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Abstract—This paper considers an information bottleneck
problem with the objective of obtaining a most informative
representation of a hidden feature subject to a Rényi entropy
complexity constraint. The optimal bottleneck trade-off between
relevance (measured via Shannon’s mutual information) and
Rényi entropy cost is defined and an iterative algorithm for
finding approximate solutions is provided. We also derive an
operational characterization for the optimal trade-off by demon-
strating that the optimal Rényi entropy-relevance trade-off is
achievable by a simple time-sharing scalar coding scheme and
that no coding scheme can provide better performance. Two
examples where the optimal Shannon entropy-relevance trade-
off can be exactly determined are further given.

Index Terms—Information bottleneck, entropy-constrained op-
timization, Rényi entropy, coding theorem, time-sharing.

I. INTRODUCTION

In the past decade, the optimization of information measures
such as entropy, cross-entropy, and mutual information has
been widely and successfully adopted in machine learning al-
gorithms [1]–[4] and transmission systems [5]–[10]. In partic-
ular, numerous results are related to the so-called information
bottleneck (IB) method [11] whose objective is to extract from
observed data the maximal relevant information about a hidden
variable subject to a mutual information complexity constraint.
Significant efforts are still devoted to studying the IB method
and its variants, including its variational approximation [12],
its application to analyze the effectiveness of deep neural
networks [13], and its generalizations [14], [15]. This paper
studies a constrained information optimization problem that is
close to a deterministic variant of the IB method, the so-called
deterministic IB (DIB) method [16].

The DIB method was proposed to capture the notion of
compression in the IB method. In view of Shannon’s lossless
source coding theorem [17], the authors of [16] suggested
replacing the mutual information complexity constraint in the
IB method with a Shannon entropy complexity constraint
to take into account the cost of storing the extracted infor-
mation. Here, the storage cost is assumed to vary linearly
with the length of the codeword that represents the extracted
information. Motivated by Campbell’s source coding theorem
[18], an extension of Shannon’s result, we consider a Rényi
entropy [19] constraint to associate the codeword length with
an exponential storage cost (which is more appropriate for
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applications where the processing cost of decoding and buffer
overflow problems caused by long codewords are significant).
As Shannon entropy is a limiting case of Rényi entropy [19]
(as the order goes to 1), this consideration extends the DIB
method in a certain sense.

Our Rényi extension may provide a way to improve the
performance of the DIB method in machine learning tasks
[2] or other applications such as channel quantization [7]
and relay transmission [9]. In addition, the use of Rényi
entropy generated interest in its own right in information
theory and it has played an important role in a variety of
studies, including generalized source-coding cut-off rates [20],
[21], quantization [22], encoding tasks [23], guessing [24],
information combining [25], generative deep networks [26],
etc. It is thus of interest to examine the role of Rényi entropy
in bottleneck problems.

We now formulate our bottleneck problem. Consider a pair
of discrete random variables (Y,X) with joint probability
distribution PY,X over a finite alphabet Y × X and another
(representation) random variable W ∈ W , which form a
Markov chain: Y(−−X(−−W , i.e., PY,X,W = PY,XPW |X .
The objective is to determine the maximal amount of rel-
evant information about Y that can be extracted from X
and conveyed in W subject to a Rényi entropy constraint
Hα(W ) ≤ γ for α ∈ (0, 1),1 where Hα(·) denotes the Rényi
entropy of order α [19]. We call this problem an information-
Rényi entropy bottleneck problem and study the function
Fα,M : R≥0 → R≥0 in connection with the problem:

Fα,M (γ) := max
PW |X :Y(−−X(−−W
|W|≤M,Hα(W )≤γ

I(Y ;W ) (1)

where γ ≥ 0, M is a finite positive integer, and |W| denotes
the cardinality ofW . To simplify our presentation, we let F1,M

denote (1) with the constraint Hα(W ) ≤ γ replaced by a
Shannon entropy constraint H(W ) ≤ γ, which is a constrained
optimization formulation of the DIB problem in [16].

