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Abstract

The Dirichlet distribution is a multivariate generalization of the Beta distri-

bution. It is an important multivariate continuous distribution in probability

and statistics. In this report, we review the Dirichlet distribution and study

its properties, including statistical and information-theoretic quantities in-

volving this distribution. Also, relationships between the Dirichlet distribu-

tion and other distributions are discussed. There are some different ways to

think about generating random variables with a Dirchlet distribution. The

stick-breaking approach and the Pólya urn method are discussed.

In Bayesian statistics, the Dirichlet distribution and the generalized

Dirichlet distribution can both be a conjugate prior for the Multinomial dis-

tribution. The Dirichlet distribution has many applications in different fields.

We focus on the unsupervised learning of a finite mixture model based on

the Dirichlet distribution. The Initialization Algorithm and Dirichlet Mix-

ture Estimation Algorithm are both reviewed for estimating the parameters

of a Dirichlet mixture. Three experimental results are shown for the estima-

tion of artificial histograms, summarization of image databases and human

skin detection.
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Chapter 1

Introduction

The Dirichlet distribution is an important multivariate continuous dis-

tribution in probability and statistics. As a multivariate generalization of the

Beta distribution, the Dirichlet distribution is the most natural distribution

for compositional data and measurements of proportions modeling [34]. In

Bayesian statistics, the Dirichlet distribution is a popular conjugate prior for

the Multinomial distribution.

There are many applications for the Dirichlet distribution in various

fields. For example, the Dirichlet distirbution is used in deriving the distri-

bution function of order statistics [40]. In biology, reference [28] demonstrates

that the Dirichlet distribution can be used to compute forensic match prob-

abilities from several distinct populations. Also, the Dirichlet distribution

can be used to model a player’s abilities in Major League Baseball [37]. In

[23], it is shown that the Dirichlet distribution can be used to model con-

sumer buying behaviour. An application that we focus on in this report (in

Chapter 4) is the unsupervised learning of a finite mixture model based on
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the Dirichlet distribution [12].

Extensions of the Dirichlet distribution are helpful to represent differ-

ent purposes in various applications. For example, the Grouped Dirichlet

distribution and the nested Dirichlet distribution can be used for statistical

analysis of incomplete categorical data [34]. Also, there are some distribu-

tions related to the Dirichlet distribution, such as the generalized Dirichlet

distribution, the hyper-Dirichlet distribution, the Dirichlet-Multinomial dis-

tribution, the scaled Dirichlet distribution and the mixed Dirichlet distribu-

tion [34].

1.1 Organization of Report

Chapter 2 reviews the definition of the Gamma distribution and the Beta

distribution, which will be used in deriving the Dirichlet distribution. Also,

the definition and some main properties of the Dirichlet distribution will

be shown. More specifically, statistical and information-theoretic quantities

involving the Dirichlet distribution are derived. Next, the stick-breaking ap-

proach is shown for generating Dirichlet distributed random vectors. Chapter

3 describes exchangeability and the De-Finetti’s theorem. In addition, the

connections among Pólya urn model, exchangeability, the De-Finetti’s the-

orem and the Dirichlet distribution will be discussed. Chapter 4 contains

one application of the Dirichlet distribution. It is an unsupervised algo-

rithm given for estimating parameters of a finite mixture model based on the

Dirichlet distribution.
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Chapter 2

The Dirichlet Distribution

As a multivariate generalization of the Beta distribution, the Dirichlet

distribution can also be derived from the Gamma distribution. The definition

of the Dirichlet distribution and some basic properties (including statistical

and information-theoretic quantities) will be reviewed in this chapter. The

method of deriving the moment generating function, entropy, divergence, and

mutual information will also be shown.

2.1 The Gamma Distribution

Definition 2.1.1. A random variable X is said to have a Gamma distribution

with parameters α and β if it has a probability density function (pdf) f(x)

as shown below

f(x) =


1

Γ(α)βα
xα−1e−

x
β , if 0 < x <∞

0, otherwise

,
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where α > 0, β > 0 and Γ(α) =
∫∞

0
tα−1e−tdt is the Gamma function.

Here, α is a shape parameter and β is a scale parameter for the Gamma

density. We denote this distribution by G(α, β).

Theorem 2.1.1. [25] Let X1, . . . , Xn be independent random variables. Sup-

pose Xi has a G(αi, β) distribution for i = 1, . . . , n. Then Y =
∑n

i=1Xi has

a G(
∑n

i=1 αi, β) distribution.

Suppose we want to generate a random variable from the Gamma distri-

bution with a positve integer valued shape parameter α and scale parameter

β > 0, i.e., X ∼ G(α, β). Note that the Gamma distribution has the same

density function as the exponential distribution when α = 1. Therefore,

we can generate X by summing the independent and identically distributed

(i.i.d.) exponential random variables Ei, where Ei ∼ Exp(β) and β > 0 is

a real number. X =
∑α

i=1 Ei, i = 1, . . . , α and α is an arbitrarily integer. If

a random variable Ui is uniformly distributed on [0, 1], then − 1
β

logUi is an

exponential distribution Exp(β) by using the transformation technique [17].

This is one method of generating exponential variables from the uniform

distribution. Hence, X can be expressed as

X =
α∑
i=1

Ei = − 1

β

α∑
i=1

logUi.

The above Gamma generator, which is obtained from exponential ran-

dom variates, is not a good Gamma generator because this strategy increases

time linearly with the parameter α [17]. We know that when 0 < α ≤ 1, the

Gamma density approaches to infinity at 0. When α > 1, the Gamma density
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is close to the normal distribution for large values of α. Hence, we consider

the problem of generating a Gamma random variable X for 0 < α ≤ 1 and

α > 1. For arbitrary values of α, there are some good approaches for creat-

ing efficient Gamma generators by using rejection algorithms. Classification

of the rejection algorithms is dependent on the family of dominating curves

used. For example, Ahrens and Dieter (1974 and 1982) for α > 1 and Cheng

and Feast (1979) for 0 < α ≤ 1 have shown methods of generating a Gamma

random variable by using rejection algorithms.

2.2 The Beta Distribution

Definition 2.2.1. A random variable Y is said to have a Beta distribution

with parameters α and β if it has a pdf f(y) as shown below

f(y) =


Γ(α+β)

Γ(α)Γ(β)
yα−1(1− y)β−1, if 0 < y < 1

0, otherwise

, (2.1)

where α > 0, β > 0.

Note that Beta function is defined by B(α, β) =
∫ 1

0
yα−1(1− y)β−1dy.

Let X1 and X2 be two independent random variables with Gamma dis-

tribution G(α, 1) and G(β, 1), respectively. The joint pdf of X1 and X2 is

f(x1, x2) =
1

Γ(α)Γ(β)
x1

α−1x2
β−1e−x1−x2 ,

where 0 < x1 <∞, 0 < x2 <∞, α > 0, β > 0.
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Let Y1 = X1 +X2 and Y2 = X1

X1+X2
. We will show that Y1 ∼ G(α+ β, 1) and

Y2 ∼ Beta (α, β) [25].

Let the space S be the first quadrant of the x1x2-plane. The space S

contains points on the coordinate axes. y1 = x1 + x2 and y2 = x1/(x1 + x2)

can be written as x1 = y1y2, x2 = y1(1− y2). Thus,

J =

∣∣∣∣∣∣∣
y2 y1

1− y2 −y1

∣∣∣∣∣∣∣ = −y1

and the joint pdf of Y1 and Y2 is

f(y1, y2) =
1

Γ(α)Γ(β)
y1
α+β−1e−y1y2

α−1(1− y2)β−1,

where 0 < y1 <∞, 0 < y2 <∞.

Since Y1 and Y2 are independent, the marginal pdf of Y2 is

f2(y2) =
y2
α−1(1− y2)β−1

Γ(α)Γ(β)

∫ ∞
0

y1
α+β−1e−y1 dy1

=
Γ(α + β)

Γ(α)Γ(β)
y2
α−1(1− y2)β−1, 0 < y2 < 1.

Hence, Y2 has a Beta distribution with parameters α and β.

Also, f(y1, y2) = f1(y1)f2(y2). Then, Y1 must have pdf

f1(y1) =
1

Γ(α + β)
yα+β−1

1 e−y1 , 0 < y1 <∞,

which is Y1 ∼ G(α + β, 1).
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2.3 Deriving the Dirichlet Distribution

Let Xi be a random variable from the Gamma distribution G(αi, 1), i =

1, . . . , k, and let X1, . . . , Xk be independent. The joint pdf of X1, . . . , Xk is

f(x1, . . . , xk) =


∏k

i=1
1

Γ(αi)
xαi−1
i e−xi , if 0 < xi <∞

0, otherwise

.

Let

Yi =
Xi

X1 +X2 + · · ·+Xk

, i = 1, 2, . . . , k − 1

and

Zk = X1 +X2 + · · ·+Xk.

By using the change of variables technique, this transformation maps

M = {(x1, . . . , xk) : 0 < xi <∞, i = 1, . . . , k} onto N = {(y1, . . . , yk−1, zk) :

yi > 0, i = 1, . . . , k − 1, 0 < zk < ∞, y1 + · · · + yk−1 < 1}. The inverse

functions are x1 = y1zk, x2 = y2zk, . . . , xk−1 = yk−1zk, xk = zk(1−y1−· · ·−

yk−1). Hence, the Jacobian is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zk 0 · · · 0 y1

0 zk · · · 0 y2

...
...

...
...

0 0 · · · zk yk−1

−zk −zk · · · −zk (1− y1 − · · · − yk−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= zk−1

k .

