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Abstract—We construct a system of interacting finite memory
Pólya urns to model contagion spread in a network. The urns,
which are composed of red and black balls (representing degrees
of infection and healthiness, respectively) interact in the sense
that the probability at any time instant of drawing a red ball
for a given urn not only depends on that urn’s ratio of red
balls, but also on the ratio of red balls in the other urns of the
network, hence accounting for the effect of spatial contagion.
The urns have a finite memory, M , in the sense that reinforcing
(black or red) balls added to each urn at time t are only kept
in that urn for M future time instants (until time t + M ).
The resulting vector of all urn drawing variables forms an
M th order time-invariant irreducible and aperiodic Markov
chain. We analytically examine the properties of the underlying
Markov process and derive its asymptotic behaviour for the case
of homogeneous system parameters. We further use mean-field
approximation to obtain a class of approximating linear and non-
linear dynamical systems for the non-homogeneous case. Finally,
we present simulations to assess the quality of these mean-field
approximations.

I. INTRODUCTION

The ongoing pandemic of SARS-CoV-2 has led to a
recent surge in the study of epidemics [1]–[9]. Numerous
mathematical models have been proposed in the literature to
mimic the dynamics of contagion in a population. Specifically,
Pólya urns are widely used to construct such models because
the reinforcement scheme for Pólya urns is a preferential
attachment scheme [10], [11] which makes it a suitable choice
to track spreads of infection [12]–[15]. Most of these models
consist of two-color Pólya urns, in which red balls represent
a degree of infection and black balls represent a degree
of immunity or healthiness for the individuals portrayed by
the network urns. Moreover, the use of contagion schemes
is not just limited to modeling the dynamics of biological
outbreaks. It has also been used to study the behaviour of
error bursts in communication channels with memory [16],
[17], the spread of innovations or rumors in a social network
[18]–[22], opinion dynamics [23]–[25], image segmentation
methods [26], the propagation of viruses in computers [27],
[28], etc.

In this paper, we develop a model for contagion using an
interacting network of finite memory Pólya urns. The concept
of finite memory Pólya urn was introduced in [16] as a
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variation of the classical (infinite memory) Pólya urn [29]–
[31]. For a memory M Pólya urn, at each time instant t > M ,
we remove the balls which were added to the urn at time
t−M along with the addition of balls. The step of removing
balls ensures that all the added balls remain in the urn for
a finite amount (M ) of time and hence accounts for latency
(e.g., limited duration of infections when adding red balls and
of curing (via strengthened immunity or therapeutics) when
adding black balls). In this model, the interaction between
finite memory Pólya urns (which are analogous to individuals
in a population network) is given by a weighted adjacency
matrix. This setup ensures that the model replicates spread
of infection and the weights in the adjacency matrix can be
decided based on factors such as immunity of an individual,
spreading rate of the disease, and vicinity between individuals.
It is worth pointing our that the interaction between Pólya
urns has been examined in several other ways in the literature
[14], [32]–[34]. In [14], the Pólya urns interact via super-
urns. A super urn for an urn i consists of all the balls in
the neighbouring urns and the urn i. Unlike our model, the
weight given to urns in the super-urn model in [14] changes
with time.

We show that our finite memory interacting Pólya model
results in a network-wide time-invariant Markov draw process
of memory M that is irreducible and aperiodic (c.f., Lemma 1
and Sec. II.B). Due to the complexity of the Markov chain
caused by the fact that its number of states increases exponen-
tially with both M and the number of nodes, it is difficult to
solve analytically for its (unique) stationary distribution. We
are however able to characterize in closed-form the asymptotic
marginal distributions of the draw variables when the system
parameters are homogeneous across all urns (see Theorem 1).

Since our model becomes complex in non-homogeneous
scenarios (i.e., for differing system parameters), we use mean-
field approximations (similar to [35]) to predict the asymptotic
behaviour of the Markov chain. Mean-field approximation
is a variational Bayesian method in which a joint posterior
distribution is approximated by the product of individual
posterior distributions [36]. Interestingly when M = 1, we
obtain an exact linear dynamical system in the (general) non-
homogeneous setting without using any approximations (c.f.,
Theorem 2). We then derive the equilibrium point of this
linear dynamical system, hence precisely determining the lim-
iting distribution of each drawing variable (see Theorem 3).



