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Abstract

Image compression is a very essential process in this multimedia computer era, as it

keeps the file size of the digital image as low as possible ei ther for hardware storage

requirements or fast transmission times. Many graphic compression schemes have been

developed over the last decade. The JPEG compression international standard is a very popular

image compression scheme due to its low complexi ty. It was developed by the Joint

Photographic Experts Group (JPEG) in 1992 and designed for compressing ei ther color or

grayscale images of natural real-world scenes. The Baseline Sequential, Discrete Cosine

Transformation (DCT) based mode of operation within the JPEG standard is the only one mode

that is widely implemented in many image processing programs. However, as digital imagery

equipment became more widely used, the strong need for high performing image compression

techniques that offer more sophisticated functionali ty than the JPEG standard led to the new

JPEG-2000 standard. It is based on Discrete Wavelet Transformation (DWT) with arithmetic

entropy coding, and it offers many novel features including the extraction of parts of the image

for editing without decoding, the focus on regions of interest with sharp visual quali ty and

specified bitrate, and others. The JPEG-2000 compression standard is based on Discrete Wavelet

Transformation (DWT) with the arithmetic entropy coding.

This thesis presents the algorithms for the JPEG standard briefly and the JPEG-2000

standard in detail . Several “standard” test images are compressed and reconstructed in both

standards in order to compare them visually and objectively.
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Chapter 1

Introduction

1.1 Image Compression

When a photo is taken from a digital camera or a graphic is scanned to form a digital

image, substantial storage space is required to save it in a file. Also, it is time consuming to

transmit it from one place to another because of the large file size. Therefore, the amount of data

in the image file must be reduced. This process is called “image compression”.

1.2 Typical Image Compression Encoder and Decoder

Some typical components of an image compression system can also be found in the JPEG

and the JPEG-2000 standards. In both algorithms, the following operations are performed in the

encoder:

(1) the source image is partitioned into blocks / tiles;

(2) the pixels values are frequency domain transform coded;

(3) the transformed coefficients are quantized;

(4) the resulting symbols are entropy coded.

These common procedures are shown in Figure 1.1. The reverse operations are performed in the

decoder of the image compression system as shown in Figure 1.2.
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1.3 Frequency Domain Coding

Frequency domain coding is the fundamental part of the two image compression

standards that are discussed in this thesis. The purpose of this coding is to decorrelate the

information between data. For example, a pixel in the image in red color has a high probability

that its immediate neighbour pixels also have a similar color. This behaviour is called

“correlation.” Removing correlation between the pixels of an image allows more eff icient

entropy encoding, which is another part of the compression system. Another advantage of

frequency domain coding is that the knowledge of the distortion perceived by the image viewer

can be used to improve the coder performance. For instance, the low frequency elements from a

continuous tone image are more important than the high frequency elements [12], so the

Compressed
Image Data

Partition

Quantizer
Entropy
Encoder

Compressed
Image Data

Source
Image Data

Figure 1.1    Typical image compression encoder

Dequantizer

Reconstructed
Image Data

Figure 1.2    Typical image compression decoder

Frequency
Transform
Decoder

Entropy
Decoder

Frequency
Transform
Encoder
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quantization step for the high frequency coeff icients can be larger. The Discrete Cosine

Transformation (DCT) and the Discrete Wavelet Transformation (DWT) are the two frequency

domain coding methods adopted by the JPEG and the JPEG-2000 standards, respectively. These

transformations decompose the two-dimensional pixel values from the image into basis signals

and produce the coeff icients of these basis signals as the outputs.

1.4 Quantization of Coefficients

Quantization reduces the precision of the coeffic ients by dividing them with quantization

values, so that less number of bits are required to represent the coeffic ients. These values are

chosen carefully by using knowledge about the human visual system [8]. Quantization is usually

the main source for error in the reconstructed image.

1.5 Entropy Coding

Entropy coding is a compression technique that uses the knowledge of the probabili ties of

all the possible data/symbols within the source image file. If a shorter codeword is assigned to a

frequently occurring symbol instead of a rare symbol, the compressed file size wil l be smaller.

The Huffman coding [10] in the JPEG standard has a very simple algorithm while the more

complex arithmetic coding [10], [21] in the JPEG-2000 standard achieves 5 to 10 percent more

compression rate. One of the reasons is that the JPEG standard uses fixed codewords (see Tables

2.4 and 2.5) for all images while the JPEG-2000 standard uses an adaptive probabil ity estimation

process in the arithmetic coding. This estimation process tends to approach the correct

probabilities. [10]
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1.6 JPEG

JPEG (Joint Photographic Experts Group) is a joint ISO/CCITT committee that

developed the JPEG standard in 1992. The JPEG standard is designed to compress continuous-

tone still images either in grayscale or in color. This standard allows software implementation on

any computer platform with affordable hardware. This is a very important feature that led to the

wide use of JPEG throughout the 1990’s. The JPEG standard has four different modes of

operation, which are: Baseline Sequential encoding, Progressive encoding, Lossless encoding

and Hierarchical encoding [20]. Since 1992, when JPEG was released, Baseline Sequential

encoding has been the most popular mode because its sophisticated compression method is

sufficient for most practical applications. Therefore, we will only discuss this mode in this thesis.

For convenience, Baseline Sequential encoding will be denoted as JPEG throughout this thesis.

1.7 JPEG-2000

The goal of the JPEG-2000 is to develop “a new image compression system for all kinds

of still images (bi-level, grayscale, color, multi-component) with different characteristics

(continuous-tone, text, cartoon, medical, etc), for different imaging models (client/server, real-

time transmission, image library archival, limited buffer and bandwidth resources, etc) and

preferably within a unified system” [15].

The JPEG-2000 was approved as a new project in 1996. A call for technical contributions

was made in March 1997. The resulting compression technologies were evaluated in November

1997. Among the 24 algorithms, the wavelet/trellis coded quantization (WCTQ) algorithm was

the winner and was selected as the reference JPEG-2000 algorithm. Its main components are

discrete wavelet transformation, trellis coded quantization, and binary arithmetic bitplane coding.
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A detailed description of this algorithm can be found in [14]. A list of “core experiments” was

performed on this algorithm and other useful techniques in terms of the JPEG-2000 desired

features [9]. They were evaluated in terms of complexi ty and meeting the goals of JPEG-2000.

According to the results of these experiments, a “Verification Model” (VM) version 0 was

created, which was a reference software of the JPEG-2000 that was used to perform further core

experiments. It was updated based on the results of the core experiments that are presented at

each JPEG-2000 meeting.

Many additions and modifications were performed on VM 0 after several meetings. VM

2 has the following main improvements: user specified wavelet transformations are allowed; a

fixed quantization table is included; no quantization is performed for integer wavelet

transformations; several modifications were made to the bitplane coder; rate control is achieved

by truncating the bitstream; tiling, region of region coding, error resili ence was added [4].

EBCOT (embedded block coding with optimized truncation) was included in VM 3 at the

meeting in November 1998 [17]. EBCOT divides each sub-band into rectangular code blocks of

coefficients and the bitplane coding is performed on these code blocks independently. The idea

of “packet” is also introduced. A packet collects the sub-bitplane data from multiple code blocks

in an eff icient syntax. Quality “ layer” is in turn formed from a group of packets. The packet data,

that are not included in previous layers, with the steepest rate-distortion slope are put together in

a layer. Optimized truncation is obtained by discarding the least important layers. This scheme is

designed to minimize the mean square error with the constraint on bitrate.

In the VM 5, the MQ-coder, submitted by Mitsubishi, was accepted as the arithmetic

coder of the JPEG-2000 in March 1999 at the meeting in Korea. This MQ-coder is very similar
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to the one that is used in the JPEG but this new coder is available on a royalty and free fee basis

for ISO standards.

The JPEG-2000 standard has 6 parts at this moment. Part 1 is called the “core coding

system”, which describes the specifications of the decoder as a minimal requirement while the

specifications of the encoding part are also included only as informative materials to allow

further improvements in the encoder implementations. Part 2 is denoted as the extensions of Part

1, which adds more features (user defined wavelet transformation, etc) and sophistication to the

core coding system for some advanced users. Part 3 is for the motion JPEG-2000. Part 4 provides

a set of compliance testing procedures for the implementations of the coding system in Part 1 as

a tool for quality control. Part 5 introduces two free software implementations that perform the

compression system for both the encoder and decoder in order to gain wide acceptance of the

JPEG-2000. Part 6 defines a file format that stores compound images. Only the contents of Part 1

and Part 5 are discussed in this thesis.

1.8 Thesis Outline

The rest of this thesis is organized in the following way. An overview of the JPEG

standard is presented in Chapter 2. A more detailed description of the new JPEG-2000 standard

is presented in Chapter 3. Experimental results for comparing the two standards are shown in

Chapter 4. In Chapter 5, the results are summarized and the future of JPEG-2000 is discussed.
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Chapter 2

JPEG

2.1 Digital Image

Every digital image consists of “component(s).” For example, some color display

device’s images are composed of three components (Red, Green, and Blue). Printed materials

use the CMYK system and its components are Cyan (blue), Magenta, Yellow and blacK. In turn,

every component has a rectangular array of pixels. Usually, an uncompressed image uses 8 bi ts /

pixel to specify the grayscale of a color component. Therefore, 28 = 256 grayscale levels are

created for each component. If there is only one component, it is called a “grayscale” image.

Images, which have two or more color components, are called “color” images.

2.2 Encoder and Decoder Structure of JPEG

The simpli fied structures of the encoder and the decoder of JPEG are shown in Figure

2.1. Assume that we have a grayscale image for now. Multiple-component images will be

discussed in another section. The major processing steps of the encoder are: block division,

Forward Discrete Cosine Transformation (FDCT), quantization, and entropy encoding. The role

of the decoder is to reverse the steps performed by the encoder.
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2.3 8x8 Blocks

All the pixels in an image are divided into 8x8 sample blocks, except the edge portion.

These blocks are ordered according to a “rasterlike” left-to-right, top-to-bottom pattern. (see

Figure 2.2). The partition of an image can help to avoid buffering the data for the whole image

samples. However, the partition also creates the problem of “blocking artifacts.”

Compressed
Image Data

8x8 blocks

FDCT Quantizer
Huffman
Encoder

Table
Specifications

Table
Specifications

Compressed
Image Data

Source
Image Data

Encoder Processing Steps

Dequantizer

Table
Specifications

Table
Specifications

Reconstructed
Image Data

Decoder Processing Steps

Figure 2.1 Encoder and Decoder Structure of JPEG

IDCT
Huffman
Decoder
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2.4 Zero-Shift and Discrete Cosine Transformation

The 8x8 = 64 sample values from each block are shifted from unsigned integers to signed

integers ([0, 255] to [-128, 127]). This zero-shift reduces the precision requirements for the DCT

calculations. Then, these shifted sample values, f(x,y), are fed to the two-dimensional FDCT

(this is created by multiplying two one-dimensional DCTs) according to the following equation.

The two-dimensional inverse DCT equation is also provided:

where 
2

1
)( =uC if u = 0, and 1)( =uC  otherwise (the same is true for the parameter v).

FDCT decomposes the 64-coeff icient digital signal into 64 orthogonal basis signals to

achieve decorrelation between samples. Each of these basis signals contains one of the 64 unique

two-dimensional spatial frequencies. The outputs are denoted as the DCT coefficients, which are

8

8

Figure 2.2 “Rasterlike” pattern
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the amplitudes for the basis signals. F(0,0) is called “DC coefficient” while the remaining 63

coefficients are call ed “AC coefficients.”

2.5 Quantization

Quantization reduces the precision of the DCT coeff icients, F(u,v), by dividing them with

quantization values Q(u,v) and rounding the results to integer values. Dequantization multiplies

the quantized coefficient FQ(u,v) with the quantization value Q(u,v) to get the reconstructed

coefficient, FQ’ (u,v):

The quantization values can be set individually for different spatial frequencies using the criteria

based on the visibility of the basis signals. Tables 2.1 and 2.2 give examples for luminance

quantization values and chrominance quantization values for the DCT coeff icients respectively.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 2.1  Luminance quantization table

The luminance value represents the brightness of an image pixel while the chrominance value

represents the color of an image pixel. These tables are the results drawn from CCIR-601
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17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Table 2.2  Chrominance quantization table

experiments by Lohscheller (1984) [8]. For continuous-tone image, the sample values vary

gradually from point to point across the image. Therefore, most of the signal energy lies in the

lower spatial frequencies, so the quantization values for higher spatial frequencies tend to be

large. In practice, a lot of the DCT coeff icients have zero or near-zero value, especially for the

high spatial frequencies. Therefore, these coefficients usually have a quantized value of zero.

2.6 Huffman Coding

Two types of entropy coding are specified for JPEG. They are Huffman Coding and

Arithmetic Coding. Huffman coding has a simpler computation and implementation but the code

tables have to be known at the start of entropy coding. Arithmetic coding typically provides 5 to

10% more compression than Huffman coding. However, the particular variant of arithmetic

coding specified by the standard is subject to patent [10]. Thus, one must obtain a li cense to use

it. Therefore, most of the software implementations use Huffman Coding.

