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Abstract—\We study the decoding problem when a binary linear - a channel (with memory), one would expect that ML decoding
perfect or quasi-perfect code is transmitted over a binary chanel s not equivalent to minimum distance decoding for general
with additive Markov noise. After examining the properties of codes; however, for certain codes with good (coset) prigsert

the channel block transition distribution, we derive sufficient h fect d . fect cod ival
conditions under which strict maximum-likelihood decoding is (such as perfect and quasi-perfect codes), some equiyalenc

equivalent to strict minimum Hamming distance decoding when May be established.
the code is perfect. Additionally, we show a near equivalence rela-  Indeed, we provide a partial answer to this problem by
tionship between strict maximum likelihood and strict minimum showing (after elucidating some properties of the Markov
distance decoding for quasi-perfect codes for a range of chanhe o, onne| distribution) that the strict ML decoding of a binar
parameters and the code’s minimum distance. As a result, an . . . . S
improved (complete) minimum distance decoder is proposed and /IN€ar perfect code can be equivalent to its strict minimusa d
simulations illustrating its benefits are provided. tance decoding while the strict ML decoding of a quasi-petrfe
| ) . : code can be nearly equivalent to its strict minimum distance
ndex Terms—Binary channels with memory, Markov noise, . -
maximum likelihood decoding, minimum Hamming distance d€coding. As a result, we propose a (complete) decoder which
decoding, linear block codes, perfect and quasi-perfect codes.iS an improved version of the minimum distance decoder, and
we illustrate its performance via simulation results.
In a related work [5], the optimality of the binary per-
|. INTRODUCTION fect Hamming codes and the near-optimality of subcodes of

L Hamming codes are demonstrated for the same Markov noise
CONVENTIONAL communication systems employ cod- "9 v nol

ing schemes that are designed for memoryless channggénnel'
However, since most real world channels have memory, in-
terleaving is used in an attempt to spread the channel noise Il. SYSTEM DEFINITION AND PROPERTIES
in a uniform fashion over the set of received words so thatwe consider a binary additive noise channel whose output
the channel appears memoryless to the decoder. This in faygmbol Y, at time k is described byY, = X, & Zy, k =

adds more complexity and delay to the system, while failing 2, - . Where & denotes addition modulo-2Y;, € {0,1}

; ; IS the kth input symbol andZ;, € {0,1} is the ith noise
to exploit the benefits of the channel memory. symbol. We assume that the input and noise processes are

Prog'ress has peen achieved on t_he statistical and inf@ma‘ihdependent of each other, and that the noise proCgss2 |
theoretic modeling of channels with memory (e.g., see [35 a stationary (first-order) Markov source with transition
[7], [11], [12]), as well as on the design of effective itévat probability matrix given by
decoders for such channels (e.g., see [3], [4], [8], [9])wHoO

ittle i i - _ioq_|et@=)1=p (A-ep

ever, little is known about the structure of optimal maximum Q = [Qi;] = { (1-e)(1-p) et (1—ep |’ 1)

likelihood (ML) decoders for such channels. We herein focus

on one of the simplest models for a channel with memory, A ) o

the binary channel with additive Markov noise and analy2¥here Qi; = Pr(Zy = jlZy—1 = 1), 4,5 € {0,1}. Here

the performance of binary perfect and quasi-perfect cod@: Pr(Zx = 1) is the channel bit error rate (CBER), and

which can be useful for complexity and delay constrainéd CO“(Z’“_Z’C%)/V“’"(Z,’C) = [P?(_Z’f = 1,751 = 1) -

applications such as wireless sensor networks. Since iels w?_ )/ [P(1=p)] is the corielatlon coefficient of the noise process,

known that ML decoding of binary codes over the memoryle¥d€re Cov(Zy, Zy—1) = E|ZZ—] — E[Azk}E[gk—l] IS tth

binary symmetric channel (with bit error rate less than 1/8pvariance oz, andZy._, andVar(Zy) = BE|Zf] — E[Z)]

is equivalent to minimum Hamming distance decoding, it i§ the variance o, . We assume that < p < 1/2 and that

natural to investigate whether a relation exists betweesgh 0 < ¢ < 1, ensuring that the noise process is irreducible.

two decoding methods for the Markov noise channel. For suf’€n ¢ = 0, the noise process becomes independent and
identically distributed (i.i.d.) and the resulting chahrexluces

