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Abstract—We consider the joint source-channel coding (JSCC)
problem where the real valued outputs of two correlated mem-
oryless Gaussian sources are scalar quantized, bit assigned,
and transmitted, without applying any error correcting code,
over a multiple access channel (MAC) which consists of two
orthogonal point-to-point time-correlated Rayleigh fading sub-
channels with soft-decision demodulation. At the receiver side,
a joint sequence maximum a posteriori (MAP) detector is used
to exploit the correlation between the two sources as well as
the redundancy left in the quantizer’s indices, the channel’s soft-
decision outputs, and noise memory. The MAC’s sub-channels are
modeled via non-binary Markov noise discrete channels recently
shown to effectively represent point-to-point fading channels.
For the simple case of quantizing the sources with two levels,
we establish a necessary and sufficient condition under which
the joint sequence MAP decoder can be reduced to a simple
instantaneous symbol-by-symbol decoder. Then, using numerical
results obtained by system simulation, it is observed that when
the sources are highly correlated and soft-decision quantization
is used, JSCC can profit from a high correlation in the channel
noise process and provide significant signal-to-distortion ratio
improvements of up to 6.3 dB over a fully interleaved channel.

Index Terms—Joint source-channel coding, correlated Gaussian
sources, multiple access channels, MAP decoding, channels with
memory, time-correlated fading channels, scalar quantization.

I. INTRODUCTION

Joint source-channel coding (JSCC) has been shown to
have significant advantages over Shannon’s separate source-
channel coding strategy [1] in practical communication sys-
tems with complexity and delay constraints [2], [3]. In [4],
sequence maximum a posteriori (MAP) decoding is studied
for a system with no algebraic channel coding and channel
interleaving. This is one approach to design a JSCC system
based on lossy coding (see also [5], [6], and other works) . It
is demonstrated that the residual redundancy in the source (in
the form of non-uniform distribution and/or memory) and the
channel noise can be used to improve performance in terms of
the signal-to-distortion ratio (SDR). It is also observed in [4]
that using the channel’s soft-decision information can result in
significant SDR gain over hard-decision decoding, which is in
line with other works showing that soft-decision decoding can
increase channel capacity and system performance (e.g., see
[7]–[10]).

In this paper, we extend the results of [4], where a single-
user system was considered, and study the JSCC problem of
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sending two correlated Gaussian sources over an orthogonal
multiple access channel (MAC). A practical situation where
two sensors separately measure a pair of correlated parameters,
such as temperature and humidity, and sending them to a fusion
center is one motivation for considering such a problem. Our
MAC channel is defined by two orthogonal sub-channels. Each
sub-channel is a point-to-point correlated Rayleigh discrete
fading channel (DFC) used with antipodal signaling and soft-
decision (non-binary) output quantization. However, as the
Rayleigh DFC is hard to treat analytically [4], we will instead
use the recently introduced non-binary noise discrete channel
with queue based noise (NBNDC-QB) which has been shown
to efficiently model such DFC [11], [12].

We design a joint sequence MAP decoder (which is optimal
in terms of sequence error probability) and implement it using
a modified version of the Viterbi algorithm. Numerical results
confirm that our joint MAP decoder takes advantage of the
statistics of the correlated sources in addition to the channel’s
soft-decision information and statistical memory to accomplish
better SDR. Our main theoretical contribution is an easy-to-
check analytical condition in terms of the sources and channel
parameters, under which the costly delay-prone joint MAP
decoder can be replaced by a straightforward instantaneous
decoder with the same performance.

The rest of this paper is organized as follows. In Section II,
we describe our MAC channel model by introducing the
Rayleigh DFC and the NBNDC-QB models. The coding and
decoding schemes are studied in Section III and a result
which simplifies the joint MAP decoder to an instantaneous
symbol-by-symbol decoder is established for the special case
of correlated binary sources. Numerical results and discussions
are presented in Section IV and the paper is concluded in
Section V.

II. CHANNEL MODEL

Here, we introduce our orthogonal MAC channel by briefly
reviewing two point-to-point channel models studied in [12]:
the NBNDC-QB and the Rayleigh DFC. It is shown in [11]
that the general NBNDC-QB model can effectively represent
the statistical behavior of the single-user Rayleigh DFC.

