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Abstract—Achievability and converse results for the lossy
transmission of correlated sources over Shannon’s two-way
channels (TWCs) are presented. A joint source-channel coding
theorem for independent sources and TWCs for which adaptation
cannot enlarge the capacity region is also established. We further
investigate the optimality of scalar coding for TWCs with discrete
modulo additive noise as well as additive white Gaussian noise.
Comparing the distortion of scalar coding with the derived
bounds, we observe that scalar coding achieves the minimum
distortion over both families of TWCs for independent and
uniformly distributed sources and independent Gaussian sources.

Index Terms—Two-way channels, lossy joint source-channel
coding, source-channel separation, uncoded transmission.

I. INTRODUCTION

Two-way channels (TWCs) were first introduced by Shan-
non in [1]. Transmission over such channels makes the best
use of channel resources since two users can exchange their
source data on the same frequency band simultaneously. Also,
as the channel inputs of both users can be generated by in-
teractively adapting to the past received signals, the receivers’
knowledge about the transmitted source can be refined, which
may increase the rate of successful data recovery. Apart
from the (asymptotically) lossless transmission considered by
Shannon, it is also natural to investigate the lossy counterpart
in which data reconstruction is allowed within a tolerable
distortion. Such coding schemes may play an important role
in improving the efficiency of data transmission over resource-
limited networks. In this paper, we investigate the performance
of lossy transmission over noisy TWCs.

In the literature, TWCs have been studied from different
points of view. For lossless transmission, TWCs are either
viewed as a part of the multiple access channels (MACs) with
feedback [2] or related to the compound MACs with correlated
side information at the receiver [3]. Inner and outer bounds for
the transmission rate over noisy TWCs were derived based on
these channel models. Furthermore, from the channel capacity
perspective, it has been found that adaptation is not always
useful [4]-[6]. In contrast to lossless transmission, studies
regarding the lossy counterpart are limited. The first lossy
transmission problem over error-free TWCs appeared in [7], in
which only one user can use the channel at each time instant.
Interactive source coding for noiseless TWCs was considered
to establish a rate distortion (RD) region of TWC. In [8],
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these results were extended to noisy TWCs by also adopting
the interactive protocol of [7]. To date, the performance of
lossy transmission under Shannon’s set-up of simultaneous
user transmissions is not fully known.

In the first part of this paper, we establish achievability and
converse theorems for the lossy transmission of two correlated
sources over TWCs under Shannon’s scenario. A TWC is
viewed as two one-way channels with associated states, and
two-dimensional distortion regions for the TWC are derived.
For independent sources and for TWCs whose capacity region
are not enlarged by adaptation coding, we further find that the
achievability and converse parts are matched, resulting in a
complete joint source-channel coding theorem that shows that
the TWC system can be treated as two parallel one-way sys-
tems with separate source and channel coding. Based on these
results, we investigate the performance of scalar coding for
two important classes of additive-noise TWCs: q-ary discrete
additive-noise TWCs [6] and additive white Gaussian noise
(AWGN) TWCs [4]. For these channels, adaptation coding
does not enlarge the capacity region. Scalar coding (also
known as single-letter coding or uncoded transmission [9]) is
particularly interesting because it is the simplest one among
all possible transmission schemes. We analyze the distortion
incurred by the scalar coding scheme and compare it with the
distortion lower bounds obtained from the converse theorem.
As expected, it is observed that scalar coding is sub-optimal
with a performance deteriorating as the correlation between
the two sources increases. However, when the two sources
are independent, we show that scalar coding is optimal for
uniform sources under the Hamming distortion measure over
the discrete additive TWC and for Gaussian sources under
the squared error distortion measure over the AWGN-TWC.
These results are extensions of their well-known counterparts
for one-way point-to-point systems (e.g., see [9] and references
therein).

The paper is organized as follows. In Section II, the system
model of TWCs is introduced. Achievability and converse
results on lossy transmission over TWCs are also presented.
In Section III, the performance of lossy transmission over
TWCs with discrete additive noise is investigated. Analogous
results are obtained for the AWGN-TWC system in Section IV.
Finally, concluding remarks are given in Section V.

