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Abstract

Lossless data compression through exploiting redundancy in a sequence of symbols is

a well-studied field in computer science and information theory. One way to achieve

compression is to statistically model the data and estimate model parameters. In

practice, most general purpose data compression algorithms model the data as sta-

tionary sequences of 8-bit symbols. While this model fits very well the currently used

computer architectures and the vast majority of information representation standards,

other models may have both computational and information theoretic merits in being

more efficient in implementation or fitting some data closer. In addition, compression

algorithms based on the 8 bit symbol model perform very poorly on data represented

by binary sequences not aligned with byte boundaries either because the fixed symbol

length is not a multiple of 8 bits (e.g. DNA sequences) or because the symbols of the

source are encoded into bit sequences of variable length.

Throughout this thesis, we assume that the source alphabet consists of blocks

of equal size of elementary symbols (typically bits), and address the impact of this

block size on lossless compression algorithms in general and in the context of so-

called block-sorting compression algorithms in particular. These algorithms are quite

popular both in theory and in practice and are the subjects of intensive research with

many interesting results in recent years.

We show that compression on the bit level is tolerant to sources that are not

aligned to byte boundaries, while performing reasonably well for byte-aligned sources.
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More generally, we prove upper bounds on the average codelength redundancy result-

ing from not taking block alignment into account when modeling the source for com-

pression. An extensive information-theoretic analysis and experimental evaluation is

presented. We address both the information theoretic and algorithmic issues of doing

lossless compression on small alphabets with an emphasis on the binary case.

We also develop and analyze a simple and efficient algorithm that can be used for

block sorting, where the length of the input alphabet symbols (as measured in bits) is

a parameter. The asymptotic performance of our algorithm achieves (up to a constant

factor) the lower bound on running time determined by the computational complexity

of the problem of suffix sorting on such alphabets, while its simplicity matches that of

the simplest alternatives. The data structure that it is based on — the suffix tree —

has many uses in string processing in general and lossless compression in particular

beyond block sorting.
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Notation

A Discrete finite alphabet. A set of finitely many symbols.

An Set of all possible strings of n symbols from A.

A∗ Set of all possible finite strings from A.

a, b, ai, bi Binary symbols, elements of {0, 1}.

aj
i Binary string. Shorthand for ai, ai+1, . . . , aj.

a∞0 Infinite binary sequence: a0, a1, a2, . . .

D(X‖Y ) Relative entropy between random variables X and Y . See (2.18).

D̄(X∞
0 ‖Y ∞

0 ) Relative entropy rate between random processes X∞
0 and Y ∞

0 . See (2.22).

H(X) Entropy of random variable X. See (2.2).

H(X|Y ) Conditional entropy of r. v. X given r. v. Y . See (2.3).

H̄(X∞
0 ) Entropy rate of X∞

0 . See (2.5).

L(X) Average encoded length of X. See (2.10).

L̄(X∞
0 ) Rate of encoding, average per-symbol code length. See (2.12).

N The set of non-negative integers.

N+ The set of positive integers.

O (f(n)) cn = O (f(n)) iff lim sup
n→∞

cn

f(n)
≤ const.

o (f(n)) cn = o (f(n)) iff lim
n→∞

cn

f(n)
= 0.

PX(x) Probability of X = x.

PX|Y (x|y) Conditional probability of X = x given Y = y.
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R(X) Redundancy of coding X. R(X) = L(X)−H(X). See (2.14).

R̄(X∞
0 ) Redundancy rate of X∞

0 . See (2.17).

R The set of real numbers.

R+ The set of positive real numbers.

X, Y Discrete random variables or their distributions (typically over A).

Xj
i Discrete random vector. Shorthand for Xi, Xi+1, . . . , Xj.

X∞
0 Discrete random process. Shorthand for X0, X1, X2, . . . .

x, y, xi, yi Symbols from A.

xj
i String of symbols from A. Shorthand for xi, xi+1, . . . , xj.

x,y Finite strings of symbols from A. x = x
|x|−1
0

|x| Length of (number of symbols in) x.

xy Concatenation of strings x and y.
−→
x|y Arc in a directed graph pointing from vertex x to vertex y.

x∞0 Infinite sequence of symbols from A. Shorthand for x0, x1, x2, . . . .
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Chapter 1

Introduction

Since the advent of the telegraph, the nineteenth century forerunner of digital elec-

tronic communication, it has always been a design goal to communicate as much

information as possible over a given period of time. If the signaling rate attains the

fastest possible over the communication channel in question, further improvement

can be achieved by carefully choosing the code used to represent the information

communicated. One of the earliest examples of a code designed with conciseness in

mind that has been (and still is) in wide use comes from the telegraph: the Morse

code. In this code, shorter codes correspond to more frequent letters (in the English

language), thus making the average length of messages (in English) shorter.

Designing codes minimizing the length of representation is the subject of data

compression. As long as we require identical reconstruction of the original message

from the concise representation, we speak of lossless data compression. Another field

of data compression is lossy data compression, where the reconstructed data is not

identical to the original but retains its salient characteristics. While the most dra-

matic reductions in transmission costs are achieved by lossy compression, it should be

noted that more often than not, lossy compression schemes depend on an underlying

lossless compression algorithm. In the vast majority of cases, the information deemed
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unimportant is first removed from the data which is then losslessly compressed.

Reducing the time (and thus the costs) of communication is not the only applica-

tion of data compression, however. Concise representation can also reduce the costs

of storing information by reducing the amount of symbols that need to be recorded.

In both of these applications, efficient compression entails significant economic ben-

efits. For historical reasons, data compression is usually considered a branch of the

broader field of communication theory. Since the foundations of information theory

have been laid out by Claude Elwood Shannon in his historic paper from 1948 [38],

data compression often uses Shannon’s terminology for communication. For exam-

ple, the information that needs to be compressed is said to come from a source and

compression itself is referred to as source coding.

In contemporary digital communication (and recording) the vast majority of in-

formation is represented by a sequence of ones and zeros (binary digits, bits) at every

stage of processing except, maybe, input and output. Hence, the symbols of the al-

phabets representing the information are either bits or blocks thereof. While most

results in information theory apply to other alphabets as well, the binary case remains

the most important and most studied one.

Also for historic reasons, the most common block size is eight bits (an octet or

byte), but not all digital information is represented as a sequence of bytes. Therefore,

it is interesting to analyze what happens if the assumption of byte alignment does

not hold and investigate the consequences of dropping this assumption.

This thesis is about the impact of block size on the performance of block-sorting

compression. The criteria by which we evaluate performance are the redundancy of

the source coding, which is the excess of the length of the encoded output over the

theoretical minimum, and the time and memory requirements under the standard

(RAM) model of computation.
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1.1 Contributions

The contributions of this thesis are as follows:

• We prove an explicit expression for the divergence rate between a block Markov

source (see Definition 2.4.2) and a higher-order Markov model. This expression

is a lower bound on the redundancy rate of a compression scheme approximating

the block Markov source with a higher order Markov model. In particular, we

show that the limit of this divergence rate is zero as the memory of the model

approaches infinity, and characterize the rate of convergence.

• For source codes that are strongly universal (see Definition 2.5.2) for higher

order Markov sources, we prove an upper bound on their actual redundancy

rate, when applied to block Markov sources. This result implies that strongly

universal codes for higher order Markov sources are universal for block Markov

sources as well.

• We generalize a popular data structure used in block sorting and other lossless

compression algorithms, the suffix tree (see Definition 2.10.2), for alphabets

consisting of blocks of equal size of elementary symbols. We prove that this

generalized data structure (the block suffix tree, Definition 5.2.1) can be con-

structed using time and memory proportional to the block size and the length

of the input.

• For the case when the source alphabet consists of blocks of bits, we present

an efficient representation and develop an algorithm (Algorithm 5.4.1) for the

construction of the block suffix tree using this representation, which compares

favorably with available alternatives in terms of simplicity and performance.
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1.2 Thesis Overview

The thesis is organized in the following manner:

In Chapter 2, we review the theoretical background in information theory and com-

puter science for our work.

First, we set up the information theoretic framework for discussing the problem

of source coding. Without proofs, we present fundamental results from the

literature concerning the limits of compression. Then we discuss the evaluation

of source codes. We review the most important source models and introduce

the concept of universal source coding. The information theoretic part of the

chapter is concluded by the description of arithmetic coding.

We continue by introducing block sorting compression and the Burrows-Wheeler

transformation. We briefly discuss different variations on this scheme that have

been published since the original paper by Burrows and Wheeler. The rest of

the chapter is dedicated to results concerning the suffix tree, which is a potent

tool for block sorting and has also other applications in string processing and

source coding.

In Chapter 3, an experimental evaluation of a simple binary block-sorting compres-

sor is presented. We describe in detail the experimental setup: the binary block

sorting and the subsequent modeling and encoding.

In the experiments themselves, we compare our compression algorithm to two

industry standard lossless compressors: bzip2, which is a block sorting com-

pressor operating on bytes and gzip, which is an LZ-77 implementation, also

on bytes. We use the Calgary compression corpus and its zero-order Huffman-

encoded version to compare the compression algorithms, as this way we can

compare sources with the same entropy one of which is aligned to byte bound-

aries while the other is not. We present the experimental results in a table.
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We observed that for sources not aligned to byte boundaries, our compression

algorithm consistently outperformed those operating on bytes, while providing

reasonable compression for byte-aligned inputs.

In Chapter 4, we analyze the above scenario from an information theoretic point of

view. For the sake of simplicity, we assume the source to be block Markov and

the source coder’s model to be higher order Markov on elementary symbols.

First, we find the source model that best approximates the source in the diver-

gence rate sense. The resulting minimum divergence rate has the operational

meaning of being the coding redundancy if a block-N Markov source is encoded

using the best source model from the set of order-m Markov models. We show

that as the model’s memory increases, the divergence rate converges to zero

exponentially fast.

Then we look at how strongly universal codes for higher order Markov sources

perform when applied to block Markov sources with an unknown distribution.

We prove an upper bound on the redundancy of such codes and discuss the

implications of our result.

In Chapter 5, we generalize the suffix tree on a fixed alphabet to a block suffix tree

on uniform blocks of arbitrary length. We prove that the block suffix tree can

be constructed in linear time in an on-line fashion using a generalized version of

Ukkonen’s algorithm and that it constitutes a representation of the suffix tree

on the larger alphabet of blocks.

We generalize the binary suffix tree representation used for the experiments in

Chapter 3 and derive a binary block suffix tree representation and describe an

algorithm to construct it, which compares favorably in terms of simplicity and

performance with available alternatives for suffix sorting on blocks of symbols.

5



In Chapter 6, we summarize and interpret our results in terms of design criteria for

lossless compression applications, revisit the experimental results in Chapter 3

with the hindsight of our later results and provide directions for possible future

work on the subject.
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Chapter 2

Literature Review and

Theoretical Background

In this chapter, the theoretical background of our work is reviewed. Basic concepts

and fundamental results from the literature are presented without proofs.

2.1 Entropy, Entropy Rate and

the Limits of Compression

In information theory, sources of information are modeled with (discrete) random pro-

cesses. In the discrete case, this means a sequence of random variables X0, X1, X2, . . . , Xi, . . .

(denoted henceforth by X∞
0 ) over some finite discrete alphabet A. Let PX(x) denote

the probability that the discrete random variable X equals x, and let Xj
i and xj

i , where

i ≤ j, denote XiXi+1 . . . Xj and xixi+1 . . . xj, respectively. Random processes must

satisfy the consistency conditions for any positive integer n ∈ N+ and xn−1
0 ∈ An:

PXn−1
0

(xn−1
0 ) =

∑
y∈A

PXn
0
(xn−1

0 y). (2.1)
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The Appendix of [11] provides a concise summary of process concepts.

Formally, a discrete random variable is a mapping X : Ω → A of the probability

space Ω onto the alphabet A. Similarly, a discrete random process X∞
0 : Ω → A∞

is a mapping of Ω onto infinite sequences of symbols from A, satisfying (2.1). The

distributions of random variables and processes are due to the probability measure P

defined over a sigma-algebra on the subsets of Ω.

Following Shannon [38], we introduce the notion of information-theoretic entropy:

Definition 2.1.1 (Entropy) For a discrete random variable X we define its entropy

as the negative expected value of the base 2 logarithm of the probability of the outcome:

H(X) = E [− log PX(X)] = −
∑
x∈A

PX(x) log PX(x) (2.2)

where log stands for base 2 logarithm.

Definition 2.1.2 (Conditional Entropy) For two random variables X and Y , their

conditional entropy is defined as the entropies of the conditional distributions of X

weighed by the probabilities of the conditions:

H(X | Y ) =
∑
y∈A

PY (y)H(X | Y = y) (2.3)

where

H(X | Y = y) = −
∑
x∈A

PX|Y (x | y) log PX|Y (x | y) (2.4)

Entropy and conditional entropy as defined above are expressed in bits.

Definition 2.1.3 (Entropy Rate) For the random process X∞
0 = X0, X1, . . . , its

entropy rate is defined as

H̄(X∞
0 ) = lim

n→∞

1

n
H

(
Xn−1

0

)
(2.5)
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if the limit exists.

Entropy rate is expressed in bits/symbol.

An alternative definition of the entropy rate is the limit of a symbol’s entropy

conditioned on all past symbols:

H̄ ′(X∞
0 ) = lim

n→∞
H

(
Xn | Xn−1

0

)
(2.6)

It can be shown [8, Theorem 4.2.1] that the limits in the two definitions in (2.5) and

(2.6) exist and are equal for stationary processes (see Definition 2.3.1). In particular, if

X∞
0 is a stationary order-n Markov process (see Section 2.3.3), where the distribution

of a symbol depends only on the previous n symbols, the entropy rate is as follows:

H̄(X∞
0 ) = H

(
Xi | X i−1

i−n

)
(2.7)

for any i > n.

The binary representation of sequences of source symbols is called a code. For-

mally, we treat the code as a sequence of functions

fn : An → {0, 1}∗, (2.8)

where n is a non-negative integer and {0, 1}∗ denotes the set of finite binary strings.

A set of binary strings is said to be uniquely decodable iff all finite concatenations of

its elements result in different binary strings. The code fn is uniquely decodable, if

the set {fn

(
xn−1

0

)
: xn−1

0 ∈ An} is uniquely decodable.

A binary string an
0 is said to be a prefix of another binary string bm

0 iff n ≤ m and

an
0 = bn

0 . Similarly, cn
0 is a suffix of bm

0 iff n ≤ m and bm
m−n = cn

0 .

A special class of uniquely decodable codes are the prefix codes (a.k.a. instanta-

neous codes), where no codeword is a prefix of another codeword and so the code-

9



words can be decoded immediately as their last bits become available. Interestingly,

the code length achievable by prefix codes is not worse than that of the best uniquely

decodable code.

It can be shown that the average code length in a uniquely decodable representa-

tion of a random variable cannot be shorter than the entropy of the random variable.

