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Abstract—We investigate the problem of the predictability
of random variable Y under a privacy constraint dictated by
random variable X , correlated with Y , where both predictabil-
ity and privacy are assessed in terms of the minimum mean-
squared error (MMSE). Given that X and Y are connected via
a binary-input symmetric-output (BISO) channel, we derive the
optimal random mapping PZ∣Y such that the MMSE of Y given
Z is minimized while the MMSE of X given Z is greater than
(1 − ε)var(X) for a given ε ≥ 0. We also consider the case
where (X,Y ) are continuous and PZ∣Y is restricted to be an
additive-noise channel.

I. INTRODUCTION AND PRELIMINARIES

Given private information, represented by X , nature usu-
ally generates non-private observable information, say Y ,
via a fixed channel PY ∣X . Consider two communicating
agents Alice and Bob, where Alice observes Y and wants
to reveal it to Bob in order to receive a payoff. Alice,
therefore, wishes to disclose Y to Bob as accurately as
possible, but in such a way that X is kept almost private
from him. For instance, Y may represent the information
that a social network (Alice) obtains from its users and X
may represent political preferences of the users. Alice wants
to disclose Y as accurately as possible to an advertising
company and, simultaneously, wishes to protect the privacy
of its users. Given a fixed joint distribution PXY , Alice,
hence, needs to choose a random mapping PZ∣Y , the so-
called privacy filter, to release a new random variable Z,
called the displayed data, such that X and Z satisfy a privacy
constraint and Z maximizes a utility function (corresponding
to the predictability of Y ).

This problem has been addressed from an information-
theoretic viewpoint in [1]–[7] where both utility and privacy
are measured in terms of information-theoretic quantities. In
particular, in [4] non-trivial perfect privacy for discrete X
and Y , where Z is required to be statistically independent
of X and dependent on Y , is studied. It is shown that non-
trivial perfect privacy is possible if and only if X is weakly
independent of Y , that is, if the set of vectors {PX ∣Y (⋅) ∶ y ∈
Y} is linearly dependent. An equivalent result is obtained
by Calmon et al. [5] in terms of the singular values of the
operator f ↦ E[f(X)∣Y ].

Although, a connection between the information-theoretic
privacy measure and a coding theorem is established in [3],
the use of mutual information as a privacy measure is not
satisfactorily motivated in an operational sense. To have an
operational measure of privacy, in this paper we take an
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estimation-theoretic approach and define both the privacy and
utility functions in terms of the minimum mean-squared error
(MMSE). For a given pair of random variables (U,V ), the
MMSE of estimating U given V is

mmse(U ∣V ) ∶= E[(U −E[U ∣V ])2] = E[var(U ∣V )],

where var(⋅∣⋅) denotes the conditional variance. The privacy
filter PZ∣Y is said to satisfy the ε-strong estimation pri-
vacy condition for some ε ≥ 0 if mmse(f(X)∣Y ) ≥ (1 −
ε)var(f(X)) for any Borel function1 f of X and similarly,
it is said to satisfy the ε-weak estimation privacy condition
if mmse(X ∣Y ) ≥ (1−ε)var(X). The parameter ε determines
the level of desired privacy; in particular, ε = 0 corresponds
to perfect privacy. We propose to use the estimation noise
to signal ratio (ENSR), defined by mmse(Y ∣Z)

var(Y )
, as the loss

function associated with Y and Z. The goal is to choose
PZ∣Y which satisfies the strong (resp., weak) estimation
privacy condition and minimizes the ENSR (or equivalently
maximizes var(Y )

mmse(Y ∣Z)
as the utility function), which ensures

the best predictability of Y given a privacy-preserving Z.
The function sENSRε(X;Y ) (resp., wENSRε(X;Y )) is in-
troduced as this minimum to quantify the above goal.