Paper approved by M. Skoglund, the Editor for Source/Cha@ueling to the (memoryless) binary symmetric channel with crossove
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y"|X™ = 2™) can be expressed in terms of the channel noise IIl. ANALYSIS OF THENOISEBLOCK DISTRIBUTION

block distribution as follows

Pr(Y" =¢"| X" =2") = Pr(Z" =2z")
—LH zk—1£ + (1 —€)p]**

k=2

X [(1—zp—1)e+ (1 —e)(1 *p)]lizk

wherezy =z Sy, k=1,--- ,nandL = Pr(Z; = ) =

P (1 —p)t=7.

Givenz" = (z1,---,2,) € {0,1}", let t;;(Z") denote the
number of times two consecutive bitsih are equal td3, j),
wheres, j € {0,1}; i.e.,

|
-

n

too(Z") = (1 —z1)(1 — zry1), tn(7 Z ZkZk+41,
k=1
n—1
ti0(Z") = zk(1 — 2k41), to1(Z Z (1 — 2zk)2k41-
k=1
In terms of thet;;(z™)’s Pr(Z" = Z*) can be written as

}tm

Pr(Z'=7") = Lle+(1—¢e)(1—p)][1-

x[(1-e)@=p)™* [+ (1

But from the definition of the;; (=

e)p
—e)p]" . (2)

w(Z") — too(Zn) —+ 21
w(Z") — 21 — tu(Z"),

®)
(4)

t10(2n) = n — 1-—

tm(Zn) =

where w(z™) = >"}_, z is the Hamming weight of:".
Substituting (3) and (4) into (2) yields the following expséon
for the noise block distribution, which will be instrumehia
our analysis:

w(zZ™)
Pr(Z" =2) = (1—e)" D (1—p)" L%]
e+ (1=2)1=p)]"* e+ (1= ep]
“Taoat-p } { T—op } 5)

The properties ofyy(z*) andt;;(z") in terms of onlyn and
w(Z") are as follows.

1) If w(z™) =0, thentpe(z") =n —1 andt;;(z") = 0.

2) If 0 < w(z") =1<n-—1,thenty(z") <n-—-1-
1 with equality if and only if all the O’'s inz" occur
consecutively. Alsctu(zn) < 1 —1 with equality if and
only if all the 1's in 2™ occur consecutively.

3) If 0 <w(z') =1< 3, thentpy(2") > max{n — 2l —
].,0} andtu( ) > 0

4 If & <w(z") =1 < n—1, thenty(z") > 0 and
tu(Zn) Z 20 —n — 1.

5) If w(z™) = n, thenty1(z

n) =n-—1 andtoo(zn) =0.

When there is no possibility for confusion, we will write

™)'s, we have the following.

Lemma 1:Let 0™ be the all-zero word (of length) and let

Z" # 0™ be any non-zero binary word. Then

Pr(Z" =Z7") < Pr(Z" = 0™).

Proof: Using (2), we have

L+ (1—¢e)(1—p)][(1—e)p]
x[(1=e)1=p)" e+ (1—e)p™
< (I=-ple+@—-g)@—p)

x[e+ (L—¢g)(1—p)

x e+ (1L —e)(1—p)]o

x[e+ (L—¢g)(1—p)H
= (I1-ple+(1—g)(1—p)roottotiotn
= (I-pl+Q-e)@-p)"!
Pr(Z™ =0"),

where the strict inequality holds sinde=p < 1—piif z2; =1,
and sincep < 1 — p with to; > 0 (sincez™ # 0™) if z; = 0.
[ |

Lemma 2:Let ¥ # 0™ be a non-zero noise word with
Hamming weightw(Z!) < n, too = n — w(Z) — 1 and
t11 = w(Z}) —1 (i.e., Z¢ is of the form (1---100---0) or
(00---011---1)). LetZ; be another non-zero noise word with
w(zd) = w(z}) but with differentt,, and/ort;;. Then, if
e >0,

Pr(Z" =270) > Pr(Z" = 7).

Proof: From (5), we note thafr(Z" = Zz*) strictly
increases with both, and ¢;; when the weight is kept
constant and > 0. Sincez’ has maximum values for both
too andt;; amongst all noise words of weight(Z") (but with
differentty, and/ort,), the strict inequality above followsm

Note that where = 0, obviously all noise words with the
same weight have identical distributions (since the chlanne
reduces to the BS@)).