A similar arithmetic coding technique is also adopted by the new JPEG-2000 standard, so

the topic of arithmetic coding is left to be discussed in Chapter 3 and only the Huffman coding is

discussed in this section.
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2.6.1 Differential Coding and Intermediate Sequence of Symbols

After quantization, the DC coeff icients from all blocks are separately encoded from the

AC coefficients. The DC coefficient represents the average value of the 64 samples within each

block. Thus, strong correlations usually exist between adjacent blocks’ DC coeff icients.

Therefore, they are differentially encoded according to the following equation:

DIFF = DCi – PRED

where PRED is the value of the previous block’s DC coefficient from the same component.

Each DIFF is encoded as “symbol-1” and “symbol-2.” Symbol-1 represents the “size”

information while symbol-2 represents the sign and amplitude. Size is the number of bits that are

used to encode symbol-2. Table 2.3 shows the corresponding size information for DIFF.

Size
(symbol 1)

DIFF Sign and Magnitude
(symbol 2)

0 0 --
1 -1, 1 0, 1
2 -3, -2, 2, 3 00, 01, 10, 11
3 -7, …, -4, 4, …, 7 000, …, 011, 100, …, 111
4 -15, …, -8, 8, …, 15 0000, …, 0111, 1000, …, 1111
5 -31, …, -16, 16, …, 31 00000, …, 01111, 10000, …, 11111
6 -63, …, -32, 32, …, 63 000000, …, 011111, 100000, …, 111111
7 -127, …, -64, 64, …, 127 0000000, …, 0111111, 1000000, …,

1111111
8 -255, …, -128, 128, …, 255 Etc
9 -511, …, -256, 256, … 511 Etc
10 -1023, … -512, 512, …, 1023 Etc
11 -2047, …, -1024, 1024, …

2047
Etc

Table 2.3  Huffman coding of DIFF, Sign and Magnitude
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If DIFF is positive, symbol-2 represents DIFF as a simple binary number. If it is negative,

symbol-2 is “one’s complement” of the amplitude of DIFF in binary number, as shown in Table

2.3.

The quantized AC coefficients are ordered according to the “zigzag” scan in Figure 2.3.

This order makes the entropy coding more effic ient by placing low-frequency coefficients (li kely

to be non-zero) before high-frequency coeff icients. Then the nonzero AC coefficients are also

represented by symbol-1 and symbol-2, but symbol-1 represents both the “ runlength”

(consecutive number) of zero-valued AC coeff icients preceding it in the zigzag sequence and the

“size” information. Runlength can have a value of 0 to 15. If there are more than 15 consecutive

zeros in the sequence, then a symbol-1 of (15, 0) is used to represent 16 consecutive zeros. Up to

three consecutive (15, 0) extensions are allowed. If the last run of zeros includes the last AC

coefficient, then a special symbol-1, (0,0), meaning EOB (end of block), is appended. The

composite “runlength-size” value is (16 x runlength) + size. The way to encode symbol-2 for AC

coefficient is the same way that is used to encode that of DIFF. The result from above is the

“ intermediate sequence of symbols.”

DC

Last AC

Figure 2.3    Zigzag Sequence
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2.6.2 Variable-Length Entropy Coding

 The Huffman code assignment is based on a coding tree structure. The tree is organized

by a sequence of pairing the two least probable symbols. These two symbols are joined at a node,

which is considered as a new symbol. This new symbol’s probabil ity is the sum of probabil ities

of the two joined probable symbols. The codeword is created by assigning 0 either to the upper

or lower branches arbitrarily and 1 to the remaining branches of the tree. Then, the bits from

these branches are concatenated from the “ root” of the tree and traced through the branches back

to the “leaf” for each symbol. An example is given below in Figure 2.4.

Symbol Codeword
a1 000
a2 001
a3 01
a4 100
a5 101
a6 11

Only symbol-1 is Huffman encoded with a variable length code. There should be two sets

of Huffman tables. One set is for symbol-1 of DIFF and the other set is for symbol-1 of AC

coefficients. The Huffman tables for both can be created by counting symbol occurrences for a

large group of “typical” images and assigning a different code word to each symbol.

Alternatively, these tables can be custom-made for each image separately. Tables 2.4 and 2.5

show the codewords for difference symbol-1 of the AC coeff icients and DIFF.

1

0
P(a1) =  0.1

P(a2) =  0.1

0.2

P(a3) =  0.15

0.35

P(a4) =  0.15

P(a5) =  0.15

P(a6) =  0.35

0.3

0.65

0

0

0

1

1

1

1

1

0

Figure 2.4    Example of Huffman Coding
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Runlength/Size (symbol-1) Code Length Codeword
0/0 4 1010
0/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
0/5 5 11010
0/6 7 1111000
0/7 8 11111000
0/8 10 1111110110
0/9 16 1111111110000010
0/A 16 1111111110000011
1/1 4 1100
1/2 5 11011
1/3 7 1111001
1/4 9 111110110
1/5 11 11111110110
1/6 16 1111111110000100
1/7 16 1111111110000101
1/8 16 1111111110000110
1/9 16 1111111110000111
1/A 16 1111111110001000
2/1 5 11100
2/2 8 11111001
2/3 10 1111110111
2/4 12 111111110100
2/5 16 1111111110001001
2/6 16 1111111110001010
2/7 16 1111111110001011
2/8 16 1111111110001100
2/9 16 1111111110001101
2/A 16 1111111110001110

Table 2.4  Partial Huffman Code for symbol-1 of the AC Coefficients
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Size (Symbol-1) Code Length Codeword
0 2 00
1 3 010
2 3 011
3 3 100
4 3 101
5 3 110
6 4 1110
7 5 11110
8 6 111110
9 7 1111110
10 8 11111110
11 9 111111110

Table 2.5  Huffman Code for symbol-1 of DIFF

2.7 Decoding

The decoding procedures perform only the inverse functions of the encoder. They consist

of Huffman decoding, ordering the zigzag sequence of AC coeff icients, calculation of DC

coefficients from DIFF, dequantization, inverse DCT, and inverse of zero-shift from [-128, 127]

to [0, 255].

2.8 Multiple-Component Images

The previous sections only discuss the processing of one-component images. For color

images, the JPEG standard specifies how multiple components (maximum of 255 components)

should be handled as well . A data unit is defined as an 8x8 block of samples. Each component

can have its own sampling rate and we denote the dimensions here by xi horizontal pixels and yi

vertical pixels for ith component. Also, each component has its own relative horizontal and

vertical sampling factors, Hi and V i. The overall image dimensions X and Y are defined as the
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maximums of xi and yi among all the components. These parameters can be expressed according

to the following equations:

,

,

max

max









×=









×=

V

V
Yy

H

H
Xx

i
i

i
i

where   is the ceiling function

For simplicity, we can consider a three-component (component A, B and C) image with

two sets of table specifications. These components and table specifications are multiplexed

alternately, as shown in Figure 2.5.

For the non-interleaving mode, encoding is performed for all the image data units in

component A before it is performed on other components, and then in turn, all data units of

component B is processed before that of component C.  On the other hand, interleaving mode

compresses a portion of data units from component A, a portion of data units from component B,

a portion of data units from component C, and then back to A, etc. For example, if components B

and C have half the number of horizontal samples relative to component A, then we can

A

B

C

Encoding Process

Compressed
Image Data

Table
Spec. 2

Table
Spec. 1

Source
Image Data

Figure 2.5  Component-interleave and  table-switching control
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compress two data units from component A, one data unit from component B, and one data unit

from component C, as shown in Figure 2.5.

A1 A2 B1 B2 C1 C2

An Bn/2 Cn/2

A1, A2, B1, C1, A3, A4, B2, C2, ….., An-1, An, Bn/2, Cn/2

Figure 2.5 Data unit encoding order, interleaved



27

Chapter 3

JPEG-2000

3.1 Encoder and Decoder Structures of JPEG-2000

The simpli fied structures of the encoder and decoder of JPEG-2000 are shown in Figure

3.1. Assume that we have a multiple-component image. The major processing steps of the

encoder are: component transformation, tiling, wavelet transformation, quantization, coefficient

bit modeling, arithmetic coding, and rate-distortion optimization. The role of the decoder is to

reverse the steps performed by the encoder, except the rate-distortion optimization step.

Component
Transform Tiling

Wavelet
Transform Quantization

Arithmetic
Coding

Coefficient Bit
Modeling

Rate-Distortion
Optimization

Original
Image

Compressed
Data

Encoder Processing Steps

Inverse Component
Transform

(Tiling)-1 Inverse Wavelet
Transform

Dequantization

Decoder Processing Steps

Arithmetic
Decoding

(Coeff icient Bit
Modeling)-1

Reconstructed
Image

Compressed
Data

Figure 3.1    Encoder and decoder structure of JPEG-2000
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3.2 DC Level Shifting

Forward DC level shifting is applied on every sample value I(x,y) that is unsigned in the

image according to the following equation. The result is denoted as I’(x,y):

,2),(),(' 1−−=
iSsizyxIyxI

where Ssiz
i is the number of bits used to represent the sample value in the i th component before

the shifting. For example, if Ssiz
i is 8, I(x,y)’s range is shifted from [0, 255] to [-128, 127]. This is

a special case, which is identical to the level shifting of the JPEG standard. Inverse DC level

shifting is performed to the reconstructed samples of components that are unsigned only

according to the following equation:

.2),('),( 1−+=
iSsizyxIyxI

This DC level shifting reduces the precision requirements for the wavelet transform calculations.

3.3 Component Transformation

Two types of component transformations are specified in the JPEG-2000 standard [21].

They are the Reversible Component Transformation (RCT) and the Irreversible Component

Transformation (ICT).

3.3.1 Reversible Component Transformation (RCT)

Reversible Component Transformation (RCT) should be used with the 5-3 reversible

wavelet transformation (Section 3.4). It is a decorrelating transformation that is performed on the

first three components of an image. There should be no sub-sampling on these three components
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and they should have same bit-depth (number of bits to represent a sample value). This

transformation is appropriate for both lossy and lossless compression.

The forward RCT is applied to component samples I0(x,y), I1(x,y), I2(x,y), corresponding

to the first, second and third components of an image and the outputs are Y 0(x,y), Y1(x,y) and

Y2(x,y), as shown in the following equations:
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The corresponding inverse RCT equations are:
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3.3.2 Irreversible Component Transformation (ICT)

Irreversible Component Transformation (ICT) should only be used with the 9-7

irreversible wavelet transformation. It is a decorrelating transformation that is also performed on

the three first components of an image. There should be no sub-sampling on these three

components and they should have same bit-depth. This transformation is appropriate for lossy

compression only. The forward ICT is applied to component samples I0(x,y), I1(x,y), I2(x,y),
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corresponding to the first, second and third components and the outputs are Y 0(x,y), Y1(x,y) and

Y2(x,y), as shown in the following equations:
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The corresponding inverse RCT equations are:
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3.4 Data Ordering

3.4.1 Data Ordering Scheme

An image is separated into several components if there are more than one component

from the image (see Section 2.1). Then, each component is partitioned into non-overlapping tiles

to form an array of “tile-components.” In turn, every tile-component is wavelet transformed into

4 sub-bands for every level of the wavelet transformation. Then, each sub-band is divided into a

set of code blocks for coeff icient bit modeling (see Section 3.8). These processes are summarized

in Figure 3.2.
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3.4.2 Reference Grid of an Image

A high-resolution grid is used to define most of the structural entities of an image. The

parameters that define the grid are shown in Figure 3.3.

This reference grid is composed of a rectangular grid of sample data points. They are indexed

(Xsiz-1, Ysiz-1)

(XOsiz, YOsiz)

Image Area

(0, Ysiz-1)

(Xsiz-1, 0)
(0, 0)

Xsiz

Ysiz

YOsiz

XOsiz

Figure 3.3    Reference Grid

Multiple-
component
image

tile-component 0
Two levels of wavelet
transformations

tile-component n

….

….

:
:

tile-component 1

1HL

1HH1LH

2LH 2HH

2LL 2HL

A set of code
blocks

Figure 3.2    Data ordering scheme

Tiling
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from (0,0) to (Xsiz-1, Ysiz-1). The “ image area” is confined by the parameters at the upper left

hand corner (XOsiz, YOsiz), and the lower right hand corner (Xsiz-1, Ysiz-1).

3.4.3 Division of an Image into Tiles and Tile-Components

The idea of tiling serves the same purpose as the partition of 8x8 blocks in the JPEG

standard. All tiles are handled independently. Therefore, tiling reduces memory requirements

because not the entire bitstream is needed to process a portion of the image. Til ing also makes

extraction of a region of the image (by specifying the indexes of corresponding tiles) for editing

easier. All tiles are rectangular and with the same dimensions, which are specified in the main

header (located at the head of a compressed file).

