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Abstract

Joint source-channel coding (JSCC) has emerged to be a major field of research

recently. Channel optimized vector quantization (COVQ) is a simple feasible JSCC

scheme introduced for communication over practical channels.

In this work, we propose an iterative design algorithm, referred to as the iter-

ative maximum a posteriori (MAP) decoded (IMD) algorithm, to improve COVQ

systems. Based on this algorithm, we design a COVQ based on symbol MAP hard-

decision demodulation that exploits the non-uniformity of the quantization indices

probability distribution. The IMD design algorithm consists of a loop which starts

by designing a COVQ, obtaining the index source distribution, updating the dis-

crete memoryless channel (DMC) according to the achieved index distribution, and

redesigning the COVQ. This loop stops when the point-to-point distortion is min-

imized. We consider memoryless Gaussian and Gauss-Markov sources transmitted

over binary phase-shift keying modulated additive white Gaussian noise (AWGN)

and Rayleigh fading channels. Our scheme, which is shown to have less encoding
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complexity than conventional COVQ and less encoding complexity and storage re-

quirements than soft-decision demodulated (SDD) COVQ systems, is also shown to

provide a notable signal-to-distortion ratio (SDR) gain over the conventional COVQ

designed for hard-decision demodulated channels while sometimes matching or ex-

ceeding the SDD COVQ performance, especially for higher quantization dimensions

and/or rates.

In addition to our main result, we also propose another iterative algorithm to

design SDD COVQ based on the notion of the JSCC error exponent. This system is

shown to have some gain over classical SDD COVQ both in terms of the SDR and

the exponent itself.
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Chapter 1

Introduction

Modern communication systems are required to become faster and capable of sending

as much information as possible in a wireless mobile environment. To meet the daily

increasing expectations of the users, the system designers need to decrease the delay

of the systems while keeping the complexity in the low to moderate range.

Joint-source channel coding (JSCC), as an important current field of research is

motivated by such real-world constraints imposed on communication systems, most

notable of which are delay and complexity. Shannon’s classical separation theorem

states that designing source and channel codes can be done separately and indepen-

dently, without any loss in terms of reliable transmissibility. Communication systems

designed on the basis of Shannon’s separation theorem are called tandem source-

channel coding (TSCC) systems. Tandem systems form almost all of the practical
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CHAPTER 1. INTRODUCTION 2

current communication systems. There is a vast volume of literature on tandem sys-

tems, while JSCC systems are newer and less studied. Tandem systems can approach

the theoretical limits in many point-to-point systems [10], [46]. However, the clas-

sical approach to the problem for sending information reliably over a noisy channel

is under the implicit assumption of asymptotically large codeword lengths, which re-

sults in large system delay. Furthermore, in many wireless communication situations

involving non-stationary sources/channels, the separation theorem may not hold. As

a result, studying joint source-channel coding (JSCC) for both cases has attracted

much recent interest.

The term JSCC refers to a large variety of theoretical and applied techniques that

do not employ Shannon’s separation principle and try to jointly design source and

channel codes. The field has had few achievements in terms of applications, while it

has enjoyed much more theoretical efforts and considerations.

There exist several different JSCC paradigms depending on how they try to jointly

optimize source and channel codes. This thesis deals with channel optimized vector

quantization (COVQ). COVQ is a JSCC technique in which the analog source is

quantized by taking into consideration the characteristics of both the source and the

channel. COVQ has been thoroughly studied under different approaches (e.g., see [2],

[7], [15], [16], [17], [50], [54] and [60]).
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The thesis firstly provides the required background and then introduces the contri-

butions. The contributions of the thesis include a new COVQ design algorithm called

the iterative maximum a posteriori decoded (IMD) COVQ system. The algorithm

is first applied for the additive white Gaussian noise (AWGN) channel and is then

extended for the Rayleigh fading channel. The second topic of the thesis concerns

obtaining some improvements to the design of COVQ for soft-decision demodulated

channels based on the JSCC error exponent. In the remainder of this chapter, a

literature review and our contributions are presented followed by the outline of the

thesis.

1.1 Literature Review

Joint source channel coding methods are generally categorized into three classes [6, 9,

18, 40]: (1) concatenated coding; (2) joint decoding and (3) combined source-channel

coding. Combined source-channel coding and COVQ as one of its special cases are

reviewed more emphatically since these are the main subjects of this thesis.

Concatenated coding is a scheme in which the source and channel coding blocks are

separated yet jointly optimized to provide a minimal end-to-end distortion or error

probability. The most prominent example of this family is the so-called “unequal

error protection (UEP),” where source and channel codes are adjusted according to

the channel conditions and importance and sensitivity of the source data. UEP trades
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off the source resolution and channel error protection via assigning the highest level

of protection to the most important data. This results in using the best channel

codes for sensitive data and lightly channel coded data in case of unimportant or less

sensitive data. One interesting example for UEP is the work of Modestino and Daut

[38] in which they used 2-D pulse coded modulation (PCM) as the source encoder

and provided better error control protection on the most significant bits. Another

example of UEP is [1] in which smaller signaling schemes and higher energy levels were

assigned to the more sensitive transform coefficients of the discrete cosine transforms

(DCT) in image transform coding. Rate allocation between the source and channel

codes is one important factor in UEP methods. An adaptive coding rate allocation

system for finite-state channels is proposed in [27].

Joint decoding schemes incorporate the channel decoder into the source decoder

by providing information about the channel decoder to the source decoder [24]. All

schemes belonging to this class take advantage of the fact that the source encoder

is not ideal and leaves some redundancy in the bitstream. This residual redundancy

can be used in both channel decoding and source decoding which makes the channel

and source decoding interconnected. The redundancy at the output of the source

encoder is in the form of either memory or non-uniform distribution. A maximum

a posteriori (MAP) decoder can be used, for example, to improve the performance

over maximum likelihood (ML) decoding. In [47] and [42] MAP decoding is used for
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scalar and vector quantization respectively. Also, in [8], a MAP detection scheme

for mitigating transmission errors and taking advantage of the redundancy of images

via a second order Markov modeling is proposed. Application of MAP decoding to

image communication over noisy channels was introduced in [55] and MAP decoding

for channels with memory was studied in [3, 50, 52].

Another form of joint source-channel coding is called combined source-channel

coding or channel matched coding. Every system in which the source coder is opti-

mized according to the channel conditions belongs to this category. The first paper

on this issue goes as far back as the late 1960’s when Kurtenbach and Wintz [31]

derived necessary conditions for an optimal scalar quantizer designed for a noisy

channel. The method they used was similar to that of Lloyd [35] and Max [36] for the

noiseless channel. In combined source-channel coding schemes, the source coder is

optimized with respect to both the source and channel characteristics. There are two

major approaches within the class of combined source-channel coding. In the first

approach, the source coder or quantizer assigns the indices to the source codewords or

code-vectors according to channel conditions. This approach is usually referred to as

“optimization of index assignment”. In the course of this strategy, the source coder

is first designed for a noiseless channel, then the indices are assigned to the source

samples in a way that minimizes the end-to-end distortion. The index assignment

approach is studied under an Euclidean-Hamming correspondence relation between
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code-vectors Euclidean distances and indices Hamming distances in [57]. A simulated

annealing algorithm is used in [15] to find the best index assignment via a probabilis-

tic index perturbation method. Another optimized index assignment algorithm has

been proposed [29] in which the Hadamard transform was used to find the best index

assignment.

The second approach to combined source channel coding is “channel optimized

quantization”. In COVQ, the vector quantizer is designed in correspondence with

the probabilistic specifications of both the source and the channel. Thus the index

crossover probabilities are used to design the vector quantizer. Channel optimized

quantization includes both scalar and vector quantization. The paper by Kurtenbach

and Witz [31] only considered scalar quantization, and the first work on vector quanti-

zation for noisy channels was [12]. The COVQ optimality conditions were formulated

in [30]. Farvardin and Vaishampayan studied quantization for noisy channels com-

prehensively in [17] for scalar quantization and in [16, 15] for vector quantization. In

[15], COVQ is designed based on the generalized Lloyd algorithm (GLA) initialized

by simulated annealing. Other important design algorithms include noisy channel

relaxation [19, 20], stochastic relaxation [58], COVQ design using fuzzy logic [26] and

deterministic annealing [37]. In [5], the GLA for designing vector quantizers over

noisy channels was used for trellis waveform coders and it was shown that the pro-

posed system outperformed the tandem system. In [43] similar design procedures are
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proposed for channel-matched tree-structured and multi-stage VQs. In [51], a soft

decoding COVQ was introduced and later was applied to channels with memory in

[50] and to image coding in [49]. Since the soft-decoding COVQ needs high com-

putational power, a soft-decision decoder COVQ was developed in [2] for Rayleigh

fading channels in order to reduce the complexity of the decoding scheme. This work

was later extended to Gaussian channels with inter-symbol interference in [41] and

orthogonal space-time block coded multiple-input multiple-output (MIMO) Rayleigh

fading channels in [7].

JSCC systems are generally reported to outperform tandem systems, especially

under bad channel conditions. The advantages of JSCC over TSCC were studied

quantitatively in [33] and in terms of the JSCC error exponent in [59]. In the former

paper, joint and tandem strategies are compared in terms of delay and complexity and

it is shown that above some complexity threshold and under some delay threshold,

JSCC is better. In [59], it was shown that under some conditions, the JSCC error

exponent can be twice as large as that of the TSCC.

1.2 Contributions

COVQ designs usually employ a discrete memoryless channel (DMC) corresponding

to a memoryless analog-valued channel used in conjunction with hard-decision de-

modulation. However, in these designs little attention has been paid to optimize the
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discrete channel by properly choosing the modulation constellation or exploiting the

non-uniformity of the source encoder indices arriving at the channel input. Some no-

table exceptions include [56] where non-iterative (one step) hard decision maximum

a posteriori (MAP) decoding is considered and [25] where joint optimization of the

codebooks and constellation is studied.

In this thesis, we examine how to improve the design of a COVQ scheme while

keeping the system complexity low. Such a scheme may be appealing for wireless

applications where resources such as processing power and storage capability are lim-

ited. First, we study COVQ for hard decision-demodulated channels, and we propose

an iterative algorithm to design the COVQ which uses the redundancy in the input

distribution jointly with MAP decoding to improve the performance of the system.

Since we restrict the system to employ hard-decision demodulation (e.g., due to com-

plexity constraints), we cannot exploit the channel’s soft (or soft-decision) information

in our design as was done in [2], [7], [41], [50] and [54]. Instead, we focus on itera-

tively optimizing the discrete channel (having identical input and output alphabets)

representing the concatenation of the modulator, channel and hard-decision demodu-

lator together with its correspondingly designed COVQ encoder/decoder pair. This is

achieved by using a symbol MAP hard-decision detector instead of the standard max-

imum likelihood (ML) detector, motivated by the fact that the COVQ encoder indices

arriving at the modulator are non-uniformly distributed (hence the MAP decoder will
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be optimal in terms of minimizing the discrete channel’s symbol error rate).

Numerical results indicate that the proposed algorithm achieves notable coding

gains over the conventional COVQ scheme designed for the discrete (ML hard-decision

demodulated) channel. This performance gain does come however with an increase in

computational complexity at the decoder as MAP decoding is more complex than ML

decoding. The algorithm is examined for the additive white Gaussian noise (AWGN)

channel, and is then extended to the Rayleigh fading channel. The proposed algorithm

is referred to as iterative MAP decoded COVQ (IMD COVQ). The contributions of

this part of the thesis (which were presented in part in [13]) are as follows.

• Showing (numerically) that IMD COVQ has a considerable gain over conven-

tional COVQ for hard-decision demodulated AWGN channels for both memo-

ryless and Markov sources.

• Demonstrating (numerically) that IMD COVQ has notable gain over conven-

tional COVQ for hard-decision demodulated Rayleigh fading channels. For

fading channels, the IMD scheme provides even more gain than for AWGN

channels. It can even match or outperform the SDD COVQ especially for the

Markov sources, especially in higher quantization dimensions.

• Computing the empirical DMC transition matrix based on the derived MAP

metric for the AWGN and Rayleigh fading channels.
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• Deriving the encoding complexity and storage requirements of the IMD COVQ

and SDD COVQ.

• Showing that the encoding computational complexity of the proposed system

is lower than those of both classical COVQ and SDD COVQ. In terms of the

storage requirements of the system, it is shown that the IMD COVQ is almost

the same as conventional COVQ while outperforms the SDD COVQ remarkably.

Next, we investigate the performance of SDD COVQ and propose a method to improve

its performance. We use the notion of the JSCC error exponent and examine its role

in designing the SDD COVQ in an iterative fashion. We then consider other possible

methods that can be used to improve SDD COVQ and discuss our numerical results.

1.3 Thesis Overview

The rest of this thesis is organized as follows. In Chapter 2, we give a brief intro-

duction to source coding, vector quantization, communication channel models, and

COVQ. We begin with source coding and vector quantization. We next cover some

basic material about communication channels. Finally we introduce COVQ as a form

of JSCC.

In Chapter 3, we introduce the three-phase IMD algorithm for designing COVQs. We

study the MAP metric for AWGN and fading channels. An analysis of the encoding
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complexity and storage requirements of the system is also provided. We present the

numerical results for the new scheme for AWGN and Rayleigh fading channels. We

elaborate on the advantages and disadvantages of the proposed scheme and compare

it with the classical and SDD COVQs in terms of performance, encoding complexity

and storage requirements. This chapter is the main contribution of the thesis.

In Chapter 4, SDD COVQ is studied and an iterative design algorithm based on the

JSCC error exponent is proposed. The error exponent or reliability function for JSCC

systems with DMCs is derived and numerical results on the performance of the new

scheme and other SDD schemes for the MIMO Rayleigh fading channel is provided.

Finally, in Chapter 5, we give a conclusion and summarize our work. We also discuss

some possible future research directions that can be built upon the material presented

in this thesis.



Chapter 2

Preliminaries

Communication systems can vary drastically in terms of their features, their mode of

work and their physical specifications. However, as depicted in Fig. 2.1, all of them

have the same systemic configurations and elements. The basic part of every commu-

nication system is the information source. The source is then encoded and sent over

a channel with certain statistical characteristics. At the receiver side, the received

signal is estimated by a decoder and the sink of information uses the decoded infor-

mation. The encoding and decoding blocks usually are divided into two independent

parts: the source and the channel encoder/decoder. The source encoder and decoder

together form the source coding section of the system, while the channel encoder and

decoder pair form the channel coding section.

In joint source-channel coding (JSCC) systems, the source and channel encoders

12
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Source Coding Channel Coding

Source

User

Source
Encoder

Source
Decoder

Channel

Channel
Encoder

Channel
Decoder

Encoding Block

Decoding Block

Figure 2.1: Communication system model.

may be coordinated or combined into a single operation. The purpose of the source

encoder is to remove the statistically redundant information from the source while

the channel encoder adds controlled redundancy to the source coded data in order to

make the decoding process easier and more efficient.

