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Abstract—We investigate the problem of sending a Gaussian
source over a Rayleigh fading channel with Gaussian correlated
interference known to the transmitter using low-latency codes.
For the matched bandwidth case between the source and the
channel, we show that among all single-letter codes, the uncoded
scheme achieves the lowest mean square error distortion under
full correlation between source and interference, and hence it is
optimal. To benefit from nonlinear strategies for other scenarios,
we derive the necessary conditions for optimality and propose
an iterative algorithm based on joint optimization between the
encoder and the decoder. A reduced-complexity approach for the
implementation of the design algorithm is presented based on
Monte-Carlo (at the encoder side) and importance sampling (at
the decoder side) techniques. Furthermore, the scalability of our
low-latency scheme is improved by modifying the search process
at the encoder side using a targeted search method.

Index Terms—Shannon-Kotel’nikov mappings, joint source-
channel coding, correlated interference, dirty paper coding.

I. INTRODUCTION

A tandem Costa scheme which comprises an optimal quan-
tizer followed by Costa’s dirty paper channel code [1] is

optimal in the absence of fading and of correlation between
the source and the interference. Recently, [2] proposed a
high delay scheme for Gaussian sources over additive white
Gaussian noise (AWGN) channels with correlated interference.

With the increasing popularity of wireless sensor networks
(WSNs), reliable transmission with latency and complexity
constraints has become an important practical objective. In [3],
[4], the authors present joint source-channel coding schemes
with low delay and complexity based on analog mappings over
AWGN channels. In [5], the authors consider lossless symbol-
by-symbol coding for finite alphabet source with interference.
In this work, we study the reliable transmission of a memo-
ryless Gaussian source over a Rayleigh fading channel with
known correlated interference at the transmitter. Motivated
by WSN applications, we focus on low-latency codes. The
rest of the paper is organized as follows. Section II presents
the problem formulation. Section III introduces the optimality
of the uncoded scheme for the case of matched bandwidth
with fully correlated source-interference. In Section IV, we
design low-latency codes for a general set-up via a reduced
complexity algorithm. Simulation results and comparisons to
reference systems are included in Section V.
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II. PROBLEM FORMULATION AND MAIN CONTRIBUTIONS

We consider (Fig. 1) the transmission of a memoryless
Gaussian source V K = (V (1), ..., V (K))T ∈ RK with
each component having variance σ2

V over a Rayleigh fading
channel in the presence of Gaussian interference SN ∈ RN
known to the transmitter, where (·)T denotes the transpose
operator. The source vector V K is transformed into an N -
dimensional channel input XN ∈ RN using a nonlinear
mapping function, in general, α(·) : RK × RN → RN .
The received symbol is Y N = FN (XN + SN ) + WN ,
where addition and multiplication are component-wise, FN

represents an N -dimensional Rayleigh fast fading random
vector that is independent of (V K ;SN ;WN ) and known only
to the receiver, XN = α(V K , SN ), SN is a Gaussian in-
terference vector with independent and identically distributed
(i.i.d.) components each of variance σ2

S , and each sample in the
additive noise WN is i.i.d. drawn from a Gaussian distribution(
W (i) ∼ N (0, σ2

W ), i = 1, ..., N
)

independently from all
samples in SN and V K . Unlike the typical dirty paper problem
which assumes an AWGN channel with interference [1], we
consider a fading channel and assume that V K and SN are
jointly Gaussian and correlated. Since the fading realization is
known only at the receiver, we have partial knowledge of the
total actual interference FNSN at the transmitter. The channel
operates under an input average power constraint P given by

E[||α(V K , SN )||2]/N ≤ P (1)
where E[(·)] denotes the expectation operator. The recon-
structed signal is given by V̂ K = γ(Y N , FN ), where the
decoder is a mapping from RN × RN → RK . The rate of
the system is given by r = N

K channel use/source symbol.

Fig. 1. A K : N system structure over a fading channel with interference
known at the transmitter. The fading coefficient is known at the receiver while
the transmitter knows only its distribution.

In this work, we aim to find an encoder α and decoder γ
that minimize the mean square error (MSE) distortion D =
E[||V K− V̂ K ||2]/K under the average power constraint in (1)
and a low-latency constraint (K and N take on small values).
To the best of our knowledge, this problem with no delay
constraint (infinite K and N ) is not yet solved (even for the
uncorrelated source-interference setting). The main attempt in
solving this problem without latency constraint is by using a
generalized Costa scheme [6]. This, however, is not proved to
be optimal for finite noise levels. Our main contributions are:



• We show that for matched bandwidth between the source
and the channel (i.e., r = 1), the uncoded scheme is
optimal among all single-letter codes when the source
and the interference are fully correlated.