To evaluate sENSRε(X;Y ), we first obtain an equivalent
characterization of the ε-strong estimation privacy condition.
We then show that sENSRε(X;Y ) and wENSRε(X;Y ) ad-
mit closed-form expressions when PX ∣Y is a BISO channel.
Moreover, when X is discrete, we develop a bound charac-
terizing the privacy-constrained error probability, Pr(Ŷ (Z) ≠
Y ), for all estimators Ŷ (Z) given a privacy-preserving Z,
thus generalizing the results of [9]. In particular, we show
that the fundamental bound on privacy-constrained error
probability decreases linearly as ε increases, analogously
to [9, Corollaries 3,5]. We also study sENSRε(Xn;Y n)
when n independent identically distributed (i.i.d.) copies
(Xn, Y n) of (X,Y ) are available. We demonstrate that if
the class of privacy filters is constrained to be memoryless,
then sENSRε(Xn;Y n) remains the same for any n. This
is reminiscent of the tensorization property for maximal
correlation [10].

In addition, sENSRε(X;Y ) is considered for the case
where (X,Y ) has a joint probability density function by
studying the problem where the displayed data Z is obtained

1This is reminiscent of semantic security [8] in the cryptography com-
munity. An encryption mechanism is said to be semantically secure if the
adversary’s advantage for correctly guessing any function of the privata
data given an observation of the mechanism’s output (i.e., the ciphertext) is
required to be negligible.



by passing Y through an additive noise channel. In this case,
we show that for a Gaussian noise process, jointly Gaussian
(XG, YG) is the worst case (i.e., has the largest ENSR). We
also show that if only YG is Gaussian then the ENSR of
(X,YG) is very close to the Gaussian ENSR if the maximal
correlation between X and YG is close to the correlation
coefficient between X and YG.

We omit the proof of most of the paper’s results due to
space limitation. The proofs are available in [11].

II. STRONG ESTIMATION PRIVACY GUARANTEE

Consider the scenario where Alice observes Y which is
correlated with a private random variable X , drawn from
a given joint distribution PXY , and wishes to transmit the
random variable Z to Bob to receive some utility from him.
Her goal is to maximize the utility while making sure that
Bob cannot efficiently estimate any non-trivial function of
X given Z. To formalize this privacy guarantee, we give the
following definition. In what follows random variables X , Y ,
and Z have alphabets X , Y , and Z , respectively, which are
either finite subsets of R or they are all equal to R.

Definition 1. Given a joint distribution PXY and ε ≥ 0,
Z is said to satisfy ε-strong estimation privacy, denoted as
Z ∈ Γε(PXY ), if there exists a random mapping (channel)
PZ∣Y that induces a joint distribution PX ×PZ∣X on X ×Z ,
via the Markov condition X ⊸−− Y ⊸−− Z, satisfying

mmse(f(X)∣Z) ≥ (1 − ε)var(f(X)), (1)

for any non-constant Borel functions f on X . Similarly, Z
is said to satisfy ε-weak estimation privacy, denoted as Z ∈
∂Γε(PXY ), if (1) is satisfied only for the identity function
f(x) = x.

In the sequel, we drop in the notation the dependence of
Γε(PXY ) (resp., ∂Γε(PXY )) on PXY and simply write Γε
(resp., ∂Γε).

Suppose the utility Alice receives from Bob is var(Y )
mmse(Y ∣Z)

.
The utility is maximized (and is equal to ∞) when Z = Y
with probability one and is minimized (and is equal to one)
when Z is independent of Y . In order to quantify the tradeoff
between privacy guarantee (introduced above) and the utility,
we propose the following function, which we call the strong
privacy-aware estimation noise to signal ratio (ENSR):

sENSRε(X;Y ) ∶= inf
Z∈Γε

mmse(Y ∣Z)
var(Y ) . (2)

Similarly, we can use weak estimation privacy to define the
weak privacy-aware ENSR as follows:

wENSRε(X;Y ) ∶= inf
Z∈∂Γε

mmse(Y ∣Z)
var(Y ) . (3)

Remark 1. Rényi [12] defined the correlation ratio of Y on

Z, denoted by ηZ(Y ), as η2
Z(Y ) ∶= var(E[Y ∣Z])

var(Y ) which can

be shown to be equal to supg ρ
2(Y ; g(Z)), where ρ is the

standard correlation coefficient. It is clear from the law of
total variance that

mmse(Y ∣Z)
var(Y ) = 1 − η2

Z(Y ).