The reference grid is divided into an array of “tiles.” Tiling reduces memory

requirements and makes extraction of a region of the image easier. The tile’s dimensions and

tiling offsets are defined as (XTsiz, YTsiz) and (XTOsiz, YTOsiz) respectively. Every tile in the

image has the same width of XTsiz reference grid points and height of YTsiz reference grid

points. The upper left hand corner of the first tile is offset from (0,0) to (XTOsiz, YTOsiz), as

shown in Figure 3.4. The tiles are numbered in the “rasterlike” pattern. The values of (XTOsiz,

YTOsiz) are constrained by:

The tile size is constrained in order to ensure that the first tile contains at least one data sample:

The number of tiles in the horizontal direction, numXtiles, and in the vertical direction,

numYtiles are calculated as follows:

,0 XOsizXTOsiz≤≤ .0 YOsizYTOsiz≤≤

,XOsizXTOsizXTsiz >+ .YOsizYTOsizYTsiz >+
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For the convenience of description, the tiles are numbered in the vertical and horizontal

directions. Let p be the horizontal index of a tile, ranging from 0 to numXtiles -1, while q be the

vertical index of a tile, ranging from 0 to numYtiles –1. They can be determined by the following

equations:

where t is the index in Figure 3.4.

The coordinates of a tile for a particular (p, q) pair are:

YTsiz

XTsiz

(XTOsiz, YTOsiz)
YTOsiz

T0 T1 T2

T4

T9T8

T5 T6 T7

T3

T10 T11

Figure 3.4    Tiling of the reference grid
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where tx0(p,q) and ty0(p,q) are the coordinates of the upper left hand corner of the tile, and

tx1(p,q) –1 and ty1(p,q) –1 are the coordinates of the lower right hand corner of the til e. The

dimensions of that tile are (tx1(p,q) - tx0(p,q), ty1(p,q) - ty0(p,q)).

Each component of the image has its parameter XRsiz(i) and YRsiz(i). The samples of

the component i are those samples with index of integer multiples of XRsiz(i) in the horizontal

direction and integer multiples of YRsiz(i) in the vertical direction on the reference grid. For the

domain of the component i, the coordinates of the upper left hand sample (tcx 0, tcy0) and the

lower right hand sample (tcx1 - 1, tcy1 - 1) are defined by:

Thus, the dimensions of the tile-component are (tcx1 – tcx0, tcy1 –tcy0).

3.4.4 Division of Tile-Component into Resolutions and Sub-bands

Each tile-component’s samples are wavelet transformed into NL decomposition levels

(Section 3.5). Then, NL + 1 different resolutions are provided for this tile-component. We denote

the resolutions by an index r, ranging from 0 to NL. r = 0 is the lowest resolution, which is

represented by the NLLL sub-band while r = NL is the highest resolution, which is reconstructed

from the 1LL, 1HL, 1LH and 1HH sub-bands. For a specific resolution r not equal to 0, it is

reconstructed from nLL, nHL, nLH, and nHH sub-bands, where n is NL-r+1. The tile-component

samples’ coordinates are mapped to a set of new coordinates for a specific r yielding an upper

left hand corner’s coordinate (trx0, try0) and a lower right hand corner’s coordinate (trx 1-1,

try1-1) where
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Similarly, (tcx0, tcy0) and (trx0, try0) can be mapped to a specific sub-band, b, with the upper left

hand corner’s coordinate (tbx0, tby0) and the lower right hand corner’s coordinate (tbx 1-1, tby1-1)

respectively, where

where nb is the decomposition level of the sub-band b and the values of x0b and y0b for different

sub-bands are tabulated in Table 3.1.

Sub-band x0b y0b

nbLL 0 0
nbHL 1 0
nbLH 0 1
nbHH 1 1

3.4.5 Division of Resolutions into Precincts

For a particular tile-component and resolution, its samples are divided into precincts, as

shown in Figure 3.5. The precinct partition is originated at (0,0). 2PPx and 2PPy are the dimensions

of the precinct where PPx and PPy can be different for each tile-component and resolution. The

idea of precinct is used to specify the order of appearance of the packets within each precinct in

the coded bitstream.

Table 3.1  Quantities (x0b, y0b) for sub-band b
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3.4.6 Division of Sub-bands into Code blocks

All sub-band coefficients are divided into code blocks for coeff icient modeling and

coding. This partitioning reduces the requirements of memory to both the hardware and software

implementations. It also provides certain degree of spatial random access to the coded bitstream.

Within the same tile-component, the code block’s size for each sub-band is determined by xcb

and ycb. The width and the height of a code block are 2xcb’ and 2ycb’ respectively where

The code block partition originates from (0,0), as shown in Figure 3.6.
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(0, 0)
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Figure 3.5 Precinct partition
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Therefore, the precincts are in turn divided into code blocks. For the code blocks that extend

beyond the sub-band boundary, only the samples lying within the sub-band boundary are coded.

3.4.7 Division of Coded Data into Layers

The coded data of each code block are spread over a set of layers. Each layer is composed

of some number of consecutive bit-plane coding passes (Section 3.7.3) from all code blocks. The

number of coding passes is usually different from code block to code block and may be even

zero, which results in an empty packet (Section 3.10.2). The layers are indexed from 0 to L-1,

where L is the total number of layers in a tile.

3.4.8  Packet

The coded data for a specific precinct of a resolution in a tile-component within a layer is

recorded in a contiguous segment called a “packet.” The length of a packet is an integer multiple

of 8 bits (one byte). The data in a packet is ordered according to the contribution from sub-band

2ycb

’

2xcb

’

(tbx0,tby0)

(0, 0)

(tbx1-1,tby1-1)

Sub-band
boundary

Figure 3.6    Code block partition of a sub-band
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LL, HL, LH, and HH in that order. This order is obtained from Section 3.5 for wavelet

transformation. Within each sub-band, the code block data are ordered in the “rasterlike” pattern

within the bounds of the corresponding precinct.

3.4.9 Packet Header Information

The packet headers record the following essential information for the precincts:

(1) Zero length packet, which indicates that whether the packet is empty;

(2) Code block inclusion, indicating which code blocks belong to the packet;

(3) Number of the most significant bit-planes that are “ insignificant” (Section 3.7);

(4) Number of the coding passes for each code block within the packet;

(5) Length of the code block data.

These headers are located preceding the packet data.

3.4.9.1 Tag Trees

A tag tree is a way of representing a two-dimensional array of non-negative integers in

a hierarchical way. Reduced resolution levels of the two-dimensional array are created

successively to form a tree. The minimum integer of the nodes (up to four) on a level is recorded

on the node on the next lower level. An example is shown in Figure 3.7. q i(m,n) is the notation

for the value at level i, mth column from the left and nth row from the top. Level 0 is defined as

the lowest level.

Each node of every level has an initial “current value” of zero. Assume that there are n

levels. The coding starts from the lowest level, which is level 0. If the valve of q0(0,0) is larger

than the current value, a 0 bit is coded and the current values of this node and the nodes above it
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in the corresponding branch are incremented by one. The above step is repeated until q0(0,0) is

equal to the current value. Then, a 1 bit is coded and the coding moves to the node q1(0,0) on the

next higher level. The above processes are repeated until the node on the highest level n-1 is

coded. The other nodes are coded in the same way. However, the nodes that are coded once such

as q0(0,0), q1(0,0), …, qn-2(0,0) should not be coded again.

In the example of Figure 3.7, q3(0,0) is coded as 01111. The first two bits, 01, are the

code for q0(0,0). It means that q0(0,0) is greater than zero and is equal to one. The third bit, 1, is

the code for q1(0,0). The fourth bit, 1, is the code for q2(0,0) and the last bit, 1, is the code for

q3(0,0). These three 1 bits mean that q1(0,0), q2(0,0) and q3(0,0) have a value of 1. To code

q3(1,0), we do not need to code q0(0,0), q1(0,0), q2(0,0) again. Therefore, its code is 001. It

means that q3(1,0) is greater than 1, 2 and is equal to 3.

c) minimum of four (or less) nodes, level 1     d) minimum of four (or less) nodes, level 0

Figure 3.7    Example of tag tree representation
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3.4.9.2 Zero Length Packet 

The first bit in the packet header indicates whether the packet has a length of zero. If

this bit is 0, the length is zero. Otherwise, the value of 1 means the packet has a non-zero length.

This case is examined in the following sections.

3.4.9.3  Code Block Inclusion

Some code blocks are not included in the corresponding packet since they do not have

contributions to the current layer. Therefore, the packet header must contain the information

concerning whether a code block within the current precinct boundary is included. Two different

ways are specified to signal this information depending on whether the same code block has

already been included. For the code blocks that have not been included before, a tag tree for each

precinct is used to signal this information. The values of the nodes of this tag tree are the index

of the layer in which the code blocks are first included. For the code blocks that have been

included before, one bit is used to signal the inclusion information. A 0 bit means that the code

block is not included for the current precinct, while a 1 bit means that it is included for the

current precinct.

3.4.9.4 Zero Bit-Plane Information

The maximum number of bits, Mb, to represent the coeff icients within the code blocks

in the sub-band b, is signaled in the JPEG-2000 file main header. However, the actual number of

bits that is used is Mb-P, where P is the number of missing most significant bit-planes, whose bits
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have zero values. For the code block that is included for the first time, the value of P is coded

with a separate tag tree for every precinct.

3.4.9.5 Number of Coding Passes

The number of the coding passes for each code block in the packet is identified by the

codewords shown in Table 3.2

3.4.9.6 Length of the Data for a Code Block

The lengths of the number of bytes that are contributed by the code blocks are

identified in the packet header either by a single codeword segment or multiple codeword

Number of coding passes Codeword in Packet Header

1 0
2 10
3 1100
4 1101
5 1110

6-36 111100000 – 111111110
37-164 1111111110000000-1111111111111111

segments. The latter case is applied when at least one termination of arithmetic coding happens

between coding passes, which are included in the same packet.

For the case of a single codeword segment, the number of bits that is used to represent the

number of bytes contributed to a packet by a code block is calculated by:

# of bits = Lblock + log2(coding passes added)

where Lblock is a parameter for each code block in the precinct.

Table 3.2   Codewords for the number of coding passes for each code block
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We can see that more coding passes added implies more bits are used. Lblock has an initial value

of 3, which can be increased by the “signaling bits” in an accumulative way as needed. The

signaling bits precede the number of bytes for a code block in the packet header. A signaling bit

of zero means the value of 3 is enough for Lblock. If the signaling bits have k ones followed by a

zero, the new value of Lblock is 3 plus k. For example, 44 bytes with 2 coding passes has the

code of 110101100 (110 adds two bits, Lblock = 3 + 2 = 5, Log22 = 1, 5 +1 = 6 bits, 101100bin

= 44dec). Then, the next code block has 134 bytes with 5 coding passes. Its code is 1010000110

(10 adds one bit, Lblock is 5 + 1 = 6, Log25 = 2, 6 + 2 = 8 bits, 10000110bin = 134dec).

For the case of multiple codeword segments, let n1<n2<n3 …<nK be the index of the

terminated coding passes included for the code block in the packet. The method that is used in

the single codeword segment is repeated for K times consecutively. The first length is the

number of bytes from the start of the contribution of the code block in the packet to the end of

the coding pass n1. The “coding passes added” for this length is n1. The second length is the

number of bytes from the end of the coding pass n1 to the end of the coding pass n2. The “coding

passes added” for this length is n2 - n1. This process is continued until the end of the coding pass

nK.

3.5 Discrete Wavelet Transformation of Tile-Components

3.5.1 Wavelet Transformation

All finite energy signals with finite duration can be decomposed into a set of basis

signals, which are composed of translations and dilations of a simple, oscillatory function called

a wavelet ψ(t). ψ(t) has to satisfy two following properties:
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The translation and dilation of ψ(t) can be represented by:

where b is the translation parameter and a is the dilation parameter.

The value of 1/(|a|1/2) ensures that the energy of all translations and dilations of ψ(t) are identical.

Assume that a is 2k and b is 2km. The coeff icients of the basis signals d(k, m) are obtained by the

convolution of the signals with a low pass filter h(m) and high pass filter g(m) in two separate

paths with a downsampling of 2 as the last step (Figure 3.8). c(k,m) are the coeff icients of the

“scaling function” , which in turn can be represented by the translations and dilations of ψ(t) on

the lower levels. This process is called decomposition or analysis of the signal. It can be iterated

many times to create more decomposition levels.

The coefficients, c(k,m) and d(k,m), can be used to reconstruct the original signal, which

is obtained by adding the results of the convolution of the fi lters h’(m) and g’(m) with the

Figure 3.8   A two-level decomposition
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upsampled version of the coefficients (see Figure 3.9). This process is called reconstruction or

synthesis of the signal.

The JPEG-2000 standard specifies two wavelet transformations, which are irreversible

Daubechies 9-tap/7-tap filters and reversible 5-tap/3-tap filters. They are chosen for a number of

reasons [1]. Both of them have short finite impulse response (FIR) filters, so fast computation

can be implemented. 5-tap/3-tap transformation has only two lifting steps, which help to achieve

a very low computational complexity. 9-tap/7-tap transformation has the highest values of Peak

Signal to Noise Ratio (PSNR) over many test images for low bit rates. Tables 3.3 and 3.4 show

the tap values of the analysis and synthesis of the Daubechies 9-tap/7-tap filters. Tables 3.5 and

3.6 show the tap values of the analysis and synthesis of the 5-tap/3-tap filters.