2.1 Source Coding and Vector Quantization

The information source can be modeled by a random process which is an infinite

sequence of random variables. Depending on the probabilistic nature of this process

the information content of the source may be different. The goal of source coding
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is to remove the redundancy in the source so that the bit rate needed for it to be

transmitted or stored is reduced. Two main features of every source are its embedded

amount of information (entropy) and existence of correlation between its successive

outputs (memory). Accordingly, the redundancy in every source involves two kinds

of statistical redundancy: redundancy due to the source’s non-uniformity and re-

dundancy due to memory. The former is manifested through the notion of marginal

entropy and the latter by the concept of the source’s probabilistic dependence and is

manifested by the concept of entropy rate.

In general, source coding can be divided into two categories: lossless and lossy

source coding. In lossless source coding, the coded information represents the source

completely. This means that the source code can be decoded such that the original

data and the recovered data are identical. When dealing with continuous-amplitude

sources, however, lossless coding is not possible, and one has to use lossy source coding

techniques such as quantization.

2.1.1 Lossless Source Coding

If the source alphabet is finite, it can be represented without loss, using sequences

from a finite code alphabet. In lossless source coding, a discrete source is replaced

by a discrete source code containing as little redundancy as possible. In this regard,

the bit rate (or simply rate) of a source code is a fundamental figure of merit. The
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code rate is defined as the number of bits it assigns to each source sample on average.

Therefore, if the length of the codewords are different as in variable length lossless

source coding, the rate is defined as

r =
L̄

k
bits per symbol (bps), (2.1)

where L̄ is the average (expected) codeword length and k is the length of the source’s

block that is encoded.

However, if we want to losslessly represent a source with alphabet X , using a

fixed-length source binary-code, then the code rate is simply defined as

r =
L

k
, (2.2)

where L is the length of source codewords.

In such case, to encode k samples of the source (block length k), we need |X |k

codewords, implying

r =
L

k
≥ log2 |X |,

where |X | denotes the number of elements in X .

Thus, the naive fixed-length bit representation of a source X needs log2 |X | bps.

However, this is not the best coding scheme and the source may have some redundancy

that can be removed by using variable length codes. To formulate this redundancy,

the source entropy is defined as follows.
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Entropy: For a discrete random variable X (representing a discrete memory-

less or independent and identically distributed (i.i.d) source) with probability mass

function p(x), the entropy H(X) is defined by

H(X) = −
∑
x∈X

p(x) log2 p(x) = E [− log2 p(X)] , (2.3)

where E denotes statistical expectation.

The larger is the entropy of a source, the more information it contains, or, equiv-

alently, it is more unpredictable. It can be shown that the entropy represents the

number of bits required to represent samples of the source output with no redun-

dancy. The statistical redundancy due to the source non-uniformity is thus defined

as the difference between log2 |X | and H(X)

ρs = log2 |X | − H(X). (2.4)

For a discrete memoryless source (DMS) the entropies of all of the source samples

Xk, are the same and are equal to the entropy of the first (or any) output H(X1).

However, the entropy of single source samples is not the rate limit for lossless com-

pression for sources with memory. Such sources can be further compressed, exploiting

the memory of source outcomes. For a source {Xn}∞n=1 with memory, the “entropy

rate” represents the average amount of information the entire source contains and is

defined as

H(X ) = lim
n→∞

1

n
H(Xn

1 ), (2.5)
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where Xn
1 denotes (X1, X2, · · · , Xn).

It can be shown that the entropy rate of a DMS is equal to the entropy of any

one of its outputs. In fact, for a DMS

1

n
H(Xn

1 ) = H(X1) = H(X), (2.6)

while for a stationary source with memory (e.g., a stationary Markov source), it can

be shown that

H(X ) ≤ 1

n
H(Xn

1 ) ≤ H(X).

Therefore, due to its memory, a Markov source contains less information than a

DMS with identical marginal distribution. In general, the memory-based redundancy

of a stationary source {Xn}∞n=1 is defined as

ρm = H(X) − H(X ), (2.7)

where H(X) is the marginal entropy of any output of the source.

The overall redundancy is therefore the sum of both ρs and ρm

ρt = ρs + ρm = log2 |X | − H(X ). (2.8)

Shannon showed for the first time [48] that it is possible to construct source codes

that remove the redundancy of a source entirely, while keeping the code lossless,

given that the rate of the code is greater than the entropy (or entropy rate in case of
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sources with memory). Specifically, he proved this fact in the course of his source cod-

ing theorems for different sources (memoryless or with memory) and coding schemes

(fixed-length or variable length). Roughly speaking, the source coding theorems im-

ply that the minimum possible rate for the codes to be lossless are the entropy for

memoryless sources and the entropy rate for sources with memory. Hence the entropy

(or entropy rate) is a fundamental parameter related to every discrete source.

2.1.2 Lossy Source Coding: Vector Quantization

In many cases, there is no possibility to reconstruct the source with zero distortion.

If, for example, a continuous-valued source is to be sent over a digital channel, it is

inevitable to lose some information. In such cases, source coding is referred to as

lossy source coding.

The most important case of analog-to-digital conversion is quantization. A quan-

tizer receives an analog input (e.g., temperature) and assigns the closest value in its

output set (e.g., the closest digital temperature value in a digital thermometer) to

the analog information.

A scalar quantizer (SQ) is specified by its encoding (E ) and decoding (D) map-

pings. The encoding function maps the real line to a set of indices I = {0, 1, · · · , N −

1} and the decoding function maps every index to a point on the real line, which is
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usually called an output level. In summary

E : R → I = {0, 1, · · · , N − 1}, D : I → C = {c0 , c1 , · · · , cN−1}.

The scalar quantizer is the composition of encoding and decoding functions:

Q = D ◦ E : R → C

and the rate of the quantizer is

r = log2 N bps. (2.9)

Therefore, the source output X ∈ R is replaced by Q(X) = X̂ ∈ C in a quanti-

zation source coding system. The encoder E induces a partition P = {Si}N−1
i=0 of R

and assigns indices to X based on the region in which X is located.

An important example of scalar quantizers is the uniform quantizer. The uniform

quantizer divides the domain of the input signal into equal-sized cells and the output

levels are the centers of the cells. Uniform quantizers have very low complexity which

makes them applicable in many situations other than data compression, including

companding and soft-decision demodulation.

To have a measure of the performance of the quantization system, we need to define

a quantitative parameter measuring how accurately X̂ estimates X. First we define

a “distance” between x and x̂ as outcomes of the random variables X and X̂. The

distortion is the probabilistic average of the distance between two random variables.
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The measure of distance between x and x̂ is denoted by d(x, x̂) and can have different

forms such as absolute error (|x − x̂|) and squared error (|x − x̂|2). Because of its

simplicity and wide use, in this thesis we use the squared error distortion measure

d(x, x̂) = |x − x̂|2. (2.10)

Based on the above the distortion of the scalar quantizer is defined as

D = E

[
d(X, X̂)

]
= E

[
|X − X̂|2

]
. (2.11)

Vector quantization (VQ) is a generalization of scalar quantization to the coding

of a source output vector into an index from a finite set. Thus the vector X ∈ Rk is

quantized into a set of indices I = {0, 1, · · · , N − 1} and the recovered vector X̂ is

chosen from a set of code vectors C = {c0, c1, · · · , cN−1} ⊂ Rk.

The set C is called the codebook and has N elements, each a vector in Rk. The

vector quantizer is therefore defined as a function

Q : Rk → C,

which is itself a combination of an encoder (E ) and a decoder (D). The number of

bits per source symbol determines the rate of the VQ and is given by

r =
log2 N

k
bps. (2.12)

The notion of distortion in vector quantization is also the same as that in scalar

quantization

D = E

[
d
(
X, X̂

)]
= E

[
‖X− X̂‖2

]
, (2.13)



CHAPTER 2. PRELIMINARIES 21

where ‖ · ‖ denotes the standard Euclidean norm in Rk.

As in scalar quantization, the encoder function divides the input space Rk into N

encoding regions given by P = {S0,S1, · · · ,SN−1} which are multi-dimensional cells.

This provides extra degrees of freedom in choosing different shapes for the quantizer

cells; a feature that makes the VQs more demanding in terms of variety of the simple

cell shapes (like cubes, regular polyhedra, etc.), all of which are the counterparts of

the uniform SQ. The advantages of VQ over SQ [22, 39] are not limited to this case

but they also include factors such as the ability to exploit the dependence of vector

components and to make fractional bit rates per symbol possible. It is also shown that

when the quantization dimension goes to infinity, the ultimate limits of rate-distortion

theory can be achieved [22]. The rate-distortion theorem is the counterpart of the

lossless source coding theorems for lossy source coding. It formulates the relation

between the available source coding rate and the minimum achievable distortion. We

state the theorem since it is an important part of source coding theory. For this

purpose, we first define the concept of mutual information between two RVs.

Mutual Information: The mutual information between two random variables

X and its reproduction X̂, with common alphabet X is defined as

I(X; X̂) = H(X) − H(X|X̂)

= H(X̂) − H(X̂|X)

= −
∑
x∈X

p(x) log2

p(x, x̂)

p(x)p (x̂)
. (2.14)
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where p(·) is the probability distribution over a corresponding set. The definition can

be generalized to vector and continuous valued RVs.

The mutual information represents the amount of information that one random

variable gives about the other one. Now, we can state the rate-distortion theorem.

Theorem. [11] Rate-Distortion Theorem

For an i.i.d source X with distribution p(x) and bounded distortion measure d(x, x̂)

we have the following equality

r(D) = inf
p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂) (2.15)

where r(D) is called the rate-distortion function and represents the infimum of rates

for which there is a lossy source code (e.g., vector quantizer) with asymptotic distor-

tion less than or equal to D.

Therefore, according to the rate-distortion theorem, one should minimize I(X; X̂)

over all conditional distributions p(x̂|x) such that

∑
x

∑
x̂

d(x, x̂)p(x̂|x)p(x) ≤ D

in order to compute the rate-distortion function r(D).

2.1.3 Optimality Criteria for Vector Quantizers

An optimal VQ is one that, for a given number of output levels N , minimizes the

distortion between the source vector X and the reproduction vector X̂. As a result,
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the goal of the VQ designer is to find the encoding and decoding pair (E , D) with

the least possible distortion, subject to a rate constraint.

From Equation (2.13), we can write the distortion of the VQ in a more detailed

form. Assuming the probability density function (pdf) p(x) for the source X ∈ Rk,

we have

DV Q =
1

k
E

[
‖X− X̂‖2

]

=
1

k

N−1∑
j=0

E
{
‖X− cj‖2|X ∈ Sj

}
P (X ∈ Sj)

=
1

k

N−1∑
j=0

∫
Sj

p(x)‖x− cj‖2dx. (2.16)

It is generally an unsolved problem to find the codebook C and encoder partition

P = {Si}N−1
i=0 that minimize DV Q. However, two important necessary conditions for

optimality are known [22]. The first condition is called the nearest neighbor condition

(NNC) which applies to the encoder E . The second necessary condition provides a

criterion for the decoder D and is called the centroid condition (CC).

Nearest Neighbor Condition [22]

Assume that we have a vector quantizer with codebook C = {c0, c1, · · · , cN−1}.

For the source sample x ∈ Rk with reproduction x̂ ∈ C, we have

d(x, x̂) = ‖x− x̂‖2

≥ min
cj∈C

‖x− cj‖2.
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In such a case, if the VQ is optimal, the encoding regions P = {Si}N−1
i=0 are given

by

Si =
{
x ∈ Rk : ‖x− ci‖2 ≤ ‖x− cj‖2, ∀j �= i ∈ I

}
. (2.17)

Thus the encoding function for a specific codebook C should be

E (x) = arg min
i∈I

‖x− ci‖2. (2.18)

Centroid Condition [22]

The second necessary condition for the optimality of a VQ is called the centroid

condition. It assigns the optimal codebook to a given encoding partition P. In other

words, for given encoding regions {Si}N−1
i=0 , the VQ can only be optimal if the output

codevectors are the centroids of the encoding regions

ci = E{X|X ∈ Si} =

∫
x∈Si

xp(x)dx∫
x∈Si

p(x)dx
. (2.19)

Indeed it can be shown that the optimal decoding function for the known quan-

tization regions {Si}N−1
i=0 is given by

D(j) = cj = arg min
y∈Rk

E
{
‖X− y‖2|X ∈ Sj

}
, (2.20)

where cj is called the centroid of the quantization cell Sj . Equations (2.19) and (2.20)

can be verified by solving

∂DV Q

∂cj

= 0,
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for cj , where DV Q is given by Equation (2.16).

In practice, we deal with the training vector outputs of the sources instead of the

analytic probability density functions. Therefore in practical VQ design algorithms,

we compute sums instead of integrals and the cells are subsets of the training vectors.

In light of the works of Lloyd [35] and Max [36], a quantizer that satisfies both

NNC and CC conditions is called a Lloyd-Max quantizer. The necessary conditions

are also sometimes referred to as Lloyd-Max conditions. Both necessary conditions

can be applied to scalar quantizers as well as vector quantizers. Thus, NNC and CC

are sometimes called generalized Lloyd-Max (or simply generalized Lloyd) conditions

when referring to vector quantization.

2.1.4 Vector Quantization Design

On the basis of the necessary conditions of optimality, several design algorithms have

been proposed, all of which incorporate some kind of iterative process which uses the

NNC and CC alternatingly. The first paper to address the problem of finding the

partition set P∗ and codebook C∗ such that the distortion in (2.16) is minimized is the

one by Linde, Buzo and Gray [34]. Their algorithm is called the LBG algorithm (also

known as the generalized Lloyd algorithm (GLA)). According to the LBG algorithm,

given the initial codebook C, the partition set P = {Si}N−1
i=0 is calculated using (2.17)

and for the computed partition set P, the new codebook is calculated using (2.19).
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It can be shown [22], that in each iteration, the resulting distortion decreases or

stays the same. The process continues until the relative improvement of the distor-

tion is less than a certain threshold. This gives us a locally optimal solution to the

problem (theoretically this means that there may exist other codebooks that give

lower values of distortion [22, 34]). This method can be useful for both scalar and

vector quantization. An important aspect of the LBG-VQ algorithm is the choice

of the initial codebook. Several methods for choosing the first N code vectors have

been proposed in the literature. One option is, for example, to choose the first N

vectors of the training sequence. In this thesis and in our simulations, however, we

will always use the so called splitting method [22, 34] to set the initial codebook in the

design of the VQ. In the splitting algorithm, the first code vector is the centroid of

the training sequence. This point is then “split” into two points (by perturbing with

a vector of small Euclidean norm), for which a two-level LBG quantizer is designed.

