck formed by a limited set of codewords for Z.

There will always exist a trade-off between the amount of compression and the

amount of relevant information preserved about Y. This is captured through the
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Information Bottleneck Lagrangian, which is minimized over PZ|X :

L = I(Z;X)− βI(Z;Y ). (4.1)

Here β is a positive Lagrange multiplier that controls the trade-off between com-

pression and the retention of relevant information about Y.

• As β → 0, the constraint on preserving relevant information is removed, result-

ing in maximal compression with no relevant information retained.

• As β → ∞, the constraint becomes that all information about Y has to be

preserved, resulting in no compression with the trivial encoding Z = X.

By varying β it is possible to examine the trade-off between compression and

preserved relevant information.

4.2 Deep Variational Information Bottleneck

Alemi et. al. [2] developed a variational approximation of the original IB method

and applied it to neural networks. The original IB method requires computing mu-

tual information which is computationally expensive in general, with the exception

of scenarios where the variables are discrete or jointly Gaussian. The Deep Varia-

tional Information Bottleneck uses variational approximations to compute the mutual

information terms, allowing the method to be used with continuous random variables.

The Deep Variational IB method can be used with neural networks: we consider

X to be the original, high dimensional input to a neural network such as an image,

while Y is the target that the network tries to predict from X. The method aims find
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a compressed, lower-dimensional encoding of X that still allows Y to be predicted

accurately. This encoding Z is defined by the distribution PZ|X , and the distribution

is modelled by a neural network. A second neural network then predicts Y based on

Z, modelling the distribution PY |Z . As all the information about Y is contained in X,

Y implicitly determines what information in X should be retained, and the Markov

chain Y → X → Z is formed.

One potential practical benefit of using this method rather than directly predict-

ing Y from X is a potential accuracy improvement due to improved generalization.

It has been theorized that compressing X into Z acts as a regularization method,

preventing the neural network from memorizing too much information about X and

reducing overfitting. It has also been claimed that this method increases robustness

to adversarial attack [2]. Adversarial attacks involve purposefully changing inputs to

a neural network by a small amount to trick the network into misclassifying the input

[35].

4.2.1 Variational Bounds

Variational bounds are computed by using the non-negativity of KL divergence simi-

larly to what was done for the variational autoencoder. To compute an upper bound

on the I(Z;X) term to be minimized, the distribution PZ is replaced with a varia-

tional approximation QZ , as in the following.

I(Z;X) =
∑

(z,x)∈Z×X

PZ,X(z,x) log
PZ|X(z|x)
PZ(z)
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=
∑

(z,x)∈Z×X

PZ,X(z,x) logPZ|X(z|x)

−DKL(PZ∥QZ)−
∑
z∈Z

PZ(z) logQZ(z)

≤
∑

(z,x)∈Z×X

PZ,X(z,x) log
PZ|X(z|x)
QZ(z)

= EPX
DKL

(
PZ|X∥QZ

)
. (4.2)

Note that PZ|X is modeled by a neural network with parameters θ, but we omit this

to simplify notation. We choose a distribution for QZ (typically a spherical Gaussian

is used).

To compute a lower bound on the I(Z;Y ) term to be maximized, the distribution

PY |Z is replaced with a variational approximation QY |Z as we demonstrate next.

I(Z;Y ) = H(Y )−H(Y |Z)

= H(Y ) +
∑

(y,z)∈×Y×Z

PY,Z(y, z) logPY |Z(y|z)

= H(Y ) +
∑

(y,z)∈×Y×Z

PY,Z(y, z) logPY |Z(y|z)

−
∑

(y,z)∈Y×Z

PY,Z(y, z) logQY |Z(y|z)

+
∑

(y,z)∈Y×Z

PY,Z(y,z) logQY |Z(y|z)

= H(Y ) + EPZ
D(PY |Z ||QY |Z) +

∑
(y,z)∈Y×Z

PY,Z(y, z) logQY |Z(y|z)

≥ H(Y ) +
∑

(x,y,z)∈X×Y×Z

PZ|X(z|x)PX,Y (x, y) logQY |Z(y|z). (4.3)

The distribution QY |Z is modelled by another neural network parameterized by ϕ
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which we also omit to simplify notation. As H(Y ) is independent of the parameter-

ization, it can be ignored for the optimization. In the final line, PX,Y,Z(x, y,z) =

PZ|X(z|x)PX,Y (x, y) because of the Markov chain Y → X → Z.

Combining these two bounds results in

I(Z;X)− βI(Z;Y )

≤ EPX
DKL

(
PZ|X ||QZ

)
− β

∑
(x,y,z)∈X×Y×Z

PZ|X(z|x)PX,Y (x, y) logQY |Z(y|z) = L.

(4.4)

To compute this bound, first we approximate PX and PX,Y using their empirical den-

sities. The distributions are approximated PX,Y (x, y) ≈ 1
N

∑N
i=1 δ

(
x{i},x

)
δ
(
y{i}, y

)
,

using the N samples in a batch from the training set, where δ
(
x{i},x

)
is the Kro-

necker delta function,

δ
(
x{i},x

)
=


0 if x{i} ̸= x

1 if x{i} = x

. (4.5)

Considering a batch with N samples D = {x{i}, y{i}}Ni=1, this results in

L ≈ 1

N

N∑
i=1

[
DKL

(
PZ|X ||QZ

)
− β

∑
z∈Z

PZ|X(z|x{i}) logQY |Z(y
{i}|z)

]
. (4.6)

Finally, we use the reparameterization trick. As with the variational autoencoder,

we let z be a deterministic function of x and a Gaussian random variable ϵ, z =

f(x, ϵ), ϵ ∼ PE, and replace PZ|X with PE. This results in a final cost function to be
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minimized of

JIB =
N∑
i=1

[
DKL

(
PZ|X=x{i}||QZ

)
− βEPE

logQY |Z(y
{i}|f(x{i}, ϵ))

]
. (4.7)

Note that there is a large similarity between the Deep Variational Information

Bottleneck and the Variational Autoencoder. The cost function of the variational

autoencoder to be minimized can be written as

L =
N∑
i=1

[
DKL

(
QZ|X=x{i}||PZ

)
− EPE

logPX|Z(x
{i}|f(x{i}, ϵ))

]
. (4.8)

In both cost functions, there is a KL divergence term that acts as a regularization

term. Typically the distribution of Z is taken as a spherical Gaussian. Minimizing

the KL divergence forces the distribution of Z learned by the neural network to be

closer to the spherical Gaussian, hence limiting its richness.

The main difference between the two cost functions is that for the VAE, the

network reconstructs X from Z, with EPE
logPX|Z(x

{i}|f(x{i}, ϵ) measuring the re-

construction loss, while for IB, the network predicts Y from Z, with the quantity

EPE
logQY |Z(y

{i}|f(x{i}, ϵ)) measuring the prediction error. A second difference is

that the IB has the β hyperparameter to control the trade-off between the two terms

in the cost function that the original VAE does not. However, there exists a vari-

ant of the VAE called the β-VAE [43] that also adds the β hyperparameter to the

variational autoencoder, functioning the same way as in the IB method, with β = 1

corresponding to the original VAE.
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4.3 Other IB Variations

There exist several variants of the Variational Information Bottleneck, such as the

nonlinear information bottleneck [57] and conditional entropy bottleneck [24], as well

as other generalizations [64, 89, 46, 3, 94]. The nonlinear information bottleneck

squares the compression term for an objective of

L = I(Z;X)2 − βI(Z;Y ). (4.9)

The conditional entropy bottleneck adds an additional constraint on the compression

term, by adding conditioning on Y to preserve more relevant information about Y in

the compressed representation. This is done by replacing I(Z;X) with I(Z;X|Y ) for

an objective given by

L = I(Z;X|Y )− βI(Z;Y ). (4.10)
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Chapter 5

Fairness

In this section we discuss the problem of fairness in machine learning and present our

fairness method, Rényi Fair Information Bottleneck (RFIB).

The problem of fairness in machine learning is to obtain accurate predictions of

a target of interest while remaining free of bias due to sensitive information such as

gender, race, age, or other similar attributes. Representing input data as random

variable X ∈ X , prediction target as random variable Y ∈ Y , and sensitive infor-

mation as random variable S ∈ S, the goal is to predict Y from X in a way that is

uninfluenced by S.

5.1 Definitions

5.1.1 Fairness Definitions

We begin by providing several definitions of fairness; there exist many different defi-

nitions but the following are some of the most commonly used. Let X be the input

variable, Y be the target variable (true label), Ŷ be the network’s prediction, and S

be the protected (sensitive) variable. We assume that Y, Ŷ , and S are all binary.
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Definition 24 (Demographic Parity (DP)). A classifier satisfies demographic parity

if Ŷ and S are independent:

P (Ŷ = ŷ) = P (Ŷ = ŷ|S = s),∀s, ŷ. (5.1)

Demographic parity is also known as statistical parity. One disadvantage of demo-

graphic parity is that it does not allow the ideal predictor Ŷ = Y when Y is correlated

with S. In these cases, it can damage utility and cause undesirable effects in some

applications, such as unqualified individuals being accepted.

To address these concerns, equalized odds can be used instead, which allows Ŷ to

depend on S but only through the target variable Y.

Definition 25 (Equalized Odds). A classifier satisfies equalized odds if Ŷ and S are

conditionally independent given Y :

P (Ŷ = ŷ|Y = y) = P (Ŷ = ŷ|S = s, Y = y),∀s, y, ŷ. (5.2)

Equalized odds is also known as positive rate parity. For binary Y , it requires

both equal true positive rates and equal false positive rates across all values of S. It

allows the existence of perfect classifiers.

Definition 26 (Equality of Opportunity). A classifier satisfies equality of opportunity

if Ŷ and S are conditionally independent given a particular y:

P (Ŷ = ŷ|Y = y) = P (Ŷ = ŷ|S = s, Y = y),∀s, ŷ. (5.3)

This is similar to equalized odds but is a weaker constraint. For binary Y , it
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requires an equal true positive rate across all values of S but can have an unequal

false negative rate. It also allows the existence of perfect classifiers.

Definition 27 (Accuracy Parity). A classifier achieves accuracy parity if its accuracy

is equal across all subgroups:

P (Ŷ = Y |S = 0) = P (Ŷ = Y |S = 1). (5.4)

It also allows the existence of perfect classifiers, making it suitable for applications

where Y is correlated with S.

5.1.2 Metrics

The following are several metrics used to evaluate the performance of classifiers,

considering a dataset with N samples D = {x{i}, s{i}, y{i}}Ni=1. We let ŷ{i} be the

network’s prediction of target y{i}.