Then, the joint pdf of Y1, . . . , Yk−1, Zk is

f(y1, . . . , yk−1, zk) =
yα1−1

1 · · · yαk−1−1
k−1 (1− y1 − · · · − yk−1)αk−1

Γ(α1) · · ·Γ(αk)
e−zkzα1+···+αk−1

k .
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By integrating out zk,the joint pdf of Y1, . . . , Yk−1 is

f(y1, . . . , yk−1) =
α1 + · · ·+ αk

Γ(α1) · · ·Γ(αk)
yα1−1

1 · · · yαk−1−1
k−1 (1− y1 − · · · − yk−1)αk−1,

where yi > 0, y1 + · · · + yk−1 < 1, i = 1, . . . , k − 1. The joint pdf of the

random variables Y1, . . . , Yk−1 is known as the pdf of the Dirichlet distribution

with parameters α1, . . . , αk. Furthermore, it is clear that Zk has a Gamma

distribution G(
∑k

i=1 αi, 1) and Zk is independent of Y1, . . . , Yk−1 [25].

2.4 Definition and Properties

Definition 2.4.1. Let Y k = [Y1, . . . , Yk] be a vector with k components,

where Yi ≥ 0 for i = 1, 2, . . . , k and
∑k

i=1 Yi = 1. Also, let αk = [α1, α2, . . . ,

αk], where αi > 0 for each i. Then the Dirichlet probability density function

is

f(yk) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

yαi−1
i ,

where α0 =
∑k

i=1 αi, yi > 0, y1 + · · ·+ yk−1 < 1 and yk = 1− y1− · · · − yk−1.

We denote this distribution by Dir(α1, α2, . . . , αk) [34].

The Dirichlet distribution is a distribution with k positive parameters αk

with respect to a k-dimensional space. We observe that if k = 2, f(y1, y2) is

a pdf of the Beta distribution with parameters α1 and α2, which is a special

case. The probability density function of the Dirichlet distribution for k

random variables is a k− 1 dimensional probability simplex that exists on a

k dimensional space.

When each parameter αi has the same value, it is called the symmetric
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Dirichlet distribution. In this case the density with k components is sym-

metrically distributed over the k− 1-dimensional simplex in a k dimensional

space.

In Figure 2.1, we plot 1000 points generated from the Dirichlet distri-

bution in a 3-dimensional space with different parameter α3 values. When

0 < α1, α2, α3 < 1, the density congregates at the edges of the simplex. Note

that in (a) α3 = (0.1, 0.1, 0.1), the density congregates to at the edges of the

triangle. This 2-dimensional simplex represents the sample space of Y1, Y2,

and Y3 in 3-dimensional space.

As the value of α3 increases to (1, 1, 1), the density becomes uniformly

distributed over the triangle. When α1, α2, α3 > 1, the density becomes

more concentrated on the center of the simplex. This is shown in (c) α3 =

(20, 20, 20). In (d), we note that the density plot is not symmetric as the

value of α1, α2, α3 are not identical.

We next introduce some notations which we will use in the following

derivations. We set a random vector Y k = [Y1, . . . , Yk] to have a Dirichlet

distribution with positive parameters α1, . . . , αk. It is denoted by Y k ∼

Dir(α1, . . . , αk). Then, for i = 1, 2, . . . , k, Yi ≥ 0 and Yk = 1 −
∑k−1

i=1 Yi.

Also, let α0 =
∑k

i=1 αi.

Let Xi be an independent random variable from the Gamma distribution

G(αi, 1) for i = 1, 2, . . . , k, and let X1, . . . , Xk be independent. Also, let

Zk = X1 +X2 + · · ·+Xk; then Zk has a Gamma distribution G(
∑k

i=1 αi, 1).

9



(a) Dir(0.1,0.1,0.1)
(b) Dir(1,1,1)

(c) Dir(20,20,20) (d) Dir(5,15,25)

Figure 2.1: 1000 points generated from the Dirichlet distribution with pa-
rameter α3 = (α1, α2, α3).

1. Mean: E[Yi] = αi
α0

, i = 1, 2, . . . , k [34].

Proof.

E[Y1] =

∫
· · ·
∫
y1

Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

yαi−1
i dy1 · · · dyk

=

∫
· · ·
∫

Γ(α0)∏k
i=1 Γ(αi)

y1y
α1−1
1

k−1∏
i=2

yαi−1
i (1−

k−1∑
i=1

yi)
αk−1dy1 · · · dyk−1

=
Γ(α0)

Γ(α1)
∏k
i=2 Γ(αi)

Γ(α1 + 1)
∏k
i=2 Γ(αi)

Γ(α0 + 1)

=
Γ(α0)

Γ(α0 + 1)

Γ(α1 + 1)

Γ(α1)

=
α1

α0

10



Hence, E[Yi] = αi
α0

, i = 1, 2, . . . , k.

2. Variance: V AR(Yi) = αi(α0−αi)
α2
0(α0+1)

, i = 1, 2, . . . , k [34].

Proof. We have shown that E[Yi] = αi
α0

, i = 1, 2, . . . , k.

Similarly,

E[Y 2
i ] =

Γ(α0)

Γ(α0 + 2)

Γ(αi + 2)

Γ(αi)

=
(αi + 1)αi
(α0 + 1)α0

.

Hence,

V AR(Yi) = E[Y 2
i ]− E[Yi]

2

=
(αi + 1)αi
(α0 + 1)α0

−
(
αi
α0

)2

=
αi(α0 − αi)
α2

0(α0 + 1)
.

3. Covariance matrix: COV (Yi, Yj) =
−αiαj

α2
0(α0+1)

, i = 1, 2, . . . , k, j =

1, 2, . . . , k and i 6= j [34].

Proof. We have shown that E[Yi] = αi
α0

.

Similarly,

E[YiYj] =
Γ(α0)

Γ(α0 + 2)

Γ(αi + 1)

Γ(αi)

Γ(αj + 1)

Γ(αj)

=
αiαj

α0(α0 + 1)
, i 6= j.
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Hence,

COV (Yi, Yj) = E[YiYj]− E[Yi]E[Yj]

=
αiαj

α0(α0 + 1)
− αi
α0

αj
α0

=
−αiαj

α2
0(α0 + 1)

, i 6= j.

4. The marginal distribution of Yi : Beta (αi,
∑k

j=1 αi − αi), i =

1, 2, . . . , k [6].

Proof. We want to show that the marginal distribution of Yi is

Beta(αi,
∑k

j=1 αi − αi).

First, we want to know the distribution of Zk−Xi. By Theorem 2.1.1,

Zk −Xi ∼ G

(
k∑
j=1

αi − αi, 1

)
.

Then, Yi is a Beta distribution

Yi =
Xi

Zk

=
Xi

Xi + (Zk −Xi)

∼ Beta(αi,
k∑
j=1

αi − αi).

Therefore, the marginal distribution of Yi is Beta(αi,
∑k

j=1 αi−αi) for

i = 1, . . . , k and 0 < Yi < 1.

12



Note that this marginal distribution is equal to the Dirichlet distribu-

tion when k = 2. Thus, the Dirichlet distribution is a multivariate

generalization of the Beta distribution.

5. The two-dimensional joint distribution of (Yi, Yj): Dir(αi, αj,∑k
l=1 αi − αi − αj), 1 ≤ i < j ≤ k [34].

Proof. Note that Xi ∼ G(αi, 1) and Xj ∼ G(αj, 1).

First, we want to know the distribution of Zk −Xi −Xj. By Theorem

2.1.1,

Zk −Xi −Xj ∼ G

(
k∑
l=1

αi − αi − αj, 1

)
.

Then, (Yi, Yj) is a Dirichlet distribution

(Yi, Yj) =

(
Xi

Zk
,
Xj

Zk

)
=

(
Xi

Xi +Xj + (Zk −Xi −Xj)
,

Xj

Xi +Xj + (Zk −Xi −Xj)

)
∼ Dir(αi, αj,

k∑
l=1

αi − αi − αj).

Therefore, the two-dimensional joint distribution of Yi, Yj is Dir(αi,

αj,
∑k

l=1 αi − αi − αj) for 1 ≤ i < j ≤ k and 0 < Yi, Yj < 1.

6. The conditional joint distribution of Y
′
i = Yi

1−
∑s
j=1 Yj

given

Y1 = y1, . . . , Ys = ys ([Y
′
i ]ki=s+1 is independent of Y1, . . . , Ys):

Dir(αs+1, . . . , αk−1, αk), i = s+ 1, . . . , k and 0 < s < k [34].

Proof. Let Y
′
i = Yi

1−
∑s
j=1 Yj

, i = s+ 1, . . . , k.

13



We have Yi = Xi
X1+X2+···+Xk

, i = 1, 2, . . . , k.

Then,

1−
s∑
j=1

Yj =
Xs+1 + · · ·+Xk

X1 +X2 + · · ·+Xk

.

Hence,

[Y
′

i ]ki=s+1 =

[
Xi

Xs+1 + · · ·+Xk

]k
i=s+1

Let Z = Xs+1 + · · ·+Xk−Xi, i = s+1, . . . , k. Z is Gamma distributed

according to the additive property of the Gamma distribution. Then

Y
′
i = Xi

Xi+Z
is independent of Xi + Z, i = s+ 1, . . . , k (see deriving the

Beta distribution in Section 2.2).

Also,

Yj =
Xj

X1 + · · ·+Xk

=
Xj

X1 + · · ·+Xs + Z +Xi

, j = 1, . . . , s.

Since Y
′
i is independent of

Xj
X1+···+Xs and Xi + Z, i = s + 1, . . . , k,

j = 1, . . . , s. Thus, [Y
′
i ]ki=s+1 is independent of Yj, j = 1, . . . , s.

Therefore, The conditional joint distribution of Y
′
i = Yi

1−
∑s
j=1 Yj

given

Y1 = y1, . . . , Ys = ys is Dir(αs+1, . . . , αk−1, αk), i = s + 1, . . . , k and

0 < s < k.