Define Īα,M as the upper concave envelope of Fα,M for
α ∈ (0, 1]. By [27, Corollary 17.1.5], we have that

1Although Hα(W ) is defined for α ∈ (0, 1) ∪ (1,∞), we only consider
α ∈ (0, 1) since Hα(W ) with such α has an operational meaning in the
application of Campbell’s source coding theorem [18]. Moreover, Hα(W )
is a concave and continuous function in PW in this range of α; these two
properties allow us to replace the supremum with maximum in (1) and (2)
and develop efficient numerical methods to compute (2).



Īα,M (γ) = max

2∑
i=1

λiFα,M (γi) (2)

where the maximum is taken over all convex combinations of
two pairs (γi, Fα,M (γi)), i = 1, 2, such that

∑2
i=1 λiγi = γ.

In this paper, we show that the function Īα,M describes the
optimal Rényi entropy-relevance trade-off for our bottleneck
problem. Specifically, we establish an operational characteri-
zation of Īα,M for any α∈(0, 1) and finite M . This finding
is analogous to the IB coding theorem [28] and clarifies the
operational meaning of the information quantities in (1). We
note that a closed-form expression of Īα,M is only available
for very special cases. We also derive bounds for Īα,M and
provide numerical methods to compute Īα,M .

The rest of this paper is organized as follows. In Section II,
the system model is given and the IB and DIB results are
reviewed. In Section III, bounds and properties for Īα,M
are established, followed by the derivation of an operational
characterization. In Section IV, methods to compute Īα,M and
two examples are given. Conclusions are drawn in Section V.

II. PRELIMINARIES

Given discrete random variables Ai on a common alphabet
A, i = 1, 2, . . . , n, we let An = (A1, A2, . . . , An). Through-
out this paper, we assume the following system model when
developing information-theoretic results. The system input is
a sequence of independent and identically distributed (i.i.d.)
random variables Xi ∈ X , i = 1, 2, . . . , n, which is correlated
with another sequence of i.i.d. hidden variables Yi ∈ Y . The
joint probability distribution is given by PY n,Xn(yn, xn) =∏n
i=1 PY,X(yi, xi) for some joint distribution PY,X . The goal

is to transform Xn into the most informative Wn subject to a
complexity constraint. In [28], a complete coding theorem is
derived for the IB method, but there seems to have no corre-
sponding result for the DIB method. One of our objectives is
to fill this gap under a more general framework.

We begin with the definition of Rényi entropy [19] of order
α ∈ (0, 1)∪ (1,∞) of a random variable W with alphabet W
and distribution PW :

Hα(W ) :=
1

1− α
log2

∑
w∈W

PαW (w)

.
Some properties of Hα(W ) for α∈(0, 1) are summarized [29]:
• H(W ) = H1(W ) := limα→1Hα(W );
• 0 ≤ Hα(W ) ≤ log2 |W|;
• Hα(W ) is non-increasing in α;
• Hα(W ) is concave in PW for α ∈ [0, 1];
• Hα(W ) is continuous in α at any α∈(0, 1) and finiteW .
In this paper, all information quantities are measured in bits.

We next review some IB and DIB results related to our work.

A. The IB Method [11] and A Complete Coding Theorem [28]

In short, the IB method aims to extract from an observation
X the most relevant representation W about a hidden variable
Y under a complexity constraint. For any fixed PY,X , such
an objective is associated with the function ĪIB : R≥0 → R≥0
defined as

ĪIB(r) := max
PW |X :Y(−−X(−−W

I(X;W )≤r

I(Y ;W ) (3)

which is non-decreasing, continuous, and concave in r [30].
One can also set |W| = |X |+ 1 without changing ĪIB(γ). An
operational interpretation of the ĪIB function is described next.

Definition 1. A (2nrn , n) IB code consists of an encoding
function En : Xn → {1, 2, . . . , 2nrn} and a decoding function
Dn : {1, 2, . . . , 2nrn} → Wn.

The average symbol-wise mutual information between Y n

and Wn associated with the above code is computed as ηn :=
1
n

∑n
i=1 I(Yi;Wi), where Wn = Dn(En(Xn)).

