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Abstract

A model for a binary additive noise communication channel with memory is intro-
duced. The motivation of studying such a model is the fact that most real-world
channels have memory and most current communication systems do not exploit this
memory due (in part) to the lack of mathematically tractable models for such chan-
nels. The channel noise process, which is generated according to a ball sampling
mechanism involving a queue of finite length M, is a stationary ergodic Mth order
Markov source. The channel properties are analyzed and several of its statistical and
information theoretical quantities (e.g., block transition distribution, autocorrelation
function (ACF), capacity, and reliability function) are derived in either closed or eas-
ily computable form in terms of its four parameters. The capacity of the queue-based
channel (QBC) is also analytically and numerically compared for a variety of channel
conditions with the capacity of other binary models with memory, such as the well-
known Gilbert-Elliott channel (GEC), the Fritchman channel and the finite-memory

contagion channel.

We next investigate the modeling of the traditional GEC using this queue-based
channel (QBC) model. The QBC parameters are estimated by minimizing the Kullback-
Leibler divergence rate (KLDR) between the probability of noise sequences generated

by the GEC and the QBC, while maintaining identical bit error rates (BER) and



correlation coefficients (Cor). The accuracy of fitting the GEC via the QBC is eval-
uated in terms of ACF, channel capacity and reliability function. Numerical results
indicate that the QBC provides a good approximation of the GEC for various channel

conditions.

Finally, we study the modeling of a family of hard-decision frequency-shift keying
demodulated correlated Rician fading channels using the QBC model. As in the case
of fitting the GEC, the QBC parameters are estimated by minimizing the KLDR
between the distributions of error sequences generated by the QBC and the fading
channels, and the modeling accuracy is evaluated in terms of channel capacity and
ACF. Numerical results indicate that the QBC provides a very good approximation of
the fading channels for a wide range of channel conditions; it thus offers an interesting
alternative to the GEC and general finite-state Markov models recently studied by

Pimentel ef. al. while remaining mathematically tractable.
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Chapter 1

Introduction

In recent years, there has been an increasing interest in transmitting voice, data,
image and video signals over wireless communication channels. However, the quality
of wireless communication systems is subject to a number of sources of degradation
because wireless channels undergo a variety of time-varying channel impairments
caused by propagation loss, shadowing, multipath fading, and thermal noise. In
particular, it is important to understand the deleterious effects of fading on wireless
transmission. A common feature of many fading channels is that they experience
symbol errors during transmission in a bursty fashion [31] indicating a significant

degree of correlation or dependence in the error or noise process.

In the presence of error bursts, interleaving is usually applied to destroy or mitigate

the memory because most error control systems are designed under the assumption of



independent and identically distributed (iid) error processes. With perfect interleav-
ing, it is possible to model the fading channels as binary symmetric channels (BSC).
However, the use of interleaving introduces extra delay and complexity, and perfect
interleavers do not exist in any practical system. In real-time personal communication
systems, data is transmitted in short blocks and fairly strict delay constraints must
be obeyed (e.g., see [68]). Non-interleaved or finite-interleaved packet transmission

over fading channels has received significant recent attention [7, 42].

Therefore, in this thesis we start with the premise that the inherent memory
of fading communication channels cannot be neglected. Actually, an advantageous
feature of memory is that the channel quality in the near future can be forecast based
on the knowledge of previous channel conditions due to the dependence of errors
and hence greater capacity is achievable by receivers [37]. In order to obtain highly
reliable data transmissions over channels with memory, we should take advantage of
channel memory to design effective error control coding strategies. For this reason, it
is critical to fully understand the error statistics of such channels. This is achieved via
channel modeling, where the primary objective is to provide a model whose properties
are both complex enough to closely capture the real channel statistical characteristics,
yet simple enough to allow mathematically tractable system analysis. In this thesis,
we present a binary additive channel model with memory based on a finite queue that

is tractable (e.g., it has an explicit closed-form expression for channel capacity) and



reliably describes a family of wireless communication channels.

The first subject of the thesis is the investigation of a stationary ergodic Mth
order Markov model for a binary additive noise communication channel with mem-
ory based on a finite queue of length M. The second subject is to approximate the
well-known Gilbert-Elliott channel via the queue-based channel using parameter esti-
mation and optimization. The third subject is the investigation of the modeling of a
family of hard-decision frequency-shift keying demodulated correlated Rician fading
channels via the queue-based model. In this chapter, we present the literature review
of the articles upon which our research is based. We then specify our main research

contributions. Finally, we outline the remainder of the thesis.

1.1 Literature Review

During the past several decades, a variety of channel models have been proposed and
studied for wireless channels [32, 33, 36, 39, 43, 46, 53, 54, 55, 58]. A finite-state
Markov channel (FSMC) is a discrete valued channel with a finite set of possible
states whose transition is governed by an underlying Markov chain and with a prob-
ability assignment that is independent of time [23, 31, 34]. FSMC’s have been widely
adopted for the description of the correlation structures and success/failure processes

of wireless channels with bursty behavior [62] because they are efficient in quick sim-



ulations, system performance evaluations and protocol investigations.

The most commonly used models for representing the “discretized” version (under
hard-decision demodulation) of binary-input fading channels with memory are the
Gilbert-Elliott channel (GEC) [25, 20] and the Fritchman channel (FC) [22]. These
models have been partly adopted for historical reasons since they were introduced in
the 1960s and were the first available models for channels with memory. They were
for example employed to model high-frequency channels [61], mobile radio channels
[1, 11, 57], low earth orbit satellite channels [13] and magnetic tape recorders [18]. The
GEC model also has been used to evaluate the performance of coding and decoding

schemes over bursty channels [48, 51, 68]. A generalized GEC was studied in [35].

Including the above works, many FSMC models have been proposed to fit re-
alistic wireless channels. In [66], Wang and Moayeri proposed an FSMC based on
the partitioning of the received signal-to-noise ratio (SNR) into a finite number of
states to model Rayleigh fading channels. The same approach was also presented
independently in [7] and used in [60, 69]. The model proposed in [66] attracted much
attention because it has a good balance between accuracy and complexity. It was ap-
plied to the evaluation of system-related channel properties (such as the correlation
properties of the fading mobile radio channel) in [77, 78] by modeling the channel as a
first-order Markov process whose transition probabilities are a function of the channel

characteristics. In [12], an analytical model was used to evaluate the effect of mobile



velocity on the performance of a communication system operating in a multi-path

fading channel.

There are other papers assessing first-order FSMC models to represent the quan-
tized Rayleigh fading channel [4, 59, 67]. First-order FSMC’s were also used to simu-
late Rician fading channels in [5] and to simulate diversity Nakagami fading channels
in [30]. Based on information metrics, statistical methods have been proposed to
estimate how reliable such models are in applications (for example in communica-
tion protocol evaluation). Wang and Chang used an information theoretic criterion
to show that the first-order Markov process is a good approximation to model the
envelope of a Rayleigh channel in [67]. In [60], the limitations — “ of this criterion
and the applicability of the first-order assumption were discussed. Several variations

of the FSMC of unspecified order were examined, for example, in [6] for flat fading.

FSMC’s are often generated via finite-state hidden Markov models (HMM’s).!
General HMM’s were studied in [63] to model flat fading channels. Due to their
HMM structure, such channels can be difficult to mathematically analyze (e.g., they
do not admit an exact closed-form expression for their capacity and their block tran-
sition distribution is not transparently expressed in terms of the channel parameters),

particularly when incorporated within an overall source and/or channel coded system.

LA description of other lesser known, but related, finite or infinite state HMM based channel

models is provided in [31].



This may partly explain why, to date, few coding techniques that effectively exploit
the noise memory have been successfully constructed for such HMM-based channel
models and for channels with memory in general. Instead, most current wireless com-
munication systems are designed for memoryless channels and employ channel block
interleaving in an attempt to disperse the channel memory and render the channel
“locally memoryless” — i.e., use a long interleaving span to spread the error bursts
over several codewords so that the noise appears random within each codeword [37].
However, the use of interleaving results in increased complexity and delay. More
importantly, the failure to exploit the channel’s memory leads to a waste of channel
capacity since it is well known that memory increases capacity? for a wide class of
channels (the class of information stable channels [17, 2]). It is therefore vital to con-
struct channel models which can well represent the behavior of real-world channels

while remaining analytically tractable for design purposes.

In [2, Section VI|, Alajaji and Fuja proposed a simple binary additive noise channel
with memory, referred to as the finite memory contagion channel (FMCC), where the
noise process is generated via a finite-memory version of Polya’s urn scheme for the
spread of a contagious disease through a population [45]. In such a channel, every

error (or “infection”, if we use the contagion interpretation) effectively increases the

2In other words, the capacity of the “equivalent” memoryless channel achieved by ideal inter-
leaving (with infinite interleaving span) is smaller than the capacity of the original channel (e.g., see

[37]).



probability of future errors ([45], [21, p. 57]), and hence may lead to a clustering or
burst of errors (i.e., an “epidemic” in the population). The resulting channel has a
stationary ergodic Mth order Markov noise source and is fully described by only three
parameters. Furthermore, it admits single-letter analytical expressions for its block
transition distribution and capacity, which is an attractive feature for mathematical
analysis. This model was adopted in several joint source-channel coding studies (e.g.,
(3,9, 10, 28, 29, 41, 56]) where the channel statistics are incorporated into the system
design in order to exploit the noise memory. The construction of low density parity

check (LDPC) codes for this channel was also recently investigated in [38].

It is also important to point out that Pimentel ef. al. recently showed in a nu-
merical study [44] that the class of binary channel models with additive Mth order
Markov noise (to which both the FMCC model and the channel model studied in
this thesis belong) is a good approximation, in terms of the autocorrelation function
(ACF) and variational distance, to the family of hard-decision frequency-shift keying
demodulated correlated Rayleigh and Rician fading channels for a good range of fad-
ing environments, particularly for medium and fast fading rates. Note however, that
the general Kth order Markov noise channels considered in [44] have a complexity
(number of parameters) that grows exponentially with M, rendering it impractical
for the modeling of channels with large memory such as very slow Rayleigh fading

channels (e.g., see [44, Fig. 11]).



1.2 Contribution

In this thesis, we introduce a new binary additive noise channel based on a finite queue
of length M. The proposed queue-based channel (QBC) model features an Mth order
Markov noise source that is fully characterized by four parameters (M, p, €, «),
making it more sophisticated than the FMCC for channel modeling (as it has an
additional degree of freedom) while remaining mathematically tractable. Our QBC
model does not suffer from the limitation of complexity as it is fully described by only
four parameters and it can accommodate very large values of the memory M. It also
enjoys a transparent formula for its n-fold statistics and a closed form formula for its
capacity, which are appealing features as they provide powerful analytical tools for

code design and system analysis.

The contributions of this thesis (parts of which appeared in [70]-[76]) are as follows.

e Investigation of the statistical properties of the QBC, such as state transition
matrix, stationary distribution, and proof of a recursion property of the sta-

tionary distribution.

e Closed form formulas for the block transition probability and capacity and a

recursive expression for the ACF in terms of the four parameters of the QBC.

e Proofs of two important theorems on the QBC capacity as a function of the

parameters o and M.



e Analytical and numerical comparison studies of the QBC, the FMCC, the GEC

and the Fritchman channel in terms of capacity.

e Statistical approximation of the GEC via the QBC model using parameter es-
timation and optimization. The accuracy of the approximation is measured in

terms of channel capacity, ACF and channel reliability function.

e Approximating the class of hard-decision demodulated Rician fading channels

with memory, referred to as the discrete channel with Clarke’s autocorrelation

(DCCA) model [44] via the QBC.

1.3 Thesis Overview

The rest of this thesis is organized as follows.

In Chapter 2, we review some useful properties and results regarding discrete
stochastic processes and discrete Markov chains. We next present information theo-
retic quantities, such as capacity and reliability function, of discrete communication
channels. We also discribe three previous discrete-time binary additive channel mod-

els with memory: the GEC, the Fritchman channel and FMCC.

In Chapter 3, the QBC is introduced and its statistical (noise stationary dis-
tribution and block transition probability) and information theoretic (capacity and

reliability function) quantities are investigated. The channel is also studied in the



special case when the queue cells are operated on uniformly; the resulting channel is
called the uniform queue-based channel (UQBC). The QBC is next compared analyt-
ically and numerically in terms of channel capacity with the FMMC, the GEC and a

particular class of the Fritchman channel.

In Chapter 4, we study the approximation of the GEC via our QBC model. For
a given GEC, we construct its “closest” QBC peer in the Kullback-Leibler distance
sense; i.e., we estimate the QBC parameters by minimizing the Kullback-Leibler
divergence rate (KDLR) between the block transition probabilities of both channels,
under the constraint of maintaining identical bit error rates (BER) and correlation
coefficients (Cor) (between two consecutive noise samples). We then evaluate the
accuracy of the fit between the QBC and the GEC in terms of channel capacity, ACF
and channel reliability function (or error exponent). Numerical results show that
the QBC provides a good approximation of the GEC for a broad range of channel

conditions, and it thus offers an attractive alternative to the GEC.

In Chapter 5, we study the problem of approximating the class of discretized
correlated Rician fading channels (the discrete channels with Clarke’s autocorrelation
(DCCA) model [44]) via the QBC. For a given DCCA, we construct a QBC whose
noise process is statistically “close” in the Kullback-Leibler sense to the error or noise
process generated by the DCCA under the constraint of maintaining identical BER

and Cor. We evaluate the accuracy of the fit between the QBC and the DCCA in

10



terms of ACF and channel capacity. Numerical results show that the QBC provides
a very good approximation of the DCCA in terms of channel capacity and ACF for
a wide range of fading rates (including slow fading rates), making the QBC a better

fit than the GEC and Markov models studied in [44].

In Chapter 6, we conclude with a summary along with directions for future work.

11



Chapter 2

Preliminaries

We begin with some useful definitions and important properties about discrete Markov
processes and communication channels that can be found in textbooks on information

theory such as [15, 23, 26].

2.1 Discrete Markov Processes

Definition 2.1 A stochastic process {Zy, Z, - - -} with finite-alphabet K = {0,1,2,-- -,
L — 1} is said to be stationary if the joint distribution of any subset of the sequence

of random variables is invariant with respect to time shifts; i.e.,
Pr{Zl = Z1, Z2 =22, ", Zn = Zn} = Pr{Zl+T = z1, Z2—|—7' =Z2," ", Zn—l—'r = Zn};

for every time shift T and for all z1,---, z, € K.