Lemma 3:Suppose that

e+(1—e)(1—p) 1—
1“[ A= 1-p) } +In [Tp]

ct(1-6)(1-p) e+(1-e)p
ln[ a—o1-p) }“n[ d—op }

-1

and

Let z* be a noise word of weightv(z") = m such that
0<m<u+1< 3. ThenPr(Z" = Z*) > Pr(Z" = 7)
wherez” is any noise word with weightv(Z*) =1 > m.

Proof: First, note that the result directly holdsi = 0

too(z™) and t11(2™) as too and t11, respectively. We also by Lemma 1. Now letZ® be a noise word of nonzero weight

assume throughout that the blocklength> 2.

m < u+1, and letz* be another noise word witla(z") > m.
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Case l:Assume thatw(Z") = m + i wherei € {1,2,...,n —
m — 1}. Then by (5), we have
Pr(z'=2") _ [e+(1-e)1-p)]|""
Pr(zt=z) ~ (I-e)1-p) |
e+ (1—e)p]™t ! D ‘
“Ta-op | (1—29)
o [era-90-p]™"
- L =90 -p) |
[e+(1—e)p|™ P 2 fm
o= | (1*19) s
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Definition 1: [10], [6] An (n, M,d) linear codeC is said
to be aperfect coddf, for some non-negative integer it has
all patterns (i.e., elements db, 1}™) of Hamming weightt
or less and no others as coset leaders.

Definition 2: [10], [6] An (n, M, d) binary linear cod€ is
said to bequasi-perfect if, for some non-negative integer
it has all patterns of weight or less, some of weight + 1,
and none of greater weight as coset leaders.

An equivalent definition for quasi-perfectness is that, for
some non-negative integer C has a packing radius equal
to t and a covering radius equal to+ 1; i.e., the spheres

The first inequality follows from (5) and by applying theith (Hamming) radiust around the codewords of are

bounds onty, andt;; described at the end of the previou

section, while the second inequality follows by noting ttres
right hand side of the first inequality decreases far a fixed
m. Since f(m) is strictly increasing irm (whene > 0), and
m<u+1<u*+1, we obtain that

Pr(Z" =7")

Pr(z»

fim) < flu* +1)=1= =

<L

Case 2:Assume thatw(Z*) = n. Let 2" be another noise
word with w(?") =n-1, t11(2" =n-—-2 andtoo(zn) = 0.

Then
Pr(z"=27")  Pi(Z"=2")Pr(Z"=17")
Pr(Zn=z') = Pi(Zn=z")Pr(Z" =12")
_ P(zr=2
Pr(Zn = 7%)
_ e+t @-9)p p
{ (1—¢)p } (1—p)
_ e+(1-¢e)p
- {u “oa —p>] <1

where the first strict inequality holds siné&(Z™ = 2") <

%isjoint, and the spheres with radits#s1 around the codewords

cover{0,1}". On the other hand, perfectness means that both
packing and covering radii are equal. For these two classes
of codes,t = |43 (with d = 2¢ + 1 for perfect codes and
d=2t+1 ord =2t + 2 for quasi-perfect codes).

The (2™ — 1,22"~1=™ 3) Hamming codes 7, > 2),
the (n,2,n) repetition code withn odd and the(23,2'2,7)
Golay code are the only members of the family of binary
perfect linear codes. Examples of quasi-perfect binargalin
codes include thén,2,n) repetition codes withh even, the
(2m,22"~1-m 4) extended Hamming codes as well as the
(2m — 2,22"=2-m 3) shortened Hamming codes(> 2),
the (2 —1,22" ~1=2™ 5) double-error correcting BCH codes
(m > 3), and the(24,2!2,8) extended Golay code.

Perfect codes as well as quasi-perfect codes are not pdwerfu
error-correcting codes due to their small Hamming distance
However, they can be useful in complexity and delay con-
strained applications where codes with short blocklengties
needed.

Suppose that a codeword of a quasi-perfect cGdés

Pr(Z" = 7*) by Case 1, and the last strict inequality hold&ransmitted over the Markov noise channel and thatis

sincee < 7% [

Remark:Note that the weight limit.* in the above lemma is
independent of the codeword length.