7. Product moments [6]. The product moment with non-negative inte-

gers n1, . . . , nk is

E(
k∏
i=1

Y ni
i ) =

∫
· · ·
∫ k∏

i=1

ynii f(yk)dy1 · · · dyk

14



=
Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)

∫
· · ·
∫

yn1+α1−1
1

· · · (1−
k−1∑
i=1

yi)
nk+αk−1dy1 · · · dyk−1

=
Γ(α1 + · · ·+ αk)

Γ(α1 + n1 + · · ·+ αk + nk)

k∏
i=1

Γ(αi + ni)

Γ(αi)
.

We will use the result of product moments to derive the moment gen-

erating function of Y k = [Y1, . . . , Yk].

8. Moment generating function

By using Property (7), we can obtain the moment generating func-

tion of Y k = [Y1, . . . , Yk]. Let t = (t1, . . . , tk)
T ∈ Rk. The moment

generating function of Y k at t is

E(et
TY k) =

∫
· · ·
∫
et
T yf(yk)dy1 · · · dyk

=

∫
· · ·
∫ ∞∑

m=0

(tTyk)m

m!
f(yk)dy1 · · · dyk

=
∞∑
m=0

1

m!

∫
· · ·
∫

(tTyk)mf(yk)dy1 · · · dyk

(a)
=

∞∑
m=0

1

m!

[ ∫
· · ·
∫ ∑

n1+n2+···+nk=m

m!

n1!n2! · · ·nk!

×
k∏
i=1

(tiyi)
nif(yk)dy1 · · · dyk

]
=

∞∑
m=0

1

m!

[ ∑
n1+n2+···+nk=m

m!

n1!n2! · · ·nk!

×
[ k∏
i=1

(ti)
ni

∫
· · ·
∫ k∏

i=1

(yi)
nif(yk)dy1 · · · dyk

]]
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=
∞∑
m=0

1

m!

[ ∑
n1+n2+···+nk=m

m!

n1!n2! · · ·nk!

k∏
i=1

(ti)
niE(

k∏
i=1

Y ni
i )

]

=
∞∑
m=0

1

m!

[ ∑
n1+n2+···+nk=m

m!

n1!n2! · · ·nk!

k∏
i=1

(ti)
ni

×
[

Γ(α1 + · · ·+ αk)

Γ(α1 + n1 + · · ·+ αk + nk)

k∏
i=1

Γ(αi + ni)

Γ(αi)

]]
.

In step (a), we apply the multinomial theorem

(x1 + x2 + · · ·+ xk)
m =

∑
n1+n2+···+nk=m

m!

n1!n2! · · ·nk!

k∏
i=1

xnii

for any positive integer k and any non-negative integer m.

9. Differential entropy :

h(Y k) = logB(αk) + (α0 − k)ψ(α0)−
k∑
i=1

(αi − 1)ψ(αi),

where ψ(x) is the Digamma function and B(αk) =
∏k
i=i Γ(αi)

Γ(α0)
.

In information theory, entropy is a key concept which was introduced

by Claude E. Shannon in 1948 [15]. Entropy is a measure of the un-

certainty of a random variable. Differential entropy is the entropy of a

continuous random variable.

Definition 2.4.2. [15] Differential entropy is defined as

h(Y k) = E[− log p(Y k)] = −
∫
p(yk) log p(yk)dyk, 0 < h(Y k) < 1,
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where p(yk) is the pdf of the random vector Y k. Before we derive the

differential entropy of the Dirichlet distribution, we first examine the

expected value of log Yi, i = 1, 2, . . . , k. From [32], we have

E[log Yi] = ψ(αi)− ψ(α0),

where ψ(x) is the Digamma function, which is defined as ψ(x) =

d
dx
ln(Γ(x)).

Therefore, the differential entropy is

h(Y k) = −E[log p(yk)]

= −E

[
log

1

B(α)

k∏
i=1

yαi−1
i

]

= logB(α) +
k∑
i=1

(αi − 1)E[log Yi]

= logB(α) +
k∑
i=1

(αi − 1)(ψ(αi)− ψ(α0))

= logB(α) + (α0 − k)ψ(α0)−
k∑
i=1

(αi − 1)ψ(αi). (2.2)

When k = 2 in (2.2), we obtain the special case of the differential

entropy for the Beta distribution. Let Y2 be a random variable from the

Beta distribution with parameters α and β (pdf of the Beta distribution

is defined as (2.1) in Section (2.2). Thus, the differential entropy of the

Beta distribution is

h(Y2) = logB(α, β)+(α+β−2)ψ(α + β)− (α−1)ψ(α)− (β−1)ψ(β).

17



The differential entropy of the Beta distribution is also given in [15].

10. Divergence between two Dirichlet distributions:

Divergence measures the distance between two distributions f and g. If

there exists a random variable X with the true distribution f , then di-

vergence is a measure of the inefficiency when assuming the distribution

of X is g [15].

Definition 2.4.3. The divergence (relative entropy; Kullback-Leibler

distance) D(f(yk)||g(yk)) between two densities f(yk) and g(yk) is de-

fined by

D(f(yk)||g(yk)) =

∫
. . .

∫
f(yk)log

f(yk)

g(yk)
dy1 . . . dyk.

Note that D(f(yk)||g(yk)) ≥ 0 since the Kullback–Leibler divergence

is always non-negative.

Suppose there are two Dirichlet distributions f(yk) ∼ Dir(α1, . . . , αk)

and g(yk) ∼ Dir(β1, . . . , βk). Then, the divergence between these two

Dirichlet distributions is

D(f(yk)||g(yk)) =

∫
. . .

∫
f(yk)log

f(yk)

g(yk)
dy1 . . . dyk

=

∫
. . .

∫
f(yk)log f(yk) dy1 . . . dyk

−
∫
. . .

∫
f(yk)log g(yk) dy1 . . . dyk

=

∫
. . .

∫
f(yk)

{
log Γ(

k∑
i=1

αi)−
k∑
i=1

log Γ(αi)

18



+
k∑
i=1

(αi − 1)log yi
}
dy1 . . . dyk

−
∫
. . .

∫
f(yk)

{
log Γ(

k∑
i=1

βi)−
k∑
i=1

log Γ(βi)

+
k∑
i=1

(βi − 1)log yi
}
dy1 . . . dyk

= log Γ(
k∑
i=1

αi)−
k∑
i=1

log Γ(αi)− log Γ(
k∑
i=1

βi) +
k∑
i=1

log Γ(βi)

+
k∑
i=1

(αi − βi)
∫
. . .

∫
log yi f(yk) dy1 . . . dyk, (2.3)

where

∫
. . .

∫
log yi f(yk) dy1 . . . dyk = E[log Yi] = ψ(αi)− ψ(α0). (2.4)

Now substitute (2.4) into (2.3). Thus, the divergence between the two

Dirichlet distributions is

D(f(yk)||g(yk)) = logΓ(
k∑
i=1

αi)−
k∑
i=1

logΓ(αi)− logΓ(
k∑
i=1

βi)

+
k∑
i=1

logΓ(βi) +
k∑
i=1

(αi − βi) (ψ(αi)− ψ(α0))

= log
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

∏k
i=1 Γ(βi)

Γ(
∑k

i=1 βi)

+
k∑
i=1

(αi − βi) (ψ(αi)− ψ(α0)) . (2.5)

Setting k = 2 in (2.5) yields the special case of the divergence be-

tween two Beta distributions. Thus, the divergence between two Beta
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distributions is

D(f1(y)||g1(y)) = log
Γ(α1 + α2)

Γ(α1)Γ(α2)

Γ(β1)Γ(β2)

Γ(β1 + β2)

+ (α1 − β1)ψ(α1) + (α2 − β2)ψ(α2)

+ (β1 − α1 + β2 − α2)ψ(α1 + α2),

where f1(y) ∼ Beta(α1, α2) and f2(y) ∼ Beta(β1, β2), as obtained in

[36].

11. Mutual information:

Mutual information is a measure of the amount of information shared

between two random variables [15].

Definition 2.4.4. The mutual information, I(Y1;Y2), between two con-

tinuous random variables Y1 and Y2 is defined as

I(Y1, Y2) =

∫ ∫
f(y1, y2)log

f(y1, y2)

f(y1)f(y2)
dy1dy2,

where f(y1) and f(y2) are the marginal probability density functions for

the random variable Y1 and Y2, respectively. Also, f(y1, y2) is the joint

probability density function of (Y1, Y2).

If (Y1, Y2) ∼ Dir(α1, α2, α3), then from Properties (4) and (5), we know

that the marginal distribution of Y1 is a Beta distribution with parame-

ters α1 and β1 and the marginal distribution of Y2 is a Beta distribution

with parameters α2 and β2. Also, the marginal distribution of (Y1, Y2)

is Dir(α1, α2, α3).
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From Definition 2.4.4, the mutual information I(Y1, Y2) is equal to

I(Y1, Y2) = h(Y1) + h(Y2)− h(Y1, Y2), (2.6)

where h(Y1) is the entropy of the Beta distribution, Beta(α1, β1), h(Y2)

is the entropy of the Beta distribution, Beta(α2, β2), and h(Y1, Y2) the

entropy of the Dirichlet distribution, Dir(α1, α2, α3).

The following entropy expressions of the Beta distribution and the

Dirichlet distribution can be obtained by using Property (9).

h(Y1) = logB(α1, β1) + (α1 + β1 − 2)ψ(α1 + β1)

− (α1 − 1)ψ(α1)− (β1 − 1)ψ(β1) (2.7)

h(Y2) = logB(α2, β2) + (α2 + β2 − 2)ψ(α2 + β2)

− (α2 − 1)ψ(α2)− (β2 − 1)ψ(β2) (2.8)

h(Y1, Y2) = logB(α1, α2, α3) + (α1 + α2 + α3 − 3)ψ(α1 + α2 + α3)

−
3∑
i=1

(αi − 1)ψ(αi) (2.9)

We can thus obtain the mutual information I(Y1, Y2) by substituting

h(Y1), h(Y2), and h(Y1, Y2) in (2.6).