Definition 28 (Accuracy [98]). The accuracy is the fraction of correct classifications

on a dataset:

Accuracy = P (Ŷ = Y ) =
1

N

N∑
i=1

1{ŷ{i} = y{i}}. (5.5)

Definition 29 (Error). The error is the fraction of incorrect classifications on a

dataset:

Error = P (Ŷ ̸= Y ) =
1

N

N∑
i=1

1{ŷ{i} ̸= y{i}} = 1− Accuracy. (5.6)

Definition 30 (Demographic Parity Gap [98]). The demographic parity gap, also

known as the discrimination gap, measures how close the classifier is to achieving



5.1. DEFINITIONS 69

demographic parity. It is defined as

dpgap =
∣∣∣P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)

∣∣∣
=

∣∣∣∣∑i:s{i}=0 ŷ
{i}∑

i:s{i}=0 1
−
∑

i:s{i}=1 ŷ
{i}∑

i:s{i}=1 1

∣∣∣∣ . (5.7)

Definition 31 (Equalized Odds Gap [103]). The equalized odds gap measures how

close the classifier is to achieving equalized odds. It is defined as

eqoddsgap = max
y∈{0,1}

∣∣∣P (Ŷ = 1|S = 0, Y = y)− P (Ŷ = 1|S = 1, Y = y)
∣∣∣

= max
y∈{0,1}

∣∣∣∣∣
∑

i:s{i}=0,y{i}=y ŷ
{i}∑

i:s{i}=0,y{i}=y 1
−
∑

i:s{i}=1,y{i}=y ŷ
{i}∑

i:s{i}=1,y{i}=y 1

∣∣∣∣∣ . (5.8)

Definition 32 (Error Gap [103]). The error gap is the difference in error rate between

the two subpopulations of the sensitive variable. It is defined as

Error gap =
∣∣∣P (Ŷ ̸= Y |S = 0)− P (Ŷ ̸= Y |S = 1)

∣∣∣
=

∣∣∣∣∣
∑

i:s{i}=01{ŷ
{i} ̸= y{i}}∑

i:s{i}=0 1
−
∑

i:s{i}=11{ŷ
{i} ̸= y{i}}∑

i:s{i}=1 1

∣∣∣∣∣ . (5.9)

Definition 33 (Accuracy Gap). The accuracy gap is the difference in accuracy be-

tween the two subpopulations of the sensitive variable. It is defined as

Accuracy gap =
∣∣∣P (Ŷ = Y |S = 0)− P (Ŷ = Y |S = 1)

∣∣∣
=

∣∣∣∣∣
∑

i:s{i}=01{ŷ
{i} = y{i}}∑

i:s{i}=0 1
−
∑

i:s{i}=11{ŷ
{i} = y{i}}∑

i:s{i}=1 1

∣∣∣∣∣ . (5.10)

As S is binary, the accuracy gap is equal to the error gap.
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5.2 Method

We present a fair machine learning method which we call the Rényi Fair Information

Bottleneck (RFIB). Our method consists of learning fair representations, finding an

intermediate representation Z ∈ Z that can then be used instead of the original data

X with existing machine learning architectures to make predictions. The new repre-

sentation Z must simultaneously preserve information from X relevant to predicting

Y while removing sensitive information that could lead to bias.

To reach this objective, we adopt a variational approach to encode X into Z. In

light of our model, we assume that the Markov chain (Y, S)→ X → Z holds. To sim-

plify notation, we assume in this section that all random variables are discrete, though

a similar derivation holds for a mix of continuous and discrete random variables.

5.2.1 Fairness Defined

Among the three principal definitions of fairness – demographic parity, equalized odds,

and equality of opportunity – we focus on addressing both demographic parity and

equalized odds since a) equalized odds is related to (but a stronger constraint than)

equality of opportunity, and b) demographic parity, also called statistical parity, is

an altogether different type of constraint compared to the former two constraints in

that the requirement of independence does not involve the actual target label value.

For demographic parity, the goal is for the model’s prediction Ŷ to be independent

of the sensitive variable S, as shown in (5.1), while for equalized odds the goal is to

achieve this independence by conditioning on the actual target Y, as in (5.2).
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5.2.2 Lagrangian Formulation

To encourage equalized odds, we minimize I(Z;S|Y ); i.e., the average amount of

information that Z has about S given Y. To both obtain good classification accuracy

and help promote demographic parity, we maximize I(Z;Y |S). Maximizing mutual

information between Z and Y ensures the representation will be expressive about its

target while the conditioning on S ensures that Z does not keep information shared

by S, encouraging demographic parity.

In addition, we minimize I(Z;X|S, Y ), a compression term similar to one from

the IB problem [2]. This minimization further encourages Z to discard information

irrelevant for drawing predictions about Y, hence improving generalization capability

and reducing the risk of keeping nuisances. Finally, we maximize the utility term

I(Z;Y ); this optimization, similar to the IB problem, solely ensures the representation

is maximally expressive of the target Y.

Combining these terms leads to a Lagrangian, L, that we seek to minimize over

the encoding conditional distribution PZ|X . The Lagrangian is given by

L = I(Z;S|Y ) + I(Z;X|S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S), (5.11)

where λ1 and λ2 are hyperparameters. Developing this Lagrangian, we show that it

is equivalent to a simpler expression with fewer terms.

Theorem 6. Minimizing the Lagrangian in (5.11) over PZ|X is equivalent to mini-

mizing the following expression

L = I(Z;X)− β1I(Z;Y )− β2I(Z;Y |S), (5.12)
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where β1 = λ1 + 1 ≥ 0 and β2 = λ2 ≥ 0.

Proof. We have

L = H(Z|Y )−H(Z|S, Y ) +H(Z|S, Y )−H(Z|X,S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S)

= H(Z|Y )−H(Z|X)− λ1I(Z;Y )− λ2I(Z;Y |S)

= H(X)−H(Z,X)− [H(Y )−H(Z, Y )]− λ1I(Z;Y )− λ2I(Z;Y |S)

= I(Z;X)− I(Z;Y )− λ1I(Z;Y )− λ2I(Z;Y |S)

= I(Z;X)− (λ1 + 1)I(Z;Y )− λ2I(Z;Y |S), (5.13)

where the second equality follows from the Markov chain assumption (Y, S)→ X →

Z.

The simpler Lagrangian in (5.12) is easier to compute while exactly maintaining

the properties of the original one. It also reveals a direct relation of the original

Lagrangian with the first two terms being exactly equivalent to the “classical IB”

formulation. The two hyperparameters β1 and β2 control trade-offs between accuracy

(or “utility”) and fairness, with higher β values corresponding to a higher priority on

accuracy and lower β values giving more influence to the compression term I(Z;X)

that discards unwanted information, potentially improving fairness at the expense of

accuracy. As I(Z;Y ) is partially derived from the I(Z;S|Y ) term designed to improve

equalized odds, using a higher β1 over β2 should give more priority to improving

equalized odds, whereas a higher β2 should result in improved demographic parity.

This allows for more nuanced outcomes compared to other methods that focus rigidly

on a single fairness metric. It is also possibly an interesting tool for policy makers to

translate those more balanced and nuanced versions of fairness into an “engineered
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system.”

5.2.3 Variational Bounds

We use a variational approach to develop bounds on the three terms in the Lagrangian

in (5.12), finding lower bounds for the terms to be maximized and an upper bound

for the term to be minimized. The Markov chain property (Y, S) → X → Z results

in the joint distribution PSY XZ factoring as as PSY XPZ|X .

The distribution PZ|X is a parametric stochastic encoder to be designed while all

other distributions are fully determined by the joint data distribution PS,X,Y , the en-

coder, and the Markov chain constraint. To simplify notation, we simply write PZ|X

rather than including the parameter PZ|X,θ, with θ denoting network weights. Com-

puting the mutual information terms requires the usually intractable distributions

PY |S,Z , PY |Z , and PZ ; we thus replace them with variational approximations QY |S,Z ,

QY |Z and QZ , respectively. We next derive an upper bound for I(Z;X) with the

novel use of Rényi divergence:

I(Z;X) =
∑

(z,x)∈Z×X

PZ,X(z,x) log
PZ|X(z|x)
PZ(z)

=
∑

(z,x)∈Z×X

PZ,X(z,x) logPZ|X(z|x)

−DKL(PZ∥QZ)−
∑
z∈Z

PZ(z) logQZ(z)

≤
∑

(z,x)∈Z×X

PZ,X(z,x) log
PZ|X(z|x)
QZ(z)

= EPX
DKL

(
PZ|X∥QZ

)
≤ EPX

Dα

(
PZ|X∥QZ

)
, (5.14)
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for α > 1. The first inequality follows from the non-negativity of Kullback-Leibler

(KL) divergence, similar to [2, 88, 80]. For the final step, we take the Rényi diver-

gence Dα(·∥·) of order α (e.g., see [92]), defined in Definition 6, rather than the KL

divergence as typically done in the literature. Using Rényi divergence gives an extra

degree of freedom and allows more control over the compression term I(X;Z). As

the Rényi divergence is non-decreasing with α, a higher α will more strongly force

the distribution PZ|X closer to QZ , resulting in more compression.

The upper bound in (5.14) holds for α > 1 since Dα is non-decreasing in α

and limα→1Dα(P∥Q) = DKL(P∥Q).1 When α < 1, then EPX
Dα

(
PZ|X∥QZ

)
is no

longer an upper bound on I(Z;X); but it can be considered as a potentially useful

approximation that is tunable by varying α.

We can similarly leverage the non-negativity of the KL divergence to get lower

bounds on I(Z;Y ) and I(Z;Y |S):

I(Z;Y ) = H(Y )−H(Y |Z)

= H(Y ) +
∑

(y,z)∈×Y×Z

PY,Z(y, z) logPY |Z(y|z)

= H(Y ) +
∑

(y,z)∈×Y×Z

PY,Z(y, z) logPY |Z(y|z)

−
∑

(y,z)∈Y×Z

PY,Z(y,z) logQY |Z(y|z)

+
∑

(y,z)∈Y×Z

PY,Z(y, z) logQY |Z(y|z)

= H(Y ) + EPZ
D(PY |Z ||QY |Z) +

∑
(y,z)∈Y×Z

PY,Z(y, z) logQY |Z(y|z)

1For simplicity and by the continuity property of Dα in α, we define its extended orders at α = 1
and α = 0 [92] as D1(P∥Q) := DKL(P∥Q) and D0(P∥Q) := limα→0 Dα(P∥Q) = − logQ(x : P (x) >
0), which is equal to 0 when P and Q share a common support.
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≥ H(Y ) + EPY,Z

[
logQY |Z(Y |Z)

]
, (5.15)

and

I(Z;Y |S) = H(Y |S)−H(Y |Z, S)

= H(Y |S) +
∑

(y,z,s)∈×Y×Z×S

PY,Z,S(y, z, s) logPY |Z,S(y|z, s)

= H(Y |S) +
∑

(y,z,s)∈×Y×Z×S

PY,Z,S(y, z, s) logPY |Z,S(y|z, s)

−
∑

(y,z,s)∈Y×Z

PY,Z,S(y, z, s) logQY |Z,S(y|z, s)

+
∑

(y,z,s)∈Y×Z×S

PY,Z,S(y,z, s) logQY |Z,S(y|z, s)

= H(Y |S) + EPZ,S
D(PY |Z,S||QY |Z,S)

+
∑

(y,z,s)∈Y×Z×S

PY,Z,S(y,z, s) logQY |Z,S(y|z, s)

≥ H(Y |S) + EPY,Z,S

[
logQY |Z,S(Y |Z, S)

]
. (5.16)

As the entropy H(Y ) and conditional entropy H(Y |S) of the labels do not depend

on the parameterization they can be ignored for the optimization.