In the sequel, we obtain an equivalent characterization for
the random mapping PZ∣X which generates Z ∈ Γε. To this
goal, we need the following definition.

Definition 2 ([12]). Given random variables U and V taking
values over arbitrary alphabets U and V , respectively, the
maximal correlation ρm(U ;V ) is defined as

ρ2
m(U ;V ) ∶= sup

f,g
ρ2(f(U), g(V ))

= sup
(f(U),g(V ))∈S0

E2[f(U)g(V )]
var(f(U))var(g(V )) ,

where S0 is the collection of all pairs of real-valued
measurable functions f and g of U and V , respec-
tively, such that E[f(U)] = E[g(V )] = 0 and 0 <
var(f(U)), var(g(V )) < ∞.

Rényi [12] derived an equivalent characterization of max-
imal correlation as

ρ2
m(U ;V ) = sup

f∈S0
U

E [E2[f(U)∣V ]]
var(f(U)) , (4)

where S0
U is the collection of real-valued measurable func-

tions f of U such that E[f(U)] = 0 and 0 < var(f(U)) < ∞.

Theorem 1. For a given PXY , Z ∈ Γε if and only if
there exists PZ∣Y which induces PZ∣X via X ⊸−− Y ⊸−− Z
satisfying ρ2

m(X;Z) ≤ ε for any ε ≥ 0.

In light of Theorem 1 and Remark 1, we can alternatively
write sENSRε(X;Z) and wENSRε(X;Z) as

sENSRε(X;Y ) = 1 − sup
PZ∣Y ∶ρ2m(X;Z)≤ε,

X⊸−−Y⊸−−Z

η2
Z(Y ), (5)

and
sENSRε(X;Y ) = 1 − sup

PZ∣Y ∶η2
Z
(X)≤ε,

X⊸−−Y⊸−−Z

η2
Z(Y ), (6)

for any ε ≥ 0. We note that, using the Support Lemma [13],
one can show that the set Γε can be described by considering
Z ∈ Z with ∣Z∣ ≤ ∣Y∣+1 in case Y is finite. We also note that
since both maximal correlation and correlation ratio satisfy
the data processing inequality [3], [9], i.e. ρ2

m(X;Z) ≤
η2
m(X;Y ) and η2

Z(X) ≤ η2
Y (X) if X ⊸−− Y ⊸−− Z, we can

restrict our attention to 0 ≤ ε ≤ ρ2
m(X;Y ) and 0 ≤ ε ≤ η2

Y (X)
in (5) and (6), respectively.

III. CHARACTERIZATION OF sENSRε(X;Y ) AND
wENSRε(X;Y ) FOR DISCRETE X AND Y

We first derive some properties of sENSRε(X;Y ) and
wENSRε(X;Y ) when both X and Y are discrete. For a given
PXY and 0 ≤ ε ≤ ρ2

m(X;Y ), we have the following trivial
bounds:

0 ≤ wENSRε(X;Y ) ≤ sENSRε(X;Y ) ≤ 1 − ε, (7)

where the last inequality can be proved by noticing that
sENSRε(X;Y ) ≤ sENSRε(Y ;Y ) and

mmse(Y ∣Z) = var(Y )(1 − η2
Z(Y ))



≥ var(Y )(1 − ρ2
m(Y ;Z)), (8)

where (8) follows from the definition of maximal correlation.
The lower bound 0 ≤ sENSRε(X;Y ) in (7) is achieved
if and only if ρ2

m(X;Y ) = ε. On the other hand, when
ε = 0, the upper bound sENSR0(X;Y ) ≤ 1 is tight if and
only if all Z ∈ Γ0 are independent of Y . Hence, from [3,
Lemma 6], sENSR0(X;Y ) = 1 if and only if X is not
weakly independent of Y . In particular, if ∣Y∣ > ∣X ∣ then
sENSR0(X;Y ) < 1, and if ∣Y∣ = 2, then sENSR0(X;Y ) = 1.