The results of the eleven properties of the Dirichlet distribution above

are summarized in Table 2.1.
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Table 2.1: Properties of the Dirichlet distribution.

Notation Y k ∼ Dir(α1, . . . , αk)

Parameters α1, . . . , αk, αi > 0 for i = 1, 2, . . . , k

Support
Yi ≥ 0, Yk = 1 − Y1 − · · · − Yk−1 for i = 1, 2, . . . , k∑k

i=1 Yi = 1

Mean E[Yi] = αi
α0

, i = 1, 2, . . . , k

Variance V AR(Yi) = αi(α0−αi)
α2
0(α0+1)

, i = 1, 2, . . . , k

Covariance

matrix
COV (Yi, Yj) =

−αiαj
α2
0(α0+1)

, i, j = 1, 2, . . . , k and (i 6= j)

The

marginal

distribution

of Yi

Beta (αi,
∑k

j=1 αi − αi), i = 1, 2, . . . , k

The

two-

dimensional

joint

distribution

of (Yi, Yj)

Dir(αi, αj,
∑k

l=1 αi −αi − αj), 1 ≤ i < j ≤ k
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The

conditional

joint

distribution

of
[
Y
′
i

]k
i=s+1

Dir(αs+1, . . . , αk−1, αk), 0 < s < k

Product

moments

E(
∏k

i=1 Y
ni
i ) = Γ(α1+···+αk)

Γ(α1+n1+···+αk+nk)

∏k
i=1

Γ(αi+ni)
Γ(αi)

, for any

n1, . . . nk ≥ 0

Moment

generating

function

∑∞
m=0

1
m!

∑
m!

n1!n2!···nk!

∏k
i=1(ti)

ni Γ(α1+···+αk)
Γ(α1+n1+···+αk+nk)

∏k
i=1

Γ(αi+ni)
Γ(αi)

Differential

entropy
h(Y k) = logB(αk) + (α0− k)ψ(α0)−

∑k
i=1(αi− 1)ψ(αi)

Divergence log
Γ(

∑k
i=1 αi)∏k

i=1 Γ(αi)

∏k
i=1 Γ(βi)

Γ(
∑k

i=1 βi)
+
∑k
i=1(αi − βi) (ψ(αi)− ψ(α0))

2.5 Generating Dirichlet Distributed Ran-

dom Variables

In Section 2.1, we reviewed some methods to generate random variables

with a Gamma distribution. Also, random variables with a Beta distribution

can be generated from random variables with a Gamma distribution. Since

the Dirichlet distribution is a multi-dimensional Beta distribution, the stick-

breaking approach [21] can be used for generating Dirichlet random variables.
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The general idea is to consider a stick with length 1. First, break the

stick into two pieces using an appropriate Beta distribution, and keep one

piece of stick. Then, break the remaining stick into two pieces appropriately.

Repeat this process until there are k pieces of the stick. This stick-breaking

method generates a random vector (Y1, . . . , Yi, . . . , Yk), which is distributed

as a Dirichlet distribution Dir(α1, . . . , αk), where Yi is the length of the ith

piece of the original stick [21].

Mathematically, we generate a random vector (Y1, . . . , Yk) as follows:

• Simulate a random variate Xj ∼ Beta(αj,
∑k

i=j+1 αi), where j = 1, . . . ,

k−1. When j = 1, we have X1 ∼ Beta(α1,
∑k

i=2 αi). The first piece of

the stick has length 1 ·X1, such that the length of the remaining stick

is 1−X1. Also, set Y1 = X1.

• When j = 2, we have X2 ∼ Beta(α2,
∑k

i=3 αi). The second piece of the

stick has length (1−X1)X2, such that the length of the remaining stick

is (1−X1)−(1−X1)X2 = (1−X1)(1−X2). Also, set Y2 = (1−X1)X2.

...

• When j = k − 1, we have Xk−1 ∼ Beta(αk−1, αk). The (k − 1)th piece

of the stick has length Xk−1

∏k−2
j=1(1−Xj), such that the length of the

remaining stick is
∏k−1

j=1(1−Xj). Also, set Yk−1 = Xk−1

∏k−2
j=1(1−Xj).

Note that the kth piece of the stick has length
∏k−1

j=1(1−Xj) and set Yk =∏k−1
j=1(1−Xj). We can conclude that (Y1, . . . , Yk) ∼ Dir(α1, . . . , αk).

The stick-breaking approach can be used for generating a Dirichlet ran-

dom variable because of its ”neutrality” [21].
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Definition 2.5.1. Let Y k = (Y1, Y2, . . . , Yk) be a random vector, where Yi ≥

0 and
∑k

i=1 Yi = 1. Y k is completely neutral if Yj is independent of the

random vector 1
1−Yj Y

k
−j for each j = 1, 2, . . . , k, where Y k

−j is the vector Y k

with the jth component removed.

Lemma 2.5.1. Let Y k ∼ Dir(α1, . . . , αk). Then Y k exhibits the above neu-

trality property.

Proof. We will show the result for j = k. The proof is similar for

j = 1, . . . , k − 1. Let Y k ∼ Dir(α1, . . . , αk). Also let Qi = Yi
1−Yk

for

i = 1, 2, . . . , k − 2, Qk−1 = 1 −
∑k−2

i=1 Qi, and Qk = Yk. The transforma-

tion T of coordinates between (q1, q2, . . . , qk−2, qk) and (y1, y2, . . . , yk−2, yk)

is

(y1, y2, . . . , yk−2, yk) = (q1(1− qk), q2(1− qk), . . . , qk−2(1− qk), qk).

Hence, the Jacobian is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− qk 0 · · · 0 −q1

0 1− qk · · · 0 −q2

...
...

...
...

0 0 · · · 1− qk −qk−2

0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (1− qk)k−2.

The pdf of Y1, Y2, . . . , Yk−2, Yk is

f(y1, y2, . . . , yk−2, yk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

(
∏
i 6=k−1

yαi−1
i )(1−

∑
i 6=k−1

yi)
αk−1−1
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Then, the joint pdf of Q1, Q2, . . . , Qk is

f(q1, q2, . . . , qk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

(
k−2∏
i=1

(qi(1− qk))αi−1)qαk−1
k

(1−
k−2∑
i=1

qi(1− qk)− qk)αk−1−1 × (1− qk)k−2

=
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

(
k−2∏
i=1

(qi(1− qk))αi−1)qαk−1
k

((1− qk)qk−1)αk−1−1 × (1− qk)k−2

=
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

(
k−1∏
i=1

qαi−1
i )qαk−1

k (1− qk)
∑k−1
i=1 αi−1. (2.10)

From (2.10), we have

f(q1, q2, . . . , qk) =

[
Γ(
∑k

i=1 αi)

Γ(αk)Γ(
∑k−1

i=1 αi)
qαk−1
k (1− qk)

∑k−1
i=1 αi−1

]
[

Γ(
∑k−1

i=1 αi)∏k−1
i=1 Γ(αi)

k−1∏
i=1

qαi−1
i

]

= f1(qk)f2(q1, q2, . . . , qk−1), (2.11)

where

f1(qk) =
Γ(
∑k

i=1 αi)

Γ(αk)Γ(
∑k−1

i=1 αi)
qαk−1
k (1− qk)

∑k−1
i=1 αi−1 (2.12)

is the pdf of a Beta distribution with parameters αk and
∑k−1

i=1 αi, and

f2(q1, q2, . . . , qk−1) =
Γ(
∑k−1

i=1 αi)∏k−1
i=1 Γ(αi)

k−1∏
i=1

qαi−1
i . (2.13)

is the pdf of a Dirichlet distribution with parameters α1, . . . , αk−1.
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Note that f(q1, q2, . . . , qk) can be written as the product of f1(qk) and

f2(q1, q2, . . . , qk−1). Therefore, Qk is independent of (Q1, Q2, . . . , Qk−1). That

is Yk is independent of ( Y1
1−Yk

, Y2
1−Yk

, . . . , Yk−1

1−Yk
).

We observe that the distribution of Yk is Beta(αk,
∑k−1

i=1 αi). Also, the

distribution of ( Y1
1−Yk

, Y2
1−Yk

, . . . , Yk−1

1−Yk
) is Dir(α1, α2, . . . , αk−1). By replacing

k with j = 1, 2, . . . , k, we have

Yj ∼ Beta(αj,
∑
j 6=i

αj). (2.14)

Also,

f(q1, . . . , qj−1, qj+1, . . . , qk|qj) =
f(q1, q2, . . . , qk)

f1(qj)

= f2(q1, . . . , qj−1, qj+1, . . . , qk)

Hence we have

(Q1, . . . , Qj−1, Qj+1, . . . , Qk|Qj) ∼ Dir(αk−j),

which implies

(
Y k
−j

1− Yj
|Yj) ∼ Dir(αk−j)

and

(Y1, . . . , Yj−1, Yj+1, . . . , Yk|Yj) ∼ (1− Yj)Dir(αk−j), (2.15)

where αk−j is the vector αk with the jth component removed and j =

1, 2, . . . , k.
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The stick-breaking approach can be proved by using the neutrality prop-

erty, (2.14) and (2.15) derived above. In order to generate the random Dirich-

let vector (Y1, . . . , Yk) ∼ Dir(α1, . . . , αk), it is sufficient to first generate the

marginal distribution of Y1 with parameters (α1, . . . , αk), then generate the

conditional distribution of (Y2, Y3, . . . , Yk|Y1) with parameters (α1, . . . , αk).