A. Point-to-Point Rayleigh DFC.

The single-user Rayleigh DFC is a binary-input and 2q-
ary output channel defined as follows. First, a binary phase-
shift keying (BPSK) modulator takes the DFC’s binary input
process {Xk}∞k=1, Xk ∈ X = {0, 1}, and generates Sk =
2Xk − 1 ∈ {−1, 1} for k = 1, 2, . . . . Then, the modulated
signal is transmitted over a time-correlated flat Rayleigh fading
channel with additive white Gaussian noise which produces the
output Rk =

√
EsAkSk + Nk, k = 1, 2, . . . , where Es is the



energy of signal sent over the channel, and {Nk} is a sequence
of independent and identically distributed (i.i.d.) Gaussian
random variables of variance N0/2. Furthermore, {Ak} is the
channel’s Rayleigh fading process (assumed to be independent
of {Nk} and the input process) with Ak = |Gk|, where {Gk}
is a time-correlated complex wide-sense stationary Gaussian
process with Clarkes autocorrelation function given as a Bessel
function of the normalized maximum Doppler frequency fDT
[12], [13]. The fading channel’s signal-to-noise ratio (SNR) is
given by SNR = Es/N0. Finally, a soft-decision demodulator
processes the output Rk and produces the DFC’s channel out-
put Yk ∈ Y = {0, 1, . . . 2q−1} using a q-bit uniform quantizer
with step size ∆ defined as Yk = j, if Rk ∈ (T ′j−1, T

′
j ], where

T ′−1 = −∞, T ′j = (j + 1 − 2q−1)∆ for j = 0, 1, . . . , 2q − 2,
and T ′2q−1 =∞.

For the DFC, the conditional probabilities qi,j(ak) ,
Pr(Yk = j|Xk = i, Ak = ak) and the n-fold transition
probabilities P (n)

DFC(yn1 |xn1 ) , Pr{Y n1 = yn1 |Xn
1 = xn1} can be

calculated via [12, eqs. (1), (2)] where yn1 = (y1, y2, . . . , yn)

and xn1 = (x1, x2, . . . , xn). Unfortunately, P (n)
DFC(yn1 |xn1 ) can

be expressed in closed form only for n ≤ 3; otherwise it
must be found numerically. Therefore, the NBNDC-QB is
introduced as a more tractable model for the DFC.

B. NBNDC with queue-based noise

The NBNDC-QB is a binary-input and 2q-ary-output chan-
nel model, where q ≥ 1, which is described by

Yj = (2q − 1)Xj + (−1)XjZj , j = 1, 2, . . . , (1)

where Xj ∈ {0, 1} is the input data bit, Yj ∈ Y =
{0, 1, . . . 2q−1} is the channel output, and Zj ∈ Y is the cor-
responding noise symbol which is assumed to be independent
of the input. {Zj} is a generalization of the queue-based (QB)
noise introduced in [14]; it is a 2q-ary stationary and ergodic
M th-order Markov process which can be described using only
2q + 2 independent parameters (typically, q = 2 or 3 for
most systems): the memory order M , the marginal probability
distribution (ρ0, ρ1, . . . , ρ2q−1), and correlation parameters
0 ≤ ε < 1 and α ≥ 0. More details on the noise model can
be found in [14] and [12]. The state process {Sj} of the QB
noise, defined by Sj = (Zj , Zj−1, . . . , Zj−M+1) for j ≥ M ,
is a homogeneous first-order Markov process taking values in
{0, 1, . . . , 2q−1}M . The noise state transition probability is de-
fined as Q(sj |sj−1) , Pr{Sj = sj |Sj−1 = sj−1}, where sj =
(zj , zj−1, . . . , zj−M+1) and sj−1 = (z′j , z

′
j−1, . . . , z

′
j−M+1).

