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Abstract—We study optimal maximum likelihood block de-
coding of binary codes sent over binary contagion channels with
infinite and finite memory. We derive conditions on the codes
and channels parameters under which maximum likelihood and
minimum Hamming distance are equivalent. We also note that
under these conditions, minimum distance decoding can perform
better without the use of channel interleaving.

I. I NTRODUCTION

Most of the results in coding theory are derived under the
assumption that the communication channel is memoryless.
The fact that most real life channels have memory has not
been efficiently exploited in current communication systems.
Instead, interleaving is most commonly used to spread channel
error bursts over the set of received codewords so that block
decoding can overcome most of the corrupted codewords (if
the number of channel errors within a codeword is within the
code’s error correcting capability). In other words, the use
of interleaving makes the channel appear memoryless to the
block decoder. This method has immediate shortcomings as it
fails to exploit the channel memory while adding delay to the
system.

It is well known that the maximum likelihood (ML) decod-
ing of binary codes over the memoryless binary symmetric
channel (BSC) with crossover probabilityp < 1

2 is equivalent
to minimum Hamming distance decoding. When the commu-
nication channel has memory, the above equivalence does not
necessarily hold. In this paper, we derive conditions on error
words and on the channel characteristics, under which the
equivalence holds. We deal with finite and infinite memory
Polya-contagion channels introduced in [1]. The infinite mem-
ory contagion channel is a non-ergodic binary additive channel
which can be used in modeling non-ergodic fading channels
[2], [3]. It has a closed-form expression for its epsilon-capacity
and admits a simple ML decoding rule. Alternatively, the finite
memory contagion channel (of orderM ), which is station-
ary and ergodic, was shown along with its generalizations
based on a finite queue [4]–[6] to accurately model ergodic
correlated Rayleigh and Rician fading channels. Furthermore,
it has been recently observed that, in the context of LDPC
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coding, iterative decoders designed for this channel and its
queue-based extension can outperfom the theoretical limit
that is achievable on the equivalent BSC (realized via ideal
interleaving) [7] (see also [8] and [9] for decoders designed
for Gilbert-Elliott and finite-state Markov channels). Forthe
finite-memory channel, we determine sufficient conditions
on any binary code under which strict minimum Hamming
distance decoding is equivalent to strict ML decoding; while
for the infinite-memory channel, we show both necessary and
sufficient conditions for which minimum distance and ML
decoding are equivalent.

In related works [10], [11], it was proven that strict mini-
mum Hamming distance decoding is equivalent to strict ML
decoding for perfect codes of minimum distance 3 over the
first-order Markov channel (finite memory contagion channel
with M = 1) with a positive correlation coefficient. In [12],
sufficient conditions, under which strict minimum Hamming
distance decoding of binary linear perfect codes becomes
equivalent to strict ML decoding, are derived for the same
channel. We extend the provided conditions to obtain even
tighter sufficient conditions that apply for any binary code
(linear or non-linear). We also provide similar results forthe
finite memory contagion channel withM = 2. In an another
work [13], a sufficient condition on the infinite memory conta-
gion channel is provided, under which ML block decoding is
equivalent to minimum Hamming distance block decoding for
linear codes containing the all-one codeword. We also improve
these results by obtaining necessary and sufficient conditions
on any binary codes over the same channel.

The remainder of the paper is organized as follows. Sec-
tion II states the general problem and presents the considered
channel models with memory. Section III presents the main
results. Section IV provides some numerical illustrations.
Finally, Section V gives concluding remarks.

II. PROBLEM FORMULATION AND CHANNEL MODELS

A. ML decoding problem

We first present the general problem of ML decoding of
binary block codes over modulo-2 additive noise channels with
memory. The outputYn at time instantn of the binary additive



channel is given byYn = Xn ⊕Zn, n = 0, 1, 2, · · · , where⊕
denotes modulo-2 addition andXn andZn are binary-valued
input and noise (error) symbols, respectively. The input and
noise processes are assumed to be independent from each
other. LetF := GF(2) denote the binary Galois field and
define the functionDn : Fn × Fn → R as follows:

Dn(x
n,yn) = − logk

P(Yn = yn|Xn = xn)

P(Zn = 0n)

= − logk
P(Zn = yn ⊕ xn)