The proof hinges on the Kraft inequality, which states that all uniquely decodable

codes satisfy: ∑
x∈A

2−`(x) ≤ 1 (2.9)

where `(x) denotes the length of the codeword corresponding to symbol x. The

minimization of average code length

L(X) =
∑
x∈A

PX(x)`(x) (2.10)

constrained by (2.9) yields

L(X) ≥ H(X). (2.11)

Also, for any code where (2.9) is an equality, there exists a distribution for which the

code is optimal, that is L(X) = H(X). This distribution corresponding to the code

is PX(x) = 2−`(x) for all x ∈ A.

An immediate implication for independent, identically distributed (I.I.D.) sources

is that the average per symbol code length of uniquely decodable representations

is limited from below by the entropy rate of the source. This result can be easily

generalized to other classes of sources.

When dealing with sequences of source symbols, instead of the average code length,

we often use the average per-symbol code length, or the rate of encoding :

Definition 2.1.4 (Rate of Encoding) Given the sequence of uniquely decodable codes

10



{fn}

L̄(X∞
0 ) = lim

n→∞
n−1

∑
xn−1
0 ∈An

PXn−1
0

(xn−1
0 )

∣∣fn(xn−1
0 )

∣∣ (2.12)

where
∣∣fn(xn−1

0 )
∣∣ denotes the length of fn(xn−1

0 ) and PXn−1
0

(xn−1
0 ) denotes the proba-

bility that source X∞
0 emits xn−1

0 as the first n symbols of its output. Here we assume

that the limit exists.

For a given distribution of X, it is always possible to construct a code for which

L(X) ≤ H(X) + 1. Shannon already provides an example of such a code, which he

attributes to Fano. This code is the so-called Shannon-Fano code [8], where

`(x) = d− log PX(x)e for every x ∈ A. (2.13)

For a random process, if the individual symbols are encoded in an instantaneous

fashion, meaning that each symbol can be decoded as soon as the last bit in its

representation is received, we get an overhead of at most one bit per symbol. However,

by not requiring instantaneous decoding, we can “spread” this overhead over several

symbols by grouping them together for coding. There are several ways of achieving

this. For instance, the Shannon-Fano code for blocks of N symbols yields `(xN−1
0 ) =

d− log PXN−1
0

(xN−1
0 )e for every block xN−1

0 ∈ AN , providing for an overhead of at most

1 bit for N symbols.

In theory, a method called arithmetic coding [25] (see also [26] and Section 2.6)

can asymptotically always achieve compression to the entropy rate, given accurate

estimates of the conditional probabilities of the coming symbols. Arithmetic coding

is another example of spreading the coding overhead by encoding several symbols

together. In practice, however, the computational costs in buffer size and numerical

precision, both of which can grow without bounds, often render direct arithmetic

coding unfeasible. In these cases other methods should be devised for compression

that are computationally feasible and efficient. Yet, as illustrated by various codes
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only slightly exceeding the entropy rate of the source, the lion’s share of the problem

in data compression is the accurate estimation of the symbol probabilities — the

statistical modeling of the source. The next section deals with measuring the accuracy

of the modeling.

2.2 Redundancy, Relative Entropy,

Divergence Rate

The amount by which a code length exceeds the entropy (rate) of a source is called

the redundancy (rate) of that code with respect to the source. Equation (2.14) defines

the redundancy of encoding f1(X) of a single random variable X:

R(X) = L(X)−H(X) =
∑
x∈A

PX(x)`(x)−
∑
x∈A

PX(x) log
1

PX(x)
=

∑
x∈A

PX(x) log
PX(x)

2−`(x)
.

(2.14)

where `(x) = |f1(x)|

Similarly, one can define the redundancy of encoding a random vector of length n

using fn:

Definition 2.2.1 (Redundancy)

R(Xn−1
0 ) =

∑
xn−1
0 ∈An

PXn−1
0

(xn−1
0 ) log

PXn−1
0

(xn−1
0 )

2−|fn(xn−1
0 )|

. (2.15)

Definition 2.2.2 (Redundancy Rate) The redundancy rate of some code f for some

source X∞
0 is the limit of the per-symbol redundancies of the elements of sequence fn

as n approaches infinity. This equals the difference between the rate of encoding and

12



the entropy rate of the source (when the limits exist):

R̄(X∞
0 ) = lim

n→∞

1

n

 ∑
xn−1
0 ∈An

PXn−1
0

(xn−1
0 )`(xn−1

0 )−H
(
Xn−1

0

) (2.16)

= L̄(X∞
0 )− H̄(X∞

0 ). (2.17)

Definition 2.2.3 (Relative Entropy) For two random variables X and Y , one can

define

D (X ‖ Y ) =
∑
x∈A

PX(x) log
PX(x)

PY (x)
. (2.18)

This quantity is known as the relative entropy of X and Y or the Kullback-Leibler

distance between their distributions after the authors of the original paper [24] where

it was first introduced. The latter is denoted by D(PX‖PY ) and used interchangeably

with D(X‖Y ) throughout the thesis. It is not a proper distance measure between

the distributions of X and Y (e.g., it is not symmetric), but it retains a very im-

portant property of distance measures: It is non-negative and equals zero iff the two

distributions are equal.

If f1 satisfies Fano’s inequality (2.9) with an equality, then (2.14) and (2.18)

become the same expression by setting the distribution of Y so that PY (x) = 2−`(x).

In the general case, let us define the distribution of Y so that PY (x) = 2−`(x)/Q where

Q =
∑
x∈A

2−`(x). Clearly,

D (X ‖ Y ) = R(X) + log Q ≤ R(X), (2.19)

since Q ≤ 1 according to (2.9).

On the other hand, the Shannon-Fano code lengths l′(x) for the probability mass

function PY (x) satisfy both

l′(x) = d− log PY (x)e ≤ − log PY (x) + 1. (2.20)
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and l′(x) ≤ `(x) for every symbol x ∈ A. For this new, improved code, the redundancy

R′(X) satisfies

D (X ‖ Y ) ≤ R′(X) ≤ D (X ‖ Y ) + 1. (2.21)

Thus, we are justified to conclude that good codes can be well modeled by prob-

ability distributions and the redundancy of such codes is essentially given by the

relative entropy of the source and model distributions.

Similarly to the entropy rate as in (2.5), one can define the divergence rate (a.k.a.

relative entropy rate) of two sources as follows:

Definition 2.2.4 (Divergence Rate)

D̄ (X∞
0 ‖ Y ∞

0 ) = lim
n→∞

1

n
D

(
Xn−1

0 ‖ Y n−1
0

)
(2.22)

whenever the limit exists.

Redundancy is a natural measure of quality for codes designed for data compres-

sion. As explained above, the relative entropy of the source distribution and the

coding distribution (the one with the PMF PY (x)) is a good estimate of redundancy

for efficient codes that cannot be improved by assigning shorter codes to some sym-

bols without a penalty on others. If coding is performed on n-long blocks of symbols,

the per-symbol redundancy can be estimated to the precision of n−1 using the relative

entropy of the source and coding distributions.

2.3 Some Stationary Source Models

A source is called stationary if the joint distributions of the source symbols do not

change if all the indices are incremented by the same value. The formal definition is

the following:

14



Definition 2.3.1 (Stationary Process) The process X∞
0 is stationary if for any i, s, n ∈

N and xn−1
0 ∈ An

PXi+n−1
i

(xn−1
0 ) = PXi+s+n−1

i+s
(xn−1

0 ). (2.23)

A stationary source X∞
0 is called ergodic, iff it cannot be represented as a mixture

of two different stationary processes. Any stationary process can be represented as a

unique mixture of ergodic processes (by the so-called ergodic decomposition theorem).

Ergodic processes with a finite expected value are the broadest class for which the

strong law of large numbers holds [8, Section 15.7], as expressed by Birkhoff’s Ergodic

Theorem:

1

n

n−1∑
i=0

Xi → E[X0] (= E[X1] . . . ) with probability 1 as n→∞ (2.24)

2.3.1 Independent, Identically Distributed (I.I.D.) Source

This is the most important class of memoryless (independent) sources. In this model,

every symbol emitted by the source comes from the same distribution. This is the

only stationary memoryless source model.

Definition 2.3.2 (I.I.D. Source) A random sequence of symbols X∞
0 from A is an

I.I.D. source if X0, X1, . . . are independent and for any i, j ∈ N

PXi
(x) = PXj

(x) (2.25)

holds for any x ∈ A.

The entropy rate of an I.I.D. source is simply the entropy of the symbol distribu-

tion:

H̄ (X∞
0 ) = H (Xi) (2.26)

for any index i.
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2.3.2 Markov Source

In this model the source has a memory of one symbol. The successive symbols in this

source form an irreducible, homogeneous, stationary Markov chain.

Definition 2.3.3 (Markov Source) A random process X∞
0 is a stationary Markov

source iff

PXi|Xi−1
0

(
xi | xi−1

0

)
= PXi|Xi−1

(xi | xi−1) (2.27)

PXi+1|Xi
(x1 | x0) = PXj+1|Xj

(x1 | x0) (2.28)

PX0 (x0) = PXn (x0) (2.29)

for any i, j, n ∈ N and x0, x1, xi ∈ A.

It can be show that the entropy rate of a Markov source is given by

H̄ (X∞
0 ) = H (Xi+1 | Xi) =

∑
x∈A

PXi
(x) H (Xi+1 | Xi = x) . (2.30)

The I.I.D. source is a special case of the Markov source.

2.3.3 Order-n Markov Source

This stationary source has a finite memory. An order-n Markov source has a memory

of n symbols. In this case, the random vectors (Xi, Xi+1, . . . , Xi+n−1) where i =

0, 1, . . . , form a stationary Markov chain. As a consequence, for any i, j ∈ N, y ∈ A

and xn−1
0 ∈ An

PXi+n|Xi+n−1
i

(
y | xn−1

0

)
= PXj+n|Xj+n−1

j

(
y | xn−1

0

)
. (2.31)

Stationary order-n Markov sources are fully characterized by the conditional dis-

tributions of a symbol given all possible vectors of n preceding symbols. Alternatively,
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they can be characterized by the joint distribution of n + 1 subsequent symbols.

The entropy rate of a higher order Markov source is the linear combination of the

entropies of the transitional distributions weighed by the stationary probabilities of

the source states, as defined in (2.7):

H̄(X∞
0 ) =

∑
xn−1
0 ∈An

PXn−1
0

(xn−1
0 )H(Xn|xn−1

0 ) (2.32)

I.I.D. and Markov sources are special cases of this model, with order 0 and order 1,

respectively.

2.3.4 Tree Source

The tree source is an important special case of higher-order Markov sources. Let T

denote a finite set of strings of symbols from A so that for any sufficiently large value

of n for all xn
0 ∈ An+1 there is exactly one t(xn

0 ) ∈ T such that xn
n−|t(xn

0 )|+1 = t(xn
0 ).

This implies that if y ∈ T then y
|y|−1
i 6∈ T for i > 0. That is no element of T is a

suffix of any other element in T .

Definition 2.3.4 (Tree Source) A random process X∞
0 is a tree source if for any

given z ∈ A, xn
0 , y

n
0 ∈ An+1 and i, j ∈ N, t(xn

0 ) = t(yn
0 ) implies

PXi+n+1|Xi+n
i

(z|xn
0 ) = PXj+n+1|Xj+n

j
(z|yn

0 ). (2.33)

In other words, such a source is a special order n + 1 Markov source, where the

transitional probabilities are determined by the immediate past from T .

If the length of the longest string in T is m, then the tree source is an order

m Markov source. Note that since |T | can be much smaller than |A|m, the tree

source may require much fewer parameters for its definition, namely the transition

probabilities of a tree machine [40].
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Example: Consider a source emitting random words separated by whitespace char-

acters, where the words are drawn from a uniform distribution over a finite

dictionary. On the character level, this is a tree source, as its memory is no

longer than the longest word in the dictionary plus one symbol. Let us denote

the length of the longest word by n. The transitional distributions correspond-

ing to past vectors of n + 1 symbols that differ only before the last whitespace

are equal. Thus, in this example, T consists of the union all possible strings

of n + 1 symbols without whitespace and all possible strings of n + 1 or less

symbols where only the first symbol is a whitespace.

Examples of data that are well modeled by tree sources include written texts

in a natural language. Somewhat surprisingly, the empirical entropy of tree models

constructed from natural language texts is smaller if the text is considered in reversed

direction. We have not yet seen a satisfactory explanation to this finding, although

the observation has already been made in [6].

2.4 Block Sources

2.4.1 Block I.I.D. Sources

Definition 2.4.1 (Block I.I.D. Source) A sequence of random variables X0, X1, . . .

is a Block-N I.I.D. source, if for some positive integer N , the random vectors Yi =

(XiN , XiN+1, . . . , XiN+N−1) are independent and identically distributed.

Obviously, all block-N I.I.D. sources are also block-kN I.I.D. sources for all posi-

tive integer values of k. Therefore, all I.I.D. sources are block I.I.D. sources, but the

converse is not true.
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The entropy rate in the sense of (2.5) for a block-N I.I.D. source X∞
0 is

H̄(X∞
0 ) =

H̄(Y ∞
0 )

N
. (2.34)

2.4.2 Block Markov Sources

Markov models are traditionally the starting point of analyzing processes with mem-

ory. Hence, for the analysis of block sources with memory, it is instrumental to have

a better understanding of Markov sources over blocks of symbols.

Definition 2.4.2 (Block Markov Source) The sequence of random variables X0, X1, . . .

taking values in a finite alphabet A is a block-N Markov source, if for some positive

integer N the random sequence Y0, Y1, . . . forms a homogeneous, stationary Markov

chain, where Yi = X iN+N−1
iN for all i ∈ N.

One can also define higher order block Markov sources. It has to be mentioned,

however, that an order m Markov source over blocks of N symbols is also a block-

Nm Markov source, so most results carry over directly to higher order block Markov

sources. Also, higher order Markov sources are block-Markov sources, but the con-

verse is not true.

2.4.3 Using Block Models for Data Compression

For the purposes of data compression, grouping the symbols of the source into blocks

of uniform length may or may not be advantageous. Using the simplest example of

modeling an I.I.D. source with a block I.I.D. source, both cases can be illustrated.

In case of optimal coding and an I.I.D. source with a known distribution, the

lower bound on the expected code length is the same whether the coding is done on

the symbol level or the level of blocks of N symbols, namely the entropy rate of the

source. Moreover, one can actually gain from coding blocks rather than individual
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symbols by spreading the overhead over the blocks as explained in Section 2.1. The

average per-symbol code length for optimal codes on N -symbol blocks for an I.I.D.

source satisfies

L̄(X∞
0 ) ≤ 1

N
H(XN−1

0 ) +
1

N
, (2.35)

where 1
N

H(XN−1
0 ) = H(X0) = H̄(X∞

0 ). Thus, in this example, the redundancy rate

vanishes with 1
N

as N increases.

However, if the distribution is not known and we resort to estimating it using a

finite sample of n symbols coming from the source with the unknown distribution,

the picture is quite different.

In the following example, we estimate (“learn”) model parameters for two different

source models using a finite sample and subsequently code a sequence from the same

source that is independent of the “learning” sample. By doing the estimation on

blocks rather than individual symbols, one increases the cardinality k of the set over

which the distribution needs to be estimated from k = |A| to k′ = |A|N while at the

same time decreasing the sample to work from.