IV. DECODING PERFECT AND QUASI-PERFECTCODES

We next study the relationship between strict maximum
likelihood (SML) decoding and strict minimum (Hamming)
distance decoding for binary linear perfect and quasiguerf
codes sent over the additive Markov noise channel. SML
decoding is an (incomplete) optimal decoder where optimali

is in the sense of minimizing the probability of codeworcdberr

(PCE) when the codewords are equally likely (which we herein

assume).

Let 77 = {0,1}™ denote the set of all binary words of

lengthn. A non-empty subset of 73 is called a binary linear
code if it is a subgroup of%'. The elements of are called
codewords. We usually descriliewith the triplet (n, M, d)
to indicate that: is the blocklength of its codeword$/ is its

size andd is its minimum Hamming distance; in other words,

d2 MiNe, ceCier£e, d(C1,c2) Whered(ci, c2) = w(c1 @ ¢2)
is the Hamming distance betweenandc, and the modulo-2
operation is applied component-wise onandc,.

received at the decoder. The following are possible decpdin

rules one can use to recover the transmitted codeword.

« ML Decoding:y™ is decoded into codeword, € C if
Pr(Y™ = y"X" = ¢y) > Pr(Y™ = y*| X" = ¢) for
all ¢ € C. If there is more than one codeword for which
the above condition holds, then the decoder picks one of
such codewords at random.

« Strict ML (SML) Decodinglt is identical to the ML rule
with the exception of replacing the inequality with a strict
inequality; if no codeword, satisfies the strict inequality,
the decoder declares a decoding failure.

« Minimum Distance (MD) Decoding,™ is decoded into
codewordcy € C if w(cg ®y) < w(cdy) for all
¢ € C. If there is more than one codeword for which
the above condition holds, then the decoder picks one of
such codewords at random.

o Strict Minimum Distance (SMD) Decodindt is iden-
tical to the MD rule with the exception of replacing
the inequality with a strict inequality; if no codeword
co satisfies the strict inequality, the decoder declares a
decoding failure!

1Recall that the ML and MD decoders are complete decoders —thay
always select a codeword to decode the received word — wieléSML and
SMD decoders are incomplete decoders as they declare a dgcfadure
when there are more than one codeword with minimal decoding enetri
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Lemma 4:Let C be an(n, M, d) perfect code to be usedThen, for a given word/™ received at the channel output, the

over the Markov noise channel. Assume that following hold.
d—1 In [%] +1In [1%”] (@ IfdececC iUCh t?aﬁun(é@y”) < w(c@ny”) vnc enC\{é},
2 In |:5+(175)(17p)i| +1n |:s+(175)pi| then PI‘(Y =Y ‘X = C) > PI‘(Y =Y ‘X = C)
(1-2)(1-p) 1-9)p YV c e C\{¢}.
and (b) If 3 € € C such thatPr(Y” = y*"| X" =¢) > Pr(Y" =
O<e< 211‘ 2 VX" =)V ¢ € C\{¢}, thenw(E @ y") < w(c®
(1-p) Y)Y ceC.

Then SMD and SML decoding are equivalent.

Proof: First note that for perfect codes, the element within ~ Proof: (&) Let¢ € € such thatw(¢ ©y") < w(c® y")
each coset of minimum weight (.., the coset leader) isumiq 7 © € C\d{cl}- Obviously,c @ y" is a coset leader, thus(¢ ©
Also notice that the coset leader is of weight less than oakeqy”) < L%J +1 < 3 sinceC is quasi-perfect. By Lemma 3,
to [(d—1)/2] < n/2. Assume thay" is received; theflc € C Pr(z" = CS y*) > Pr(Z" =cay*) Vce C = Pr(Y" =
which is unique such thab(e®y”) < w(cay™) ¥ce C\{¢}. Y'IX" =€ >PrY" =y"[X" =¢)V ceC\{c}).