• To benefit from nonlinearity whenever possible, we derive
the necessary conditions for optimality and propose an
iterative algorithm based on joint optimization between
the encoder and the decoder.

• To lower the complexity of our algorithm, we use Monte
Carlo (at the encoder) and importance sampling (at the
decoder) techniques. We also use a targeted (focused)
search method in order to make our algorithm more
scalable to larger dimensions (K and N ).

III. OPTIMALITY OF THE UNCODED SCHEME

In this section, we assume that the encoder transforms the
K-dimensional signal V K into an N -dimensional channel
input XN using a linear transformation according to

XN = α(V K , SN ) = TV K + MSN (2)
where T and M are RN×K and RN×N matrices, respectively.
In such case, Y N is Gaussian and the minimum MSE decoder
is a linear estimator, viz, V̂ K = ΣV Y Σ−1Y Y N , where ΣV Y =
E
[
(V K)(Y N )T

]
and ΣY = E

[
(Y N )(Y N )T

]
. The matrices T

and M can be found (numerically) by minimizing the MSE
distortion Dlinear = EF

[
1
K tr

{
σ2
V Ik×k − ΣV Y Σ−1Y ΣTV Y

}]
under the power constraint in (1), where tr(.) is the trace
operator and Ik×k is a k×k identity matrix. For the correlation
model used in our simulations (Sec. V), T and M are found
to be diagonal matrices. Note that by setting M to be the zero
matrix and T =

√
P/σ2

V IN×k, the system reduces to the
uncoded scheme. In the rest of this section we assume that
K = N . In such case, the source-interference model can be
described by the correlation coefficient ρ between V and S.

Lemma 1 Among all single-letter (symbol-by-symbol) codes
with K = N = 1, the uncoded scheme is optimal for ρ = 1.

Proof: Due to the correlation between the source and the
interference, we can write S = SI + SD, where SI and SD
are i.i.d. Gaussian vectors that are independent of each other
with SD = ρσS

σV
V and SI ∼ N (0, (1 − ρ2)σ2

S). Assuming
knowledge of S̃ = β1SI + β2SD at the decoder, where
β1, β2 ∈ R (this is motivated by [7]), we have the following
using the rate distortion theorem

1

2
log

Var(V |S̃)

E[(V − V̂ )2]
≤ I(V ; V̂ |S̃) (3)

where Var(V |S̃) = σ2
V

(
1− β2

2ρ
2

β2
1(1−ρ2)+β2

2ρ
2

)
. Moreover, using

the data processing inequality for the mutual information,
the facts that conditioning reduces differential entropy and
that the Gaussian distribution maximizes differential entropy,
I
(
V ; V̂ |S̃

)
can be upper bounded for any memoryless single-

letter codes
(
α, γ

)
with X = α

(
V, S

)
and V̂ = γ

(
Y, f

)
by

I(V ;Y |S̃) = h(Y |S̃)− h(W ) ≤ 1

2
log

MSE(Y ; S̃)

σ2
W

(4)

where MSE(Y ; S̃) is the distortion from estimating Y based on
S̃ using a linear MSE estimator. In (4), we have used the fact
that h(Y |S̃) ≤ h

(
Y −γlmse(S̃)

)
, where γlmse(S̃) is the linear

MSE estimator of Y based on S̃. MSE(Y ; S̃) is a function of
β1, β2, E[XSI ] and E[XSD]. By Cauchy-Swartz, we have

|E[XSD]| ≤
√
E[X2]E[S2

D] and |E[XSI ]| ≤
√
E[X2]E[S2

I ].
For a given β1 and β2, the maximum value of MSE(Y ; S̃)
has to be used in (4). Combining (3) and (4), we have E[(V −
V̂ )2|f ] ≥ Var(V |S̃)σ2

W

MSE(Y ;S̃)
. As a result,

E[(V − V̂ )2] ≥ EF

[
Var(V |S̃)σ2

W

MSE(Y ; S̃)

]
. (5)

The bound in (5) can be tightened by maximizing the right
hand side of (5) over β1 and β2. If we choose β1 = 1 and
β2 = 0, (5) reduces to

E[(V − V̂ )2] ≥ EF

 σ2
V(

1 + |f |2(
√
P+ρσS)2

σ2
W

)
 . (6)