Example: Consider a binary I.I.D. (Bernoulli) source. A sample of 16 bits coming

from this source is quite usable for estimating the parameter of the underlying

Bernoulli distribution. If, however, we group these bits into two bytes, it be-

comes unfeasible to estimate the distribution of an I.I.D. source on bytes from

these two sample values.

Krichevsky shows [22] that for the best estimate (the one for which the bound on

redundancy converges to zero fastest as the sample length approaches infinity), the

worst case redundancy of a code constructed using this estimate has the following

sharp upper bound

R(X) ≤ log
Γ (n + k/2) Γ (1/2)

Γ (n + 1/2) Γ (k/2)
≤ k − 1

2
log n− log

Γ(k/2)

Γ(1/2)
+ O

(
n−1

)
, (2.36)
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where Γ denotes the usual gamma-function.

By inspecting (2.36), it is immediately obvious that blocking the symbols by N ,

which results in k′ = kN and n′ = n/N , affects the expected redundancy adversely,

especially when normalized by n for a per-symbol measure. In the above example

k = 2, n = 16 and N = 8, yielding k′ = 256 and n′ = 2 and an approximately fivefold

increase in the redundancy bound according to (2.36). Thus, using a more general

class of sources for estimating the model parameters does not come for free. The price

we pay is popularly known as data dilution: estimating more model parameters from

the same amount of data results in a less accurate estimate.

Depending on the source, it is well possible that for codes constructed by estimat-

ing the model parameters on a finite sequence, the redundancy achieved by an I.I.D.

source code will be smaller than that by a block code even if the block I.I.D. model

models the source more accurately in the asymptotic sense.

2.5 Universal Source Coding

As discussed in Section 2.2, sources with known distributions can be compressed to

within 1 bit of their entropy. In many cases, however, very little prior information

is available about the data to be compressed and one is compelled to use universal

(adaptive) data compression algorithms. Usually, we treat such processes as though

they were coming from a reasonably broad class of sources (e.g., one of those in-

troduced in the previous section). Section 5 in [11] gives a detailed overview of the

fundamental results on universal source coding.

Definition 2.5.1 (Universal Code) A sequence {fn} of uniquely decodable codes is

called a universal code with respect to a family of sources iff for any source X∞
0 in
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the family

lim
n→∞

n−1

 ∑
xn−1
0 ∈An

PXn−1
0

(
xn−1

0

) ∣∣fn(xn−1
0 )

∣∣−H
(
Xn−1

0

) = 0

That is the difference between the average encoded length of the source sequences

and their entropy (per source symbol) converges to zero as the length of the source

sequences approaches infinity.

One may also require that the redundancy rate converge to zero uniformly over

each source in the class and each source sequence, leading to the following definition:

Definition 2.5.2 (Strongly Universal Code) A universal code {fn} is strongly uni-

versal for a class of sources, if for some sequence cn so that lim
n→∞

cn = 0 it satisfies

n−1 sup
P

Xn−1
0

max
xn−1
0 ∈An

[∣∣fn

(
xn−1

0

)∣∣ + log PXn−1
0

(
xn−1

0

)]
≤ cn,

where the supremum is taken over the marginal distributions of the first n symbols in

all sources within the class.

In a relative entropy sense, the distribution corresponding to the universal code

is close enough to all distributions within the given source model so that the K-L

distance (2.18) divided by the length of the source sequence converges to zero, as

the latter approaches infinity. In geometric terms, it means that the distribution

corresponding to the universal code is near the “center” of the set of probability

distributions characterizing the source family.

For classes of sources where the number of types increases sub-exponentially (e.g.

in a polynomial fashion) with the length of the sequence, it is possible to construct

universal codes (for which the divergence rate can be arbitrarily small). Types are

equivalence classes of output sequences where appropriately defined empirical distri-

butions are the same within a class. The idea of types is extensively developed in the
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book on information theory by I. Csiszár and J. Körner [9]. For example, in case of

I.I.D. sources two sequences of equal length belong to the same type if the symbol

counts are equal for all symbols in the source alphabet. In case of Markov sources,

two sequences belong to the same type, if for each symbol the symbol counts following

that particular symbol are equal.

For these classes of sources, it is easy to show that universal codes exist, since the

information (rate) required to distinguish between the types is a logarithm of a sub-

exponential function of n divided by n, which converges to zero. In plain English, the

description of the type vanishes compared to the description of the actual sequence

within the type. For more general classes of sources, the proof of existence of universal

codes can be more involved and actually constructing universal codes for them is even

more difficult; see e.g. [35] for an example for a universal code for stationary sources.

Universal codes exist for sources as general as the class of piecewise stationary block

sources [43, 44, 14].

The simplest example of a class of sources for which universal codes exist is the

class of binary I.I.D. sources. A simple universal code would look as follows: first,

we encode the length n of the sequence in a code of length 2dlog(n)e − 1 (see e.g.

[15] for such a code) then we encode the number k of ones in the sequence using base

2 binary representation in dlog ne bits and finally the sequence itself as a sequence

of Bernoulli random variables with p = k
n

with some entropy-achieving code (e.g. a

Golomb code of the runs [18, 15]). The redundancy of such a code as defined in (2.17)

can be arbitrarily close to zero, since the encoding of n and k vanishes when divided

by n as it approaches infinity, and the rest is arbitrarily close to the entropy. It has to

be noted that this is by no means the best universal code; there are others for which

the redundancy converges to zero faster [23].

When it is difficult to find a well-matching source model for the data that need

to be compressed (e.g. text in some unknown language), universal codes are used.

23



However, always going for the most general universal code can be inefficient, for

reasons similar to the case of codes designed using model parameters estimated on a

finite sample, as discussed in Section 2.4.3. See [23] for a discussion of the impact of

alphabet size on the performance of optimal universal coding of I.I.D. sources.

The most important property of a universal code is the rate of convergence of the

worst case redundancy rate to zero, as the length of the encoded sequence increases.

Since in practice we always compress finite sequences, the actual redundancy depends

to a large extent on this rate.

Let us define the least possible value for worst case redundancy on source sequences

of n symbols as follows:

Definition 2.5.3 (Minimax Redundancy) Given a class of sources, minimax redun-

dancy R∗
n for uniquely decodable codes fn : An → {0, 1}∗ with an average code length

L(Xn−1
0 ) is defined as

R∗
n = min

fn

sup
Xn−1

0

1

n

(
L(Xn−1

0 )−H(Xn−1
0 )

)
, (2.37)

where the supremum is taken over all possible nth order marginal distributions of the

first n source symbols in the given source class and the minimum is taken over all

uniquely decodable codes.

From [11, Theorem 7.5], for different classes of processes we have the following

minimax redundancies:

1. For the class of I.I.D. processes

R∗
n =
|A| − 1

2n
log n + O(n−1). (2.38)
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2. For the class of Markov processes

R∗
n =
|A| (|A| − 1)

2n
log n + O(n−1). (2.39)

3. For the class of mth order Markov processes

R∗
n =
|A|m (|A| − 1)

2n
log n + O(n−1). (2.40)

4. For the class of tree sources with context set T (where, denoting the length of

the longest context in T by m, |T | ≤ |A|m and typically |T | � |A|m)

R∗
n =
|T | (|A| − 1)

2n
log n + O(n−1). (2.41)

2.6 Arithmetic Coding

One way to visualize a discrete distribution over a finite set A is splitting the interval

[0, 1) into |A| disjoint subintervals open from the right and closed from the left, each

corresponding to an element in A so that their lengths are equal to the corresponding

probabilities.

If A is a set of symbols, let the intervals be ordered according to the alphabetic

order of the symbol set. If A is a set of equally long sequences of symbols, let us or-

der the intervals according to the lexicographic order. A prefix of a sequence always

corresponds to a super-interval of the interval corresponding to the original sequence.

In other words, an interval corresponding to a given sequence contains as subintervals

all the sequences having this one as their prefix.

Finite binary codes attaining equality in (2.9) always correspond to distributions

where the probabilities of individual instances are powers of 1/2. Every sequence of
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0
a b c

aa ab ac ba bb bc ca cb cc
1

Figure 2.1: I.I.D. source with P (a) = P (b) = P (c) = 1/3

binary digits corresponds to an interval that begins at the binary fraction described

by this sequence after the binary point, followed by an infinite number of zeroes and

ends at the binary fraction described by the same sequence after the binary point

followed by an infinite number of ones.

For every infinite sequence of source symbols there is at least one infinite sequence

of binary symbols corresponding to a real number 0 ≤ r < 1 described as a binary

fraction represented by that sequence after the binary point that lies within the

interval corresponding to the infinite source sequence. The converse is not true; this

is not a one-to-one correspondence. We can uniquely code infinite source sequences

by the infinite binary sequence describing the midpoint (the sum of the infimum and

the supremum divided by two) of the set corresponding to the source sequence.

Such an infinite binary code can be decoded in an on-line fashion. For every prefix

of the source sequence, there is a finite binary sequence corresponding to an interval

that lies fully within the interval corresponding to the source prefix. The reason is

that the length of the interval corresponding to the binary code converges to zero

as the length of the sequence approaches infinity, while the interval corresponding to

any source prefix with non-zero probability has a finite length strictly greater than

zero. As we read the code sequence, we can output the source prefix for which the

minimal code length has been attained.

Unfortunately, this does not provide us with a one-to-one mapping between all

source prefixes and some finite codes, since reading one code bit can result in out-

putting more than one source symbol. Thus, the length of the prefix we wish to code

can be separately encoded using a prefix code on the natural numbers such as Elias

Gamma or Fibonacci codes [15]. If the length of the prefix is defined using one of
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these, the (asymptotic) redundancy rate of the code equals zero. Note that what

follows the encoding of the length is a Shannon-Fano code on the n-long source se-

quences. In practice, we might use a slightly different source model, where the source

is a distribution over all possible finite sequences of source symbols. In this variation,

the length of the sequence is part of the probabilistic model. Here, we order the source

sequences lexicographically and assign intervals to them according to their probabil-

ity. This is equivalent to the previous case, if we introduce an end-of-string (sentinel)

symbol preceding every other symbol in alphabetic order and assign zero probability

to all sequences which do not end in an infinite sequence of sentinels. In this case,

we do not need to encode the length of the sequence. Instead, we stop as soon as we

decode (or encode) the first sentinel symbol, which would guarantee an average code

length between H and H + 1, where H denotes the entropy of the distribution of the

sequences (basically, it is a Shannon-Fano code over the finite sequences).

While at first arithmetic coding seems like the ultimate solution for lossless com-

pression, it is more often than not impractical. There are several reasons for this:

One is that we need to provide probabilities for each successive source symbol both

during the encoding and the decoding process. Constructing and evaluating a model

to such detail is often not practical. Another problem with arithmetic coding is

that a direct implementation can run out of numerical precision or buffer space, thus

in practice it is implemented with “flush” steps, when the coder pretends that the

source sequence has ended, terminates the encoding and (re-)starts coding from the

next source symbol. This results in coding redundancy that might not be justified. In

general, efficient arithmetic coding implementations are often closely guarded trade

secrets or patented methods with high license fees.

The theoretical importance of arithmetic codes is that they can be used to actually

achieve the optimal convergence rates from the previous section (see, e.g., [11]).
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2.7 Block-Sorting Compressors

Estimating the model parameters of a source with long memory for arithmetic coding

is computationally taxing. In 1994, M. Burrows and D. J. Wheeler [6] proposed an

alternative approach where the sequence, that can be modeled by a tree source (a

variety of high-order Markov source; see Section 2.3.4), undergoes a reversible per-

mutation (resorting) after which the resulting sequence is close, in a relative entropy

sense, to piecewise I.I.D. with the same entropy as the original sequence. The diver-

gence rate of the resulting sequence from a piecewise I.I.D. sequence with the length of

the pieces proportional to the stationary probabilities of the states of the tree source

converges to zero, as shown in [14], where the first rigorous proof of the universality

of such an approach has also been presented.

It is interesting to note that most block-sorting compressor implementations are

not universal for tree sources. On the other hand, even though there is residual redun-

dancy due to the encoding of the transformed sequence that is not entropy-achieving,

the convergence rate of such compressors is much faster than that of the theoret-

ically universal Lempel-Ziv algorithm [43, 44] and for the block size of the actual

implementation, block-sorting compressors usually outperform L-Z implementations

significantly.

The standard architecture of a block-sorting compression algorithm consists of

three main components:

TRANSFORMATION → MODELING → CODING

Figure 2.2: Components of a block-sorting compression algorithm

The transformation sorts all the suffixes (or prefixes) of the block so that similar

contexts are grouped together, and then outputs the characters preceding (or
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following, respectively) the sorted contexts. It is important to observe that the

lexicographical ordering used in the Burrows-Wheeler Transformation is by no

means the only option. Other sorting methods, that group similar contexts

together are viable alternatives. The experimental results in Chapter 3 are

obtained using a slightly modified lexicographic ordering, whereby the end-of-

file (sentinel) symbol ranks between ’0’ and ’1’, rather than preceding ’0’.

Modeling the output of the transformation is crucial in obtaining good compression

results. In their original paper [6] D. J. Wheeler and M. Burrows use move-to-

front (MTF ) followed by 0-run length encoding as their model. Since then, vari-

ous different modeling techniques have been devised, such as MTF2 (Shtarkhov

et al.), which is basically a modification of MTF, Timestamp modeling [1] (TS,

by Albers et al.), Distance Coding (DC by E. Binder, not published) or In-

version Frequencies [3] (IF by Arnavut and Magliveras). For binary sources,

however, most of these techniques are reduced to runlength encoding.

The coding step assigns a binary code to the model. One can use arithmetic codes,

Huffman codes or enumerative codes. For the experiments in Chapter 3 we used

a Huffman code based on the probabilities from the model. This is the most

popular engineering decision in block-sorting compressors. For the binary case,

however, enumerative coding also offers several advantages.

2.8 Burrows-Wheeler Transformation

The BWT constitutes a special permutation of the symbols in one block of the original

source and is obtained as follows: the set of all cyclic permutations of the source block

is sorted in a lexicographic order, and the last characters of the cyclic permutations

are recorded. The original string can be retrieved up to a cyclic permutation. There

are two common ways of dealing with this ambiguity: either we record the index of the
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Input string: abracadabra$

Cyclic permutations in lexicographic order:

$abracadabra

a$abracadabr

abra$abracad

abracadabra$

acadabra$abr

adabra$abrac Burrows-Wheeler transform: ard$rcaaaabb
bra$abracada

bracadabra$a

cadabra$abra

dabra$abraca

ra$abracadab

racadabra$ab

Figure 2.3: Example of the Burrows-Wheeler Transformation

cyclic permutation that corresponds to the original sequence, or we use a special end-

of-string symbol (the sentinel, denoted henceforth by $), in which case the original

sequence will be the one ending with the sentinel. In the lexicographic ordering, the

sentinel precedes all other symbols. See Figure 2.3 for an example of the BWT.

If we model the input string by an order-m Markov source whereby the probability

distribution of each symbol depends on the m subsequent ones (thus, it is a Markov

source read from the right to the left), the BWT yields a sequence of strings whose

zero-order entropy weighted by their length is equal to the entropy of the Markov

source, as it groups the symbols followed by the same context together. This provides

for the good compressibility of the BWT.