When M > 1, we use the mean-field approximation that for
every urn, the most recent M drawing variables are inde-
pendent of each other (see Theorem 4). Similar mean-field
approximations have been used in literature to study spread
of diseases in compartmental models [37], [38]. Finally, we
emphasize that the model presented in this paper, which
shares similarities with susceptible-infection-susceptible (SIS)
models [37], [39], is merely motivated by the spread of
biological diseases. It can be used in the context of other
applications such as the spread of rumors or opinions in
a social network. The actual adoption of our model for
capturing biological infection spread in a population based
on real data (including comparing its effectiveness vis-à-vis
established epidemiological models in the literature) is an
interesting future direction.

This paper is organised as follows. In Section II, we
describe our model and its stochastic properties for the
homogeneous and non-homogeneous cases. We also construct
the linear and non-linear dynamical systems which give an
exact representation of our model when M = 1 and an
approximation when M > 1. In Section III, we illustrate
the asymptotic behaviour of the underlying network Markov
process and the dynamical systems through simulations. We
analyse the quality of dynamical system approximations and
the changes in asymptotic behaviour with changes in the
initial parameters. Finally in Section IV, we conclude the
paper and discuss future directions. Due to space limitations,
we herein omit all proofs and derivations; full details are
available in the longer version of this paper [15].

II. MODEL DESCRIPTION AND MAIN RESULTS

We denote our interacting Pólya contagion network with
N urns and memory M by IPCN(M,N). Each of the urns
in this network contains some red and black balls. We denote
the initial number (at time t = 0) of red and black balls in urn
i by Ri and Bi respectively. We also assume that each urn
has at least one red and one black ball initially (i.e., Ri > 0
and Bi > 0 for all i). In the context of a contagious disease,
the initial proportion of black balls in each urn may represent
an individual’s initial level of immunity, while in the context
of opinion dynamics, it may represent an individual’s initial
belief about the viewpoint portrayed by black balls.

We next define the reinforcement scheme, in the form of
draw variables, Zi,t, associated with urn i at time t ≥ 1:

Zi,t =

{
1 if a red ball is drawn for urn i at time t

0 if a black ball is drawn for urn i at time t

where the process of drawing a ball for urn i is defined in (2)
below; this drawing mechanism is applied simultaneously to
all urns. If a red ball (respectively, a black ball) is drawn for
urn i, we add ∆r,i ≥ 0 red balls (respectively, ∆b,i ≥ 0 balls)
to urn i. We assume that ∆r,i +∆b,i ̸= 0 for all urns i. The
initial total number of balls in urn i is Ti = Ri + Bi. For
every time instance t > M , along with drawing and addition
of balls according to the above reinforcement scheme, we

remove the balls which were added to urn i at time t −M .
Let Ui,t denote the ratio of red balls in urn i at time t. The
draw variables for the urns are defined using the interaction
matrix:

S =


s11 s12 · · · s1N
s21 s22 · · · s2N

...
. . .

...
...

sN1 sN2 · · · sNN

 (1)

where S is a row stochastic matrix with non-negative entries,
and hence is a weighted adjacency matrix for IPCN(M,N).
The draw random variable for urn i satisfies:

Zi,t =


1 w.p.

N∑
j=1

sijUj,t−1

0 w.p. 1−
N∑
j=1

sijUj,t−1

(2)

where “w.p.” stands for “with probability.” Note that the draw
variables of all the urns are conditionally independent, i.e., at
every time instant t,

P
(
Z1,t, . . . , ZN,t|{Z1,k}t−1

k=1, . . . , {ZN,k}t−1
k=1

)
=

N∏
i=1

P
(
Zi,t|{Z1,k}t−1

k=1, . . . , {ZN,k}t−1
k=1

)
. (3)

Before analyzing the properties of this model, We normalize
the initial and reinforcement parameters as follows:

ρi :=
Ri

Ti
, δr,i :=

∆r,i

Ti
, δb,i :=

∆b,i

Ti
for i = 1, . . . , N.