Definition 2. A complexity-relevance pair (r, η) is said to be
achievable if there exists a sequence of IB codes {En,Dn}
such that lim supn→∞ rn ≤ r and lim infn→∞ ηn ≥ η. The
achievable IB region RIB ⊂ R2

≥0 is defined as the closure of
all achievable pairs.

Letting IIB(r)=max(η : (r, η)∈RIB), Gilad et al. proved the
following proposition in [28]. Here, we rephrase their original
statement in [28, Theorem 2] in terms of the functions IIB and
ĪIB, which is more convenient for our use.

Proposition 1 ([28]). IIB(r) = ĪIB(r) for r ≥ 0.

B. The DIB Method [16]
As mentioned before, the DIB method borrows the source

coding idea from information theory and intends to minimize
the representation cost for W . Specifically, the DIB method is
associated with the following optimization problem

max
PW |X :Y(−−X(−−W

[
βI(Y ;W )−H(W )

]
(4)

where β ∈ [0,∞) controls the trade-off between I(Y ;W )
and H(W ). When W is finite, (4) is a convex optimization
problem since, as one can verify, H(W ) is concave in PW |X
and I(Y ;W ) is convex in PW |X for any fixed PY,X [31].
Moreover, the feasible set of all valid conditional probability
distributions PW |X is compact and convex. Therefore, we
know that the maximum value of the objective function is
attainable by some extreme point of the feasible set [27, Corol-
lary 32.3.1]. In our case, the extreme points are conditional
distributions PW |X where PW |X(w|x) is either 0 or 1 for any
x ∈ X and w ∈ W , i.e., the optimizer of (4) is deterministic.2

We remark that the objective function to be maximized in
(4) can be viewed as the Lagrangian corresponding to the
constrained optimization problem in (1) with Hα(W ) replaced
by H(W ), where β denotes the Lagrange multiplier. From
this viewpoint, the DIB problem is a special case of our
information-Rényi entropy bottleneck problem. In [16], the
DIB method was empirically shown to attain a relevance level
similar to that of the IB method with smaller entropy H(W ).
However, unlike the IB method, the DIB method does not have
an operational meaning in terms of a coding theorem.

III. THE RÉNYI ENTROPY-RELEVANCE TRADE-OFF AND
OPERATIONAL CHARACTERIZATION

In Section I, we defined Īα,M as the upper concave function
of Fα,M . In this section, we investigate the properties of Īα,M ,

2 [16] adopted another more complex approach to solve (4) and concluded
the same deterministic structure for the maximizing distribution.
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Fig. 1: (a) All feasible Rényi entropy-relevance pairs must lie in the shaded region, (b) Typical shapes of the set S =
{(Hα(W ), I(Y ;W )) : PW |X ∈ P(W|X )} and the convex hull of S, and (c) The plot of Ī1,M (γ) for the case Y = f(X),
where the black dots are given by deterministic PW |X ’s and the curve is obtained by the DIB method [32].

which will be used in deriving an operational characterization
and to develop efficient numerical methods to estimate Īα,M .
Below, we assume that PY,X = PXPY |X , M < ∞, and α ∈
(0, 1) are fixed, unless otherwise stated.

A. Bounds on Īα,M (γ) and Properties of Īα,M (γ)

We first recall under the Markov chain constraint Y (−−
X (−−W , we have

I(Y ;W ) ≤ I(Y ;X) (5a)
and

I(Y ;W ) ≤ H(W ) ≤ Hα(W ) ≤ log2 |W| (5b)

where (5a) is due to the data-processing inequality [33] and
(5b) holds since Hα(W ) is non-increasing in α. Based on (5),
we construct a concave function Ω given by Ω(γ) = γ for γ ∈
[0, I(Y ;X)] and Ω(γ) = I(Y ;X) for γ > I(Y ;X). Using the
definition of Īα,M and the concavity of Ω, we immediately
obtain the following result.

Lemma 1. Īα,M (γ) ≤ Ω(γ) ≤ log2M for any γ ≥ 0.

Moreover, we can relate Ī1,M to the IB function ĪIB in (3):

Lemma 2. Ī1,M (γ) ≤ ĪIB(γ) for any γ ≥ 0.