The splitting process is applied then to the reconstruction vectors of the two-level VQ

creating four initial code vectors for a four-level VQ. This procedure continues until

we end up with N = 2n (n ∈ N) initial code vectors for the desired N -level VQ. The

LBG-VQ algorithm is therefore summarized as follows.
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LBG-VQ Design Algorithm [22, 34]

1. Let N = 2n be the number of reconstruction vectors, k the dimension of the

VQ, and M the number of training vectors {xm}M
m=1. Also choose a fixed ε > 0

as the target stopping threshold and δ as the perturbation constant for the

splitting algorithm. N� is the counter for the number of code vectors and j is

iteration counter.

2. Start: Let N� = 1 and

c∗
0 =

1

M

M∑
m=1

xm

as the only code vector for the one-level quantizer. The globally optimal one-

level codebook of a training sequence is the centroid of the entire sequence.

Calculate

D(1) = D∗ =
1

kM

M∑
m=1

‖xm − c∗
0‖

2

as the initial and optimal average distortion of the one-level quantizer. Thus the

first initial codebook found for the one-level quantizer (which ia also optimal)

is C(1)
1 = C1

∗ = {c∗
0}.

While N� < N , repeat steps 3, 4 and 5.

3. Splitting: To find the initial codebook of N�-level quantizer C(1)
N� from the
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optimal codebook of N�/2-level quantizer C∗
N�/2, set

c
(1)
i = c∗

i + δ,

c
(1)
i+N� = c∗

i − δ,

for i = 0, 1, · · · , N� − 1, where δ is a constant perturbation vector given by

δ = δ1,

where 1 is an all-one vector of dimension k (see [22] for data-dependent choices

of δ). Note that the superscripts indicate the iteration number, the ∗ superscript

denotes the optimal and eventual parameters of each iteration and the subscripts

for codebooks (if shown) indicate the number of output levels (N�).

Set N� = 2N�.

4. Iteration

(a) Set the initial distortion D(1) = D∗ and the iteration counter j = 1.

(b) Given jth codebook C(j) = {c(j)
0 , c

(j)
1 , · · · , c

(j)
N�−1}, assign each training vec-

tor xm to its corresponding encoding region to determine the jth partition

cell P(j) = {S(j)
i }

N�−1

i=0 according to the rule

E (j)(xm) = arg min
l ∈ IN�

‖xm − c
(j)
l ‖

2
, m = 1, 2, · · · , M,

where IN� = {0, 1, · · · , N� −1}. In other words, define the quantizer func-

tion Q as
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Q(j)(xm) = arg min
c ∈ C(j)

‖xm − c‖2, m = 1, 2, · · · , M.

(c) Compute the new codebook C(j+1)

c
(j+1)
i = E

{
X|X ∈ S(j)

i

}
=

∑
S(j)

i
xm∑

S(j)
i

1
, i = 0, 1, · · ·N� − 1.

(d) Set j = j + 1.

(e) Compute the updated distortion

D(j) =
1

kM

M∑
m=1

‖xm − Q(j)(xm)‖2
.

(f) If
(
D(j−1) − D(j)

)
/D(j−1) > ε, go to step (4b).

(g) Set the final codebook for this iteration as

c∗
i = c

(j)
i , i = 1, 2, · · · , N�

and set D∗ = D(j).

5. Go to step 3 and repeat the splitting and iteration procedures until N� ≥ N .

For design purposes, the values of stopping threshold and perturbation constant

has been set to ε = δ = 0.001 as in [2] and [41].
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2.2 Channel Models

2.2.1 Discrete Memoryless Channel (DMC)

A discrete channel is a communication channel defined by finite input alphabet X ,

finite output alphabet Y and a set of transition probabilities

PY |X(y|x) � Pr{Y = y|X = x}, ∀ x ∈ X , ∀ y ∈ Y , (2.21)

which determines the probability of receiving y at the output of the channel given x

is transmitted.

The transition probabilities are sometimes written in a |X |× |Y| matrix form and

the resulting matrix is called the transition matrix.

More generally, if a sequence of input symbols X = {Xn
1 } is sent in n successive

time indices over the channel and a sequence Y = {Y n
1 } is received at the output,

the channel is described by n-dimensional distributions

PY|X(y|x) � Pr{Y = y|X = x}, ∀ x ∈ X n, ∀ y ∈ Yn. (2.22)

A discrete memoryless channel (DMC) is a discrete channel for which the output

of the channel at each time index depends only on the input of the channel at the

same time index. Therefore, its n-dimensional distribution can be written as the

product of the transition probabilities at different time instants:

PY|X(y|x) =
n∏

j=1

PY |X(yj |xj), (2.23)
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where xj and yj are the outcomes of random variables Xj and Yj.

DMCs are useful and simple models for real-world channels and are widely used

in the literature. One important, yet simple example of the DMC is the binary

symmetric channel (BSC). The BSC (Fig. 2.2) is a DMC with X = Y = {0, 1} and

PY |X(0|1) = PY |X(1|0) = ε.

0 0

1 1

X Y

1 − ε

1 − ε

ε

ε

Figure 2.2: The binary symmetric channel with crossover probability ε.

The most significant parameter related to every channel is its associated channel

capacity. The capacity of a DMC is defined as

C = max
p(x)

I(X; Y ), (2.24)

where the maximum is taken over all channel input distributions p(·).

Shannon has shown [48, 11] that the capacity is the maximum of all data rates r

that can be reliably sent over the channel. Indeed, reliable transmission of information
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at a fixed data rate r is possible if and only if r < C.

2.2.2 Additive White Gaussian Noise (AWGN) Channel

The AWGN channel (or simply Gaussian channel) is a continuous-alphabet discrete-

time channel with input Xi ∈ X = R and output Yi ∈ Y = R at time i, where

X ,Y denote the input and output alphabets respectively. As depicted in Fig. 2.3, the

output Yi, at any time instant, is the sum of the input Xi and a real random variable

νi known as the channel noise. The noise νi is drawn i.i.d (white) from a Gaussian

distribution with zero mean and power E[νi
2] = N0. Thus

Yi = Xi + νi, νi ∼ N (0, N0). (2.25)

Xi Yi

νi

Figure 2.3: The AWGN channel model.

The noise νi is assumed to be independent of Xi. The AWGN channel is one

of the most important communication channel models. It models many real-world

communication channels, such as satellite and wireless telephone channels with an

acceptable accuracy.
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2.2.3 Rayleigh Fading Channel

The Rayleigh fading channel is depicted in Fig. 2.4. It is also a continuous-alphabet

and discrete-time channel with input Xi ∈ X = R and output Yi ∈ Y = R. The

difference between the Rayleigh fading channel and the AWGN channel is that the

input Xi is now multiplied by a so-called fading coefficient hi which attenuates it

before the Gaussian noise νi is added. The relation between the input and the output

of the Rayleigh fading channel is given by

Yi = hiXi + νi, νi ∼ N (0, N0), (2.26)

where the fading coefficient hi is an i.i.d Rayleigh RV with pdf

pH(h) =

⎧⎪⎪⎨
⎪⎪⎩

h
σ2 e

−h2

2σ2 , for h ≥ 0,

0, otherwise,

(2.27)

where E
[
hi

2
]

= 2σ2 and its mean is given by

E[hi] = σ

√
π

2
. (2.28)

Xi
Yi

νihi

Figure 2.4: The Rayleigh fading channel model.
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Throughout this thesis, the second moment E
[
hi

2
]

is usually assumed to be 1.

Note that this assumption can be made without any loss of generality.

2.3 Channel Optimized Vector Quantization

So far all source coding methods described in the previous sections disregarded the

channel. In pure source coding systems, the output of the encoder E is directly fed to

the input of the decoder D . Vector quantization, the most important source coding

scheme we reviewed, for instance, does not assume any statistical index perturbation

between the encoder and decoder. However, noise makes an inevitable and notable

effect in real-world communication systems.

Improving the VQ under the conditions of probabilistic index perturbation be-

tween the input and output of the channel is the subject of joint source-channel

coding. The resulting VQ is called a channel optimized vector quantizer (COVQ).

Thus the basic idea of the COVQ is to design a VQ by incorporating the channel

conditions into the design algorithm, trading off the quantization and channel noise

in order to minimize the end-to-end distortion. One proven advantage of the COVQ is

that there is no need to add error-protection intended redundancy to the system and

its performance is acceptable even without that sort of extra redundancy. However,

there are some proposed schemes that use mixed strategies (e.g., see [23]). Necessary

conditions for COVQ optimality were first derived by Kumazawa et al. [30]. Farvardin
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and Vaishampayan studied the complexity and performance of COVQ in [16]. They

considered COVQ problems with the so-called degenerate partition in which (unlike

VQ), it is possible to have encoding regions of zero probability (Pi = 0) referred to as

empty cells. They showed that the number of non-empty quantization cells, i.e., cells

with at least one training vector, determines the complexity of the system. They also

showed the interesting fact that for more noisy channels, there are more empty cells

resulting in non-uniform index distribution at the channel input. In this thesis we

use this feature to improve the performance of COVQ systems.

2.3.1 COVQ System Model and Design Algorithm

Fig. 2.5 depicts the COVQ system. It can be seen that the difference between the

COVQ and the VQ systems is the existence of the DMC with the transition distribu-

tion PY |X . The goal of the system is to transmit the random vector X ∈ Rk over the

DMC and form an estimate X̂ of X such that the distortion E‖X− X̂‖2
is minimized.

The COVQ encodes X at a rate of r = log2 N
k

bps. Therefore, the COVQ encoder is

a mapping

E : Rk → I � {0, 1, · · · , N − 1},

and E (X) = I is sent over the DMC. The encoding is done using the decision regions

P = {Si}N−1
i=0 (N = 2kr) via the encoding rule:

X ∈ Si ⇔ I = E (X) = i.



CHAPTER 2. PRELIMINARIES 36

The a priori probability of the indices to be chosen are denoted by Pi, where

Pi = Pr [X ∈ Si].

E (.)

D(.)

X ∈ Rk

X̂ ∈ Rk

(PY |X(J |I))

I ∈ I = {0, 1, · · · , N − 1}

J ∈ J = {0, 1, · · · , N − 1}

X ∈ SI

X̂ = cJ

DMC

Figure 2.5: General block diagram of a COVQ system.

The input alphabet of the DMC is I = {0, 1, · · · , N − 1}. Each input index is

transmitted over the channel and is received through a transition matrix PY |X . The

output alphabet set is J = {0, 1, · · · , N − 1}. Depending on the decoding scheme,

J can be the same as I or different. If the system uses hard-decision demodulation

J = I. There are some cases, however, where the input and output sets are different.

In soft-decision demodulation (SDD) COVQ systems the resolution of the decoder

mapping is higher than the encoder’s because of the intention of the system to use

the soft information in the received signals. This results in a larger number of DMC

outputs than inputs.

The decoder D assigns to the received index J , a code vector cj from a codebook
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C = {c0, c1, · · · , cN−1}. As in the case of VQs, we are looking for the optimal P and

C to minimize the distortion. The end-to-end distortion of the COVQ per sample can

be written as

DCOV Q =
1

k

∑
i

∫
Si

p(x)
∑

j

PY |X(j|i)d(x, cj)dx

=
1

k

∑
i

∫
Si

p(x)
∑

j

PY |X(j|i)‖x− cj‖2dx (2.29)

=
1

k

∑
i

∑
j

PY |X(j|i)
∫
Si

p(x)‖x− cj‖2dx, (2.30)

where p(x) is the k-dimensional density of the source and PY |X(j|i) is the probability

of receiving j when i is sent.

For a given source, channel, quantization dimension k, and fixed rate r, we wish

to find the optimal functions E ∗ and D∗, or equivalently the optimal partition P∗

and codebook C∗. Comparing (2.29) with the distortion formula of the VQ in (2.16),

one realizes that the problem of minimizing the COVQ distortion is the same as that

of the VQ with a modified distortion measure. The global solution to this problem is

also unknown as for the VQ problem. However, there are generalized versions of the

NNC and CC conditions for the COVQ which make us able to find locally optimal

solutions in the course of an iterative procedure, starting from a suitably chosen initial

codebook.

Generalized NNC [16]

Let the codebook C be fixed. We want to determine the optimal encoding regions
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so as to minimize the distortion. Let X̂ be the reproduction and x ∈ Si. Then we

have

E

[
d(x, X̂)

]
=

N−1∑
j=0

PY |X(j|i)‖x− cj‖2

≥ min
i

N−1∑
j=0

PY |X(j|i)‖x− cj‖2.

Thus, based on the above, it can be shown [30] that for a given codebook C, the

optimal partition set is given by

S∗
i =

{
x :
∑

j

PY |X (j|i) ‖x− cj‖2 ≤
∑

j

PY |X

(
j |̂i
)
‖x− cj‖2, ∀̂i ∈ I

}
(2.31)

for every i ∈ I = {0, 1, · · · , N − 1}. Therefore, the encoding function E can be

written as

E (x) = arg min
i∈I

N−1∑
j=0

PY |X(j|i)‖x− cj‖2. (2.32)

Note that the partition is degenerate [22], meaning that it is possible for the

regions to be empty. Equivalently, there may exist an index i for which

∀x, ∃̂i :
∑

j

PY |X (j|i) ‖x− cj‖2 ≥
∑

j

PY |X

(
j |̂i
)
‖x− cj‖2,

implying that S∗
i = ∅. In that case the index i is not transmitted by the encoder.

Generalized CC [16]

In a similar way, the generalized CC condition gives the code vectors for the given

partition set P = {S0,S1, · · · ,SN−1} by

c∗
j =

∑
iPY |X(j|i)

∫
Si
xp(x) dx∑

iPY |X(j|i)
∫
Si

p(x) dx
, j = 0, 1, · · · , N − 1. (2.33)
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Like in VQs, as equation (2.20) suggests, the values of the decoding function D as

the optimal codevectors {cj}N−1
j=0 given by (2.33) are also referred to as the centroids

since

D(j) = c∗
j = arg min

y∈Rk

E
{
‖X− y‖2| J = j

}
, (2.34)

for j = 0, 1, · · · , N−1, where J is the random output index of the channel. Equations

(2.33) and (2.34) can be proven by solving

∂DCOV Q

∂cj
= 0,

for cj , where DCOV Q is given by (2.29).

In practice, instead of the analytic probability density function p(x), only samples

from the source are available and we use the training sequences replacing the integrals

with summations and the density function with empirical weights. Thus, for the

training vectors {x1, x2, · · · , xM}, Equations (2.29) and (2.33) are modified as

DCOV Q =
1

kM

M∑
i=1

N−1∑
j=0

PY |X(j|E (xi))d(xi, cj)

=
1

kM

M∑
i=1

N−1∑
j=0

PY |X(j|E (xi))‖xi − cj‖2 (2.35)

and

c∗
j =

∑N−1
i=0 PY |X(j|i)

∑
Si
x∑N−1

i=0 PY |X(j|i) |Si|
, (2.36)

where |Si| denotes the number of training vectors in the quantization cell Si.
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The COVQ design procedure is an extension of the LBG algorithm for VQ design,

based on the generalized CC and NNC. The algorithm starts with an initial codebook

C(0) and finds the best partition set P(1) for that codebook, using (2.31). Given

the newly calculated partition set P(1), the algorithm uses (2.36) to find the best

codebook C(1) which reduces the distortion. The algorithm continues with similar

steps and the distortion reduces in each cycle. The algorithm stops when the relative

change in distortion becomes less than a given threshold ε > 0. The essential part

of the algorithm, similar to VQ design, is the way it chooses the initial codebook.