II. LOSSY TRANSMISSION OVER TWO-WAY CHANNELS

A. System Model
For i = 1, 2, let Ui, Xi, and Yi denote random variables

corresponding to terminal i’s source, channel input, and chan-
nel output, respectively. Let Ui, Xi, and Yi respectively denote
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1ÛK

2

Fig. 1: The block diagram of two-way communications.

their alphabets. We consider a correlated source transmission
problem over Shannon’s TWCs as shown in Fig. 1, where two
terminals want to exchange the correlated sources U1 and U2

within desired distortions via a memoryless and noisy TWC
governed by the channel input-output transition probability
p(y1, y2|x1, x2). One special feature of such transmission
is that channel inputs can be generated by adapting to the
previously received signals, which may improve the quality
of reconstruction. Let Ri denote the channel coding rate of
terminal i for i = 1, 2. In [1], Shannon derived inner and outer
bounds for the capacity region of the TWC. Both bounds are of
the same form but with different input distribution restrictions.
In particular, the bounds are of the form:{

R1 ≤ I(X1;Y2|X2),
R2 ≤ I(X2;Y1|X1),

(1)

where I(Xi;Yj |Xj) denotes conditional mutual information,
and X1 and X2 are independent inputs in the inner bound,
while in the outer bound X1 and X2 are arbitrarily correlated.
Note that the inner bound is proved by a standard coding
scheme which does not use adaptation. A channel symmetry
condition for which the two regions coincide was also provided
in [1, Sec. 12]. This result shows that adaptation coding cannot
enlarge the capacity region of symmetric TWCs.

For a positive integer blocklength K, let UKi ,
(Ui1, Ui2, . . . , UiK) denote the source sequence of terminal i,
i = 1, 2. Here, UK1 and UK2 are distributed according to the
product probability distribution

∏K
m=1 ps(u1m, u2m), where

(u1m, u2m) ∈ U1 × U2. In other words, the joint source
{(U1m, U2m)}Km=1 is memoryless in time with a joint prob-
ability distribution ps over U1 × U2 at each time instant. For
transmitting UKi , an encoding function fin : UKi ×Y

n−1
i → Xi

is used by terminal i to generate the nth channel input for n =
1, 2, . . . , N , where N is a positive integer (note that N = NK
as N is a function of K). Let XN

i , (Xi1, Xi2, . . . , XiN )
denote the channel input sequence corresponding to UKi , and
let Y Ni , (Yi1, Yi2, . . . , YiN ) denote the received sequence
at terminal i. Specifically, we have Xin = fin(U

K
i , Y

n−1
i )

for n = 1, 2, . . . , N , where Y n−1i denotes the sequence
comprising the first n − 1 entries of Y Ni . The joint proba-
bility distribution of all random vectors associated with the
system is given by p(uK1 , u

K
2 , x

N
1 , x

N
2 , y

N
1 , y

N
2 ) = ps(u

K
1 , u

K
2 )∏N

n=1 p(x1n, x2n|uK1 , uK2 , y
n−1
1 , yn−12 )p(y1n, y2n|x1n, x2n).

To reconstruct the source sequence transmitted from the
other terminal, terminal i uses decoder gi : UKi × YNi →
UKj to produce the estimate ÛKj = gi(U

K
i , Y

N
i ) of UKj

for i 6= j. The fidelity of the reconstruction is given by
d(uKi , û

K
i ) , K−1

∑K
n=1 d(uin, ûin), where d(uin, ûin) is

a single-letter distortion measure. The pair (fi, gj) for i 6= j
constitutes a (one-way) joint source-channel code with rate
r , K/N (in source symbols/channel symbol), where fi ,

(fi1, fi2, . . . , fiN ). The associated expected distortion is given
by Dfi , E[d(UKi , ÛKi )] = K−1

∑K
n=1E[d(U1n, Û1n)]. The

code pairs (f1, g2) and (f2, g1) then form an overall coding
scheme for the two-way source-channel (TWSC) system.

Definition 1. A distortion pair (D1, D2) is achievable at rate
r for the TWSC system if there exists a sequence of encoding
and decoding functions with limK→∞K/NK = r such that
lim supK→∞ E[d(UKi , ÛKi )] ≤ Di for i = 1, 2.

Definition 2. The distortion region of a rate-r TWSC system
is defined as the convex closure of the set of all achievable
distortion pairs.