Proof: For any γ ≥ 0, since the constraint H(W ) ≤ γ
implies that I(X;W ) ≤ γ, we have that ĪIB(γ) ≥ Fα,M (γ).
By invoking the concavity of ĪIB and the definition of Ī1,M ,
we immediately obtain the desired inequality.

Using a similar argument, one can also deduce the following
two statements whose proofs we omit for simplicity.

Lemma 3. Īα,M (γ) ≤ Ī1,M (γ) for any γ ≥ 0.

Lemma 4. Īα,M (γ) ≤ Īα,M+1(γ) for any γ ≥ 0.

A visualization of these bounds is given in Fig. 1(a). In the
following, we present some properties of Īα,M . First, Īα,M (γ)
is non-decreasing in γ since Fα,M (γ) is non-decreasing.
Moreover, Īα,M (γ) is a continuous function in γ. To see this,
we note that Īα,M (γ) is continuous for γ > 0 due to the
concavity [27, Theorem 10.2]. One can directly verify that
limγ→0+ Īα,M (γ) = Īα,M (0) to complete the proof.

Furthermore, let PM (W|X ) = {PW |X : |W| = M}. Due
to the compactness of PM (W|X ), the image S of PM (W|X )
under the continuous mapping PW |X 7→ (Hα(W ), I(Y ;W ))

is also compact, which guarantees the existence of a PW∗M |X ∈
PM (W|X ) that satisfies I(Y ;W ∗M ) = max(η : (γ, η) ∈ S) :=
J and Hα(W ∗M ) = min(γ : (γ, J) ∈ S). This result indicates
that the graph of Īα,M is flat with Īα,M (γ) = J for γ ≥
Hα(W ∗M ). When M ≥ |X |, we have that J = I(Y ;X); a
visualization of this case is given in Fig. 1(b). Note that the
W ∗M does not necessarily equal to X (in distribution).

We next establish an operational characterization of Īα,M by
associating each pair (γ, Īα,M (γ)) with an optimal operational
scheme. This result implies that Īα,M (γ) is the maximal
achievable relevance of a system when the representation cost
is at most γ (bits/input symbol).

B. An Operational Characterization of Īα,M (γ)

We consider the system model in Section II. The goal of an
operational scheme here is to transform Xn into Wn under
a Rényi entropy constraint where α ∈ (0, 1) while preserving
the relevant information about Y n as much as possible. For
this purpose, we define Rényi entropy-relevance codes below.

Definition 3. A length-n Rényi entropy-relevance code is a
mapping Φnα,M : Xn →Wn.

Let Wi denote the ith component of the output Φnα,M (Xn).
The average output Rényi entropy γn associated with Φnα,M is
then given by γn = 1

n

∑n
i=1Hα(Wi), and the associated aver-

age relevance level ηn is computed as ηn = 1
n

∑n
i=1 I(Yi;Wi).

Definition 4. A Rényi entropy-relevance pair (γ, η) is said
to be achievable if there exists a sequence of codes {Φnα,M}
such that lim supn→∞ γn ≤ γ and lim infn→∞ ηn ≥ η. The
achievable Rényi entropy-relevance region Rα,M ⊆ R2

≥0 is
defined as the closure of all achievable pairs.

Similar to the IB result, we next define Iα,M (γ) = max(η :
(γ, η) ∈ Rα,M ). We obtain the following theorem.

Theorem 1. Iα,M (γ) = Īα,M (γ) for γ ≥ 0.

Proof: (Achievability): It suffices to consider the situation
where γ ≤ Hα(W ∗M ) since by the flatness property of
the function Īα,M and Definition 4, the achievability of the
pair (Hα(W ∗M ), Īα,M (Hα(W ∗M ))) implies the achievability
of (γ, Īα,M (γ)) for any γ > Hα(W ∗M ). Now we show
that any pair (γ, η) = (γ, Īα,M (γ)) with γ ≤ Hα(W ∗M )
is achievable. By the definition of Īα,M (γ) in (2), we can



write (γ, Īα,M (γ)) =
∑2
k=1 λk(γ(k), Fα,M (γ(k))) for some

pair (γ(k), Fα,M (γ(k))), λk ≥ 0, k = 1, 2, and λ1 + λ2 = 1.
Suppose that the conditional probability PW (k)|X determines
(γ(k), Fα,M (γ(k))). Note that such PW (k)|X exists due to the
definition of Fα,M .