The splitting algorithm alone is not enough for the selection of a good COVQ initial

codebook. We explain the method we use in this thesis in the following subsection.

2.3.2 Initial Codebook Selection

Intuitively compared with VQ, the new source of distortion in COVQ is the channel

noise. Thus one can conjecture that the overall distortion of the COVQ is the sum

of the quantization and channel distortions. Indeed it can be shown [15] that if the

codevectors {ci}N−1
i=0 are the centroids of the quantization cells {Si}N−1

i=0 (as in the

noiseless case given by Equation (2.19)), specifically if the quantizer is a Lloyd-Max

quantizer, the distortion DCOV Q can be written as the summation of two terms. The

first term represents the error introduced by the vector quantization for the ideal

DMC (with the transition matrix IN) and the second term is due to the noise of the
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channel. Thus, if the quantizer is a Lloyd-Max quantizer, we can write the overall

distortion DCOV Q as

DCOV Q = DV Q + DC , (2.37)

where DV Q is the quantization distortion given by

DV Q =
1

k

N−1∑
i=0

∫
Si

p(x)‖x− ci‖2dx (2.38)

and DC is the channel introduced distortion and can be described as

DC =
1

k

N−1∑
i=0

N−1∑
j=0

PY |X(j|i)Pi d(ci, cj)

=
1

k

N−1∑
i=0

N−1∑
j=0

PY |X(j|i)Pi ‖ci − cj‖2. (2.39)

The above property is the result of the squared-error distortion measure and gives

us a good insight to select the initial codebook. According to (2.37), in order to

minimize the distortion of the quantizer (DV Q), we should first design a Lloyd-Max

VQ using the LBG algorithm to minimize the first term. The VQ is designed using

the splitting algorithm as the initial codebook selection. The second term can also

be minimized over the order of the set {0, 1, · · · , N − 1}. In fact as Equation (2.39)

suggests, DC is a function of the assignment of the indices to the code vectors and

quantization regions. If, for example, one changes the order of the codevectors C =

{c0, c1, · · · , cN−1} without changing the codevectors themselves and renames the new

set as C′ = {c′
0, c

′
1, · · · , c′

N−1}, the corresponding channel distortions will be different.
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Therefore, we define the index assignment function

b : I → I

and minimize DC over b(·). The resulting codebook is the initial codebook which is

then used by the COVQ design algorithm.

To find the best index assignment function b we use a method called simulated

annealing (SA) [16]. This method is a stochastic relaxation algorithm and has been

applied to many different problems. The SA algorithm tries to find the optimal state

of the system in terms of an objective function (energy) by changing temperature.

An initial state is first defined and the next state is generated in a probabilistic way

according to the temperature. The SA algorithm converges to the global minimum

of the system in probability. In the context of our index assignment problem, every

index assignment (b(c0), b(c1), · · · , b(cN−1)) is a state of the system and the resulting

distortion DC is the energy or objective function of the hypothetical system. We also

use a so-called cooling schedule given by

Tk = αTk−1, 0 ≤ α ≤ 1. (2.40)

Based on the above assumptions, the SA algorithm steps can be summarized as

follows:

1. Randomly choose an initial state b and raise the temperature to an initial high

amount T0.
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T0 10.0

Tf 0.00025

α 0.97

Ncut 200

Table 2.1: Simulated annealing parameters.

2. Choose the next state b′ randomly and calculate the change in energy ΔDC =

DC(b′) − DC(b). If ΔDC ≤ 0, replace b with b′ and go to step 3. Otherwise,

replace b with b′ with probability e−ΔDC/T and go to step (3).

3. If there is no energy drop after a specific number of perturbations Ncut, go to

step (4). Otherwise go to step (2).

4. Decrease the temperature according to Equation (2.40). If the temperature is

less than a prescribed freezing temperature Tf or the systems appears to be

stable (not much energy change) stop with b as the final state. Otherwise go to

step (2).

The SA algorithm parameters we have used in this thesis are the same as those used

in [14, 16] and are listed in Table 2.1.



Chapter 3

Iterative MAP Decoded COVQ

In this chapter, the iterative MAP decoded algorithm to design COVQ for hard-

decision demodulated AWGN and Rayleigh fading channels is proposed in detail.

Soft-decision demodulation (SDD) COVQ is introduced and the advantages of the

IMD algorithm over conventional COVQ discussed in Section 2.3 and SDD COVQ are

presented. It is also shown that the IMD COVQ outperforms conventional COVQ and

SDD COVQ in terms of encoding complexity and storage requirements. An empirical

convergence analysis for the proposed algorithm is provided at the end.

3.1 IMD COVQ System

The general block diagram of the IMD COVQ system is depicted in Fig. 3.1. The

channel can be either AWGN or Rayleigh fading. As in the case of conventional

44
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COVQ, the purpose of the system is to transmit the random vector Xn ∈ Rk of

dimension k over the noisy channel and reproduce it by X̂n at the receiver with

the aim of minimizing the overall expected mean square error distortion. Here, n

represents the time index of the vector which consists of k single source outputs so

that Xn ∈ Rk. The source {Xn} is assumed to be a stationary ergodic process, with

zero mean and unit variance. The COVQ encoder encodes {Xn} at a rate of r bits

per sample (bps). Therefore, the COVQ encoder is a mapping

E : Rk → In � {0, 1, · · · , Ne − 1} = {0, 1}kr

where {0, 1}kr represents the binary representation of the indices. Thus, the binary

representation of E (Xn) = In is modulated and sent over the channel in kr consecutive

channel uses.

In this thesis, we use binary phase-shift keying (BPSK) modulation, although

other memoryless modulation techniques can also be considered. The encoding is

done using the decision regions {Si}Ne−1
i=0 (Ne = 2kr). The input index probability

distribution, as in conventional COVQ, is denoted by Pi for i = 0, 1, · · · , Ne − 1.

BPSK modulated bits with unit energy are denoted by W 1
n , W 2

n , · · · , W kr
n and form

the vector Wn ∈ {−1, +1}kr. Each symbol is transmitted over the physical channel,

assuming that the channel is memoryless, i.e., the potentially corrupted received

symbol is only a function of transmitted symbol at the same time unit. As a result,

the received vector Rn consists of kr consecutive received values: R1
n, R2

n, · · · , Rkr
n
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Detector 
(MAP decoder)

       BPSK 

 Modulator

User

Discrete−time

Source

Decoder Set

COVQ Encoder

COVQ Decoder

Equivalent Discrete Memoryless Channel (DMC)

Channel

Xn ∈ Rk In ∈ {0, 1}kr
Wn ∈ {−1, +1}kr

Rn ∈ RkrX̂n ∈ Rk

E(.)

D2(.) D1(.)Jn ∈ {0, 1}kr

Figure 3.1: Block diagram of the iterative MAP decoded COVQ system.

that can each be written as

Rt
n = W t

n + νt, t = 1, 2, · · · , kr, (3.1)

for the AWGN channel and

Rt
n = htW

t
n + νt, t = 1, 2, · · · , kr, (3.2)

for the Rayleigh fading channel, where {νt} is the sequence of independent and iden-

tically distributed (i.i.d) Gaussian random variables: νt ∼ N (0, N0

2
), and {ht} is the

i.i.d amplitude fading process with the probability density function (pdf)

pH(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2h e−h2
, if h ≥ 0,

0, otherwise.

(3.3)
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Note that E [h2
t ] = 1, with σ2 = 1

2
compared with the standard form of Equation

(2.27). We also assume that ht, νt and W t
n are independent of each other for all t and

the fading amplitude values ht are perfectly known at the receiver (perfect channel

side information (CSI) at the decoder side). The knowledge of CSI is necessary

for symbol MAP decoding which is used in our system. In ML decoding used in

conventional COVQ, however, it is an advantage of BPSK (and more generally all

the PSK systems) that the decoder does not have to know the channel coefficient ht

as opposed to other constellations, where it is usually assumed that the CSI is known

perfectly at the receiver.

The concatenation of the modulator, the actual channel and the detector form a

DMC. We refer to this discrete channel as the “equivalent DMC”. The transition

probabilities of the equivalent DMC can be determined in terms of the actual channel

parameters. In particular, in ML-decoded channels, they are the symbol Pairwise

Error Probabilities (PEP).

The input alphabet of the DMC is In = {0, 1, · · · , Ne − 1}. Each input index

is transmitted over the equivalent DMC and is received through a transition matrix

PY |X . The output alphabet is Jn = {0, 1, · · · , Nd − 1}. Depending on the decoding

scheme, Jn can be the same as In or different. Since our system uses hard-decision

demodulation Jn = In and Nd = Ne. In soft-decision demodulation (SDD) schemes,

however, the index resolution of the receiver side is larger than the transmitter side
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(Nd > Ne). Hard-decision decoding has less decoding complexity than systems em-

ploying soft decoding or soft-decision demodulation (e.g., [2], [7], [41], [50], and [54]).

The decoder is the combination of two functions D1 and D2. Thus the decoder

can be written as D = D2 ◦ D1, where:

D1 : Rkr → Jn = In = {0, 1, · · · , Ne − 1},

D2 : Jn → Rk

and ◦ denotes function composition.

3.2 Three Phase IMD Algorithm

The main contribution of this thesis is an algorithm, referred to as the IMD algoritm,

that jointly optimizes D1 and the pair {D2, E }. The IMD algorithm is motivated by

the non-uniform input distribution that the COVQ design procedure creates. In case

the channel is very noisy, we have even many empty encoding cells, meaning that no

training vector has been assigned to them. This inspires us to use MAP decoding to

improve the performance of the system. The IMD algorithm consists of three phases.

The first phase is the ordinary COVQ design algorithm introduced in Section

2.3. Hence, the COVQ encoder and decoder are designed for the initial DMC. The

COVQ encoder E : Rk → In is characterized in terms of a partition [16] P =

{Si ⊂ Rk : i ∈ In}. The initial DMC, formed by the BPSK modulator, channel and
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bit-wise ML-decoder, takes the input index In and produces the output Jn. The

decoder mapping D2 : Jn → Rk is represented by the codebook C = {cj ∈ Rk : j ∈

Jn}. In practice, only samples from the source are available and we use the training

data. Therefore, in the first phase, the COVQ encoder and decoder are iteratively

optimized based on the Lloyd-Max necessary conditions of (2.31) and (2.36), ending

up with a locally optimal solution.

Thus, in the first phase D1 is fixed and E and D2 are alternatingly optimized in

an iterative fashion. From (2.35), for the above system, the average distortion per

sample is given by [16]

Dn =
1

k

∑
i

∫
Si

p(x)
∑

j

PJn|In(j|i)‖x− cj‖2dx (3.4)

where p(x) is the k-dimensional source density.

Note that in the first step of the iteration, we assume a uniform input index

distribution which results in ML decoding for the first part of the decoder D1. In

this case the DMC is a binary symmetric channel (BSC) used kr times independently

and the symbol transition probabilities are kr long products of the bit transition

probabilities.

Once Phase 1 is complete, the bit-wise ML decoder is replaced by the symbol-wise

MAP decoder. The encoder index distribution Pi for i = 0, 1, · · · , Ne − 1 is then fed

to the MAP decoder to start the second phase of the algorithm. Thus we use the

computed input distribution to replace the ML detector by a symbol based MAP
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decoder and redesign the COVQ.

3.2.1 MAP decoding

For the second phase of the algorithm, given D2 and E from the first phase, we find

D1 such that the MAP metric is maximized. This replaces the channel transition dis-

tribution matrix with a new transition matrix. For the updated channel distribution,

we redesign the COVQ as the main step of the second phase of the algorithm.

In order to compute the new channel transition distribution, we need to compute

the MAP metric of the channel for the COVQ designed in the previous step. Note

that only the input distribution is required from the previously designed COVQ for

the new transition matrix computation process. The MAP metric calculations for

AWGN and Rayleigh fading channels are discussed in the following two subsections.

MAP metric for AWGN channel

According to (3.1) for the AWGN channel, given the received vector Rn, the first

decoder D1 chooses the decoded index Jn (from the set of Jn) which maximizes the

the MAP metric through the following equations

Jn = arg max
In

P (In|Rn) = arg max
In

P (Rn|In)Pin

= arg max
In

P (ν = Rn −Wn(In) |In)Pin

= arg max
In

kr∏
t=1

[
1√
πN0

exp

{
− (Rt

n − W t
n)

2

N0

}]
× Pin
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= arg max
In

{
exp

[
− 1

N0
‖Rn −Wn‖2

]
× Pin

}

= arg min
In

[
1

N0
‖Rn −Wn‖2 − ln Pin

]
, (3.5)

where Wn(In) is the BPSK signal corresponding to In, Pin is the empirical weight of

the index In obtained in the first phase and ν is the kr dimensional vector of Gaussian

noise elements (ν1, ν2, · · · , νkr).

Based on the above MAP metric, given the index In is transmitted the probability

of receiving index Jn, PY |X(Jn|In), is

PY |X(Jn|In) = Pr

{[
1

N0
‖Wn(In) + ν −Wn(Jn)‖2 − ln Pjn

]

≤
[

1

N0
‖Wn(In) + ν −Wn(J ′

n)‖2 − ln Pj′n

]
, ∀J ′

n �= Jn

}
. (3.6)

In practice, for simulation purposes, we produce a large number of training noise

vectors and compute the ratio of the number of noise vectors satisfying the event

described in Equation (3.6) to the overall number of noise vectors, to calculate

PY |X(Jn|In).

MAP metric for Rayleigh fading channel

The decoded index Jn based on the MAP metric for the Rayleigh fading channel,

according to (3.2) can be written as

Jn = arg max
In

P (In|Rn,h) = arg max
In

P (Rn|In,h)Pin

= arg max
In

P ({ν = Rn − h �Wn(In)} | In,h) Pin
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= arg max
In

kr∏
t=1

[
1√
πN0

exp

{
− (Rt

n − htW
t
n)

2

N0

}]
× Pin

= arg max
In

{
exp

[
− 1

N0

‖Rn − h�Wn‖2

]
× Pin

}

= arg min
In

[
1

N0
‖Rn − h�Wn‖2 − ln Pin

]
, (3.7)

where h denotes the fading coefficient vector (h1, h2, · · · , hkr) and � represents element-

wise vector multiplication.