Since for most natural sources the probability distributions of symbols conditioned

on any given context of m symbols have very low entropies, we may very well end

up having long runs of identical symbols in the BWT, which is what most modeling

techniques try to exploit.

Observe, that if we use a sentinel symbol, the Burrows-Wheeler transformation
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basically boils down to suffix sorting, which is the lexicographic ordering of all n

suffixes si = xixi+1xi+2 . . . xn−1 of the input string x = x0x1 . . . xn−1 (= s0). This

is a well-studied operation (see, e.g., [4] and [21]), that can be performed in linear

time and linear space, albeit with a very large constant factor for both. In practice,

therefore, algorithms with O(n log n) time cost and linear memory requirement (with

a much smaller constant factor) are often preferred. Suffix sorting is the most time-

consuming operation in block sorting compression.

For a long time, the only known algorithms for linear-time suffix sorting first

constructed a suffix tree (see Section 2.10) from the input, then traversed the tree

in a depth-first order. Modified ordering rules mentioned in Section 2.9.2 can be

implemented by modifying the traversal order of the suffix tree.

An alternative algorithm that sorts suffixes directly in linear time without first

constructing a suffix tree has been published in 2003 by Kärkkäinen and Sanders [21].

Their approach, inspired by [16], is to sort two lists of suffixes and merge the two

lists recursively. First they construct the suffix array (a list of indices sorted by the

lexicographic order of the corresponding suffixes) of the suffixes starting at positions i

mod 3 6= 0, by reduction to suffix array construction of a string of two thirds the length

(in a procedure they call lexicographic naming) recursively. Then, using the result

of the first step, a suffix array of the rest of the suffixes is constructed and finally

the two are merged. In this algorithm, lexicographic naming is the computational

bottleneck.

2.9 Variations of BWT

2.9.1 Schindler Transformation

As noted before, the only property of BWT that we actually use in block-sorting

compression is that it groups the symbols with similar contexts together and is in-
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vertible. As noted by M. Schindler [37], if we sort the suffixes only according to the

first l symbols, the resulting transform will be also invertible, though not as simply

as BWT. However, there is a substantial gain in the compression phase, due to a

reduced sorting complexity. If we do know in advance (which is often not the case)

that the order-l Markov model is adequate for the input, it is often preferable to do

the Schindler Transformation. However, since in this thesis we aim at a broader, not

narrower set of well-compressible sources, we have to rule Schindler’s transformation

out.

2.9.2 Modified Ordering Rules

As long as we preserve the property that suffixes with identical prefixes are grouped

together, the above outlined compressibility analysis applies. Therefore, we are free to

choose any ordering that groups identical prefixes together, of which the lexicographic

ordering is only one.

A deviation from the lexicographic ordering, however, can provide certain bene-

fits, in case the transition matrix of the Markov model itself exposes regularities. For

example, if there are identical or similar rows, it is beneficial to redefine the order of

the individual symbols in the lexicographic ordering by placing the rows’ correspond-

ing symbols after one another. This way, the adaptive coding for the output will face

fewer and less abrupt changes in the 0-order statistics of the output symbols. For

example, for natural languages it has been found advantageous to group vowels and

consonants together, resulting in the so-called “aeioubcdgf” ordering [7].

Another interesting possibility is to reflect the ordering for each second symbol (as

in binary reflected Gray ordering). This change will make the first and last suffixes

following neighboring letters meet, relieving the adaptive coder of abrupt changes,

as these are more likely to be similar than those on the opposite ends of the order-

ing. Unfortunately, no efficient algorithm inverting such a modified transformation is
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known. Most algorithms for suffix sorting can be easily modified to sort in this way,

with the notable exception of that by Kärkkäinen and Sanders [21].

Both above mentioned aspects of modified orderings have been studies by B.

Chapin and S. R. Tate in [7].

2.10 Suffix Tree

A data structure proposed in 1975 by McCreight [28] (as an improvement over

Weiner’s [41]) to facilitate exact-match substring searching has since then gained sig-

nificant popularity in string-processing. The suffix tree is, in essence, a search index

occupying memory space proportional to the length of the string that can be con-

structed in linear time in the worst case. Finding a substring takes time proportional

to the lengths of the substring.

In this section, we give an overview of its important properties, describe the most

recent algorithm for its online construction devised by Ukkonen [39]. A good overview

of the other two linear-time algorithms and their profound connection to one another

and that by Ukkonen is given by Giegerich and Kurtz in their 1996 paper [17].

In 1997, Farach proposed a completely different approach to linear-time suffix

tree construction [16]. Farach’s paper settled the question about the complexity of

suffix tree construction for large alphabets by showing that for integers in the range

[1 . . . n], where n is the length of the string, the suffix tree can still be constructed in

time proportional to n. This result implies that the time complexity for suffix tree

construction equals the time complexity of sorting the symbols in the string, since on

one hand the suffix tree construction sorts the symbols as well, while on the other

hand, the suffix tree can be constructed by sorting the symbols first and then applying

Farach’s algorithm.

In Chapter 5, a generalization of this data structure is presented and analyzed,
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which is one of our principal contributions.

In addition to searching, suffix trees can be used to quickly answer many ques-

tions about the corresponding strings and perform various operations on them. In

particular, constructing and traversing the suffix tree of a string was the only known

method of performing the Burrows-Wheeler transformation in linear time of |s| before

the result in [21].

2.10.1 Preliminaries

For any x ∈ A∗, denote the length of x (the number of symbols in the sequence) by

|x|. The individual symbols in x are denoted by x0, x1, . . . , x|x|−1. For 0 ≤ i ≤ j < |x|,

let xj
i denote the sequence xi, . . . , xj. Let xy denote the concatenation of x and y.

Finally, let ε denote the empty string.

Definition 2.10.1 (Suffix Trie) A graph on all distinct substrings of s, with arcs
−→
x|y iff y

|y|−2
0 = x. Formally, for every s ∈ A∗ define the directed graph T (s) =

(V (s), E(s)) such that

V (s) = {x ∈ A∗ : ∃i : s
i+|x|−1
i = x} and E(s) = {

−→
x|y : x,y ∈ V (s) and xy|y|−1 = y},

where V (s) and E(s) are, respectively, the vertex set and the arc set of T (s).

ε

b

a

n

$

ba ban bana banan banana

banana$
an

na

a$

ana

nan

na$

anan

nana

ana$

anana

nana$ anana$

Figure 2.4: Graph T (banana$)

This graph is called the suffix trie of s. The following simple statements about

T (s) provide the justification for this name. As a data structure, the trie has been
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first proposed by de la Brandais [5] in 1959. Its name is a word-play on “retrieval”

and “tree” of unknown origin.

Fact 2.10.1 Each vertex in T (s) has exactly one incoming arc, with the sole exception

of ε, which has none.

Proof: The only incoming arc to vertex x points from x
|x|−2
0 , according to definition

2.10.1. �

Fact 2.10.2 T (s) is connected.

Proof: Every vertex x 6= ε is connected to ε by the following path: ε→ x0 → x1
0 →

· · · → x. Note that this path is unique due to Fact 2.10.1. �

Fact 2.10.3 T (s) is cycle-free.

Proof: T (s) cannot contain a directed cycle, since for each arc
−→
x|y, |x| < |y|. Thus,

the directed cycle cannot continue after the vertex corresponding to the longest se-

quence. Other kinds of cycles are precluded by Fact 2.10.1. �

Fact 2.10.4 Every leaf of T (s) (except ε) corresponds to a suffix of s. That is ∀x ∈

V (s) \ {ε} : deg(x) = 1 if s
|s|−1
|s|−|x| = x. If the last symbol of s is unique in s (that is

∀i < |s| − 1 : si 6= s|s|−1), the converse statement holds as well; the correspondence is

one-to-one.

Proof: If deg(x) = 1 and x 6= ε then the only arc connecting to x must be the one

pointing to it, because of Fact 2.10.1. Therefore, it is a suffix. If the end-of-sequence

symbol is unique (denote it by $), any vertex corresponding to a sequence ending

with $ has no outgoing arcs and one incoming arc. Therefore, it is a leaf. �

Thus, T (s) is a tree (connected, cycle-free graph), as shown by Facts 2.10.2 and

2.10.3, and its leaves correspond to suffixes (Fact 2.10.4).
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If we label each arc
−→
x|y by y|x|, the concatenation of labels along the path from ε

to any vertex x provides the sequence corresponding to x. In this representation, the

suffix trie can be considered as a finite state deterministic automaton accepting the

suffixes of s and nothing else. The initial state of this automaton is ε, the terminal

states are those corresponding to suffixes (see Figure 2.5).

b

a

n

$

a
n a n a $

n
a n a $

$

a n a $

$

$

Figure 2.5: Suffix trie of “banana$” as an automaton

2.10.2 Compact Representation

In order to use the suffix trie as a search index, one does not need to store the sequences

corresponding to the vertices of T (s), as they are available as the concatenations of arc

labels along the (unique) path from ε. However, the space requirement for the direct

representation of the suffix trie can be super-linear in the length of the sequence. If

all the symbols in s are different, it is easy to see that one needs |s|(|s|−1)
2

arcs, as there

is a |s|-way branching right at the root of the trie, followed by every suffix of s as a

separate branch.

For small alphabets, the situation is not much better: if |A| ≥ 2 then for any
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c ∈ R+, there is an s ∈ A∗ such that

|E(s)| > c|s| (2.42)

where |E(s)| denotes the cardinality of the arc set of T (s).

As observed by Weiner [41], by contracting every arc in T (s) which is the only

outgoing arc of some vertex, one gets a structure that is linear in |s|. This is the suffix

tree of s, denoted by S(s). We label the arcs of S(s) by concatenating the labels of

the corresponding arcs from T (s) in their order of precedence.
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na
$
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$

na$

na$
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banana$

Figure 2.6: Suffix tree of “banana$”

Definition 2.10.2 (Suffix Tree) The suffix tree of s is a directed graph S(s) =

(W (s), F (s)) where the node set W (s) ⊆ V (s) is defined by

W (s) ={
x ∈ A∗ :

(
∃y, z ∈ V (s) :

−→
x|y,
−→
x|z ∈ E(s)

)
or

(
@y ∈ V :

−→
x|y ∈ E(s)

)
or (x = ε)

}
(2.43)

and the arc set F (s) is defined as follows:

For any x,y ∈ W (s),
−→
x|y is in F (s) iff y

|x|−1
0 = x and there is no index i such

that |x| ≤ i < |y| − 1 and yi
0 ∈ W (s).

Since S(s) is a minor of T (s), it is also a tree. Following Ukkonen [39], we shall

call the elements of W (s) explicit nodes and those of V (s) \W (s) implicit nodes of

the suffix tree.

Assertion 2.10.1 If |s| > 2 then S(s) can be represented by an array of less than

(2 + |A|)|s| integers.
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2.10.3 Efficient On-line Construction

As mentioned before, there are several known ways of constructing suffix trees in

linear time of |s| [17, 41, 28, 39]. In this section, we will outline Ukkonen’s algorithm

[39], which has the additional benefit of being an on-line construction. That is, as

the input is being read, the suffix tree for the string read so far is always immediately

available.

For the purpose of block-sorting, on-line processing is irrelevant, but we never-

theless chose to implement and present Ukkonen’s algorithm, as it is, in my opinion,

the most intuitive of the three and, as discussed in [17] and mentioned in the orig-

inal paper by Ukkonen [39] as well, they are all very closely related on the level of

implementation.

First, we introduce an auxiliary directed graph over the vertex set V . The set M

of arcs (called suffix links following [28]) in this graph is defined as follows:

−→
x|y ∈M iff there exists a ∈ A such that ay = x (2.44)

Observe that the suffix links, if pointed to the opposite direction, constitute a

suffix trie of the reversed string, or the so-called prefix trie.

Another important observation is that suffix links from explicit nodes point to

explicit nodes. By pointing these arcs in the opposite direction, we can obtain the

prefix tree; the suffix tree of the reversed string [28].

If the prefix tree is viewed as the objective, Ukkonen’s algorithm is essentially

identical to the prefix tree construction algorithm derived from McCreight’s algorithm

by M. Effros, as presented in [13]. This just underlines the deep-running similarity

between these two seemingly different algorithms, which is also mentioned in the

introduction of Ukkonen’s original paper [39].

Definition 2.10.3 (Boundary Path) The path of suffix links from s to ε is called the
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boundary path of T (s).

For technical purposes, the following features are also added to the suffix tree:

leaf nodes have a special end pointer to the end of the string (which can be “infinity”

if the length is not known in advance) and there is an additional explicit node added

before the root of the tree (the node corresponding to ε) denoted (following [39]) by

⊥. During initialization, a suffix link
−→
ε|⊥ is added to M and multiple arcs

−→
⊥|ε labeled

with all elements of A are added to F (s).

The on-line construction of the suffix tree is derived from a simple and intuitive

algorithm constructing the suffix trie T (s) in an on-line fashion as follows. In order to

construct T (sk
0) from T (sk−1

0 ), the boundary path of T (sk−1
0 ) is traversed and a new

node pointed by an arc labeled with sk is added, if there isn’t one already. The nodes

to which sk-labeled arcs point from the boundary path of T (sk−1
0 ) are connected with

suffix links in the order of traversal. These suffix links will form the boundary path

of T (sk
0). This iteration is repeated until T (s) is ready.

Note that if there is an outgoing arc in T (s) labeled with some a ∈ A from a

node on the boundary path, then the node pointed by an outgoing suffix link, if it

exists, also must have an outgoing arc labeled with a. This, in turn, implies that the

traversal of the boundary path in the above iteration can be stopped when the first

outgoing arc labeled with sk is found on the boundary path of T (sk−1
0 ), leading to the

following definition:

Definition 2.10.4 (Active Point) The first node on the boundary path of T (sk−1
0 ) is

called active point if it has an outgoing arc labeled with sk.

Another important observation is that leaf nodes (all of which obviously lie on the

boundary path) will have a new link and a new node added in each step, which will

become a new leaf node. Thus, when adding a leaf, one can add the whole path to the
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end of s, avoiding the extension of each leaf in every iteration. The first branching

along the boundary path can only occur at one of the successors of the active point.

The simplifications made possible by the above two observations and the addition

of ⊥ to each boundary path (making sure that there is always an active point) result

in each iteration starting at the active point of T (sk−1
0 ) and ending at the active point

of T (sk
0). Using the compact representation of Section 2.10.2 and this simplified

algorithm, we obtain a linear, on-line algorithm for the construction of S(s).

A more formal, step-by-step description of the generalized version of this algorithm

is presented in Chapter 5.
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Chapter 3

A Simple Binary Block-Sorting

Compressor and its Experimental

Evaluation

In this chapter, the experimental evaluation of a block-sorting compression scheme

is presented that operates on the bit level. It shows that even such a simple tech-

nique, which ignores byte boundaries and uses a very simple modeling scheme for the

output of the block-sorting transform, outperforms some of the best industry stan-

dard compressors for sources that are not byte-aligned, while providing reasonable

compression ratios for byte-aligned sources. These preliminary results can be substan-

tially improved using more sophisticated modeling and coding techniques. However,

the obtained experimental results point out the potential advantages of bit-level com-

pression.