P(Zn = 0n)

where xn = (x0, x1, · · · , xn−1), yn = (y0, y1, · · · , yn−1)

and modulo-2 addition is performed component-wise. In [14],
Hamada proved that for any additive noise channel and for any
blocklengthn, (Fn, Dn) forms a metric space. It is natural
to associate with this metric a weight functionWn(z

n) =
Dn(z

n,0n), zn ∈ Fn . Let C be an(n,K, d) code wheren
is the code’s length (i.e., blocklength of its codewords),K is
its dimension (number of codewords) andd is its minimum
distance. When a codeword inC is sent over the channel
and received asyn at the channel output, then it can be
directly noted that the ML block decoder selects the following
codeword as an estimate of the transmitted one:ĉn = yn⊕ ẑn,
whereẑn = argminzn∈Fn:yn⊕zn∈C Wn(z

n). It can be shown
that, for memoryless channels, the above weight reduces to the
Hamming weight. Hence, we can use the newDn(·, ·) metric
to generalize basic definitions from coding theory such as a
code’s minimum distance, its packing and covering radii, and
so on. Similarly, we can generalize the concept of perfect and
quasi-perfect codes.1 It was proven in [14] that, for any binary
additive noise channel, generalized perfect and quasi-perfect
codes are optimal under ML decoding among all codes with
the same lengths and dimensions.

In Section III, we establish sufficient conditions (and nec-
essary, where applicable) on binary codes over two classes
of Polya contagion channels with memory, under which ML
decoding reduces to minimum Hamming distance decoding
(for the case of the finite-memory contagion channel, the
equivalence holds under strict decoding).2 Thus, from the
optimality of generalized perfect codes [14], we conclude that,
under the derived conditions, perfect codes in the classical
(Hamming distance) sense are still optimal for the considered
channel models, which we briefly describe next.

B. Polya Contagion Channels

In the binary contagion channel model [1], the noise, gener-
ated via Polya’s contagion urn sampling scheme, propagatesin
the channel by mimicking the spread of a contagious disease
through a population in the sense that the event of a channel bit

1Recall that a classical perfect code has identical coveringand packing
radii; while a quasi-perfect code has a covering radius equal to its packing
radius plus one.

2By strict decoding, we mean that conventional incomplete decoding is
used where decoding failure is declared if there are more than one codewords
with minimal decoding metric (e.g., see [12]).

error increases the probability of future errors. This channel,
which operates under two memory modes (infinite and finite),
has some attractive statistical and information-theoretic prop-
erties and presents an alternative to the Gilbert-Elliott channel
[15] and other finite-state channels with memory (e.g., cf. [16],
[17]).

The infinite memory contagion channel (IMCC) is an infor-
mation unstable channel with stationary non-ergodic binary
noise process{Zi}

∞
i=0 admitting the following closed-formn-

fold distribution:

P(Zn = zn) =
Γ(1

δ
)Γ(p

δ
+ d)Γ(1−p

δ
+ n− d)

Γ(p
δ
)Γ(1−p

δ
)Γ(1

δ
+ n)

whereΓ(·) is the Gamma function,d is the Hamming weight
of the error (or noise) patternzn. Here,δ > 0 and0 ≤ p < 1

2

are the channel parameters. Specifically,p = P(Zi = 1)

is the channel bit error rate (BER) andδ is the channel
correlation parameter resulting in the following correlation
coefficient between any two noise bits at distinct time instants:

ǫ =
Cov(Zi,Zj)

Var(Zi)
=

δ

1 + δ
∀i 6= j where Cov(·, ·) and Var(·)

denote covariance and variance, respectively. Asδ → 0, the
IMCC reduces to a BSC with BERp. It is also proven in
[1] that the IMCC belongs to the class of averaged channels
with memory, and a closed-form expression of its epsilon-
capacity is obtained. However, the fact that the first noise
samples have the same effect as “more recent” noise samples
on future noise outcomes (due to its infinite memory) makes
this model appropriate for only non-ergodic binary channels.

The finite memory contagion channel (FMCC) is a deriva-
tive model from the IMCC, introduced to limit the effects
of the current noise sample to only a finite numberM of
future noise samples. Its noise process, generated by a simple
modification of Polya’s original urn scheme used to produce
the IMCC noise process, is a stationary ergodicM ’th order
Markov source. IfM = 1, the FMCC reduces to the first-
order binary Markov additive noise channel (which is a special
case of the Gilbert-Elliott channel). The probability of anerror
word zn = (z0, z1, ..., zn−1) ∈ Fn generated by a FMCC
is identical that of the IMMC noise forM ≥ n, while for
M < n, it is given by:

P(Zn = zn) = T

k−1∏

i=0

(p+ iδ)

M−1−k∏

j=0

(1− p+ jδ)

︸ ︷︷ ︸

depends only on the first M samples

×

n−1∏

i=M

[

(1− p+ (M − si−1)δ)
1−zi (p+ si−1δ)

zi
]

whereT is a constant depending on the channel parameters
(BER p, correlation coefficientδ and memory orderM ), k =
z0 + z1 + ...+ zM−1 andsi−1 = zi−M + ...+ zi−1.