Based on the above MAP metric, given the index In is transmitted the probability

of receiving index Jn, PY |X(Jn|In) is given by

PY |X(Jn|In) = Pr

{[
1

N0
‖h�Wn(In) + ν − h�Wn(Jn)‖2 − ln Pjn

]

≤
[

1

N0
‖h�Wn(In) + ν − h �Wn(J ′

n)‖2 − ln Pj′n

]
, ∀J ′

n �= Jn

}
. (3.8)

As it can be seen, the transition matrix PY |X is a function of h and has a time-

variant nature. Thus, for the design purposes, we compute the average of the channel

distributions over several training sequences of fading vectors (i.e., Eh(PY |X)).

Note that the instantaneous optimal system (the hypothetical system with optimal

h-dependent time-varying encoding and decoding mappings which is practically hard

to realize) is a function of the transition matrix PY |X(h) at that block. Hence it

involves a time-variant codebook C(h) according to Equation (2.33). In our system

design, by averaging over h, we will find the codebook C which is independent of

h. However, observe that after the design process is completed, in the real system,

PY |X is a function of h resulting in the dependence of the reconstruction vector X̂n
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and end-to-end distortion Dn on h. Indeed, although the codebook C is fixed, the

codevector selection in C depends on h. It can be shown (see Appendix A), that the

expected value of the instantaneous distortion equals the distortion computed with

respect to the expected value of PY |X . Indeed

Eh

[
Dn(PY |X(h))

]
= Dn(Eh

[
PY |X(h)

]
). (3.9)

This ensures us that the numerical results achieved for distortion based on the

fixed average transition matrix are average values of the instantaneous distortion Dn

of the system over fading vectors h.

After updating the detector, which results in a new DMC, and finding an updated

codebook according to (2.19) (based on the new DMC probability distribution), we

design the new COVQ (the pair {D2, E }), using the updated codebook found by

(2.19) as the initial codebook. The above process constitutes the second phase of the

algorithm. We calculate the distortion Dn at the end of the second phase. In the

third phase, we repeat Phase 2 and stop when the distortion Dn is minimized.

The three-phase COVQ algorithm can be summarized as follows:

1. Design a (conventional) COVQ encoder/decoder pair for the DMC under ML

(hard-decision) decoding.

2. Compute the source encoder index distribution, use MAP (hard-decision) de-

coding, update the DMC’s transition distribution and redesign the COVQ en-

coder/decoder pair for the updated channel. This begins with first updating
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the codebook (using the last encoding partition) and then the encoding regions.

3. Repeat Phase 2 until the distortion is minimized (by monitoring the system’s

distortion and stopping the iterative process when the distortion is increased).

3.3 Soft-Decision Demodulation COVQ

Soft-decision demodulation (SDD) COVQs are a class of COVQ systems designed for

DMCs containing real world channels (e.g., AWGN and Rayleigh fading), in which

the received vector Rn is quantized via a scalar quantizer with resolution 2q before

being decoded by the COVQ decoder. Therefore, the soft information provided by

the vector Rn is used to improve the performance of the system and the decoding

space consists of 2qkr subsets of Rkr as opposed to the hard-decision demodulation

schemes with equal 2kr input and output encoding and decoding regions. The SDD

COVQ system is illustrated in Fig. 3.2.

Soft-decision demodulation ([2, 7, 41]) is a method for preserving both simplicity

and using soft information as opposed to more complicated soft-decoding schemes

such as in [51]. Soft-decision decoding is implemented via a q-bit uniform quantizer,

which simplifies the decoding procedure computationally. In contrast, the first pro-

posed decoder of [51], computes trigonometric functions and matrix multiplications

and the second decoder needs matrix inversion. As shown in [7], the performance
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X̂n ∈ Rk
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Rn ∈ Rkr

Equivalent DMC

Figure 3.2: General block diagram of a soft-decision demodulation COVQ system.

of soft-decision demodulation converges to that of soft-decoding as the resolution of

scalar quantizer (q), goes to infinity.

As a result of using scalar quantization at the decoder side, the COVQ is designed

for an expanded DMC with Ne = 2kr input and Nd = 2qkr output indices. Indeed,

this DMC is formed by kr consecutive uses of the basic DMC with binary input

X = {0, 1} and the output set Y = {0, 1, · · · , 2q − 1} = {0, 1}q. The SDD COVQ has

been designed for the BPSK modulated bits and bit-wise ML decoder in this thesis.

It is shown that as the resolution q increases, the capacity of the expanded channel

increases resulting in an improved performance. The cost of this performance gain is
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the higher storage space needed to save the large number of codevectors.

The quantization step Δ of the soft-decision scalar quantizer is a key parameter

in the performance of the SDD COVQ. In [41], [2] and [7] Δ has been chosen to

maximize the capacity of the equivalent expanded DMC. We have chosen the same

step size Δ in our computer modelings in this chapter.

The design algorithm of the SDD COVQ is very similar to that of the conventional

COVQ, discussed in section 2.3. We use two necessary conditions iteratively to find a

locally optimal solution. The necessary conditions are the same as Equations (2.31)

and (2.36). The distortion formula is also the same as Equation (2.29). The only

difference is that the number of codevectors and the number of encoding regions are

not equal. Size of the codebook Nd is computed from Ne according to the equation

Nd = Ne
q.

For the initialization, we design a COVQ for the highest channel SNR (20 dB). We

duplicate each codevector 2kr(q−1) times so that we will have 2qkr initial codevectors.

After finding the initial codebook, the iterative GLA algorithm can be applied to

this problem as in the conventional COVQ. Note that at the highest SNR, each input

index is received almost noiselessly leaving other output indices almost useless. Hence

we construct the rest of the codevectors (corresponding to the unused indices) by

repeating 2kr useful codevectors 2kr(q−1) times while we have not lost much gain.

This strategy gives us the initial codebook at the highest SNR. For the lower SNRs,
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however, the initial codebook is the final codebook (C∗) of the next higher SNR.

We compare the proposed IMD scheme with the SDD schemes in terms of perfor-

mance, complexity and storage requirements in the following sections. We show that

the IMD COVQ is less complex and requires less storage space than SDD COVQ while

it has a somewhat smaller or in some cases greater than or equal gain to that of SDD

COVQ. In the next chapter, we also propose a new method to find the soft-decision

quantizer’s step size Δ based on the JSCC error exponent.

3.4 Encoding Complexity and Storage Requirements

Another important advantage of the IMD COVQ, as will be discussed in this section,

is its reduced encoding complexity and storage requirements compared with both

conventional COVQ and SDD COVQ.

We define the encoding complexity, as in [28], [44] and [45] to be the least possible

total amount of multiplications required to encode a source sample, i.e., complexity

equals the total number of multiplications required for encoding per source sample.

The storage requirements are measured by the total number of scalars that should

be stored at the encoder and decoder overall to implement the considered quantizer

[44].

In this section, for simplicity, we refer to the VQ with dimension k and codebook

size N by the abbreviated form (k, N) VQ. We denote the COVQ by the abbreviated
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form (k, N, N∅̄) COVQ, where N∅̄ denotes the number of nonempty encoding cells

as an output of the design procedure. This also applies to IMD COVQ. For SDD

COVQ with Ne number of input indices and soft-decision resolution of 2q, we use

the notation (k, Ne, N∅̄, q) SDD COVQ. The complexity/storage values of different

schemes discussed in this section are summarized in Table 3.1.

3.4.1 (k, N) VQ

Encoding Complexity: From Equation (2.18), in a VQ system, the encoder func-

tion is

E (x) = arg min
i∈I

‖x− ci‖2, (3.10)

where I = {0, 1, · · · , N − 1} is the set of indices and x ∈ Rk is the source sample. As

Equation (3.10) suggests, k multiplications are required to be performed N times to

encode the k-dimensional source sample. Thus, the per sample encoding complexity

of a VQ with dimension k and codebook size N is

VQ Complexity =
kN

k
= N. (3.11)

Storage Requirements: In order to implement a VQ, only the codebook C =

{cj}N−1
j=0 , including kN scalars, is required to be stored. As a result, the storage

requirements of the VQ is

VQ Storage = kN. (3.12)
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3.4.2 (k, N, N∅̄) COVQ

Encoding Complexity: When implementing a COVQ system, the codebook C is

stored at both the encoder and decoder side and the encoder operates according to

Equation (2.32). We can simplify this equation as follow

E (x) = arg min
i∈I

N−1∑
j=0

PY |X(j|i)‖x− cj‖2

= arg min
i∈I

N−1∑
j=0

PY |X(j|i)
{
‖x‖2 − 2〈x , cj〉 + ‖cj‖2}

= arg min
i∈I

{
N−1∑
j=0

PY |X(j|i)‖cj‖2 − 2

N−1∑
j=0

PY |X(j|i)〈x , cj〉
}

= arg min
i∈I

{
N−1∑
j=0

PY |X(j|i)‖cj‖2 − 2

〈
x ,

N−1∑
j=0

PY |X(j|i)cj

〉}
, (3.13)

where 〈· , ·〉 is the standard inner product in Rk. We introduce two functions of the in-

put index i by denoting the first term of (3.13) by φ(i) and the term
∑N−1

j=0 PY |X(j|i)cj

inside the inner product by ψ(i), for i = 0, 1, · · · , N − 1. Thus the encoding function

of (3.13) can be reformulated as

E (x) = arg min
i∈I

{φ(i) − 2〈x ,ψ(i)〉} . (3.14)

Note, however, that after designing the COVQ, the empirical input distribution

over I is known and a large number of the encoding cells may become empty. There-

fore, we only need to compute the expression in (3.14) for some of the indices. This

considerably reduces the complexity of channel-optimized schemes [45]. Let N∅̄ be
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the number of nonempty regions and Ine be a subset of I including only the indices

corresponding to the nonempty regions.

The set of scalars {φ(i)}i∈Ine and k-dimensional vectors {ψ(i)}i∈Ine
can be com-

puted offline and stored in the memory of the encoder. Given these scalars and

vectors, operation (3.13) requires k multiplications to be performed N∅̄ times to en-

code the source sample vector x into an index in I∅̄. Hence a total number of kN∅̄

multiplications are needed for source x ∈ Rk, which brings the complexity to

COVQ Complexity =
kN∅̄

k
= N∅̄. (3.15)

Storage Requirements: In order to implement (3.14), {φ(i)}i∈Ine and {ψ(i)}i∈Ine

need to be pre-calculated and stored at the encoder. These are N∅̄ vectors of dimen-

sion k and N∅̄ scalars. Hence we have a total of kN∅̄ + N∅̄ scalars to store at the

encoder. Also, at the decoder we need kN scalars to be stored for the codebook C.

Thus, the storage requirements for COVQ is given by

COVQ Storage = k(N + N∅̄) + N∅̄. (3.16)

3.4.3 (k, N, N∅̄) IMD COVQ

Since the design of IMD COVQ is based on the iterative design of conventional COVQs

for updating the transition matrices PY |X , it employs the same mechanism as the

conventional COVQ based on a designed codebook and empirical input distribution.
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Also, the coefficients φ(i) and vectors ψ(i) should be computed with respect to the

last updated transition matrix.

Encoding Complexity: The encoding complexity of the IMD COVQ is the same

as that of COVQ

IMD COVQ Complexity =
kN∅̄

k
= N∅̄. (3.17)

Storage Requirements: The only difference between IMD COVQ and COVQ at the

decoder side is the storage of N more scalars in IMD COVQ for the input distribution

{Pi}N−1
i=0 required by the MAP decoder. Hence, the storage requirements of the IMD

COVQ can be written as

IMD COVQ Storage = (k + 1)(N + N∅̄). (3.18)

Note that the advantage of the IMD COVQ system over the conventional COVQ

in terms of storage and complexity is the increased number of empty encoding regions

produced in the IMD design algorithm (see the numerical results of Subsection 3.5.2).

This provides us a gain in both encoding complexity and storage requirements since

both are functions of N∅̄. Due to use of MAP decoding, however, in addition to

slighly more storage requirement, more decoding computational complexity is needed

to implement Equations (3.5) and (3.7), as opposed to the ML detection which consists

of only kr comparisons. This is the cost we pay for the achieved storage/complexity

gain.
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3.4.4 (k, Ne, N∅̄, q) SDD COVQ

Since the design of SDD COVQ, like the conventional COVQ, is based on the general-

ized Lloyd-Max conditions, its iterative design procedure is similar to the conventional

COVQ. However, since the number of codevectors are more than number of input in-

dices, the complexity and storage formulas are different and given as follows.

Encoding Complexity: Operations done in Equation (3.13), resulting in Equation

(3.14), applies similarly to SDD COVQ with the number N replaced by size of SDD

COVQ codebook Nd = 2qkr. Equivalently, the encoding function for SDD COVQ is

E (x) = arg min
i∈I

{
Nd−1∑
j=0

PY |X(j|i)‖cj‖2 − 2

〈
x ,

Nd−1∑
j=0

PY |X(j|i)cj

〉}

= arg min
i∈I

{φ(i) − 2〈x ,ψ(i)〉} , (3.19)

where φ(i) =
∑Nd−1

j=0 PY |X(j|i)‖cj‖2 andψ(i) =
∑Nd−1

j=0 PY |X(j|i)cj, for i = 0, 1, · · · , Ne−

1. As in COVQ, some of the encoding regions are empty and we need to store only

N∅̄ of the functions φ(i) and ψ(i), for i ∈ I∅̄. Hence, according to Equation (3.19),

we need to perform kN∅̄ multiplications to encode x ∈ Rk. This brings the encoding

complexity to

SDD COVQ Complexity =
kN∅̄

k
= N∅̄. (3.20)

Storage Requirements: In order to implement (3.19), {φ(i)}i∈Ine and {ψ(i)}i∈Ine

need to be pre-calculated and stored at the encoder, resulting in the required storage
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Quantizer Complexity Storage

(k, N) VQ N kN

(k, N, N∅̄) COVQ N∅̄ k(N∅̄ + N) + N∅̄

(k, N, N∅̄) IMD COVQ N∅̄ (k + 1)(N∅̄ + N)

(k, N, N∅̄, q) SDD COVQ N∅̄ k(N∅̄ + 2qkr) + N∅̄

Table 3.1: Encoding complexity and storage requirements for different quantization
schemes designed for DMC.

of kN∅̄+N∅̄. At the decoder side, the system requires to store the codebook C, which

includes Nd = 2qkr k-dimensional odevectors. This brings the storage requirements

of the SDD COVQ to

SDD COVQ Storage = k(N∅̄ + Nd) + N∅̄ = k(N∅̄ + 2qkr) + N∅̄. (3.21)

As Equation (3.21) shows, the SDD COVQ requires much more storage space

than both COVQ and IMD COVQ. Note that the main advantage of the IMD COVQ

system over the SDD COVQs of [2], [7] and [41] is its reduced storage complexity due

to the significantly smaller amount of memory needed in the COVQ decoder. The

SDD COVQ (with soft-decision resolution q) has a codebook size of 2qkr k-dimensional

codevectors while the IMD COVQ has a codebook size of 2kr codevectors (just as

the conventional COVQ). Note, however, that since it uses MAP decoding the IMD

COVQ system has higher computational decoding complexity than SDD COVQ and

conventional COVQ.
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3.5 Numerical Results

In this section, we compare the proposed IMD COVQ with the conventional hard-

decision demodulated COVQ and the soft-decision demodulated COVQ in terms of

the performance gain, encoding complexity and the required storage memory space.