B. Necessary and Sufficient Lossy Transmission Conditions

In [3, Section VIII], achievability and converse theorems for
(asymptotically) lossless transmission of correlated sources in
the sense that limK→∞ p(UK 6= ÛK) = 0 are derived. Here,
we present a similar result for lossy transmission in which
nonzero expected single-letter distortion is considered. We take
Shannon’s viewpoint: a TWC can be viewed as two one-way
channels with state variables and these states are known at the
receiver but not at the transmitter [1]. For transmitting over
such a one-way channel, it is natural to treat the correlated
source at the receiver as side information for the source at the
transmitter as in the setting of the Wyner-Ziv coding problem
[11]. Following this perspective, let R(i)(D) and R

(i)
WZ(D)

denote the standard and Wyner-Ziv RD functions of Ui for
i = 1, 2, which are respectively given by (e.g., [10])

R(i)(D) = min
p(ûi|ui):E[d(Ui,Ûi)]≤D

I(Ui; Ûi)

and

R
(i)
WZ(D) = min

p(w|ui)
min

gj :Uj×W→Ui
E[d(Ui,gj(Uj,W ))]≤D

I(Ui;W |Uj)

where j 6= i and W is an auxiliary random variable with
alphabet W such that |W| ≤ |Ui| + 1. Below, we establish
inner and outer bounds on the distortion region of our lossy
transmission system.

Lemma 1 (Achievability). For the rate-r lossy transmission
of the joint source (U1, U2) over the memoryless TWC, the
distortion pair (D1, D2) is achievable if{

r ·R(1)
WZ(D1) < I(X1;Y2|X2),

r ·R(2)
WZ(D2) < I(X2;Y1|X1),

(2)

for some joint probability distribution p(u1, u2, x1, x2) =
ps(u1, u2)p(x1)p(x2) of (U1, U2, X1, X2).

Sketch of the Proof. The idea is to exhibit a coding scheme
which integrates two simultaneous separate source-channel
codes, where each code in one direction of the TWSC system
achieves Di, i = 1, 2. For given εi > 0, we first apply Wyner-
Ziv coding with rate RS,i , K(R

(i)
WZ(Di/(1+εi))) to compress

UKi . The index of the resulting codeword is then encoded by a
channel code with bloklength NK for point-to-point channels
without feedback. From the capacity region inner bound in (1),
we know that for i 6= j the index can be reliably transmitted



from terminal i to j if limK→∞RS,i/NK < I(Xi : Yj |Xj),
which implies the desired results.

Lemma 2 (Converse). For the rate-r lossy transmission of
joint source (U1, U2) over the memoryless TWC, if (D1, D2)
is achievable, then{

R(1)(D1) ≤ I(U1;U2) + r−1 · I(X1;Y2|X2),

R(2)(D2) ≤ I(U1;U2) + r−1 · I(X2;Y1|X1),
(3)

for some joint probability distribution p(u1, u2, x1, x2) =
ps(u1, u2)p(x1, x2) of (U1, U2, X1, X2).

Proof. Suppose that there exists a source-channel coding
scheme (f1, f2, g2, g2) for the TWSC system with rate r and
average distortions lim supK→∞Dfi ≤ Di, i = 1, 2. From
terminal 1 to 2, we have

K ·R(1)(Df1)

= K ·R(1)

K−1 K∑
n=1

E
[
d(U1n, Û1n)

]
≤ K

K∑
n=1

K−1R(1)
(
E[d(U1n, Û1n)]

)
(4)

≤
K∑
n=1

I(U1n; Û1n) (5)

≤ I(UK1 ; ÛK1 ) (6)
≤ I(UK1 ;UK2 , Y

N
2 ) (7)

= Iρ + I(UK1 ;Y N2 |UK2 ) (8)

= Iρ +

N∑
n=1

I(UK1 ;Y2n|UK2 , Y n−12 ) (9)

= Iρ +

N∑
n=1

H(Y2n|UK2 , Y n−12 )−H(Y2n|UK2 , UK1 , Y n−12 )

≤ Iρ +
N∑
n=1

H(Y2n|X2n)−H(Y2n|UK2 , UK1 , Y n−12 , Y n−11 ) (10)

= Iρ +

N∑
n=1

H(Y2n|X2n)−H(Y2n|X1n, X2n) (11)

= Iρ +

N∑
n=1

I(X1n;Y2n|X2n)

= Iρ +N

N∑
n=1

N−1I(X1n;Y2n|X2n)

where Iρ , I(UK1 ;UK2 ) = K · I(U1;U2), (4) is from the
fact that R(i)(Di) is convex, (5) follows the definition of
the RD function, (6) is obtained by the independence of
the U1n’s and the fact that conditioning reduces entropy, (7)
is from the data processing inequality, (8) and (9) follow
from the chain rule for mutual information, (10) holds since
X2n = f2n(U