It is shown in [12] that for j ≥M + 1,

Q(sj |sj−1) =
(M−1∑
`=1

δzj ,zj−`
+ αδzj ,zj−M

) ε

M − 1 + α

+(1− ε)ρzj , (2)

if zk−1 = z′k for k = j, . . . j −M + 2, and Q(sj |sj−1) = 0
otherwise, where δi,i′ = 1 if i = i′ and δi,i′ = 0 if i 6= i′,
and

∑0
`=1 , 0. The n-fold channel transition probabilities

are Pr{Zn1 = zn1 } = Pr{Y n1 = yn1 |Xn
1 = xn1} , P

(n)
QB(zn1 ), as

given by [12, eqs. (20), (21)], where yn1 is the output sequence,
xn1 the input sequence, and zn1 = (z1, . . . , zn) is the sequence
of corresponding noise symbols related to xn1 and yn1 according
to (1). For n = 1, P (1)

QB(z1) = ρz1 for all z1 ∈ Y .
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Fig. 1: Block diagram of a JSCC system using scalar quantization and joint
MAP decoder over our orthogonal MAP channel with memory

The NBNDC-QB model can be fitted, via steps explained
in [12], to mimic the statistical behavior of a given Rayleigh
DFC with fixed parameters (SNR, q, δ, fDT ). The memory and
correlation parameters M, ε, and α are coupled with fDT ;
while q, δ, and SNR determine the noise one-dimensional
probability distributions ρj ,∀j ∈ Y as given in [4, Table I].
Consequently, both models will have the same channel noise
correlation coefficient Cor, given in [12, eq. (22)].

C. Orthogonal MAC Channel

In many practical communication systems where the avail-
able channel bandwidth must be efficiently shared among
several users, various orthogonal multiple access schemes such
as frequency division multiple access, time division multiple
access, and code division multiple access are employed to
avoid unrecoverable collision of messages from different users.
This motivates us to consider an orthogonal MAC channel
consisting of two independent single-user Rayleigh DFC sub-
channels which are modeled via NBNDC-QB channels.

III. MAP DETECTION OF TWO CORRELATED GAUSSIAN
SOURCES OVER THE ORTHOGONAL NBNDC-QB MAC

A. System model

Consider the communication system depicted in Fig. 1;
two correlated zero-mean and unit-variance Gaussian sources
V and V ′ generate a sequence of input pairs {(Vi, V ′i)}∞i=1
which are i.i.d. real-valued samples taken according to the
bivariate normal density

fV,V ′(v, v
′) =

1

2π
√

1− ρ2
exp

(
−v

2 + v′
2 − 2ρvv′

2(1− ρ2)

)
, (3)

where −1 ≤ ρ ≤ 1 is the correlation between the two sources.
The system description in this paper is a generalization of

the single-user system presented in [4]. The output samples
of the first source are encoded using a rate-n scalar quantizer
(SQ). The SQ utilizes the Lloyd-Max algorithm [15], with the
initial codebook selection obtained via the splitting algorithm
[16] and produces an index i ∈ {0, 1, . . . , 2n−1}. As explained
in [4], because of its simplicity and good performance, the
folded binary code (FBC) [17] is chosen as the one-to-one
index assignment method to map the index i to a binary
vector x ∈ {0, 1}n. The same encoding process is separately
done for the second source which results in the codeword



x′ ∈ {0, 1}n. Then, the vector pair (x,x′) is transmitted
through the orthogonal Rayleigh DFC MAC channel and
the corresponding vectors y ∈ Yn = {0, 1, . . . , 2q − 1}n
and y′ ∈ Y ′n = {0, 1, . . . , 2q′ − 1}n are received. This
communication is modeled as sending the n-tuple codeword
x bit-by-bit over the first NBNDC-QB sub-channel with 2q-
ary noise symbols z ∈ Y = {0, 1, . . . , 2q − 1} and noise
memory M which will result in the output sequence y.
Similarly, x′ and y′ are the input and output vectors of the
second NBNDC-QB sub-channel with 2q

′
-ary noise symbols

z′ ∈ Y ′ = {0, 1, . . . , 2q′ − 1} and noise memory M ′. At
the receiver side, the MAC channel’s output (y,y′) is fed to a
joint MAP decoder. Finally, two SQ decoders map the decoder
outputs (x̂, x̂′) into output levels of the quantizer codebook.

It can be observed that in the described system, which is
referred to as the SQ-MAC-MAP system, the receiver carries
most of the complexity load.