We now present, without proof, another useful property of
contagion channels.



Proposition 1: For both IMCC and FMCC contagion chan-
nels withp < 1

2 , the all-0 error word is the most likely among
all possible error words.

III. ML D ECODING OVER CONTAGION CHANNELS

In this section, we study the problem of block ML decoding
over the above contagion channels. For the FMCC (with
M = 1, 2), we derive sufficient conditions under which strict
ML (SML) and strict minimum distance (SMD) decoding are
equivalent. Furthermore, for the IMCC, we provide necessary
and sufficient conditions for which ML and MD decoding
are equivalent. We first present the results for the FMCC
(M = 1, 2) and then for the IMCC.

A. Finite Memory Contagion Channel

1) FMCC withM = 1: As mentioned earlier, the FMCC
reduces to the first-order Markov channel whenM = 1. We
herein tighten the results already derived in [12]. The channel
noise transition matrix is given by:

Q =

[
ǫ+ (1− ǫ)(1− p) (1− ǫ)p

(1 − ǫ)(1− p) ǫ+ (1− ǫ)p

]

wherep is the channel noise BER andǫ = Cov(Zk,Zk+1)
Var(Zk)

. We
assume that0 < ǫ < 1.

Proposition 2: Define:

m1 ,

ln

(
ǫ+ (1− ǫ)(1− p)

(1− ǫ)p

)

ln

(
ǫ+ (1 − ǫ)p

(1− ǫ)p

)

+ ln

(
ǫ+ (1− ǫ)(1 − p)

(1− ǫ)(1− p)

)

and

m2 ,

(n− 1) ln

(
ǫ+ (1− ǫ)(1− p)

ǫ+ (1 − ǫ)p

)

+ ln

(
1− p

p

)

2 ln

(
ǫ + (1− ǫ)(1− p)

(1− ǫ)(1− p)

)

+ ln

(
1− p

p

) .

For any two error wordszn and z̄n satisfying:

i. wH(zn) = m, where0 < m < n
2

ii. wH(z̄n) = m+ i, where1 ≤ i ≤ n−m

where wH(·) denotes the Hamming weight, we have that
P[Zn = zn] >P[Zn = z̄n] iff m < m∗ = min(m1,m2).
The above proposition states that for given channel parameters
p and ǫ and for a given blocklengthn, the ML criterion
used to compare two different error patterns is equivalent to
the minimum Hamming weight criterion when the Hamming
weight of at least one of these patterns is less thanm∗(ǫ, p, n).
Conversely, if we look only into error patterns with Hamming
weights greater than or equal tom∗(ǫ, p, n), we can find
patterns that do not satisfy this equivalence.

Proposition 2, which improves upon the sufficient condition
in [12, Lemma 3], is fundamental for the following result.

Theorem 1:Let C be any (n,K, d) code. Denote byrcov the
classical covering radius of this code. Ifrcov < min

(
m∗, n

2

)

then SMD and SML decoding are equivalent for this code.

Proof: Let y be the received word. Letm ,

minc∈C dH(y, c),where dH denotes the Hamming distance.
Clearly, m ≤ rcov < n

2 (from the definition of the cov-
ering radius). If there exist a unique codewordĉ such that
dH(y, ĉ) = m, then the SMD decoding gives a valid code-
word. Sincem < m∗, it follows from Proposition 2 that all
other error words of larger Hamming weights have a smaller
probability than the error word corresponding to the SMD
decision. Therefore, SMD and SML decoding are equivalent.

For a given p, ǫ and n, Theorem 1 gives a sufficient
condition for binary codes under which SMD decoding is
equivalent to SML decoding. Hence it can be shown that under
these conditions, traditional perfect codes are also generalized
perfect codes over this channel. Therefore, following the
discussion in Section II, traditional perfect codes are optimal
under the sufficient condition in Theorem 1.

Fig. 1: Plot of m∗ with respect toǫ for different values ofp.