K
2 , Y

n−1
2 ) and conditioning reduces entropy, and

(11) is due to the Markov chain (UK1 , U
K
2 , Y

n−1
1 , Y n−12 ) −

(X1n, X2n)− (Y1n, Y2n). In the same way, we also obtain

K ·R(2)(Df2) ≤ Iρ +N

N∑
n=1

N−1I(X2n;Y1n|X1n)

for the direction from terminal 2 to 1. Since both
I(X1n;Y2n|X2n) and I(X2n;Y1n|X1n) are known to be
concave in p(x1n, x2n) [1], forming the mixture input dis-
tribution p(x1, x2) , N−1

∑N
n=1 p(x1n, p2n) immediately

results in
∑N
n=1N

−1I(X1n;Y2n|X2n) ≤ I(X1;Y2|X2) and∑N
n=1N

−1I(X2n;Y1n|X1n) ≤ I(X2;Y1|X1). Finally noting
that lim supK→∞Dfi ≤ Di, i = 1, 2 and that R(i)(D) is non-
increasing and continuous, the proof is completed by taking
the limit with respect to K.

Although the distortion regions given by Lemmas 1 and 2
do not match, we find that they coincide in some situations.

Theorem 3 (A Joint Source-Channel Coding Theorem).
For the rate-r transmission of independent sources U1 and U2

over a memoryless TWC for which adaptation does not enlarge
the capacity region (i.e., for which the capacity region inner
bound in (1) is tight), a distortion pair (D1, D2) is achievable
if and only if {

r ·R(1)(D1) ≤ I(X1;Y2|X2),

r ·R(2)(D2) ≤ I(X2;Y1|X1),

for some p(x1, x2) = p(x1)p(x2).

Proof. If UK1 and UK2 are independent, then I(U1;U2) = 0

in (3) and R
(i)
WZ(Di) = R(i)(Di) for i = 1, 2. Moreover, for

TWCs where adaptation coding does not enlarge the capacity
region, the optimal channel input distribution in the outer
bound of (1) is product form p(x1, x2) = p(x1)p(x2). The
rest of the proof follows from Lemmas 1 and 2.

The achievability results of Lemma 1 and in Theorem 3
require the use of coding schemes with long codeword
lengths. This requirement usually cannot be met in practice.
Among all possible transmission schemes, the scalar coding
(or uncoded) scheme, in which encoding and decoding are
performed symbol-by-symbol and thus at a rate r = 1, is the
simplest one. A scalar coding scheme which is optimal, i.e.,
it achieves the distortion limit of Lemma 2 or Theorem 3, is
naturally appealing. In the next two sections, we investigate
the performance of scalar coding over two important TWCs.
To our knowledge, such results have not been reported. For the
sake of brevity, we only present the results for one direction
of transmission, i.e., from terminal 1 to 2. The result for
the reverse direction can be similarly derived. We close this
section with the definition of scalar coding.

Definition 3 (Scalar Coding). Set N = K. Scalar coding is a
transmission scheme such that Xin = hi(Uin) for some fixed
function hi : Ui → Xi and Ûin = gj(Ujn, Yjn), for i 6= j and
n = 1, 2, · · · , N .

III. LOSSY TRANSMISSION FOR TWCS WITH DISCRETE
ADDITIVE NOISE

A TWC with q-ary modulo additive noise is defined as{
Y1n = X1n ⊕X2n ⊕ Z1n

Y2n = X1n ⊕X2n ⊕ Z2n,

where X1n, X2n, Z1n, Z2n ∈ {0, 1, . . . , q − 1}, ⊕ denotes
the modulo-q addition, and {Z1n} and {Z2n} are memoryless



noise processes which are independent of each other and of
the correlated sources. For i = 1, 2 and n = 1, 2, · · · , N , we
further assume that Pr(Zin = 0) = 1− εi and Pr(Zin = j) =
εi/(q − 1) for j = 1, 2, . . . , q − 1, where 0 ≤ εi ≤ (q − 1)/q.
We begin by investigating the performance of scalar coding
for an important class of binary correlated sources.