12



Throughout this work, we consider the binary case, i.e., K = {0,1}. In practice,

many sources can be well modeled via stationary processes.

Definition 2.2 A discrete process {Z1, Zy, - - -} with finite-alphabet K is said to be a
Markov chain or Markov process if forn=1,2,---
Pr{Zn = Zn|Zn—1 = Zn-1, Zn—2 = 2n-2,""", Zl = zl}

= Pr{Zn = Zn|Zn—1 = Zn—l}a
forall zy,--+, 2, € K. In this case,

Pl"{Zn = Zn} = PI"{Zl = Zl} H PI‘{ZZ = zi|Zi—1 = zi—l},

=2

where z"é(zl, 29yt Zn)-

Furthermore, a process is a Markov process of order M (or memory M ), where

M > 0 s fized, if

Pr{Zn = Zn|Zn—1 = Zp—1, Zn—2 = Zpn—-2,""", Zl = Zl}

= Pr{Zn = Zn|Zn—1 = Zn-1, Lp—o = Zn—2y"" ", Ln-m = Zn—M}a

for n > M and for all z1,---, 2z, € K.

Define {S,,} as the process obtained by M-step blocking the Markov process {Z,};

ie.,

AN
ﬁn:(Zna Zn—Ha Ty Z’n-l-M*l)‘

13



Then

Pr{ﬁn = §n|§n71 =S8p—1,""" :ﬁl = §1}
- Pr{Zn—}—Mfl = Zn—I—M71|Zn—|—M72 = Zn4M-2,""", anl = anl}

= Pr{ﬁn = §n|§n—1 = §n—1}7

and hence, {S, } is a Markov process with |[K|™ states.

Definition 2.3 A Markov process is said to be time-invariant (or homogeneous) if

the conditional probability Pr{Z, = z,|Z,_1 = zn_1} does not depend on n, i.e.,
PI‘{Zn = a|Zn—1 = b} = Pr{ZQ = a|Z1 = b}’

for n>1 and for all a,b € K.

For a Markov process {Z,}3,, Z, is called the state at time n. A homogeneous
Markov process is characterized by its initial state distribution (i.e., the distribution
of Z,) and a probability transition matriz Q whose (i, j)th entry p;; is the conditional

probability of a transition from state 7 to state j, i.e.,
A . .
Pij= Pr{Zn =J |Zn71 = Z}-

Furthermore, a Markov process is irreducible if any state can reach any other state in

a finite number of steps with positive probability.
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Definition 2.4 For a Markov process {Z,}, a distribution on the states such that
the distribution at time n + 1 is the same as the distribution at time n is called a

stationary distribution and is denoted by = (o3 15+ Migj—1)-

Remark: For a finite-alphabet Markov process with probability transition matrix @,
its stationary distribution r always exists [23, p. 110] and can be obtained by solving
7w = wQ. Furthermore, if the initial state of a homogeneous Markov process is drawn
according to the stationary distribution 7r, then the Markov process is a stationary

process.

Definition 2.5 The entropy rate of a stochastic process {Z1, Za,- -} is defined by

1
H(Z) = hm —H(Zl,ZQ,"',Zn)

n—00 N,

when the limit exists, where

H(ZlaZZa"',Z’n)é_ Z Pr{Zl = zla"'aZn = zn}]ogPr{ZI = Zla"'aZn = Zn}'

21,20

Definition 2.6 We can also define a related quantity for entropy rate:
HI(Z) = nh_)HC}OH(Zn|Zn—15 Z'IL—27 T Zl)
when the limit exists, where

H(Zn|Zn—1a t 'aZI)

2 _ Z Pr{Zi =2, -+, Zn = 2z} logPr{Z, = 2| Z1 1 = 21, , Z1 = 21 }.

21y %0
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For a stationary process, H(Z,|Z, 1, Zp 2, -+, Z1) and %H(ZI,ZQ,---ZR) are de-

creasing in n (see [15], Theorem 4.2.2 and Problem 4.a on P. 74).

Proposition 2.1 [15] For a stationary source, H(Z) and H'(Z) exist and are equal.

Proposition 2.2 Let {Z;,Z,,---} be a stationary Markov process with stationary

distribution 7 and transition matriz Q. Then its entropy rate is given by

H(Z) = H(Zs|Z1) = = ) mipijlog pyj,

ijek
where p;; is the (i,7)th entry of Q. The same result also holds for irreducible (not

necessarily stationary) homogeneous Markov processes.

Proposition 2.3 [52] A stationary (finite-state) Markov process is ergodic if and

only if it is irreducible.

Proposition 2.4 [26] Let p and g be two possible distributions for a source {Z,} with
n-dimensional distributions p™ and ¢™, respectively. If {Z,} is stationary under p
and homogeneous Mth order Markov under q, then the Kullback-Leibler divergence

rate between p and q is given by

: 1 n n
lim —~D(p™l¢™) = —H,(2) - Eyllogg{ Zar| 2™},

n—oo n,
where H,(Z) is the entropy rate of p which exists by Proposition 2.1. E,[X] denotes
the expectation with respect to p and q{ Zy41|ZM} denotes the conditional probability

given M previous symbols.
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2.2 Discrete Communication Channels: Informa-
tion Theoretic Properties

Most of the following can be found in [23, 50].

Definition 2.7 A discrete communication channel is a system with:
o A finite input alphabet X;
e A finite output alphabet Y;

o Transition probabilities: {Pyn xn(y™ | x")}02, of receiving the n-tuple Y™ =y

at the channel output given that X™ = z™ was sent, as illustrated below.

X" yn
Pyn‘Xn(.|.) .

Definition 2.8 A discrete memoryless channel (DMC) satisfies

i=1

The DMC is uniquely determined by the channel transition matrix @ = [P(y|z)] for
x € X and y € ). Note that for channels with memory the above property does not

hold.

17



Definition 2.9 A code C with blocklength n and size K for a discrete channel { Py« xn (y™ |

™)} consists of an encoder-decoder pair (f,g):
f:412,...., K} - X",

and

g:Y"—1{1,2,...,K}.

— 0 Pynixn(-[) 9()  ——

e Encoder: encodes message W € {1,2,..., K} with codeword

f(W) == Xn == (Xl,XQ, .- ,Xn)

e Decoder: for received Y™ = (Y1,Ya, ..., Ys), chooses as estimate of the message
W =g(Y").
e Code rate is: R(C) = (1/n)log, K bits/channel use.

We assume that the message W is uniform over {1,2,...,K}. Then the code’s

probability of decoding error is
. 1 K
P.(C)=Pr{lW #W} = I > Pr{Y" ¢ B, | w sent},
w=1

where
By ={y"€Y":9(y") = w},

18



and

Pr{Y" ¢ B, |wsent} = Y Pynxa(y" | f(w)).
Yy ¢Buw

Definition 2.10 Rate R is achievable if there exists a sequence of codes with block-

length n and rate no less than R such that

lim P,(C) = 0.

For any achievable rate R, it is possible to construct a code that conveys R bits
of information with every use of the channel and yields arbitrarily small probability
of error for sufficiently large blocklength. The channel capacity C' is defined as the

supremum of all achievable code rates.

Definition 2.11 Fiz R > 0 and let P;(R,n) denoted the smallest possible error

probability of any block code C for a given channel with blocklength n and rate no less

than R:

P:(R,n) 2  inf  PJ(0).

CCX™: R(C)>R
Then the channel reliability function is defined as the rate of (asymptotic) exponential

decay of PX(R,n):

1
E(R) = lim ——log, P’(R,n),

n—oo n

assuming the limit exists. If not, then lower and upper bounds are given by

1 1
lim inf ——log, PJ(R,n) and limsup ——log, PJ(R,n).
n—0o0 n n

n—0oQ
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It is shown via the Channel Coding Theorem that the capacity of a “wide” class
of channels with memory considered in Information Theory admits the following
expression:

C = lim sup I(X" Y™,

where I(X™; Y") is the mutual information between X™ and Y™

Pxnyn (2", y")
Inxm Y" Pxnyn( | .
Z Z XYy ay ) OgP ( )PYn(yn)

yreYn zne X"

By “wide” class of channels, we mean information stable channels [64]— i.e. the
channel input X™ that maximizes I(X";Y™) and its output behave ergodically (e.g.,

the asymptotic equipartition property (AEP) holds). In particular, for a DMC:
C=supl(X;Y).
X

A formula for the capacity of arbitrary (non-information stable, non-stationary,
etc) channels was given by Verdd/Han [64], using generalized information measures

and information spectrum techniques.

Xn Ya

Zn

Y, =X,® Z,
Figure 2.1: Discrete-time, binary, additive noise communication channel.
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Hereafter, a discrete-time binary additive noise communication channel (as shown
in Fig. 2.1) refers to a channel with common input, noise and output alphabet X =
Z =Y ={0,1} described by Y, = X,, & Z,, for n = 1,2,3,---, where & denotes
addition modulo 2, and where X,,, Z,, and Y,, denote, respectively, the channel input,
noise, and output at time n. Hence a transmission error occurs at time n whenever
Z, = 1. Tt is assumed that the input and noise sequences are independent of each
other. In this thesis, a given noise process {Z,}>, will be generated according to
one of the models introduced in Section 2.3 (the GEC, the FC and the FMCC) and

our proposed queue-based channel model (QBC).

Example: Assume that {Z,}3°, in the above channel is stationary and ergodic.

Then this channel with memory is information stable [64] and its capacity is given by

C = lim sup lI(X";Y") =1-H(Z), (2.1)

n—o0 xn n

where #(Z) is the entropy rate of {Z,}>,.

2.3 Previous Binary Channels with Memory

2.3.1 Gilbert-Elliott Channel

The GEC model belongs to the family of finite-state channels, which is thoroughly
studied in [23, pp. 97-111]. It is driven by an underlying stationary ergodic Markov
chain with two states: a good state and a bad state, denoted by G and B, respectively

21



g
1—-pa 1—ps
0 0 0 0
>< ><
1 1 1 1
1—pa 1—ps

Figure 2.2: The Gilbert-Elliott channel model.

(see Fig. 2.2). In a fixed state, the channel behaves like a binary symmetric channel
(BSC). The GEC is thus a time-varying BSC, where ps and pp are the crossover
probabilities in the good and bad states, respectively (the Gilbert Channel (GC) [25]
is obtained when pg = 0, i.e., it behaves like a noiseless BSC in the good state). After
every channel transmission, the Markov chain makes a state transition according to

the transition probability matrix

where 0 <b<land 0 < g < 1.

The GEC is a binary additive channel: Y, = X,, & Z,,, where the noise {Z,} is
a stationary ergodic hidden Markov source (infinite memory). A useful approach for
calculating the probability of an error or noise sequence for the GEC is discussed in

[43]. By the law of total probability, the probability of a noise sequence of length n,
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2" = (21, 22, -+, 2n), May be expressed as

Pr{Z" ="} =n" <kf[1 P(zk)> 1, (2.2)

where P(z;) is a 2 X 2 matrix whose (7, j)th entry is the probability that the output

symbol is z; when the chain makes a transition from state sy_; =14 to sy = j, i.e.,

P(0) = (1-0)(1-pe) (1 —ps) | 23)

9(l-pa)  (1—-9)(1—ps)

(1 - b)pG bps
P(1) = . (2.4)
g (1—g)ps

1 is the 2-dimensional vector with all ones and the vector 7r indicates the stationary

distribution vector of the underlying Markov chain,

b+g

™ bg

2.3.2 Fritchman Channel

In 1967, Fritchman proposed a class of models by partitioning the state space 2 =
{0,1,---,N — 1} of an N-state stationary ergodic Markov chain into two groups of
states Ao = {0,1,---,K — 1} and Ay = {K,K + 1,---, N — 1} resulting in the
so-called (K, N — K) Fritchman channel (FC) [22]. Corresponding to this partition,

the state transition probability matrix P and the stationary vector # can be written
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AO Al

~

Error-Free States Error States

Figure 2.3: Partitioning of the state space of the Fritchman channel model.

in the block form

Py Py
P =
Py Py
and 7 = [my 7], where the submatrix P;; contains the transition probabilities from

the set A; to A;. The noise process at the nth time interval Z, is generated by a

deterministic function of the state S, at the nth time interval

0, for S, € Ao,
Ly =

1, for Sn S Al.

In [43], Pimentel and Blake represent the probability of a noise sequence of length n

by

n—1
Pr{Z" =2"} =m., (H lezl+1> 1. (2.6)
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2.3.3 Finite-Memory Contagion Channel

The noise process of the FMCC [2] is generated according to the following urn scheme:
an urn originally contains 7" balls, of which R are red and S are black (T'= R + S).
At the jth draw, j = 1,2,---, we select a ball from the urn and replace it with
1 4+ A balls of the same color (A > 0); then M draws later - after the (j + M)th
draw - we retrieve from the urn A balls of the color picked at time j. Let p = R/T,
0=1—p=S8/T and § = A/T. Then the noise process {Z;}°; corresponds to the

outcomes of the draws from the urn, where

1, if the ith drawn ball is red,
Zi -
0, if the sth drawn ball is black.
It can be shown that the noise process {Z;}{2,,,, is a stationary ergodic Markov

source of order M [2]. For an input block X" = (X1, X5, -+, X},) and an output block

Y™ = (Y1,Y,,---,Y,), the block transition probability
Pr{Y" =y" | X" = 2"} = Pr{Z" = 2"},
where z; = y; ® z; for i = 1,---,n, can expressed as follows [2]:

e For blocklength n < M, the block transition probability of this channel is

n_ o _ PloF6)--[p+(d—1)dlo(c+0)---[0+ (n—d—1)j]
Priz" ="} = (1+0)(1+28)---[L+ (n—1)3]  (27)

where d = d(y", ") =weight(2" = y" @ 2™), and weight(a™) denotes the Ham-
ming weight of the vector a” (i.e., the number of “ones” in a™).
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e For blocklength n > M + 1, the block transition probability of this channel is

Pr{Z"=2"}=L ]|
i=M+1

p+/\i—15 # 0'+(M—/\Z'_1)6 1o
1+ Mo 1+ Mo

where

[ (p + 36) TG (o + 56)

L == . I
M1+ j6)

?:0(')21, ifa<0,z=z;®y;,and \;_1 = z;_1+---+z;_p fori = M+1,---,n.