We can apply this idea recursively to generate k pieces of the stick as fol-

lows:

• When j = 1: In the stick-breaking approach, we generate the length

of the first piece of stick Y1 ∼ Beta(α1,
∑k

i=2 αi). Then the length

of the remaining stick is 1 − Y1. According to (2.15), we have

(Y2, Y3, . . . , Yk|Y1) ∼ (1− Y1)Dir(α2, . . . , αk).

• When j = 2: Using the marginal distribution in (2.14), we have

(Y2|Y1) ∼ (1 − Y1)Beta(α2,
∑k

i=3 αi). Then the length of the re-

maining stick is (1 − Y1)(1 − Y2). According to (2.15), we have

(Y3, Y4, . . . , Yk|Y1, Y2) ∼ (1− Y1)(1− Y2)Dir(α3, . . . , αk).

• When 3 ≤ j ≤ k− 2: If j− 1 pieces of stick have been broken off, then

the length of the remaining stick is
∏j−1

i=1 (1− Yi). This is analogous to

first generate the marginal distribution of (Y1, Y2, . . . , Yj−1), then gen-

erate the conditional distribution of (Yj, Yj+1, . . . , Yk|Y1, Y2, . . . , Yj−1).

From the previous step in the recursion,

(Yj, Yj+1, . . . , Yk|Y1, Y2 . . . , Yj−1) ∼ (

j−1∏
i=1

(1− Yi))Dir(αj, αj+1, . . . , αk).
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According to (2.14), we have

(Yj|Y1, Y2 . . . , Yj−1) ∼ (

j−1∏
i=1

(1− Yi))Beta(αj,
k∑

i=j+1

αi),

and from (2.15), we have

(Yj+1, Yj+2, . . . , Yk|Y1, Y2, . . . , Yj)

∼ (

j−1∏
i=1

(1− Yi))(1− Yj)Dir(αj+1, αj+2, . . . , αk),

which implies

(Yj+1, Yj+2, . . . , Yk|Y1, Y2, . . . , Yj)

∼ (

j∏
i=1

(1− Yi))Dir(αj+1, αj+2, . . . , αk).

• When j = k − 1, k: We have (Yk−1, Yk|Y1, . . . , Yk−2) ∼ (
∏k−2

i=1 (1 −

Yi))Dir(αk−1, αk). Therefore, we split the remainder of the stick

in to two pieces by generating (Yk−1|Y1, . . . , Yk−2) ∼ (
∏k−2

i=1 (1 −

Yi))Beta(αk−1, αk) and let Yk be the remainder.
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Chapter 3

The Dirichlet Distribution and

Exchangeability

In this chapter, we consider the concept of exchangeability and De-

Finetti’s theorem. The assumption of exchangeability has strong mathe-

matical implications. Bruno de Finetti (1931) showed that an exchangeable

binary sequence is a mixture of i.i.d. Bernoulli sequences. Hewitt and Savage

(1995) generalized De-Finetti’s theorem into the representation theorem. In

Chapter 2, we introduced how to generate random variables with a Dirichlet

distribution by using the stick-breaking approach. The next approach that

will be reviewed in this chapter is the Pólya urn method [31] [21] [10].

3.1 Exchangeability

Consider an experiment where we flip a coin 10 times. We have 9 heads

before we observe the 10th flip. From a subjective perspective, it is reason-
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able to assume that the next flip will show heads again. From an objective

perspective, the result of the 10th flip is dependent on the probability of get-

ting heads or tails. The idea of exchangeability is that we do not care about

the order of heads or tails, but about the number of heads or tails that we

have already observed.

Definition 3.1.1. [4] [9]

An infinite sequence {X1, X2, . . . } of random variables is exchangeable

if ∀n = 1, 2, . . .

X1, X2, . . . , Xn
d
= Xi1 , Xi2 , . . . , Xin ,

4

where {i1, i2, . . . , in} is any permutation of {1, 2, . . . , n}.

3.2 De-Finetti’s Theorem

Bruno de Finetti(1931) proved that an exchangeable binary sequence is

a mixture of i.i.d. Bernoulli sequences.

Theorem 3.2.1. [9] [33] A binary sequence {X1, X2, . . . } is exchangeable if

and only if there exists a distribution function F on [0, 1] such that for all

n ≥ 1

p(x1, . . . , xn) =

∫ 1

0

qsn(1− q)n−sndF (q),

where sn =
∑n

i=1 xi and p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn) is the

joint probability mass function of (X1, . . . , Xn).

4 This notation means that {X1, X2, . . . , Xn} and {Xi1 , Xi2 , . . . , Xin} have the same distri-
bution.
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Here F is the distribution function of the limiting frequency:

X̄∞ = lim
n→∞

∑
iXi

n
.

In other words, P (X̄∞ ≤ q) = F (q).

Conditioning on the unknown parameter q, {X1, X2, . . . } is an i.i.d.

sequence of Bernoulli random variables with parameter q. The joint sampling

distribution is obtained by conditioning on q, such that

P (X1 = x1, . . . , Xn = xn|q) =
n∏
i=1

p(xi|q) = qsn(1− q)n−sn ,

where the parameter q is assigned a prior distribution F (q). Since the joint

sampling distribution is a function of q, we refer to it as the likelihood func-

tion.

De-Finetti’s theorem originally focuses on an exchangeable sequence of

binary random variables. Now it is also valid for arbitrary random vari-

ables. Hewitt and Savage (1995) developed the representation theorem by

generalizing De-Finetti’s theorem.

Theorem 3.2.2. [39] Let (S ,A , µ) be a probability space. Also let (X ,B)

be a Borel space. Let Xn : S →X be measurable for each n. The sequence

{X1, X2, . . . } is exchangeable if and only if there is a random probability

measure P on (X ,B) such that, conditional on P = P , X1, X2, . . . are

i.i.d. with distribution P . Also, if the sequence is exchangeable, then the

distribution of P is unique, and Pn(B) converges to P(B) with probability 1

for each B ∈ B, where Pn is the empirical distribution of X1, . . . , Xn.
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Note that Pn(B) can be expressed as

Pn(B) =
1

n

n∑
i=1

IB(Xi), for every B ∈ B,

where IB is the indicator function of the set B.

3.3 Pólya Urn model

An urn model is a system of one or more urns containing various types

of objects. Those objects are normally represented as balls of different col-

ors. There are various rules and schemes for the urn model. Urn models

have many applications in different fields including information and com-

munication theory [2] [3] [5] and [42], image processing [7], economics [38]

and biology [38]. A typical Pólya urn model is an urn model with one urn

containing different colored balls with a replacement scheme. The following

discussion is based on [31] and [33].

3.3.1 Pólya Urn and Exchangeability

Consider an urn that initially has b black balls and w white balls. Let

Xn = 1 when the ball on the nth draw is black and let Xn = 0 when the

ball on the nth draw is white. Now we draw one ball randomly from the urn.

Next, we return the ball we drew with another ball that shares the same

color. Suppose we get one black ball in three draws. The probability of this
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event happening is

p(1, 0, 0) = p(1)p(0|1)p(0|0, 1) =
b

w + b

w

w + b+ 1

w + 1

w + b+ 2
,

p(0, 1, 0) = p(0)p(1|0)p(0|1, 0) =
w

w + b

b

w + b+ 1

w + 1

w + b+ 2
,

p(0, 0, 1) = p(0)P (0|0)p(1|0, 0) =
w

w + b

w + 1

w + b+ 1

b

w + b+ 2
,

p(1, 0, 0) = p(0, 1, 0) = p(0, 0, 1),

where b is the number of black balls initially contained in the urn and w is

the number of white balls initially contained in the urn.

Note that the probability is only dependent on the number of black balls.

Therefore, the probability of any finite sequence of events only depends on

observing the number of white or black balls. We can say that the constructed

binary sequence {X1, X2, . . . } from this Pólya urn model is exchangeable, but

not independent [31].

3.3.2 Pólya Urn and De-Finetti’s Theorem

By using De-Finetti’s theorem, we will show that the limiting distribu-

tion for the Pólya urn model is

X̄∞ ∼ Beta

(
b

b+ w
,

w

b+ w

)
,

34



where b is the number of black balls initially contained in the urn and w is the

number of white balls initially contained in the urn. Conditioning on X̄∞ = q,

X1, X2, . . . are independent and Bernoulli distributed with parameter q.

Let Xn = 1 when the ball on the nth draw is black and let Xn = 0 when

the ball on the nth draw is white. The probability of this event happening is

P (X1 = 1, X2 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0)

=
b(b+ 1) · · · (b+ k − 1)w(w + 1) · · · (w + n− k − 1)

(b+ w)(b+ w + 1) · · · (b+ w + n− 1)
.

Let
∑n

i=1Xi = k when we get a total of k black balls in n draws. The

probability of getting a total of k black balls in n draws is only dependent

on the number of black balls. Therefore, the probability of observing a total

of k black balls in n draws is

P (
n∑
i=1

Xi = k) =

(
n

k

)
b(b+ 1) · · · (b+ k − 1)w(w + 1) · · · (w + n− k − 1)

(b+ w)(b+ w + 1) · · · (b+ w + n− 1)

(1)
=

(
n

k

) Γ(b+k)
Γ(b)

Γ(w+n−k)
Γ(w)

Γ(b+w+n)
Γ(b+w)

=

(
n

k

) Γ(b+k)Γ(w+n−k)
Γ(b+w+n)

Γ(b)Γ(w)
Γ(b+w)

=

(
n

k

)
β(b+ k, w + n− k)

β(b, w)
, (3.1)

where β(b, w) = Γ(b)Γ(w)
Γ(b+w)

is the Beta function. In (1), we use the property of

the Gamma function

Γ(x+ 1) = xΓ(x).

We know that the probability of observing a total of k black balls in n
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draws conditioning on the parameter q is

P (
n∑
i=1

Xi = k|q) =

(
n

k

)
qk(1− q)n−k.