In Fig. 1, we plotm∗ versus the channel correlation coef-
ficient ǫ for different values of the BERp. We notice from
the figure that the condition of Theorem 1 is quite restrictive
for channels withǫ > 0.1. In fact, for these channels, only
codes with a covering radiusrcov = 1 satisfy the condition
(e.g. the family of Hamming codes). For smallerǫ, more codes
satisfy the condition, and asymptotically, whenǫ → 0 (BSC),
unsurprisingly all block codes satisfy it.

2) FMCC with M = 2: We next present results on the
equivalence between SMD and SML decoding for codes sent
over the FMCC withM = 2 using a similar (albeit more
involved) method as with the case ofM = 1.

Proposition 3: Define:

m̃1 ,

ln

(
1− p+ 2δ

p

)

+ ln

(
p+ 2δ

p+ δ

)

1
2 ln

(
(1− p+ 2δ)4(p+ 2δ)2

p2(1− p)(1 − p+ δ)3

)

and

m̃2 ,

2 ln

(
(1− p+ 2δ)n+2(1 − p)2

p2(p+ δ)(1 − p+ δ)3(p+ 2δ)n−3

)

ln

(
(1 − p+ 2δ)6

p2(1− p)(1 − p+ δ)3

)



whereδ = ǫ
1−ǫ

. For any two error wordszn andz̄n satisfying

i. wH(zn) = m, where0 < m < n
2

ii. wH(z̄n) = m+ i, where1 ≤ i ≤ n−m

we have that P[Zn = zn] >P[Zn = z̄n] if m < m̃∗ =

min(m̃1, m̃2).
The above proposition is instrumental in proving the fol-

lowing result.
Theorem 2:Let C be any (n,K, d) code. Denote byrcov the

classical covering radius of this code. Ifrcov < min
(
m̃∗, n

3

)

then SMD and SML decoding are equivalent for this code.

Fig. 2: Plot of m̃∗ with respect toǫ for different values ofp.

The possible values of̃m∗ are plotted in Fig. 2 for different
values ofp andǫ.

B. Infinite Memory Contagion Channel

A curious property about the IMCC is that ML decoding
always reduces to either minimum distance or maximum
distance decoding, depending on the set of possible error
words [1]. In fact, letz1n andz2n be two error words and let
d1 andd2 be their respective Hamming weights. We have the
following equivalence:

P[Zn = z1
n] ≥ P[Zn = z2

n] ⇐⇒ |d1 − µ| ≥ |d2 − µ| (1)

whereµ = 1−2p
δ

+ n
2 .

From the above equivalence, we can obtain a sufficient
condition on any binary code so that ML decoding becomes
equivalent to minimum distance decoding. This is presented
in the following theorem.

Theorem 3:For any(n,M, d) codeC, if the covering radius
of this code isrcov ≤ 1−2p

δ
, then MD decoding is equivalent

to ML decoding.
Proof: Let yn be an arbitrary received word inFn. We

denote byzmin
n(yn) andzmax

n(yn) the error word estimates
of the minimum and maximum distance decoders, respectively.
We denote bydmin and dmax their respective Hamming
weights. From the definition of the covering radius, we know
thatdmin ≤ rcov ≤ 1−2p

δ
. Hence,|dmin−µ| ≥ n

2 −
1−2p
2δ . On

the other hand,dmax ≤ n. Hence,|dmax − µ| ≤ n
2 − 1−2p

2δ .
Therefore, for any received wordy, |dmin−µ| ≥ |dmax−µ|.
From (1), we deduce that the minimum distance estimate

Fig. 3: Plot of the maximum allowablercov over the IMCC with respect
to correlation coefficientǫ for different values of BERp.

is always more likely than the maximum distance estimate.
Hence, ML and MD decoding are equivalent.

We illustrate the condition of Theorem 3 in Fig. 3 by
plotting the maximum allowable value for a code’s covering
radius over the IMCC.

We can tighten the condition in Theorem 3 to obtain
a necessary and sufficient condition on the codeC. For
an arbitrary received wordy ∈ Fn, let dmin(y

n) =
minc∈C dH(yn, c) and dmax(y

n) = maxc∈C dH(yn, c) as
above. Definedsum(yn) , |dmin(y

n) − dmin(1
n ⊕ yn)|,

where1n = (1, · · · , 1) is the all-one word of lengthn, and
let dsum(C) , maxyn∈Fn dsum(yn). We now can state the
necessary and sufficient condition.