The map ε ↦ sENSRε(X;Y ) is clearly non-increasing.
The following lemma states that this map is indeed convex
and thus strictly decreasing. As another consequence of this
convexity, we obtain an upper bound on sENSRε(X;Y )
which strictly strengthens (7).

Lemma 1. For any joint distribution PXY , the maps
ε ↦ sENSRε(X;Y ) and ε ↦ wENSRε(X;Y ) are convex.

In light of the convexity of ε ↦ sENSRε(X;Y ), the
following corollaries are immediate.

Corollary 1. For a given PXY , the maps ε↦ 1−sENSRε(X;Y )
ε

and ε↦ 1−wENSRε(X;Y )
ε

are non-increasing over (0,1).

Corollary 2. For a given PXY and 0 ≤ ε ≤ ρ2
m(X;Y ),

sENSRε(X;Y ) ≤ 1 − ε

ρ2
m(X;Y ) .

Remark 2. Note that simple calculations reveal that the upper
bound in Corollary 2 is achieved by the erasure channel:

PZ∣Y (z∣y) = { 1 − δ̃, if z = y
δ̃, if z = e,

for all y ∈ Y and the erasure probability δ̃ = 1− ε
ρ2m(X;Y )

for
0 ≤ ε ≤ ρ2

m(X;Y ).

A. Binary Input Symmetric Output PX ∣Y
We now turn our attention to the special case where the

backward channel from Y to X , PX ∣Y , belongs to a family
of channels called binary input symmetric output (BISO)
channels, see e.g., [14]. For Y ∼ Bernoulli(p), PX ∣Y is
BISO if, for any x ∈ X = {0,±1,±2, . . . ,±k}, we have
PX ∣Y (x∣1) = PX ∣Y (−x∣0). As pointed out in [14], one can
always assume that the output alphabet X = {±1,±2, . . . ,±k}
has even number of elements by splitting the symbol 0
into two symbols and assigning them equal probabilities.
Binary symmetric channels and binary erasure channels
are both BISO. In the following theorem, we show that
wENSRε(X;Y ) can be calculated in closed-form when PX ∣Y
is a BISO channel.

Theorem 2. Let Y ∼ Bernoulli(p) and PX ∣Y be a BISO
channel. Then for 0 ≤ ε ≤ ρ2

m(X;Y ), we have

wENSRε(X;Y ) = 1 − ε var(X)
4var(Y )E2[X ∣Y = 1] ,

and

1−ε var(X)
4var(Y )E2[X ∣Y = 1] ≤ sENSRε(X;Y ) ≤ 1− ε

ρ2
m(X;Y ) .

Similar to [9], we also consider the tradeoff between
strong estimation privacy and the probability of correctly
guessing Y . To quantify this, let Ŷ ∶ Z → Y be the Bayes
decoding map. The resulting (minimum) error probability is
Pr(Ŷ (Z) ≠ Y ). Let

Pe
ε(X;Y ) ∶= min

Z∈∂Γε
Pr(Ŷ (Z) ≠ Y ). (9)

Note that when Z is independent of Y , the optimal Bayes
decoding map yields Pr(Ŷ (Z) ≠ Y ) = 1 − p, if p = PY (1) ≥
1
2

. Using a similar argument as in [15, Appendix A], we
establish the following connection between Pe

ε(X;Y ) and
wENSRε(X;Y ).