B. MAP decoder design

The residual redundancy of the source and channel
statistics can be harnessed by a MAP decoder which is
designed to minimize the sequence error probability [17].
Suppose that each source produces N symbols. The sequence
(x,x′)N =

(
(x1,x

′
1), . . . , (xN ,x

′
N )
)
∈
(
{0, 1} × {0, 1}

)nN
at the output of the SQ encoder is transmitted over the MAC
channel in nN channel uses. The independent NBNDC-QB
sub-channels contaminate the bit streams related to the first
and second source with noise sequences znN1 ∈ YnN and
z′
nN
1 ∈ Y ′nN , respectively. Receiving the channel output

(y,y′)N =
(
(y1,y

′
1), . . . , (yN ,y

′
N )
)
∈ (Y × Y ′)nN , the

MAP decoder estimates (x,x′)
N by (x̂, x̂′)

N as

(x̂, x̂′)
N

=

arg max
(x,x′)N

(
Pr{(X,X′)N = (x,x′)N |(Y,Y′)N = (y,y′)N}

)
= arg max

(x,x′)N

(
Pr{(Y,Y′)N = (y,y′)N |(X,X′)N = (x,x′)N}

× Pr{(X,X′)N = (x,x′)N}
)

= arg max
(x,x′)N

(
Pr{YN = yN |XN = xN}×

Pr{Y′N = y′
N |X′N = x′

N}Pr{(X,X′)N = (x,x′)N}
)

= arg max
(x,x′)N

(
Pr{ZnN1 = znN1 }Pr{Z ′nN1 = z′

nN
1 }×

Pr{(X,X′)N = (x,x′)N}
)

= arg max
(x,x′)N

(
P

(n)
QB(zn1 )P ′

(n)
QB(z′

n
1 )P (x1,x

′
1)× (4)

N−1∏
i=1

(
Q(z

(i+1)n
in+1 |z

in
1 )Q′(z′

(i+1)n
in+1 |z′

in
1 )P (xi+1,x

′
i+1)

))
,

where the third equation comes from the orthogonality
of the two sub-channels. P (xi+1,x

′
i+1) , P (Xi+1 =

xi+1,X
′
i+1 = x′i+1) is the joint probability distribution

for the pair of n-tuple codewords (Xi+1,X
′
i+1). For i =

1, 2, . . . , nN , the noise symbols zi and z′i can be found using
(1) with respect to each sub-channel inputs and outputs. The
transition probabilities in the last line of (4) are defined based

on Q(zi+ji+1|zii−k) , Pr{Zi+ji+1 = zi+ji+1|Zii−k = zii−k}, where
i, j, k ∈ {1, 2, . . . , nN − 1}, i+ j ≤ nN, i− k ≥ 1. Note that
zi , 0 if i < 1, zji , (zi, zi+1, . . . , zj), j ≥ i. For the second
sub-channel, Q(z′

i+j
i+1|z′

i
i−k) and P ′

(n)
QB(z′

n
1 ) are defined and

calculated similarly using the parameters associated with this
channel.

Assuming nN ≥ max{M,M ′}, it can be shown that

(x,x′)
N

= arg max
(x,x′)N

{
log
[
P

(n)
QB(zn1 )P ′

(n)
QB(z′

n
1 )P (x1,x

′
1)
]

+

N−1∑
i=1

log
[
Q(z

(i+1)n
in+1 |z

in
in−(M−1))×

Q′(z′
(i+1)n
in+1 |z′

in
in−(M ′−1))P (xi+1,x

′
i+1)

]}
(5)

where Q(z
(i+1)n
in+1 |zinin−(M−1)) can be calculated via [4, eq. (9)].

To implement the MAP decoder, we employ a modified
version of the Viterbi algorithm similar to the one used in
[18]. The corresponding trellis consists of 4(kn) states, where
k is the smallest integer which satisfies kn ≥ max{M,M ′},
each with the following path metric at step i:

log
[
Q(z

(i+1)n
in+1 |z

in
in−(M−1))Q

′(z′
(i+1)n
in+1 |z′

in
in−(M ′−1))

]
+ log

[
P (xi+1,x

′
i+1)

]
.

C. Case study: MAP detection of binary sources

Applying the Viterbi algorithm, the MAP decoder needs
to observe the entire received sequence before deciding on
the most likely message words, which results in significant
decoding delay as well as storage complexity that increases
with the length of the sequence. Thus it is interesting to
investigate situations where MAP decoding can be replaced by
a simple and fast instantaneous (symbol-by-symbol) decoding
rule which exhibits the same performance in terms of symbol
error rate (SER). For the single-user case and for a binary
symmetric Markov source transmitted over a NBNDC-QB
channel with noise memory M = 1, [4] establishes a necessary
and sufficient condition under which an instantaneous symbol-
by-symbol decoder can function as the MAP decoder.