Since our model has a finite memory, every added ball remains
in the system for a finite time (which is the memory M of the
system). Therefore, for an IPCN(M,N) system, the ratio of
red balls in each urn depends on its initial and reinforcement
parameters as well as its recent M draws. More precisely,

Ui,t =

ρi +
t∑

n=t−M+1

δr,iZi,n

1 +
t∑

n=t−M+1

(δr,iZi,n + δb,i(1− Zi,n))

. (4)

We now establish the Markov property for IPCN(M,N).
We denote Zt := (Z1,t, Z2,t, · · · , ZN,t) to be the vector
of all the drawing variables at time t. For t > M , let
at = (a1,t, · · · , aN,t) ∈ {0, 1}N . Using (2) and (3) we obtain:

P [Zt+1 = at+1|Zt = at, · · · , Z1 = a1]

=

N∏
i=1

P [Zi,t+1 = ai,t+1|Zt = at, · · · , Z1 = a1]

=

N∏
i=1

ai,t+1

N∑
j=1

sijUj,t + (1− ai,t+1)(1−
N∑
j=1

sijUj,t)

 .

(5)

Now, using (4) in (5), we have:

P [Zt+1 = at+1|Zt = at, · · · , Z1 = a1]



=

N∏
i=1

(
(1− ai,t+1) +

(
(2ai,t+1 − 1)×

(

N∑
j=1

sij

(
ρj +

t∑
n=t−M+1

δr,jaj,n

)
1 +

t∑
n=t−M+1

(δr,jaj,n + δb,j(1− aj,n))

)
))

(6)

= P [Zt+1 = at+1|Zt = at, · · · , Zt−M+1 = at−M+1].

Therefore, for an IPCN(M,N) system, {Zt}∞t=1 is a time-
invariant M th order Markov chain.

In order to simplify the analysis, we construct the Markov
process Wt = {Zt, Zt+1, · · · , Zt+M−1} for IPCN(M,N)
system. Since {Zt}∞t=1 is an M th order Markov chain, the
order of {Wt}∞t=1 is 1. We now use (6) to give a general
formula for the entries of the transition probability matrix
Q(M,N) of the Markov process {Wt}∞t=1, which has 2MN

states. Note that the transition probability, q(M,N)
ab , of going

from state

a = ((a11, a21, · · · , aN1), · · · , (a1M , a2M , · · · , aNM ))

to state

b = ((b11, b21, · · · , bN1), · · · , (b1M , b2M , · · · , bNM ))

in one time step is nonzero if and only if aij = bi(j−1) for
i ∈ {1, · · · , N} and j ∈ {2, · · · ,M}, where a, b are binary
NM tuples. If q(M,N)

ab is nonzero, it is given by

q
(M,N)
ab := q̃

(1)
ab q̃

(2)
ab · · · q̃(N)

ab

where

q̃
(d)
ab =

1−
N∑
i=1

sdi

(ρi +
M∑
k=1

δr,iaik)

M∑
k=1

(δr,iaik + δb,i(1− aik))

if bdM = 0

N∑
i=1

sdi

(ρi +
M∑
k=1

δr,iaik)

M∑
k=1

(δr,iaik + δb,i(1− aik))

if bdM = 1,

(7)

with d ∈ {1, · · · , N}. We next investigate the asymptotic
behaviour of the drawing variables for different cases.

A. Homogeneous case

In the homogeneous case, we set Ri = R and Ti = T and
∆r,i = ∆b,i = ∆ for all i; hence, we have ρi = ρ := R/T
and δr,i = δb,i = δ := ∆/T for all i. From a conta-
gion perspective, having identical initial and reinforcement
parameters for all urns ensures similar immunity levels and
infection/curing rates. However, the interaction parameters,
given by (1), are different for each urn even in the homoge-

neous case; therefore the susceptibility of individuals is still
different. We first examine the stochastic properties of the
Markov process {Zt}∞t=1. We obtain that (6) simplifies to

P [Zt+1 = at+1|Zt = at, · · · , Z1 = a1]

=

N∏
i=1

(
(2ai,t+1 − 1)

N∑
j=1

sij(ρ+ δ
∑t

k=t−M+1 aj,k)

1 + δM

+ (1− ai,t+1)
)

= P [Zt+1 = at+1|Zt = at, · · · , Zt−M+1 = at−M+1]. (8)

The above simplification yields the following result.

Lemma 1. For the homogeneous IPCN(M,N), the transition
probability matrix Q(M,N) is irreducible and aperiodic.

It is difficult to derive a closed form for the stationary
distribution of the Markov process {Wt}∞t=1. However, we
can determine its asymptotic marginals as follows.

Theorem 1. For a homogeneous IPCN(M,N) system

lim
t→∞

P (Zi,t = 1) = ρ (9)

for all urns i in the network.