Proposition 1. Let Y ∼ Bernoulli(p) with p ≥ 1
2

. Then we
have

wENSRε(X;Y ) ≤ Pe
ε(X;Y )
var(Y ) ≤ 2wENSRε(X;Y )

Calmon et al. [9] considered the same problem for X = Y ,
i.e., minimizing Pr(X̂(Z) ≠ X) over all PZ∣X such that
ρ2
m(X;Z) ≤ ε and showed that the best privacy-constrained

error probability is lower bounded by a straight line of ε with
negative slope. Combining Theorem 2 and Proposition 1, we
can lower bound Pe

ε(X;Y ) for all BISO PX ∣Y by a straight
line in ε as follows:

Pe
ε(X;Y ) ≥ var(Y ) − ε var(X)

4E2[X ∣Y = 1] ,

which generalizes [9, Corollaries 3,5].
In the following, we consider two examples of BISO

channels for which the bounds in Theorem 2 coincide.
First consider PX ∣Y being a binary symmetric channel with
crossover probability α, denoted as BSC(α).

Lemma 2. For Y ∼ Bernoulli(p) and PX ∣Y = BSC(α) for
α ∈ [0, 1

2
), we have for 0 ≤ ε ≤ ρ2

m(X;Y ),

1 − εvar(X)
4(1 − 2α)2var(Y ) ≤ sENSRε(X;Y ) ≤ 1 − ε

ρ2
m(X;Y ) ,

and

var(Y )− εvar(X)
4(1 − 2α)2

≤ Pe
ε(X;Y ) ≤ 2 [var(Y ) − εvar(X)

4(1 − 2α)2
] .

Moreover, if p = 0.5,

sENSRε(X;Y ) = wENSRε(X;Y ) = 1 − ε

(1 − 2α)2
,

and the optimal channel is BEC(δ̃) (see Fig. 1) where

δ̃ = 1 − ε

(1 − 2α)2
. (10)

We next consider PX ∣Y being a binary erasure channel
with erasure probability δ, denoted as BEC(δ).

Lemma 3. For Y ∼ Bernoulli(p) and PX ∣Y = BEC(δ) for
δ ∈ [0,1), we have for 0 ≤ ε ≤ ρ2

m(X;Y ),

1 − εvar(X)
4var(Y )(1 − δ)2

≤ sENSRε(X;Y ) ≤ 1 − ε

1 − δ ,
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Fig. 1. Optimal privacy filter where PY ∣X = BSC(α) with Y ∼

Bernoulli(0.5) where δ̃ is specified in (10).

and

var(Y ) − εvar(X)
4(1 − δ)2

≤ Pe
ε(X;Y ) ≤ 2 [var(Y ) − εvar(X)

4(1 − δ)2
] .

Moreover, if p = 0.5,

sENSRε(X;Y ) = 1 − ε

1 − δ ,

and the optimal channel is BEC(δ̃) (see Fig. 2) where

δ̃ = 1 − ε

1 − δ . (11)

We conclude this section by connecting the above results
to initial efficiency2. For BISO channels, we define the initial
efficiency of fε(X;Y ) ∶= var(Y ) − var(Y )wENSRε(X;Y )
with respect to ε as the derivative f ′0(X;Y ) of ε↦ fε(X;Y )
at ε = 0. In fact, f ′0(X;Y ) quantifies the decrease of
mmse(Y ∣Z) when ε slightly increases from 0. Then since
for any BISO PX ∣Y , f0(X;Y ) = 0, using Corollary 1 and
the convexity of ε↦ wENSRε(X;Y ), we can write

f ′0(X;Y ) = lim
ε↓0

fε(X;Y )
ε

= sup
ε>0

fε(X;Y )
ε

= var(X) max
PZ∣Y ∶

X⊸−−Y⊸−−Z

var(Y ) −mmse(Y ∣Z)
var(X) −mmse(X ∣Z)

We can, therefore, conclude from Theorem 2 that for a given
pair of random variables (X,Y ) with BISO PX ∣Y , we have

max
PZ∣Y ∶

X⊸−−Y⊸−−Z

var(Y ) −mmse(Y ∣Z)
var(X) −mmse(X ∣Z) = 1

4E2[X ∣Y = 1] .