The results presented in this chapter have been published in the proceedings of

DCC 2003 [30].
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3.1 Binary Block-Sorting

In binary block sorting, the fact that we have to deal with only three symbols, one of

which (the end-of-string or sentinel, symbol $) occurs only once in the file offers many

opportunities for simplifying the techniques of general block-sorting. Essentially, all

common suffix sorting techniques become a lot simpler if applied to binary sequences,

particularly the only known linear one at the time of performing this evaluation,

which builds a suffix tree and then traverses it. Since then, Kärkkäinen and Sanders

published a direct suffix array construction [21] that also takes linear time.

Before elaborating on the one we used, let us point out how other sorting tech-

niques may benefit from a binary alphabet:

• Bucket sort steps can be done in place by simply moving all suffixes that begin

with 0 to the beginning and then exchanging the next element with the empty

suffix (containing $ only).

• The dependence of many simple algorithms’ running time on the number k

of symbols is linear and slightly superlinear on the file length n, typically

O(kn log n). Thus, when working with bits instead of bytes, even the 8-fold

increase in file length does not overweight the 256-fold decrease in symbol set

cardinality.

• The most popular three-way quicksort [4] (by J. L. Bentley and R. Sedgewick)

reduces to binary radix sort, yielding a far simpler (and faster) code.

The only drawback of building a suffix tree first is the significantly increased

memory-overhead. The direct algorithm in [21] would have been better in this respect.

It is important to emphasize that this memory overhead is strictly linear with file

length.

For experimental purposes we have implemented Ukkonen’s online suffix tree con-

struction algorithm [39], which does not deal with the sentinel until the very last
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step, thus keeping the suffix tree in binary form. Moreover, it is a full binary tree

in the sense that a node is either a leaf or a two-way branching. Therefore, it can

be efficiently stored, without hashing or other workaround solutions that k-ary suf-

fix tree implementations often suffer from, rendering them unfeasible for practical

BWT. Each inner node can be represented by two pointers into the string marking

the beginning and the end of the string segment associated with the node, two child

pointers and one suffix link (needed by Ukkonen’s algorithm). This makes an inner

node 5 pointers long, which in today’s 32-bit computers translates into 160 bits. Leaf

nodes can be represented by an even smaller data structure, but we haven’t done that

optimization. This way, in worst case we have a 320-fold overhead, which is still very

large, but considering the available computing power it is well within the realm of

feasible solutions.

The binary tree structure can be retained even when reaching the sentinel. Ob-

serve that when the sentinel is added to the suffix tree, it is either on the already

existing leaves or it causes a new branching and forms a leaf of its own. Observe,

furthermore, that a node’s end-of-string pointer can point to the last character of the

input string if and only if it has the sentinel as its child. Thus, we know exactly which

inner nodes have the sentinel as a child, so there’s no need to actually represent it. At

this last step we may actually violate the “full” tree invariant, as some of the sentinel

leafs may not have both 0 and 1 siblings. A more detailed description and analysis

of this implicit end-of-string representation is provided in Section 5.3.

Example:

0

1

01 −$

−$

1

01 −$

0101−$

−$

−$root

Figure 3.1: Suffix tree of 00101$
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After building the tree, we can traverse it in a depth-first manner outputting

the appropriate character of the BWT each time we encounter a sentinel leaf. The

sentinel itself is outputted (or more precisely, noted), when we traverse the root node.

For a Gray ordering (see Section 2.9.2), one can change the traversal direction each

time we encounter a 1. For the experiments presented in this chapter, we have not

implemented this.

3.2 Modeling and Encoding

The modeling of the transformation’s output is a complicated issue on which the

efficiency of the block-sorting compressor ultimately depends. However, even simple

models provide for surprisingly good results, which largely explains the popularity of

BTW with the data compression community.

For experimental purposes we have implemented an extremely simple model that

approximates the 0-order entropy of the counts of successive identical symbols (a.k.a.

runlength), which obviously does not attain the entropy of the binary Markov source,

which in turn falls short of the entropy of the Markov source based on multibit symbols.

Thus, our model is blatantly suboptimal, so it is not surprising that it does not

compete with a finely tuned block-sorting compressor like bzip2 when the latter’s

model assumptions are met. However, its performance is still satisfactory in these

cases, and comfortably surpasses that of bzip2, when the symbol length is not 8 bits.

Runs of b identical bits occur, when there are b identical “words” (bit sequences

of arbitrary length). As B. B. Mandelbrot has observed in [27], the number of “word”

occurrences is drawn from a hyperbolic distribution (see also Zipf ’s law [20]), under

certain, very general assumptions on the “text”. However, since the first bits of

two different words can be the same (which can be modelled by a Bernoulli random

variable), the actual length of a run is L =
∑G

i=1 Zi, where Zi’s are random variables
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drawn from a hyperbolic distribution, while G is drawn form a geometric distribution.

This yields a “displaced” hyperbolic distribution:

P (L = x) = c

(
1 + a

x + a

)b

whereby c > 0 is just a normalization constant, a ≥ 0 is the displacement parameter,

and b ≥ 1 is the parameter of the hyperbolic distribution; a, b, c ∈ R.
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Figure 3.2: Runlength distribution of the binary BWT of an essay in English

We estimate this distribution using a robust linear fit on the logarithmic scale.

Using this estimate, a Huffman code (see, e.g., [8, Section 5.6]) is constructed to

encode the runlengths.
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3.3 Experimental Results

Even though there are many types of not byte-aligned data, such as Morse-coded

messages, genetic sequences (where each base pair is represented by 2 bits), 7-bit

ascii texts without the 8th padding bit and many more, on which the presented

compressor outperforms those that assume byte aligned input, there is no standard

corpus of such sources. Therefore, we compressed each file in Calgary corpus [42] with

0-order Huffman code (including the Huffman table for decodability), and used these

as examples of files with variable symbol length.

Table 3.1 summarizes the results of our experiments. On the left, we present the

compression results on the original Calgary corpus, while on the right those on the

Huffman-compressed files (hence the .h8 extension). Observe, that our compressor

compressed the original and the Huffman coded files to just about the same length,

reflecting that their entropies (that have not been attained, due to the suboptimal

modeling) are roughly identical. The two industry standard compressors, by contrast,

compressed the not byte-aligned versions to longer files, reflecting that they used a

non-fitting source model. The lengths of the compressed output of gzip are provided

only as a baseline, as it is not a block-sorting compressor.
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NAME length bzip2 gzip ours NAME length bzip2 gzip ours

bib 111261 27467 34896 32022 bib.h8 72836 48985 52223 33418

book1 768771 232598 312275 242857 book1.h8 438449 327635 396817 250069

book2 610856 157443 206152 170783 book2.h8 368375 247470 294393 176314

geo 102400 56921 68410 66370 geo.h8 72718 69747 71318 64585

news 377109 118600 144395 135444 news.h8 246471 186895 202768 141263

obj1 21504 10787 10315 12727 obj1.h8 16190 14457 13551 12612

obj2 246814 76441 81082 98395 obj2.h8 194227 137073 139887 99407

paper1 53161 16558 18536 19816 paper1.h8 33411 28079 27720 20241

paper2 82199 25041 29660 28084 paper2.h8 47689 39592 40630 29158

paper3 46526 15837 18067 18124 paper3.h8 27346 24439 24314 18646

paper4 13286 5188 5527 6047 paper4.h8 7931 7830 7328 6124

paper5 11954 4837 4988 5815 paper5.h8 7507 7447 6937 5762

paper6 38105 12292 13206 14786 paper6.h8 24097 20888 20246 15206

pic 513216 49759 52377 59131 pic.h8 106712 58819 58469 52729

progc 39611 12544 13255 15320 progc.h8 25989 21877 21090 15815

progl 71646 15579 16158 18101 progl.h8 43056 30219 29279 19274

progp 49379 10710 11180 13336 progp.h8 30288 22236 21429 13716

trans 93695 17899 18856 22864 trans.h8 65302 40714 40004 23563

Table 3.1: Compression results on the Calgary Corpus
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3.4 Conclusions

As we have expected, the bit-based compressor significantly outperformed the byte

based ones on data which was not aligned to byte boundaries. It is also worth noting

that it managed to outperform the LZ-77-based gzip on some byte aligned inputs,

which is due to the faster convergence of the block-sorting compression technique.

When compared to the byte-based block-sorting bzip2, the bit-based compressor

performed worse on byte-aligned data. Part of it is because of the inherent redundancy

resulting from an inaccurate source model (tree source on bits rather than a tree source

on bytes), part of it is a result of crude modeling of the transformed data. But which

of the two is dominant? Can we do much better by improving the post-processing of

the BWT? This is a very important question into which the next chapter will give

some insight from a theoretical point of view.

Another interesting question is to explain in a quantitative manner the poor per-

formance of byte-based models on data that is not aligned to byte boundaries.

It is worth mentioning that the experimental compressor described in this chapter

routinely compresses JPEG images further by approximately 10%, which is quite

surprising in the light of the fact that JPEG files have already undergone lossless

compression.
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Chapter 4

Information Theoretical Results

In this chapter, information theoretic findings are presented that help in explaining

what has been observed in the experiments described in the previous chapter. In

particular, we shall prove an upper bound on redundancy one has to pay for not

taking the block nature of the source into account in the statistical model. Some of

the results in this chapter are joint work with András György and have been presented

at two conferences [31, 32]. A joint paper [33] with these results has been submitted

for publication in IEEE Transactions on Information Theory.

4.1 Preliminaries

A binary block code of length n for the source alphabet A is given by a function

fn : An → {0, 1}∗, which maps any source vector x ∈ An to the binary string f(x).

The length function `n : An → N associated with fn gives for each x the length

of the corresponding binary string, that is, `n(x) = |fn(x)|. We require fn to be

uniquely decodable, that is, for x1, . . . , xj, y1, . . . , yk ∈ An, fn(x1)fn(x2) . . . fn(xj) =

fn(y1)fn(y2) . . . fn(yk) if and only if j = k and xi = yi, i = 1, . . . , j, where for two

binary strings s1 and s2, s1s2 denotes their concatenation. It is well known [8] that
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if fn is uniquely decodable than its length function ` satisfies the Kraft inequality

∑
x∈An

2−`n(x) ≤ 1.

Moreover, for any such code there exists a prefix code with the same length function,

and also there exists another prefix code f ′n with length function `′n such that `′n(x) ≤

`n(x) for all x ∈ An, and the equality holds for `′n in the Kraft inequality, that is,∑
x∈An 2−`′n(x) = 1. Therefore, without loss of generality, in the rest of the chapter

we consider only codes for which the Kraft inequality holds with equality. Therefore,

the coding distribution of fn, defined as

Pfn(x) = 2−`n(x)

for each x ∈ An, is a proper probability distribution.

The redundancy of the code fn with length function `n for the random vector

Xn−1
0 is defined as

Rn = E`n(Xn−1
0 )−H(Xn−1

0 ) = E
(
`n(Xn−1

0 ) + log PXn−1
0

(Xn−1
0 )

)

the difference of the expected code length E`n(Xn
1 ) and the entropy

H(Xn−1
0 ) = −

∑
x∈An

PXn−1
0

(x) log PXn−1
0

(x).

Note that Rn ≥ 0, and if Y n−1
0 is distributed according to Pfn , then

Rn = D(Xn−1
0 ‖Y n−1

0 ).

Similarly, for any distribution Pn over An, one can construct a prefix code with length
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function `′n(x) = −dlog Pn(x)e. The redundancy of this code can be bounded as

R′
n = E`′n(Xn−1

0 )−H(Xn−1
0 ) ≤ D(Xn−1

0 ‖Ŷ n−1
0 ) + 1

where Ŷ n−1
0 is distributed according to Pn.

A binary source code for an infinite source X∞
0 taking values in the alphabet A is

given by a sequence of block-n codes fn. Without loss of generality we assume that

for each fn equality holds in the Kraft inequality. If the coding distributions Pfn are

compatible in the sense that there is an A-valued random process Y ∞
0 such that the

distribution of Y n−1
0 is Pfn for all n, then the redundancy rate of the code is given as

lim
n→∞

1

n
Rn = lim

n→∞

1

n
D(Xn−1

0 ‖Y n−1
0 ) = D̄(X∞

0 ‖Y ∞
0 )

provided the limit exists [8],[11]. If X∞
0 is a block-N stationary block-N Markov

source and Y ∞
0 is a stationary mth order Markov source, then both sources are block

stationary block-mN Markov sources; for such sources the limit always exists [19].

In the sequel we will alternately use the code for either a block-n code fn, or a

sequence of codes {fn}∞n=1.

4.2 Approximation of block-Markov sources

Here we consider the following question: Suppose that we want to encode a given

block-N Markov source using a code with a coding distribution that is mth order

Markov. What is the minimum coding redundancy if the mth order Markov model

is optimally chosen?

In view of the previously discussed equivalence between redundancy and diver-

gence, what we really want to find is the best mth order Markovian approximation

of a block-N stationary block-N Markov source X∞
0 in the divergence sense. That is,
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we look for an mth order Markov source Y ∞
0 achieving the minimum

D̄m
4
= min

{
D̄(X∞

0 ‖Y ∞
0 ) : Y ∞

0 is mth order Markov
}
.

Clearly, without loss of generality we may assume that Y ∞
0 is stationary.

Let {Xn}∞n=−∞ be the two-sided block-N stationary extension of {Xn}∞n=0, and let

{Yn}∞n=−∞ be the two-sided stationary extension of {Yn}∞n=0. The minimizing {Yn}

and the minimum divergence rate will be expressed in terms of the random variables

Uj = Xj−m+τ , j = 0, 1, 2, . . .

where τ is a random variable that is uniformly distributed on {0, 1, . . . , N − 1} and

is independent of {Xn}. Notice that {Uj} can be seen as a stationary version of the

(only) block-N stationary source {Xn}. With this in mind, it is intuitively clear that

the best mth order Markovian approximation of {Un}, which has the same mth order

conditional distributions as {Un}, will also be the best approximation for {Xn}. This

statement is formalized in the next theorem.

Theorem 4.2.1 Given a block-N Markov source X∞
0 , the relative entropy rate D̄(X∞

0 ‖Y ∞
0 )

is minimized over all stationary mth order Markov sources Y ∞
0 if and only if PYm|Y m−1

0
=

PUm|Um−1
0

. The minimum relative entropy rate is given for all m ≥ 2N by

D̄m = I(τ ; Um|Um−1
0 )

the conditional mutual information between τ and Um given Um−1
0 . Moreover, there

is a stationary version Ŷ ∞
0 of Y ∞

0 such that PbY m
0

= PUm
0

.

Expressing conditional mutual information in terms conditional entropies as

I(τ ; Um|Um−1
0 ) = H(τ |Um−1

0 )−H(τ |Um
0 )
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we obtain

∞∑
m=2N

I(τ ; Um|Um−1
0 )

=
∞∑

m=2N

(
H(τ |Xτ−1

τ−m)−H(τ |Xτ
τ−m)

)
≤ H(τ |Xτ−1

τ−2N)− lim inf
m→∞

H(τ |Xτ
τ−m) ≤ log N

where the first inequality follows since we clearly have H(τ |Xτ−1
τ−m−1) = H(τ |Xτ

τ−m).