Analysis Filter Tap values

i Low Pass Filter h(m) High Pass Filter g(m)
0 0.6029490182363579 1.115087052456994

±1 0.2668641184428723 -0.5912717631142470
±2 -0.07822326652898785-0.05754352622849957
±3 -0.016864118442874950.09127176311424948
±4 0.02674875741080976

2

2

g’(m)

h’(m)

d(-1,m)

d(-2,m)

c(-2,m)

2

2

g’(m)

h’(m)

c(0,m)

c(-1,m)

Figure 3.9   A two-level reconstruction

Table 3.3     Daubechies 9/7 analysis filter tap values
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Synthesis Filter Tap values
i Low Pass Filter h’(m) High Pass Filter g’(m)
0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723
±2 -0.05754352622849957-0.07822326652898785
±3 -0.091271763114249480.01686411844287495
±4 0.02674875741080976

Analysis Filter Tap values

i Low Pass Filter h(m) High Pass Filter g(m)
0 6/8 1

±1 2/8 -1/2
±2 -1/8

Synthesis Filter Tap values

i Low Pass Filter h’(m) High Pass Filter g’(m)
0 6/8 1

±1 2/8 -1/2
±2 -1/8

3.5.2 2-dimensional Forward Discrete Wavelet Transformation

The 2-dimensional Forward Discrete Wavelet Transformation (FDWT) is performed on

every tile-component independently. The number of decomposition levels, NL, can be different

for each tile-component. Figure 3.10 shows one level of decomposition of the tile-component.

The two-dimensional array of the tile-component samples are transformed in the vertical

direction first and then in the horizontal direction with the same set of filters. The LL sub-band at

resolution m is decomposed into four sub-bands called LL (at resolution m-1), HL, LH, and HH

for each iteration.

Table 3.4     Daubechies 9/7 synthesis filter tap values

Table 3.5     5/3 analysis filter tap values

Table 3.6     5/3 synthesis filter tap values
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There are 3 × NL + 1 sub-bands for each tile-component. The notation for each sub-band is used

in the following way: an index called “ lev” corresponds to the level of decomposition and it is

followed by ei ther LL , HL, LH, or HH. The order of these sub-bands is:

NLLL, NLHL, NLLH, NLHH, (NL-1)HL, (NL-1)LH, (NL-1)HH, …, 1HL, 1LH, 1HH.

For the case of NL = 2, the sub-bands can be represented by Figure 3.11.

g(m)

h(m)

2

2 g(m)

h(m)

2

2

Image data at
resolution m

g(m)

h(m)

2

2

Image data at
resolution m-1
LL sub-band

HH sub-band

LH sub-band

HL sub-band

Vertical direction Horizontal  direction

Figure 3.10    One level of decomposition of tile-component

1HL

1HH1LH

2LH

2HL

2HH

2LL

Figure 3.11    Sub-bands representation
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The convolution based filtering implementation consists of many dot products

(multiplications), so it is not effective for software calculation. A “ Lif ting” based filtering

consists of a sequence of very simple operations [16], so it is chosen for JPEG-2000. For the

filtering operations, the odd sample values are updated with a weighted sum of the even sample

values and the even sample values are updated with a weighted sum of the odd sample values

alternatively. The schemes for the two specified wavelet transformations are shown in the

following procedures.

The FDWT starts with an initialization of the variable lev to 0 and sets the sample values

of the tile-component I’ (x,y) as the input coeff icients, a0LL(u,v). The 2D_SD procedure is

performed to the levLL sub-band in every level of the decomposition until NL iterations are

reached (see Figure 3.12).

The 2D_SD procedure decomposes the two-dimensional data, alevLL(u,v), into the sub-

band coeff icients, a(lev+1)LL(u,v), a(lev+1)HL(u,v), a(lev+1)LH(u,v), and a(lev+1)HH(u,v). The total number

of the coeff icients in the four sub-bands is the same as that of the LL sub-band at one lower

level. The coordinates of the upper left hand corner and the lower right hand corner of the tile-

component should be supplied as the inputs. This procedure performs the decomposition in the

vertical direction first via VER_SD and in the horizontal direction via HOR_SD as the second

lev 
�

 0
a0LL(u,v) 

�
 I(x,y)

Lev < NLFDWT

Done

No
Yes

2D_SD [alevLL(u,v)]

lev 
�

 lev + 1

Figure 3.12    The FDWT Procedure
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step. Interleaving the results into the position of four sub-bands by 2D_DEINTERLEAVE is the

last step. Figure 3.13 describes the 2D_SD procedure.

The VER_SD procedure performs the decomposition in the vertical direction via 1D_SD

for all columns in the tile-component, as shown in Figure 3.14. Let (u0,v0) and (u1,v1) be the

coordinates of the upper left hand corner and the lower right hand corner of the tile-component.

These coordinates and alevLL(u,v) are the inputs to this procedure.

The HOR_SD procedure performs the decomposition in the horizontal direction via

1D_SD for all rows in the tile-component, as shown in Figure 3.15. The coordinates (u0,v0),

(u1,v1), and the data a(u,v) are the inputs to this procedure.

VER_SD(a(u,v))2D_SD HOR_SD(a(u,v))

2D_DEINTERLEAVE(a(u,v)) Done

Figure 3.13    The 2D_SD Procedure

VER_SD u �  u0 Y(v) = 1D_SD(X(v))

a(u, v) �  Y(v)u �  u + 1 u ≥ u1

No

Yes

X(v) �  a(u, v)

Done

Figure 3.14    The VER_SD Procedure
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The 2D_DEINTERLEAVE procedure arranges the transformed coefficients into their

corresponding sub-bands, as shown in Figure 3.16. The coordinates (u0,v0), (u1,v1), and the data

a(u,v) are the inputs to this procedure.

The 1D_SD procedure takes a one-dimensional array of data, X, the index i0 of the first

sample in array X, and the index i1-1 of the last sample in array X as the inputs and produces a

one-dimensional array of data, Y, with the same index as illustrated in Figure 3.17.

The 1D_EXTD procedure is called “periodic symmetric extension.” It extends the signal

X beyond its left and right boundaries for the preparation of filtering. The output is denoted as

Xext. The boundaries are extended by i left samples to the left and iright samples to the right. The

minimum but sufficiently large values of ileft and iright for the two transformations are shown in

Table 3.7.

Figure 3.15    The HOR_SD Procedure

HOR_SD v �  v0 Y(u) = 1D_SD(X(u))

a(u, v) �  Y(u)v �  v + 1 v ≥ v1

No

Yes

X(u) �  a(u, v)

Done

1D_SD

Done

Xext �  1D_EXTD (X, i0, i1-1)

Y �  1D_FILTD(Xext, i0, i1-1)

Figure 3.17    The 1D_SD Procedure
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Figure 3.16    The 2D_DEINTERLEAVE Procedure

2D_DEINTERLEAVE

vb �  v0/2

aLL(ub, vb) �  a(2ub, 2vb)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

vb �  v0/2

aHL(ub, vb) �  a(2ub+1, 2vb)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

vb �  v0/2

aLH(ub, vb) �  a(2ub, 2vb+1)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

vb �  v0/2

aHH(ub, vb) �  a(2ub+1, 2vb+1)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

Done
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i0 ileft(5/3) ileft(9/7) i1 iright(5/3) iright(9/7)
Even 2 4 even 2 4
Odd 1 3 odd 1 3

Symmetric extension extends the signal with the signal samples obtained by a reflection of the

signal centered on the first sample for the left side and on the last sample for the right side, as

shown in Figure 3.18. These extensions reduce the blocking effect at the boundaries of the tiles.

The 1D_FILTD procedure takes Xext, i0, and i1-1 as the inputs and produces Y. The even

coefficients of Y are a lowpass downsampled version of X ext, and the odd coeff icients of Y are a

highpass downsampled version of Xext. This procedure uses the lifting based filtering method,

which is a fast algorithm to implement DWT.   

For the reversible 5-tap/3-tap filters, a reversible lifting based filtering is implemented.

The odd sample values of Xext are updated with a weighted sum of the even sample values and

the even sample values of Xext are updated with a weighted sum of the odd sample values

alternatively. The odd coeff icients of Y are calculated first for all n that satisfy i 0 – 1 ≤ 2n + 1 ≤

i1 + 1:

Then, the even coefficients of Y are calculated for all n that satisfy i0 ≤ 2n ≤ i1:

Table 3.7    Value of i left and iright for extension

…EFGFEDCBABCDEFGFEDCBABC…

Figure 3.18    Periodic symmetric extension of signal

i0                        i1

ileft iright

.
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These calculations require a rounding procedure for the intermediate non-integer-valued

transform coeff icients. The values of Y(k) that satisfy i0 ≤ k ≤ i1 are kept as the output.

For the irreversible 9-tap/7-tap filters, an irreversible lifting based filtering is

implemented. Four “ lifting” steps (1 through 4) and two “scaling” steps (5 and 6) are performed

on Xext to produce Y:

where α = -1.586134342, β  = -0.052980118, γ = 0.882911075, δ = 0.443506852, and

K = 1.230174105.

Step 1 is applied for all n that satisfy i0 – 3 ≤ 2n + 1 ≤ i1 + 3. Step 2 is then applied for all n that

satisfy i0 – 2 ≤ 2n ≤ i1 + 2. Step 3 is then applied on all values of n such that i0 – 1 ≤ 2n + 1 ≤ i1 +

1. Step 4 is then applied on all values of n such that i0 ≤ 2n ≤ i1. Each of these steps must be

performed on the entire tile-component before moving to the next step. Step 5 is performed on

all values of n such that i0 ≤ 2n + 1 ≤ i1. Step 6 is performed on all values of n such that i0 ≤ 2n ≤

i1. The values of Y(k) such that i0 ≤ k ≤ i1 are kept as the output.
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3.5.3 2-dimensional Inverse Discrete Wavelet Transformation

The 2-dimensional Inverse Discrete Wavelet Transformation (IDWT) reconstructs the

DC-level shifted two-dimensional signal I’ (x, y) from a set of sub-bands with coeff icients ab(ub,

vb). Figure 3.19 shows one level of reconstruction of the tile-component.

The IDWT starts with an initialization of the variable lev and sets it to NL. The 2D_SR

procedure is performed for every level of lev and is followed by a decrement of lev. The 2D_SR

procedure is iterated until l ev is equal to zero. The process is finished with the final output,

a0LL(u,v) (see Figure 3.20).

Image data at
resolution m

Image data
at resolution
m-1
LL sub-band

HH
sub-band

LH
sub-band

HL
sub-band

Vertical
direction

Horizontal
direction

Figure 3.19    One level of reconstruction of tile-component

2

2

g’(m)

h’(m)2

2

g’(m)

h’(m)

2

2

g’(m)

h’(m)



54

The 2D_SR procedure reconstructs the sub-band coeff icients of alevLL(u,v), alevHL(u,v),

alevLH(u,v), and alevHH(u,v) into a(lev-1)LL(u,v), as shown in Figure 3.21. The first step of this

procedure is 2D_INTERLEAVE. It is the inverse of 2D_DEINTERLEAVE, as shown in Figure

3.22. It interleaves the coefficients of four sub-bands to form a new set of a(u,v). Then, the

HOR_SR procedure is applied to all rows of a(u,v) to perform the horizontal sub-band

recomposition (see Figure 3.23). Let (u0,v0) and (u1,v1) be the coordinates of the upper left hand

corner and the lower right hand corner of a(u,v). They are taken as the inputs to the procedure.

The output is stored back into a(u,v). The VER_SR procedure is applied to all columns of a(u,v)

to perform the vertical sub-band recomposition (see Figure 3.24). The coordinates (u0,v0) and

(u1,v1) are again taken as the inputs. The output is stored back into a(u,v).

lev �  NL
IDWT

Done

No

Yes

a(lev - 1)LL(u,v) = 2D_SR [alevLL(u,v), alevHL(u,v), alevLH(u,v), alevHH(u,v)]

lev ≤ 0 lev �  lev - 1

Figure 3.20    The IDWT Procedure

I’ (x,y) �  a0LL(x,y)

VER_SR(a(u,v))

2D_SR

HOR_SR(a(u,v))

2D_INTERLEAVE(a(u,v))

Done

Figure 3.21    The 2D_SR Procedure
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Figure 3.22    The 2D_INTERLEAVE Procedure

2D_INTERLEAVE

vb �  v0/2

a(2ub, 2vb) �  aLL(ub, vb)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

vb �  v0/2

a(2ub+1, 2vb) �  aHL(ub, vb)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

vb �  v0/2

a(2ub, 2vb+1) �  aLH(ub, vb)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

vb �  v0/2

a(2ub+1, 2vb+1) �  aHH(ub, vb)

ub �  ub + 1

 ub ≥ u1/2

vb �  vb + 1

 vb ≥ v1/2

No

Yes

No

ub �  u0/2

Yes

Done
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The 1D_SR procedure takes a one-dimensional array, X, the index i0 of the first sample in

array X, and the index i1-1 of the last sample in array X as the inputs and produces a one-

dimensional array, Y, with the same index (see Figure 3.25).

The 1D_EXTR procedure is applied to extend the signal X beyond its boundaries to

produce Xext. This procedure is identical to the 1D_EXTD procedure.