B. sENSRε(X;Y ) and wENSRε(X;Y ) with n i.i.d. obser-
vations

Let (Xn, Y n) be n i.i.d. copies of (X,Y ) with a given
distribution PXY . Similar to (2) and (3), we can define

sENSRε(Xn;Y n) ∶= 1 − 1

n
sup
Z∈Γ⊗nε

n

∑
i=1

η2
Zn(Yi),

and

wENSRε(Xn;Y n) ∶= 1 − 1

n
sup

Z∈∂Γ⊗nε

n

∑
i=1

η2
Zn(Yi),

2Initial efficiency was previously defined for the common randomness
problem in [16], for secret key generation in [17], for incremental growth
rate in a stock market [18], and for information extraction under privacy
constraint in [3].
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Fig. 2. Optimal privacy filter where PX∣Y = BEC(δ) with
Y ∼ Bernoulli(0.5) where δ̃ is specified in (11).

where Γ⊗nε ∶= {PZn∣Y n ∶ ρ2
m(Xn;Zn) ≤ ε}, and ∂Γ⊗nε ∶=

{PZn∣Y n ∶
n

∑
i=1

η2
Zn(Xi) ≤ nε}.

As shown in [5], sENSR0(X;Y ) < 1 if and only if
the smallest singular value, σmin, of the operator f(X) ↦
E[f(X)∣Y ] is zero. It is also shown in [5, Proposition 1]
that the smallest singular value of the operator f(Xn) ↦
E[f(Xn)∣Y n] for i.i.d. (Xn, Y n), is σnmin and it hence fol-
lows that unless σmin = 1, limn→∞ sENSR0(Xn;Y n) < 1 for
any distribution PXY and hence non-trivial perfect privacy
is possible. The following result implies that the optimal pri-
vacy filter PZn∣Y n which achieves non-trivial perfect privacy
cannot be a memoryless channel.

Proposition 2. Let (Xn, Y n) be an i.i.d. copies of (X,Y )
with distribution PXY . If the family of feasible random
mapping in the optimizations (5) and (6) is constrained to
be of the form PZn∣Y n(zn∣yn) = ∏ni=1 Pi(zi∣yi), then

sENSRε(Xn;Y n) = sENSRε(X;Y ),

wENSRε(Xn;Y n) = wENSRε(X;Y ).

IV. CONTINUOUS (X,Y ), ADDITIVE GAUSSIAN NOISE
AS PRIVACY FILTER

In this section, we assume that X and Y are both ab-
solutely continuous random variables and the channel PZ∣Y
is modelled by a scaled additive stable3 noise variable Nf
which is independent of (X,Y ) and has density f with zero
mean and unit variance, i.e.,

Zγ = Y + γNf ,

for some γ ≥ 0. We then define

sENSRfε (X;Y ) ∶= 1 − sup
γ∈Cε(PXY )

η2
Zγ (Y ),

and
wENSRfε (X;Y ) ∶= 1 − sup

γ∈∂Cε(PXY )

η2
Zγ (Y ),

where Cε(PXY ) ∶= {γ ≥ 0 ∶ ρ2
m(X;Zγ) ≤ ε}

and ∂Cε(PXY ) ∶= {γ ≥ 0 ∶ η2
Zγ

(X) ≤ ε}.
If the noise process is Gaussian N(0,1), we de-
note Nf , sENSRfε (X;Y ), and wENSRfε (X;Y ) by NG,
sENSRε(X;Y ), and wENSRε(X;Y ), respectively.