1) Correlated Binary Sources (q = 2): Consider a joint
binary source whose marginal probability distributions are
uniform such that the individual sources are respectively
modeled as the input and output of a binary symmetric channel
with crossover probability δ ∈ [0, 1/2]. For this joint source,
the correlation coefficient is ρ = 1 − 2δ and the associated
R(i)(D) under the Hamming distortion measure is given by
[10]

R(i)(D) =

{
1−Hb(D), 0 ≤ D ≤ 1/2,
0, D > 1/2,

(12)

where Hb(·) is the binary entropy function.
From Lemma 2, it is known that any r = 1 source-channel

coding scheme achieving distortion pair (D1, D2) must satisfy
(3). Thus,

R(1)(D1) ≤ I(U1;U2) + I(X1;Y2|X2)

≤ 1−Hb(δ) + (H(Y2)−H(Y2|X1, X2)) (13)
≤ 2−Hb(δ)−Hb(ε2) (14)

where (13) holds since H(Y2|X2) ≤ H(Y2) and (14) follows
that H(Y2) ≤ 1 and H(Y2|X1, X2) = H(Z2|X1, X2) =
H(Z2) = Hb(ε2). Similarly, we have R(2)(D2) ≤ 2−Hb(δ)−
Hb(ε1). Using (14) and (12), lower bounds for the system
distortions D1 and D2 can be found numerically for given δ
and εi’s.

Now, we consider the scalar coding scheme with hi(Ui) =
Ui so that Xin = Uin for i = 1, 2 and n = 1, 2, . . . , N . For
this encoder, it can be shown that the estimate Ûin = Yjn, i 6=
j, yields the optimum decoding performance, and the average
distortions are given by D1 = ε2 and D2 = ε1. In Fig. 2, we
plot the gap between the distortion lower bound and ε2 (for the
direction from terminal 1 to 2). The numerical results show
that scalar coding is sub-optimal. In particular, as the source
correlation ρ increases, the gap becomes larger. Also, when the
quality of the channel deteriorates, the scalar coding scheme
suffers a serious performance degradation. Nevertheless, when
U1 and U2 are independent, i.e., ρ = 0, scalar coding becomes
optimal (with the gap in Fig. 2 reducing to zero).

In fact, this result for independent sources can be derived
analytically. Since Hb(δ) = 1 when ρ = 0, using (12) and
(14) immediately gives D1 ≥ ε2. Similarly, we have D2 ≥ ε1.
Clearly, the scalar coding scheme achieves the lower bounds
and is hence optimal. We next show that this result also holds
for non-binary independent sources.

2) Independent and Uniformly Distributed q-ary Sources:
Suppose that U1 and U2 are independent and uniformly dis-
tributed q-ary sources, i.e., Pr(U1 = j) = Pr(U2 = j) = 1/q
for j = 0, 1, . . . , q − 1. In this case, R(i)(D) is given by [12]

R(i)(D) =

{
log2 q −Hb(D)−D log2(q − 1), 0 ≤ D ≤ q−1

q ,

0, D > q−1
q .

(15)
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Fig. 2: The performance loss of transmitting binary correlated
sources via scalar coding. The curves from top to bottom
correspond to ρ ranging from 0.9 to 0 with a step size of
0.1.

By Lemma 2 (with r = 1), one has

R(1)(D1) ≤ I(U1;U2) + I(X1;Y2|X2)

≤ log2 q −H(Z2)

= log2 q −Hb(ε2)− ε2 log2(q − 1) (16)

where the last equation is obtained by evaluating H(Z2). From
(15) and (16), we obtain that D1 ≥ ε2. Similarly, we have
D2 ≥ ε1. On the other hand, one can easily show that the
distortion achieved by the optimum decoder for scalar coding
in this case is D1 = ε2 and D2 = ε1. Thus, scalar coding is
optimal for this non-binary setting.

IV. LOSSY TRANSMISSION FOR AWGN-TWCS

The AWGN-TWC system is described by{
Y1n = X1n +X2n + Z1n,

Y2n = X1n +X2n + Z2n,

where {Z1n} and {Z2n} are memoryless zero mean Gaussian
noise processes with variance σ2

1 and σ2
2 , respectively. Also,

{Z1n} and {Z2n} are assumed to be independent of each other
and of the sources. The Xin’s are additionally required to
satisfy the power constraint E[

∑N
n=1 |Xin|2] ≤ N · Pi, where

Pi > 0 is the average transmission power of terminal i.
The correlated sources U1 and U2 are herein considered to

be jointly Gaussian with correlation coefficient ρ. Without loss
of generality, U1 and U2 are assumed to have zero mean and
unit variance. In this case, the RD function under the squared
error distortion measure is given by [10]

R(i)(D) =

{
1
2 log

1
D 0 < D ≤ 1,

0 D > 1,
(17)

and I(U1;U2) = −1/2 · log
(
1− ρ2

)
, where −1 ≤ ρ ≤ 1.