Thus we obtain the following corollary which states that the block-Markov source

can be arbitrarily closely approximated by higher-order Markov models by increasing

the model order.

Corollary 4.2.1 The minimum relative entropy rate D̄m satisfies

∞∑
m=2N

D̄m ≤ log N.

In particular

lim
m→∞

D̄m = 0.

Remark The fact that D̄m converges to zero as m → ∞ is not very surprising

in view of the fact that the divergence rate between a stationary process and its

best mth order Markov approximation asymptotically vanishes as m→∞ (see, e.g.,

[19]). Note, however, that X∞
0 is non-stationary, and that the theorem gives an

explicit expression for the optimum approximating process and a characterization of

the resulting minimum divergence rate D̄m. In the next section we will use this result

to determine the rate at which D̄m converges to zero.

Proof of Theorem 4.2.1 For all n > m we have from the chain rule for the relative
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entropy [8]

D(Xn
0 ‖Y n

0 )

=
n∑

i=m

D(Xi|X i−1
0 ‖Yi|Y i−1

0 ) + D(Xm−1
0 ‖Y m−1

0 )

where

D(Xi|X i−1
0 ‖Yi|Y i−1

0 ) =
∑

ai
0∈Ai+1

PXi
0
(xi

0) log
PXi|Xi−1

0
(ai|ai−1

0 )

PYi|Y i−1
0

(ai|ai−1
0 )

.

Observe that if m ≥ 2N , then for any i ≥ m,

PXi|Xi−1
0

(·|xi−1
0 ) = PXi|Xi−1

i−m
(·|xi−1

i−m)

and

PYi|Y i−1
0

(·|yi−1
0 ) = PYm|Y m−1

0
(·|ym−1

0 ).

Therefore

D
(
Xi|X i−1

0 ‖Yi|Y i−1
0

)
=

∑
a∈Ai

PXi−1
0

(a)D
(
Xi|X i−1

0 = a‖Yi|Y i−1
0 = a

)
=

∑
b∈Am

PXi−1
i−m

(b)D
(
Xi|X i−1

i−m = b‖Ym|Y m−1
0 = b

)
=

∑
b∈Am

PXt−1
t−m

(b)D
(
Xt|X t−1

t−m = b)‖Ym|Y m−1
0 = b

)

where t = i mod N . Denoting the last sum by St, we obtain

lim
n→∞

1

n + 1
D(Xn

0 ‖Y n
0 ) = lim

n→∞

1

n + 1

n∑
i=m

D(Xi|X i−1
0 ‖Yi|Y i−1

0 ) =
1

N

N−1∑
t=0

St.

Let τ denote a uniform random variable over {0, 1, . . . N − 1} that is independent

of the pair ({Xn}, {Yn}), and define the random vectors Um
0 = Xτ

τ−m and V m
0 = Y τ

τ−m.
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Then we can rewrite the relative entropy rate as

D̄(X∞
0 ‖Y ∞

0 )

=
N−1∑
t=0

Pτ (t)
∑

b∈Am

PUm−1
0 |τ (b | t)

·D
(
Um | Um−1

0 = b, τ = t ‖ Vm | V m−1
0 = b, τ = t

)
=

N−1∑
t=0

Pτ (t)
∑

b∈Am

PUm−1
0 |τ (b | t)

·
∑
x∈A

PUm|Um−1
0 ,τ (x | b, t) log

PUm|Um−1
0 ,τ (x | b, t)

PYm|Y m−1
0

(x | b)

=
N−1∑
t=0

∑
b∈Am

∑
x∈A

PUm
0 ,τ (b, x, t)

· log
Pτ |Um

0
(t | b, x) PUm|Um−1

0
(x | b)

PYm|Y m−1
0

(x | b) Pτ |Um−1
0

(t | b)

=
N−1∑
t=0

∑
b∈Am

∑
x∈A

PUm
0 ,τ (b, x, t) log

Pτ |Um
0

(t | b, x)

Pτ |Um−1
0

(t | b)

+
N−1∑
t=0

∑
b∈Am

∑
x∈A

PUm
0 ,τ (b, x, t) log

PUm|Um−1
0

(x | b)
PYm|Y m−1

0
(x | b)

.

Observe that only the second term of the last expression depends on the choice of

{Yn}. Since this term is equal to D(Um|Um−1
0 ‖Ym|Y m−1

0 ) (so it is nonnegative), it is

uniquely minimized by the choice PYm|Y m−1
0

= PUm|Um−1
0

. With this optimum choice

the second term vanishes, so

D̄m =
N−1∑
t=0

∑
b∈Am

∑
x∈A

PUm
0 ,τ (b, x, t) log

Pτ |Um
0

(t | b, x)

Pτ |Um−1
0

(t | b)

=
N−1∑
t=0

∑
b∈Am

∑
x∈A

PUm
0 ,τ (b, x, t) log Pτ |Um

0
(t | b, x)

−
N−1∑
t=0

∑
b∈Am

PUm−1
0 ,τ (b, t) log Pτ |Um−1

0
(t | b)

= H
(
τ | Um−1

0

)
−H (τ | Um

0 ) = I
(
τ ; Um|Um−1

0

)
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which was to be shown.

Finally, as PYm|Y m−1
0

= PUm|Um−1
0

and U∞
0 is stationary, starting the mth order

Markov chain Y ∞
0 from the distribution PUm−1

0
results in a stationary version of Y ∞

0 .

This proves the last statement of the theorem. �

From a coding point of view, Theorem 4.2.1 states that if a coding procedure is

optimal for Y ∞
0 (in the sense that its length functions correspond to the marginal

distributions of Y ∞
0 ), then it can compress X∞

0 with rate not exceeding the source

entropy rate H̄(X∞
0 ) = limn→∞ H(Xn−1

0 ) by more than D̄m. However, in practical

situations such codes are not available, as the distribution of Y ∞
0 is usually not known.

Moreover, as the triangle inequality does not hold for divergences1, a code which

is almost optimal for Y ∞
0 need not be good at all for X∞

0 . Still, it is reasonable

to expect that codes that are universal for the class of mth order Markov sources

(that is, perform asymptotically optimally for all sources in the class, including Y ∞
0 )

will perform well on X∞
0 . This will be shown (together with convergence rates) in

Section 4.4.

4.3 Rate of convergence

In this section we examine the rate of convergence at which the minimum relative

entropy rate D̄m converges to 0 in Corollary 4.2.1. In fact, we will show that D̄m van-

ishes exponentially fast, that is, a block-Markov source can be very well approximated

by high order Markov sources.

From Theorem 4.2.1 we can see that in order to establish that rate of convergence,

it is sufficient to estimate the conditional entropy H(τ |Um
0 ). Using Fano’s inequality

(see, e.g., [8]) we will trace back our problem to the problem of classification of Markov

sources. In this latter problem, given finitely many Markov sources, one has to decide

1This prevents us from establishing the upper bound on the redundancy rate of a code applied to
X∞0 as the sum of the divergence rate between X∞0 and Y∞0 and the divergence rate between Y∞0
and the coding distribution.
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which one of them has generated an observed sequence. In previous works it was

shown that, under various conditions, this problem can be solved with exponentially

decaying error probability as the length of the observed sequence increases, see, e.g.,

[34, 2, 29]. However, the conditions in these works are not immediately applicable to

our setup. Therefore, first we revisit some results from Csiszár et al. [10] concerning

large deviations of Markov chains. Based on these results, in Lemma 4.3.2 we derive

an upper bound on the classification error (using a similar method as in [34]).

Let A be a finite set, and let Λ denote the set of distributions over A2. The second

order type of a sequence un
0 = (u0, . . . , un) ∈ An+1 is the empirical distribution of the

pairs (uk, uk+1) over A2 defined by the relative frequencies

P
(2)
un
0

(v1, v2) =
1

n
|{k ∈ {0, . . . , n− 1} : uk = v1, uk+1 = v2}|, v1, v2 ∈ A.

For any distribution P (u, v) over A2, let P̄ (u) =
∑

v∈A P (u, v) denote the marginal

distribution of the first coordinate, and for P̄ (u) > 0, let P (v|u) = P (u, v)/P̄ (u).

For any stochastic matrix {W (v|u)}u,v∈A (that is, W (v|u) ≥ 0 for all u, v ∈ A, and∑
v∈A W (v|u) = 1), let

D(P‖W ) =
∑
u,v

P (u, v) log
P (u, v)

P̄ (u)W (v|u)
=

∑
u,v

P (u, v) log
P (v|u)

W (v|u)

denote the relative entropy between the distributions P (u, v) and P̄ (u)W (v|u). For

any set of distributions Π ⊂ Λ let clΠ denote its closure in Λ under point-wise

convergence. Finally, let Λ0 = {P ∈ Λ :
∑

v∈A P (u, v) =
∑

v∈A P (v, u), u ∈ A}

denote the distributions in Λ with equal marginals, and for any stochastic matrix W ,

let S(W ) = {P ∈ Λ : P (u, v) = 0 if W (v|u) = 0, u, v ∈ A}. The following lemma is

proved in [10].

Lemma 4.3.1 ([10, Lemma 2a]) Assume that {Xi} is a Markov chain with finite
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alphabet A and transition matrix W , and let Π ⊂ S(W ) be arbitrary. Then for every

u ∈ A,

lim sup
n→∞

1

n
log Pr(P

(2)
Xn

0
∈ Π|X0 = u) ≤ − min

P∈Λ0∩clΠ
D(P‖W ).

Note that the minimum on the right hand side of the above inequality is attainable,

as it is the minimum of a continuous function over a compact set.

Following the approach of Natarajan [34], this result easily leads to classification of

Markov sources. Assume that the sample X1, X2, . . . , Xn is generated with equal prob-

ability by one of K stationary Markov sources with transition matrices W1, . . . ,WK ,

respectively. The problem is to determine which source has generated the sample.

The next lemma provides a classification method for irreducible Markov-chains with

exponentially decaying error probability as the sample size grows. (A Markov-chain

with transition matrix W is called irreducible if for every pair (u, v) ∈ A2 there is a

positive integer n such that the element in the (u, v) position of W n is positive.)

Lemma 4.3.2 Let {Xi,n}∞n=0, i = 1, . . . , K, K ≥ 2, be independent Markov sources

with irreducible transition matrices Wi such that Wi 6= Wj for i 6= j. Assume that t

is distributed over {1, . . . , K} such that Pr(t = i) > 0 for all i = 1, . . . , K, and t is

independent of the {Xi,n}’s. Finally, assume that we observe the tth Markov source,

that is, let Xn = Xt,n for n = 0, 1, . . .. Define

Ri = {P ∈ Λ : D(P‖Wi) < D(P‖Wj) for all j 6= i},

and let t̂n = i if P
(2)
Xn

0
∈ Ri for some i ∈ {1, . . . , K} and let t̂n be arbitrary otherwise.

Then for any u ∈ A,

lim sup
n→∞

1

n
log Pr(t 6= t̂n|X0 = u) ≤ − min

1≤i≤K
min

P∈Λ0∩R̄i

D(P‖Wi) < 0

where R̄i = Λ \Ri denotes the complement of Ri.
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Proof. It is easy to see that

Pr(t 6= t̂n|X0 = u) =
K∑

i=1

Pr(t = i|X0 = u) Pr(t̂n 6= i|t = i, X0 = u)

=
K∑

i=1

Pr(t = i|X0 = u) Pr(t̂n 6= i|t = i, Xi,0 = u)

≤
K∑

i=1

Pr(t = i|X0 = u) Pr(P
(2)
Xn

i,0
∈ R̄i|Xi,0 = u)

≤ max
i

Pr(P
(2)
Xn

i,0
∈ R̄i|Xi,0 = u)

= max
i

Pr(P
(2)
Xn

i,0
∈ R̄i ∩ S(Wi)|Xi,0 = u).

Here the last equality holds as a sequence Xn
i,0 has zero probability if it contains a

transition of probability zero. Now from Lemma 4.3.1 it follows that

lim sup
n→∞

1

n
log Pr(P

(2)
Xn

i,0
∈ R̄i ∩ S(Wi)|Xi,0 = u) ≤ − min

P∈Λ0∩cl(R̄i∩S(Wi))
D(P‖Wi).

Moreover, since D(P‖Wi) = ∞ for any P 6∈ S(Wi), R̄i ∩ S(Wi) is clearly nonempty,

and R̄i is closed, we have

min
P∈Λ0∩cl(R̄i∩S(Wi))

D(P‖Wi) = min
P∈Λ0∩R̄i

D(P‖Wi).

This yields

lim sup
n→∞

1

n
log Pr(t 6= t̂n) ≤ −min

i
min

P∈Λ0∩R̄i

D(P‖Wi).

Finally, it remains to show that the right hand side in the above equation is

nonzero. Assuming the contrary, we have that for a given i, Pi minimizes D(P‖Wi)
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in Λ0 ∩ R̄i, and D(Pi‖Wi) = 0. The latter divergence can be rewritten as

D(Pi‖Wi) =
∑

u:P̄i(u)>0

P̄i(u)
∑

v

Pi(v|u) log
Pi(v|u)

Wi(v|u)
=

∑
u:P̄i(u)>0

P̄i(u)D(Pi(·|u)‖Wi(·|u))

where D(Pi(v|u)‖Wi(v|u)) denotes the divergence between the two conditional dis-

tributions for a given u. Now since D(Pi‖Wi) = 0, we have D(Pi(·|u)‖Wi(·|u)) = 0

and hence Pi(v|u) = Wi(v|u) for all u with P̄i(u) > 0. Moreover, the irreducibility of

Wi implies that if there is a u with P̄i(u) = 0, then there is a u′ such that P̄i(u
′) > 0

and Pi(u|u′) > 0. Thus, Pi(u
′, u) > 0. Since Pi ∈ Λ0, its marginals are equal, and

so P̄i(u) =
∑

û Pi(û, u) > 0, a contradiction. Therefore, P̄i(u) > 0 for all u ∈ A, and

so Pi(v|u) = Wi(v|u) for all u, v ∈ A. Moreover, as Pi 6∈ Ri, there is some j 6= i

such that D(Pi‖Wj) ≤ D(Pi‖Wi) = 0. Thus D(Pi‖Wj) = 0 by the non-negativity

of the relative entropy. Then, since Wj is also irreducible, Pi(v|u) = Wj(v|u) for all

u, v ∈ A. Therefore, Wi = Wj, a contradiction. �

Remark. Note that the end of the proof heavily depends on the fact that the Markov

chains are irreducible. Indeed, it is easy to construct reducible Markov chains such

that it is impossible to distinguish between them with vanishing error probability

no matter how large the sample size is. For example, consider the following two

transition matrices:

W1 =



.5 .5 0 0

.5 .5 0 0

0 0 .5 .5

0 0 .5 .5


and W2 =



.5 .5 0 0

.5 .5 0 0

0 0 .1 .9

0 0 .1 .9


.