5.2.4 Computing the Bounds

To compute the bounds in practice we use the reparameterization trick, as explained

in Section 3.3. Modeling PZ|X as a density, we let PZ|XdZ = PEdE, where E is a

random variable and Z = f(X,E) is a deterministic function, allowing us to back-

propagate gradients and optimize the parameter via gradient descent. We use the
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data’s empirical densities to estimate PX,S and PX,Y,S.

Considering a batch D = {x{i}, s{i}, y{i}}Ni=1 this finally leads to the following

RFIB cost function to minimize over PZ|X :

JRFIB =
1

N

N∑
i=1

[
Dα(PZ|X=x{i}∥QZ)

− β1EE

[
log
(
QY |Z

(
y{i}|f(x{i}, E)

))]
− β2EE

[
log
(
QY |S,Z

(
y{i}|s{i}, f(x{i}, E)

))] ]
,

(5.17)

where we estimate the expectation over E using a single Monte Carlo sample.

Remark 1. We note that depending on the choice of α, β1, and β2, from our method

we can recover both the IB [2] and conditional fairness bottleneck (CFB) [80] schemes

to which we compare our results. Letting α = 1 and β2 = 0 corresponds to IB, while

setting α = 1 and β1 = 0 corresponds to CFB.

5.2.5 Derivation of Rényi Divergence for Gaussians

Here we calculate the Rényi divergence term Dα

(
PZ|X∥QZ

)
of our cost function when

PZ|X and QZ are multivariate Gaussian distributions with PZ|X having a diagonal

covariance structure while QZ being a spherical Gaussian. More specifically, we let

PZ|X = N
(
Z|µenc(X), diag(σ2

enc(X))
)

QZ = N (Z|0, γ2Id),

where µenc and σ2
enc are d-dimensional mean and variance vectors (that depend onX),

diag(σ2
enc(X)) is a d×d diagonal matrix with the entries of σ2

enc on the diagonal, 0 is
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the all-zero vector of size d, γ is a positive scalar, and Id is the d-dimensional identity

matrix. For simplicity of notation, in the rest of this chapter we write µenc(X) as

µenc and diag(σ2
enc(X)) as σ2

encId.

Starting with the closed-form expression of the Rényi divergence of order α (α > 0,

α ̸= 1) derived in [28, 11], we have

Dα

(
PZ|X∥QZ

)
=

α

2

(
µ′

enc[(Σα)
∗]−1µenc

)
− 1

2(α− 1)
ln

|(Σα)
∗|

|σ2
encId|1−α |γ2Id|α

where µ′
enc is the transpose of µenc,

(Σα)
∗ = αγ2Id + (1− α)σ2

encId,

and α[σ2
encId]

−1 + (1− α)[γ2Id]
−1 is positive definite. Then

α

2

(
µ′

enc[(Σα)
∗]−1µenc

)
=

α

2

d∑
i=1

µ2
i

αγ2 + (1− α)σ2
i

, (5.18)

where µi and σi are the ith components of µenc and σenc and

1

2(α− 1)
ln

|(Σα)
∗|

|σ2
encId|1−α |γ2Id|α

=
1

2(α− 1)
ln

∣∣∣∣∣∣∣∣∣∣
αγ2 + (1− α)σ2

1 · · · 0

...
. . .

...

0 · · · αγ2 + (1− α)σ2
d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
σ2
1 · · · 0

...
. . .

...

0 · · · σ2
d

∣∣∣∣∣∣∣∣∣∣

1−α ∣∣∣∣∣∣∣∣∣∣
γ2 · · · 0

...
. . .

...

0 · · · γ2

∣∣∣∣∣∣∣∣∣∣

α
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=
1

2(α− 1)
ln

∏d
i=1 [αγ

2 + (1− α)σ2
i ]

(
∏d

i=1 σ
2
i )

1−α(
∏d

i=1 γ
2)α

=
1

2(α− 1)

d∑
i=1

ln
αγ2 + (1− α)σ2

i

σ
2(1−α)
i γ2α

, (5.19)

yielding that

Dα

(
PZ|X∥QZ

)
=

α

2

d∑
i=1

µ2
i

αγ2 + (1− α)σ2
i

− 1

2(α− 1)

d∑
i=1

ln
αγ2 + (1− α)σ2

i

σ
2(1−α)
i γ2α

. (5.20)

Since we require the matrix α[σ2
encId]

−1 + (1− α)[γ2Id]
−1 to be positive definite, the

above Rényi divergence expression is valid for

αγ2 + (1− α)σ2
i > 0, i = 1, . . . , d,

or equivalently (recalling that α > 0, α ̸= 1) for

0 < α < 1, σ2
i > 0, i = 1, . . . , d,

α > 1, σ2
i <

αγ2

α− 1
, i = 1, . . . , d. (5.21)

We finish this section with a remark.

Remark 2 (Limit as α→ 1). Taking the limit of the Rényi divergence as α→ 1 we

recover, as expected, the KL divergence expression between Gaussians:

lim
α→1

Dα(PZ|X∥QZ) = lim
α→1

[
α

2

d∑
i=1

µ2
i

αγ2 + (1− α)σ2
i

− 1

2(α− 1)

d∑
i=1

ln
αγ2 + (1− α)σ2

i

σ
2(1−α)
i γ2α

]

=
1

2

d∑
i=1

µ2
i

γ2
− lim

α→1

1

2

[
d∑

i=1

γ2 − σ2
i

αγ2 + (1− α)σ2
i

+ 2 lnσi − ln γ2

]
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= −1

2

d∑
i=1

[
lnσ2

i − ln γ2 + 1− σ2
i

γ2
− µ2

i

γ2

]
= DKL(PZ|X∥QZ). (5.22)

5.3 Experiments

We conduct experiments on three different image datasets: CelebA, FairFace, and

EyePACS. In this section, we detail the implementation steps of our method, de-

scribe the metrics and the datasets we used, and explain how the experiments were

performed and present results. We also present a uniform manifold approximation

and projection (UMAP) clustering analysis that visualizes the effects of the hyper-

parameter α.

5.3.1 Additional Implementation Details

For all experiments, we use an isotropic Gaussian distribution for the encoder with

mean and variance learned by a neural network, PZ|X = N (Z|µenc,σ
2
encId), using the

same notation as described previously. Leveraging the reparameterization trick, we

compute our representation Z as Z = µenc + σenc ⊙ E, where ⊙ is the Hadamard

product and E ∼ N (0, Id).

We model the approximation of the representation’s marginal as a d-dimensional

spherical Gaussian, QZ = N (Z|0, γ2Id) and calculate the Rényi divergence in (5.17)

between the multivariate Gaussians PZ|X and QZ using (5.20). For all experiments,

we use a value of γ = 1. For α < 1, by (5.21) there is no restriction on the values of

σ2
enc so we let them be any positive number, while for α > 1 we add an additional

sigmoid function to the encoder to limit outputs such that all values of σ2
enc are
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< 1. Finally, as we only use binary values for Y , we model QY |Z with Bernoulli

distributions, QY |Z = Bernoulli(Y ; f(Z)) and QY |Z,S = Bernoulli(Y ; g(Z, S)) where

f and g are auxillary fully connected networks.

The encoder network PZ|X is a ResNet50 (Section 2.9) classifier pretrained on

ImageNet with the final linear layer replaced by two randomly initialized layers with

output dimension d equal to the dimension of the representation. The two decoder

networks f and g are each two fully connected layers with 100 units and a sigmoid

layer.

After creating the representation Z, we use a logistic regression classifier with

default settings from sci-kit learn [73] to predict Y from Z. We evaluate accuracy

and fairness on these predictions. Fig. 5.1 shows the architecture of our model.

Figure 5.1: Architecture of the model. The input image X is given to the encoder
PZ|X that generates the mean µ and standard deviation σ for the distribution of
the fair representation Z, N (Z|µenc,σ

2
encId). Z is then given to two fully connected

networks, one of which is also given the sensitive information S. After training,
Z can be used as input to other existing architectures for fair prediction. For our
experiments, we use logistic regression to predict Y from Z.
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We preprocess images by taking a 128 by 128 pixel centre crop of the 218 by 178

pixel CelebA images, and a 256 pixel by 256 pixel centre crop of EyePACS images.

For FairFace we use the full 224 pixel by 224 pixel images. We then split the training

data into a training set and validation set, using 20% of the data for validation, and

use the validation set for early stopping. We train for up to 20 epochs, with early

stopping triggering when there is no decrease in validation loss for 5 epochs, using a

min delta value of 0.

For all experiments, we train using PyTorch on a NVIDIA GP100 GPU. We use

d = 32 as the dimension of our representation Z, a batch size of 64, and the Adam op-

timizer with a learning rate of 0.001. For most experiments, we tune hyperparameters

by varying α linearly from 0 to 1, with α = 0 signifying

D0(PZ|X∥QZ) = − logQZ(z : PZ|X(z) > 0) = 0

and with α = 1 corresponding to Dα(PZ|X∥QZ) being given by the KL divergence

DKL(PZ|X∥QZ) (see Footnote 1), and by varying β1 and β2 linearly from 1 to 50. We

also perform some additional experiments with α values > 1.

5.3.2 Metrics

We use the following metrics to evaluate how well the model performs:

Measure of Utility

We use the overall classification accuracy (later denoted acc).
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Measures of Fairness

We measure this in multiple ways:

1. Using the gap in accuracy (denoted accgap) between favoured and protected

subpopulations (defined in Definition 33);

2. Reporting the minimum accuracy across subpopulations (denoted as accmin),

which is based on the Rawlsian principle of achieving fairness by maximizing

accmin [78];

3. Measuring the adherence to demographic parity via its gap dpgap, following [80];

4. Measuring the adherence using equalized odds via its gap eqoddsgap.

The latter two metrics are already defined in Definition 30 and Definition 31, respec-

tively.