The MSE of the uncoded scheme (using Dlinear) is

Duncoded = EF

[
|f |2σ2

V σ
2
S(1− ρ2)

|f |2(P + σ2
S + 2

√
PρσS) + σ2

W

]

+EF

 σ2
V

1 +
|f |2(P+σ2

S+2
√
PρσS)

σ2
W

 . (7)

It is easy to see that equality occurs in (6) using the uncoded
scheme for ρ = 1 (see (7)).
Remark 1 To obtain an analytical bound on the system’s
distortion for the case of bandwidth reduction (r ≤ 1), we
follow our previous model in [8] and assume that only the
first N pairs {(V (i), S(i))}Ni=1 are correlated with correlation
coefficient ρ. In such case, for a K : N system, we can derive
the following distortion lower bound by assuming knowledge
of S̃N = β1S

N
I + β2S

N
D at the decoder:1

D ≥ min
η

r Var(V |S̃)

exp
{
EF
[
log
(

MSE(Y ;S̃)
ηPf2+σ2

W

)]}
+(1− r) σ2

V

exp
{
EF
[

N
K−N log

(
ηPf2+σ2

W

σ2
W

)]}
(8)

where η ∈ [0, 1]. This bound generalizes the bounds in [2] as
it allows fading and bandwidth reduction and is tighter than
the bounds in [2] for some values of ρ. For r = 1, setting
(β1 = 1, β2 = 1, η = 0) and (β1 = 1, β2 = 0, η = 0)
in (8) lead to the generalization of the two bounds in [2]
under matched bandwidth (for the fading channels). Note that
the low-latency coding design algorithm (of Sec. IV) is for a
general (correlation model) set-up.
Remark 2 For an AWGN channel or when the fading F is
constant (almost surely), the uncoded scheme is optimal for the
matched bandwidth case (r = 1) among all α : RK × RK →
RK if ρ = 1. This can be shown by choosing (β1 = 1, β2 =
0, η = 0) in (8) and cancelling the expectation in (7) and (8).

IV. DESIGN ALGORITHM FOR LOW-LATENCY CODING

In this section, we present a scheme based on joint op-
timization between the encoder and the decoder through an
iterative algorithm. It is difficult to optimize the encoder and
the decoder in order to minimize the MSE distortion, and
closed form expressions for α(·) and γ(·) may not exist. Using
the Lagrange multiplier method, the constrained minimization

1The derivation of the second term of (8) requires knowledge of V N in
addition to S̃N at the decoder.



of the MSE subject to (1) can be recast into an unconstrained
minimization via the Lagrange cost function

J(α, γ) =
E[||V K − γ(Y N , FN )||2]

K
+ λ

E[||α(V K , SN )||2]

N
(9)

where λ is used to control the average power. The uncon-
strained minimization is still hard to solve due to interdepen-
dencies between the optimized components. To overcome this,
we proceed in a way similar to classical design problems [9]
by deriving the necessary conditions for optimality.

1) Necessary Conditions for Optimality: The optimal en-
coder mapping α∗ (assuming γ is fixed) is given by

arg min
α

{
E[||V K − γ(Y N , FN )||2]

K
+ λ

E[||α(V K , SN )||2]

N

}
.

(10)
Using Bayes’ rule, the distortion E[||V K− V̂ K ||2] is given by∫∫∫∫

p(vk, sn)p(yn|α(vk, sn), sn, fn)

p(fn)||vk − v̂k||2dvkdsndyndfn (11)

where p(·) and p(·|·) denote, respectively, a probability density
function (pdf) and a conditional pdf. The average power is

P =
1

N

∫∫
p(vk, sn)||α(vk, sn)||2dvkdsn. (12)

Since p(vk, sn) in (11)–(12) is nonnegative, α can be opti-
mized “pointwise” for each vk and sn according to

α∗(vk, sn) = arg min
xn∈Rn

{
1

K

∫∫
p(yn|xn, sn, fn)

||vk − v̂k||2p(fn)dyndfn +
λ

N
||xn||2

}
.(13)

Thus, (13) is a necessary condition for an optimal encoder.
On the receiver side, the optimal decoder in the MSE sense

(assuming α is fixed) is given by E[V K |yn, fn] as follows

γ∗(yn, fn) =

∫∫
vkp(yn|vk, sn, fn)p(vk, sn)dvkdsn∫∫
p(yn|vk, sn, fn)p(vk, sn)dvkdsn

. (14)