3A random variable X with distribution P is called stable if for X1, X2

i.i.d. according to P , for any constants a, b, the random variable aX1 +

bX2 has the same distribution as cX + d for some constants c and d [19,
Chapter 1].



The bounds for wENSRε(X;Y ) obtained in (7) clearly
hold: 0 ≤ wENSRfε (X;Y ) ≤ sENSRfε (X;Y ) ≤ 1 − ε, and in
particular, sENSRf0(X;Y ) ≤ 1. In the following, we show
that this last inequality is in fact an equality.

Proposition 3. For a given absolutely continuous (X,Y ),
the map ε ↦ sENSRfε (X;Y ) is non-negative, strictly de-
creasing and satisfies

sENSRf0(X;Y ) = 1.

Example 1. Let (XG, YG) be jointly Gaussian with correla-
tion coefficient ρ and let Nf = NG. Without loss of generality,
we can assume that E[XG] = E[YG] = 0. It is known [12]
that ρ2

m(XG;Zγ) = ρ2(XG;Zγ) and hence

ρ2
m(XG;Zγ) = ρ2 var(YG)

var(YG) + γ2
,

which implies that γ ↦ ρ2
m(XG;Zγ) is strictly decreasing

and hence ρ2
m(XG;Zγ) = ε for 0 ≤ ε ≤ ρ2

m(XG;YG) = ρ2 has
a unique solution

γ2
ε ∶= var(YG)(

ρ2

ε
− 1)

and Zγ ∈ Γε for any γ ≥ γε. On the other hand,
mmse(YG∣Zγ) = var(YG) γ2

var(YG)+γ2 which shows that the
map γ ↦ mmse(YG∣Zγ) is strictly increasing and hence

sENSRε(XG;YG) =
mmse(YG∣Zγε)

var(YG)
= 1 − ε

ρ2
. (12)

It is easy to check that that η2
Zε

(XG) = ρ2
m(XG;Zε) = ε

This then implies that for the jointly Gaussian (XG, YG),
Cε(PXGYG

) = ∂Cε(PXGYG
). Hence, for 0 ≤ ε ≤ ρ2,

sENSRε(XG;YG) = wENSRε(XG;YG) = 1 − ε

ρ2
. (13)

This example suggests that the bound in Corollary 2 still

holds for absolutely continuous (X,Y ) in this model. We
prove this observation in the following lemma with the
assumption that N = NG.

Lemma 4. For a given absolutely continuous (X,Y ), we
have for 0 ≤ ε ≤ ρ2

m(X;Y )

wENSRε(X;Y ) ≤ sENSRε(X;Y ) ≤ 1 − ε

ρ2
m(X;Y ) .

Combined with (13), this lemma also shows that among
all (X,Y ) with identical maximal correlation, the jointly
Gaussian (XG, YG) yields the largest sENSRε(X;Y ) when
the noise process is Gaussian. This observation is similar
to [20, Theorem 12] which states that for Gaussian noise,
the Gaussian input is the worst with no privacy constraint
imposed; i.e., mmse(Y ∣Y +NG) ≤ mmse(YG∣YG+NG) where
YG is Gaussian having the same variance as Y .

We finally obtain a lower bound on sENSRε(X;Y ) when
only Y is Gaussian.

Lemma 5. Let X be jointly distributed with Gaussian YG.

Then,

1 − ε

ρ2(X;YG)
≤ sENSRε(X;YG) ≤ 1 − ε

ρ2
m(X;YG)

,

This lemma, together with Example 1, implies that

sENSRε(XG, YG) − sENSRε(X;YG)

≤ ε [ 1

ρ2(X;YG)
− 1

ρ2
m(X;YG)

]

for Gaussian XG which satisfies ρ2
m(XG;YG) = ρ2

m(X;YG).
This demonstrates that if the difference ρ2

m(X;YG) −
ρ2(X;YG) is small, then sENSRε(X;YG) is very close to
sENSRε(XG;YG).
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