Joint Utility-Fairness Measure

Echoing and comparing with the work in [72], we use a single metric that jointly

captures utility and fairness, the Conjunctive Accuracy Improvement (CAIλ) measure:

CAIλ = λ(accbgap − accdgap) + (1− λ)(accd − accb) (5.23)

where 0 ≤ λ ≤ 1, and accb and accd are the accuracy for baseline and debiased

algorithms, respectively, while accbgap and accdgap are gap in accuracy for the baseline

and debiased algorithms. In practice, one can use λ = 0.5 for an equal balance

between utility and fairness or a higher value such as λ = 0.75 to emphasize fairness.
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5.3.3 Data

The datasets we use (sample images shown in Fig. 5.2) include the following.

CelebA

The CelebA dataset [61] contains 202,599 celebrity faces that each have 40 binary

attributes. We use age as our prediction target Y and are interested in skin tone

as the sensitive attribute S. As this is not included in the dataset we instead use

the Individual Topology Angle (ITA) [95] as a proxy, which was found to correlate

with the Melanin Index, frequently used in dermatology to classify human skin on

the Fitzpatrick scale. As in [68, 72], we compute ITA via

ITA =
180

π
arctan

(
L− 50

b

)
, (5.24)

where L is luminescence and b is yellowness in CIE-Lab space. We then binarize ITA

where an ITA of ≤ 28 is taken to mean dark skin, matching category thresholds used

in [55, 72].

FairFace

The FairFace dataset [49] consists of 108,501 face images labeled with race, gender,

and age. We consider age as the target Y and race as sensitive information S. The

dataset contains several different categories for race and age and we binarize them

into Black and non-Black for race and ≥ 30 years old and < 30 years old for age.
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EyePACS

The EyePACS dataset [23] is sourced from the Kaggle Diabetic Retinopathy challenge.

It consists of 88,692 retinal fundus images of individuals potentially suffering from

diabetic retinopathy (DR), an eye disease associated with diabetes that is one of the

leading causes of visual impairment worldwide. The dataset contains 5 categories of

images based on the severity of the disease, with 0 being completely healthy and 4

being the most severe form of the disease. Similar to [72], we binarize this label into

our prediction target Y, with Y = 1 corresponding to categories 2-4, considered a

positive, referable case for DR and Y = 0 corresponding to categories 0-1, considered

healthy.

In our experiments we consider skin tone as the sensitive attribute. As with the

CelebA dataset, we use ITA as a proxy for skin tone, with S a binary variable that

denotes whether or not the ITA of the fundus is ≤ 19, denoting that the individual

has dark skin, as done by [72]. This has the advantage of being significantly easier to

determine compared to the expensive and time consuming process of having a clinician

manually annotate images. We compare these results with additional experiments we

run using a smaller partition of the dataset with the race labels manually added by

a ophthalmologist as done in [12], determined based on factors that might correlate

with race such as the darkness of pigmentation in the fundus, thickness of blood

vessels, and ratio of the optic cup size to optic disk size.

5.3.4 Experiment Details and Results

We perform experiments on the EyePACS, CelebA, and FairFace datasets, consider-

ing the challenging case of severe data imbalance where training data is completely
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Figure 5.2: Examples of images taken respectively from CelebA (top row), FairFace
(middle row), and EyePACS (bottom row) datasets. For the EyePACS images, for
the left image (Y, S) = (1, 0), for the middle (Y, S) = (0, 0), and for the right (Y, S) =
(0, 1).

missing for one protected subgroup (e.g., diseased dark skin individuals for EyePACS).

Hyper-parameter Tuning

For all datasets, we conduct a hyper-parameter sweep, using various combinations of

hyperparameters β1 and β2 varied linearly from 1 to 50 and α varied linearly from 0 to
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1, where α = 1 signifies KL divergence instead of Rényi divergence. While we mostly

focus on values of α < 1, as these correspond to an approximation of a tighter upper

bound that we expect would lead to better results, we also run several experiments

with values of α > 1.

As our RFIB method subsumes IB and CFB, with each of their hyper-parameters

corresponding to one of RFIB’s hyper-parameters, we compare RFIB with those two

methods. Setting α = 1 and β1 = 0 or β2 = 0 results in RFIB being equivalent to

CFB or IB, respectively, as the latter two systems are based on KL divergence and

only have a single β hyper-parameter. We do separate comparisons of CFB, IB with

RFIB, picking a commonly used value that performs well for CFB, IB and setting

RFIB’s corresponding hyperparmeter to the same value. We then use grid search to

tune the two additional hyper-parameters that our method introduces; to compare

with IB we fix a value of β1 and tune α and β2, while to compare with CFB we fix a

value of β2 and then tune α and β1.

We implement the IB and CFB methods ourselves and also compare RFIB with

two methods used by [72]: adversarial independence, referred to as adversarial debias-

ing (AD), that minimizes conditional dependence of predictions on sensitive attributes

with an adversarial two player game and intelligent augmentation (IA) that generates

synthetic data for underrepresented populations and performs data augmentation to

train a less biased model. To compare with AD and IA, we take results from [72] and

report their original CAI scores calculated with respect to their baseline, while for IB

and CFB we implement the methods ourselves and calculate CAI scores with respect

to results from our own baseline, a ResNet50 network [42].
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EyePACS Results

We predict Y = DR Status while using S = ITA as the sensitive attribute (note

that throughout this thesis, we use this abuse of notation to denote which attribute

each variable represents). We consider a scenario where training data is completely

missing for the subgroup of (Y, S) = (1, 1), individuals referable for DR who have

dark skin. The goal of our method is for predictions on the missing subgroup to be

just as accurate as on the group with adequate training data, which is a problem

of both fairness and also domain adaptation, achieving high performance on a group

not present in the original dataset. This scenario matches an important real world

problem where data for a minority subgroup such as dark skinned individuals is

lacking.

We create a training partition containing both images referable and non-referable

for DR of light skin individuals but only non-referable images of dark skin individuals.

We use the same partition as in [72] to compare with their method, using a training

set that consists of 10,346 light skin images referable for diabetic retinopathy (DR

= 1, ITA = 0), 5,173 non-referable light skin images (DR = 0, ITA = 0), and 5,173

non-referable dark skin images (DR = 0, ITA = 1). Then for a fair assessment of our

method’s performance we evaluate on a balanced test set with an equal number of

positive and negative examples for both dark and light skin individuals, with the set

containing 2,400 images equally balanced across DR and ITA.

As shown in Table 5.1, our method outperforms all other methods, showing im-

provements in accuracy and fairness across all metrics. We show a result with a value

of α > 1 in the bottom row, showing that it is still possible to achieve promising per-

formance with higher α values, although best results for most metrics were achieved
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with values of α < 1, as expected since these values correspond to an approxima-

tion of a tighter upper bound on the I(Z;X) mutual information term (that is being

minimized). Usual caution should be exercised in interpretations since – despite our

aligning with data partitioning in [72] – other variations may exist with [72, 2, 80]

due to non-determinism, parameter setting or other factors.

Table 5.1: Results for debiasing methods on EyePACS predicting Y= DR Status,
trained on partitioning with respect to S = ITA, and evaluated on a test set balanced
across DR status and ITA. For metrics with an ↑ higher is better whereas for ↓ lower
is better. Subpopulation is the one that corresponds to the minimum accuracy, with
(D) indicating dark skin and (L) light skin. Metrics are given as percentages.

Methods acc ↑ accgap ↓
accmin ↑
(subpop.)

CAI0.5 ↑ CAI0.75 ↑ dpgap ↓ eqoddsgap ↓

Baseline
(from [72])

70.0 3.5 68.3 - - NA NA

AD
(β = 0.5) ([72])

76.1 2.4 74.9 (L) 3.6 2.3 NA NA

IA ([72]) 71.5 1.5 70.7 (D) 1.8 1.9 NA NA
Baseline (ours) 73.4 8.1 69.3 (D) - - 28.3 36.3
IB (β1=30) ([2]) 74.1 2.1 73.1 (D) 3.4 4.7 18.6 20.7
CFB
(β2=30) ([80])

77.8 1.7 77.0 (L) 5.4 5.9 10.8 12.5

RFIB (ours)
(α = 0.8, β1 = 36,
β2 = 30)

79.4 0.5 79.2 (L) 6.8 7.2 16.2 16.7

RFIB (ours)
(α = 0.3, β1 = 30,
β2 = 50)

79.7 1.8 78.8 (L) 6.3 6.3 9.8 11.5

RFIB (ours)
(α = 1.8, β1 = 30,
β2 = 17)

78.4 0.2 78.3 (L) 6.4 7.1 15.6 15.8

We perform a second experiment where we use the same networks from before

trained using S = ITA but test on a balanced test set where S = Ethnicity (defined

as in [72]), with labels coming from a human clinician. The test set consists of 400

images equally balanced across DR and ethnicity. We show these experimental results

in Table 5.2, where we outperform the other methods across most metrics, including
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the most important CAI scores. As we achieve similar results using ITA and race

labels from a human clinician, we show that ITA can successfully be used as an

easily obtained alternative to manual label annotation, further supporting conclusions

reached by [72]. These results also demonstrate the ability of our method to perform

well in this type of protected factor domain adaptation problem where a different

protected factor is used after initial training, which is important in settings where the

actual protected factor is not revealed for privacy reasons.

Table 5.2: Performance results for debiasing methods on EyePACS predicting Y=
DR Status, trained on partitioning with respect to S = ITA, and evaluated on a test
set balanced across DR status and ethnicity (defined as in [35]). For metrics with
an ↑ higher is better whereas for ↓ lower is better. Subpopulation is the one that
corresponds to the minimum accuracy, with (W) indicating white individuals and (B)
Black individuals. Metrics are given as percentages.

Methods acc ↑ accgap ↓
accmin ↑
(subpop.)

CAI0.5 ↑ CAI0.75 ↑ dpgap ↓ eqoddsgap ↓

Baseline 76.0 13.0 69.5 (B) - - 3.0 16.0
IB (β2=30) ([2]) 78.8 3.5 77.0 (B) 6.1 7.8 0.5 4.0
CFB
(β2=30) ([80])

75.0 6.0 72.0 (B) 3.0 5.0 5.0 11.0

RFIB (ours)
(α = 0.8, β1 = 36,
β2 = 30)

81.5 6.0 78.5 (B) 6.3 6.6 3.0 9.0

RFIB (ours)
(α = 0.3, β1 = 30,
β2 = 50)

81.8 4.5 79.5 (B) 7.1 7.8 11.5 16.0

CelebA Results

We predict age using ITA as the sensitive attribute. Again, we consider the domain

adaptation/fairness problem where part of the data is completely missing for a pro-

tected subgroup. In this case, older light skin images are missing and we use a training

set of 48,000 images, consisting of 24,000 older dark skin images, 12,000 younger light
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skin images, and 12,000 older dark skin images. We use a test set of 8,000 images

equally balanced across age and ITA, using the same partition as [72] and varying

hyperparameters and comparing methods the same way as for EyePACS. Our results

are shown in Table 5.3, showing our method performs the best across all metrics.