Theorem 4:MD decoding is equivalent to ML decoding iff
dsum(C) ≤ 1−2p

δ
.

IV. N UMERICAL RESULTS

Let C be the (15, 211, 3) perfect binary Hamming code.
We simulate the performance ofC over the binary first-order
Markov channel and the FMCC withM = 2. We choose a
correlation coefficientǫ = 0.2 for the Markov channel and we
set δ = 0.3 (i.e., with a noise correlation coefficient of0.23)
for the FMCC withM = 2. This choice of parameters ensures
that bothm∗ and m̃∗ are greater than the covering radius of
C for our range ofp, as shown in Figs. 1 and 2, respectively.
Hence, according to Theorems 1 and 2, SML decoding is
equivalent to SMD decoding. The simulated communication
system consists of a simple encoder, a channel and a minimum
distance decoder. In Fig. 4, we compare its probability of
codeword error (PCE) to that of a system that employs an
infinite-depth interleaving scheme. In our simulation, we send
20000 codewords over each channel. The figure shows that, for
relatively small channel BERs (p < 0.1), the performances of
both systems are very comparable. Whereas for higher BERs,
the system without interleaving is slightly better. We observed
a similar behavior over the IMCC. Hence under the conditions
of Theorems 1, 2 and 3, interleaving does not only add delay
to the communication system, it also does not provide any



significant gain in performance and even in some cases it
slightly reduces the performance of the system. Therefore,
under these conditions, the use of interleaving is not justified.
We also simulate the performance of the(7, 24, 3) perfect

Fig. 4: Performance of the(15, 211, 3) Hamming code with and without
interleaving over the first-order Markov channel and over the FMCC with
M = 2.

Hamming codeC′ over the binary first-order Markov channel
with ǫ = 0.45, the FMCC withM = 2 and δ = 0.7 and the
IMCC with δ = 0.7. The results are presented in Table I. The

p 0.001 0.08 0.1 0.2 0.3
m∗ 1.0272 1.0079 0.9930 0.8966 0.7759

SMD over FMCC
with M = 1

0.0018 0.14834 0.18688 0.37784 0.56074

SML over FMCC
with M = 1

0.0018 0.14834 0.18666 0.37082 0.54466

m̃∗ 1.0335 1.0227 1.0114 0.9410 0.8563
SMD over FMCC

with M = 2
0.00066 0.0738 0.097 0.21654 0.36046

SML over FMCC
with M = 2

0.00066 0.0738 0.097 0.21654 0.34882

MD over IMCC 0.00121 0.15091 0.16474 0.33869 0.48022
ML over IMCC 0.00121 0.15091 0.16474 0.33869 0.48022

TABLE I: Verifying the conditions of Theorems 1, 2 and 4 for the(7, 24, 3)
Hamming code over the FMCC and IMCC.

covering radius of the perfect Hamming code is 1. According
to Theorem 1, ifm∗ > rcov = 1 we have equivalence between
SMD and SML decoding. Indeed, as the table shows, when
m∗ > 1 the probabilities of codeword error for SMD and SML
decoding over the first-order binary Markov channel are identi-
cal. We start to see some discrepancy whenm∗ < 1. Similarly,
according to Theorem 2, if̃m∗ > rcov = 1 then SMD
and SML decoding are equivalent. This is again validated
by simulation as shown in the table. We also notice that for
p = 0.2, m̃∗ < 1. However, the probabilities of codeword error
are still identical. That is not surprising since the condition in
Theorem 2 is only sufficient. Finally, sinceC′ has the all-one
codeword, we can show thatdsum(C′) = 0 < 1−2p

δ
asp < 1

2 .
Hence, according to Theorem 4, MD and ML equivalent are
always equivalent forC′ as illustrated in the table.

V. CONCLUSION

In this work, we presented sufficient conditions on general
binary codes under which SMD and SML decoding are equiva-
lent over the binary first-order Markov channel and the FMCC

with M = 2. For the IMCC, we provided both necessary and
sufficient conditions for which MD and ML are equivalent. We
have also noted by simulation that, under these conditions,the
use of an infinite-depth interleaver does not necessarily offer
performance gains.

Future work may include extending the results to other
channel models with memory (e.g., the FMCC withM > 2

and the Gilbert-Elliott channel). Another interesting direction
is to study optimal structures of binary block codes over chan-
nels with memory as we have established that the Hamming
distance is not necessarily the most important parameter inthe
code design.
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