Using Lemma 3 withu = |(d — 1)/2] — 1, we conclude that (b) Let ¢ € C such thatPr(Y” = y*|X" =€) > Pr(Y" =

veel\{¢} y'| X" = ¢) V ¢ € C\{¢}. Assume thatdc € C\{¢} such
Pr(Z" =¢@y") > Pr(Z" = cahy") that w(C @ y*) < w((? ® y”); the existence of is always
- guaranteed by choosing it such tlzab 3™ is the coset leader

of C@y". Thus, we can assume thafc®y”) < % since the

Pr(Y" =y*"|X" =¢) > Pr(Y" =y"|X" =c). coset leader has weight less than or equa} t@sC is quasi-

Hence, given a received worg?, the codeword with the Perfect). Then by Lemma Fr(Z" = coy") < Pr(Z" =
smallest Hamming distance tg" will be the most likely C®Y") <= Pr(Y" =y"[X" =€) < Pr(Y" =y"|X" =)
codeword that was sent over the channel amongst all #y8ich contradicts our assumption thamaximizesPr(y" |c)
codewords inC. Therefore, SMD and SML decoding areOver all codewords. Hencey(C ©y") < w(c®y") V ¢ € C.

equivalent. [ ] o ' . u
Observations: Note the above lemma implies that if a quasi-perfect code

has no decoding failures in its SMD decoder, then its SMD and
« The above lemma also proves that for perfect code§, decoders are equivalent under the stated conditions on
MD and ML decoding are equivalent under the samge \1arkov channel parametefys <) and the code’s minimum
assumptions of, ¢ andp. This is because for such codesyigiance? Inspired by the above result, Lemma 2 and (5), we
SMD and MD are the same due to the uniqueness of thai ronose the following complete decoder that improves
coset leaders Wh,'Ch results in no ties in the MD decodﬁ?ﬂver MD decoding. It includes SMD decoding and exploits
Similarly, the uniqueness of coset Igaders coupled W'{He knowledge offgo and #; to resolve ties (which occur
the proof Of_ the above lemma also imply that SML anQ/hen there are more than one codeword that are closest to the
ML are equivalent for the perfect codes under the rangg eived word).
of channel parameters given in the lemma. MD+ Decoding: Assume thay™ is received at the channel
» In a related work [5], Hamada showed that for th%utput. Suppose the decoder outputs the codewasatisfying

Mark_O\_/ charmel with a non-n_ega'uve noise correlatloH_'e MD decoding condition. If there is more than one such
coefficient (i.e.,e > 0) and bit error ratep < 1/2,

: : S / codeword, then the decoder choogdhat maximizesyo (¢ &®
the binary perfect Hamming codes (of minimum distan 00(&

) . ) +t11(épy™). If there is still a tie, then the decoder chooses
3) are optimal (under ML decoding) in the sense tgmat mgximiz)eﬁu(é@y”). Finally, if there is still a tie, then
minimizing the probability of decoding error amongst al he codewordt is picked at randors.
codes having the same blocklength and rate provided that
e < (1-2p)/2(1—p). Thus, in light of the above lemma,
for a communication system employing codes with short V. SIMULATION RESULTS AND DISCUSSION

blocklength due to _delay_ Constra_ints, Hamming codes Given an(n, M, d) perfect (respectively, quasi-perfect) code
used with MD decoding will be optimal over the Markovand a fixed CBERp, we lete, ; (respectively,s;) be the

noise channel amongst all codes of the same blocklen%pgestg for which Lemma 4 (respectively, Lemma 5) holds,

L and ra5t<.e|._ b A d) b i ioerf wheret £ |(d — 1)/2]. In Table |, we provide the values of
emma 5:Let C be an(n, M, d) binary linear quasi-perfect ﬁ}‘alfor t=1,2,3 and different values of.

code to be used over the Markov noise channel. Assume t

d—1 In [%} +1In [1;%] 2In contrast, recall that for the BSgY with p < 1/2, SML and SMD
{ J —1 decoding are equivalent for all binary codes (the same elgmva also holds
2 In [W] +1n [#1(:)2;;] between ML and MD decoding). Note also that wher 0, the conditions
in the above lemma reduce dig—l < 0o, andp < % (which is consistent
and 1-2p with what was just mentioned).
0<e< . 3Clearly, MD+ and MD decoding are equivalent for the BSC, sifar this
2(1-p) channel, it does not matter what codeword the decoder seléws there is

a tie (as long as it is one of the codewords closest to thevedeaiord).
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VALUES OF et FOR DIFFERENTp AND ¢. LEMMA 4 HOLDS FOR ALL

0.1

0.01

PCE

0.001

0.0001

0.0001

Fig. 1.