Theorem 2.1 [2] The resulting channel noise is stationary ergodic Markov with
memory M, and the channel capacity increases with the memory M (for fized BER
and correlation) and is given by

M
(M) . M ,0+k(5
S avele _1_,§<k>Lkhb<1+M5 ’

where

_ 555 (p + 50) I (0 + 49)
5 (1 + 590) ’

p = R/T is the channel BER, and § = A/T is a correlation parameter.

Ly

Notice that the FMCC is fully described by three parameters: the BER p, M and
5. When 6 = 0, FMCC <= BSC(p), and CI(?AI{/I)CC > Cggc for § > 0, which means

that ideal channel interleaving is bad (as expected).
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Chapter 3

Queue-Based Channel with

Memory

In this chapter, we first present the queue-based binary channel with memory whose
additive noise process is generated according to a sampling mechanism involving the

following two parcels.

e Parcel 1 is a queue of length M as shown in Fig. 3.1, that contains initially M

balls, either red or black.

1 2 3 M
Anl An2 An3 AnM

Figure 3.1: A queue of length M.
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The random variables A, (n is a time index referring to the nth experiment,

n > 1; k represents the position in the queue, k =1,2,---, M) are defined by:

1, if the kth cell contains a red ball,
Ank =

0, if the kth cell contains a black ball.

e Parcel 2 is an urn that contains a very large number of balls where the propor-
tion of black balls is 1 — p and the proportion of red balls is p, where p € (0,1),

p<K1/2.

We assume that the probability of selecting parcel 1 (the queue) is &, while the
probability of selecting parcel 2 (the urn) is 1 — ¢ and € € [0,1). Notice that the
channel is actually a memoryless binary symmetric channel (BSC) with crossover

probability p when € = 0, in which case we experiment on the urn only.

The noise process {Z,}>, is generated according to the following procedure. By
flipping a biased coin (with Pr(Head)=c¢), we select one of the two parcels (select
the queue if Heads and the urn if Tails). If parcel 2 (the urn) is selected, a pointer
randomly points at a ball, and identifies its color. If parcel 1 (the queue) is selected,
the procedure is determined by the length of the queue. If M > 2, a pointer points
at the ball in cell & with probability 1/(M — 1 + «), for £k = 1,2,---, M — 1 and
« > 0, and points at the ball in cell M with probability a/(M —1+ «), and identifies
its color. If M = 1, a pointer points at the ball in the only cell of the queue with
probability 1; in this case, we set o = 1. If the selected ball from either parcel is
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red (respectively black), we introduce a red (respectively black) ball in cell 1 of the

queue, pushing the last ball in cell M out.

1 2 3 M
O— 0|0 @ O

la

1 2 3
—10|@®|0O

The noise process {Z,}>2, is then modeled as follows:

1, if the nth experiment points at a red ball,
Ly =

0, if the nth experiment points at a black ball.

We define the state of the channel to be §né(An1, Apz, -+, Anyr), the binary M —tuple
in the queue after the nth experiment is completed. Note that, in terms of the noise
process, the channel state at time n can be written as S, = (Z,, Zn_1, "+, Zn_m+1),
forn > M. If e = 1 (i.e., we always choose the queue), the channel state at time n
can be either all 1s or all Os for n sufficiently large since the two states are absorbing

states. In this case the process {S,,} is reducible; hence it is non-ergodic.
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3.1 Statistical and Information Theoretical Prop-

erties of the QBC

We next investigate the properties of the binary noise process {Z,}3,. We first

observe that, for n > M + 1,

PN Z, =1 | Zn1 =201, Z1 = 21}

1 1 «
- T B - P S 1—
5<Zn1 M—1+a+ + Zn—m+1 M_1+a+an M—1+a>+( e)p
= Pr{Zn =1 ‘ Zp1= Zn—1,""") Zpn-M = anM}a (31)
where 2z, € {0,1},1=1,---,n — 1. Hence {Z,}2, is a homogeneous Markov process

of order M.

3.1.1 Stationary Distribution

Throughout this work, we consider the case where the initial distribution of the
channel state {S,}52, is drawn according to its stationary distribution; hence the
noise process {Z,}>, is stationary. In this section, we first give two examples of
first-order and second-order QBC models for simplicity. Later we generalize the

results for the QBC of arbitrary order M.
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Example 1:

For M = 1, the noise process {Z,}2 is a simple stationary Markov process. The
channel state process {S,}2; is a homogeneous Markov process with 2 states, and

its transition matrix is given by

Poo  Po1 e+(1—¢)(1—p) (1—-¢)p
1 _ _
Qqosc = =

Po P11 (1-e)(1-p) e+(1—e)p

We can observe from the transition matrix le)gc that any state can reach any
other state with positive probability in a finite number of steps. Therefore the process
{S,,} is irreducible (and hence ergodic). Consequently, the stationary distribution

(1)

a2 (’/T(()l); m1’) of the process exists and is unique. Solving (") = 7r(1>Q8}30, the

stationary distribution of the process is given by 7w(!) = (1—p; p).

Example 2:

For M = 2, the noise process {Z,}°, is a 2nd order Markov process. The channel
state process {5,122, is a Markov process with 4 states. We denote each state by
its decimal representation; i.e., state 0 corresponds to state (0,0) or (00), state 1
corresponds to state (01), state 2 corresponds to state (10) and state 3 corresponds

to state (11).

Since {Z,}:°, is stationary, it is also 2-step block stationary, which implies that
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{8, }%2, is a homogeneous Markov process with stationary distribution

w2 () 7?; m; xf?).

1(]2-) denotes the transition probability that S, goes from state ¢ to state j, 7,7 =

Ifp

0,1,2,3, the transition matrix of the process {S,}5°, can be written as

DPoo Por DPo2 Pos

Pio P11 P12 P13

le)ac =
P20 P21 P22 P23
I P30 P31 P32 P33 |
— e+ (1—¢)(1-p) 0 (1—¢e)p 0 —
| TRt 1-90-p) 0 e T (1—¢e)p 0
0 fﬁa—l—(l—s)(l—p) 0 1ja—l-(l—s)p
i 0 (1—¢)(1—p) 0 e+ (1—¢e)p ]

From the transition matrix le)ma we can clearly see that any state can reach
any other state with positive probability in a finite number of steps. Therefore the
process S,, is irreducible (and hence ergodic). Solving w(?) = W(Q)le)gc, the stationary

distribution of the state process is given by

-0 (Lia +(1—e)(1-p)] 1= 1 =p)] [1-2)1-p)[A-2)p].
B (1-)(1-9) (- a-e
(1 —e) -1 —e)p] (A€l [+~ M)
(1_ 1€fa) (1-¢) (1_ 1Efa)(1_€) |
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General case

We now analyze the noise process {Z,}5°, for the general case as a function of M.
The noise process, as we showed earlier, is an Mth order stationary Markov process.
The channel state process {S,,}3 ; is a homogeneous Markov process with stationary
distribution

(g™ ™M s m ™My ),

where state ¢ gives the decimal representation of the corresponding binary M-tuple.
If pl(;w) denotes the transition probability that S, goes from state i to state j,
i, =0,1,--+,2M — 1, the transition matrix of the process {S,,}°° , can be written as

QG = ] win

’ (M—wZ(M) —l—i—a) e T (11—l —p), ifj= 1, and i is even,
(M_WZ(M))M%m"i_(l_E)(l_p)’ if j = 4], and i is odd,
P%VI) = wz(M)M%M + (1 —¢)p, if j = i"'QQM, and i is even, (3-2)
(w,.M) 1+ a) s + (L= e)p, if j = 222, and 4 is odd,
{ 0, otherwise;
where wz-(M) is the number of “ones” in the M-bit binary representation of the decimal

(1)

integer 7. We next derive the analytic expression for r,

Lemma 3.1 The stationary distribution ™) of the QBC Markov noise process is
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given by

M—1—-w™) (M)

an s i T -9 -] L [ + (L - o))

M= (e ) ]

fori=0,1,2,---,2M — 1, where T[%_o(-)21 if a < 0.

Proof If two states have the same binary representation except in the last bit, then

the weights of the two states are different by 1 (suppose one is wa), which is the
number of “ones” in state i (the weight of state ), the other is wgﬁ) = wz(M) + 1 when
i is even). Solving M) = W(M)Q(é\/gc is equivalent to verifying that (3.3) satisfies

the following:

M—w(M)—l—Foz)e
(M) (M) ( t
i = . 1_ 1_
m T [ 17 +(1-¢)(1-p)
M—w™ —1)e
(M) ( v
; 1—¢)(1 - 4
+7rz+1 l M—1+a +( 8)( p) ) (3 )

and

M (M)
wy e w; Tt ale
M, = [71 +(1—e)p| +7) l—( — +2X

+(1- 5)p] . (3.5)

which are directly obtained from the transition probabilities (3.2). First we show that

(3.4) is satisfied. State £ is reached from state i or state i + 1 by transmitting a 0;

2
thus w(iM) = 7TZ(M). Moreover,
2
(M) e
L) _ () Wi gema t(1—e)p (3.6)
i+1 = e (M) c : :
(M - W; - 1)M—1+a + (1 - 5)(1 - p)
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Therefore, (3.4) is equivalent to

(M—wZ(M)—1+a)s
M-1+4+«

(M) €

1= 1—e)(1-— M____ =
F1-e)(1-p) +uM

+ (1 - E)pa

which is easily seen to hold. Next, we show that (3.5) is satisfied. State % is

reached from state 7 or state ¢ + 1 by transmitting a 1; thus WEi?M = w}ﬁ). Using

2

(3.6), we see that (3.5) is equivalent to

(M) )

w;, " t+ale

= (M—w™_1y_ 1 _a)(1= (z—
( Wi )M—1+a+( 6)( p)+

which again is easily seen to hold. E?fo_l W,(M) = 1 is satisfied by taking pairwise

summation of WZ(M), i=0,1,---,2M 1, taking out the common factor, and cancelling
another common factor in the numerator and denominator. Thus, it is verified that

(3.3) is the stationary distribution of the QBC. O

Observation: We note that the stationary distribution (3.3) is identical to the sta-
tionary distribution of the channel state for the FMCC ([2], Sec.VI) if we set the
parameters p and § of the FMCC to p = p and 6 = ¢/[(1 — &)(M — 1 + «)]. Thus,
the set of possible stationary distributions for the QBC channel state is the same
as that for the FMCC channel state. However, for a given M, bit error rate (BER)
and correlation coefficient (Cor), the parameters of the FMCC are determined while
we may still vary the parameters € and o for the QBC to obtain different transition
probabilities in (3.2) and hence different noise processes with the same stationary

distribution but different entropies and ACFs.
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3.1.2 Block Transition Probability

For a given input block X™ = (X3, - -+, X,,) and a given output block Y = (Y3, ---,Y}),
where n is the blocklength, it can be shown using the Markovian property of the noise
and state sources that the block transition probability of the resulting binary channel
is

Pr(M){Y" =y" X" =2"} = Pr(M){Z" = 2"},

where z; = z; ® y;, for i = 1,2,-- -, n, and the noise n-fold distribution is as follows.

e For blocklength n < M,

Pr(M){Z" =2z"}
ned 1. . PR S
[l [Jm +(1=e)(1- P)] [0 [Jm +(1- 5)2?]

B [0 [1— (@ ) 3757 | o
where d) = 2z, + zp—1 + -+ + 2, (d =0 if @ > b), and H?:o(')él if a < 0.

e For blocklength n > M + 1,
prM{zn = ;) = [(M) izljjﬂ [(d;?jwr1 + ozzi_M) M%Ha +(1- g)p] 2
{[(M —1—dZh) +all - ziow)] m L (1—e)(1- p)}l_Zi . (3.8)
where
T _ 5 (s + (1= )1 = p)| i [arsra + (1= €)p) |

ML= (o + §) 3]
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The QBC noise process is stationary; hence it is identically distributed. The channel

BER and Cor are next determined.
BER =Pr{Z; =1} =Pr{Z, =1} = p, (3.9)

and

CO’U(ZZ,ZZ_H) _ CO’U(ZQ,Zl)

Cor = =
\/Var VVar(Zii1) Var(Z)

(3.10)

where Cov(Zy, Z,) = E|ZyZ,|—E|Z,)|E[Z)] = Pr{Zy, = 1,7, = 1}—p* and Var(Z,) =
E[Z?] — E[Z,)? = Pr{Z, = 1} — p* = p — p?. To obtain Cov(Zs, Z,), we use (3.8) if

M =1 (withn=2and a=1):

PI’{ZQ = ]_, Z1 = ]_} =
Thus, for M =1, we get
Cov(Zy, Z1) = ple + (1 —e)p] — p* = p(1 — p)e.

When M > 2, we use (3.7) (with n = 2) to obtain

P [3iza + (L=<l

PI"{Z2:1,Z1:1}:1_(M_2+a)

M1—|—

Thus, for M > 2, we obtain

et (- 6)p
Contn ) = r R I
M 1+
= p(1-p) SE : (3.11)

1—(M-2+a)

£
M-—14a«

37



Note that, since & = 1 when M =1, (3.11) also holds for M = 1. Thus, for M > 1

we have

CO/U(ZQ’ Zl) _ M—El'f‘(x . (312)

Cor = Var(Zy))  1—(M -2+ a)—5—

Remark: For fixed M > 1 and a > 0, Cor = 0 if and only if € = 0. Thus, the QBC
noise process is iid if and only if Cor = 0. This property does not hold in general for
stationary binary sources (Cor = 0 only implies pairwise independence of consecutive

bits). Finally, note that Cor > 0.

From (3.9) and (3.12), the parameters p and € can be expressed in terms of BER,

Cor, M and « as follows:
p = BER, (3.13)

and

(M —1+ «a)Cor

°= 14+ (M -2+ «a)Cor’

(3.14)

Similarly, since & = %, (3.7) and (3.8) can be written in terms of BER,

Cor, M and « as follows:

e For blocklength n < M,

n—dr—1 . dy—1r.
ITj—o []17085 + (1 = BER)|II;Lo [J 19(()};1« + BER]
Mese(t + 5585

PriM{zn = ;) = (3.15)
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e For blocklength n > M + 1,

oo (a7 + azioa) S5 + BER

MWizr =2y =L 1-Cor
Hzm =) = I )i_lf\;[Jrl 1+(M_1+a)153(c]>(1;r
[M —di7] "y ol - zi_M)] _Cé)r_ + (1 - BER) 1-z
1+(M—1+a)% , (3.16)
where
IEa f Cor | (1 ~ BER)] i () Cor BER)
o — 2970 J1_Cor iz U Cor -

H (1+] Cor)

1-Cor
The stationary distribution (3.3) can be expressed in terms of M, BER and Cor as

follows.