Table 5.3: Results for debiasing methods on CelebA predicting Y= Age, trained on
partitioning with respect to S = ITA, and evaluated on a test set balanced across age
and ITA. For metrics with an ↑ higher is better whereas for ↓ lower is better. Sub-
population is the one that corresponds to the minimum accuracy, with (D) indicating
dark skin and (L) light skin. Metrics are given as percentages.

Methods acc ↑ accgap ↓
accmin ↑
(subpop.)

CAI0.5 ↑ CAI0.75 ↑ dpgap ↓ eqoddsgap ↓

Baseline
(from [72])

74.4 13.9 67.5 - - NA NA

AD
(β = 0.5) ([72])

76.4 9.6 71.6 (D) 3.2 3.7 NA NA

IA ( [72]) 75.3 9.2 70.7 (D) 2.8 1.6 NA NA
Baseline (ours) 70.6 16.6 62.3 (D) - - 43.8 60.4
IB (β1=30) ([2]) 71.8 14.9 64.3 (D) 1.4 4.7 36.6 51.5
CFB
(β2=30) ([80])

71.8 13.3 65.1 (D) 2.2 2.8 38.3 51.6

RFIB (ours)
(α = 0.3, β1 = 30,
β2 = 43)

75.0 10.9 69.6 (D) 5.0 5.3 29.0 40.0

RFIB (ours)
(α = 0.4, β1 = 1,
β2 = 30)

76.9 5.1 74.4 (D) 8.9 10.2 2.7 7.8

FairFace Results

We predict Y = Gender with S = Race as the sensitive attribute, testing on a test

set balanced across gender and race. As before, we exclude one population subgroup

and remove Black females from the training data, matching the common real-world

scenario where data is lacking for this group. Unlike the previous experiments, here

we can obtain race directly from the dataset rather than using ITA as a proxy for
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skin tone. We binarize the race labels into two groups, a smaller Black group and a

larger non-Black group. We use a training set of 16,500 images, consisting of 5,500

male Black images, 5,500 male white images, and 5,500 female white images. We test

on a test set of 3,000 images equally balanced across gender and race. Our results,

given in Table 5.4, show that we outperform both the IB and CFB methods both on

accuracy and on all fairness metrics.

Table 5.4: Results for debiasing methods on FairFace predicting Y= Gender, trained
on partitioning with respect to S = Race, and evaluated on a test set balanced
across Gender and ITA. For metrics with an ↑ higher is better whereas for ↓ lower
is better. Subpopulation is the one that corresponds to the minimum accuracy, with
(B) indicating Black. Metrics are given as percentages.

Methods acc ↑ accgap ↓
accmin ↑
(subpop.)

CAI0.5 ↑ CAI0.75 ↑ dpgap ↓ eqoddsgap ↓

Baseline 74.0 16.5 65.7 (B) - - 27.5 44.0
IB (β2=30) ([2]) 73.9 14.9 68.6 (B) 0.7 1.1 30.0 44.9
CFB
(β2=30) ([80])

75.6 14.0 65.2 (B) 2.0 2.3 26.3 40.3

RFIB (ours)
(α = 0.2, β1 = 30,
β2 = 29)

83.6 8.5 79.3 (B) 8.8 8.4 19.5 28.0

RFIB (ours)
(α = 0.2, β1 = 1,
β2 = 30)

82.1 7.3 78.4 (B) 8.6 8.9 19.2 26.4

5.3.5 UMAP Clustering Analysis and Influence of Rényi Parameter

We use UMAP [67] to provide a visual illustration of the effect of the Rényi parameter

α. In Fig. 5.3, we show 2-dimensional UMAP vectors of our representation Z,

colouring the points both based on the label Y and sensitive attribute S. Here

experiments were done on the EyePACS dataset with Y = DR and S = ITA. The

goal is for the representation to preserve information about Y , allowing the two classes
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of Y to be easily separated, while removing the sensitive information S and preventing

its two classes from being distinguished.

A value of α = 0 corresponds to no compression with I(Z;X) = 0, which preserves

maximum accuracy but does not help fairness, with the classes of both Y and S being

easily separated as shown in Fig. 5.3. Increasing α gradually results in the different

points getting more mixed together. While this is seen for both Y and S, the I(Z;Y )

and I(Z;Y |S) terms help ensure that information about Y is still preserved, allowing

the classes of Y to still separate fairly well even with higher compression, whereas

the classes of S get mixed together as desired.

We note that an intermediate value of α can potentially provide the best com-

promise between fairness and accuracy, as a more moderate amount of compression

can be enough to sufficiently remove sensitive information and further compression

might only harm accuracy. This is illustrated in Fig. 5.3 where a value of α = 0.5

was sufficient to mix together the classes of S while still preserving an obvious sep-

aration of the two classes of Y . Further increasing α worsened the separation of Y

more than it added additional benefit for S. This is also supported by our experi-

mental results where best overall accuracy-fairness trade-offs were typically obtained

for intermediate values of α.
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Figure 5.3: UMAP dimensionality reduction of Z for the EyePACS dataset. The left
column shows the two classes of Y (light blue representing the positive examples and
light green the negative) while the right column shows the two classes of S (orange
representing the positive examples and blue the negative). Going from top to bottom
α is increased, resulting in more compression and causing a decrease in separation
of the two classes. While separation occurs for both Y and S, it occurs to a greater
extent for S as desired.
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Chapter 6

Fairness and Privacy Combined

In this section, we discuss the problem of privacy, how it relates to fairness, and

present our combined method to improve fairness and privacy, termed Rényi Fair and

Private Information Bottleneck (RFPIB).

The problem of privacy is to encode data in such a way that a private attribute

P ∈ P cannot be inferred from it. Here, P can include factors such as race, gender,

or age, similarly to the sensitive variable S. While the problem of fairness involves

predicting Y in a way uninfluenced by S, the problem of privacy does not involve the

target prediction Y.

6.1 Method

We present the RFPIB method to jointly improve fairness and privacy while main-

taining utility. Our goal is to encode the input data X into a representation Z

that is both fair and private. We assume that the Markov chains P → X → Z

and (Y, S) → X → Z both hold. To simplify notation, we assume that all random

variables are discrete, though a similar derivation holds for a mix of continuous and

discrete random variables. We take Y , P, and S to all be binary.
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6.1.1 Lagrangian Formulation

For the representation to be private, we want to minimize the amount of information

Z contains about P, namely I(Z;P ). However, we also must retain information about

X in Z to ensure utility. We want to only retain the information that is not shared

by P, so we naturally condition on P and maximize I(Z;X|P ).

For fairness, we take a similar approach as for the RFIB method examined in

Chapter 5. We want to improve both equalized odds and demographic parity, defined

in Definition 24 and Definition 26, respectively, while also retaining information about

Y to ensure utility. We minimize I(Z;S|Y ) to increase equalized odds by encourag-

ing conditional independence of Z and S given Y, and also minimize I(Z;X|S, Y )

to encourage the representation to be compact. We maximize I(Z;Y ) to ensure the

representation is maximally informative about Y, and also I(Z;Y |S) which retains in-

formation about Y but only if it is not shared by S, helping to encourage demographic

parity.

We combine these terms into one Lagrangian, adding non-negative Lagrange mul-

tipliers to the terms to be maximized. This results in the following Lagrangian L to

be minimized over the encoding conditional distribution PZ|X :

L = I(Z;P )− λ3I(Z;X|P ) + I(Z;S|Y ) + I(Z;X|S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S).

(6.1)

Next, we rewrite this Lagrangian into a simpler expression that has fewer terms,

making it easier to work with, while still maintaining similar properties to the original

one.
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Theorem 7. Minimizing the Lagrangian in (6.1) over PZ|X is equivalent to minimiz-

ing the following expression

L = 2I(Z;X)− β1I(Z;Y )− β2I(Z;Y |S)− β3I(Z;X|P ), (6.2)

where β1 = λ1 + 1, β2 = λ2, and β3 = λ3 + 1.

Proof. First, we give an equivalent expression for I(Z;P )− λ3I(Z;X|P ) :

I(Z;P )− λ3I(Z;X|P ) = H(Z)−H(Z|P )− λ3I(Z;X|P )

= H(Z)−H(Z|X)−H(Z|P ) +H(Z|X)− λ3I(Z;X|P )

= I(Z;X)− [H(Z|P )−H(Z|X,P )]− λ3I(Z;X|P )

= I(Z;X)− I(Z;X|P )− λ3I(Z;X|P )

= I(Z;X)− (λ3 + 1)I(Z;X|P ), (6.3)

where the third equality follows from the Markov chain assumption P → X → Z.

Next, we give an equivalent expression for I(Z;S|Y ) + I(Z;X|S, Y ) − λ1I(Z;Y ) −

λ2I(Z;Y |S) :

I(Z;S|Y ) + I(Z;X|S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S)

= H(Z|Y )−H(Z|S, Y ) +H(Z|S, Y )−H(Z|X,S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S)

= H(Z|Y )−H(Z|X)− λ1I(Z;Y )− λ2I(Z;Y |S)

= H(X)−H(Z,X)− [H(Y )−H(Z, Y )]− λ1I(Z;Y )− λ2I(Z;Y |S)

= H(Z) +H(X)−H(Z,X)− [H(Z) +H(Y )−H(Z, Y )]− λ1I(Z;Y )− λ2I(Z;Y |S)

= I(Z;X)− I(Z;Y )− λ1I(Z;Y )− λ2I(Z;Y |S)
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= I(Z;X)− (λ1 + 1)I(Z;Y )− λ2I(Z;Y |S), (6.4)

where the second equality follows from the Markov chain assumption (Y, S)→ X →

Z. Combining (6.3) and (6.4) we get

I(Z;P )− λ3I(Z;X|P ) + I(Z;S|Y ) + I(Z;X|S, Y )− λ1I(Z;Y )− λ2I(Z;Y |S)

= 2I(Z;X)− (λ3 + 1)I(Z;X|P )− (λ1 + 1) I(Z;Y )− λ2I(Z;Y |S), (6.5)

and thus letting β1 = λ1 + 1, β2 = λ2, and β3 = λ3 + 1 yields (6.2).

6.1.2 Variational Bounds

We give variational bounds for each of the four terms in the Lagrangian. For the

I(Z;X) compression term to be minimized, we use the upper bound derived in Sec-

tion 5.2.3:

I(Z;X) ≤ EPX
Dα

(
PZ|X∥QZ

)
. (6.6)

The distribution PZ|X is modelled by a neural network (we drop the parameter θ

from PZ|X;θ to simplify notation, with θ denoting the network’s weights and biases).

This network is called the encoder network as it encodes X into the fair/private

representation Z. The distribution QZ is a variational approximation to the true

distribution of Z, PZ (in our experiments, we choose QZ to be a spherical Gaussian).