2) Design Algorithm 1: Based on the above necessary
conditions for optimality, we optimize α and γ using an
iterative process based on (13) and (14). The update equations
(13) and (14) yield a lower distortion at each iteration step;
hence, with a finite amount of training data, convergence is
ensured. One problem with such iterative techniques is that
the final solution depends on the initialization of the algorithm
and convergence to the global optimum is not guaranteed. The
design Algorithm 1 is as follows

1) Choose some initial mapping for the encoder α.
2) Find the optimal decoder γ according to (14).
3) Set the iteration index i = 0 and the cost J (0) =∞.
4) Set i = i+ 1.
5) Find the optimal mapping α according to (13).
6) Find the optimal decoder γ according to (14).
7) Evaluate the cost function J (i). If the relative improve-

ment of J(i−1)−J(i)

J(i−1) is less than some positive threshold
ε or i > Imax, stop iterating. Else go to step 4.

Algorithm 1 is nested inside a “bracketing” Lagrange multi-
plier search. We first set λ = λ0. If the designed α produces
E[||α(V K ,SN )||2]

N > P , λ0 is increased; else λ0 is decreased.
The search ends if E[||α(V K ,SN )||2]

N is close enough to but < P .

3) Implementation Aspects: For the implementation of
(13) and (14), some modifications are required. Since it
is intractable to evaluate the formulas for all real-valued
(V K , SN ), we form as in [10] a set of pairs (V,S) com-
posed of samples drawn from p(vk, sn). Since the channel
input and output spaces are real valued, we discretize them
using a pulse amplitude modulation (PAM) alphabets X and
Y , respectively, in each direction. We use X = Y ={
−eL−12 ,−eL−32 , ..., eL−32 , eL−12

}
, where e and L are the

resolution and the cardinality of the set, respectively.
Even after discretizing the channel input and output using

X and Y , the (offline) design algorithm is still computationally
expensive. This is due to the fact that our problem have
both fading and interference on top of AWGN. To lower
the complexity, we resort to Monte-Carlo and importance
sampling techniques. Using Monte-Carlo, (13) is given by

α∗ = arg min
xn∈Xn

∑̀
i=1

||vk − γ(yni , f
n
i )||2

K
+
λ

N
||xn||2 (15)

and (14) can be expressed as follows

γ∗ =

∑`
i=1 v

k
i p(y

n|α(vki , s
n
i ), sni , f

n
i )∑`

i=1 p(y
n|α(vki , s

n
i ), sni , f

n
i )

(16)

where (vki , s
n
i ) and fni are Monte Carlo (MC) samples that

follow the distributions p(vk, sn) and p(fn), respectively, and
yni represents the discretized version of the corresponding MC
samples using Y; equality in (15) and (16) are valid by the
strong law of large numbers when ` → ∞. Note that the
discretization of yni is necessarily to couple (15) and (16);
this is how we implement the “fixing” of decoder mapping
when updating the encoder (15). To increase the convergence
of (16) (i.e., lower ` and the complexity), an alternative to
sampling from p(vk) is to use importance sampling. This is
conducted by using samples from another distribution q(vk).
After some manipulation, (16) is given by

γ∗(yn, fn) =

∑`
i=1

vki p(y
n|α(vki ,s

n
i ),s

n
i ,f

n)p(vki ,s
n
i )

q(vki )∑`
i=1

p(yn|α(vki ,sni ),sni ,fn)p(vki ,s
n
i )

q(vki )

. (17)

q(vk) has to be chosen to improve the convergence speed.
Since suboptimal linear decoding gives some information
about the estimate, we choose q(vk) ∼ N (vksubopt, Dlinear),
where vksubopt and Dlinear are the source estimate and the
MSE distortion from applying the linear decoder, respectively.

One major issue that stands against the scalability of Algo-
rithm 1 is that for each pair of (vk, sn) one has to search
over a set of cardinality |X |n which scales exponentially
with the number of channel dimensions n. To reduce the
search complexity, we use a heuristic targeted search approach.
Instead of fixing the N -dimensional PAM alphabet Xn and
blindly searching over the whole region (fixed-search method),
this targeted method starts by mapping each pair (vk, sn) to
a channel input (xn)(0) using a parametric mapping and then
searching over a region that varies for each pair and iteration i.
For each source-interference pair, we choose the region to have
a span of X (i) = (x)(i−1) ± 4(σspan)(i) in each dimension,
where (xn)(i−1) is the channel input found for that pair in
iteration i− 1. We have chosen (σ2