(M) Hjjviang [J—Cé)r— +(1- BER)] I1;: (f (j—cé?r— + BER)
T Cor ; (3.18)
H (1 +7 )

1-Cor

fori=0,1,2,---,2M — 1,

In [29], the authors study the joint source-channel coding problem of designing an
index assignment based on the Hadamard transform for the robust transmission of
vector quantization indices over the FMCC. It is noted that the block distribution of
the FMCC noise obeys well structured recursions, hence simplifying the Hadamard
transform analysis and the evaluation of the channel distortion. As a result an efficient
index assignment method with appealing robustness properties is constructed. We

herein present a simple recursion property on the stationary distribution of the QBC.
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Lemma 3.2 For fired BER and Cor, the stationary distribution 7r

lowing recursion.:

M = g0 LM for i = 0,1,2,--,2M — 1.
Proof We notice that
w™), if s = 2i,
WMD) —
w™ 11, ifs=2i+1,

for s =0,1,---,2M+!

binary representation of the decimal integer s. Thus, from (3.18),

obeys the fol-

(3.19)

— 1, where w™*1) is the number of “ones” in the (M -+ 1)-bit

M—-wM Cor wi™— Cor
oo T g 0 mI  S ven)
H (1+] COI‘ )
and
M-w™-17. Cor wi™ Cor
' )
Summing (3.20) and (3.21) we get
4D 4 2010
sl 1 [ Cor W01 [ Cor
i 5% + (1 - BER)| 1%, (j-Q% + BER)
o Cor
HJ 0 (1 +71 Cor)
x [(M —w™) < f(g + (1 BER) + ("~ f(gor + BER]
M- 1 w{™)
_ [J_Cé?r_ +( BER)] % ( _Cé?r_ + BER) (3.22)
s (1 +i15%)
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By comparing (3.22) and (3.18), we get

o™ = M 2. (3.23)

3.1.3 Autocorrelation Function

The ACF of a binary stationary process {Z,}2 ; is defined by

Lemma 3.3 The ACF of the QBC satisfies the following.

r

D if m = 0;
Rlm] = < %Wp if1<m<M-—1,;
M_1ta
\ (1 —-e)P’ + 372 ( Mo a1 Rl + aR[m — M]) if m > M.

Proof The autocorrelation function (ACF) of a binary stationary process {Z,} is
given by:

1 1
= Y - > P{Zi=1,Ziy1 = zis1, s Zivme1 = Zitm—1, Zivm = 1},

2i+1=0 2i+m—1=0

Using (3.7) and (3.8), the ACF of the QBC is expressed as follows.

o If m =0, we have
R[0] =Pr{Z; =1} =p.

41



o If m < M — 1, we have

R[m] = PI"{ZZ = ]_, Zi+1 = 0, e, Zi+m—2 = 0, Zi—i—m—l = 0, Zi—l—m = 1}

+ Pr{Zi=1,Zi1=0," -, Zitm 2=0,Zizm 1= 1, Ziz = 1}

+ Pr{Zi=1,Zin=1, Zismo=1,Zixm1=1,Ziym =1}

We notice that, if two binary error sequences of length m + 1 are different in
only one digit, then the weights of the two error sequences are different by 1
(suppose one is w, which is the number of “ones”, the other is w + 1). Thus
the formulas of the block transition probabilities of the two error sequences are

different by only one term; i.e., one includes [e3727%= + (1 — £)(1 — p)] and the

other includes [e;=47 + (1 — €)p]. We can calculate the sum of these two

M—m—1+a

T2, which can be cancelled by (1 —e52-H49) in the

terms to get (1—¢ Y g

denominator. Then the sum of the two stationary probabilities is

e i+ -9 —p)| 95 [ais + (1 — €)p]
0t [1 = (0 + §) 57553] '

Taking pairwise summations of 2™ ! terms, the total number of terms decreases
to 2™ 2. By repeating these operations of pairwise summation, taking out the
common factor, and cancelling another common factor in the numerator and

denominator, we get a final single term which is the following:

i T (1= 5)pp
M—2+ :
1—- M—1+g€
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e If m > M, we have

1 1
Rim| = Z .. Z Pr{ZiH—mefl _ Z;@—I—mefl}
zi+1=0 Zit+m—1=0
i+m—1
x I Pr{Zi=2%lZj1 =21, Zjou = zj-m}
j=itm—M
X Pr{Zi+m = ]-‘Zi—l—m—l = Zitm—1," " Litm—M = Zz'+m—M}

1 1

= Z ce Z Pr{Zg—I—m—M—l _ ZzH—m_M_l}
2i+1=0 Zitm—2=0
i+m—2

x 1l PlZj=2lZi1 =21, Zj-wr = 2j-u}
j=i+m—M
X [Pr{Zi—l—m =1Zigm1=1,", Zitm-n = Zitm—m}
X Pr{Zism-1 = 1 Ziym—2 = Zixm-2," ", Zitm-M—-1 = Zi4m—M—1}

+Pr{Ziimn =1Zism-1=0, -, Zivm-m = Zitm-m}

X Pr{Zi+m—1 = 0|Zi—|—m—2 = Zitm-2,""", Litm-M—1 = Zz'—|—m—M—1}]a

where Z!*" M=! denotes (Z; = 1,-++, Ziym—m—1). Notice that the weight of

(Zz'—}-m—l = ]_, e, Zi—}-m—M) and (Zi—l—m—l = O, ey Zi—l—m—M) are different by 1,

and
Pr{Zitm1=0Zism—2= Zigm-2," ", Zitm-M-1 = Zitm M1}
= 1-Pr{Zitm1=1Zi4m2= Zigm-2," ", Zi+m-M-1 = Zitm-M-1}-
We obtain
1 1 . .
Rlm] = > - Y Pr{zitm M=Vl

2i+1=0 Zi+m—2=0
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t+m—2

X H PI‘{Z]' = Zj|Zj,1 = Zj-1y ijM = zij}

j=t+m—M
X [PI"{Zz'erA =1 Zitm—2 = Zigm-2," " Zitcm-M-1 = Zigm-M-1}
£
Xm +Pr{Zitpm =1|Zism—1=0,---, Zi—|—m—M}]
1 1
= Y - Y Pr{zitm Mt =My
2 (]
Zi+1=0 Zitm—2=0
i+m—2
x I Pr(Z =221 =21, Zj-m = 2-m}
j=i+m—M
XP{Ziym =UZiym 1=0,"", Ziym M = Zitm M}
€ 21: i i+m—M—1 i+m—M—1
TR < Pr{Zitm-M=1 _ jimM-1y
M-1+a Zi+1=0 Zitm—2=0
i+m—2
x I P{Zy=2lZi-1=2-1, -, Zj-m = 2j-m}
j=itm—M
X Pr(Zi—l—m—l = I‘Zi+m—2 = Zitm-2,"" " Litm-M—1 = Zi+m—M—1}-

The second term can be expressed by M%HaR[m — 1]. By repeating the oper-
ations of taking pairwise summation in the first term, we get

1 1
I S S T

=0 Zipmom_1=0

X Pr{Zssm = 1|Zssm 1= 0, Zivm ar = 0}
. m—1

Y ita ( > Rli|+ aR[m — M]) :

t=m—M+1

The final recursion expression for ACF is shown as follows.

Rlm] = (1 —e)p? + M%Ha ( S R[]+ aRlm - M]) .

i=m—M+1
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Lemma 3.4 If Cor > 0, then R[m)] is strictly decreasing for m > M and

lim R[m] = p*;

m—r0o0

thus, Z; and Z;m are asymptotically independent (since they are binary valued).

Proof The proof is by induction. First, we prove that the initial condition R[M] >
R[M +1] holds; then we prove that R[j] > R[j+1] holds if R[m] is strictly decreasing

for M <m < j.

Initial condition:

RIM+1-RM] = (1—e)p’+——— f)R[i}me]
M-1+a\=

D (g RIi) + aR[O])

= =15 a BIM]+ R[] - R[] - aR[0]).

Since R[i| = R[1] for 1 <i < M — 1, we obtain

R[M + 1] — R[M]

9 9

= ——{u-ap+ (M = )R]+ D)

+aR[1] - R[1] — aR[0]

9

g
= — 1 —-e)p?’+ —«—
M—1+a{( Ly

((M =1+ )R[1] + o(R[0] - R[1]))
+aR[1] — R[1] — aRJ0]

ea(R[0] — R[1])
M-14+a«a

= M%lﬂy{(l —¢e)p® +eR[1] +

+aR[1] — R[1] - aR[O]}
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_ m{(l _ ) — (1—e)R[] - (1 _ m)aR[O]
(1 3= e B
_ M%Ha{a —)(@® — RI1)) + a(l - m) (R[1] - R[O])}.

Since p* < R[1] (since Cor > 0) and R[1] < R[0] for 0 < p < 1, we have that

R[M +1] < R[M].
Inductive Step: Assume R|m)] is strictly decreasing for M < m < j, then

R[j + 1] — R[j]

- (1_5)1,”#( > RW@RU'—MH])

M-1+ao imj M2

~(1-e)p — ———— ( g: Rli] + aR[j - M])

M—-1+a\;_; 5

8 . . . .
m(R[J] +aR[j — M +1] - R[j = M +1] - aR[j — M]).
We have R[j + 1] < R[j] based on the assumption of R[m] is strictly decreasing for

M<m<j.

Therefore R[m] is strictly decreasing for m > M and converges to a positive value:

€
M-1+a«

- (1—£)p2+M%M{(M—1+a)%i_I)IéOR[m]}.

lim Rlm] = (1—¢)p+

m—0o0

{(M—l)%i_r}nooR[m]—f—a?gi_r}réoR[m—M]}

Therefore

lim R[m] = p°.

m—00
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3.1.4 Channel Capacity

The information capacity for channels with memory is defined by Shannon’s familiar

expression [26, pp. 287], [64]

1
C = lim sup —I(X™;Y"), (3.24)

n—oo xn n

where I(X™;Y™) denotes the block mutual information [15, pp. 18] between input
X" = (Xy,---,X,) and output Y™ = (Y7,---,Y,) and where the supremum is taken
over all possible inputs X™. As noted in Chapter 2, for the wide class of channels
with memory that are information stable [64] (e.g., the input process that maximizes
the block mutual information and its corresponding output process form a stationary
ergodic joint input-output process) the information capacity shown above has an
important operational meaning as established by Shannon [50], since it represents the
largest rate at which information can be transmitted over the channel via a channel
code and recovered at the receiver with asymptotically vanishing probability of error
(as the code blocklength approaches infinity). It is thus clear that C is a key quantity

in the investigation of communication channels.

Since the QBC is a channel with additive stationary ergodic noise, it is information
stable, and its (operational) capacity, Cg]\fc), is hence given by (3.24). Due to the

channel’s symmetry, it can be shown that input n-tuples X™ that are uniformly
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distributed over {0,1}" maximize I(X";Y™) in (3.24). Thus,
clD = 1-HM(2), (3.25)

where H™M)(Z) is the entropy rate of the Mth order Markov noise process. It can be
obtained using (3.2) and (3.3), as follows.

2

HM)(Z) lim ~ H(M W2y, Zn)

n—oe n

= H™(Zyir | Zn, Znr, 5 Z1)
= H(M)(ﬁz |§1)

= — 3w log, pij"

ML/ —1 £
= LM p, [ - i (1- ]
( ) L S el Sl

w=0 w

+ i ( )L(M I [(w —1+4+a) +(1- 5)10] , (3.26)

€
w—1 M—-1+«

where

Lon D5 s + (1= 9= P IG5 [ + (= )]
o 51— (o + ) 3]

(- ) 1,ifa <0, ( ) 1, if @ = 0, and h,(+) is the binary entropy function: hy(g) =

Y

—glogy, g — (1—g)log,(1—g). It is clear that 084]3)0 is positive since HM)(Z) < 1 for

fixed M, ¢, p and . Using (3.25) and (3.26), we obtain the following expression for

o)
CaBC:
ML/ —1 £
— 1 (M) & _
CQBC ! w_0< w )L“ hb[wM—1+a+(1 g)p]
M M—-1 £
- LD [ -1 1— ] 2
E(w—l) Mpy l(w+ )M—1+a+( )p| - (3.27)



In terms of the channel parameters M, BER, Cor and «, the capacity in (3.27) can

be written as

. Cor
C(M) - 1_ le (M - 1) L(M)hb “TCor + BER
. A =
%(M_1>L(M)h (w—l—i—oz)%-ﬁ-BER (3.28)
— w b ) .
o \w—1 1+(M—1+a)1_cé)(l;r

where

M-1-w [:_Cor w—1 (. _Cor
LM = %o [j Cor (- BER)] j=0 (j Cor BER)’ (3.29)

1 (1)

which is not a function of « .

When ¢ = 0 (or Cor = 0), the channel is a BSC and the channel capacity is

CoBe =1- hs(p) = 1 — hy(BER). (3.30)

Theorem 3.1 The capacity C((QJ%)C of the QBC strictly increases with o for fized

M > 2, BER and Cor € (0,1).

Proof Notice that for various o, ¢ has to change to keep Cor fixed from (3.12).