We next obtain a bound on the performance limit of rate-one
transmission over Gaussian TWSC systems. Let γi , Pi/σ

2
j

be the signal-to-noise ratio (SNR) for i 6= j. Combining (17)
with (2), we obtain the lower bounds D1 ≥ (1− ρ2)/(1+ γ1)
and D2 ≥ (1 − ρ2)/(1 + γ2). Now, consider the scalar
coding from terminal 1 to 2 with h1 given by X1n =



h1(U1n) = αU1n, where α =
√
P1 is set to satisfy the

power constraint. At the receiver, we employ a minimum mean
square error (MMSE) detector to yield the optimum estimate
Û1n =

√
P1/(P1+σ

2
2)(Y2n−X2n). From the numerical results

shown in Fig. 3 (about the distortion gap from terminal 1
to 2), we observe a behavior similar to the discrete system of
Fig. 2. In the extreme case of ρ = 0, i.e., when U1 and U2

are independent, scalar coding achieves the distortion lower
bounds for both direction of transmission and is hence optimal.

Here, for any value of ρ, we note that the coding scheme
given in the proof of Lemma 1 can be used to achieve the lower
bounds. We give a more general result in the next lemma and
the achievability of the distortion lower bound for this rate-one
transmission is simply obtained by setting r = 1.

Lemma 4. For rate-r lossy transmission of jointly Gaussian
sources with zero mean, unit variance, and correlation ρ, over
AWGN-TWCs with SNRs γ1 and γ2, all distortion values Di ≥
(1− ρ2)/(1 + γi)

1/r, i = 1, 2, are achievable.

Proof. Based on Lemma 1, it suffices to check if (2) holds or
not. First, it was shown in [4] that the channel capacity of each
direction of the two-way transmission over AWGN-TWCs is
identical to the one over point-to-point AWGN channels at the
same SNR. Thus, I(Xi;Yj |Xj) = 1/2 · log(1 + γi), where
i, j = 1, 2 and i 6= j. Note that, the capacity is achieved by
using independent channel inputs as required in Lemma 1.
Second, the Wyner-Ziv RD function of joint Gaussian sources
under the squared error distortion measure is given by [11]

R
(i)
WZ(D) =

{
1
2 log

1−ρ2
D 0 < D ≤ 1− ρ2,

0 D > 1− ρ2.
(18)

Let Di = (1 − ρ2)/((1 + γi)
1/r − ε) for some ε > 0.

We immediately obtain K/2 · log
(
(1 + γi)

1/r − ε
)
< N/2 ·

log(1 + γi) for all ε > 0. Clearly, (2) holds and hence
Di = (1− ρ2)/(1 + γi)

1/r is achievable for i = 1, 2.

In fact, since R(i)(D)−I(U1;U2) = 1/2 · log
(
(1− ρ2)/D

)
for i = 1, 2, Lemma 2 can be expressed in terms of the Wyner-
Ziv RD funcitons of (18), i.e.,

r ·R(1)
WZ(D1) ≤

1

2
log(1 + γ1),

r ·R(2)
WZ(D2) ≤

1

2
log(1 + γ2),

(19)

Combining Lemma 4 and (19), we obtain a complete joint
source-channel coding theorem for Gaussian TWSC systems.

Theorem 5. For the rate-r lossy transmission of zero mean,
unit variance, and correlation ρ jointly Gaussian source
(U1, U2) over the memoryless AWGN-TWC with SNRs γ1 and
γ2, (D1, D2) is achievable if and only if

r ·R(1)
WZ(D1) ≤

1

2
log(1 + γ1),

r ·R(2)
WZ(D2) ≤

1

2
log(1 + γ2).
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Fig. 3: The performance loss of transmitting jointly Gaussian
sources via scalar coding. The curves from top to bottom
correspond to ρ ranging from 0.9 to 0 with a step size of
0.1.

V. CONCLUSION

As a first step towards understanding joint source-channel
coding over Shannon’s TWCs, we developed bounds on the
performance of lossy transmission over TWCs. The optimality
of the (simplest) scalar coding scheme is also examined for
two classes of TWCs with additive noise. In addition to the
examples given in this paper, similar results can be obtained
for TWCs with erasures. It is observed that scalar coding is
usually sub-optimal for correlated sources. We also provided a
joint source-channel coding theorem for the lossy transmission
of correlated Gaussian sources over AWGN-TWCs. Identify-
ing general conditions under which two-way source-channel
scalar coding is optimal is an interesting future direction.
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