Then, if the two chains start from state 3 or 4, then it is possible to distinguish between

them; however, if they start from state 1 or 2, then the resulting distributions are the

same.
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Now we are ready to show that D̄m decays exponentially.

Theorem 4.3.1 For every block-stationary block-Markov source X∞
0 there is a con-

stant c > 0 depending on the transition matrix of the source such that

lim sup
m→∞

1

m
log D̄m ≤ −c.

Proof. First notice that U∞
0 = {U2(k+1)N−1

2kN }∞k=0 is a block-2N -Markov source for

each value of τ , as U
2(k+1)N−1
2kN always contains a full character of the block-N -Markov

source {X(j+1)N−1
jN }∞j=0. This fact will enable us to use tools for classification of Markov

chains (namely, Lemma 4.3.2) to examine estimates of τ based on the sequence Um−1
0 ,

which then can be used to estimate D̄m = I(τ ; Um|Um−1
0 ).

For τ = t, t ∈ {0, . . . , N − 1} and U2N−1
0 = w ∈ A2N , let It,w ⊂ A2N denote

the (irreducible) set of states reachable from w by the Markov chain. Moreover, let

Qt,w = {qt(v|u)}, u, v ∈ It,w denote the transition probability matrix corresponding

to the states in It,w. That is,

qt(u|v) = PU4N−1
2N |U2N

0 ,τ (u|v, t) = PX4N+t−m−1
2N+t−m |X2N+t−m−1

t−m
(v|u).

To simplify further notation, we extend the above definition for any integer t. Note

that Qt,w is a sub-matrix of the transition probability matrix {qt(v|u)}, u, v ∈ A2N de-

scribing the behavior of the Markov chain for all states. Moreover, Qt,w is irreducible

for all w, but the index set It,w is not necessarily the same for different values of t. If

It,w 6= It′,w, then the corresponding matrices Qt,w and Qt′,w are different. However,

QkN+t,w = Qt,w for any integer k, t ∈ {0, . . . , N − 1} and w ∈ A2N , since X∞
−∞ is

block-N -stationary.

In the proof we will try to estimate which Qt,w is the generator matrix of an ob-

served sequence Um
0 . Obviously, if the Qt,w are not all different, this is not possible
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(we cannot distinguish between two Markov-chains with the same transition matri-

ces). Therefore, for any t let gw(t) denote the smallest number in {0, . . . , N − 1}

such that Qt,w = Qgw(t),w, and let N∗
w be the number of different transition matrices

Qt,w. (It is easy to show that N∗
w = max0≤t<N gw(t) + 1, and Q0,w, . . . , QN∗

w−1,w are

different.)

Moreover, given U2N−1
0 = w and gw(τ), τ is independent of Um

0 for every m.

Therefore,

H(τ |Um
2N , U2N−1

0 = w)

= H(τ, gw(τ)|Um
2N , U2N−1

0 = w)

= H(gw(τ)|Um
2N , U2N−1

0 = w) + H(τ |gw(τ), Um
2N , U2N−1

0 = w)

= H(gw(τ)|Um
2N , U2N−1

0 = w) + H(τ |gw(τ)).

By Theorem 4.2.1, this implies for all m ≥ 2N

D̄m = I(τ ; Um|Um−1
0 ) = H(τ |Um−1

0 )−H(τ |Um
0 )

=
∑

w

PU2N−1
0

(w)
(
H(gw(τ)|Um−1

2N , U2N−1
0 = w)−H(gw(τ)|Um

2N , U2N−1
0 = w)

)
≤

∑
w

PU2N−1
0

(w)H(gw(τ)|Um−1
2N , U2N−1

0 = w)

≤ max
w:P

U2N−1
0

(w)>0
H(gw(τ)|Um−1

2N , U2N−1
0 = w).

Therefore,

lim sup
m→∞

1

m
log D̄m ≤ max

w:P
U2N−1

0
(w)>0

lim sup
m→∞

1

m
log H(gw(τ)|Um−1

2N , U2N−1
0 = w). (4.1)

Next we bound the conditional entropies H(gw(τ)|Um−1
2N , U2N−1

0 = w). If N∗
w = 1,
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then gw(τ) = 0 with probability 1, and so H(gw(τ)|Um−1
2N , U2N−1

0 = w) = 0 and

lim
m→∞

1

m
log H(gw(τ)|Um−1

2N , U2N−1
0 = w) ≤ −cw (4.2)

with cw = ∞. Otherwise, if N∗
w > 1, let τm,w = τm,w(Um−1

0 ) be an optimal estimate

of gw(τ) based on Um−1
0 , given U2N−1

0 = w in the sense that Pr(gw(τ) = τm,w) ≥

Pr(gw(τ) = f(Um−1
0 )|U2N−1

0 = w) for any function f : Am → {0, . . . , N∗− 1}, and let

pm,w = Pr(gw(τ) 6= τm,w|U2N−1
0 = w)

(note that such an estimate always exist). Then, since τm,w is a function of Um
0 ,

H(gw(τ)|Um−1
2N , U2N−1

0 = w) ≤ H(gw(τ)|τm,w, U2N−1
0 = w) (4.3)

(for properties of the entropy function see, e.g., [8]). Moreover, by Fano’s inequality

H(τ ∗|τm, U2N−1
0 = w) ≤ log(N∗

w − 1)pm,w + hb(pm,w)

where hb(p) = −p log p− (1− p) log(1− p) for 0 ≤ p ≤ 1. From here, obviously

lim sup
m→∞

1

m
log H(gw(τ)|τm,w, U2N−1

0 = w)

≤ lim sup
m→∞

1

m
log

(
2 max

{
log(N∗

w − 1)pm,w, hb(pm,w)
})

≤ max

{
lim sup

m→∞

1

m
log pm,w, lim sup

m→∞

1

m
log hb(pm,w)

}
. (4.4)

Next we use Lemma 4.3.2 to bound (4.4). In order to be able to apply the lemma,

we need to determine the state space of the observed process, and then we only need

to find the generating Markov chain (given by Qt,w) among those that live on that

state space. Since the Markov chains defined by the matrices Qt,w are irreducible, the
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probability that a given state is not reached in k steps converges to 0 exponentially

fast in k. Therefore, for the set of values Îk = {U2N−1
0 , U4N−1

2N , . . . , U2kN−1
2(k−1)N}, we have

lim
k→∞

Pr(Îk 6= It,w|τ = t, U2N−1
0 = w) ≤ −c′w,t

for some c′w,t > 0. This implies that

lim
m→∞

Pr(Îb m
2N

c 6= Igw(τ)|U2N−1
0 = w) ≤ −cw,1 (4.5)

where cw,1 = mint c
′
w,t/2N > 0.

For any I ⊂ A2N , let

Qw(I) = {gw(i) : 0 ≤ i < N, Qi,w is defined on I}

denote the set of indexes of the Markov chains with state space I (for Markov chains

with the same transition matrix, we consider the one with the smallest index). Now

gw(τ) can be estimated by first estimating Igw(τ) by Îk, k = b(m− 1)/2Nc, based on

Um
0 , and then estimating gw(τ) by the optimal classifier for the problem of deciding

which Qi,w, i ∈ Qw(Îk) generated the sequence U2N−1
0 = w, U4N−1

2N , . . . , U2kN−1
2(k−1)N . Let

p′m,w denote the conditional error probability of the optimal classifier Îk for Igw(τ)

given U2N−1
0 = w. Then

pm,w ≤ Pr(Îk 6= Igw(τ)|U2N−1
0 = w) + p′m,w. (4.6)

Let

Ri = {P ∈ Λ : D(P‖Qi,w) < D(P‖Qj,w) for all i 6= j, i, j ∈ Qw(Igw(τ))}
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and define

cw,2 = min
i∈Qw(Igw(τ))

min
P∈Λ0∩R̄i

D(P‖Qi,w).

Then, as the {Qi}, i ∈ Qw(Igw(τ)) are different and irreducible, from Lemma 4.3.2 we

have cw,2 > 0 and

lim sup
m→∞

1

m
log p′m,w ≤ −cw,2.

Combining this inequality with (4.5) and (4.6) we obtain that for the positive number

cw = min{cw,1, cw,2} we have

lim sup
m→∞

1

m
log pm,w ≤ −cw. (4.7)

In particular, limm→∞ pm,w = 0. Therefore, as L’Hospital’s rule implies

lim
p→0

p log(1/p)/hb(p) = 1

we have

lim sup
m→∞

1

m
log hb(pm,w) = lim sup

m→∞

1

m
log

(
pm,w log

1

pm,w

)
= lim sup

m→∞

1

m
log pm,w

where the second equality holds because (4.7) implies limm→∞
1
m

log log pm,w = 0.

Thus, the two terms in the maximum in (4.4) are equal and converge to zero expo-

nentially fast by (4.7). Combining this fact with inequalities (4.1) and (4.2) proves

the theorem. �
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4.4 Universal symbol-based coding of block

Markov sources

Now we are ready to establish an upper bound for the real coding redundancy for

a large class of universal symbol-based codes. Let `
(m)
n : An → N+ denote the code

lengths of a universal code {fn} for mth order Markov sources satisfying

1

n
sup

P
Y n−1
0

sup
zn−1
0 ∈An

[
`(m)
n (zn−1

0 ) + log PY n−1
0

(zn−1
0 )

]
≤ c(m)

n (4.8)

for some c
(m)
n → 0 as n → ∞, where the first supremum is taken over all n-fold

marginal distributions of mth order Markov sources over A. In other words, we

require that the “pointwise redundancy” converges to zero uniformly for each source

sequence and for each mth order Markov source. For example, there exist universal

arithmetic codes for mth order Markov sources with c
(m)
n = O(|A|m+1 log n/n) (see,

e.g., [11]).

For fixed m and n the per symbol coding redundancy is defined as

Rn,m =
1

n

(
E`(m)

n (Xn−1
0 )−H(Xn−1

0 )
)

Theorem 4.4.1 If the code length function `
(m)
n satisfies (4.8) then for n ≥ m ≥ 2N

the coding redundancy Rn,m for the block-stationary block-Markov source X∞
0 can be

bounded as

Rn,m ≤
1

n
log N + 2−mcr+o(m) + c(m)

n (4.9)

where cr is defined in Theorem 4.3.1.

Remarks.

(i) For any fixed m and very large coding block length n, the redundancy is exponen-
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tially small in m, that is,

lim sup
n→∞

1

n
E[`(m)

n (Xn−1
0 )]− H̄(X∞

0 ) ≤ 2−mcr+o(m).

(ii) It is easy to see that to minimize the bound (4.9), m should be chosen O(log n).

As mentioned before, there are arithmetic codes with c
(m)
n = O(|A|m+1 log n/n) [11].

For these codes, the optimal choice is m = log n/(cr + log |A|), yielding

Rm,n = O
(
n−

cr
cr+log |A|

)
.

Obviously, cr is not known in advance. Moreover, this rate is slower than ap-

plying the universal code to the first order block Markov source, which results in

O(N |A|2N log(n/N)/n) redundancy. The reason for this is that while the number

of parameters of the original source is finite (namely, |A|2N), the number of param-

eters of the approximating mth order Markov chain (which is |A|m) grows without

bound as m increases. On the other hand, if the dependence of c
(m)
n on m is less than

exponential, then the dominant term in (4.9) is usually the last one.

(iii) The result is significant for the practical case of universal compression, when the

block size of the input is not known. Choosing an incorrect block length may result

in deteriorated performance, as shown by the following experiment. We compressed

the English-language text “book1” from the Calgary Corpus [42] represented as a

binary sequence with blocks of fixed length (Ns = 7 and Ns = 8) corresponding to

characters, using the bzip2 algorithm operating on (possibly different) fixed-length

blocks of Ne symbols (Ne is chosen to be 1,7, and 8). Obviously, the plots when

Ns = Ne are the same. The per-block entropy rate of the source does not depend

on Ns, equalling approximately 2 bits per block. The graph on Figure 4.4 shows the

average number of bits in the encodings per one source block, as the length of the

source sequence (measured in source blocks) increases.
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Figure 4.1: Average number of bits per source block

Choosing the smallest encoding block length Ne = 1 results in guaranteed per-

formance by Theorem 4.4.1, with the computational advantage of operating on a

small alphabet. Thus, coding on the elementary symbol level is a practically good

suboptimal scheme for encoding block Markov sources with unknown block size.

Proof of Theorem 4.4.1: From (4.8) it follows that for any mth order Markov

source Y ∞
0 and xn−1

0

log
PY n−1

0
(xn−1

0 )

P
`
(m)
n

(xn−1
0 )

≤ nc(m)
n (4.10)

where P
`
(m)
n

denotes the coding distribution for n-long sequences.

Let Ŷ ∞
0 denote the stationary mth order Markov approximation of X∞

0 , defined in

Theorem 4.2.1, achieving the minimum in the definition of D̄m (recall that PbY m−1
0

=
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PUm−1
0

). Then

D(PXn−1
0
‖P

`
(m)
n

)

= D(Xn−1
0 ‖Ŷ n−1

0 ) +
∑

zn−1
0 ∈An

PXn−1
0

(zn−1
0 ) log

PbY n−1
0

(zn−1
0 )

P
`
(m)
n

(zn−1
0 )

≤ D(Xn−1
0 ‖Ŷ n−1

0 ) + nc(m)
n

where the inequality holds by (4.10). Now, the first term can be easily bounded

following the proof of Theorem 4.2.1 as

D(Xn−1
0 ‖Ŷ n−1

0 ) = D(Xm−1
0 ‖Ŷ m−1

0 ) +
n∑

i=m

D(Xi|X i−1
0 ‖Yi|Y i−1

0 )

≤ D(Xm−1
0 ‖Ŷ m−1

0 ) +

m−1+Ndn−m+1
N e∑

i=m

D(Xi|X i−1
0 ‖Yi|Y i−1

0 )

= D(Xm−1
0 ‖Ŷ m−1

0 ) +

⌈
n−m + 1

N

⌉ N−1∑
t=0

St

≤ D(Xm−1
0 ‖Ŷ m−1

0 ) + nD̄m

where St is defined as in the proof of Theorem 4.2.1 with Y ∞
0 = Ŷ ∞

0 . Furthermore,

D(Xm−1
0 ‖Ŷ m−1

0 ) = D(Xm−1
0 ‖Um−1

0 ) ≤ log N

since for any xm−1
0 ∈ Am, PUm−1

0
(xm−1

0 ) ≥ PXm−1
0

(xm−1
0 )/N by definition. Thus, by

Theorem 4.3.1

Rn,m ≤
1

n
log N + 2−mcr+o(m) + c(m)

n .

�
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4.5 Conclusion

We have demonstrated that block-Markov sources can be encoded with exponentially

fast vanishing redundancy using codes that are optimized for higher-order symbol-

level Markov models. This partially explains the findings of our experiments (see

Chapter 3) that a bit-level implementation of a universal compression algorithm

performs reasonably well on byte-aligned data when compared with byte-level im-

plementations, inviting further studies of bit-level implementations of compression

algorithms, as on the bit level, one can take advantage of the computational benefits

of operating on the smallest possible alphabet, as demonstrated in the next chapter.
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Chapter 5

Algorithmic Results

The algorithms presented and analyzed in this chapter have been developed for the

purposes of efficient block-sorting compression, but they are also useful for other

source coding and string processing purposes. The main result here is a generalization

of Ukkonen’s algorithm, introduced in Section 2.10.3, for blocks of symbols rather than

individual symbols, allowing for large alphabets without relinquishing the advantages

of small ones.