B. Non-Homogeneous Case

The Markov process {Wt}∞t=1 remains irreducible and
aperiodic for the non-homogeneous case (the proof is similar
to that of Lemma 1). However, it is much harder to obtain
the analogous result to Theorem 1 when the initial parameters
differ across the urns. This is why we resort to constructing
dynamical systems for Pi(t) := P (Zi,t = 1). Interestingly for
the IPCN(1, N) network, we derive an exact linear dynamical
system, as follows:

P (Zi,t = 1|Z1,t−1, Z2,t−1, · · · , ZN,t−1)

=

N∑
j=1

sij(ρj + δr,jZj,t−1)

1 + δr,jZj,t−1 + (1− Zj,t−1)δb,j
(10)

=

N∑
j=1

[sijβ
(j)
1 (1)Zj,t−1 + sijβ

(j)
1 (0)(1− Zj,t−1)]

where
β
(j)
1 (k) :=

ρj + kδr,j
1 + kδr,j + (1− k)δb,j

,

for j ∈ {1, · · · , N}, k ∈ {0, 1}. Now taking expectation with
respect to (Z1,t−1, · · · , ZN,t−1) on both sides of (10) yields

Pi(t) =

N∑
j=1

[β
(j)
1 (1)sijPj(t− 1) + sijβ

(j)
1 (0)(1− Pj(t− 1))].

(11)

To this end, defining the column vector P (t) as

P (t) = (P1(t), P2(t), · · · , PN (t))T

where T denotes transposition, we obtain the following dy-
namical system for the IPCN(1, N) network.



Theorem 2. For the IPCN(1, N) system, the infection vector
satisfies the equation

P (t) = JN,1P (t− 1) + CN,1 (12)

where JN,1 ∈ RN×N , CN,1 ∈ RN×1 are matrices with
respective entries:

[JN,1]i×j =
sij(ρj + δr,j)

(1 + δr,j)
− sijρj

(1 + δb,j)

= sij(β
(j)
1 (1)− β

(j)
1 (0))

and [CN,1]1×i =

N∑
j=1

sijρj
(1 + δb,j)

=

N∑
j=1

sijβ
(j)
1 (0).

For the IPCN(1, N) system, we next determine the limit
of Pi(t) as time t grows without bound for each i (this result
is an extension of Theorem 1 from the homogeneous to the
non-homogeneous case).

Theorem 3. The linear dynamical system for the IPCN(1, N)
system given by (12) has a unique equilibrium point given by
P ∗ = (I − JN,1)

−1CN,1 and

lim
t→∞

Pi(t) = P ∗
i

for all i ∈ {1, . . . , N}.

For IPCN(M,N) networks with M > 1, we next use
mean-field approximation to construct approximate non lin-
ear dynamical systems. Specifically, we make the following
simplifying assumption:

• We assume that for every time instant t > M , for each
urn i, Zi,t−1,· · · ,Zi,t−M are approximately independent
of each other; i.e., at any given time instant t > M , we
assume that for all j ∈ {1, 2, · · · , N},

P [Zj,t−1, Zj,t−2, · · · , Zj,t−M ] ≈
M∏
k=1

P [Zj,t−k]. (13)

Under the above assumption, the following theorem gives the
approximating dynamical systems for IPCN(M,N) systems
with M > 1.

Theorem 4. For the IPCN(M,N) system, the approximating
dynamical system is given by:

Pi(t) ≈
N∑
j=1

sijβ
(j)
M (0)

+

N∑
j=1

M∑
n=1

[( n∑
k=0

(
(−1)n−k

(
n

k

)
sijβ

(j)
M (k)

))
×( ∑

(d1,··· ,dn)
∈Hn,M

Pj(t− d1) · · ·Pj(t− dn)

)]
, (14)

where

Hn,M := {(d1, · · · , dn)
∣∣ di ∈ {1, · · · ,M},

di ̸= dj ∀i, j ∈ {1, · · · , n}}.

Example: To illustrate (14), consider a simple IPCN(2, 3)
system depicted by the graph

1
2 3

with interaction matrix given by:s11 1− s11 0
s21 1− s21 0
s13 0 1− s13

 .