Hamming (15, 211, 3)

p €0 €1 £2 €3

1x 103 | 499/999 | 0.3172| 0.02843 | 0.08801

5x 103 99/199 | 0.3152 | 0.05628 | 0.02277

1x 1072 49/99 0.3126 | 0.07297 | 0.03308

5x 1072 9/19 0.2918 | 0.11492| 0.06644

1x 1071 4/9 0.2645 | 0.12367 | 0.07995
TABLE |

e < é&t—1 AND LEMMA 5HOLDS FOR ALLe < &¢.

(epsilon=0.1) ——
(epsilon=0.1) -----
(epsilon=0.5) ---%---
ML (epsilon=0.5) &

MD
ML
MD

0.0005  0.001 0.005 0.01

Channel Bit Error Rate (p)

PCE vs CBERp under different decoding schemes for the

e=0.1,0.5.

0.05

code over the Markov channel with noise correlation

0.1

0.01

PCE

0.001

0.0001 |
0.001

MD decoding —8—
MD+ decoding —*—
ML decoding --e--

! ! ! !

!

0.005 0.01 0.05
Channel Bit Error Rate (p)

0.1

877

PCE

MD decoding —8—
MD+ decoding —x—

0.001 | ML decoding --e-~

1 1 1 1
0.005 0.01 0.05 0.1
Channel Bit Error Rate (p)

Fig. 3. PCE vs CBERp under different decoding schemes for the BCH
(15,27, 5) code over the Markov channel with noise correlatios 0.05.

0.0001

We first examine the perfedtl5,2't,3) Hamming code
under different channel conditions, and show that indeed MD
decoding and ML decoding are equivalent for the channel
conditions specified by Lemma 4, as illustrated in Table I.
A large sequence of a uniformly distributed binary i.i.d.
source was generated, encoded via one of these codes and
sent over the Markov channel. Typical values are shown for
¢ € {0.1,0.5} in Fig. 1. Note thate = 0.1 satisfies the
conditions of Lemma 4 while = 0.5 does not. The simulation
results show that MD and ML are identical for the case 0.1
and almost identical at = 0.5.

We next present simulation results for decoding two quasi-
perfect codes, the binarg, 2¢,4) extended Hamming code
and the(15,27,5) BCH code. For the Hamming code= 1;
thus the values foe; in Table | provide the largest values
of ¢ for which Lemma 5 holds for different CBERs. As
a result, we simulated the Hamming system for the 5 values
of p listed in Table | and € {0.05,0.1,0.2,0.25}. Similarly,
sincet = 2 for the BCH code, the values fas apply, and the
BCH system was simulated fer= 0.05 and all values op in
Table | excepp = 10~3. A typical Hamming code simulation
result is presented in Fig. 2 far= 0.25, and the BCH code
simulation is shown in Fig. 3 far = 0.05. The results indicate
that MD+ performs nearly identically to ML decoding and
provides significant gain over MD decoding. By comparing the
two figures, we also note that the performance gap between
MD and ML decoding decreases with(which is consistent
with the fact that MD and ML decoding are equivalent when
¢ = 0). Additional results are available in [1].

As this work is a basic first step towards understanding the
structure of ML decoders for channels with memory, there
are several directions for future work. For example, not th

Fig. 2. PCE vs CBER under different decoding schemes for the Hamming?ne limitation of Lemmas 4 and 5 is that their conditions

(8,24, 4) code over the Markov channel with noise correlatios 0.25.

are too stringent to accommodate codes with larger minimum
distance, unless if the channel correlatioris substantially
decreased towards 0, thus rendering the Markov channdi/near
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memoryles$ (e.g, see howe, decreases as increases in
Table 1). The determination of less stringent conditions is
an interesting topic for future work. Another possible fetu
direction is to design a decoder that exploits the memory
between blocks by using estimates of the previous noise
samples. This can result in an improved performance over
the block-by-block ML and MD+ methods (studied here) at
a cost of increased complexity. Finally, extending this kvor
to channels withMth order Markovian noise [12] or hidden
Markovian noise [7], which are good models for correlated
fading channels, may be a worthwhile endeavor.
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“Note that as= decreases towards 0, the channel noise becomes less and
less bursty, behaving more and more like a memoryless process.