Rewriting (3.28), we get

Cone =1 - MZ (Mw‘ 1) (L0 [£()] + L5 b [g ()]} (3.31)

where L(M) is expressed in (3.29), hs(-) is the binary entropy function,

Cor

fla) =

1+ (M -1+ a) S8
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and

Cor
(a) = (w+a) 1-Cor + BER

1+(M—1+a)1_cggr'

Differentiating C((QAQC over « for fixed M, BER and Cor yields

w

dC M1 /a1 ydhy (f)d f mydhy(g)dg
~7QBC _ &% (M)
dao wz_:o< w )[ - ]

— 1. .32
df d w+1 dg da (3 3 )
Since
Cor Cor
af _ (w 1-Cor +BER) 1-Cor
da [1+(M—1+a)1_cé)gr]
Cor Cor
dg [(M —w-1) —Cor (1- BER)] 1—Cor
= D) 3
da [+ (M =1+ 0) 8%
hull) = log, (1), and 248 = log, (=2}, we obtain that
(M) M-1
d(;QBc _ _yn 3 {(M - 1)L< ) [_ (w COCT +BER>]
o w 1 — Cor
1 { —1l4+a- w)%+(1—BER)
X 1082 Cor
Wi—Cor +BER

Cor
+Lw+1[M w—1) 1_Cor+(1—BER)]

Cor
—w-—1) + (1 — BER
x log, { )i Cor ( ) } (3.33)

(w+a)-C9L 4 BER

1-Cor
where
Cor
o) 1—Cor
Cor 12
[1+(M—1+a)1 Or]



Notice, from (3.29), that

W, & L[ODx <w Cor +BER)
1 — Cor

. (M) _ _ Cor _
_A%kaM w=1) 1=+ (1= BER)] . (3.34)
Hence, (3.33) can be rewritten as
(M) M-1
dcﬂ = _y M) 3 M -1 W,
do = w “
Cor Cor

X
(@+a) {595 +BER (M —1+a—w) 59 + (1 - BER)

log,

} . (3.35)

Since w < (w+a)and (M —w—-1)< (M —-1+a—w) VY a>0, we get

Cor Cor
(@+a) S +BER (M —1+a-w) 59 + (1 - BER)
(M)

Since VM) > 0 and W, > 0 for w € {0,1,---, M — 1}, we obtain that di% > 0 for

a > 0; i.e., the capacity of the QBC strictly increases with « for fixed M > 2, BER

and Cor € (0,1). O

Observation: When o — oo we have from (3.28) that

w Cé)r + BER
hy 1-Cor — hy(0) =0, forwe {0,---,M — 1},
Cor
1+(M_1+O‘)1—Cor
and
(w+a—1)-5% +BER
hy =00 C — hy(1) =0, forwe {1,---,M}.
1+ (M =1+ 0) =55
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Therefore, C’ggc — 1 when a@ — oo for M > 2, BER € (0,1) and Cor € (0,1).
Note that ¢ — 1 as @ — oo from (3.14). When & = 1, however, the experiments
always choose the queue; this results in a queue with all Os or all 1s when the number
of experiments is sufficiently large. Thus, the channel is non-ergodic when ¢ = 1, and

is not the same as the limiting channel as ¢ — 1.

3.1.5 Reliability Function

The coding theorem, given by Claude E. Shannon [50] in 1948, states that for a certain
class of channels it is possible to allow an arbitrarily small probability of decoding
error by choosing the blocklength n sufficiently large if the transmission rate R is
below the channel capacity C. The channel reliability function or error exponent
E(R), which is a more comprehensive tool than channel capacity, is defined as the
asymptotic exponent of the minimum error probability P*(R,n) over all codes with
blocklength n and rate R (e.g., see [8, 23] and Definition 2.11). E(R) is a non-negative
and non-increasing function of R for all 0 < R < C, and E(R) =0 for R > C, where

C is the channel capacity.

E(R) is indeed a more comprehensive tool than channel capacity, although it is
considerably more difficult to study for general channels with memory (including the

GEC).! For our binary channels with additive stationary ergodic noise, two bounds

!Recall that even for discrete memoryless channels, E(R) is not exactly known at low rates; so
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for E(R) are known: the random coding lower bound (RCLB) [23] and the sphere-

packing upper bound (SPUB) [19].2

Proposition 3.1 (Random coding lower bound (RCLB) [23] and Sphere-
packing upper bound (SPUB) [19]) For a channel with additive stationary er-

godic noise described by {PYn|Xn 2 LIS Vil Seed

E.(R) < E(R) < E4(R), (3.36)

where

and

Lo
1 1
2 - Sup —log, ) l > Pxn(@")Pyaxa(y" | xn)“”’] : (3.37)

yneyn Lgnexn

E§” (p)

The above RCLB and SPUB for E(R) are tight when R > R,., where R, is the

critical rate given by

2 9E (p)
cr ap

p=1

only upper and lower bounds to E(R) can be examined (see for example [8, 16, 23, 65]).

2These bounds actually hold for more general discrete channels with memory.
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Note also that for our binary additive noise channels, E(()") (p) is achieved by the
uniform input distribution Px«(z") = 27" for all 2" € {0,1}", since the channels
are symmetric. Furthermore, when the noise is a Markov source, E(()oo) (p) admits an

expression as follows [23, 47].

Proposition 3.2 For a channel with binary stationary ergodic Markov noise with

transition matriz [py;] and n-fold distribution p™,

Ef(p) = p—p lim ~H (p™) = p— (1+ p)log, A(p),

n—oon 1+p

where lim,, o (1/n)Hy(p'™) is the Rényi entropy rate [47] of the Markov noise with

parameter o (o >0 and o # 1),

H, (p(n) )

2 fgirer)

zTL

and A(p) is the largest eigenvalue of the matriz [pij/(lﬂ)].

The above result also directly holds for Markov noise sources of order M (c.f.,
[47]). Hence, for the QBC (whose noise process is of memory M), the RCLB and
SPUB bounds on F(R) can be readily obtained and calculated using Propositions 3.1

and 3.2.
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3.2 Uniform Queue-Based Channel with Memory

We next study a particular case of the QBC, the uniform queue-based channel
(UQBC), by fixing o = 1; i.e., we operate on the queue cells with equal proba-
bility 1/M. The UQBC block transition or noise probability Pr(M){Y” =y X" =
2"} = Pri{Z" = 2"}, where z; = z; ® y;, of the UQBC can be expressed in terms

of M, BER and Cor from (3.15) and (3.16) as follows.

e For blocklength n < M,

M [—Cé?r—+( — BER)| 1% [1; 5% + BER]

PriM{zn = ) = .(3.38)

Cor
[1 +J 1— Cor]
e For blocklength n > M + 1,
o[}, 59 +BER]”
i=M+1 1 -+ M%)r—

Cor
1+ M1—( Jor

it Cor _ 1=z
{(M di b)) 0+ (1 BER)} )

where L™ is given by (3.17).

Similarly, from (3.28), the capacity of the UQBC in terms of M, BER, and Cor is

given by
o M w-S9L + BER
Cygec =1- 2 <M>L&M)h 1_ Wy Cor | (3.40)
“=0 M Cor

where L(M) is given by (3.29).
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Lemma 3.5 The UQBC with memory order M and the QBC with memory order
M + 1 and o = 0 have identical block transition probability for fired BER and Cor;

therefore the two channels have identical capacity under the above conditions.
Proof When a =0, we obtain, from (3.15) and (3.16),

e For blocklength n < M,

PrM{Z = "}

n—dp—1. dy —1r .
[0 1[] 1_C((j)(1;r + (1 - BER)] HJZOI[J 198(1;1‘ + BER]
_ —Cor . (3.41)

[T=o [l + 7 Co7]

e For blocklength n = M + 1,

Pr(M—H){zn — Zn} é L(M+1)

M+1-dy"*' =1 7. Cor . Cor

aMtt 1
II;=0 []fCE +(1- BER)] IT%0 [j -Cor T BER}
M . C
Jj=0 (1 +J 1—(Oif)r)
— (M) H { 1 1-Cor } { ! ) 1-Cor } . (3.42)

Cor Cor
L+ MkCor 1+ leCor

i=M+1

e For blocklength n > M + 2,

Pr(M—H){Zn — Zn}

n i—1 _Cor Zi i—1 ) Cor 1-2;
= L) ] {diMl—ca + BER} { (M —di}) 1585 + (1 - BER) }

Cor Cor
1+ M1—Cor 1+ M1—Cor

1=M+2

" i—1 _Cor % i1\ _Cor _ 1=z
— L(M) H di—M 1—Cor + BER (M B di*M) 1-Cor + (1 BER) (3.43)
=M1 1+ lecé?% 1+ M%
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By comparing (3.41) with (3.38), and comparing (3.42) and (3.43) with (3.39), we
conclude that the UQBC with memory order M and the QBC with memory order
M + 1 and o = 0 have identical block transition probabilities for the same BER and

Cor. Thus, the two channels have identical capacity under the above conditions. O

Theorem 3.2 The capacity CSQC of the QBC is strictly increasing in M and con-

verges to a limit for fired BER, Cor and 0 < o < 1.

Proof For fixed BER and Cor, the capacity of the QBC is a function of memory
order M and parameter . Let CQBC( «) denote the capacity of the QBC. Thus, for

0 < a <1, we have

CSQC(Q) < C’QBC(I) (by Theorem 3.1)

= C’Sgrcl (0) (by Lemma 3.5)

< 08/{351 (o) (by Theorem 3.1). (3.44)

When o = 0, we have
Conel0) < Chpa(l) = CaEa’(0). (3.45)

When o = 1, we have
Cape(D) = Cane’(0) < Capg’ (1): (3.46)
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Thus, the capacity C((QAQC of the QBC is strictly increasing in M for fixed BER, Cor
and 0 < o < 1. Since {C((QAQC} is increasing and upper bounded (by 1), the limit of

C((QAQC exists as M — oo. O

3.3 QBC Capacity versus Capacity of Other Chan-
nels with Memory

In this section, we compare in terms of capacity the QBC with the FMCC [2], the GEC
[37] and a particular symmetric class of the Fritchman channel [22] under identical

channel parameters.

3.3.1 Comparison with the Finite-Memory Contagion Chan-

nel

The noise process of the FMCC is stationary and hence identically distributed [2]; the
channel’s BER and Cor are as follows: BER = p and Cor= 6/(1 + J). By comparing
the UQBC with the FMCC in terms of block transition probability, we obtain the

following result.

Theorem 3.3 The UQBC and the FMCC are identical; i.e., they have the same

block transition probability for the same memory order M, BER and Cor. Therefore
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the two channels have identical capacity under the above conditions.

Proof In terms of M, BER and Cor, the FMCC block transition probability
Pr{Y" =¢" | X" =2a"} = Pr{Z" = 2"},

where z; = y; ® x; for i = 1,-- -, n, can expressed as follows [2]:

e For blocklength n < M,

148 (BER +j-C95) 1773~ [(1 — BER) + j-G9L ]

Pr{Z" =2"} = (3.47)
n-1 ._Cor ’
j=1 (1 T 301“)
where H?ZO(-)él if a < 0 and d = d(y", z")= weight(z").
e For blocklength n > M + 1,
Pr{Z" = 2"}
n (BER+ Ao 295\ " [(1 - BER) + (M — Aimy) S o
=r 1l Co o | B4
i=M+1 1 -+ Mm 1 -+ Mm
where

% (BER +j;G90) 145 [(1 — BER) + 5590 ]

L (1 +45565) |

jzo(-)él ifa <0,z =x;®y;,and \j_1 = z;_1+---+zi_yyfori = M+1,---,n.

Comparing (3.38) with (3.47) and (3.39) with (3.48), we observe that the FMCC

and the UQBC have identical block transition probability for the same memory order
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M, BER and Cor. Thus, the two channels have identical capacity under the above

conditions. O

Observation: The above result appears at first somewhat surprising since the same
Markov noise process seems to have been generated by two different experiments: the
Polya contagion urn scheme and the finite queue scheme. However, upon further re-
flection, the equivalence of the two experiments becomes transparent when we equate
the original "= R+ B balls in the FMCC urn scheme with the urn (with proportion
p of red balls) in the UQBC scheme and the balls which are added and later removed
in the FMCC urn scheme with the queue in the UQBC scheme. We can describe the
FMCC urn scheme as a two-stage experiment. In the first stage we decide to pick
from the original balls (with probability T/(MA + T)) or from the “transient” balls
(with probability MA/(MA +T)). This is equivalent to the first stage of the UQBC
experiment where we choose either the urn (with probability 1 —¢) or the queue (with
probability €). Indeed, the FMCC parameter A no longer serves a purpose once the
first stage is completed. In the second stage we choose a ball at random from the set
we have chosen in the first stage. For the purposes of picking a color at random, we
can view the transient balls (of which there are M A) as just M balls, with each red
ball representing A red balls and each black ball representing A black balls. Thus,
if we have decided to choose from the transient balls in the first stage, we pick one

of the M balls (each with “weight” A) at random (equivalent to picking a cell at
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random in the UQBC scheme), then add a ball of that color and remove the ball that
was added M draws ago (equivalent to pushing a ball of the chosen color into the

front of the UQBC queue and pushing the last ball in the queue out).

We note that the correlation coefficient of the FMCC does not depend on memory
order M (Cor= 6/(1+0)) while that of the UQBC depends on memory order M (see
(3.12)). Therefore, the two channel models are different in their parameterizations

although their block transition probabilities and capacities are identical under the

same M, BER and Cor.

From Theorem 3.3 and [2], the following asymptotic expression for CI(JA{Q)BC can

be established as M approaches infinity while keeping BER and Cor fixed:

1
lim CU0pc=1- /0 ho(2) f2(2)dz, (3.49)

M—o0

where hy(-) is the binary entropy function and fz(z) is the beta probability density
function (pdf) B, (z) [45], [21, pp. 50] with parameters v = BER(1—Cor)/Cor and

v = (1-BER)(1—Cor)/Cor; i.e.,

I'(u+v)

Tty D V().

fZ(Z) - ﬁu,v(z) -

where Ij11(2) denotes the indicator function on the set [0, 1].