The numerical results related to SDD COVQ have been borrowed from [41] and [2] for

AWGN and Rayleigh fading channels respectively. However, we have performed the

numerical analysis for SDD COVQ independently and computed additional results,

namely regarding the quantization dimension k = 3 (see Table 3.10), the encoding

complexity and the gain at some SNRs that were not reported in these works. We

also study the empirical convergence of the IMD algoithm.

In the first phase (ML decoded COVQ), we employ the transition matrix calcu-

lated from Equations (3.1) and (3.2). The bit-wise ML decoding procedure is the

simple BPSK demodulation based on the zero threshold. The transition matrix PY |X

is then derived from kr independent uses of a BSC with crossover probability

P (1| − 1) = P (−1|1) = P (νt > 1) = Q(
√

SNR),

for the AWGN channel and the BSC averaged crossover probability

Eh [P (1| − 1)] = Eh [P (−1|1)] = Eh [P (νt > ht)] = Eh

[
Q(h

√
SNR)

]
,

for the Rayleigh fading channel, where Eh denotes the expectation over the fading

amplitude h, SNR = E [W 2
t ] /E [νt

2] = 2
N0

is the channel signal-to-noise ratio and Q(·)
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is the complementary error function

Q(x) =
1√
2π

∫ ∞

x

exp{−τ 2/2} dτ. (3.22)

For designing the COVQ, 100,000 source training vectors are generated. After

designing the COVQ (Phase 1), we generate 400,000 noise vectors, use MAP decoding

and from the resulting empirical distribution compute the new 2kr × 2kr transition

matrix according to Equations (3.6) and (3.8). For the Rayleigh fading channel,

the matrix is calculated for 2000 fading vectors h and the arithmetic average of all

matrices has been used as the updated transition matrix. After this the COVQ is

redesigned iteratively using the same updating process as described in Phases 2 and

3 above.

In all of our results, each source tuple is a first order stationary ergodic zero mean

Gauss-Markov source with variance 1 described by

Xn = ρXn−1 + Vn, (3.23)

where {Vn} is a sequence of i.i.d Gaussian random variables with zero mean and

variance 1 − ρ2, and the initial sample X0 is chosen to guarantee the stationarity of

the process (i.e., Gaussian with mean zero and variance 1).

For a memoryless Gaussian source (ρ = 0.0) and a heavily correlated Gaussian

source with ρ = 0.9, we have designed vector quantizers of dimensions k = 2 and

rate r = 2 bps. We have also designed different COVQs with dimension k = 3
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for the memoryless Gaussian source sent over Rayleigh fading channel. The LBG

algorithm has been used for the VQ design and the splitting method has been used

for initialization. For the COVQ design, we have used the VQ designed for the

initial high SNR of 20 dB. We next use the simulated annealing algorithm to find the

index assignment which minimizes the end-to-end distortion for the designed VQ. The

updated VQ with perturbed indices has larger signal-to-distortion ration (up to 0.5

dB) than the initially designed VQ. Simulated annealing is used only at the highest

SNR. We then use the resulting codebook of these operations as the initial codebook

for the next alternating application of the generalized Lloyd-Max conditions. Once

the COVQ has been designed for the highest SNR using this method, we slightly

decrease the SNR and use the codebook of the last COVQ as the initial codebook for

the next COVQ corresponding to the less new SNR. Using the above algorithm, for

a given SNR, we derive the COVQ codebooks, starting from the highest SNR to the

lowest (-8 dB) and vice versa to reach the target SNR. This method is referred to as

“decrease-increase” (DI) method [7, 17]. In [7], it is shown that the DI method gives

the least training distortion as our empirical results also show this fact.

3.5.1 Performance Analysis

In this subsection, we provide the numerical results achieved by the proposed IMD

scheme in terms of the signal-to-distortion-ration (SDR) which is defined as
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SDR =
E‖Xn‖2

E‖Xn − X̂n‖
2 . (3.24)

The numerical results show the prominence of IMD COVQ over conventional

COVQ as it achieves higher SDRs. It is important to note that the SDR gain can be

translated to other gains. For example, one can quantify 1 dB of the SDR gain to

approximately 1
6

bit thrift in rate as a rule of thumb [22].

Since in each computer simulation we only find a locally optimal solution for the

COVQ, there are small differences between the results of separate computer runs.

Thus, we have run the simulations several times and have reported the maximum

achieved value of the SDR. Since the design process is offline, this method is acceptable

in practice.

Tables 3.2 and 3.3 present SDR results for the AWGN channel, while Tables 3.4,

3.5 and 3.10 are devoted to the Rayleigh fading channel. For both of the channels

considered, the results for both memoryless Gaussian and Gauss-Markov source with

correlation coefficient ρ = 0.9 are presented.

As Tables 3.2 – 3.10 suggest, in general, the SDR gain of the IMD COVQ increases

with the source correlation coefficient as well as with the quantization dimension

and/or rate (i.e., kr). From these tables, we can see that the IMD COVQ considerably

outperforms the conventional COVQ for both AWGN and Rayleigh fading channels

for all system parameters. For kr = 4, it also performs identically or slightly better
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than the SDD COVQ for the highly correlated source and Rayleigh-fading channel

for medium SNRs (see for example Table 3.5, SNR = −2,−3 dB). Table 3.10 shows

that for higher dimension k = 3, (i.e., for higher values of kr) the IMD COVQ

can even perform as well as or better than the SDD COVQ (with q = 2) designed

for the memoryless Gaussian source sent over Rayleigh fading channel. The largest

improvement made by IMD algorithm occurs for low to medium SNRs, i.e., −3dB ≤

SNR ≤ 4dB.

Interestingly we observed that generally the non-uniform input distribution, after

applying the IMD algorithm tends to be even more non-uniform which is desirable [16].

Since there are already many empty decision regions for the conventional COVQ at

very low SNRs (SNR < −3 dB), the IMD algorithm does not provide much gain in that

region. However, for SNR ranging from −3 dB to 4 dB, it considerably outperforms

the conventional COVQ system. For high SNRs, MAP decoding does not yield much

gain compared with ML decoding as in this case both decoding methods are nearly

equivalent.

As expected, the proposed system performs better than the conventional COVQ

system while sometimes matches or outperforms the more complex SDD COVQ with

q = 2. For highly correlated source and high quantization dimension, it also provides

more gain. Observe that in Tables 3.3, 3.5 and 3.10 the gains over conventional COVQ

are 0.80 dB, 0.98 dB and 1.79 dB, respectively, for SNR = 4 dB. Also, for the Gaussian
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channel with correlated source, the IMD COVQ performs almost as well as the SDD

COVQ for SNRs from 0 to 3 dB (see Table 3.3), while for the Rayleigh fading channel,

it outperforms the SDD COVQ (with q = 2) in the whole SNR range for kr = 4 and

correlated source (see Table 3.5). For kr = 6, the IMD COVQ performs equally or

better than SDD COVQ even for the Gaussian memoryless source (see Table 3.10).

3.5.2 Complexity and Storage Results

The results of computer simulations for the encoding complexity and storage require-

ments, based on the discussions of Section 3.4, are presented in this section.

Tables 3.6, 3.7, 3.8, 3.9 and 3.10 present the encoding complexity and storage

requirements of three COVQ systems. As it can be seen, the complexity (which is

equal to number of nonempty encoding regions) is considerably lower for the IMD

COVQ compared with both conventional COVQ and SDD COVQ, especially in Table

3.10 for kr = 6. Note that the number of nonempty regions for the highly correlated

source is generally less than that for the memoryless source. This leaves less room for

the IMD COVQ to improve the correlated sources system performance over memory-

less sources. Hence, the complexity gain of IMD COVQ is less in case of sources with

memory. The results of Tables 3.6 to 3.10 also show the known fact that generally

for lower SNRs, the COVQ systems have less nonempty regions. Roughly speaking,

this means that the optimal system trades off the quantization accuracy for reducing
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the channel noise’s negative effect on performance [16].

The IMD COVQ also has much less storage requirements than the SDD COVQ.

For kr = 4, although the storage requirement in the conventional COVQ is less than

the IMD COVQ, their difference, as shown by Tables 3.6 to 3.9 is negligible. However,

similar to the SDR, the complexity/storgae gain improves as kr increases. Table 3.10

shows that IMD COVQ can perform better than classical COVQ even in terms of the

storage requirements if kr is high enough. We can conclude that the IMD proposed

algorithm measures quite well vis-a-vis COVQ and SDD COVQ in terms of complexity

and storage.

3.5.3 Empirical Convergence of The IMD Algorithm

The IMD algorithm is an iterative algorithm (Phase 3). In our numerical simulations,

we observed that much of the performance and complexity gain by the IMD algorithm

is achieved in the first three iterations and it seems that the algorithm tends to be

stable after that. It is worth pointing out that the system’s distortion is not always

monotonically decreasing with the number of iterations. This is due to the fact that

minimizing the channel’s symbol error rate under MAP decoding is not necessarily

equivalent to minimizing the end to end distortion.

We have illustrated the SDR as a function of the iteration number for both memo-

ryless and correlated (ρ = 0.9) sources and both AWGN and Rayleigh fading channels
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Channel Conventional IMD SDD COVQ

SNR COVQ COVQ (q = 2) [41]

8.0 8.64 8.69 8.76

6.0 6.89 7.09 7.21

4.0 5.17 5.48 5.74

3.0 4.38 4.77 5.08

2.0 3.77 4.03 4.36

1.0 3.17 3.41 3.71

0.0 2.66 2.84 3.14

-1.0 2.21 2.35 2.69

-2.0 1.81 1.94 2.26

-3.0 1.50 1.58 1.88

-4.0 1.22 1.28 1.53

-6.0 0.82 0.85 1.02

Table 3.2: SDR in dB for ML decoded conventional, iterative MAP decoded (IMD)
and soft decision decoded (SDD) COVQs for the AWGN channel and the memory-
less Gaussian source. The vector quantizer rate is r = 2 bps and the quantization
dimension is k = 2.

in Figs. 3.3 to 3.6. As it can be seen the empirical results indicate that the algorithm

converges to the optimal solution after only a few iterations.
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Channel Conventional IMD SDD COVQ

SNR COVQ COVQ (q = 2) [41]

8.0 10.99 11.09 11.20

6.0 8.72 9.33 9.72

4.0 6.71 7.51 7.70

3.0 6.03 6.70 6.86

2.0 5.15 5.81 5.86

1.0 4.40 5.00 5.06

0.0 3.62 4.24 4.42

-1.0 2.99 3.42 3.83

-2.0 2.47 2.78 3.29

-3.0 2.12 2.49 2.80

-4.0 1.94 2.15 2.42

-6.0 1.18 1.42 1.65

Table 3.3: SDR in dB for ML decoded conventional, IMD and SDD COVQs for the
AWGN channel and the Gauss-Markov source with correlation coefficient ρ = 0.9.
The vector quantizer rate is r = 2 bps and the quantization dimension is k = 2.
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Channel Conventional IMD SDD COVQ

SNR COVQ COVQ (q = 2) [2]

8.0 4.93 5.28 5.63

6.0 4.08 4.43 4.75

4.0 3.23 3.66 3.84

3.0 2.83 3.23 3.41

2.0 2.46 2.85 3.00

1.0 2.13 2.49 2.74

0.0 1.85 2.11 2.30

-1.0 1.57 1.75 1.97

-2.0 1.32 1.49 1.68

-3.0 1.10 1.21 1.41

-4.0 0.90 1.01 1.23

-6.0 0.61 0.69 0.79

Table 3.4: SDR in dB for ML decoded conventional, IMD and SDD COVQs for the
Rayleigh fading channel and the memoryless Gaussian source. The vector quantizer
rate is r = 2 bps and the quantization dimension is k = 2.
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Channel Conventional IMD SDD COVQ SDD COVQ

SNR COVQ COVQ (q = 2) [2] (q = 3)

10.0 7.40 8.20 8.45 8.72

8.0 6.60 7.46 7.31 7.54

6.0 5.55 6.53 6.30 6.55

4.0 4.45 5.43 5.43 5.69

3.0 3.92 4.84 4.85 5.10

2.0 3.43 4.31 4.28 4.51

1.0 2.94 3.67 3.72 3.94

0.0 2.70 3.42 3.21 3.40

-1.0 2.33 2.88 2.73 2.90

-2.0 1.93 2.54 2.31 2.46

-3.0 1.77 2.14 1.94 2.07

-4.0 1.51 1.83 1.77 1.84

-6.0 0.99 1.23 1.22 1.30

Table 3.5: SDR in dB for ML decoded conventional, IMD and SDD COVQs for the
Rayleigh fading channel and the Gauss-Markov source with correlation coefficient
ρ = 0.9. The vector quantizer rate is r = 2 bps and the quantization dimension is
k = 2.
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Channel Encoding complexity Storage

SNR (Nonempty regions) requirements

(dB) COVQ IMD SDD COVQ COVQ IMD SDD COVQ SDD COVQ

COVQ (q = 2) COVQ (q = 2) (q = 3)

8.0 16 15 16 80 93 560 8240

6.0 16 15 16 80 93 560 8240

4.0 16 12 16 80 84 560 8240

3.0 16 11 16 80 81 560 8240

2.0 16 11 16 80 81 560 8240

1.0 16 11 14 80 81 554 8234

0.0 14 11 14 74 81 554 8234

-1.0 14 11 14 74 81 554 8234

-2.0 14 11 14 74 81 554 8234

-3.0 14 10 14 74 78 554 8234

-4.0 14 10 14 74 78 554 8234

-6.0 14 10 14 74 78 554 8234

Table 3.6: Encoding complexity and storage requirements for the memoryless Gaus-
sian source (ρ = 0.0) and the AWGN channel, for different schemes. The encoder
rate is r = 2 bps and the quantization dimension is k = 2.
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Channel Encoding complexity Storage

SNR (Nonempty regions) requirements

(dB) COVQ IMD SDD COVQ COVQ IMD SDD COVQ SDD COVQ

COVQ (q = 2) COVQ (q = 2) (q = 3)