The divergence is Renyi’s divergence with parameter α, as defined in Definition 6 and

discussed in Section 5.2.3.

For the I(Z;Y ) and I(Z;Y |S) terms to be maximized, we also use lower bounds
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derived in Section 5.2.3:

I(Z;Y ) ≥ H(Y ) + EPY,Z

[
logQY |Z(Y |Z)

]
, (6.7)

I(Z;Y |S) ≥ H(Y |S) + EPS,Y,Z

[
logQY |S,Z(Y |S,Z)

]
. (6.8)

The variational approximations QY |Z and QY |Z are each modelled by a neural network

(again we do not include the parameters to simplify notation). As the entropy terms

H(Y ) and H(Y |S) are independent of the parameterization, they can be ignored for

the optimization.

Finally, we derive a lower bound on the I(Z;X|P ) term to be maximized, where

we replace PX|Z,P with a variational approximation QX|Z,P :

I(Z;X|P ) = H(X|P )−H(X|Z, P )

= H(X|P ) +
∑

(x,z,p)∈×X×Z×P

PX,Z,P (x, z, p) logPX|Z,P (x|z, p)

= H(X|P ) +
∑

(x,z,p)∈×X×Z×P

PX,Z,P (x, z, p) logPX|Z,P (x|z, p)

−
∑

(x,z,p)∈X×Z

PX,Z,P (x, z, p) logQX|Z,P (x|z, p)

+
∑

(x,z,p)∈X×Z×P

PX,Z,P (x, z, p) logQX|Z,P (x|z, p)

= H(X|P ) + EPZ,P
D(PX|Z,P ||QX|Z,P )

+
∑

(x,z,p)∈X×Z×P

PX,Z,P (x, z, p) logQX|Z,P (x|z, p)

≥ H(X|P ) + EPX,Z,P

[
logQX|Z,P (X|Z, P )

]
. (6.9)

The inequality follows from the non-negativity of KL divergence. The distribution
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QX|Z,P again is modelled by a neural network. We call this network the decoder net-

work or reconstruction network since it tries to decode Z and use it to reconstruct the

original image X. The entropy term H(X|P ) is independent of the parameterization

so it can be ignored for the optimization.

6.1.3 Computing the Bounds

Similar to the development in Chapter 5, to compute the bound we use the reparam-

eterization trick (Section 3.3). Modeling PZ|X as a density, we let PZ|XdZ = PEdE,

where E is a random variable and Z = f(X,E) is a deterministic function, allowing

us to backpropagate gradients and optimize the parameters via stochastic gradient

descent. We use the data’s empirical densities to estimate PX,S, PX,Y,S, and PX,P .

Considering a batch D = {x{i}, s{i}, p{i}, y{i}}Ni=1, we minimize the following cost:

J =
1

N

N∑
i=1

[
Dα

(
PZ|X=x{i}∥QZ

)
− β1EE

[
log
(
QY |Z

(
y{i} | f

(
x{i}, E

)))]
− β2EE

[
log
(
QY |S,Z

(
y{i} | s{i}, f

(
x{i}, E

)))]
−β3EE

[
log
(
QX|Z,P

(
x{i} | p{i}, f

(
x{i}, E

)))]]
. (6.10)

Remark 3. Depending on the choice of α, β1, β2, and β3, from this method we can

recover the Information Bottleneck Method [2] (α = 1, β2 = 0, β3 = 0), Conditional

Fairness Bottleneck [80] (α = 1, β1 = 0, β3 = 0), or the Conditional Privacy Funnel

[80] (α = 1, β1 = 0, β2 = 0).
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6.2 Experiment Setup

We explain how we implement the RFPIB system in practice to run experiments and

describe the metrics and datasets we use.

6.2.1 Implementation Details

For all experiments, we take the encoder PZ|X to be a multivariate Gaussian distribu-

tion with a diagonal covariance matrix where the mean and variance are determined

by a neural network:

PZ|X = N
(
Z|µenc(X), diag(σ2

enc(X))
)
. (6.11)

Here, µenc(X) and σ2
enc(X) are d-dimensional mean and variance vectors, which are

outputs of the encoder neural network, and diag(σ2
enc(X)) is a d× d diagonal matrix

with the entries of σ2
enc(X) on the diagonal. This network is a ResNet50 classifer

(Section 2.9) pretrained on ImageNet with the final linear layer replaced by two

randomly initialized linear layers that each have d units. This network takes in

the image X and its two final layers output µenc(X) and σ2
enc(X). Rather than

directly drawing samples from PZ|X , we leverage the reparameterization trick and

draw samples E ∈ Rd from a spherical Gaussian distribution, E ∼ N (0, Id), where

Id is the d-dimensional identity matrix. We then compute Z as

Z = µenc + σenc ⊙ E. (6.12)

This allows us to backpropagate gradients as we only need to draw samples from

N (0, Id) rather than a distribution that depends on the neural network’s parameters.
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We model the variational approximation of the representation’s marginal as a

d-dimensional spherical Gaussian, QZ = N (Z|0, γ2Id), where γ ∈ R>0. We then

calculate the Rényi divergence Dα

(
PZ|X∥QZ

)
using (5.20), derived in Section 5.2.5.

For all experiments, we use a value of γ = 1.

As we only use binary values for Y , we model QY |Z and QY |Z,S with Bernoulli

distributions, QY |Z = Bernoulli(Y ; f(Z)) and QY |Z,S = Bernoulli(Y ; g(Z, S)) where f

and g are auxillary fully connected networks. These two networks each consist of one

single fully connected linear layer with a sigmoid activation function, where f has d

units and g has d+ 1 units.

The reconstruction network PX|Z,P consists of two fully connected linear layers

and three convolutional layers. The first layer has d + 1 units, the second has 768,

and the three convolutional layers have 64, 32, and 8 channels, respectively. The

three convolutional layers each have a kernel size of (3, 3). The two linear layers and

first two convolutional layers use a ReLU activation function while the final layer uses

a sigmoid activation function.

Overall, our RFPIB system consists of four neural networks, the encoder PZ|X ,

decoder QX|Z,P , and two networks that predict Y, QY |Z and QY |Z,S. Figure 6.1 shows

the architecture of the system. After training is complete, we use a logistic regression

classifier with default settings from sci-kit learn [73] to predict Y from Z. We

evaluate accuracy and fairness on these predictions. We also use a second logistic

regression classifier as an adversary to predict P from Z. Our goal is to create Z such

that the first classifier will accurately predict Y but the adversary will be unable to

accurately predict P.

Before training, we preprocess images by taking a 128 by 128 pixel centre crop
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Figure 6.1: Architecture of the RFPIB model. Teal arrows signify elements of our
model that are used during training, while orange arrows signify elements that are
not part of the model and are used after training is complete. During training,
the input image X is given to the encoder PZ|X that generates the mean µenc and
standard deviation σenc for the distribution of the fair/private representation Z,
N (Z|µenc(X), diag(σ2

enc(X))) . Then, Z is given to two fully connected networks,
one of which is also given the sensitive information S, and Z is also given to the
decoder network together with P, which reconstructs the original image as X̂. After
training, X can be encoded with the encoder the same way as during training and
then Z can be used as input to other existing architectures for fair predictions of
Y , shown here as a logistic regression classifier that predicts Ŷ which we use for our
experiments. We also use a second logistic regression classifier as an adversary that
outputs P̂ , attempting to predict P from Z.

of the 218 by 178 pixel CelebA images and a 256 pixel by 256 pixel centre crop of

EyePACS images. We then split the training data into a training set and validation

set, using 10% of the data for validation, and use the validation set for early stopping.

We train for up to 20 epochs, with early stopping triggering when there is no decrease

in validation loss for 5 epochs, using a min delta value of 0.

For all experiments, we train using PyTorch on a NVIDIA GP100 GPU. We use

d = 64 as the dimension of our representation Z, a batch size of 64, and the Adam
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optimizer with a learning rate of 0.001. We use values of α that vary from 0 to 1,

with α = 0 signifying

D0(PZ|X∥QZ) = − logQZ(z : PZ|X(z) > 0) = 0

and with α = 1 corresponding to Dα(PZ|X∥QZ) being given by the KL divergence

DKL(PZ|X∥QZ).
1

6.2.2 Metrics

Measures of Fairness

To evaluate how well our method achieves fairness, we use similar metrics as in Chap-

ter 5. After training is complete, we use a logistic regression classifier to predict Y

from Z. We then measure how close we are to achieving accuracy parity, demographic

parity, and equalized odds by calculating three different fairness gaps:

• Adherence to accuracy parity is measured by calculating the accuracy gap (Def-

inition 33) and denoted as accgap.

• Adherence to demographic parity is measured by calculating the demographic

parity gap (Definition 30) and denoted as dpgap.

• Adherence to equalized odds is measured by calculating the equalized odds gap

(Definition 26) and denoted as eqoddsgap.

1See Footnote 1 in Chapter 5.
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Measure of Utility

To measure the utility of our representation, we report the classification accuracy;

see Definition 28. This is done by using a logistic regression classifier to predict Y

from Z after training is complete. We denote this accuracy as acc(Y ).

Measure of Privacy

To measure how well our representation preserves privacy, we measure how effectively

an adversary is able to predict P from Z after our model’s training is complete. We

use a logistic regression classifier as the adversary and report its classification accuracy

as acc(P ). We would like to minimize this accuracy, ideally having it be no more than

50%; i.e., performing no better than picking at random. Note that we use an identical

process of running a logistic regression classifier on Z to determine both acc(Y ) and

acc(P ); the only difference is that the prediction target is changed from Y to P.

The overall goal of training our RFPIB model is for it to produce Z such that

acc(Y ) is maximized and acc(P ) is minimized, in addition to all three fairness gaps

being minimized.

6.2.3 Data

CelebA

We run most experiments on the CelebA dataset [61]. This dataset contains 202,599

images of celebrity faces that each have 40 binary attributes. We use age as our

prediction target Y and are interested in both skin tone and gender for the sensitive

attribute S and the private attribute P. Age and gender are both included in the

dataset; we take them to be binary where Y = 0 refers to an age < 30 years old and
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Y = 1 refers to an age ≥ 30 years old. For gender, we take S = 0 or P = 0 to mean

male and S = 1 or P = 1 to mean female.

Skin tone is not an attribute included in the dataset; instead we use ITA as a

proxy, calculated according to (5.24) as described in Section 5.3.3. We then binarize

it, and take P = 0 and S = 0 to both refer to ITA > 28, taken to mean light skin,

and P = 1 and S = 1 to both refer to an ITA ≤ 28, taken to mean dark skin,

matching category thresholds used in [55, 72]. From now on, we use skin tone and

ITA interchangeably, with light skin referring to ITA > 28 and dark skin referring to

ITA ≤ 28.