If the parameter q has a distribution function F (q), then

P (
n∑
i=1

Xi = k) =

∫ 1

0

P (X ′n = k|q)dF (q)

=

∫ 1

0

(
n

k

)
qk(1− q)n−kdF (q). (3.2)

Since (3.1) and (3.2) are equivalent, we obtain

∫ 1

0

qk(1− q)n−kdF (q) =
β(b+ k, w + n− k)

β(b, w)

(3)
=

∫ 1

0

qb+k−1(1− q)w+n−k−1

β(b, w)
dq

=

∫ 1

0

qk(1− q)n−k q
b−1(1− q)w−1

β(b, w)
dq.

Hence,

dF (q) =
qb−1(1− q)w−1

β(b, w)
dq.

In step (3), we have used the definition of the Beta function, β(x, y) =∫ 1

0
qx−1(1−q)y−1dq. Therefore, we can conclude that X̄∞ ∼ Beta

(
b

b+w
, w
b+w

)
.

3.4 Pólya urn and the Dirichlet distribution

Previously, we discussed a Pólya urn model with two different colored

balls. The constructed binary sequence {X1, X2, . . . } from this Pólya urn
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model is exchangeable. Also, De-Finetti’s theorem indicates that this ex-

changeable binary sequence is a mixture of independent and identically dis-

tributed (i.i.d.) Bernoulli sequences.

Now suppose there is an urn that contains k different colored balls.

Originally, there are αi balls of color i, i = 1, 2, . . . , k, and αi > 0. Here, the

value of αi could be any integer which is greater than zero. We draw one

ball randomly from the urn and we return the ball we drew with another ball

that shares the same color. Repeat this process indefinitely and generate a

sequence of balls with colors (X1, X2, . . . ). The proportion of different colored

balls in the urn will converge to the Dirichlet distribution Dir(α1, . . . , αk), as

n approaches infinity [21].

The probability of each draw can be shown by the following:

• Randomly draw a ball from the urn with color i. Let Xm be the ball

in mth draw.

• First draw: P (X1 = i) = αi∑k
i=1 αi

.

• Second draw: P (X2 = i|X1) = αi+δi(X1)

1+
∑k
i=1 αi

.

...

• mth draw: P (Xm = i|X1, . . . , Xm−1) =
αi+

∑m−1
j=1 δi(Xj)

m−1+
∑k
i=1 αi

.

Where δi(Xj) is the indicator function and δi(Xj) =


1, if Xj = i

0, if Xj 6= i

for i =

1, . . . , k, j = 1, . . . ,m− 1.

Let Yi be the total number of color i balls when the urn contains n balls.

Also let Yi
n

be the proportion of different colored balls for i = 1, 2, . . . , k. The
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random vector [Y1
n
, . . . , Yk

n
]

d→ Y k ∼ Dir(α1, . . . , αk) as n → ∞, where
d→

denotes convergence in distribution.

If we do not know the total number of ”colors” in the data beforehand,

then we need to extend the Pólya urn scheme from a fixed k colors to in-

finitely many colors. In reference [10], the Pólya urn scheme is extended to

a continuum of colors. After n draws , the distribution of colors converges

to a limiting discrete distribution µ∗ as n approaches infinity and µ∗ has a

Ferguson distribution with parameter µ.

The Ferguson distribution is described as follows [10]. Let X be a com-

plete separable metric space. Let µ be any finite positive measure on X .

Also, let µ∗ be a random probability measure on X . For every finite par-

tition (B1, . . . , Br) of X , if the vector [µ∗(B1), . . . , µ∗(Br)] has a Dirichlet

distribution with parameter µ(B1), . . . , µ(Br), then µ∗ has a Ferguson dis-

tribution with parameter µ. Note that when µ(Bi) = 0, µ∗(Bi) = 0 with

probability 1 [10].

Now we introduce the definition of a Pólya sequence. We say a sequence

{Xn, n ≥ 1} of random variables with values in X is a Pólya sequence with

parameter µ if

P (X1 ∈ B) = µ(B)/µ(X ), for every B ⊂X

and

P (Xn+1 ∈ B|X1, . . . , Xn) = µn(B)/µn(X ), for every B ⊂X ,

38



where µn = µ+
∑n

i=1 δ(Xi) and δ(x) denotes the unit measure concentrating

at x. For finite X , the sequence {Xn} represents the results of successive

draws from an urn where initially the urn has µ(x) balls of color x. Then

after each draw, the ball drawn is returned to the urn and one additional

ball of its same color is also placed within the urn. Note that, without the

restriction to finite X , for any function φ on X , the sequence {φ(Xn)} is a

Pólya sequence with parameter φµ, where φµ(A) = µφ ∈ A [10].

The connections between Pólya sequences and Ferguson distributions

with the following theorem are described in [10].

Theorem 3.4.1. Let {Xn} be a Pólya sequence with parameter µ. Then

(a) mn = µn
µn(X )

converges with probability 1 as n→∞ to a limiting discrete

measure µ∗,

(b) µ∗ has a Ferguson distribution with parameter µ and

(c) given µ∗, the variables X1, X2, . . . are independent with distribution µ∗.

This theorem states [mn(B1), . . . ,mn(Br)] converges to [µ∗(B1), . . . ,

µ∗(Br)] and [µ∗(B1), . . . , µ∗(Br)] has a Dirichlet distribution with parame-

ter µ(B1), . . . , µ(Br). Then µ∗ has a Ferguson distribution with parameter

µ.

3.5 Conjugate Prior for the Multinomial Dis-

tribution

The Bayesian approach provides decision making under uncertainty,

while the prior distribution gives additional information about uncertainty.
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Statistical inference can be made by using data and prior information. In the

Bayesian approach, incoming data is required to update one’s belief. How-

ever, the limit of a parametric model in the Bayesian approach is the fixed

size of parameters. In a non-parametric model, there are infinite-dimensional

parameter spaces, which can be adapted into complex models with large

amounts of data. The Dirichlet distribution is a popular conjugate prior for

the Multinomial distribution.

The Multinomial distribution is a multivariate generalization of the bi-

nomial distribution. The probability mass function is given by

f(z1, . . . , zk|yk = (y1, y2, . . . , yk)) =
n!

z1!z2! · · · zk!

k∏
i=1

yzii ,

where zi ∈ {0, 1, . . . , n}, i = 1, . . . , k, zk = n − (z1 + z2 + · · · + zk−1) and yi

is the probability parameter, i = 1, . . . , k.[21].

The Dirichlet distribution is a conjugate prior distribution for the Multi-

nomial distribution. Note that if the posterior distribution has the same fam-

ily of distribution as the prior distribution, we say that this prior distribution

is a conjugate prior.

Lemma 3.5.1. If a random vector Y k = (Y1, Y2, . . . , Yk) has a Dirichlet dis-

tribution Dir(α1, . . . , αk) and (Zk|Y k) has a Multinomial distribution, where

Zk = (Z1, Z2, . . . , Zk). Then the joint posterior (Y k|Zk) has a Dirichlet dis-

tribution Dir(α1 + z1, . . . , αk + zk) [21].

Proof. Let f(yk) and f(yk|zk) be the pdf of the prior distribution and the

posterior distribution respectively. By using the Baye’s rule, the posterior
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distribution is

f(yk|zk) ∝ f(zk|yk)f(yk)

=

(
n!

z1!z2! · · · zk!

k∏
i=1

yzii

)(
Γ(α1 + · · ·+ αk)∏k

i=1 Γ(αi)

k∏
i=1

yαi−1
i

)
(3.3)

∝
k∏
i=1

yαi+zi−1
i ∼ Dir(α1 + z1, . . . , αk + zk). (3.4)

Therefore, the posterior distribution f(yk|zk) is also a Dirichlet distribution.

Note that ∝ is the proportional symbol. Given n!
z1!z2!···zk!

and Γ(α1+···+αk)∏k
i=1 Γ(αi)

are both constant, (3.3) is proportional to (3.4).

In Bayesian analysis, the Dirichlet distribution can be used as a prior

distribution due to its conjugacy. We will review the generalized Dirichlet

distribution which is also the conjugate prior distribution for the Multinomial

distribution.

Definition 3.5.1. [41] Let Xk = (X1, . . . , Xk) be a random vector that has

the generalized Dirichlet distribution GD(α1, α2, . . . , αk; β1, β2, . . . , βk) with

the density function

f(xk) =
k∏
i=1

1

B(αi, βi)
xαi−1
i (1− x1 − · · · − xi)γi ,

where αi > 0, βi > 0, γi = βi − αi+1 − βi+1 for i = 1, 2, . . . , k − 1 and

γk = βk − 1. Also, X1 +X2 + · · ·+Xk ≤ 1 and Xj ≥ 0 for j = 1, 2, . . . , k.

Note that if we set γ1 = γ2 = · · · = γk−1 = 0, we can obtain the

density of a Dirichlet distribution. In [14], the derivation and formulae for
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E(Xi), V AR(Xi) and COV (Xr, Xs) are shown. They are summarized as

follows:

• E[Xi] =
(∏i−1

j=1
βj

αj+βj

)
αi

αi+βi
, i = 1, 2, . . . , k.

• V AR(Xi) = E[Xi]{ αi+1
αi+βi+1

∏i−1
j=1

βj+1

αj+βj+1
− E[Xi]}, i = 1, 2, . . . , k.

• COV (Xr, Xs) = E[Xs]{ αr
αr+βr+1

∏r−1
j=1

βj+1

αj+βj+1
− E[Xr]}, r = 1, 2, . . . ,

k − 1, and s = r + 1, . . . , k.

Lemma 3.5.2. Suppose the random vector Xk = (X1, X2, . . . , Xk) has

a generalized Dirichlet distribution GD(α1, α2, . . . , αk; β1, β2, . . . , βk) and

(Zk+1|Xk) has a Multinomial distribution, where Zk+1 = (Z1, Z2, . . . , Zk+1),

Zj = zj for j = 1, 2, . . . , k + 1, and zk+1 = n − z1 − z2 − · · · − zk.