In our MAC problem, we consider the special case where
both correlated sources are separately quantized to two levels
(n = 1). Using the symmetry in the joint distribution (3), one
can verify the following equations for the joint distribution of
the resulting binary sources:

P (1, 1) = P (0, 0) P (1, 0) = P (0, 1) (6)

In the next step, we explain our instantaneous symbol-by-
symbol decoder. By making use of the orthogonality of the
MAC channel, equation (6), and the assumption ρ0 ≥ ρ1 ≥
ρ2 ≥ · · · ≥ ρ2q−1 for each NBNDC-QB sub-channel, it can be
shown that for the case of binary sources, the same function
θ introduced in [4] can be adapted to map a 2q-ary (q ≥ 1)
output yi of the NBNDC-QB channel to a binary symbol ỹi.
In fact, among all mappings θ : Y 7→ {0, 1}, the following
mapping θ∗ minimizes the symbol error probability for each
sub-channel:

θ∗(yi) = ỹi =

{
0, if yi < 2q−1

1, otherwise ; 0 ≤ i ≤ N. (7)

Note that we independently apply the same function (7)



to y and y′, the demodulated outputs of the orthogonal MAC.
Since the parameters of the NBNDC-QB sub-channels can be
different, we denote the first instantaneous decoder by θ∗ and
the second by θ′∗ with the q in (7) changed to q′. Hence, a joint
symbol (yi, y

′
i) is decoded correctly when (ỹi, ỹ

′
i) = (xi, x

′
i).

The following result presents a necessary and sufficient
condition for the mappings (θ∗, θ′∗) to form an optimal se-
quence detection rule in the sense of minimizing the sequence
error probability.

Theorem 1. Consider two correlated memoryless binary
sources having joint distribution P (x, x′) with the symmetry
assumption (6) and an orthogonal MAC channel consisting of
two independent NBNDC-QB sub-channels where the first one
has the correlation parameter ε ≥ 0, memory order M = 1,
q ≥ 1, and a noise one-dimensional probability distribution
satisfying ρ0 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ ρ2q−1. Similarly, assume
that in the second channel ε′ ≥ 0, q′ ≥ 1,M ′ = 1, and
ρ′0 ≥ ρ′1 ≥ ρ′2 ≥ · · · ≥ ρ′

2q′−1. Let (x, x′)N be a source
sequence of length N ≥ 2, (y, y′)N the channel output
sequence, and let (ỹ, ỹ′)N = (θ∗(y), θ′

∗
(y′))N be obtained

by applying the mapping functions component-wise to the
corresponding output sequences of the underlying channels.

Then, decoding as (x̂, x̂′)N = (ỹ, ỹ′)N is an optimal se-
quence MAP detection rule for all possible received sequences
if

min

{(
P (0, 0)

1
2 − P (0, 0)

)
,

( 1
2 − P (0, 0)

P (0, 0)

)}
A ≥ 1, (8)

where

A = min

{
ε′ + (1− ε′)ρ′

2q′−1−1
ε′ + (1− ε′)ρ′

2q′−1

,
ε+ (1− ε)ρ2q−1−1
ε+ (1− ε)ρ2q−1

}
. (9)

Conversely, if (8) does not hold, it can be shown that there is
at least one sequence for which (x̂, x̂′)N = (ỹ, ỹ′)N is not an
optimal sequence MAP detection rule.

IV. NUMERICAL RESULTS

In order to illustrate Theorem 1, we have simulated the
system by generating N = 105 independent samples of two
correlated binary sources according to a joint distribution
satisfying (6). Denoting the left-hand term of (8) by C, when
C ≥ 1 it can be observed from Table I that the performance
of the instantaneous decoding (θ∗, θ′∗) and the joint MAP
decoder are identical, while for C < 1 the joint MAP decoder
outperforms the instantaneous decoder. In Table I. (a), we
present results for the cases when the MAC’s sub-channels
have identical parameters and in Table I. (b) we use sub-
channels with different parameters in order to further illustrate
the theoretical results.