We run experiments where S = Skin Tone and P = Gender, and where S =

Gender and P = Skin Tone (note that as in Chapter 5, throughout this chapter we

use this abuse of notation to denote the attribute each variable represents). We use

a training set of 48,000 images, consisting of 24,000 older dark skin images, 12,000

younger light skin images, and 12,000 older dark skin images. Out of these images,

22,311 are male and 25,689 are female. The dataset is fairly balanced over gender

but data for the subgroup of older light skin images is missing. When we take S to

be skin tone, this corresponds to the challenging fairness problem where there is no

data for a subgroup. Evaluations are carried out on a test set of 8,000 images equally

balanced across age, skin tone, and gender.

EyePACS

We also run experiments on the EyePACS dataset [23] of retinal fundus images. This

dataset consists of 88,692 retinal fundus images of individuals potentially suffering

from diabetic retinopathy (DR). As described in Section 5.3.3, we binarize the label
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of DR status. We then take this label as our prediction target Y, where Y = 1 is a

positive case of DR and Y = 0 is negative. Also as above, we use ITA as a proxy

for the patient’s skin tone. We use ITA for both P and S, with P = 0 or S = 0

indicating light skin and P = 1 or S = 1 indicating dark skin.

We use a training set consisting of 10,346 light skin images referable for diabetic

retinopathy (DR = 1, ITA = 0), 5,173 non-referable light skin images (DR = 0, ITA

= 0), and 5,173 non-referable dark skin images (DR = 0, ITA = 1). We evaluate

performance on a test set containing 2,400 images equally balanced across DR and

ITA.

6.3 Experiment Results and Discussion

We present experimental results using RFPIB on the CelebA and EyePACS datasets.

6.3.1 Effects of Rényi Parameter

We begin by studying in isolation how changing the amount of compression affects

privacy, fairness, and utility, recalling that minimizing I(Z;X) is what results in

compression. The degree of this compression is determined by the Rényi diver-

gence’s parameter α, which controls how close PZ|X becomes to QZ (a spherical

Gaussian). Rényi divergence is non-decreasing in α and thus a higher α results in

the Dα(PZ|X∥QZ) term having a larger influence on the cost function. As PZ|X is

determined by a neural network and QZ is fixed, to minimize a larger Rényi diver-

gence the network must choose PZ|X to be closer to QZ ; hence, Dα(PZ|X∥QZ) acts as

a regularization term that limits the possible richness of PZ|X . A higher α results in

more compression while a lower α results in less compression, with α = 0 resulting in
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no compression as D0(PZ|X∥QZ) = 0.

We run experiments on the CelebA dataset where we consider a simplified system

with only an encoder and reconstruction network, taking β1 = 0 and β2 = 0, and

β3 = 0.01. We then vary α linearly from 0 to 1 using 100 different values. For each

value of α, after training is complete we encode all images in the test set and then run

two logistic regression classifiers on the encoding Z, with one predicting Y and one

predicting P. We take Y to be age, and P and S to both be skin tone. We evaluate

the utility, fairness, and privacy for each value of α, shown in Figure 6.2.

Figure 6.2: Results from 100 different systems trained on the CelebA dataset where
β1 = 0, β2 = 0, β3 = 0.01, and α varies from 0 to 1, where Y is age, P is skin tone,
and S is skin tone. After training an RFPIB system with the given parameters, we
compute the plotted metrics by running two logistic regression classifiers on Z, one
to predict Y and one to predict P. For privacy, we want to minimize acc(P ) (blue),
for fairness we want to minimize dpgap (green) and eqoddsgap (red), and for utility we
want to maximize acc(Y ) (orange).

Clearly, as α increases, acc(P ) decreases. This is expected since a higher amount
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of compression results in less information about P being retained in Z. In addition,

the two fairness metrics dpgap and eqoddsgap also decrease as α increases. Note that

that these results are from systems where β1 = 0 and β2 = 0, meaning neither Y

nor S appears in the cost function. The results show that simply by increasing the

amount of compression, we can improve fairness even without directly targeting Y or

S, which has implications for applications where these variables are unknown during

training. They also illustrate the similarities between the problem of fairness and

privacy: in our original Lagrangian formulation (6.1) we aim to minimize I(Z;P ) to

improve privacy and I(Z;S|Y ) to improve fairness. In both cases, we are interested in

minimizing the amount of information shared between Z and the private or sensitive

variable, and in both cases, upon simplification of the Lagrangian we show that we can

minimize I(Z;X) rather than these two terms directly. This indicates that I(Z;X)

alone can be used to improve both fairness and privacy simultaneously, as shown in

these results.

6.3.2 Reconstruction Network Images

We provide a visual illustration of the previous experiment, showing images generated

by the reconstruction network QX|Z,P . We use the same networks as before, systems

with β1 = 0, β2 = 0, β3 = 0.01, Y = Age, P = Skin Tone, and S = Skin Tone, and

compare networks trained with different values of α. We encode images into Z using

the trained encoder network PZ|X and then decode them using the reconstruction

network QX|Z,P . The decoder network takes in both Z and P to reconstruct X. If

our representation is private as desired then Z does not contain information about P.

Therefore, P alone is responsible for determining the skin tone of the reconstructed
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image. However, if Z is not private then the reconstruction network is able to de-

termine the skin tone for the reconstructed images solely from Z and P does not

have an effect. We show reconstructed images from four different networks in Figure

6.3, each trained with a different values of α. The image is reconstructed twice, each

reconstruction using same encoding Z but a different value of P.

These images show that as α increases, the quality of reconstructions goes down

but P has a greater effect on determining the skin tone of the image, indicating

increased privacy. Figure 6.3a has no compression with α = 0. These reconstructions

look the most similar to the original images but also have the same skin tone as

the original images, with P having no effect on the reconstruction. By contrast, the

reconstructions in Figure 6.3d with α = 0.4 do not resemble the original images as

closely but P fully determines the skin tone, with all encoded images reconstructed

using P = 0 having light skin and images reconstructed using P = 1 having dark skin,

no matter the original skin tone of the image. This illustrates the trade-off between

utility and privacy; more compression results in improved privacy but worsened utility.

We provide a similar visual illustration using newly generated images with the

reconstruction network in Figure 6.4. Similar to a Variational Autoencoder, RFPIB

is also a generative model capable of creating new content. This is achieved by

taking Z to be random noise and inputting it into the reconstruction network. Recall

that the Rényi divergence term Dα(PZ|X∥QZ) acts as a regularization term, limiting

the richness of PZ|X and forcing it to be more similar to QZ , a spherical Gaussian.

This allows us to take Z to be a sample from a spherical Gaussian distribution,

Z ∼ N (0, Id), and input it into the reconstruction network QX|Z,P to generate a new

image.



6.3. EXPERIMENT RESULTS AND DISCUSSION 110

(a) α = 0 (b) α = 0.02

(c) α = 0.1 (d) α = 0.4

Figure 6.3: Each subfigure shows original images from the CelebA dataset (left col-
umn) along with two reconstructions (centre and right columns) created by inputting
the image’s private representation Z together with P into the reconstruction network
QX|Z,P after our RFPIB system (β1 = 0, β2 = 0, β3 = 0.01) was trained on the CelebA
dataset using skin tone as the private variable. The centre column reconstruction is
with P = 0 (light skin) and the right column reconstruction is with P = 1 (dark
skin). Each subfigure shows reconstructions using a network trained with a different
value of α. As α increases, the quality of the reconstruction goes down but the effect
that P has on determining the image’s skin tone increases.
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(a) α = 0 (b) α = 0.02

(c) α = 0.1 (d) α = 0.4

Figure 6.4: Each subfigure shows new images generated by taking Z to be random
noise from a spherical Gaussian distribution and inputting it together with P into the
reconstruction network QX|Z,P after our RFPIB system (β1 = 0, β2 = 0, β3 = 0.01)
was trained on the CelebA dataset using skin tone as the private variable. In the left
column, the image is generated using P = 0 (light skin), while in the right column,
the image is generated using P = 1 (dark skin). Each subfigure shows reconstructions
using a network trained with a different value of α. No compression with α = 0 results
in no meaningful output, while increasing α allows new facial images to be generated
from random noise. As α increases, P has a greater effect in determining the skin
tone of the generated image.
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Figure 6.4 shows newly generated images using the same four networks as in

Figure 6.3, each trained with a different value of α. Each pair of images is generated

using the same random noise for Z but a different value for P. Figure 6.4a shows the

importance of using the Rényi divergence Dα(PZ|X∥QZ); here α is 0 and there is no

divergence, resulting in the reconstruction network failing to generate any meaningful

output. However, even a very small value of α = 0.02 is enough to result in images of

faces being generated, shown in Figure 6.4b. Again, increasing α results in P having

a greater effect on the skin tone. In Figure 6.4b where α = 0.02, images generated

with P = 1 are slightly darker than with P = 0, whereas in Figure 6.4d where α = 0.4

there is a clear difference in skin tone, indicating increased privacy.

6.3.3 Further CelebA Experiments

We run further experiments on the CelebA dataset, taking S to be skin tone and P

to be gender. We continue to study the effects of changing α and experiment with

various combinations of the hyperparameters β1, β2, and β3, shown in Figure 6.5. We

begin with systems where β1 = 0, β2 = 10, β3 = 0.01, and α varies between 0 and 1,

shown in Figure 6.5a. Compared to the previous experiments in Figure 6.2, we now

add the I(Z;Y |S) term to the cost function by changing β2 = 0 to β2 = 10. Recall

that the I(Z;Y |S) term is intended to increase both utility and fairness; maximizing

the mutual information between Z and Y ensures accuracy while conditioning on

S excludes information about S from being included in Z, increasing fairness. As

expected, adding this term results in a significant increase in acc(Y ) of over 10%,

comparing Figure 6.2 and Figure 6.5a. However, this comes at a cost of worsened

fairness metrics. As before, increasing α results in acc(P ) decreasing as desired,
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improving privacy. It also results in a drop in acc(Y ), reflecting the trade-off between

utility and privacy, but the decrease in acc(Y ) is not as significant as the decrease

in acc(P ), showing that as compression is increased, our method is successful at

targeting the information not related to Y to be compressed.