Then, the joint posterior (Xk|Zk+1) has a generalized Dirichlet distribution

GD(α′1, α
′
2, . . . , α

′
k; β

′
1, β

′
2, . . . , β

′
k), where α′j = αj + zj and β′j = βj + zj+1 +

zj+2 + · · ·+ zk+1 for j = 1, 2, . . . , k[41].

Proof. Let f(xk) and f(xk|zk+1) be the pdf of the prior distribution and

the posterior distribution respectively. By using Bayes’ rule, the posterior

distribution is

f(xk|zk+1) ∝ f(zk+1|xk)f(xk)

= x
(α1+z1)−1
1 x

(α2+z2)−1
2 · · ·x(αk+zk)−1

k

× (1− x1)(β1+z2+···+zk+1)−(α2+z2)−(β2+z3+···+zk+1)

× (1− x1 − x2)(β2+z3+···+zk+1)−(α3+z3)−(β3+z4+···+zk+1)

· · · (1− x1 − · · · − xk)(βk+zk+1)−1.
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Let α′j = αj + zj and β′j = βj + zj+1 + zj+2 + · · · + zk+1 for j = 1, 2, . . . , k.

So, the posterior density of (Xk|Zk+1) will be

f(xk|zk+1) ∝ xα
′
1−1

1 x
α′2−1
2 · · ·xα

′
k−1

k

× (1− x1)β
′
1−α′2−β′2(1− x1 − x2)β

′
2−α′3−β′3

· · · (1− x1 − · · · − xk)β
′
k−1

=
k∏
j=1

x
α′j−1

i (1− x1 − · · · − xi)γ
′
j ,

where γ′j = β′j − α′j+1 − β′j+1 for j = 1, 2, . . . , k − 1 and γ′k = β′k − 1.

Therefore, the posterior distribution f(xk|zk+1) is also a generalized Dirichlet

distribution.

We have shown that the generalized Dirichlet distribution and the

Dirichlet distribution can both be the conjugate prior of the Multinomial

distribution. In [28], applications of the Dirichlet distribution to forensic

match probabilities are discussed. If data from several distinct populations

are available, a Dirichlet conjugate prior can be used for the allele frequency

estimation in each of the separate populations.
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Chapter 4

Application of the Dirichlet

Distribution

Machine learning is an area of study that focuses on the research and

creation of computer programs that teach themselves and adapt to new data.

Furthermore, machine learning is a cross-section of statistics, computer sci-

ence, engineering and many other fields. Supervised learning and unsuper-

vised learning are two branches of machine learning. In supervised learning,

the machine receives an input and is given a corresponding output. The goal

is to predict the correct outcome given new information. In unsupervised

learning, the machine receives input measures without outcome measures.

The goal is to find patterns within the input measures. Cluster analysis,

principal component analysis, and independent component analysis are clas-

sical examples of unsupervised learning. Techniques in unsupervised learning

are detailed in [22] and [20].

Finite mixtures are statistical models with a variety of applications for
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multivariate data such as pattern recognition, computer vision, and image

analysis. Finite mixture models can be used to model data from several pop-

ulations with varying proportions. Also, finite mixture models can demon-

strate a process for unsupervised learning such as clustering, as well as repre-

sent arbitrarily complex probability functions. Two important issues in finite

mixture models are determining the appropriate number of components in a

mixture and estimating the parameters of the component of a mixture. Max-

imum likelihood (ML) estimates of the mixture parameters can be obtained

by the expectation-maximization (EM) algorithm [19]. The following discus-

sion is a summary of a Dirichlet mixture model and its application based on

[12].

4.1 Dirichlet Mixture

There are various research papers focused on the unsupervised learning

of finite mixture models with respect to the Dirichlet distribution. A finite

generalized Dirichlet distribution mixture model is used to solve the problem

of high-dimensional unsupervised learning [11]. Also, the use of a hybrid

stochastic expectation maximization algorithm in estimating the parameters

of the generalized Dirichlet distribution is introduced in [11]. Unsupervised

learning of finite generalized Dirichlet mixture models for data clustering and

feature weighting is also described in [26]. In [43], a recursive algorithm is

introduced to select the number of components and estimate the parameters

of components in finite mixture models. The Dirichelt prior is used in the

solution of the Minimum Message Length model selection criterion. An un-
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supervised learning method for human action categories is presented in [35].

Given a video sequence with multiple motions, their algorithm can recog-

nize and localize multiple actions. The unsupervised learning of topic-based

clusters from text documents is discussed in [8]. Three batch topic models

such as LDA, Dirichlet Compound Multinomial and von-Mises Fisher are

discussed in document clustering.

In this chapter, we review an unsupervised learning algorithm for a

finite mixture model with multivariate data. This mixture model is based

specifically on the Dirichlet distribution [12].

Let Xk = (X1, X2, . . . , Xk) be a random vector with a Dirichlet dis-

tribution Dir(αk), where αk = [α1, α2, . . . , αk]. Recall that the pdf of the

Dirichlet distribution is

p(xk) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

xαi−1
i .

Note that α0 =
∑k

i=1 αi, xi > 0, x1 + · · ·+ xk−1 < 1 and xk = 1− x1− · · · −

xk−1.

The pdf of a Dirichlet mixture with m components is defined as

p(xk|Θ) =
m∑
j=1

p(xk|Θj)p(j), (4.1)

where p(xk|Θj) is the pdf of the Dirichlet distribution of the jth component

for j = 1, 2, . . . ,m. Denote Θj = αkj as the set of parameters of the jth

component for j = 1, 2, . . . ,m and Θ is the complete set of parameters of the
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mixture model

Θ = {αk1, αk2, . . . , αkm, p(1), p(2), . . . , p(m)}.

Also, p(1), p(2), . . . , p(m) are the mixing probabilities that satisfy

p(j) ≥ 0 and
m∑
j=1

p(j) = 1, j = 1, 2, . . . ,m.

4.2 Maximum Likelihood Estimation

The most common method to estimate the parameters of a mixture

model is ML estimation. The expectation maximization (EM) algorithm is

an iterative method used in finding ML estimates of parameters. In [16], the

EM algorithm was first proposed for estimating the ML estimator (MLE)

of stochastic models. A drawback of the EM algorithm is the number of

components is required to specify each time. We can use some criterion

functions to overcome this problem. Akaike information criterion (AIC) [1],

Schwartz’s Bayesian information criterion (BIC) [1] and minimum description

length (MDL) [24] are three criteria used in [12]. The ML estimation method

concerns choosing parameters to maximize the joint density function of the

sample (likelihood function). Therefore, we consider

max
Θ

p(xk|Θ)

with constraints
∑m

j=1 p(j) = 1 and p(j) > 0 for j = 1, 2, . . . ,m. We can

consider p(j) as prior probabilities under these constraints.
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Now suppose we have a sample that contains n random vectors Xk
i ,

which are i.i.d., i = 1, . . . , n. We maximize the following function with

respect to Θ and Λ

Φ(xk,Θ,Λ) =
n∑
i=1

ln(
m∑
j=1

p(xki |Θj)p(j))

+ Λ(1−
m∑
j=1

p(j))

+ µ
m∑
j=1

p(j)ln(p(j)). (4.2)

The first term of (4.2) is the log-likelihood function. Λ is the Lagrange

multiplier in the second term. In the last term of (4.2) we use an entropy-

based criterion [29]. Also, µ is the ratio of the first term to the last term in

(4.2) of each iteration t [12]

µ(t) =

∑n
i=1 ln(

∑m
j=1 p

(t−1)(xki |Θj)p
(t−1)(j))∑m

j=1 p
(t−1)(j)ln(p(t−1)(j))

. (4.3)

In order to optimize (4.2), we need to solve the following equations:

∂

∂Θ
Φ(xk,Θ,Λ) = 0 (4.4)

∂

∂Λ
Φ(xk,Θ,Λ) = 0 (4.5)

It is shown in [12] that the estimator of the prior probability p(j) is

p(j)new =

∑n
i=1 p

old(j|xki ,Θj) + µ[p(j)old(1 + ln p(j)old)]

n+ µ
∑m

j=1 p(j)
old(1 + ln p(j)old)

, j = 1, 2, . . . ,m.

(4.6)
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Note that µ is defined by (4.3) and p(j|xki ,Θj) is the a posteriori probability

where

p(j|xki ,Θj) =
p(xki ,Θj)p(j)

p(xki ,Θ)
, i = 1, . . . , n, j = 1, 2, . . . ,m.

Now we want to estimate the parameters αkj , j = 1, 2, . . . ,m. In [12],

the Fisher scoring method [30] is used to find these estimates. Denote αjl as

one element of the parameter vector αkj for each component j, l = 1, . . . , k,

j = 1, . . . ,m. The derivative of Φ(xk,Θ,Λ) with respect to αjl is

∂

∂αjl
Φ(xk,Θ,Λ) =

n∑
i=1

p(j|xki , αkj )(ln xil)

+ [ψ(α0j )− ψ(αjl)]
n∑
i=1

p(j|xki , αkj ),

l = 1, . . . , k,

j = 1, . . . ,m, (4.7)

where ψ(·) is the Digamma function. However, αjl can become negative

during iterations. In order to keep αjl strictly positive, the author of [12]

sets αjl = eβjl . βjl is any real number. Then, the derivative of Φ(xk,Θ,Λ)

with respect to βjl is

∂

∂βjl
Φ(xk,Θ,Λ) = αjl[

n∑
i=1

p(j|xki , αkj )(ln xil)

+ [ψ(α0j )− ψ(αjl)]

n∑
i=1

p(j|xki , αkj )],

l = 1, . . . , k,

j = 1, . . . ,m. (4.8)
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By using the iterative scheme of the Fisher scoring method, we obtain


β̂jl
...