We next construct a code Φnα,M using time-sharing [33].
Specifically, the input sequence Xn is divided into two disjoint
sub-blocks and the size of the kth sub-block is nαk. In the kth
sub-block, k = 1, 2, our code Φnα,M maps each Xi into Wi

symbol-wise according to PW (k)|X . Clearly, using this coding
scheme, the average output Rényi and the average relevance of
the kth sub-block will be γ(k) and η(k), respectively, implying
that the pair (γ, η) is achievable.

(Converse): We claim that any achievable pair (γ, η) satisfies
η ≤ Īα,M (γ). Given (γ, η)-achievable codes {Φnα,M}, we
proceed the following standard steps to prove the claim:

ηn =
1

n

n∑
i=1

I(Yi;Wi) ≤
1

n

n∑
i=1

Īα,M (Hα(Wi))

≤ Īα,M

(
1

n

n∑
i=1

Hα(Wi)

)
= Īα,M (γn),

where the second inequality holds since Īα,M is concave while
others hold by definition. The claim is proved by noting that

η ≤ lim inf
n→∞

ηn ≤ lim inf
n→∞

Īα,M (γn) = Īα,M

(
lim inf
n→∞

γn

)
≤ Īα,M

(
lim sup
n→∞

γn

)
≤ Īα,M (γ),

where we have used the continuity and non-decreasing prop-
erties of Īα,M and the definition of achievability.

IV. NUMERICAL METHODS AND EXAMPLES

Due to an entropy mismatch for W in the objective function
I(Y ;W ) = H(W )−H(W |Y ) and the constraint Hα(W ) ≤ γ
of (1), an analytical expression for Īα,M is difficult to derive.
This section discusses numerical methods for approximating
Īα,M . Two special examples where Ī1,M can be exactly deter-
mined are given and some numerical results are also presented.
To approximate Īα,M , we consider the maximization problem

max
PW |X :Y(−−X(−−W

|W|=M

[
βI(Y ;W )−Hα(W )

]
(6)

where β ∈ [0,∞) controls the trade-off between I(Y ;W ) and
Hα(W ). For a fixed β, the maximizer PW∗|X of (6) will re-
sult in a Rényi entropy-relevance pair (Hα(W ∗), I(Y ;W ∗)).3

When β = 0, one obtains the trivial pair (0, 0). Moreover, the
argument in Section II-B implies that the maximizer of (6)
is deterministic. Thus, one can estimate Īα,M (γ) by varying
β and checking |W||X | possible deterministic mappings for
each fixed β. Specifically, let S′ denote the set of all obtained
Rényi entropy-relevance pairs. For each γ ≥ 0, the estimation
of Īα,M (γ) is then given by max(η : (γ′, η) ∈ S′, γ′ ≤ γ).
Clearly, the overall procedure is quite complex.

3We note that this pair (Hα(W ∗), I(Y ;W ∗)) is an extreme point of the
hypograph of Īα,M (γ) picked out by a support line of slope 1

β
.

Next we provide an iterative algorithm that avoids checking
all |W||X | possible mappings for a fixed β. The algorithm is
derived using the first-order optimality condition [34] for the
following modified Lagrangian of (6):

L(ν,µ, β, α, PW |X) = βI(Y ;W )− νH(W |X)

−Hα(W )−
∑
x∈X

µ(x)
∑
w∈W

PW |X(w|x) (7)

where ν ≥ 0 and µ is a vector containing the Lagrangian mul-
tipliers µ(x), x ∈ X , for the constraint

∑
w PW |X(w|x) = 1.