Figure 3.23    The HOR_SR Procedure

HOR_SR v �  v0 Y(u) = 1D_SR(X(u))

a(u, v) �  Y(u)v �  v + 1 v ≥ v1

No

Yes

X(u) �  a(u, v)

Done

1D_SR

Done

Xext �  1D_EXTR (X, i0, i1-1)

Y �  1D_IFILTR(Xext, i0, i1-1)

Figure 3.25    The 1D_SR Procedure

VER_SR u �  u0 Y(v) = 1D_SR(X(v))

No

X(v) �  a(u, v)

a(u, v) �  Y(v)u �  u + 1 u ≥ u1

Yes
Done

Figure 3.24    The VER_SR Procedure
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The 1D_IFILTR procedure takes the Xext, i0, and i1-1 as the inputs and produces Y. This

procedure also uses the lifting based filtering.   

For the reversible 5-tap/3-tap filters, a reversible lifting based filtering is implemented.

The odd sample values of Xext are updated with a weighted sum of the even sample values and

the even sample values of Xext are updated with a weighted sum of the odd sample values

alternatively. The even coeffic ients of Y are calculated first for all n that satisfy i0 – 1 ≤ 2n ≤ i1 -

1:

Then, the odd coeff icients of Y are calculated for all n that satisfy i 0 ≤ 2n + 1 ≤ i1:

These calculations require a rounding procedure for the intermediate non-integer-valued

transform coeff icients.

For the irreversible 9-tap/7-tap filters, an irreversible lifting based filtering is

implemented. Two “scaling” steps (1 and 2) and four “ lif ting” steps (3 through 6) are performed

on Xext to produce Y:
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where α = -1.586134342, β  = -0.052980118, γ = 0.882911075, δ = 0.443506852, and

K = 1.230174105.

Step 1 is applied for all n that satisfy i0 – 3 ≤ 2n ≤ i1 + 3. Step 2 is then applied for all n that

satisfy i0 – 2 ≤ 2n + 1≤ i1 + 2. Step 3 is then applied on all values of n such that i0 – 3 ≤ 2n ≤ i1 +

3. Step 4 is then applied on all values of n such that i0 – 2 ≤ 2n + 1≤ i1 + 2. Step 5 is performed

on all values of n such that i0 – 1 ≤ 2n ≤ i1 + 1. Step 6 is performed on all values of n such that i0

≤ 2n + 1 ≤ i1.

3.6 Quantization

For the 5-tap/3-tap wavelet transformation, no quantization is used to reduce the

precision of the coefficients. That means the quantization step is one and the coeff icients have

integer values. On the other hand, for the 9-tap/7-tap wavelet transformation, each sub-band from

a tile-component can have its own quantization step value. The quantization step, ∆b, for sub-

band b is specified by the following equation:

where Rb is the nominal dynamic range for sub-band b. It is the sum of the number of bits that

are used to represent the original source image tile-component. The exponent/mantissa pairs (εb,

µb) are either signaled for all sub-bands or for the LL sub-band only. In the latter case, the

exponent/mantissa pairs (εb, µb) are determined from the exponent/mantissa pair (ε0, µ0)

corresponding to the LL sub-band, according to the following equation:
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where nsdb denotes the number of sub-band decomposition levels from the original image tile-

component to the sub-band b. Therefore, εb for the lower frequency sub-bands tend to be larger

and make the quantization steps for these sub-bands to be smaller. Therefore, less distortion is

resulted from the quantization error.

Each of the wavelet transformed coefficients, ab(u,v), of the sub-band b is quantized into

qb(u,v) according to the following equation:

Mb is the expected maximum number of encoded bit-planes for sub-band b. It is

calculated by using the following equation:

,1−+= bb GM ε

where G is the number of guard bits.

The typical values of G are 1 or 2. The purpose of G is to prevent possible overflow beyond the

nominal range of the integer representation of |qb(u,v)|.

The decoder may decide to decode only Nb bit-planes (Mb > Nb) for a particular code

block due to the embedded nature of the code stream. Therefore, the actual quantization step is

2Mb -Nb multiplied by ∆b for the samples in that code block. Because of the nature of three coding

passes for each bit-plane, a truncation of bit stream may also occur between the passes within a

bit-plane. Thus, the actual quantization step may be different for different samples even within

the same code block if one bit-plane is not completely decoded. However, these quantization

step-sizes are always multiples of the reference quantization step by some power of two. Each

decoded coefficient, q’b(u,v), is expressed in a sign magnitude representation and the non
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decoded bits are set to zero. Then, they are dequantized back into wavelet transform coefficient,

Rq’ b(u,v).

For the 9-tap/7-tap wavelet transformation, the following equations are applied.

where Nb(u,v) is the number of decoded bit-planes for sample q’ b(u,v) and r is the coeff icient

reconstruction value. r’s value is between 0 and 1 (0 ≤ r <1). It can be chosen for the best visual

or objective quality. The typical value of r is 0.5.

For the 5-tap/3-tap wavelet transformation, the dequantization process is slightly different

depending on whether a truncation of bit stream has been made. If no truncation occurs,

Rq’ b(u,v) = q’ b(u,v). Otherwise, the following equations are applied:

For 9-tap/7-tap wavelet transformation, no preference of any quantization step-size is specified

and different applications may set the step-sizes according to the image’s characteristics.

3.7 Coefficient Bit Modeling

After quantization, the coeff icients within each code block are separated into bit-planes.

These bit-planes are coded starting from the most significant one with at least one non-zero

element to the least significant one. A special scan pattern is performed on each bit-plane for









∆×−

∆×+

= −

−

0

)2),('(

)2),('(

),(' ),(

),(

b
vuNM

b

b
vuNM

b

b
bb

bb

rvuq

rvuq

vuRq

for ),(' vuq b > 0
for ),(' vuq b < 0
for ),(' vuq b = 0,

for ),( vuQb > 0
for ),( vuQb < 0
for ),( vuQb = 0.

 
 









∆×−

∆×+

= −

−

0

)2),((

)2),((

),( ),(

),(

b
vuNM

b

b
vuNM

b

b
bb

bb

rvuQ

rvuQ

vuRQ



61

each of the three coding passes. Each coeffic ient bit is coded in exactly one of the three coding

passes. They are called significance propagation pass, magnitude refinement pass, and cleanup

pass. For each pass, “context value” is determined for the coded bit. These context values and the

bit stream are the inputs for the arithmetic coder. EBCOT has a large contribution to the

techniques mentioned above [17].

3.7.1 Bit-Plane

The coefficients are represented by sign magnitude binary numbers. A code block

consists of a rectangular array of these coeff icients. A sequence of binary arrays is formed with

one bit from each of the coefficients. The first such array includes the most significant bit from

each coefficient. The second array includes the next most significant bit from each coefficient.

This process continues until the last array contains the least significant bit from each coefficient.

These arrays are called bit-planes. The number of bit-planes that are coded for a code block is

Mb-P. (Section 3.4.8.4)

3.7.2 Scan Pattern within Code Block

Starting from the first bit-plane of a code block that contains at least one non-zero

element, each bit-plane is scanned in a specified order for each pass. The first four bits of the

first column at the top left hand corner of a bit-plane are scanned, then the first four bits of the

second column are scanned and so on. After the first four bits of the last column are scanned, the

second four bits of the first column are scanned, as shown in Figure 3.26. This scan pattern is

continued until the bit at the lower right hand corner is scanned.
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1 5 9 13 17 21 25
2 6 10 14 18 22 26
3 7 11 15 19 23 27
4 8 12 16 20 24 28
29 33 …
30 34 …
31 35 …
32 36 …

3.7.3 Coding Passes over the Bit-Planes

Each coefficient in a code block has a binary state variable called “significance state.” It

is initialized to 0 and is changed to 1 at the bit-plane where the most significant 1 bit of the

coefficient is found (not the sign bit). A “context” vector of a coeffic ient is defined as a binary

vector consisting of the significance states of the 8 surrounding neighbors, as shown in Figure

3.27. If any of these eight neighbors is not lying in the same code block as X, it is considered as

D0 V0 D1

H0 X H1

D2 V1 D3

insignificant in order to achieve the independence of coding between code blocks. Coefficient X

can have 28 = 256 different values of context vector. These values are classified into smaller

number of context labels according to the rules, which are different for each of the four coding

operations. They are significance coding, sign coding, magnitude refinement coding and cleanup

coding. These coding operations are performed in the three coding passes for each bit-plane in

the following order:

Figure 3.26  Scanning order of a bit plane

Figure 3.27  Surrounding neighbors of coefficient X
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(1) significance and sign coding operations in the significance propagation pass,

(2) magnitude refinement coding in the magnitude refinement pass,

(3) cleanup and sign coding operations in the cleanup pass.

The first bit-plane with at least one non-zero element has a cleanup pass only since there can be

no predicted significance or refinement bits. The remaining bit-planes are coded with all three

coding passes. Each coeff icient bit is coded in exactly one of the three coding passes.

3.7.3.1 Significance Propagation Pass

Empirical evidence suggests that the sample statistics are approximately Markov: the

significance state of a sample depends only upon the significance states of its immediate eight

neighbors, which are indicated in the context values. The 256 different context values are

classified into 9 context labels according to Table 3.8 where ∑ H means H0 + H1. ∑ V means V0

+ V1 and ∑ D means D0 + D1 + D2 + D3. They are the sum of the significance states. x means

that we do not care the value.

LL and LH sub-bands HL sub-band HH sub-band Context
Label

∑H ∑V ∑D ∑H ∑V ∑D ∑(H+V) ∑D
2 x X X 2 x x ≥3 8
1 ≥1 X ≥1 1 x ≥1 2 7
1 0 ≥1 0 1 ≥1 0 2 6
1 0 0 0 1 0 ≥2 1 5
0 2 X 2 0 x 1 1 4
0 1 X 1 0 x 0 1 3
0 0 ≥2 0 0 ≥2 ≥2 0 2
0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0

Table 3.8  Contexts for the significance propagation pass and cleanup pass
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The mapping of context labels depends on which sub-band the code block is in. This mapping

can minimize both the model adaptation cost and implementation complexity. The table is

constructed by exploring the symmetries in vertical, horizontal, and diagonal directions of the

configuration of Figure 3.27. The context label assignment for the LH and HL sub-bands are

identical if we exchange the vertical and horizontal directions (transposition) within the code

block. The LH sub-band responds strongly to vertically oriented features while the HL sub-band

responds strongly to the horizontally oriented features. These behaviors also explain part of the

design of Table 3.8.

The bits that were insignificant and have a non-zero context label are included in this

pass. Other bits in the same bit-plane are coded either in the magnitude refinement pass or the

cleanup pass. The context labels and the bit stream are sent to the arithmetic coder. For the

decoding part, the significance state of the coded coeff icients in this pass is set to 1 if the

decoded bit is 1 and the immediate next bit to be decoded is the sign bit for the coefficient.

Otherwise, the significance state remains 0. When we consider the context labels of successive

coefficients and coding passes, the most recent significance state for this coefficient is applied.

3.7.3.2 Sign Bit Coding

The context label of a coefficient for sign bit coding is determined through two steps.

The first step calculates the vertical and horizontal contributions from V0, V1, H0 and H1

according to Table 3.9. Each of them can have one of three states: insignificant, significant

positive, or significant negative. From Table 3.9, we see that the contribution takes the average

of V0 and V1 (H0 and H1).
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V0 (or H0) V1 (or H1) V (or H) contribution
Significant, positive significant, positive 1
Significant, negative significant, positive 0

Insignificant significant, positive 1
Significant, positive significant, negative 0
Significant, negative significant, negative -1

Insignificant significant, negative -1
Significant, positive insignificant 1
Significant, negative insignificant -1

Insignificant insignificant 0

The second step simplifies the nine permutations of vertical and horizontal contributions

to five context labels according to Table 3.10. The context labels and the bit stream are sent to

Horizontal
contribution

Vertical
contribution

Context
label

XOR bit

1 1 13 0
1 0 12 0
1 -1 11 0
0 1 10 0
0 0 9 0
0 -1 10 1
-1 1 11 1
-1 0 12 1
-1 -1 13 1

the arithmetic coder. For the decoding part, a bit is returned from the arithmetic decoder. This bit

is then logically XORed with the XORbit in the last column of Table 3.10 to produce the sign

bit, as shown in the following equation:

Sign bit = Arithmetic Decoder (context label, compressed bit stream) ⊕ XORbit .

When XORbit is 1 as for the last four rows of Table 3.10, the returned bit from arithmetic

decoder is switched. Sign bit of 1 means negative while 0 means posi tive.

Table 3.9    Vertical (and Horizontal) contributions from four neighbors to the sign context

Table 3.10  Sign contexts from vertical and horizontal contributions
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3.7.3.3 Magnitude Refinement Pass

The bits from coeff icients that are already significant (except those that become

significant in the immediately proceeding significance propagation pass) are included in this

pass. The context label of a coefficient is determined by the summation of the significance states

of all eight neighbors and whether the encoded bit is the first refinement bit (the bit immediately

after the significance and sign bit), as shown in Table 3.11. Only three context labels are used

since very weak correlation exists between any previously encoded bit-plane and the magnitude

of the neighboring coeff icients.