β̂jk


new

=


β̂jl
...

β̂jk


old

+


V AR(β̂jl) · · · COV (β̂jl, β̂jk)

...
. . .

...

COV (β̂jk, β̂j1) · · · V AR(β̂jk)


old

×


∂

∂β̂jl
Φ(xk,Θ,Λ)

...

∂

∂β̂jk
Φ(xk,Θ,Λ)


old

, j = 1, . . . ,m. (4.9)

Note that the variance-covariance matrix is obtained by the inverse of the

Fisher information matrix I and

I = −E
[

∂2

∂βjl1∂βjl2
Φ(xk,Θ,Λ)

]
.

4.3 Initialization Algorithm and Dirichlet

Mixture Estimation Algorithm

Our goal is to estimate the parameters of a Dirichlet mixture model.

Reference [12] presents an algorithm of initializing the parameters and a

complete estimation algorithm. The fuzzy C means method [18] and method

of moments are used in the initialization algorithm. For each component j
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(j = 1, . . . ,m), each element of the vector of parameters αkj is defined by

αjl =
(x′11 − x′21)x′1l
x′21 − (x′11)2

, l = 1, . . . , k − 1 (4.10)

and

αjk =
(x′11 − x′21)(1−

∑k−1
l=1 x

′
1l)

x′21 − (x′11)2
. (4.11)

Note that

x′1l =
1

n

n∑
i=1

xil,

x′2l =
1

n

n∑
i=1

x2
il, l = 1, . . . , k, i = 1, . . . , k

and xil is one element of the vector xki which is obtained from the sample

data.

Therefore, the Initialization Algorithm [12] is as follows:

1. Obtain the elements, mean and covariance matrix of each component

j by using the fuzzy C means method, j = 1, . . . ,m.

2. Obtain the vector of parameters αkj of each component j by using

method of moments.

3. Assign the data to clusters.

4. Update p(j) with p(j) = number of elements in cluster j
n

.

This initialization algorithm is constructed for large databases. It is only

feasible to apply the fuzzy C means method and method of moments once

for small data sets. Next, reference [12] introduces the Dirichlet Mixture
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Estimation Algorithm for estimating the parameters of a Dirichlet mix-

ture:

1. Input k-dimensional data xki , i = 1, . . . , n. Also, set the number of

clusters to m.

2. Use the Initialization Algorithm.

3. Update αkj by using equation (4.9), j = 1, . . . ,m.

4. Update p(j) by using equation (4.6), j = 1, . . . ,m.

5. Discard component j if p(j) < ε, go to step 3.

6. Terminate the algorithm if the convergence test is passed, else go to

step 3.

Reference [13] provides a statistical method for the test of convergence when

the sample size is sufficiently large. Consider the test statistic S below:

S =

(
∂

∂β̂jl
Φ(xk,Θ,Λ) · · · ∂

∂β̂jk
Φ(xk,Θ,Λ)

)

+


V AR(β̂jl) · · · COV (β̂jl, β̂jk)

...
. . .

...

COV (β̂jk, β̂j1) · · · V AR(β̂jk)



×


∂

∂β̂jl
Φ(xk,Θ,Λ)

...

∂

∂β̂jk
Φ(xk,Θ,Λ)

 , j = 1, . . . ,m. (4.12)

S can be shown is Chi-square distributed with k degrees of freedom. The

convergence test is passed when S is smaller than χ2
k(v) for a fixed v.
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4.4 Experimental Results

We have previously reviewed the algorithm to estimate parameters of

Dirichlet mixtures. Next, we will discuss three evaluation procedures to test

the performance of the Dirichlet Mixture Estimation Algorithm.

A non-contextual evaluation is discussed first in [12]. Non-contextual

evaluation focuses on the estimation of artificial histograms. First, consider

an artificial Dirichlet mixture defined as

p(xi) =
m∑
j=1

Γ(αj1 + αj2)

Γ(αj1)Γ(αj2)
x
αj1−1
i (1− xi)αj2−1, (4.13)

where i = 1, . . . , n. We can generate a histogram which contains n data

points from this artificial Dirichlet mixture, then apply the data points to

the Dirichlet Mixture Estimation Algorithm. Thus, we can obtain the es-

timated parameters of the Dirichlet mixture. There are three histograms

generated in [12] (see Figure 4.1,4.2 and 4.3). We can evaluate the algorithm

by checking the bias between the real parameters and the estimated parame-

ters of each histogram. This results are shown in Figure 4.4 (Tables I, II, and

III) which is from [12] and we see that the algorithm gives good estimates

of the parameters. Note that the sample size of the first, second and third

artificial histogram is 100, 255 and 255 respectively. Also, the authors in [12]

found the exact number of components by taking M = 5 and applied the

three criteria (AIC, BIC and MDL).

The second validation is a contextual evaluation. This contextual eval-

uation focuses on the summarization of image databases. Summarization
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Figure 4.1: The first artificial histogram in [12]

Figure 4.2: The second artificial histogram in [12]
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Figure 4.3: The third artificial histogram in [12]

restricts a smaller domain of the database when people search for similar

images. Therefore, summarization of image databases makes the task of re-

trieval more efficient. Mixture decomposition can be used to find natural

groupings of images and choose the most representative image to show each

group. In particular, the authors in [12] extracted appropriate features from

images and also partition the feature space into regions. Summarization is

accomplished by identifying the homogeneous regions in the feature space.

A database with 600 images (size 128 × 96 pixels) are used in [12]. Colors

are chosen as a feature and pixels are projected on the 3D HSI (H = hue,

S = saturation and I = intensity) space to determine the characteristic vec-

tor of each image. Thus, a 3D color histogram is obtained for each image.

Furthermore, an 8D feature vector is obtained from the 3D color histogram
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Figure 4.4: Parameters estimation results of three histograms from [12]

in [12]. The method to obtain 8D vectors [27] is subdividing the H, S and

I axes into 2 equal intervals. Therefore, a 8D feature vector can represent

each image.
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The authors in [12] apply the algorithm and three criteria (AIC, BIC

and MDL) to the feature vectors and determine the number of classes (see

Figure 4.5). The number of classes is chosen by the smallest value of three

criteria. There are 5 classes of 600 images, which is consistent with a human

subject summarization result. A confusion matrix is created to evaluate the

performance of the Dirichlet Mixture Estimation Algorithm. Cell (class i,

class j) in this confusion matrix represents the number of images that are

classified as class j while these images are from class i. The number of

misclassified images is counted by comparing the summarization result using

the Dirichlet Mixture Estimation Algorithm with the one generated by the

human subject [12]. The number of misclassifications is 40 and the accuracy

of this classification is 560
600

= 93.33% (see Figure 4.6 ).

The third validation is also a contextual evaluation. This contextual

evaluation focuses on detecting human skin regions in color images. Reference

[12] states that the major difference between different skin colors is intensity

not color itself. Chromatic colors (pure colors in the absence of luminance)

are used to represent color images. It is defined as below:

r1 =
r

r + g + b
, g1 =

g

r + g + b
, b1 =

b

r + g + b
, (4.14)

where r, g and b represents red, green and blue. Consider a training set

containing more than six hundred images. Each image contains a different

human skin color. There are 10867932 skin color pixels used to build a skin

color model [12]. Each pixel consists of three values (r1, g1, b1). Now given

an image, we want to detect the skin region of the image. In order to obtain
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Figure 4.5: Number of classes found by the three criteria: (a) AIC, (b) MDL
and (c) BIC from [12]

Figure 4.6: Confusion matrix for the Dirichlet mixture from reference [12]
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homogeneous regions, we need to segment the image and extract features.

If the probability measure of a pixel is above a threshold, then that pixel is

classified as a certain skin color. In this application, a region is recognized

as a skin area if more than 75% of pixels in that region are classified as skin

color. Results of skin detection by using a mixture of Dirichlet distributions

and a mixture of Gaussian distributions are shown in [12] (see figure 4.7,4.8

and 4.9). To compare which mixture model is more accurate in detecting

skin area, we notice that figure 4.9 (skin area extracted using a Dirichlet

mixture) contains less non-skin area than figure 4.8 (skin area extracted

using a Gaussian mixture).

Figure 4.7: Original image in [12]
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Figure 4.8: Skin area extracted using a Gaussian mixture in [12]

Figure 4.9: Skin area extracted using a Dirichlet mixture in [12]
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this report, we have presented the definition and properties of the Dirichlet

distribution. These properties include the derivation of information-theoretic

quantities, such as differential entropy, divergence and mutual information,

for the Dirichlet distribution. The stick-breaking approach and the Pólya

urn method are discussed for generating random variables with a Dirich-

let distribution. The notion of exchangeability is introduced and the De-

Finetti’s theorem, stating that an exchangeable binary sequence is a mixture

of i.i.d Bernoulli sequences is examined. We have also discussed the Pólya

Urn model with two different color balls, a fixed number of color balls and

infinitely many color balls. Furthermore, we have shown that the Dirich-

let distribution and the generalized Dirichlet distribution can be used as a

prior distribution due to its conjugacy property. Moreover, we have dis-

cussed one application of the Dirichlet distribution based on [12]. We have

61



described an unsupervised learning algorithm for a Dirichlet mixture model

with multivariate data. The Initialization and Dirichlet Mixture Estimation

Algorithms of [12] are reviewed for estimating the parameters of a Dirichlet

mixture. Three experimental results of [12] show that the Dirichlet mixture

excels at modeling data.

5.2 Future Work

Future work may consider the use of the Bayesian approach to estimate

parameters of a Dirichlet mixture model as seen in Chapter 4. Also, we can

consider the use of some Dirichlet related distributions to model multivariate

data, such as the nested Dirichlet distribution and the Dirichlet-Multinomial

distribution.
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