From Theorem 3.2, we note that (3.49) is an upper bound of the capacity of the

UQBC for a given M.
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Corollary 3.1 For the same M, BER and Cor,
M M
and

CoBe > Cinoe (when @ > 1), (3.51)

Proof (3.50) and (3.51) can be obtained directly from Theorems 3.1 and 3.3. O

3.3.2 Comparison with the Gilbert-Elliott Channel

The noise process of the GEC has infinite memory in the sense that it has an infinite
dependency structure since it is a hidden Markov chain. Therefore, knowledge of
the infinite past is necessary for the calculations of the GEC noise entropy rate and
capacity. In practice, a finite past is used to approximate such calculations; a scheme
for such calculation is proposed by Mushkin and Bar-David [37] based on increasingly
tight upper and lower bounds (c.f., also the theoretical study in [27]). In particular,
it is shown in [37] that the GEC capacity can be obtained by Cgrc = lim;,s C,
where () is defined as Qlél — E[hy(q;)]- The random variable ¢ (Z' 1), for | > 2,
denotes the probability of a channel error at the /th use, conditioned on the previous
noise samples, i.e., (212 Pr{Z, = 1 | Z-'}, where ZI-1 = (Zi_1,-.-, Z1). {C}2,
is monotonically increasing with [ since the binary entropy function h,(q) is concave
and continuous over [pg, pg]. Thus, for [ > 1, C; can be computed to provide a lower
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bound to the capacity Cggc; i-e., Cqgrc > C); as | increases, the bound becomes

sharper. The following recursion holds for ¢; [37]:

G1(2") = v(Z,a(271)), (3.52)
where the recursion function v(-,-) is defined by

pe +b(ps — pa) + (g — pa)[(1 —pB)/(1 = q)], pB#1,

v(0,9)2 (3.53)
(1—b)pg+b, pB:LQ7£1a
and
A | pe+bPB—pc)+ plg—pa)ps/q9), pa#0,
v(1, )2 (3.54)
(1_g)pBa pGZOa Q#Oa
for pg < q < pg, where /Lél — g — b. The initial value for the recursion is
@2 Pr{Z, =1} = (ppe +ps)(p+ 1), (3.55)

where pég /b. The random sequence {¢;}72, is a Markov process with initial value ¢;

and transition probabilities
Pr{gpi=a|q=p5}= (3.56)

By comparing C, with the capacity of the UQBC with M =1, C&g}%, we arrive at

the following result.

Theorem 3.4 For M =1, and for the same BER and Cor, Cggg > Cl(jﬁé:ﬁ()]
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Proof In terms of BER and Cor, the initial value for the random sequence ¢; (3.55)

1s

q1 = (ppg +ps)(p+1)"' = BER. (3.57)

From the recursion (3.52), the function v(-,-) in (3.53) and (3.54), and the transition

probability (3.56), we obtain
v(1l,¢1) = BER + (1 — BER) - Cor, with Pr[¢g; = v(1,¢,)] = BER,
and
v(0,¢;) = BER - (1 — Cor), with Pr[ges = v(0,¢;)] =1 — BER,
where the GEC Cor is given by

u(BER — po)(ps — BER)

Cor = """BER(1 — BER)

(3.58)

Thus,

Cy =1— E[h(g2)]

=1— {BER - h[BER + (1 — BER) - Cor] + (1 — BER) - h[BER - (1 — Cor)]}. (3.59)
With memory order M =1 in the UQBC, from (3.40) it follows that

1
C%:ﬁé =1- Z L‘(ul)hb[w - Cor + (1 — Cor) - BER]
w=0

=1 — {BER - hy[Cor + (1 — Cor) - BER] + (1 — BER) - h[BER - (1 — Cor)]}. (3.60)
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Comparing (3.59) with (3.60), we observe that C, = C’gé%% Since C, < Cggc, We

conclude that Cgpe > CP42Y., for the same BER and Cor. O
GEC = CyQBC

Finally, it should be noted that when M > 2, C((QAQC can be either smaller or

bigger than Cggrc, depending on the values of BER, Cor, M and a.

3.3.3 Comparison with the Symmetric Fritchman Channel

(K, 1)-SFC

We define the symmetric Fritchman channel with K good states and one bad state

((K, 1)-SFC) by the following transition matrix on its states

— Poo (1= poo)/ K o (1= poo)/K -
(1 —poo)/ K Poo e (1—poo)/K
Pk 1).sFc = : , (3.61)
(1= poo)/K Poo (1= poo)/ K
| (1=pu)/K a (1 —pu)/K pu |

where pgo is the probability of staying in the current good state and p;; is the prob-
ability of staying in the bad state. By comparing the UQBC with memory 1 to the
(K, 1)-SFC in terms of the probability of an arbitrary noise sequence, we obtain the

following.
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Lemma 3.6 For the same BER and Cor, and for any K = 1,2,---, the (K, 1)-SFC
is statistically identical to the UQBC with M = 1. Hence C (g 1).grc = C’S‘é}% <

(M) (M)

Proof We observe that the good states all have the same stationary probability
(1-BER)/K and they have the same transition pattern. Hence the good states can
be combined into one large good state with stationary probability (1—BER); this
makes the (K, 1)-SFC statistically the same as a 2-state Markov chain (the (1, 1)-FC
or UQBC with memory 1). Hence C( K, 1)-SFC = C’{%}% and since memory increases

capacity (Theorem 3.2) and « increases capacity (Theorem 3.1), we have

_ (M=1) (M) M
Cix, 1)-src = Cugne < Cugpe < C((QB)C

VM>1and o> 1. O

3.4 Capacity Numerical Results

We next compare numerically the capacities of the QBC, the GEC and the FC. For
all these models, the capacities are calculated in terms of BER and Cor. Since the
GEC is described by four parameters, we fix pg = 0.00002 and pg = 0.92 (since they
allow for Cor to range from 0.1 to 0.9) and calculate the upper and lower bounds [37]

for the capacity in terms of BER and Cor. Also, with pg = 0.00002 and pg = 0.92,
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the upper and lower bounds to the noise entropy rate (and hence to Cggc) converge

quickly.
In [22], a general expression for the capacity of Fritchman channels with a single
error-state and K good states ((K, 1)-FC) is provided:

1
C(K,l)—FC =1 + PI‘{ZZ = 1} Z Pr{Zi—H = ZH—I‘Z'L' = 1}10g2 PI‘{ZH_l = Zi+1|Zi = 1}

2i4+1=0

+ Z I:PI'{ZZ = 1’Z'i+1 = 07"'7Zz'+m :0}

m=1
1
X > Pr{Ziimi1 = zigmi11Zi =1, Zi11 =0, -+, Zippy = 0}
Zi+m+1=0
X logy Pr{Ziimi1 = Zigm+1|Zi = 1,241 =0, -+, Ziym = 0}] (3.62)

where the probabilities and the conditional probabilities of error sequences can be
calculated via (2.6). We employ the above expression to compute the capacity of the

(2, 1)-FC with the transition probability matrix

Poo (1 =poo)/2 (1= poo)/2

Po 1yrc = 0.1 0.5 0.4

(1=pu)/2 (1 —pu)/2 P11

where pyo and p;; vary as BER and Cor vary.

As expected, we observe that memory increases the capacities of the UQBC for
the same BER and Cor (see Figs. 3.2, 3.3, and 3.4). In those three figures, the curves
for C’[(%EOCO) provide the upper bounds for the capacities of the UQBC. However, this
pattern does not work for the QBC model generally, which depends on the value of «.
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We illustrate the effect of the cell parameters M and « on the capacity of the QBC
in Figs. 3.5 and 3.6. As expected from Theorems 3.1 and 3.2, the capacity increases
with « for the same BER, Cor and memory order M, and the capacity increases with
memory order M for the same BER and Cor when 0 < o < 1. However, this latter
pattern does not generally hold for the QBC model as it depends on the condition
that & < 1 (c.f. Theorem 3.2). For example in Fig. 3.5, when o > 10, the situation
reverses and capacity decreases with the memory order. We also illustrate in Fig. 3.6
the adage “memory increases capacity” (for information stable channels [2]) by noting
the large capacity gain of the QBC over the BSC for identical BER. Note that the BSC
can indeed be looked at as the channel resulting when ideal interleaving is employed
on the QBC; this indicates that effectively exploiting the noise memory in the system

design is significantly better than ignoring it via interleaving.

The capacity of the QBC, the GEC and the (2, 1)-FC increase with Cor. As
shown in Fig. 3.7, the QBC with M = 2 and a = 10 has the largest capacity, whereas
the UQBC with M =1 (or (1, 1)-FC) has the smallest capacity. C{JA(S%% is smaller
than Cggc as predicted by Theorem 3.4. When Cor=0.1, the GEC and the UQBC
with M = 1 have nearly equal capacities, indicating that in this case we can replace
the GEC with the less complex UQBC if our target is to achieve a capacity which is
close to that of the GEC. For the same BER, the capacity of the QBC can be either

smaller or bigger than that of the GEC and (2, 1)-FC, depending on the values of
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Cor, M and « (see Fig. 3.7).
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Chapter 4

Approximating the GEC via the

QBC

We next consider the problem of fitting the GEC model via the QBC model. In other

words for a given GEC, we construct a QBC that best approximates it.

4.1 Estimation of QBC Parameters

For a given GEC (the GC is a special case of the GEC if pe = 0), we construct a
QBC whose noise process is statistically “close” in the Kullback-Leibler sense to the
noise process generated by the GEC. Specifically, given a GEC with fixed parameters

b, g, pp and pg resulting in bit error rate BER g and correlation coefficient Corggc,
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we estimate the QBC parameters M, p, €, and « that minimize the KLDR

1

(M))
n—oe n Q ’

BC

subject to the constraints

and

Corgpe = Corggg,

where (1/n)D,,(Pegc || Pg\gg) is the normalized nth order Kullback-Leibler divergence

(NKLD) between the n-fold GEC and QBC noise distributions, Pgge and P& re-

QBQC?
spectively:
P 2"
DulPasc | PG = 5 Pone(") logy Loz,
Zme{0,1}m Panc(2")

where Pgro(2") is given by (2.2) and ng’%(z") is given by (3.7)-(3.8). It can be shown

(e.g., see Proposition 2.4) that the KLDR between a stationary source and a Markov

source does exist and can be expressed as

.1

n—oo n QBC
o1
= _nllg)lo EHGEC(ZH) - z PGEC(ZI: " ':ZM+1) log, ngg(ZMH‘ZMa' ) '521)

21y 2 M 41

= —Heec(Z) — Bp,, [108; PG (Zn 1| ZM)],

(M)

one(zm41|2™) is the QBC conditional error

where H(-) denotes the entropy rate and P

probability of symbol M + 1 given the previous M symbols. Then the minimization
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reduces to maximizing the second term
Ep,,[108, PGA(Znri| Z)]

(which is independent of n) over the QBC parameters. Note that in our approxima-
tion, we match the bit error rates and noise correlation coefficients of both channels to
guarantee identical noise marginal distributions and identical probabilities of two con-
secutive errors (ones). Hence, given these constraints, the above optimization problem
reduces to an optimization over only two QBC parameters: M and . This is achieved
numerically by sequentially incrementing M > 1 and varying 0.0001 < ¢ < 0.9999 for

each given M.

4.2 Modeling Results

We evaluate how well the QBC model (obtained via the above KLDR minimization)
fits or approximates the GEC according to three criteria: channel capacity, ACF,!
and reliability function. The QBC ACF and capacity expressions are provided in
Sections 3.1.3 and 3.1.4. Although the capacity of the GEC does not have an an-

alytical expression, it can be determined accurately via the algorithm of [37] (see

Tt is indeed observed in [60, 44] that the ACF is an effective tool to measure the agreement
between models for channels with memory, including between finite-state channel models and dis-

cretized correlated fading channels.
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Section 3.3.2). The ACF of the GEC can also be obtained directly from (2.2).

Rim] = n"P(1) (ni:_[ P) P(1)1, (4.1)

where 7, P(1), P, P(1) and 1 are defined in Section 2.3.1.

We employ Propositions 3.1 and 3.2 to obtain the RCLB and SPUB on FE(R)
for the QBC. However, Proposition 3.2 cannot be directly applied to hidden Markov
channel models (such as the GEC) since the state is not a deterministic function of the
previous state and previous letter. For the GC, if z; = 1, the corresponding state is
certainly B and thus the errors are completely defined by the conditional probability
p(k) of a run of k — 1 zeros followed by a one subject to this sequence being preceded
by a one, i.e., p(k) = P{Z;y1 =0, -+, Ziyx1 =0, Zi1p = 1 | Z; = 1}. Therefore, we
can use the following result [19] along with Proposition 3.1 to determine the RCLB

and SPUB on E(R) for the GC.

Proposition 4.1 For a channel with errors fully defined by p(k) (such as the GC),

Ef®(p) = p+ (1+p)7, (4.2)
where v is the solution of
T 1 .
> p(i) 2" =1, (4.3)
i=1

where 7 is a positive integer such that p(k) = 0 is assumed for k > 7.
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In our results for the GC error exponent, we set the value 7 to be as large as 70,000.

For the GEC, E™ (p) does not admit (to our knowledge) a computable expression;

hence we approximate it by calculating E{™ (p) for large n (we used n = 21 and noted
(n)

that larger values of n result in only a minor change in Ej’(p)), and we employ

Proposition 3.1 to evaluate the GEC error exponent. Similarly, the GEC critical rate

oE{™ (p)

is estimated by computing R for large n, where Rgﬁ)é o7

p=1

A wide range of GEC/GC channel parameters is investigated with 0.01 < Cor
< 0.9 and 0.1% < BER < 10%. In Table 4.1 and Figs. 4.1-4.14, we present typical
evaluation results for the approximation of the GEC/GC models via the QBC. In all,
fitting results for eight values of Cor are shown (four for the GEC and four for the
GC). To illustrate a realistic setting, the values of the pair (Cor,BER) for Cases A
and C in Table 4.1 were chosen to match the conditions of the correlated Rayleigh
fading channel studied in [44, Fig. 6.(b)] with normalized Doppler frequencies of 0.1

(fast fading) and 0.001 (slow fading), respectively.

We first observe in Figs. 4.1 and 4.2 that (1/n)D,(Pggc || PS\EQ) monotonically
increases in n before asymptotically converging to the KLDR. Hence by choosing to
minimize the KLDR to fit the GEC via the QBC, we are indeed addressing the worst-
case scenario, as for finite n, the normalized nth order Kullback-Leibler distance is

smaller than the KLDR and thus yields a closer statistical match between the two

channels. We next notice that the values of the minimum KLDR in Figs. 4.1-4.2
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are less than 0.01 for all cases, except for Case G (see (c) in Fig. 4.2). As a result,
we observe a strong agreement in ACF, capacity and error exponents in Figs. 4.3-
4.14 (this behavior was indeed observed for all computations). In particular, the
value of the KLDR for Case A with Cor=0.0131 is less than 10~° which indicates
excellent matching of the two models, although in this case both channels behave like
a BSC since they have a small correlation coefficient (see (a) in Fig. 4.1). In Figs. 4.3
and 4.4, we note that the ACF curves of the two channels are nearly identical, except
for Cases C and F where the ACF curves for the GEC take a longer span of m before

eventually converging.