(a) β1 = 0, β2 = 10, β3 = 0.01 (b) β1 = 0, β2 = 10, β3 = 0

(c) β1 = 10, β2 = 0, β3 = 0.01 (d) β1 = 10, β2 = 0, β3 = 0

Figure 6.5: Each subfigure shows results from 50 different systems where α varies
from 0 to 1, where Y is age, P is skin tone, and S is gender. After training an RFPIB
system with the given parameters, we compute the plotted metrics by running two
logistic regression classifiers on Z, one to predict Y and one to predict P. Metrics are
computed by running two logistic regression classifiers on Z after training is complete,
one to predict Y and one to predict P. For privacy, we want to minimize acc(P ) (blue),
for fairness we want to minimize dpgap (green) and eqoddsgap (red), and for utility we
want to maximize acc(Y ) (orange).
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In Figure 6.5b we show results from networks where β1 = 0, β2 = 10, β3 = 0,

and α varies between 0 and 1, where unlike in Figure 6.5a, we here remove the

I(Z;X|P ) term from the cost function. Overall, this has positive effects, resulting

in a high acc(Y ) and a low acc(P ). As α is increased, the fairness gaps decrease but

acc(Y ) and acc(P ) stay approximately constant, only decreasing slightly. Despite P

not appearing in the cost function, the method is effective at ensuring a low acc(P ),

again showing that simply compressing Z is enough to ensure notable improvements in

privacy. Promisingly, tuning α results in significant improvements to the demographic

parity and equalized odds gaps with only very minor decreases in acc(Y ).

Figure 6.5c shows results from networks where β1 = 10, β2 = 0, β3 = 0.01, and α

varies between 0 and 1. This corresponds to keeping I(Z;X|P ) in the cost function

as in Figure 6.5a but replacing I(Z;Y |S) with I(Z;Y ). This results in similar trends

to Figure 6.5a where increasing α results in acc(Y ) and acc(P ) decreasing. However,

the system in Figure 6.5c performs worse on the fairness metrics, which is as expected

since S is no longer being directly targeted in the cost function. The systems using

I(Z;Y ) and I(Z;Y |S) achieve comparable accuracy, which could indicate that for

this application knowledge of S is not necessary for the network to predict Y, i.e.,

knowledge of gender is not necessary to predict age. In this case, using I(Z;Y |S) is

clearly beneficial, though we expect that this could vary based on the application.

Figure 6.5d shows results from networks where β1 = 10, β2 = 0, β3 = 0 and

α varies between 0 and 1. This corresponds to removing I(Z;X|P ) from the cost

function compared to Figure 6.5c or replacing I(Z;Y |S) with I(Z;Y ) compared to

Figure 6.5b. The networks achieve similar results to Figure 6.5b, where both a high

acc(Y ) and low acc(P ) are achieved, but perform worse on the fairness metrics, again
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showing that the conditioning on S in I(Z;Y |S) provides significant fairness benefits.

6.3.4 Baseline Comparisons

We run more experiments on both the CelebA and EyePACS datasets and compare

results from RFPIB with a baseline. For the baseline, we run a ResNet50 network

(Section 2.9) pretrained on ImageNet on the original imagesX.We train the ResNet50

network twice, once to predict acc(Y ) and the second time to predict acc(P ). Note

that the encoder of RFPIB also consists of a ResNet50 network, making the archi-

tecture of the baseline similar to RFPIB.

We show results from experiments on CelebA where P is gender and S is skin tone

in Table 6.1, experiments on CelebA where P is skin tone and S is gender in Table 6.2,

and experiments on EyePACS where both P and S are skin tone in Table 6.3. Note

that the training set is approximately balanced across gender but is unbalanced across

skin tone, which is why fairness metrics are better in Table 6.2 where S is gender.

Table 6.1: Results for RFPIB (β1 = 0, β2 = 100, β3 = 0.001, α = 0.4) trained on
CelebA predicting Y = Age where P = Gender and S = Skin Tone, and evaluated on
a test set balanced across Age, Skin Tone, and Gender. For metrics with an ↑ higher
is better whereas for ↓ lower is better.

Method acc(P ) ↓ acc(Y ) ↑ accgap ↓ dpgap ↓ eqoddsgap ↓
Baseline 92.3 72.2 17.1 33.0 50.1
RFPIB 57.1 75.6 10.4 16.1 26.5

All experiments show that RFPIB provides clear benefits compared to the baseline.

The baseline ResNet50 network achieves significantly higher accuracy predicting P

than Y (which is as expected since determining gender or skin tone can be easier

than determining age). By contrast, running logic regression classifiers on RFPIB’s
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Table 6.2: Results for RFPIB (β1 = 0, β2 = 100, β3 = 0.001, α = 0.4) trained on
CelebA predicting Y = Age where P = Skin Tone and S = Gender, and evaluated on
a test set balanced across Age, Skin Tone, and Gender. For metrics with an ↑ higher
is better whereas for ↓ lower is better.

Method acc (P ) ↓ acc (Y ) ↑ accgap ↓ dpgap ↓ eqoddsgap ↓
Baseline 92.5 70.9 0.8 13.9 14.6
RFPIB 66.7 71.8 0.3 9.4 9.8

Table 6.3: Results for RFPIB (β1 = 1, β2 = 1000, β3 = 0.0001, α = 1) trained on
EyePACS predicting Y = DR Status where P = S = Skin Tone, and evaluated on a
test set balanced across DR Status, Skin Tone, and Gender. For metrics with an ↑
higher is better whereas for ↓ lower is better.

Method acc(P ) ↓ acc(Y ) ↑ accgap ↓ dpgap ↓ eqoddsgap ↓
Baseline 85.9 75.9 4.1 22.4 26.5
RFPIB 59.8 79.9 1.8 16.7 16.8

encodings Z results in acc(P ) lower than acc(Y ). Across different datasets, RFPIB

drops acc(P ) by approximately 25% - 35% while also increasing acc(Y ) by several

percentage points. We hypothesise that this increase in acc(Y ) could be caused by

RFPIB’s compression acting as a regularization term, preventing overfitting. Finally,

these results show that RFPIB also improves upon the baseline for all three fairness

metrics, the accuracy gap, the demographic parity gap, and the equalized odds gap.

6.3.5 Discussion

Overall, we show that RFPIB is effective at improving both fairness and privacy while

maintaining high utility, significantly outperforming the baseline. By experimenting

with various combinations of hyperparameters, we show that privacy and fairness can

be improved simultaneously by increasing the amount of compression while trade-

offs are typically observed between utility and privacy/fairness. Tuning the Rényi
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divergence’s α parameter makes it possible to find the optimal trade-off that achieves

desired results for accuracy, fairness, and privacy. Our experimental results indicate

that prioritizing β2, which controls the I(Z;Y |S) term of the cost function, over β1,

which controls I(Z;Y ), is able to achieve significant fairness improvements without

compromising on accuracy; however, it is possible that this could vary on different

datasets and more experimentation is necessary, which we leave to future work. Our

results also indicate that the β1 and β2 terms are more effective at increasing acc(Y )

than the β3 term, which controls I(Z;X|P ); however, the β3 term includes neither

Y nor S, which makes it suitable for maintaining utility in applications where these

variables are unknown. The inclusion of this term provides flexibility for our method

to be adapted to a variety of different applications.
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Chapter 7

Conclusion

In this thesis, we developed new methods to improve fairness and privacy in ma-

chine learning. We proposed RFIB, a novel variational Information Bottleneck fair

representation learning method based on Rényi divergence that offers trade-offs in

utility, two fairness objectives, and compactness. We showed that it is possible to

use Rényi divergence in developing bounds rather than Kullback-Leibler divergence

as was traditionally done, and that this provides the benefit of having an additional

hyperparameter that can be used to control the amount of compression. We also con-

sidered multiple definitions of fairness; compared to prior work which incorporates

a single definition, RFIB has the potential benefit of allowing ethicists and policy

makers to specify softer and more balanced requirements for fairness that lie between

multiple hard requirements. Performing more studies that expand on this idea is an

avenue for future research.

Experimenting on three different image datasets, EyePACS, CelebA, and FairFace,

we showed that RFIB provides benefits vis-à-vis other methods of record including IB,

CFB, and other techniques performing augmentation or adversarial debiasing. For

the EyePACS dataset, we trained with ITA as the sensitive variable, used as a proxy
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for skin tone, and then compared test results using a sensitive variable of ITA and race

labels manually annotated by a clinician. The results demonstrated the ability of our

method to perform well in this type of protected factor domain adaptation problem,

which is particularly important in a setting where the actual protected factor is not

revealed for privacy reasons. The type of information blinding approach pursued

here may have implications for models that protect against attribute inference attack,

another possible direction for future work.

Finally, we extended our method to improve both fairness and privacy, develop-

ing RFPIB. We showed that RFPIB can be used to simultaneously target fairness,

privacy, and utility. Through experiments on the CelebA dataset, we examined how

privacy and fairness relate and showed that the method successfully disentangles the

private attribute from the representation. We showed that RFPIB has generative

capabilities and that P can be used to control the private attribute of images gen-

erated by the reconstruction network. On the CelebA and EyePACS datasets, we

demonstrated that RFPIB significantly outperforms a baseline on all desired criteria

of accuracy, privacy, and fairness.

Possible directions of future research include studying different techniques to min-

imize and maximize the mutual information terms, such as using the Mutual Informa-

tion Neural Estimation algorithm [5] based on the Donsker–Varadhan representation

of the Kullback-Leibler divergence [17], or the equivalent algorithm based on a vari-

ational representation of the Rényi divergence [9]. We can also examine the use of

encoders other than a Gaussian noise encoder, such as an additive noise encoder or

propagated noise encoder, and explore ways to extend our work to include private

and sensitive attributes that are non-binary, as well as to allow our method to work
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in cases where the sensitive or private attributes are not explicitly known.

Further future work includes using optimization methods other than the weighted

sum method we used, such as the ϵ-constraints method [66]. We can also examine

whether adversarial training can be used in conjunction with our approach, com-

paring our variational approach with adversarial approaches and examining whether

adversarial training results in performance improvements or suffers from drawbacks

such as mode collapse. Finally, we can compare our approach to privacy with other

approaches based on differential privacy [20] and study theoretical guarantees on

privacy for our method.
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[60] Yingzhen Li and Richard E. Turner. Rényi divergence variational inference. In

Proc. NeurIPS, volume 29, pages 1073–1081, 2016.

[61] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face

attributes in the wild. In Proc. ICCV, December 2015.



BIBLIOGRAPHY 129

[62] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning trans-

ferable features with deep adaptation networks. In Proc. ICML, pages 97–105,

2015.

[63] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning

adversarially fair and transferable representations. In Proc. ICML, pages 3384–

3393, 2018.

[64] Ali Makhdoumi, Salman Salamatian, Nadia Fawaz, and Muriel Médard. From

the information bottleneck to the privacy funnel. In Proc. 2014 IEEE Informa-

tion Theory Workshop (ITW 2014), pages 501–505, 2014.

[65] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep

neural networks. arXiv:1804.07612, 2018.

[66] George Mavrotas. Effective implementation of the ϵ-constraint method in

multi-objective mathematical programming problems. Applied Mathematics

and Computation, 213(2):455–465, 2009.

[67] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP:

Uniform manifold approximation and projection. Journal of Open Source Soft-

ware, 3(29):861, 2018.

[68] Michele Merler, Nalini Ratha, Rogerio S Feris, and John R Smith. Diversity in

faces. arXiv:1901.10436, 2019.
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