∑H + ∑V + ∑D First refinement for this coeff icient Context label
X False 16
≥1 True 15
0 True 14

3.7.3.4 Cleanup Pass

If a bit is not coded in the previous two passes, it must be coded in the cleanup pass.

The context label for this bit is determined using Table 3.12. A unique single context is also

created for run-length. If four contiguous coefficients in the column being scanned are all

included in the cleanup pass and the context labels for them are all 0, then the run-length context

and the bit stream are given to the arithmetic coder. For the arithmetic decoding part, if the

symbol 0 is returned, then all four coeff icients remain insignificant. Otherwise, symbol 1 is

returned indicating that at least one of the four coeff icients is significant. The next two bits

returned with the UNIFORM context denote which coefficient is the first one to be found

significant, as shown in Table 3.12. The sign bit of that coefficient is handled using the process

Table 3.11    Contexts for the magnitude refinement coding passes
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in Section 3.7.3.2. The remaining coeff icients in the column are coded using the process in

Section 3.7.3.1. If not all four contiguous coefficients are included in this pass or the context

label of any of them is not 0, then they are coded as in the significance propagation pass in

Section 3.7.3.1. The scheme for this pass is summarized in Table 3.12. If there are fewer than

four rows at the end of the code block, then run-length coding is not applied.

Four contiguous
coefficients coded in
cleanup pass and all
have the 0 context

Symbols
returned from
run-length
context

Four contiguous
bits to be coded
are zero

Symbols
coded with
UNIFORM
context

Number of
coefficients to
code

true 0 true none none
true 1 False

skip to 1st

coefficient sign
skip to 2nd

coefficient sign
skip to 3rd

coefficient sign
skip to 4th

coefficient sign

MSB LSB
0 0

0 1

1 0

1 1

3

2

1

0

false none x none rest of column

3.7.3.5 Example of Coding Passes

Table 3.13 shows an example of coding four coeff icients in a column. The coefficients

that are not shown in this table are assumed to be zero. This table indicates which bit is included

in which pass. The sign bit is indicated by a +/- sign beside the initial 1 bit.

Table 3.12    Run-length coder for cleanup passes
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Coefficient ValueCoding Pass
10 1 3 -7

Clean-up 1+ 0 0 0
0

0
Significance
Refinement
Clean-up 0 1-

0 1+
1 1

Significance
Refinement
Clean-up

1+
0 1 1

Significance
Refinement
Clean-up

3.7.4 Initialization and Termination

All context labels are initialized or re-initialized with indexes (probabil ities) according to

Table 3.14. The context labels are re-ini tialized either at the end of each coding pass or at the end

of each code block. The arithmetic coder is terminated either at the end of each coding pass or at

the end of each code block.

Context Initial index from Table 3.18 MPS
UNIFORM 46 0
Run-length 3 0
All zero neighbors (context label 0) 4 0
All other contexts 0 0

3.7.5 Error Resilience Segmentation Symbol

A segmentation symbol is optionally coded with the UNIFORM context of the arithmetic

coder at the end of each bit-plane. It is applied as an error detection method. The correct

arithmetic decoding of this symbol indicates that no error occurs in the corresponding bit-plane.

Table 3.14 Initial states for all context labels

Table 3.13    Example of bit-plane coding order
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A segmentation symbol of “1010” should be decoded at the end of each bit-plane. If “1010” is

not decoded, bit errors occur for the corresponding bit-plane.

3.7.6 Flow Chart of the Code Block Coding

The steps for coding a bit-plane in a code block can be shown by a flow chart in Figure

3.28. The decisions made are listed in Table 3.15. The processes of sending bits and context

labels are listed in Table 3.16.

Decision Question Description
D0 Is this the first significance bit-plane for the code block? Section 3.5.3
D1 Is the current coefficient significant? Section 3.5.3.1
D2 Is the context label zero? Section 3.5.3.1
D3 Did the current coefficient just become significant? Section 3.5.3.1
D4 Are there more coefficients in the significance propagation pass?
D5 Is the coefficient insignificant? Section 3.5.3.3
D6 Was the coeffic ient coded in the last significance propagation pass? Section 3.5.3.3
D7 Are there more coefficients in the magnitude refinement pass?
D8 Are four contiguous uncoded coefficients in a column each with a 0

context label?
Section 3.5.3.4

D9 Is the coefficient significant? Section 3.5.3.4
D10 Are there more coefficients remaining of the four contiguous

coefficients?
D11 Are the four contiguous bits all 0? Section 3.5.3.4
D12 Are there more coefficients in the cleanup pass?

Table 3.15    Decisions in the coding passes flow chart



70

D0

D2

D3

D4

D5

D6 D7

D8

D9

D10

D11

D12

D1

Start coding passes for a bit-plane

Start of
cleanup pass

Yes

Yes

Yes

Yes

Yes

Yes

C4

C0

C1
C2

C3

C5

no

no
no

no

no

D3

Yes

Yes

Yes

Yes

no

Yes

Yes

Yes

no

Yes

Yes

Yes

C2

D10 C0

no

no

no

no

no

no

no

no

no

End of
coding passes
of a bit-plane

Start of
significance
propagation

pass

D3 C2

C1

C1

C0

Start of magnitude
refinement pass

C0

Figure 3.28    Flow chart for all coding passes for a bit-
plane
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Code Coded symbol Context Explanation Description
C0 - - Go to next coeff icient or column
C1 Newly significant? Table 3.7 Code significant bit of current

coefficient
Section 3.5.3.1

C2 Sign bit Table 3.9 Code sign bit of current
coefficient

Section 3.5.3.2

C3 Current magnitude
Bit

Table 3.10 Code magnitude refinement bit
of current coefficient

Section 3.5.3.3

C4 0
1

Run-length
context label

Code run-length of four zeros
Code run-length not of four

zeros

Section 3.5.3.4

C5 00

01

10

11

UNIFORM
1st coeff icient is the first
significant coeff icient

2nd coeff icient is the first
significant coeff icient

3rd coefficient is the first
significant coeff icient

4th coefficient is the first
significant coeff icient

Section 3.5.3.4

3.8 Arithmetic Entropy Coder

3.8.1 Basic principles of Arithmetic Coding

In arithmetic coding, all the symbols are ordered on a number line in the interval from 0

to 1 in a pattern that is known to both the encoder and decoder. Each symbol has its subinterval

with length that is equal to its probability on the number line. Since the sum of the probabilities

of all symbols is 1, the subintervals exactly fill the interval from 0 to 1 on the number line. To

code a symbol, a code stream of binary fraction pointing to the subinterval corresponding to the

symbol is created. The boundary between two symbols is assigned to the upper subinterval in

JPEG-2000. If a symbol occupies the subinterval from 0.5 to 1, a binary fraction, x, from the

range of 0.5 to 1 (0.5 ≤ x <1) is acceptable as a code stream. The decoder can determine which

subinterval is pointed to by the code stream and thus decode the corresponding symbol. The

Table 3.16    Coding in the coding passes flow chart
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process of subdivision of a subinterval into even smaller subintervals is used to code a sequence

of symbols. The length of the subinterval is proportional to the probabil ity of the corresponding

sequence of symbols.

3.8.2 Binary Arithmetic Coding

In binary arithmetic coding, only the symbol of 0 and 1 are used. Therefore, a translation

of a multi-symbol into a sequence of symbols is required for JPEG-2000. The code stream that is

created by the coeff icient bit modeling (Section 3.7) for a code block is a multi-symbol that is

translated to a sequence of “decisions” (D). The decisions (D) and the context labels (CX) are the

inputs for the arithmetic encoder to produce the compressed data. CX provide the probability

estimates for D during arithmetic encoding and decoding. The binary fraction pointer, “ code

string” , is chosen to point to the base (the lower bound) of the probabil ity subinterval.

When a current interval is partitioned into two subintervals, the subinterval for the “more

probable symbol” (MPS) is ordered above the subinterval for the “less probable symbol” (LPS).

When an MPS is coded, the corresponding LPS subinterval is added to the code string. An MPS

symbol can be 0 or 1. This is also true for an LPS. When a D is decoded, the decoder subtracts

any subinterval that is added to the code string by the encoder.

Fixed precision integer arithmetic is used for the coding operations. The decimal of 0.75

is represented by a hexadecimal of 8000. For convenience, hexadecimal numbers have 0x as

their prefix throughout this thesis. The initial probability interval, A, is kept in the range from

0.75 to 1.5 (0.75 ≤ A < 1.5) by doubling it whenever it falls below 0x8000. The code string

register, C, is also doubled whenever A is doubled. This doubling process is called
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“renormalization.” To avoid C register from overflowing, the high order bits of it is removed

periodically and transferred to a buffer.

Keeping A between 0.75 and 1.5 allows an arithmetic approximation to be appli ed to

interval subdivision. The probability estimate of an LPS is denoted by Qe. The actual

subintervals for an MPS and LPS are calculated as follow:

A - (Qe × A) = subinterval for an MPS

Qe × A = subinterval for an LPS

Since A is close to 1 at all times, these subintervals can be approximated by

A - Qe = subinterval for an MPS

Qe = subinterval for an LPS

When an MPS is coded, Qe is added to C and A is reduced to A – Qe. When an LPS is coded, C

keeps the same value and A is changed to Qe.

Due to the approximation made above, an LPS subinterval is sometimes longer than the

corresponding MPS subinterval. If this occurs, the two subintervals are exchanged. This

conditional exchange can only occur when a renormalization is needed.

When a renormalization occurs, the probabil ity estimate is updated for the context label

currently being coded. No explicit counting of any symbol is required for this estimation. The

probability of renormalization after coding an MPS or LPS provides an approximate symbol

counting scheme, which is used to estimate the probabil ities of all symbols.

3.8.3 Arithmetic Encoder

The structures of the C and A registers are shown in Table 3.17.
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MSB LSB
C register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx
A register 0000 0000 0000 0000 aaaa aaaa aaaa aaaa

The length of A interval is represented by the “a” bi ts. The “x” bits are the fractional bits in C.

The “s” bits are spacer bits, which provide constraint on carry over and reduce the probabil ity of

carry over propagation in the “b” bits. The “b” bits are bits that are removed to the buffer

periodically. The “c” bit is carry bit.

The ENCODER in Figure 3.29 initializes the arithmetic encoding by the INITENC

procedure. CX and D pairs are read as the inputs to the ENCODE procedure until all pairs are

read. The FLUSH procedure outputs the last few bytes of compressed data that are left in C and

terminates the arithmetic encoding.

3.8.3.1 Encoding a Decision (ENCODE)

The ENCODE procedure has two paths. One path is for D equal to 0 and the other one

is for D equal to 1. Then a CODE0 or CODE1 procedure is followed respectively (see Figure

3.30).

Figure 3.29    Encoder Structure

ENCODER

Finished?
No Yes

DoneINITENC Read CX, D ENCODE

FLUSH

Table 3.17    Structures of encoder registers



75

3.8.3.2 Encoding a 0 or 1 (CODE0 and CODE1)

For both CODE0 and CODE1 procedures (see Figures 3.31 and 3.32), the decision is

either an MPS or LPS. One of the two procedures, CODEMPS and CODELPS, is called

appropriately for the decision.

CX is the context label that determines the index of probabili ty estimate. The MPS value

is initialized as in Table 3.14 and is switched as explained in a later part of this chapter.

MPS(CX) is called the sense (0 or 1) of the MPS for context label CX.

Figure 3.30    ENCODE procedure

ENCODE D = 0?

No

Yes

Done

CODE0

CODE1

Figure 3.31    CODE0 procedure
procedure

CODE0

Done

CODEMPS

CODELPS

Figure 3.32    CODE1 procedure
procedure

CODE1 MPS(CX) = 1

No
Yes

Done

CODEMPS

CODELPS

MPS(CX) = 0

No
Yes
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3.8.3.3 Encoding an MPS or LPS (CODEMPS and CODELPS)

In the CODELPS procedure (see Figure 3.33), the interval A is usually reduced to

Qe(I(CX)), which is the probabil ity estimate of the LPS that is determined from the index I

stored for context label CX. However, we have to check whether the subinterval of the MPS (A –

Qe(I(CX))) is actually larger than the subinterval of the LPS. If it is not, a conditional exchange

is performed. A SWITCH(I(CX)) flag (see Table 3.18) is set when Qe(I(CX)) is greater than 0.5

because the LPS becomes an MPS. This flag switches the sense of the MPS from 0 to 1 or from

1 to 0. A renormalization (RENORME) is always required in this procedure and the probabili ty

estimate is updated before the normalization. The next LPS index (NLPS) column in Table 3.18

shows the updated probability estimate index.

In the CODEMPS procedure (see Figure 3.34), the interval A is usually reduced to A -

Qe(I(CX)), the subinterval for MPS and Qe(I(CX)) is added to C so that it points to the base of

the MPS subinterval. However, if the subinterval of the LPS, Qe(I(CX)), is actually larger than

the subinterval of the MPS, a conditional exchange is performed. This conditional exchange

Figure 3.33    CODELPS procedure

CODELPS

No

Yes

Done RENORME

A = A – Qe(I(CX)) A<Qe(I(CX))? C = C + Qe(I(CX))

A = Qe(I(CX))
No

Yes

SWITCH(I(CX))=1?