Modeling results in terms of capacity are shown in Figs. 4.5-4.12, where the ca-
pacity of the GEC and its QBC approximation are shown for different BER values
and for fixed Cor values. It is worth mentioning that in the capacity comparison
figures, the QBC parameters are optimized for each value of BER. We clearly observe
from the figures that the capacity curves of both channels match quite well and the
capacity curves in Figs. 4.5-4.7 are almost identical. Note from the capacity figures
that the largest Markovian memory M for the QBC model that best fits the GEC is
15 (see Fig. 4.7). Overall, we remark a strong match in capacity between the GEC
and its QBC approximation - indeed, even in Fig. 4.12 where the fit is weakest for

Cor = 0.9, the difference between the capacity curves is less than 1%.

We observe an excellent matching between the two channels in terms of error
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exponents for low Cor values (see Fig. 4.13), while the agreement is weaker but still
good for high values of Cor (see Fig. 4.14). Although we do not have exact RCLB
and SPUB expressions for the GEC, the curves of E,(R) and E;(R) for n = 21 are
close to the QBC exponents, particularly for Cases A, C and D. We also note a good

fit between the critical rates of the channels.

Overall, our results indicate that the QBC provides a good fit for the GEC and
GC channels in terms of ACF, capacity and reliability function for a wide range of

channel conditions.
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Cases | Cor BER | GEC/GC parameters QBC parameters

A ]0.0131 ] 0.00314 | GEC: pg = 0.00259, | M =2, & = 0.0145,

pp = 0.4523 p = 0.00314, o = 0.1054
B 0.2227 | 0.03 | GC: b=0.02, M =4, ¢ = 0.4948,

g=0.18 p=0.03, a =0.4189
C 0.248 | 0.012 | GEC: pg =0.00741, | M =4, ¢ = 0.5279,

ps = 0.6555 p =0.012, a = 0.3907
D 0.341 | 0.1178 | GEC: pg = 0.01, M =4, ¢ =10.6397,

pg =0.5 p=0.1178, a = 0.4319
E 0.5 0.03 | GC: b=0.00367, M =6, =0.841,

g = 0.0636 p = 0.03, a = 0.2893
F 0.7 0.03 | GC: b =0.00228, M =4, ¢ = 0.8864,

g = 0.0547 p =0.03, a = 0.3441
G 0.8 0.1 GEC: pg=0.0101, | M =4, e=0.9294,

pp = 0.909 p=0.1,a=0.2911
H 0.9 0.03 | GC: b=0.00161, M =2, =0.9251,

g = 0.0495 p=0.03, a =0.3723

Table 4.1: GEC fitting via the QBC: GEC and QBC parameters. For the GEC, b and

g are determined using (3.57) and (3.58); for the GC, pg = 0 and pp is determined

using either (3.57) or (3.58).

82




@) (b)

10

KLDR 1072 KLDR
—o— Dn(PGEC”PQBC)/n PN Dn( PGC”PQBC)/n

KLDR
KLDR

-4

L L L L lo L L L L
5 10 15 20 5 10 15 20
n n
(© (d)
KLDR KLDR
—o— D (PgecllPogo)n —o— D (PgecllPogo)/n
10_2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o o
a a
- -
< <
10_3 ,,,,,,,,,,,,,,,, S R RN TR
5 10 15 20 5 10 15 20
n n

Figure 4.1: GEC fitting via the QBC: KLDR and (1/n) Dy (Pgrc || PS%) vs n. (a) Cor
= 0.0131 and BER = 0.00314 (Case A in Table 4.1); (b) Cor = 0.2227 and BER =
0.03 (Case B in Table 4.1); (c¢) Cor = 0.248 and BER = 0.012 (Case C in Table 4.1);

(d) Cor = 0.341 and BER = 0.1178 (Case D in Table 4.1).

83



@)

KLDR

10720 —o— Dn(PGc”PQBC)/n _

KLDR

. (©)

KLDR
—o— Dn( PGEC”PQBC)/n

KLDR

-3

10

KLDR

KLDR

(b)

. KLDR
107 o D (PecllPogdin |
10° ‘ ‘ ‘ ‘

5 10 15 20
n
©)
KLDR
— o D (P llPgolin
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(Case F in Table 4.1); (c¢) Cor = 0.8 and BER = 0.1 (Case G in Table 4.1); (d) Cor

= 0.9 and BER = 0.03 (Case H in Table 4.1).
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Figure 4.3: GEC fitting via the QBC: ACF vs m. (a) Cor = 0.0131 and BER
= 0.00314 (Case A in Table 4.1); (b) Cor = 0.2227 and BER = 0.03 (Case B in
Table 4.1); (c¢) Cor = 0.248 and BER = 0.012 (Case C in Table 4.1); (d) Cor = 0.341

and BER = 0.1178 (Case D in Table 4.1).
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Figure 4.5: GEC fitting via the QBC: Capacity vs BER for Cor = 0.0131. For the

GEC, b and g are determined using (3.57) and (3.58).
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Figure 4.6: GC fitting via the QBC: Capacity vs BER for Cor = 0.2227. For the GC,

pe = 0 and pp is determined using either (3.57) or (3.58).
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Figure 4.7: GEC fitting via the QBC: Capacity vs BER for Cor = 0.248. For the

GEC, b and g are determined using (3.57) and (3.58).
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Figure 4.8: GEC fitting via the QBC: Capacity vs BER for Cor = 0.341. For the

GEC, b and g are determined using (3.57) and (3.58).
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Figure 4.9: GC fitting via the QBC: Capacity vs BER for Cor = 0.5. For the GC,

pe = 0 and pp is determined using either (3.57) or (3.58).
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Figure 4.10: GC fitting via the QBC: Capacity vs BER for Cor = 0.7. For the GC,

pe = 0 and pp is determined using either (3.57) or (3.58).
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Figure 4.11: GEC fitting via the QBC: Capacity vs BER for Cor = 0.8. For the GEC,

b and g are determined using (3.57) and (3.58).
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Figure 4.12: GC fitting via the QBC: Capacity vs BER for Cor = 0.9. For the GC,

pe = 0 and pp is determined using either (3.57) or (3.58).
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for the QBC; (b) Cor = 0.2227 and BER = 0.03 (Case B in Table 4.1) with R., = 0.06

for the GC and R, = 0.05 for the QBC; (¢) Cor = 0.248 and BER = 0.012 (Case C

in Table 4.1) with RZY = 0.03 for the GEC and R,, = 0.04 for the QBC; (d) Cor =

0.341 and BER = 0.1178 (Case D in Table 4.1) with R(Y = 0.02 for the GEC and

R.. = 0.03 for the QBC.
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Chapter 5

Fitting Rician Fading Channels via

the QBC

We next consider the problem of fitting discretized Rayleigh and Rician fading chan-
nels via the QBC model using the KLDR-based approach introduced in the previous
chapter. For the sake of comparison, we also model the fading channels via the GEC
(which has the same number of parameters as the QBC) using the parameterization
method of Pimentel et. al. in [44]. The accuracy of both methods is evaluated in

terms of ACF and capacity.
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5.1 Fading Channel Model

We consider a discrete (binary-input, binary-output) communication system, referred
to as the discrete channel with Clarke’s autocorrelation (DCCA) model, that employs
binary frequency-shift keying modulation, a time-correlated Rician flat-fading chan-
nel, and a hard quantized noncoherent demodulation [44]. The complex envelope of
the received signal at the input to the demodulator is corrupted by a multiplicative

Rician fading and by an additive white Gaussian noise, i.e.,

R(t) = \2B,G(0)S (1) + N(2),

where F, is the symbol energy. S (t) is the complex envelope of the symbol which can

be expressed as

S(t) = 3 pus(t = KT),

where the binary information bearing symbols ay are embedded in the signals p;(t),
1 = 0,1, which are equally probable orthogonal signals with unit energy. T is the
symbol interval. N (t) is the complex envelope of the white Gaussian noise with
autocorrelation function given by [46] LE[N(t + T)N*(t)] = Nyd(), where N is

the variance of N(t). The complex envelope of the fading process G(t) = G(t) +
jGo(t) is a complex, wide sense stationary, Gaussian process with mean 7, j = v/—1,
and the quadrature components G (t) and G (t) are mutually independent Gaussian

processes with the same covariance function C(7) which, adopting Clarke’s model
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([14], [24]), can be expressed as

O(r) = SBI(G(t +7) ~ )@ (1) — m)] = o o(2n for),

where Jy(z) = Z,;”;O(—l)k(Qﬁ—’,:!)Q is the zero-order Bessel function of the first kind,

fp is the maximum Doppler frequency experienced by the moving vehicle, and 03 is
the variance of G(t). At each signaling interval of length T, the demodulator forms
two decision variables {0,1} and decides which signal was more likely to have been
transmitted. A block diagram for visualizing the behavior of the overall system is

given in Figure 5.1.

- |
Source Coder ‘ M](?cllilf;clor ‘
‘ Fading ‘ DECA
‘ Channel }__/
- |
g R ey R ‘

Figure 5.1: Overall system and the equivalent DCCA model.

The combination of digital modulator, fading channel, and digital demodulator
yields the equivalent DCCA model. The study and analysis of the statistical behavior
of the DCCA model is important since the design and construction of effective error

control schemes for this simplified (binary-input, binary-output) model helps us better
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exploit the system memory and achieve reliable communication over the underlying

correlated fading channel.

The DCCA is represented as an additive noise channel with binary error process

{Z,}5°,, where

0 if the nth transmitted symbol is correctly received,
Ly =

1 if the nth transmitted symbol is incorrectly received.

The probability of an error sequence of length n, 2™ = (21, 29, - -, 2, ), can be obtained

directly from [43] (with Q =1).

Pooos (") 2 Pr{Z" = 2"}
1 1 ( n (_1)lk+zk> exp{—ﬁ—ZKRlTF((KR + 1)1+ ﬁ—;éF)fll}
. X

kl;[l Iy +1 det(I+]€—;(1+KR)—1C’F)

, (5.1)

L ... l_n)
Ih+1? T lp+1

where F' is a diagonal matrix defined as F = diag( , I is the identity
matrix, Kgr =1/ 203 is the Rician factor, and C is the normalized covariance matrix
with entries Ci; = Jo(2r fpT|i — j]), 1 < 4,5 < n.

The QBC is next used to model the equivalent binary error sequence of the DCCA,

which represents the successes and failures that result from the transmission of sym-

bols over the above fading channel.
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5.2 Parameter Estimation

5.2.1 QBC Parameter Estimation

For a given DCCA, we construct a QBC whose noise process is statistically “close” in
the Kullback-Leibler sense to the noise process generated by the DCCA. Specifically,
given a DCCA with fixed average signal-to-noise ratio (SNR) E;/Ny, normalized
Doppler frequency fp7 and Rician factor Ky resulting in bit error rate BERpccx and
correlation coefficient Corpcca, we estimate the QBC parameters M, p, €, and « that

minimize the KLDR, lim,,_,(1/7) D, (Ppcca || ngg), subject to the constraints
BERgsc = BERpoca and Corgee = Corpeea,

where (1/n)D,(Ppcca || ngg) is the NKLD between the n-fold DCCA and QBC

(M)
QBC

noise distributions, where P2/ is given in closed form by (3.7) and (3.8) and Ppgea

is given by (5.1).
As noted in the previous chapter, the KLDR between a stationary source and a

Markov source does exist and can be expressed as

.1
lim —D;,(Ppeca | ngc):) = —Hpoea(Z) - Ep on [log, ngc):(ZMH‘ZM)]a (5.2)

n—oo n,

where #(-) denotes the entropy rate and P((QA];[()](ZM+1 |zM) is the QBC conditional error
probability of symbol M + 1 given the previous M symbols. Then the minimization
reduces to maximizing the second term in (5.2) (which is independent of n) over
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the QBC parameters. Note that in our approximation, we match BER and Cor of
both channels to guarantee identical noise marginal distributions and identical prob-
abilities of two consecutive errors (ones). Hence, given these constraints, the above

optimization problem reduces to an optimization over only two QBC parameters.

5.2.2 GEC Parameter Estimation

We next briefly describe the modeling method of the DCCA via the GEC introduced
by Pimentel et. al. in [44]. For a given DCCA, the parameterization of the GEC is

based on the following lemma.

Lemma 5.1 [44] The probability of any observed sequence 2™ generated by the GEC

satisfies the following recurrence equation:
Papc(2"sk) = ¢(, k)Papc(2"s) + d(s, K)Papc(2™), (5.3)

A .
where Pepe(2"ck)=Pr{Zy = 21, -+, Zn = 2n, Zns1 =S, Znio = K}, s and k are binary

symbols,

0(01 0) = (1 _pG)(l - b) + (1 _pB)(l - g)’ 0(11 1) = pG(l - b) +pB(1 - g)’ (54)

d(0,0) = =(1—=g—b)(1 —pe)(1 —ps), d(1,1) = —(1—g—0bpa)ps,  (5.5)

¢(1,0)=1—¢(1,1), ¢(0,1) = 1 — ¢(0,0), d(0,1) = —d(0,0), and d(1,0) = —d(1,1).
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Lemma 5.1 shows that the parameters ¢(c, k) and d(s, k) can be calculated via
a linear system of equations. For example, setting 2" = ¢, where ¢ is an empty
sequence, Pgpo(4) = 1, and 2" = ¢ in (5.3), ¢(s, k) and d(s, k) can be determined by

the probabilities of error sequences of length, at most 3:

PGEC(§§/€) - PGEO(C’{')PGEC(g)
Paro (§§) - PZEC (§) ’

c(s, k) = (5.6)

and

Page (gﬂ)PGEc (Cg) — Parc (gg/{;)PGEC (C)

(s, x) = Para(ss) — P?}EC(C)

(5.7)

The GEC parameters follow by solving the nonlinear equations in (5.4)-(5.5) as fol-

lows.