As ν → 0, the function L converges to the Lagrangian of (6).
Note that the term −νH(W |X) is added to obtain an explicit
expression of PW |X in (8) below. Setting ∂L

∂PW |X(w|x) = 0

for each pair w and x, we obtain the following consistency
equation for the maximizer PW |X of L:

PW |X(w|x) =
1

Z
exp

[
−1

ν

(
α(PW (w))α−1

(1− α)
∑
w∈W(PW (w))α

+βD(PY |X=x||PY |W=w)

)]
(8)

where Z := Z(x, ν,µ, α) is a normalization factor and D(·||·)
denotes the Kullback–Leibler divergence [33]. Letting ν → 0
in (8) for all w and fixed x, one easily observes that the optimal
PW |X tends to be deterministic, which coincides with the
result obtained by applying the convex optimization argument
in Section II-B to (6). Using this observation and (8), we
propose the following iterative algorithm to solve (6). Note
that [16, Algorithm 2] can be employed to estimate Ī1,M .

Initialization: Randomly generate P (0)
W |X and obtain P (0)

W and

P
(0)
Y |W from the probability distribution P (0)

W |XPY,X . Set l = 1.
Step 1: For each x ∈ X , compute

w∗(x) = argmax
w∈W

[
α(P

(l−1)
W (w))α−1

(1− α)
∑
w∈W(P

(l−1)
W (w))α

+βD(PY |X=x||P
(l−1)
Y |W=w)

]
and set P (l)

W |X(w|x) = 1 for w = w∗(x) and set P (l)
W |X(w|x) =

0 for all w 6= w∗(x).

Step 2: If P
(l)
W |X = P

(l−1)
W |X or the maximum number of

iterations is reached, then terminate the procedure and compute
the pair (Hα(W ), I(Y ;W )) using P

(l)
W |XPY,X . Otherwise,

obtain the marginal probability distributions P (l)
W and P

(l)
Y |W

from P
(l)
W |XPY,X , set l = l + 1, and go back to Step 1.

We remark that the above iterative algorithm may only yield
a local maximizer for (6). To alleviate this situation, one can
initialize this algorithm with different P (0)

W |X and choose the
best result. Next, we determine Ī1,M for two special cases.

Example 1. Given a function f , consider Y = f(X). Then,
we have that Ī1,M (γ) = Ω(γ) for any finite M ≥ |X |; the
function Ī1,M is drawn in Fig. 1(c). Based on (5), it suffices
to show that Ī1,M (0) = 0 and Ī1,M (I(Y ;X)) = I(Y ;X),
where I(Y ;X) = H(Y ). The former case is apparent since
H(W ) = 0 implies that I(Y ;W ) = 0 and hence ĪM (0) = 0.
For the latter case, we set W = h(f(X)) for some injective



function h : Y → W . The desired result simply follows from
the fact that the PW |X induced by the mapping W = h(f(X))
achieves the upper bound in (5a) since

H(W ) = H(h(f(X))) = H(h(Y )) = H(Y ),

I(Y ;W ) = H(Y )−H(Y |W ) = H(Y ),

where H(Y |W ) = H(Y |h(Y )) = 0 since h is injective.

When comparing our result with the DIB result in Fig. 1(c),
we observe that Ī1,M attains a higher relevance level given the
same Shannon entropy constraint. In fact, this increment of
relevance level mainly comes from the convexification of the
DIB curve. Such an operation is missing in the context of the
DIB method due to the lack of an operational interpretation.
Here, our Theorem 1 provides the rationale for this operation
and indicates that one can use time-sharing between two DIB
schemes to take a better Shannon entropy-relevance trade-off.

Example 2. Suppose that the given joint probability matrix
[PY,X( · , · )] can be arranged into a diagonal form as shown in
Table I(a) with the maximum possible number K of non-zero
blocks and the kth block contains identical probability mass
pk, 1 ≤ k ≤ K. Choose f1 : X → {1, 2, . . . ,K} and f2 :
Y → {1, 2, . . . ,K} such that Pf1(X) and Pf2(Y ) are strictly
positive and f1(x) = f2(y) whenever PX,Y (x, y) > 0 for all
x and y. A choice of such f1 and f2 is given in Table I(b).
Moreover, let Xk = {x ∈ X : f1(x) = k} and Yk = {y ∈ Y :
f2(y)=k}, and set sk = Pr(X ∈ Xk, Y ∈ Yk) = |Xk||Yk|pk.
We can then show that Ī1,M (γ) = Ω(γ) for any finite M ≥ K.
The details are provided in the Appendix.