span)(i) to decrease with i

(σ2
span)(i) = c

(L− 1)e

4

(
1− i

Imax

)3

i = 1, ..., Imax



where c is a constant. This method limits the search (at
iteration i) to some small neighbourhood of the current state
(xn)(i−1), with neighbourhoods diminishing in size as the
algorithm progresses. This method is not used at the channel
output and we still need to use a fixed Y . We run Algorithm 1
twice with the second round initialized with the result of
the first; this helps “escaping” from a local minimum at the
beginning of the second round when (σ2

span)(1) is large. In
our simulation, we use 105 pairs to define (V,S), ε = 10−3,
Imax = 14, c = 1/8 and ` = 250 for K,N ≤ 3. Note
that after the design process of the encoder and decoder ends,
both elements can be implemented using a table-lookup; for
the encoder, this is done by quantizing the source-interference
pairs and mapping each pair to a channel input.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we consider a source with σ2
V = 1 that

is correlated to the interference using the correlation model
in [8] (only the first min (K,N) pairs {V (i), S(i)}min (K,N)

i=1

are correlated) and Rayleigh fading with E[F 2] = 1.
A. Matched Bandwidth Case

Table I shows the SDR, σ2
V

D of the optimized mapping
(Section IV) along with the linear (2) and the uncoded schemes
for K = N = 1. We first design our system for ρ = 0 (linear
scheme is used as initialization); the solution obtained is then
used as initialization to design the system for higher values of
ρ. We perform a numerical search over the coding matrices for
the linear scheme so that Dlinear (in Sec. III) is minimized
under the power constraint P . We notice that as ρ increases,
the SDR gap between the optimized and the linear scheme
decreases (also the upper bound on all single-letter codes (5)
with optimized values for β1 and β2). For ρ = 1, the numerical
result confirms Lemma 1; all schemes reduce to the uncoded
one and achieve optimality.

TABLE I
SDR IN DB VERSUS ρ FOR P = 0.6, σ2

S = 1, σ2
W = 0.01 AND r = 1.

ρ 0 0.2 0.4 0.6 0.8 1
Uncoded 1.9 2.9 4.1 5.7 8.4 17.8

Linear 3.5 5.6 8.7 12.4 15.8 17.8
Optimized mapping 6.4 6.8 9.1 12.5 15.9 17.8

SDR upper bound (5) 12.2 12.4 12.9 14.2 16.9 17.8

B. Mismatched Bandwidth Case
Fig. 2 shows the SDR of our proposed mapping for 2:1 and

3:2 bandwidth reductions versus CSNR, P/σ2
W . We notice

that the optimized mapping outperforms the other reference
schemes for all CSNRs (for the same K : N ). For the 2:1
system, we initialize Algorithm 1 with a parametric mapping
based on a spiral curve [3] and the search range X (i) is set to
100 points. As a reference, we also plot the performance of an
(optimized) parametric mapping based on the combination of
spiral and sawtooth (modulo technique used for interference
cancelation [5]). For the 3:2 case, a linear mapping is used for
initialization and X (i) is set to 15 points in each direction. For
reference, a parametric mapping that uses a linear transmission
on the first symbol and 2:1 spiral mapping on the last two
symbols to achieve a 3:2 reduction is combined linearly with
the interference and simulated. For the alphabet Y , we use
e = 8/(L− 1), L = 500 (for the 2:1 system) and L = 20 (for
the 3:2 system). Fig. 2 shows the SDR upper bound (using (8));

it is important to note that the bound is an asymptotic result
in the sense of infinite source and coding block lengths, hence
the gap to our low-delay scheme is not surprising. We also
designed an optimized mapping for 1:2 expansion system; we
noticed up to 1.6 dB gain in SDR over the “best” parametric
system (linear in this case) for CSNR=20 and ρ = 0.3.
We used the optimized mapping when there is no fading as
initialization to our algorithm. No gain is seen (over parametric
mappings) when a linear mapping is used for initialization.

From other simulations, comparing the targeted search
method to the fixed one using the same alphabets cardinality
(with similar and tractable complexity), we notice that the
proposed search method gives up to 1 dB gain over the fixed
search method for moderate to high CSNRs (for 2:1 system).
For low CSNRs, not much gain is observed; this is due to the
fact that the (required) number of discrete points L depends
on the noise levels (in our case, L is fixed). For high noise
levels, L can be made smaller with no performance loss.
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Fig. 2. SDR Performance versus CSNR for P = 1, σ2
S = 1, ρ = 0.3.
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