Proposition 5.1 [44] If Pgpc(01) # Pgre(0)Perc(1), the parameters of the GEC
are uniquely determined by the four probabilities Pgrc(0), Pepc(00), Pgrc(000) and

Parc(111). The four parameters b, g, pg, and pg are given by the following.

pa and pg are the roots of the quadratic equation
[_1 + C(la 1) + C(O: 0)]%2 + [1 - 0(17 1) - C(O7 0) + d(17 1) - d(07 O)].T - d(17 1) =0,

and

_ ¢(0,0)pp — c(1,1)(1 — pp) + (Pc — PB)
Pc — PB ’

b

= ¢(0,0)pe — ¢(1,1)(1 — pg) + (PB — Pc)
PB — Pc ’
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Hence, if Ppeea(0), Ppeca(00), Ppoca(000) and Ppeea(111) are known, where
Preca(2™) is the probability of error sequences generated by the DCCA (see (5.1)),
the parameters of the GEC can be obtained by (5.6), (5.7) and Proposition 5.1 by

Settlng PGEc(Zn) - PDCCA(Zn), n = ]_, 2, 3

5.3 Modeling Results and Discussions

We evaluate how well the QBC model fits or approximates the DCCA according to
two criteria: channel capacity and ACF. The QBC ACF and capacity expressions are
provided in Sections 3.1.3 and 3.1.4. The ACF of the DCCA can be obtained directly

from (5.1):

1+ Kp)? 2K pZe
R[m]: ( * R) " No }7

X exp § —
(2+2KR+1€_3)2_(1€_3p(m))2 { 2+2KR+%—§(p(m)—|—1)
where p(m) = Jo(2rm fpT).
Although the capacity of the DCCA does not have a closed-form expression, it

can be shown that the capacity of the DCCA has the following expression (see (2.1)).

1 1
C = lim sup —I(X™Y")=1— lim —H(Z").

n—o0 xn n n—oo n,
Defining C,21— (1/n)H(Z™), we obtain a capacity lower bound which is computable

for finite n.

For the sake of comparison, we also present modeling results via the GEC using
the method of Pimentel et. al. in [44] (which we briefly described in Section 5.2.2).
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Note that in [44], the authors also employ arbitrary Kth order Markov noise models
to approximate the fading channels. However, unlike our QBC model which has only
four parameters (as the GEC) and allows large values for its memory order M (since
its noise is a special Mth order Markov process generated by our queue scheme), the
Kth order Markov models of [44] suffer from the limitation of having a number of
parameters that grows exponentially’ with K. Therefore, we herein only compare
our QBC-based modeling method with the GEC-based modeling method of [44] since
both channels have identical number of parameters, hence identical degrees of freedom

and complexity.

The capacity of the GEC is obtained via the algorithm in Section 3.3.2. The ACF

of the GEC is provided in (4.1).

A wide range of DCCA channel parameters is investigated with SNR = 15 dB and
25 dB, fpT = 0.001, 0.005, 0.01 and 0.1 for Rayleigh fading (Kr = —oo dB), and
SNR = 15 dB and fpT = 0.001, 0.005, 0.01 and 0.05 for Rician fading (K = 5 dB).
The SNR, fpT and Kg values (except for fp7T = 0.005) were chosen to match the

conditions of the correlated Rician and Rayleigh fading channels studied in [44, Fig. 6,

1As a result, only models with memory order up to 6 are studied in [44]. Such models are
shown to well approximate channels with fast and medium fading rates (fpT > 0.02); but they are
inadequate for slow fading rates. As we later show in this section, the QBC model can accommodate
large values of the memory order; thus, it can provide an accurate approximation of channels with

slow fading (fpT < 0.02) in addition to medium and fast fading.
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Fig. 7, Fig. 9 and Fig. 11]. The QBC and GEC parameters, obtained as explained in

Sections 5.2.1 and 5.2.2, respectively, are provided in Tables 5.1-5.3.

Modeling results in terms of the ACF for the DCCA, its QBC approximation and
its GEC approximation are shown in Figs. 5.2-5.7. We observe a strong agreement
between the QBC and the DCCA in ACF in these figures (this behavior was indeed
observed for all computations, especially for fpT = 0.1, (b) in Figs. 5.3 and 5.5,
where the ACF curves of the DCCA and its QBC approximation are identical). For
slow and medium fading (Fig. 5.2, (a) of Fig. 5.4, Fig. 5.6 and (a) of Fig. 5.7),
the ACF curve for the GEC takes a longer span of m before eventually converging,
which indicates that the GEC model is infeasible for fitting very slow Rayleigh fading
(fpT = 0.001) and for fitting very slow to medium Rician fading (fp7 = 0.001, 0.005
and 0.01). We observe that the QBC has better performance than the Markov models
in [44] (see (a) in Figs. 5.2), but with significantly smaller complexity since it is fully
described by four parameters and allows us closed-form expressions for various fading
characteristics. Compared with [44, (a) in Figs. 7], the QBC has similar performance

as the Markov model of order 4 or 5, but with smaller complexity.

Note that since the QBC noise is a homogeneous Markov process, the KLDR be-
tween the DCCA and the QBC error processes exists and admits a simple expression.
Hence, it is practical to minimize this KLDR by maximizing the expected value in

(5.2) over the QBC parameters which is independent of n (see Section 5.2.1). How-
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ever, this approach is not applicable to the GEC since the KLDR between the DCCA
and the GEC noise processes does not admit a simple expression in general (as the
GEC noise is hidden Markovian). The method of parameterization of the GEC of
Section 5.2.2 is simple, but it only takes into account error sequences no longer than

3, which implies that this method is not appropriate for approximating slow fading.

Numerical results show that the largest Markovian memory M for the QBC model
that best fits the DCCA is 20, while the largest Markovian memory K for the general
Markov noise channel model considered in [44] is 6 because of its complexity. This
explains why the QBC is more suitable for fitting slow fading with large memory than

the Markov noise model considered in [44].

Modeling results in terms of capacity are shown in Figs. 5.8-5.9, where the lower
bound for the capacity of the DCCA and the capacities of the QBC approximation
and the GEC approximation are shown for different SNR values and fpT values. We
clearly observe from the figures that the capacity curves of the QBC and the lower
bound curves for the capacity of the DCCA match quite well, and the capacities for
fpT = 0.1 (fast Rayleigh fading) are almost identical. The last observation can be
explained by the fact that the DCCA has low memory at fpT = 0.1 (fast fading);
hence the lower bound for its capacity is tight (since (1/n)H(Z"™) = H(Z) if Z™ is
memoryless). Overall, we observe a strong match in capacity between the DCCA

and its QBC approximation. In terms of capacity, the GEC has nearly as good a
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performance as the QBC in fitting the DCCA.

Model T
0.001 0.005 0.01 0.1
M =20 M=11 M=7 M =2
QBC | € =0.8593 e =0.7602 € = 0.6556 e = 0.0893
p = 0.0297 p = 0.0297 p = 0.0297 p = 0.0297
a = 0.8959 o =0.3828 o = 0.3387 a=0.131
b =0.0000339 | b = 0.000841 | b= 0.00329 b=0.0324
GEC | ¢ =0.000479 | g =0.0118 g =0.045 g = 0.7466
pp = 0.3393 pg = 0.3393 | pg =0.3395 | pg = 0.5199
pe = 0.00783 | pg = 0.00766 | pg = 0.00713 | pg = 0.00849

Table 5.1: QBC and GEC modeling parameters for Kr = —oo dB (Rayleigh) and

SNR = 15 dB.
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Model foT
0.001 0.005 0.01 0.1
M =18 M=6 M =4 M=2
QBC | € =0.8506 e =0.6226 e = 0.4666 e =0.0145
p = 0.00314 p = 0.00314 p = 0.00314 p = 0.00314
a = 0.2607 a = 0.2525 a=0.2019 a = 0.1054
b= 0.0000333 | b=0.000773 | b=0.0025 b= 0.00103
GEC | g =0.00466 g=10.1014 g = 0.2887 g = 0.8338
pp = 0.3339 pp = 0.334 pp = 0.3343 pp = 0.4523
pe = 0.000783 | pg = 0.000622 | pe = 0.000279 | pg = 0.00259

Table 5.2: QBC and GEC modeling parameters for Kr = —oco dB (Rayleigh) and

SNR = 25 dB.
Model foT
0.001 0.005 0.01 0.05

M =18 M =17 M =11 M=3

QBC | € =0.8195 e = 0.8054 e =0.7219 e = 0.3426
p = 0.00853 p = 0.00853 p = 0.00853 | p =0.00853
a = 0.9619 a=0.3971 a = 0.3299 a=0.3726
b =0.00000259 || b = 0.0000646 | b = 0.000257 | b = 0.00542

GEC | ¢ =0.000139 g = 0.00347 g =0.0137 g = 0.2533
pg = 0.3112 pg = 0.3113 pg = 0.3115 | pg = 0.3185
pe = 0.00289 pa = 0.00288 | pg = 0.00284 | pg = 0.0019

Table 5.3: QBC and GEC modeling parameters for Kpg

SNR = 15 dB.
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Figure 5.3: DCCA fitting via the QBC: ACF vs m for Kz = —oo dB (Rayleigh) and

SNR = 15 dB. (a) fpT = 0.01; (b) fpT = 0.1.
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Figure 5.5: DCCA fitting via the QBC: ACF vs m for Kz = —oo dB (Rayleigh) and

SNR = 25 dB. (a) fpT = 0.01; (b) fpT = 0.1.
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Figure 5.7: DCCA fitting via the QBC: ACF vs m for Kr = 5 dB (Rician) and

115



11

1.05

0.95

Capacity

0.9

0.85

0.8

T T T T T

p =0.00314, a = 0.2607, — DCCA with SNR = 25dB
GEC: b = 0.0000333, g = 0.00466,

QBC: M =6, & = 0.6226 — - DCCA with SNR = 15dB

—-©- QBC, fitting DCCA with SNR = 25 dB
QBC: M =18, e=0.8506, —— GEC, fitting DCCA with SNR = 25 dB

—— QBC, fitting DCCA with SNR = 15 dB
pg = 0.3339, p, = 0.000783. -A- GEC, fitting DCCA with SNR = 15 dB

p =0.00314, a = 0.2525; QBC: M =4,¢=0.4666
GEC: b=0.000773, g = 0.1014, p = 0.00314, a = 0.2019;

=0.334, p__ = 0.000622.
Pg Pe GEC: b = 0.0025, g = 0.2887,
\ P, = 0.3343, p_ = 0.000279.
e '\

—

+

QBC: M =20, e=0.8593, 2

p =0.0297, a = 0.8959; QBC: M =2, &=0.0145,
GEC: b = 0.0000339, g = 0.000479, p = 0.00314, o = 0.1054;
pg = 0.3393, p = 0.00783. GEC: b = 0.00103, g = 0.8338,

pg = 0.4523, p_ = 0.00259.

QBC: M =2, =0.0893,
p=0.0297, o = 0.131;

GEC: b =0.0324, g = 0.7466,
pg = 05199, p, = 0.00849,

QBC: M =11,e=0.7602,

p =0.0297, a = 0.3828; QBC: M =7,&=0.6556,
GEC: b = 0.000841, g = 0.0118, p =0.0297, a = 0.3387;

Pg = 0.3393, p; = 0.00766. GEC: b = 0.00329, g = 0.045,
p, = 0.3395, p_ = 0.00713,

| | |

107 1077 10™

f T

Figure 5.8: DCCA fitting via the QBC: Capacity vs normalized Doppler frequency

fpT for Rayleigh fading channel.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this dissertation, we proposed a binary burst-noise channel based on a finite queue.
The channel noise process is stationary and ergodic, and the state of the channel is a

one-step Markov process with 2 states.

We have derived the stationary noise distribution, the block transition probability
and the capacity of the channel in terms of the parameters M, ¢, p and « for the
QBC. Its capacity is positive, increasing in a and asymptotically upper bounded by
1 for fixed M, BER and Cor. When 0 < o < 1, memory increases capacity for fixed
a, BER and Cor. We also studied a particular case, the UQBC, by choosing o = 1.

The capacity of the UQBC is positive, increases with M and is asymptotically upper
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bounded by c%gcg). We compared analytically the QBC with the FMCC, the GEC
and the (K, 1)SFC. The UQBC and the FMCC were shown to have identical block
transition probability for the same memory, BER and Cor; hence they have identical
capacities under the above conditions. Therefore, Cryicc < C((;)AQC with a > 1, and
CryMcc > CSQC with 0 < a < 1 for the same M, BER and Cor. Furthermore, when
memory is 1, the capacity of the UQBC (Cﬁ%}%) is smaller than that of the GEC
(Cggc) for the same BER and Cor, and the (K, 1)SFC is statistically identical to
the UQBC with memory 1. Thus, the capacity of the (K, 1)SFC is not larger than
that of the QBC with a > 1 for the same BER, Cor and any M. It was observed
via numerical computations that, for the set of considered parameters, the QBC with
M = 2 and o = 100 has the largest capacity, whereas the UQBC with M = 1 has
the smallest capacity. The queue-based model can span a broad range of capacities

by adjusting its parameters.

We also approximate the GEC and DCCA (the equivalent hard-decision demod-
ulated Rician fading channel with memory) via the QBC model. The parameter
estimation of the QBC was achieved by minimizing the KLDR, between the probabil-
ity of error sequences generated by the GEC/DCCA and the QBC, while maintaining
identical BER and Cor. The results show that the curves of the capacity, the ACF,
and the reliability function of the GEC and QBC match quite well and are almost

identical for some cases with low memory order. A strong agreement is also shown
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between the ACF and capacity curves of the QBC and the DCCA. This leads us
to conclude that the QBC provides a very good approximation of the GEC under a
variety of channel conditions; as well, the QBC matches the DCCA much better than
the GEC and Markov models of [44] for slow and very slow fading conditions. This
lead us to conclude that the QBC can characterize a large class of communication

channels with memory, while remaining mathematically tractable.

6.2 Future Work

One possible direction for future work is the modeling and analysis of wired/wireless
Internet traffic and channel coding, as an extension and application of this work.
Sanneck and Carle [49] used an Mth order Markov chain process to describe the de-
pendencies between packet losses. However, their models have a complexity (number
of parameters) that grows exponentially with M, rendering it impractical for the mod-
eling of packet loss processes with large memory. The QBC model, on the other hand,
does not suffer from this limitation as it is fully described by only four parameters
and allows single-letter analysis. The QBC can hence be employed to characterize the
packet-loss patterns introduced by the Internet, especially to capture loss burstiness
and distances between loss bursts. Another topic of future interest is the design, con-
struction and analysis of channel codes for the QBC. One important objective in this

problem is the judicious design of channel codes in order to fully exploit the channel
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memory. Some results in this direction involving LDPC codes are reported in [40].
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