We also simulated the SQ-MAC-MAP system for sending
two correlated Gaussian sources (generated by (3)). Table II
shows the average SDR (in dB) in the system simulation,
where SDR is defined as

SDR ,

∑2
i=1E[(Xi)

2]∑2
i=1E[(Xi − X̂i)2]

. (10)

It can be verified that in general the system performs better
with highly correlated sources and high noise correlation which
means that the joint MAP decoder successfully exploits the

channel noise correlation and the correlation between sources.
For example, when the correlation between sources is high
(0.81), a 5.4 dB (at q = 2, n = 3, SNR= 2) SDR gain
is achieved by having a system with high noise correlation
Cor = 0.9 (instead of a fully-interleaved memoryless chan-
nel); also, in such a system, increasing the correlation between
sources (from −0.31 to 0.81) leads to significant improvements
as high as 4.2 dB (at q = 2, n = 3, SNR= 2) in SDR.

Furthermore, it can be observed that incorporating more
soft-decision information has a positive effect on the perfor-
mance of the system under joint MAP decoding. For example
using a 3-bit soft-decision quantizer rather a hard-decision
quantizer (q = 1) results in a 4.28 dB gain (at n = 3, SNR= 2,
Cor=0.9 and ρ = 0.81).

Considering Table III, increasing soft-decision information
and also the correlation between the sources do not have
any significant effect on the performance of the instantaneous
decoder. These results are predictable because according to (7),
for 0 ≤ i ≤ N , the outputs of the instantaneous symbol-by-
symbol decoder (θ∗(yi), θ

′∗(y′i)) can be written as functions
of Ri and R′i, the unquantized outputs of the Rayleigh fading
underlying sub-channels

ỹi =

{
0, if Ri ≤ 0
1, otherwise , ỹ′i =

{
0, if R′i ≤ 0
1, otherwise , (11)

which shows no dependence on the q, q′, and P (x, x′).
Furthermore, considering a system with a 2-level quantizer

(n = 1) and a fully interleaved channel (Cor = 0), we can
verify Theorem 1 by comparing Tables II and III and observing
that whenever C ≥ 1 in Table I, the instantaneous symbol-
by-symbol decoder is performing as well as the joint MAP
decoder.

V. CONCLUSION

In this paper, we studied the joint MAP decoding for a
system with two correlated Gaussian sources, scalar quantizers,
and an orthogonal Rayleigh DFC MAC modeled with two
independent NBNDC-QB sub-channels. Considering two-level
quantizers, we derived a necessary and sufficient condition
under which our instantaneous symbol-by-symbol decoder can
replace the joint MAP decoder without loss of optimality.
Finally, numerical results illustrate our theoretical result and
verify that the proposed system can make use of the sources’
correlation, channel noise memory, and channel soft-decision
information to improve SDR performance. In future work, we
plan to extend the theorem for a similar system with Markovian
sources. Furthermore, investigating the system when the chan-
nel’s memory order is greater than one as well as evaluating the
system’s effectiveness under MAP decoding by fitting it to the
underlying fading channel are interesting research directions.
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TABLE I: JOINT SYMBOL ERROR RATE (IN %) OF JOINT MAP
DECODING AND INSTANTANEOUS MAPPING (θ∗, θ′∗) FOR TWO
CORRELATED SOURCES WITH THE JOINT DISTRIBUTIONS P (0, 0) =
0.2 AND 0.4. THE CHANNEL MODEL IS A MAC CHANNEL WITH TWO
ORTHOGONAL NBNDC-QB, WITH M = 1, Cor = 0.0, AND q = 1, 2, 3.

PART (a): TWO SUB-CHANNELS WITH IDENTICAL PARAMETERS (SNR, q).

P (0, 0) q
SNR (dB)

15 10 5 2
MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗) MAP (θ∗, θ′∗)

0.2

1 C = 85.66 > 1 C = 27.98 > 1 C = 9.72 > 1 C = 5.48 > 1
1.51 1.51 4.63 4.63 12.44 12.44 20.52 20.52

2 C = 2.08 > 1 C = 1.88 > 1 C = 1.90 > 1 C = 1.54 > 1
1.53 1.53 4.60 4.60 12.44 12.44 20.52 20.52
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