MPS(CX) = 1 – MPS(CX)I(CX) = NLPS(I(CX)



77

cannot occur unless a renormalization is required in this procedure. Therefore, the test for

renormalization is performed before the test for conditional exchange is carried out. As in the

CODELPS procedure, the probabil ity estimate is updated before the normalization occurs. The

next MPS index (NMPS) column in Table 3.18 shows the updated probabil ity estimate index.

3.8.3.4 Probability Estimation

Table 3.18 shows the Qe values in both hexadecimal integers and decimal fractions.

To convert the hexadecimal integer to decimal fraction, the Qe values are multiplied by (¾) *

0x8000.

Renormalization-driven estimation is applied to design Table 3.18. A form of

approximate counting before each renormalization is the basic principle of this process. For

example, in Figure 3.35, four MPSs are coded and counted before an MPS renormalization is

required. The counted symbols are used to update the probabili ty estimate. This estimate

Figure 3.34    CODEMPS procedure

CODEMPS

No

Yes

DoneRENORME

A = A – Qe(I(CX))

A<Qe(I(CX))?C = C + Qe(I(CX))

A = Qe(I(CX))I(CX) = NMPS(I(CX)

A AND 0x8000 = 0?
No

C = C + Qe(I(CX))

Yes
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Index Qe Value NMPS NLPS SWITCH
hexadecimal Decimal

0 0x5601 0.503 937 1 1 1
1 0x3401 0.304 715 2 6 0
2 0x1801 0.140 650 3 9 0
3 0x0AC1 0.063 012 4 12 0
4 0x0521 0.030 053 5 29 0
5 0x0221 0.012 474 38 33 0
6 0x5601 0.503 937 7 6 1
7 0x5401 0.492 218 8 14 0
8 0x4801 0.421 904 9 14 0
9 0x3801 0.328 153 10 14 0
10 0x3001 0.281 277 11 17 0
11 0x2401 0.210 964 12 18 0
12 0x1C01 0.164 088 13 20 0
13 0x1601 0.128 931 29 21 0
14 0x5601 0.503 937 15 14 1
15 0x5401 0.492 218 16 14 0
16 0x5101 0.474 640 17 15 0
17 0x4801 0.421 904 18 16 0
18 0x3801 0.328 153 19 17 0
19 0x3401 0.304 715 20 18 0
20 0x3001 0.281 277 21 19 0
21 0x2801 0.234 401 22 19 0
22 0x2401 0.210 964 23 20 0
23 0x2201 0.199 245 24 21 0
24 0x1C01 0.164 088 25 22 0
25 0x1801 0.140 650 26 23 0
26 0x1601 0.128 931 27 24 0
27 0x1401 0.117 212 28 25 0
28 0x1201 0.105 493 29 26 0
29 0x1101 0.099 634 30 27 0
30 0x0AC1 0.063 012 31 28 0
31 0x09C1 0.057 153 32 29 0
32 0x08A1 0.050 561 33 30 0
33 0x0521 0.030 053 34 31 0
34 0x0441 0.024 926 35 32 0
35 0x02Al 0.015 404 36 33 0
36 0x0221 0.012 474 37 34 0
37 0x0141 0.007 347 38 35 0
38 0x0111 0.006 249 39 36 0
39 0x0085 0.003 044 40 37 0
40 0x0049 0.001 671 41 38 0
41 0x0025 0.000 847 42 39 0
42 0x0015 0.000 481 43 40 0
43 0x0009 0.000 206 44 41 0
44 0x0005 0.000 114 45 42 0
45 0x0001 0.000 023 45 43 0
46 0x5601 0.503 937 46 46 0

Table 3.18    Qe values and probabili ty estimation process
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provides a bigger Qe value when an LPS renormalization occurs and a smaller Qe value when an

MPS renormalization occurs. The estimation state machine tends to approach the correct

probabilities [10]. If the Qe value is too large, an MPS renormalization is more probable than an

LPS renormalization. Then, a smaller Qe value is provided after an MPS renormalization. On the

other hand, if the Qe value is too small, an LPS renormalization is more probable than an MPS

renormalization. Therefore, a larger Qe value is provided after an LPS renormalization.

3.8.3.5 Renormalization in the Encoder (RENORME)

Both renormalization procedures in the encoder and decoder are very similar. The main

difference between them is that in the encoder, it outputs the compressed data and in the decoder,

it consumes compressed data. In the RENORME procedure (see Figure 3.36), A and C registers

are shifted to the left one bit at a time. The counter CT counts the number of shifts that are

1.5

0.75

0

Qe

Starting value of interval A

MPS renormalization

Figure 3.35    Subdivision of the interval A for four MPS
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performed. If CT is counted down to 0, a byte of high order bits is removed from C to buffer by

the BYTEOUT procedure. A renormalization is required until A is not less than 0x8000.

3.8.3.6 Compressed Data Output (BYTEOUT)

The BYTEOUT procedure is shown in Figure 3.37. This procedure uses the

Figure 3.36 RENORME procedure

RENORME

No

Yes

Done

BYTEOUT
A = A << 1
C = C << 1
CT = CT - 1

CT = 0?

A AND 0x8000 = 0?

No

Yes

Figure 3.37 BYTEOUT procedure

BYTEOUT
No

Yes

Done

BP = BP + 1
B = C >> 20
C = C AND 0xFFFFF
CT = 7

B = 0xFF? C<0x8000000?
No

Yes
B = 0xFF?

B = B + 1

C = C AND 0x7FFFFFF

BP = BP + 1
B = C >> 19
C = C AND 0x7FFFF
CT = 8

Yes

No

Bit-stuff ing method
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“bit-stuff ing” method to avoid any carry propagation into the completed bytes of compressed

data. The conventions used make sure that a carry can only propagate through the byte most

recently written to the compressed data buffer.

Many markers are used to signal the characteristics of the final code stream and 0xFF is

the first byte of every marker. Therefore, a bit-stuffing method is applied when the most recently

written byte is FF (B = 0xFF where B is the byte pointed to by the compressed data buffer

pointer BP) to avoid accidental creation of a marker. The bits of “cbbb bbbb” in C are written to

the buffer when this bit stuffing method is applied.

If the carry bit “c” is not set (C < 0x8000000), the bits of “bbbb bbbb” are written to the

buffer. If “c” is set, a 1 is added to the most recently written byte for carry propagation. If the

sum is 0xFF, the bit-stuffing method is also applied and only the bits “0bbb bbbb” are written to

the buffer. Otherwise, the bits “bbbb bbbb” are written to the buffer.

3.8.3.7 Initialization of the Encoder (INITENC)

The INITENC procedure sets the values of register A, register C, pointer BP, and

counter CT before encoding the code stream (see Figure 3.38). The counter CT is initialized to

Figure 3.38 INITENC procedure

INITENC

No

Yes

Done

A = 0x8000
C = 0
BP = BPST - 1
CT = 12

B = 0xFF? CT = 13
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12 since the spacer bits, “sss” , should also be filled before a byte is removed from C. Pointer BP

is set to point to the byte preceding the position BPST where the first byte is written. Therefore,

if the preceding byte B is 0xFF, a spurious bit is stuffed and a corresponding increment of CT is

needed. Initializations of the MPS and I are mentioned in Section 3.7.4.

3.8.3.8 Termination of Encoding (FLUSH)

The FLUSH procedure is the last step of the arithmetic encoding process and creates

the terminating marker at the end of compressed data. The terminating marker prefix, 0xFF, is

guaranteed to overlap the final bits of compressed data. Therefore, 0xFF must be read by the

arithmetic decoder and interpreted before the decoding is complete. The first step in the FLUSH

procedure (see Figure 3.39) is SETBITS. It sets as many bits in C register to 1 as possible, as

shown in Figure 3.40. The exclusive upper bound for the C register is the sum of C register and

A register. The 16 least significant bits of C register are set to 1 and the result is compared to the

upper bound. If the resulted C register is too large, it is reduced to a value, which is smaller than

the upper bound. Then, two bytes of C register are shifted and removed to the buffer. If the last

byte is 0xFF, it is discarded.

Figure 3.39 FLUSH procedure

FLUSH

No

Done

B = 0xFF?
Yes

Discard B

C = C << CT

BP = BP + 1

 SETBITS  BYTEOUT C = C << CT

 BYTEOUT
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3.8.4 Arithmetic Decoder

The inputs of the arithmetic decoder are the compressed data, CD, and the context labels,

CX, while the output is the decision, D. The context labels for the encoder and decoder are the

same for each given decision.

The structures of the C register and A register for the decoder are shown in Table 3.19.

MSB LSB
C high register xxxx xxxx xxxx xxxx
C low register bbbb bbbb 0000 0000
A register aaaa aaaa aaaa aaaa

The C register is divided into the C low and C high registers. Each renormalization in the

C register shifts a bit from the MSB of the C low register to the LSB of the C high register. Only

the C high register is used during decoding comparisons. A new byte of compressed data is

transferred to the C low register when it is empty. The A register has the same structure as in the

encoder conventions.

The first step in the DECODER (see Figure 3.41) is the INITDEC procedure, which

initializes the decoding process. Contexts, CX, are read as the input for the DECODE procedure

until all of them have been read. The reading of compressed data, CD, is embedded in the

Figure 3.40 SETBITS procedure

SETBITS

Done

C ≥ TEMPC?
Yes

TEMPC = C + A
C = C OR 0xFFFF

C = C – 0x8000

No

Table 3.19 Structures of decoder registers
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DECODE procedure. The DECODE procedure decodes the binary decision, D, which is either 0

or 1.

3.8.4.1 Decoding a decision (DECODE)

The DECODE procedure decodes one decision at a time. After decoding a decision, it

subtracts any amount from CD that is added to the C register during encoding. The resulted CD

is the offset from the base of the current interval to the subinterval allocated to the decisions not

yet decoded. The C high register is compared to the length of the LPS subinterval, Qe(I(CX)),

for the first part of the procedure (see Figure 3.42). If C high is smaller, an LPS should be

Figure 3.41 DECODER structure

DECODER

No

Return D

Finished?
Yes

Read CX INITDEC  DECODE

Figure 3.42 DECODE procedure

DECODE
Yes

 LPS_EXCHANGE

No

Return D

RENORMD

A = A – Qe(I(CX)) C high<Qe(I(CX))?

Chigh = Chigh - Qe(I(CX))

D = MPS(CX)

 A AND 0x8000=0? MPS_EXCHANGE

RENORMD

No

Yes
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decoded at most of the times and the LPS_EXCHANGE procedure is used. A renormalization

must occur after the LPS_EXCHANGE procedure. If C high is larger, an MPS is usually

decoded and C high is reduced by Qe(I(CX)). If A is larger than 0x8000, the MPS(CX) is

decoded. On the other hand, if A is smaller than 0x8000, the procedure MPS_EXCHANGE is

applied and a renormalization is required.

3.8.4.2 Checking for Conditional Exchange (MPS_EXCHANGE and

LPS_EXCHANGE)

     A conditional exchange may occur when a renormalization is required. The

MPS_EXCHANGE procedure checks whether a conditional exchange is needed, as shown in

Figure 3.43. If A (the MPS subinterval) is larger than Qe(I(CX)), which is the subinterval for the

Figure 3.43 MPS_EXCHANGE procedure

Return D I(CX) = NLPS(I(CX))

MPS(CX) = 1 – MPS(CX)

MPS_EXCHANGE

No

 A < Qe(I(CX))? D = 1 - MPS(CX)

D = MPS(CX)
I(CX) = NMPS(I(CX))

No

Yes

Yes

SWITCH(I(CX))=1?
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LPS, the decoded decision is MPS(CX) as usual and the index for probabil ity estimate of CX is

updated from the next MPS index (NMPS) column in Table 3.18. Otherwise, the conditional

exchange occurs and the decoded decision is LPS(CX) or 1 – MPS(CX). The MPS sense is

switched when the SWITCH column has a 1 for the index I stored for CX in Table 3.18. The

index for probabil ity estimate of CX is updated from the next LPS index (NLPS) column in

Table 3.18. The probability estimates for the decoder is identical to that of the encoder.

The LPS_EXCHANGE procedure checks whether a conditional exchange is needed, as

shown in Figure 3.44. If A (the MPS subinterval) is smaller than Qe(I(CX)), a conditional

exchange occurs. Then, A is set to the LPS subinterval, Qe(I(CX)). The decoded decision is

MPS(CX) and the index for probability estimate of CX is updated from the next MPS index

(NMPS) column in Table 3.18. Otherwise, the decoded decision is the LPS(CX) or 1 –

MPS(CX). However, A is still set to Qe(I(CX)). The MPS sense is switched when the SWITCH

column has a 1 for the index I stored for CX in Table 3.18. The index for probability estimate of

CX is updated from the next LPS index (NLPS) column in Table 3.18.