8.0 16 11 14 80 81 554 8234

6.0 12 8 10 68 72 542 8222

4.0 10 6 10 62 66 542 8222

3.0 8 6 8 56 66 536 8216

2.0 8 6 8 56 66 536 8216

1.0 8 6 7 56 66 533 8213

0.0 8 6 7 56 66 533 8213

-1.0 6 5 7 50 63 533 8213

-2.0 6 5 6 50 63 530 8210

-3.0 6 5 6 50 63 530 8210

-4.0 6 5 5 50 63 527 8207

-6.0 6 5 5 50 63 527 8207

Table 3.7: Encoding complexity and storage requirements for the Gauss-Markov
source (ρ = 0.9) and the AWGN channel, for different schemes. The encoder rate is
r = 2 bps and the quantization dimension is k = 2.
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Channel Encoding complexity Storage

SNR (Nonempty regions) requirements

(dB) COVQ IMD SDD COVQ COVQ IMD SDD COVQ SDD COVQ

COVQ (q = 2) COVQ (q = 2) (q = 3)

8.0 16 13 16 80 87 560 8240

6.0 16 13 16 80 87 560 8240

4.0 16 11 14 80 81 554 8234

3.0 16 11 14 80 81 554 8234

2.0 16 11 14 80 81 554 8234

1.0 16 11 14 80 81 554 8234

0.0 16 11 14 80 81 554 8234

-1.0 16 11 14 80 81 554 8234

-2.0 15 11 14 77 81 554 8234

-3.0 14 11 14 74 81 554 8234

-4.0 14 11 14 74 81 554 8234

-6.0 12 9 14 68 75 554 8234

Table 3.8: Encoding complexity and storage requirements for the memoryless Gaus-
sian source (ρ = 0.0) and the Rayleigh fading channel, for different schemes. The
encoder rate is r = 2 bps and the quantization dimension is k = 2.
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Channel Encoding complexity Storage

SNR (Nonempty regions) requirements

(dB) COVQ IMD SDD COVQ COVQ IMD SDD COVQ SDD COVQ

COVQ (q = 2) COVQ (q = 2) (q = 3)

8.0 11 8 11 65 72 545 8225

6.0 10 8 10 62 72 542 8222

4.0 9 7 9 59 69 539 8218

3.0 9 7 9 59 69 539 8218

2.0 8 7 8 56 69 536 8215

1.0 8 7 8 56 69 536 8215

0.0 7 6 7 53 66 533 8212

-1.0 7 6 7 53 66 533 8212

-2.0 6 5 6 50 63 530 8209

-3.0 6 5 6 50 63 530 8209

-4.0 6 5 5 50 63 527 8206

-6.0 5 5 5 47 63 527 8206

Table 3.9: Encoding complexity and storage requirements for the Gauss-Markov
source (ρ = 0.9) and the Rayleigh fading channel, for different schemes. The en-
coder rate is r = 2 bps and the quantization dimension is k = 2.
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Channel SNR (dB) -4 -2 0 2 4 6

SDR COVQ 0.94 1.40 1.93 2.60 3.36 4.22

Performance IMD COVQ 1.23 1.86 2.97 3.88 5.15 5.69

(dB) SDD COVQ (q = 2) 1.32 1.94 2.88 3.79 4.89 5.78

Encoding COVQ 54 52 55 60 64 64

Complexity IMD COVQ 31 34 26 45 54 58

(Nonempty regions) SDD COVQ (q = 2) 52 49 58 59 64 64

Storage requirements

COVQ 408 400 412 432 448 448

IMD COVQ 380 392 360 436 472 488

SDD COVQ (q = 2) 12496 12484 12520 12524 12544 12544

Table 3.10: SDR, encoding complexity and storage requirements for the memoryless
Gaussian source (ρ = 0.0) and the Rayleigh fading channel, for different schemes.
The encoder rate is r = 2 bps and the quantization dimension is k = 3.
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Figure 3.3: SDR versus number of iterations of the IMD algorithm. The channel SNR
is -6 dB.



CHAPTER 3. ITERATIVE MAP DECODED COVQ 81

0 2 4 6 8 10 12 14

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of iterations

S
D

R
(
d
B

)

 

 

AWGN, ρ = 0.0

AWGN, ρ = 0.9

Rayleigh-fading, ρ = 0.0

Rayleigh-fading, ρ = 0.9

Figure 3.4: SDR versus number of iterations of the IMD algorithm. The channel SNR
is -2 dB.
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Figure 3.5: SDR versus number of iterations of the IMD algorithm. The channel SNR
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Chapter 4

Improvements to SDD COVQ

Soft-decision demodulation channel optimized vector quantization was introduced in

Section 3.3 and was depicted by Fig. 3.2. In this chapter, we introduce an iterative

algorithm to design the SDD COVQ, based on the joint source-channel coding error

exponent. This algorithm tries to find the best soft-decision quantizer step size Δ

in an iterative manner. Our analytical and numerical results in this section are for

the orthogonal space-time block coded (OSTBC) multi-input multi-output (MIMO)

Rayleigh fading channel setup.

4.1 System Description

As discussed in Section 3.3, in a SDD COVQ system, like other COVQ schemes, the

system consists of the source {Xn} ∈ Rk, the noisy channel modeled with a DMC and

84
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the reconstructed vector {X̂n} which is obtained from the channel output {Rn} such

that the distortion E‖Xn − X̂n‖
2
is minimized. The DMC in SDD COVQ, as depicted

in Fig. 3.2, is the combination of the BPSK modulator, the channel (in our setup, the

equivalent channel as depicted in Fig. 4.1) and the soft-decision demodulation scalar

quantizer. Hence the input to the DMC is chosen from the binary set X = {0, 1}

and the output from the set Y = {0, 1, · · · , 2q − 1}, where each of the output 2q-ary

symbols corresponds to a specific region of the scalar quantizer. We assume the source

{Xn} ∈ Rk to be an ergodic stationary process, with zero mean and variance σ2. The

COVQ encoder encodes {Xn} at a rate of r bits per sample into a set of indices

In � {0, 1, · · · , Ne − 1}. The index In is sent over the channel after modulation and

space-time coding. The orthogonal space-time block coded BPSK modulated bits

are sent over a MIMO Rayleigh-fading channel. At the receiver side, the space-time

decoder decodes the space-time encoded symbols (W 1
n , W 2

n , · · · , W kr
n ) and produces

the output vector Rn ∈ Rk. The soft-decoded vector Rn is then demodulated via

the soft-decision scalar quantizer making the output index Jn. At last, the COVQ

decoder assigns a codevector to each output index.
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4.2 MIMO Channel and Orthogonal Space-Time

Block Coding

Fig. 4.1 depicts the “equivalent channel” which represents the channel of Fig. 3.2, in

our system setup. The actual MIMO channel shown in Fig. 4.1, in our simulations,

is a MIMO Rayleigh fading channel. Thus, the equivalent channel in Fig. 4.1 consists

of space-time encoder, MIMO channel and the space-time decoder. We assume K

transmit and L receive antennas. To transmit Wn, the space-time encoder forms

a real space time-code which is the K × N matrix C, where the entries are drawn

from the set {−1, +1} and they are sent from K transmit antennas in N time slots.

The symbol sent from the ith transmit antenna at tth time interval is denoted by

Si,t, as the (i, t)th entry of the transmitted matrix S. The code matrix C and the

transmitted matrix S differ in a constant coefficient which is a function of SNR. The

best known example of OSTBC is Alamouti’s space-time code [4], in which K = 2

and N = 2 and 2 symbols are sent in one space-time matrix. In Alamouti’s code, to

send Wn, the space-time encoder should operate kr
2

times.

The channel is assumed to be Rayleigh flat fading and the path gain from the

ith transmit antenna to the jth receive antenna is denoted by hj,i. The path gains

have i.i.d Rayleigh distributions with variance 1. (See [32], for a detailed analysis of

MIMO channels and space-time coding.) The receiver has perfect knowledge of the
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Figure 4.1: Equivalent channel made of the space-time encoder, MIMO Rayleigh
fading channel and space-time decoder.

path gains and the channel is quasi-static, meaning that the channel remains fixed

in a codeword transmission, but varies in an i.i.d fashion among different codeword

intervals. At the receive antennas, a zero-mean, unit-variance additive Gaussian noise

is added to the received signals. We denote the noise at the jth receive antenna and

tth symbol interval by nj,t ∼ N (0, 1). As a requirement of the system, the SNR at

each receiver antenna should be kept at a constant value γ. Therefore the signal at

the jth receive antenna and time slot t, can be written an

rj,t =

√
γ

K

K∑
i=1

hj,iCi,t + nj,t, t = 1, 2, · · · , N, (4.1)

where N is the space-time codeword length (note that several of these codewords

might be transmitted for each index In) and the transmitted signal Si,t from the ith

antenna is Si,t =
√

γ
K

Ci,t, i = 1, 2, · · · , K, t = 1, 2, · · · , N , where Ci,t is an entry

of the space-time block code C, which in turn corresponds to a number of BPSK
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modulated bits from the input index In. We assume that the noise, signal and the

fading coefficients are independent. Writing (4.1) in a matrix form, we have

r = HS + n =

√
γ

K
HC + n. (4.2)

It is a well-known fact that the decoding of OSTB codes is decoupled. By defi-

nition, the space-time block code is orthogonal if CCH = αI, where I is the identity

matrix and α is a constant which is a function of signal constellation and coding

gain. Furthermore, in our system the signal constellation is real and it can be easily

shown (see [32] and [53]) that in the decoding process each symbol is independently

and separately detected. Referring back to (3.1), it can be shown that at the output

of the space-time decoder, the tth signal of Rn, is the tth symbol of Wn, plus an

additive Gaussian noise νt with distribution

νt ∼ N (0,
K

gγH̄
) (4.3)

where g is the coding gain (in Alamouti’s scheme this is 1) and H̄ is defined as

H̄ =
K∑

i=1

L∑
j=1

hj,i
2. (4.4)

As Fig. 3.2 shows, Rt
n is fed to a scalar uniform quantizer. Rt

n is a real variable

and the quantizer has two unbounded decision regions. The decision levels of the
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quantizer are denoted by {uj} given by

uj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∞, if j = −1

(j + 1 − 2q−1)Δ, if j = 0, 1, · · · , 2q − 2

+∞, if j = 2q − 1

(4.5)

and the quantization rule q(·) is

q(Rt
n) = i, if Rt

n ∈ (ui−1, ui] , i = 0, 1, · · · , 2q − 1.

The transition probabilities of the binary-input 2q-output DMC, for the OSTBC

MIMO channel can be computed using the statistics of the noise νt and elementary

rules of probability theory. Decision is made according to intervals of length Δ. Thus,

if the output of the decoder falls in (uy−1, uy], the yth q-tuple of bits in Y will be

chosen. Using (3.1) and (4.3), we have [7]

PY |X(y|x,H) = Pr
[
uy−1 ≤ Rt

n = W t
n + νt < uy−1

]
= Q

(
(uy−1 − W t

n)η
√

H̄
)
− Q

(
(uy − W t

n)η
√

H̄
)

, (4.6)

where W t
n is the BPSK signal corresponding to the bit x, η =

√
2gγ/K and Q(·)

is the complementary error function given by Equation (3.22). To achieve the final

expression we need to take expectation, with respect to H [7]

EH

[
PY |X(y|x,H)

]
= PY |X(y|x) = Λ

(
(uy−1 − W t

n)η
)
− Λ

(
(uy − W t

n)η
)

(4.7)

where Λ(·) is the PEP of a pair of OSTB coded symbols Wi and Wj under ML
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decoding and is given by [7]

Λ(η) � P (Wi → Wj)

= EH̄

[
Q(η

√
H̄)
]

=
1

2

[
1 − η√

2 + η2

∑KL−1

m=0

(
2m

m

)
1

(2η2 + 4)m

]
. (4.8)

4.3 JSCC Reliability Function

4.3.1 Preliminaries

The Error exponent or reliability function is a tool to better assess the performance

of codes as a function of block length. In this regard, much research has been done

during the last few decades for the study of error exponents for source or channel

coding (see, e.g., [21]). The error exponent roughly demonstrates the rate at which

the probability of error converges to zero with block length. Thus, it is useful to

estimate the tradeoff between performance and block length of codes. This concept

is useful for both tandem coding and JSCC. If we denote the error exponent by E,

the achievable error probability is approximately 2−nE, where n is the code’s block

length.

A recent work on memoryless systems [59] has calculated upper and lower bounds

(and in some cases the exact value) for the JSCC error exponent. Since our system is

also a memoryless system, consisting of a DMS and an equivalent DMC, we can use
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the same approach as [59].

Consider a DMS which takes values in S = {0, 1, · · · , Ne − 1} and it has the

distribution Q with entropy H(Q). In addition, the transition distribution {W �

PY |X : X → Y } defines the DMC, where X represents the input alphabet and Y

represents the finite output alphabet. Generally, a joint source-channel (JSC) code is

defined by two parameters n and t, where n is the block-length and t > 0 is the rate

of the code. A JSC code is a pair of mappings fn : Stn → X n and φn : Y n → Stn.

Thus, source symbols of length tn : stn � (s1, s2, · · · , stn) are encoded as blocks of

symbols from X : xn � (x1, x2, · · · , xn) of length n, transmitted and received as

blocks of symbols of yn � (y1, y2, · · · , yn) in Y of length n and finally decoded as

blocks of source symbols φn(yn) of length tn. An error occurs whenever φn(y
n) �= stn.

We denote the probability of error by P n
e and it can be written as

P n
e =

∑
{(stn,yn):φn(yn)�=stn}

Q(stn)PY |X(yn|fn(s
tn)). (4.9)

The JSCC error exponent EJ(Q, W, t) is defined as the largest number that satis-

fies the following inequality for a sequence of JSC codes with transmission rate t and

block length n:

E ≤ lim inf
n→∞

−1

n
log P n

e . (4.10)

It is shown in [59] that a closed form expression for the error exponent or its upper

and lower bounds can be derived, when the channel transition matrix W is symmetric
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in the Gallager sense [21]. A DMC is defined to be symmetric if the channel transi-

tion matrix can be partitioned along its columns into submatrices W1, W2, · · · , Ws,

such that in each partition all of the rows are permutations of each other and all

of the columns are also permutations of each other. We denote the submatrices by

W1, W2, · · · , Ws, where Wi is a |X |×|Yi| matrix. Since in each Wi, all of the columns

are permutations of each other, we denote the set of transition probabilities in Wi,

by the set {pi1, pi2, · · · , pi|X |}, i = 1, 2, · · · , s.

In order to exploit the results of [59], we first introduce the family of tilted distri-

butions Q(ρ) defined by

Q(ρ)(s) � Q
1

1+ρ (s)∑
s′∈S Q

1
1+ρ (s′)

, s ∈ S, ρ ≥ 0. (4.11)

As another essential quantity, Gallager’s channel function [21] is defined as the

maximum value of the following function with respect to the input distribution.