To end this section, we apply our iterative algorithm to
estimate Īα,M for the PY,X in Table I(a) with α ∈ {0.1, 0.5}
and M ∈ {2, 3}. Here, H(X) = 2.25 bits and I(Y ;X) = 1.5
bits. Our estimation for the different Īα,M ’s are depicted in
Fig. 2. When M = 2 and β ≥ 1, our algorithm produces
a maximizer PW |X that induces a uniform distribution on
W , regardless of the value of α. This maximizer corresponds
to the Rényi entropy-relevance pair (1, 1). Together with the
trivial pair (0, 0), we obtain an estimate for Īα,2. In fact,
Lemmas 1 and 3 imply that our estimation is exact in this case.
Next, when considering M = 3, we observe that maximum
relevance is attained. The required Hα(W ∗M ) varies with α,
but all of them are less than H(X). This result shows that
our bottleneck method can also effectively extract relevance
information while minimizing the representation cost.

V. CONCLUSION

Unlike the IB method that characterizes the optimal
complexity-relevance trade-off via a single optimization prob-
lem, our bottleneck problem needs additional convexification
to describe the optimal Rényi entropy-relevance trade-off.
Our optimal operational scheme consists of two symbol-wise
transformations that operate in a time-sharing manner. Though
not discussed here, our information-Rényi entropy method has
been applied to geometric clustering and shows a robustness
result when the probability distributions of the data model and
the data sets are mismatched [35]. Still, it remains unclear how
the optimal Rényi entropy-relevance trade-off vary with α and

PY,X 1 2 3 4 5

1 1
4

0 0 0 0

2 0 1
8

1
8

0 0

3 0 1
8

1
8

0 0

4 0 0 0 1
8

1
8

(a) PY,X

X 1 2 3 4 5
f1(X) 1 2 2 3 3

Y 1 2 3 4
f2(Y ) 1 2 2 3

(b) f1 and f2

TABLE I: An illustration of Example 2. Here, K = 3, p1 = 1
4 ,

p2 = p3 = 1
8 , s1 = 1

4 , s2 = 1
2 , and s3 = 1

4 .

Fig. 2: The estimated Īα,M for PY,X given in Table 1(a), where
M = {2, 3} and α = {0.1, 0.5, 1}. Our estimation for Īα,2 are
tight, and the curves are overlapping. Our estimate of Īα,M for
M ≥ 3 are identical for each given α for this PY,X .

M , which we leave for future research. Other research topics
include extending our approach to the variational IB problem
[12] and applying our result to other tasks in machine learning.

APPENDIX
SUPPLEMENTARY RESULT FOR EXAMPLE 2

Similar to Example 1, it suffices to show that Ī1,M (0) = 0
and Ī1,M (I(Y ;X)) = I(Y ;X). The former case is clear and
thus omitted, but for the latter case, we need the following
result. Given any injective function h : {1, 2, . . . ,K} → W ,
the function g : X → W defined as g(x) = h(f1(x)) yields:

I(Y ;W ) = H(W )−H(W |Y )

= H(W )−H(h(f1(X))|Y )

= H(W )−H(h(f2(Y ))|Y ) = H(W ).

Without loss of generality, choose g(x) = k for x ∈ Xk.
We prove explicitly that H(W ) = I(X;Y ). First,

I(Y ;X) = H(Y )−H(Y |X)

= −
K∑
k=1

|Yk|(|Xk|pk)︸ ︷︷ ︸
=sk

log2(|Xk|pk)−
K∑
k=1

|Xk||Yk|pk︸ ︷︷ ︸
=sk

log2 |Yk|

= −
K∑
k=1

sk log2 sk.

Moreover, since w = g(x) = k for x ∈ Xk, we obtain that

PW (k) =
∑
y∈Y

∑
x∈X

PY,X(y, x)PW |X(k|x) = |Yk||Xk|pk = sk.

and hence I(Y ;X) = H(W ) = I(Y ;W ). Based on the bound
in (5b), the equality Ī1,M (I(Y ;X)) = I(Y ;X) clearly holds.
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