Figure 3.44 LPS_EXCHANGE procedure

LPS_EXCHANGE
No

Return D

 A < Qe(I(CX))? A = Qe (I(CX))
D = 1 - MPS(CX)

A = Qe(I(CX))
D = MPS(CX)
I(CX) = NMPS(I(CX))

I(CX) = NLPS(I(CX))

No

Yes

Yes

SWITCH(I(CX))=1?

MPS(CX) = 1 – MPS(CX)
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3.8.4.3 Renormalization in the Decoder (RENORMD)

The RENORMD procedure (see Figure 3.45) uses the counter CT to determine

whether the C low register is empty. If it is empty, the BYTEIN procedure transfers a byte of

compressed data to the C low register. The A, C high and C low registers are shifted one bit at a

time until A is larger than 0x8000.

3.8.4.4 Compressed Data Input (BYTEIN)

The BYTEIN procedure reads a byte of compressed data, as shown in Figure 3.46.

Any compensation for the bit-stuff ing method is performed. The terminating marker is also

recognized in this procedure wherever the encoder is terminated. The C register in Figure 3.46 is

the concatenation of the C high and C low registers. B is the byte pointed by the compressed data

buffer pointer BP. B usually is not 0xFF. In that case, BP is incremented by one and a new byte

of compressed data is delivered to the high order 8 bits of the C low register. If B is equal to

0xFF, it determines whether it is a marker prefix. If B1 (the byte pointed to by BP + 1) is larger

than 8F, it must be the terminating marker code.

Figure 3.45 RENORMD procedure

RENORMD

No

Yes

Done

BYTEIN
A = A << 1
C = C << 1
CT = CT - 1

CT = 0?

A AND 0x8000 = 0?

No

Yes
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Then, it is appropriately interpreted and terminates the compressed data. 0xFF is added to the C

register and the counter CT is set to 8 as the last step of the decoding process. If B1 is not a

marker code, BP is incremented to point to the next byte, which contains the stuffed bit. B is

shifted one more bit and is added to the C register. Therefore, the stuffed bit is added to the low

order bit of the C high register.

3.8.4.5 Initialization of the Decoder (INITDEC)

The INITDEC procedure starts the whole arithmetic decoding process.

BP is set to BPST to point to the first compressed byte. This byte is inserted to the low order byte

of the C high register. Another byte is read into the high order byte of the C low register by the

Figure 3.46 BYTEIN procedure

 BYTEIN

Done

B1 > 0x8F?

No

Yes

B = 0xFF?

C = C + 0xFF00
CT = 8

BP = BP + 1
C = C + (B << 8)
CT = 8

Yes

No

BP = BP + 1
C = C + (B << 9)
CT = 7

Figure 3.47 INITDEC procedure

INITDEC DoneBYTEIN
C = C << 7
CT = CT – 7
A = 0x8000

BP = BPST
C = B << 16
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BYTEIN procedure. The C register is then shifted by 7 bits and the counter CT is reduced by 7.

The A register is initialized to 0x8000 as in the encoder. (see Figure 3.47)

3.9 Coding Images with Region of Interest

A Region Of Interest (ROI) is a part of an image that is coded earlier than the rest of the

image (background) with better quality. The method that is used is Maxshift method.

3.9.1 Maxshift Method

3.9.1.1 Encoding

The encoding process with ROI is almost the same as that without ROI. An ROI mask

is formed to indicate which quantized coefficients are within the ROI during the encoding

process so that they can be encoded with better quali ty. The ROI mask is a binary bit map

describing these coefficients. (see Section 3.9.2) The coeff icients of the background (outside of

the ROI mask) are scaled down so that the bits corresponding to the ROI coefficients are placed

in higher bit-planes than all the bits for the background coefficients. When the entropy coder

encodes the coefficients, the bit-planes for the ROI coeff icients are coded before the lower bit-

planes for the background coefficients are coded. The scaling value, s, must be chosen so that

even the smallest non-zero ROI coeff icient is larger than the largest background coefficient. The

basic steps of the Maxshift method for the encoding part are:

(1) Create the ROI mask, M(x,y);

(2) Determine the scaling value, s;

(3) Scale down the background coefficients by 2S;



90

(4) Store the value s into the code stream.

The number of bit-planes to be coded is increased by s. All the coefficients are entropy coded as

usual after these basic steps.

The sufficiently large scaling value, s, is chosen according to the following equation:

s ≥ max (Mb)

where max(Mb) is the maximum Mb over all sub-bands for all the background coefficients in any

code block in the current component and Mb is the maximum number of encoded bit-planes for

the sub-band b.

3.9.1.2 Decoding

After entropy decoding, the coefficients are compared to the threshold value 2S. If the

coefficient is smaller than 2S, then it is a background coeff icient and it is scaled up by 2S.

Otherwise, it belongs to the ROI. The following steps summarize the Maxshift method for the

decoding part.

(1) Read the scaling value s;

(2) Compare all coefficients to 2S and scale up the coefficients that are below 2S.

3.9.2 Creation of ROI Mask

For simplicity, let us consider a single component image. The ROI mask, M(x,y), is a bit-

plane that indicates the coefficients that are needed for the ROI with a 1 and the coeff icients that

are not needed for the ROI with a 0 as in the following equation:

Wavelet coeff icient (x,y) is not needed for ROI.



=
0

1
),( yxM Wavelet coeff icient (x,y) is needed for ROI
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After each level of the wavelet decomposition, the LL sub-band of the mask is updated

row by row and then column by column. The mask indicates which coefficients are required in

order to reproduce the coefficients of the previous level mask through the inverse wavelet

transformation. Similar process is done for the LH, HL, and HH sub-bands.

3.10 Rate Distortion Optimization

Given a target bit rate such as the number of bits per pixel, distortion must be minimized

to give the best quali ty for the reconstructed image.

3.10.1 Distortion

Distortion is the difference between the original image and the reconstructed image.

Many methods can be used to measure distortion. The mean squared error is the most popular

one. For a code block Bi, the mean squared error, Di, is calculated by the following equation:

where k is the index for the pixels in the code block Bi. si[k]  and s’ i[k] are the original pixel value

and the reconstructed pixel value at index k in the code block B i.

3.10.2 Rate Distortion Optimization for Code Block

Let Rmax be the constrained number of bits specified to store an image. Every image is

divided into code blocks. Let { Bi} i = 1, 2, …denote the set of code blocks that represents the whole
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image and each code block Bi has a length of Ri. Therefore, Rmax has the following relationship

with Ri:

Let Di be the distortion incurred from Ri and assume that Di can be additive [21]. We want to

minimize the total distortion D, which is the sum of D i for each code block Bi:

For a specific code block Bi, the code stream for it can be truncated to a set of discrete

lengths Ri
1, Ri

2, Ri
3,…. These Ri

n are obtained from inclusions of different number of the bit-

plane coding passes (Section 3.7.3). Let the distortion resulted for these truncated lengths be D i
1,

Di
2, Di

3,…. Ri
n and Di

n are calculated and temporarily stored with the compressed bit stream

during the encoding process.

The final bit stream consists of a number of “ layers.” Each layer contains the additional

contributions (maybe empty for some code blocks) from each code block, as shown in Figure

3.48, so one more layer is a step of improvement in terms of overall image quality. Only 8 code

blocks and 3 layers are shown in Figure 3.48 for simplicity. The truncation points of the code

block bit streams for each layer are optimal in the rate-distortion sense. It means that the final bit

stream is rate-distortion optimal by discarding a whole number of least important layers. If a

layer is partially discarded, optimum rate-distortion result is not guaranteed. However, a small

departure from the rate-distortion optimal case can be obtained if the number of layers is large.

After the whole image is compressed, a post-processing operation examines each

compressed code block and decides which truncation point, Ri
n, should be chosen for each code

.max ∑≥
i

iRR
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 block Bi in order to satisfy the length constraint with the minimum distortion. The

problem to be solved is to minimize

where λ can be interpreted as a quality parameter as explained later.

In turn, we can minimize

for each individual code block. A simple algorithm to find the optimal n for a given λ is provided

as follow:

Set n = 0 (i.e. no information is included)

For k = 1, 2, 3, …

Set ∆Ri
k = Ri

k - Ri
n and ∆Di

k = Di
n - Di

k

If ∆Di
k /∆Ri

k > λ-1, then set n = k,

empty

empty

emptyempty

Layer 1

Layer 2

Layer 3

B1 B2 B3 B4 B5 B6 B7 B8

Figure 3.48 Code block bit streams in quali ty layers
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where n is set to the largest k that satisfies ∆Di
k /∆Ri

k > λ-1. λ must be adjusted until the sum of

Ri is equal to Rmax (or very close but smaller than Rmax). λ can be interpreted as a quality

parameter, since a larger value of λ means a less severe truncation of the bit stream. λ-1 can be

identified as a rate-distortion slope threshold. Therefore, different values of λ can be set for

different layers.

3.11 Decoding

The decoding procedures perform only the inverse functions of the encoder. They consist

of the arithmetic decoding, inverse of coefficient bit modeling, dequantization, inverse wavelet

transformation, inverse DC level shifting, and inverse component transformation.
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Chapter 4

Experimental Results

4.1 JPEG Compression

For the JPEG compression part, the IrfanView version 3.33 program, which is a popular

image viewer and converter for many graphic file formats, is used to convert the original image

files into the compressed JPEG files and convert the compressed JPEG files back into the

reconstructed image files. The IrfanView program can be downloaded from

http://www.ryansimmons.com/users/irfanview/english.htm. The approximate values of bits per

pixel (bpp) for the compressed JPEG files can be controlled by a “slider control.” The qual ity

level in the “slider control” ranges from 1 (worst quality) to 100 (best quali ty).

4.2 JPEG-2000 Compression

For the JPEG-2000 compression part, the JJ2000 version 3.2.2 program is chosen to

encode the original image files into the compressed J2K files and decode the compressed J2K

files back into the reconstructed image files. The JJ2000 program is one of the two reference

softwares in the JPEG-2000 standard. It is implemented by the Java programming language. It

can be downloaded from [22] solely for research purposes. The values of bpp for the compressed

J2K files can be specified in the command line. The detailed information of the JJ2000 program

can be obtained from [22].
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The default settings of the JJ2000 program are adopted for the experiment except the

bitrates in bpp. Some of the important default features are: one tile for the whole image (no

tiling), five levels of the wavelet decomposition, adoption of the 9-tap/7-tap wavelet

transformation for better performance for visually lossless compression and the irreversible

component transformation. A complete listing of the default settings can be found from the

downloaded files.

4.3 Compressing and Decompressing of Test Images

Three “standard” single-component test images (Lena, Baboon and Peppers) and a color

Lena image are chosen for the experiments. They are stored either in the Portable GrayMap file

format (PGM) for the single-component images or in the Portable PixMap file format (PPM) for

the color image. All test images have dimensions of 512 x 512. The PGM and PPM file formats

are two of the three file formats (the third one is PGX for the grayscale image with arbitrary bit-

depth) that are accepted by the JJ2000 program. For the experiments, they are compressed in

both the JPEG and JPEG-2000 formats. The specified numbers of (bpp) are 0.0625, 0.1, 0.125,

0.25, 0.5, 1.0, and 2.0 for both standards and the corresponding file sizes in bytes are 2048, 3277,

4096, 8192, 16384, 32768, and 65536 but the exact values of bytes used are shown in Tables 4.1

and 4.2. As one can see from Tables 4.1 and 4.2, the actual file sizes for the four JPEG images

for the bitrate of 0.0625 are not shown. It is because they are much larger than the specified 2048

bytes even the worst quality level of 1 in the slider control is applied when the images are saved

in the JPEG file format. This is a common behaviour for many other image converter programs

since any normal photographic images are totally distorted for the bitrate of 0.0625 in the JPEG

file format. Therefore, the bitrate of 0.0625 is not for practical application. On the other hand,
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Actual File Size
Lena Baboon Peppers

Specified
Bit Rate

(bpp)

Specified
File Size
(bytes) JPEG JPEG

2000
JPEG JPEG

2000
JPEG JPEG

2000
0.0625 2048 -- 2036 -- 2018 -- 2036

0.1 3277 3521 3259 3280 3204 3313 3194
0.125 4096 4029 4071 3868 4057 3891 4086
0.25 8192 8059 8172 8178 8109 8272 8178
0.5 16384 16297 16229 15843 16214 16333 16357
1.0 32768 32144 32523 32792 32747 32561 32574
2.0 65536 67073 65428 64866 65496 65695 65133

Actual File Size
Lena

Specified
Bit Rate

(bpp)

Specified
File Size
(bytes) JPEG JPEG-2000

0.0625 2048 -- 2050
0.1 3277 3257 3265

0.125 4096 3796 4098
0.25 8192 8121 8045
0.5 16384 16373 16350
1.0 32768 33137 32759
2.0 65536 67934 65252

this problem does not appear in JPEG-2000.

For the decoding part, all the compressed files are converted back into the PGM and PPM

files using the InfanView and JJ2000 programs. All the original and reconstructed images with

bitrates of 0.1 and 0.125 are shown in Figures 4.1, 4.2, 4.3, and 4.4. These two bitrates are

chosen since they provide largest difference in quality between the JPEG and JPEG-2000

standards.

Table 4.1    The actual file sizes of the single-component compressed images

Table 4.2    The actual file sizes of the color compressed images