Namely, let [21]

Ẽ0(ρ, PX , W ) � − log
∑
y∈Y

(∑
x∈X

PX(x)P
1

1+ρ

Y |X (y|x)

)1+ρ

; ρ > 0 (4.12)

where PX is an arbitrary probability distribution on X . On this basis, Gallager’s

channel function is defined as

E0(ρ, W ) � max
PX

Ẽ0(ρ, PX , W ). (4.13)

If the channel is symmetric (which is the case in our system), then both Gallager’s

channel function (E0(ρ, W )) and the channel capacity are achieved by the uniform
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distribution. Therefore PX = 1
|X | and we have [59]

E0(ρ, W ) = (1 + ρ) log |X | − log

⎡
⎣ s∑

i=1

|Yi|

⎛
⎝ |X |∑

j=1

pij

1
1+ρ

⎞
⎠

1+ρ⎤
⎦ (4.14)

as the Gallager’s channel function and

C = log |X | − 1

|X |

s∑
i=1

|Yi|

⎛
⎝ |X |∑

j=1

pij

⎞
⎠ H(P

(0)
i ) (4.15)

as the capacity, where the distribution P
(ζ)
i , ζ ≥ 0, is a distribution on the input

index set: IX � {1, 2, · · · , |X |} (not to be confused with the source distribution),

and for each i = 1, 2, · · · , s, is defined by

P
(ζ)
i (j) � pij

1
1+ζ(∑|X |

l=1 pil

1
1+ζ

) , j ∈ IX . (4.16)

Now, for our symmetric channel the exact value of EJ can be analytically calcu-

lated if the following two conditions hold.

Firstly,

1

|X |

s∑
i=1

|Yi|

⎛
⎝ |X |∑

j=1

pij

⎞
⎠ H(P

(0)
i ) + tH(Q) < log |X | (4.17)

and secondly

∑s
i=1 |Yi|

(∑|X |
j=1 pij

1/2
)2

H(P
(1)
i )∑s

i=1 |Yi|
(∑|X |

j=1 pij
1/2
)2 + tH(Q(1)) ≥ log |X |. (4.18)

If the above conditions are met, the error exponent EJ , is exactly determined by

EJ(Q, W, t) = (1 + ρ∗) log |X | − log

⎧⎪⎨
⎪⎩
⎡
⎢⎣ s∑

i=1

|Yi|

⎛
⎝ |X |∑

j=1

pij

1
1+ρ∗

⎞
⎠

1+ρ∗
⎤
⎥⎦
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×
(∑

s∈S
Q

1
1+ρ∗ (s)

)t(1+ρ∗)
⎫⎬
⎭ (4.19)

where ρ∗ is the unique solution of the equation∑s
i=1 |Yi|

(∑|X |
j=1 pij

1
1+ρ

)1+ρ

H(P
(1)
i )∑s

i=1 |Yi|
(∑|X |

j=1 pij

1
1+ρ

)1+ρ + tH(Q(ρ)) = log |X |. (4.20)

If the conditions do not hold, there is no closed form expression to determine

the exact value of the error exponent, but we can easily calculate relatively tight

upper and lower bounds, which are discussed in detail in [59]. Note that according

to Shannon’s joint source-channel coding theorem, if the rate is more than a source-

dependent multiple of the capacity (C/H(Q)), we can never make the error probability

converge to zero as the block length goes to infinity. In other words, the concept of

rate-reliability tradeoff in joint source-channel coding is similar to that of channel

coding and we can write

tH(Q) ≥ C ⇒ EJ(Q, W, t) = 0. (4.21)

This is an important fact and we will use this fact several times in our system

design. (C/H(Q)), plays the role of capacity in tandem coding in joint source-channel

coding.

4.3.2 Error exponent for the COVQ and equivalent DMC

In the system described above, the source corresponding to the distribution Q, will

be the indices In ∈ S = {0, 1, · · · , Ne − 1}, and the channel will be the 2kr-input,
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2qkr-output channel: {W : X kr → Ykr}. Therefore, X = X kr = In = {0, 1}kr and

Y = Ykr and the source and channel input alphabets are the same: S = X . That

is the JSC encoder function is simply the identity function. As a result, the JSCC

rate is t = 1 and the code block length is n = 1. We calculate and plot the JSCC

error exponent for this system. Therefore, in order to choose the parameter Δ, we

have two criteria. The first one is to find the parameter Δ to maximize the DMC’s

capacity and the other one is to find Δ that maximizes the JSCC error exponent.

Note that we could also choose the DMC to be binary-input, 2q-output. In that

case, the JSCC rate t is 1
kr

. There is no fundamental difference between these two

models, because in the second one, we are using the same channel kr times. Maximiz-

ing the JSCC error exponent (just as maximizing capacity) is a suboptimal criterion

to minimize the distortion, since minimizing distortion may not necessarily be equiva-

lent to reducing the error probability (to which the error exponent is related). Indeed,

in the SDD COVQ system, one is not concerned with the true detection of the input

index In, but to find the best reconstruction vector X̂n. However, in the high SNR

regime, these two criteria (error probability and distortion) are closer to each other.

This is because at high SNRs the soft-decision demodulation COVQ is close to the

ordinary COVQ as among the 2qkr output indices, only 2kr of them are most likely

to be detected. Thus, reducing the probability of index perturbation will result in a

lower distortion.
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Depending on the actual physical channel and the noise power, the 2×2q transition

matrix (like the 2kr×2qkr matrix as its extension) will have different forms and values,

all of which are symmetric.

4.4 Proposed algorithm

We herein propose an algorithm to design SDD COVQ, based on the JSCC error

exponent. The algorithm is as follows.

1. First maximize the capacity C(Δ) on Δ. Design the SDD COVQ for capacity-

maximizing Δ and obtain the source empirical distribution Q as a result.

2. Given Q, calculate the error exponent EJ(Q, Δ) for the designed system as a

function of Δ. Find Δ that maximizes the exponent and redesign the SDD

COVQ for the new error-exponent maximizing Δ.

3. Repeat this iteration (step 2) until the SDR is maximized.

4.5 Numerical Results

Here, we present some simulation results for different parameters. The system pa-

rameters information about each figure is included in its caption. Both the capacity

and JSCC error exponent criteria have been tested. We have considered the trans-

mission of Gauss-Markov sources with correlation coefficient ρ = 0.9 over the channel
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with the SNR = 10dB. The soft-decision resolution, in all of the simulations, is set to

q = 2. Since the design procedure is offline the best SDR and error exponent results

are reported. For the design of SDD COVQs, we have used the algorithm introduced

in Section 3.3, and various simulation parameters are the same as those discussed in

Section 3.5. The JSCC rate is assumed to be t = 1 in all of the simulations.

First, the system with K = 4 and L = 2 is considered. The capacity maximizing

quantizer step, as the initial step size for the system is Δ = 0.21. The computations

and numerical simulations were done for quantization dimensions k = 3 and k = 4.

Table 4.1 compares the performance of these systems. Note that there is a gain in

the case of error-exponent maximizing Δ compared to that of capacity-maximizing

strategy.

Table 4.2 is devoted to the Alamouti scheme (K = 2) with one receive antenna

L = 1. As it can be seen, for the low quantization dimensions the exponent is zero

and the proposed algorithm does not provide a practical system. However, for the

higher dimensions, we achieve slightly better results. Comparison of Tables 4.1 and

4.2 also indicates that for higher number of antennas as well as higher quantization

dimensions, the gain of the proposed system increases.
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Figs. 4.2 and 4.3 indicate the exact error exponent computed for the conven-

tional SDD COVQ (capacity-maximizing) and the proposed error-exponent maximiz-

ing COVQ for dimensions k = 3 and k = 4 respectively. These figures clearly demon-

strate the exponent gain of the proposed scheme over conventional SDD COVQ. Note

that the proposed scheme not only outperforms conventional SDD COVQ in terms

of the exponent characteristic, but also has larger error exponent at the system’s

actual rate (t = 1). Also, realize that the gain of the proposed system in terms of

exponent characteristics (as well as the values of the exponent itself) increases with

the quantization dimension.

Fig. 4.4 plots the error exponents upper bound computed for the Alamouti system

(K = 2, L = 1) with different quantization dimensions. As it can be seen, at t = 1,

for low dimensions the exponent is zero, leaving no room to be improved. However,

the higher the dimension is, the higher is the gain that can be achieved by the error

exponent maximizing proposed strategy (see Table 4.2). Another interesting point

we observed in our simulations is that the source found by the exponent-maximizing

SDD COVQ design is generally more uniform (or closer to the capacity maximizing

distribution) than that of capacity-maximizing COVQ. For example, for kr = 3 in

the simulation runs described above, for the the capacity-maximizing Δ, we have

H(Q) = 2.82, while for the error exponent-maximizing Δ, it is H(Q) = 2.90.
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k capacity-maximizing Δ error exponent-maximizing Δ SDRcap SDRerr

3 0.21 0.53 9.27 9.36

4 0.21 0.54 10.15 10.24

Table 4.1: Values of the capacity-maximizing and error exponent-maximizing Δ,
along with SDR (in dB) obtained for both systems. The source is Gauss-Markov with
ρ = 0.9. K = 4, L = 2 and the channel SNR is 10 dB.

k capacity-maximizing Δ error exponent-maximizing Δ SDRcap SDRerr

2 0.39 - 7.35 -

3 0.39 - 8.29 -

4 0.39 - 9.09 -

5 0.39 0.42 9.46 9.52

6 0.39 0.44 9.82 9.88

Table 4.2: Values of the capacity-maximizing and error exponent-maximizing Δ,
along with SDR (in dB) obtained for both systems. The source is Gauss-Markov with
ρ = 0.9. K = 2, L = 1 and the channel SNR is 10 dB.
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Figure 4.2: K = 4, L = 2, k = 3, r = 1 bps and SNR = 10 dB. The error exponent
for conventional SDD COVQ and exponent-maximizing SDD COVQ.
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Figure 4.3: K = 4, L = 2, k = 4, r = 1 bps and SNR = 10 dB. The error exponent
for conventional SDD COVQ and exponent-maximizing SDD COVQ.
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Figure 4.4: K = 2, L = 1 and SNR = 10 dB. The error exponent computed for
different quantization dimensions. The COVQ is designed for the capacity maximizing
step size of the output uniform quantizer, Δ = 0.21.



Chapter 5

Conclusion and Future Work

The goal of this thesis is to propose iterative COVQ design algorithms that improve

the performance of the system in terms of the signal-to-distortion-ratio, while reducing

or keeping the complexity and storage requirements as low as possible.

First of all, motivated by the non-uniform input index distribution of the classical

COVQ systems, we propose an algorithm that uses MAP decoder at the receiver side

to exploit the non-uniform input distribution. We call the algorithm by the iterative

MAP decoding (IMD) algorithm. The algorithm involves designing the COVQ and

providing the resulting input distribution to the MAP decoder. The initial input

distribution is assumed to be uniform, leaving us with ML decoding for the first

iteration. Thus, the DMC’s distribution is updated in each iteration which in turn

gives the new COVQ. The algorithm is terminated when the end-to-end distortion is

103



CHAPTER 5. CONCLUSION AND FUTURE WORK 104

minimized.

We apply this algorithm to the BPSK modulated AWGN and Rayleigh fading

channels for memoryless Gaussian and Gauss-Markov sources. We derive symbol

MAP decoding metrics for both of the channels. We also study the encoding com-

plexity and storage requirements for the proposed IMD COVQ system, along with

other systems. We show that the IMD COVQ performs always better than con-

ventional COVQ and sometimes better than the soft-decision decoded COVQ. It is

also shown that it reduces the encoding complexity compared with other systems. In

terms of storage requirements, it is almost the same as the conventional COVQ, while

it is much better than the SDD COVQ. All of the achieved gains increase notably

with the increase of quantizaion rate and/or dimension. The fast convergence of the

proposed algorithm is also experimentally demonstrated.

Another iterative COVQ design algorithm based on the JSCC error exponent

is proposed in this thesis. We use the concept of error exponent to optimize the

soft-decision scalar uniform quantizer step size (Δ), in SDD COVQ systems. The

algorithm starts with the DMC capacity maximizing step size, and uses the resulting

input distribution to compute the error exponent as a function of Δ. We then find

Δ that maximizes the error exponent and replace the step size with the new value.

At last, we redesign the COVQ for the updated DMC and the iteration continues

until the distortion is minimized. We study the SDD COVQ for BPSK modulated
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orthogonal space-time block coded MIMO Rayleigh fading channels. We provide

results that show some gain for the proposed system in terms of SDR and JSCC error

exponent.

For future work, one interesting direction is considering the usage of simple vector

quantizers (like lattice VQs) at the receiver side instead of the MAP decoder in IMD

COVQ or the soft-decision uniform quantizer in SDD COVQ. The first part of the

decoder set in the IMD COVQ, divides the output space Rkr into 2kr subsets. This is

the operation performed by the encoder of a VQ. Indeed one can say that the gain of

the IMD COVQ system is achieved by using a relatively complex VQ encoder at the

receiver side. Thus, we can combine the idea of both IMD COVQ and SDD COVQ

with the usage of simple VQs (like lattice VQs as generalizations of the uniform scalar

quantizers) at the receiver side. This may have almost the same gain of IMD COVQ

while it has less decoding complexity. Note that, given a simple VQ encoder at the

receiver side, the idea of increasing the decoding resolution of SDD COVQ can now

be generalized to IMD COVQ by dividing the encoding regions of the VQ to smaller

subsets.

Designing proper non-uniform scalar quantizers for the SDD COVQ is also another

interesting project for future work. In addition, investigating the proposed methods

for other sources, channels and modulation schemes are of considerable interest. In

particular, the usage of the quadrature amplitude modulation (QAM) as a practical
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case should be a reasonable extension of the work presented in this thesis.
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Appendix A

Average Distortion of the COVQ

The reported SDR in Chapter 3 are based on the distortion computed for the averaged

matrix Eh(PY |X), which is itself a transition distribution matrix and is denoted by

P
′
Y |X . This value, as formulated in Equation (3.9), is the same as the average of the

instantaneous distortions of the real system over Rayleigh coefficient vector h. This

fact is proven as follows.

Eh

[
Dn(PY |X(h))

]
= Eh

{
E

[
‖Xn − X̂n‖

2
]}

= Eh

{∑
i

Pi E

[
‖X− X̂n‖

2|i is sent
]}

= Eh

{∑
i

Pi

(∑
j

E
[
‖X− ĉj‖2|i is sent

]
PY |X(j|i)(h)

)}

(a)
===

∑
i
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(∑
j

E
[
‖X− ĉj
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]
Eh

[
PY |X(j|i)(h)

])
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=
∑

i

Pi

(∑
j

E
[
‖X− ĉj

2|i is sent
]
P

′
Y |X(j|i)

)

= Dn(
[
P

′
Y |X

]
)

= Dn(Eh

[
PY |X(h)

]
),

where (a) follows from linearity of the Eh operator and the independence of the fading

coefficients and the source samples.