Using (14), the approximate expression of P1(t) is explicitly
given by:

P1(t) ≈ s11β
(1)
2 (0) + (1− s11)β

(2)
2 (0)+

s11(β
(1)
2 (1)− β

(1)
2 (0))(P1(t− 1) + P1(t− 2))+

(1− s11)(β
(2)
2 (1)− β

(2)
2 (0))(P2(t− 1) + P2(t− 2))+

s11(β
(1)
2 (2)− 2β

(1)
2 (1) + β

(1)
2 (0))P1(t− 1)P1(t− 2)+

(1− s11)(β
(2)
2 (2)− 2β

(2)
2 (1) + β

(2)
2 (0))P2(t− 1)P2(t− 2).

Observation: Note that the dynamical system derived in
Theorem 4 is linear and exact for M = 1 (as it reduces
to the system derived in Theorem 2) and is a non-linear
approximation for M > 1. Since the analysis of non-linear
dynamical systems is much harder, it might be useful to drop
the non-linear terms in (14) and analyse the linear part of the
system which is given by:

Pi(t) ≈
N∑
j=1

sijβ
(j)
M (0) +

N∑
j=1

M∑
k=1

sij

(
β
(j)
M (1)− β

(j)
M (0)

)
Pj(t− k).

(15)

In the next section, we demonstrate the quality of these
constructed linear and non-linear dynamical systems using
simulation results.

III. SIMULATIONS

We provide two typical scenarios of simulations, each
presenting the empirical sum of the corresponding Markov
process and the linear and non-linear approximations for
M = 1, 2, 3. In the first scenario, the δr values are chosen
to be much larger than the δb values; this scenario models
contagion spread situations where the infection rate is much
higher than the curing rate. In contrast, in the second scenario,
we choose δb values much larger than the δr values.

The empirical sum for the Markov process is com-
puted as follows. For an IPCN(M,N) system, we plot
the average empirical sum at time t: 1

N

∑N
i=1 It(i), where

It(i) = 1
t

∑t
n=1 Zi,n. For each plot, the average empirical

sum is computed 100 times and the mean value is plotted
against time. For the dynamical system simulations, we plot
1
N

∑N
i=1 Pi(t), which we refer to as the (average) infection

rate.
In both scenarios, we observe that when M = 1, the aver-

age empirical sum and the linear dynamical system achieve
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Fig. 1. Infection rate curves for non-homogeneous IPCN(M,N) systems
with N = 10 nodes and memory M = 1, 2, 3. At time t = 0, each urn
has a total of 25 balls. The number of red balls in each urn at t = 0 is
chosen randomly between range 5 to 23 so that ρ′s lie in the range 0.2
to 0.92. ∆′

rs are chosen randomly between range 60 to 70 and ∆′
bs are

randomly chosen between range 20 to 29. For simplicity, we set the initial
values Pi(0), Pi(1), · · · , Pi(M − 1) all equal to zero for all urns i.

the same asymptotic value given by P ∗
i in Theorem 3 (as

expected since the linear dynamical system exactly represents
the IPCN(1, N) network).

When M = 2, 3, for the first scenario (Fig. 1), we ob-
serve that the corresponding non-linear approximations (given
by (14)) perform quite well, while the linear approximations
(of (15)) do not approximate the asymptotic behaviour of the
system. The failure of the linear dynamical systems in this
case is attributed to the higher δr values. The coefficients
in (15) become so large that P (Zi,t = 1) becomes greater
than 1, making the linear dynamical system irrelevant. In the
second scenario (Fig. 2), both linear and non-linear dynamical
systems perform well. More simulations are provided in [15].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced a memory-M Pólya urn based interacting
network to model epidemic spread in a population. We studied
the stochastic properties of the underlying M th order Markov
process, determined its limiting marginal distributions when
M = 1 and constructed dynamical system approximations for
M > 1. Our simulation results provide clear evidence that the
approximating dynamical systems perform well. Future work
includes analysing the asymptotic behaviour of the approxi-
mating non-linear dynamical system. Another direction is the
development of judicious intervention strategies under limited
resources that mitigate network infection propagation.
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Fig. 2. Infection rate curves for non-homogeneous IPCN(M,N) systems
with N = 10 nodes and memory M = 1, 2, 3. At time t = 0, the total
number of balls in each urn is 25. The number of red balls in each urn at
time t = 0 are chosen randomly between the range 2 to 17 so that ρ′s lie
in the range 0.08 to 0.68. ∆′

rs are chosen randomly in the range 12 to 30.
∆′

bs are chosen in the range 61 to 80. For simplicity, we set the initial values
Pi(0), Pi(1), · · · , Pi(M − 1) all equal to zero for all urns i.
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