In particular, an efficient representation of binary suffix trees is presented followed

by a generalization for representing suffix trees of strings of symbols that can be

represented as blocks of bits (e.g. bytes). Upper bounds on memory and time costs

are proved.

5.1 Introduction

The memory footprint of the suffix tree, albeit linear in the length of the string (de-

noted by n), is rather large. The constant factor depends on the actual representation

of nodes and arcs and the alphabet. In case of a binary alphabet with no string termi-

nation and arcs represented by 32-bit pointers, we have 160 bits for each explicit node

(5 pointers: two for the children, two for beginning and end and one for the suffix
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link), which is an almost 320-fold overhead over the original string. By introducing

the end-of-string symbol, another 32 bits are added to each node. If the alphabet is

much larger (e.g., that of bytes) representing arcs by indexed pointers becomes im-

practical; in this case, arc representation requires a sophisticated data structure of its

own (in practice, hash tables are used most often). An interesting exception is [16],

where indexed pointers are used for large alphabets, but in that case one runs into

dynamic memory management problems as the pointer arrays have different lengths.

In this chapter, an alternative representation is proposed where the symbols of the

large alphabet are replaced by blocks of elementary symbols from a small alphabet

(e.g., bits), while the low number of explicit nodes is retained. The end-of-string

symbol is represented implicitly. In case of 8-bit blocks and 32-bit pointers, this

representation results in a less than 40-fold overhead in the worst case.

5.2 Preliminaries

So far, we have paid little attention to the actual representations of the various objects

and references of which the suffix tree described in Section 2.10.2 consists and of those

that are used in actually constructing it (see Section 2.10.3). In this chapter, we will

carefully examine these data structures at a lower level of abstraction.

A possible straightforward representation of explicit nodes, suffix links and arcs of

suffix tree S(tn−1
0 ) would be one consisting of building blocks as depicted by Table 5.1.

For a particular explicit node corresponding to string s, we denote the index of

the first symbol of the label of the incoming arc by s→ start, the index of the symbol

following the last symbol of the label by s→ end and the explicit node pointed by the

suffix link (that is the one corresponding to s
|s|−1
1 ) by s→ link. The first explicit node

corresponding to or following sx, if such a node exists, is denoted by s → child[x],

where x ∈ A is the first symbol in the label of the incoming arc of said explicit node.
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field type

start index symbol index such that 0 ≤ start ≤ end

end index symbol index such that start ≤ end ≤ n

suffix link pointer to another explicit node

child pointers |A| pointers to other explicit nodes

Table 5.1: Direct representation of explicit nodes in a suffix tree

Thus, the difference between the end and start indices is the length of the label of

the incoming arc and the explicit nodes at the other end of outgoing arcs are pointed

by the child pointers.

This representation is quite efficient for the binary alphabet if we disregard for

the moment the need to represent the end of the string. As described in the next

section, that can be solved without modifying this basic data structure. For a larger

alphabet A′ (with |A′| � 2), it can be rather wasteful, since most child pointers are

not used. Instead of using a different data structure, however, we treat the symbols

of A′ as blocks of N = dlog |A′|e bits.

Remark: To save further space, leaf nodes may be represented without the child

pointers, with the end pointer pointing to the end of the string, thus conveying the

leaf type of the node.

Now we are ready to define the block-N suffix tree of tn0 , and other auxiliary data

structures. The following definitions are direct generalizations of Definition 2.10.1

and Definition 2.10.2.

Definition 5.2.1 (Block-N Suffix Trie) Let VN(tn−1
0 ) denote the set of different sub-

strings of tn−1
0 beginning at indices divisible by N . The directed graph TN(tn−1

0 ) over

the vertices VN(tn−1
0 ) is called the block-N suffix trie of tn−1

0 if its arc set EN(tn−1
0 )
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satisfies
−→
x|y ∈ EN(tn−1

0 ) iff t
iN+|x|
iN = xtiN+|x| = y for some i ∈ N

Definition 5.2.2 (Block-N Suffix Tree) SN(tn−1
0 ) = (WN(tn−1

0 , FN(tn−1
0 )), the block-

N suffix tree of tn−1
0 is defined by contracting all arcs of TN(tn−1

0 ) which are the sole

outbound arc of a node.

For any node corresponding to s, the suffix link s→ link in these cases points to

the node corresponding to s
|s|−1
N , if N < |s|. In case of equality, it points to the node

corresponding to ε denoted henceforth as the root.

Note that the suffix trie and the suffix tree of Definition 2.10.1 and Definition

2.10.2 are special cases of the block suffix trie and the block suffix tree, respectively,

for the case N = 1. Formally, T (tn−1
0 ) = T1(t

n−1
0 ) and S(tn−1

0 ) = S1(t
n−1
0 ).

The following definitions from [39] can be applied to the generalized data struc-

tures essentially without modification:

Definition 5.2.3 (Reference Pair) Nodes u ∈ VN(tn−1
0 ) of TN(tn−1

0 ) (both explicit

and implicit) are referenced by the reference pair (s,w) where s ∈ WN(tn−1
0 ) is an

explicit node and w is a substring of tn−1
0 such that u = sw.

On the implementation level, reference pairs are represented by a pointer s̄ to the

data structure (see Table 5.1) corresponding to explicit node s → child[w0] and an

index c and length l such that w = tc+l−1
c .

The reference pair to some particular u ∈ VN(tn−1
0 ) is obviously not unique. Of

the many possibilities, we define the canonical reference pair to u as follows:

Definition 5.2.4 (Canonical Reference Pair) A reference pair (s,w) is canonical if

s is the closest ancestor of u in TN(tn−1
0 ).

The following algorithm makes a reference pair canonical, if it is not canonical

already:
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Algorithm 5.2.1 (Canonize)
Input: s̄, c, l
Output: s̄, c, l

1. skip← (s̄→ end− s̄→ start)

2. if l < skip then return

3. c← (c + skip)

4. s̄← (s̄→ child[tc])

5. l← (l − skip)

6. go to 1

In fact, Algorithm 5.2.1 is not different from procedure canonize in [39, Section 4].

Its apparent simplicity is the result of the underlying representation.

5.3 End of String Representation

In many applications, including the Burrows-Wheeler transformation, there is an

additional unique end-of-string symbol tn 6∈ A added to the string tn−1
0 so that there

is a one-to-one correspondence between leaves of S(tn0 ) and suffixes of tn−1
0 . For

example, in this case the number of occurrence of a substring is equal to the number

of leaf successors of its node. That is in this case, the number of leaves of S(un−1
0 )

(and that of isomorphic representations) always equals n + 1.

If the suffix tree on a larger alphabet is represented as a block-suffix tree on bits as

suggested in the next section, explicit end-of-string representation may become very

expensive. In case of using a third symbol besides one and zero, an additional pointer

must be added to each explicit node in order to allow for three-way branchings. If

the end-of-string symbol is introduced on the level of supersymbols (blocks of bits),

and |A| = 2N as is often the case, with the introduction of a new symbol, one must

add an additional bit to the representation of the supersymbols. This, in addition to

leading to a substantial size increase, can eliminate the possibility of block-operations

on the computer (e.g., by turning bytes into 9-bit blocks).
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The following two observations allow for an implicit representation of the unique

end-of-string character, regardless of whether the suffix tree is represented using its

native symbols or as a block-suffix tree on elementary symbols. The first is simply a

special case of the second, with block length N = 1.

Lemma 5.3.1 In a block-suffix tree SN(tnN
0 ), where tnN 6= ti for every i 6= nN , the

labels of arcs to explicit nodes having a child labeled by tnN are suffixes of tnN−1
0 .

Lemma 5.3.2 In a block-suffix tree SN(tnN
0 ), where tnN 6= ti for every i 6= nN , there

are no end pointers with index nN , except those of explicit nodes having a child labeled

by tnN .

Lemma 5.3.1 follows directly from the definition of explicit node labels, while

Lemma 5.3.2 follows from the on-line nature of Ukkonen’s algorithm, assigning end

pointers in increasing order. Therefore, before tnN is added, there are no end pointers

with index nN .

Lemma 5.3.3 It is possible to modify SN(tnN
0 ) so that those and only those explicit

nodes have an end pointer pointing to tnN that have a child labeled by it.

Proof: From Lemma 5.3.1, it follows that it is possible to modify SsN so that all

the explicit nodes having a child labeled by tnN have their end pointer pointing to

tnN . Lemma 5.3.2 ensures that after doing so, no other explicit node will have an end

pointer with index nN . �

Observe that the leaves labeled by tnN can be deleted from the block suffix tree

modified according to Lemma 5.3.3 without loss of information, as the end pointers

uniquely identify explicit nodes to which the deleted leaves were attached. Similarly,

tnN can be deleted from the labels of the remaining leaves by decreasing their end

pointer’s index from nN + 1 to nN . Note, furthermore, that these explicit nodes are

the ones on the boundary path of SN(tnN−1
0 ), which is a subgraph of SN(tnN

0 ).
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By doing so, we obtain a representation of SN(tnN
0 ), with no explicit end-of-string

symbols. The following theorem states that this same representation — denoted by

S ′
N(tnN

0 ) — can be obtained from SN(tnN−1
0 ) with a time cost proportional to n.

Theorem 5.3.1 S ′
N(tnN

0 ) can be constructed from SN(tnN−1
0 ) using O(n) operations.

Proof: The boundary path of SN(tnN−1
0 ) has n + 1 nodes on it. By traversing them,

implicit nodes along the boundary path are first made explicit (by splitting the node

into two), and for all (now explicit) nodes along the boundary path the beginning and

end pointers are incremented by the same amount so that the end index equals nN .

The result is S ′
N(tnN

0 ). �

In practice, one can begin the traversal of the boundary path at the so-called

active point of SN(tnN−1
0 ), which is the first node along the boundary path that is

not a leaf. The active point is known after the execution of Ukkonen’s algorithm.

5.4 Block Suffix Trees

A block-N suffix tree SN(tn−1
0 ) of tn−1

0 represents a tree graph over all substrings

tiN+l
iN , where 0 ≤ i < n/Nand 0 ≤ l < n− iN with directed arcs

−−−−−−−−−→
tiN+k
iN |tjN+k+1

jN labeled

by tjN+k+1 for every tiN+k
iN = tjN+k

jN , as previously. Suffix links are defined from tiN+k
iN

to tiN+k
iN+N if k > N . Note that in this definition no suffix link originates from nodes

corresponding to substrings not longer than N . Nodes with only one outbound arc

are contracted as in the case of suffix trees.

Similarly to Ukkonen’s auxiliary state ⊥, one can introduce additional N nodes

denoted by λ0 . . . λN−1 above the root in order to avoid a distinction between nodes

corresponding to short substrings and those consisting of more than N symbols. In

actual implementations, these do not need to be represented explicitly. Suffix links to

root point from all nodes corresponding to substrings of length N , while from those
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of length k < N the suffix link points to λk. The suffix link from root points to λ0.

arcs labeled by all symbols of A connect λi to λi+1 and λN−1 to root.

For a string tnN−1
0 on alphabet A and un−1

0 on alphabet AN where ui = tiN+N−1
iN ,

the one-to-one mapping φ : ui+k
i → t

(i+k)N
iN from the nodes of the suffix tree S(un−1

0 )

to a subset of the nodes of block-suffix tree SN(tnN−1
0 ) preserves connectivity; thus

SN(tnN−1
0 ) can be considered as a representation of S(un−1

0 ):

Lemma 5.4.1 The node corresponding to ui+k
i is the direct ancestor of that corre-

sponding to uj+k+1
j in S(un−1

0 ) if and only if φ(ui+k
i ) is the N th ancestor of φ(uj+k+1

j )

in SN(tnN−1
0 ).

Proof: ui+k
i = uj+k

j iff tiN+kN+m
iN = tjN+kN+m

jN for every m ∈ {0, . . . , N − 1}, thus

tiN+kN
iN is the direct ancestor of tiN+kN+1

iN , which is the direct ancestor of tiN+kN+2
iN and

so on, up to tiN+kN+N−1
iN , which is the direct ancestor of t

(j+k+1)N
jN . �

Lemma 5.4.2 The end indices of all mth successors of a node ti+k
i in SN have the

same remainder after division by N .

Proof: They are at the same distance i+ k +m from root, and the beginning indices

of the corresponding substrings are divisible by N . �

Lemma 5.4.1 expresses the essential isomorphism between the two graphs corre-

sponding to S(un−1
0 ) and SN(tnN−1

0 ). Similarly, there is an isomorphism between the

actual data structures, the concise representations with implicit nodes:

Theorem 5.4.1 Nodes ui+k
i and uj+k+1

j are contracted in S(un−1
0 ) iff nodes φ(ui+k

i )

and φ(uj+k+1
j ) are contracted in SN(tnN−1

0 ). Hence, φ defines an isomorphism between

S(un−1
0 ) and SN(tnN−1

0 ).

Proof: If nodes φ(ui+k
i ) and φ(uj+k+1

j ) are contracted, it means that each node on

the path t
(i+k)N+m
iN , where m ∈ {0, 1, . . . , N − 1} has exactly one successor. There-

fore φ(ui+k
i ) has exactly one Nth successor, thus, according to Lemma 5.4.1, ui+k

i
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and uj+k+1
1 are contracted as well (and i = j). The other direction can be proved

by contradiction. Suppose that φ(ui+k
i ) and φ(uj+k+1

j ) are not contracted, but ui+k
i

and uj+k+1
j are. This, by Lemma 5.4.1, implies that there is at least one branching

somewhere on the path between φ(ui+k
i ) and φ(uj+k+1

j ), but φ(uj+k+1
j ) is the sole Nth

successor of φ(ui+k
i ). This, in turn, implies that it has a leaf successor that is closer

than N . But since tnN−1
0 has length nN , all leaves are at a distance divisible by N

from root, which is in contradiction with Lemma 5.4.2. �

The block suffix tree SN(tnN−1
0 ) has at most n leaves and n − 1 explicit nodes.

While these upper bounds are the same as those for the suffix tree S(un−1
0 ), it is

worth noting that SN(tnN−1
0 ) has usually more explicit nodes, as more than |A|-way

branchings in the original suffix tree are represented by a system of at most |A|-way

branchings. Yet, because of the need for a separate database for the arcs in the direct

representation of S(un−1
0 ), representing it in a block-suffix tree still saves memory and

time.

Block suffix trees can be constructed using Ukkonen’s algorithm ([39], Algorithm

2) by modifying the initialization steps 1,2 and 3 to create λ0 . . . λN−1, the arcs be-

tween them and the suffix link from root to λ0 and the arcs from λN−1 to root. The

rest of the algorithm and its procedures apply without modifications, as well as the

proof of linear time cost.

Using the low-level representation from Section 5.2 for the binary alphabet A =

{0, 1} offers several opportunities for simplification, warranting separate treatment.

First, observe that an explicit node cannot be the active point. This renders pro-

cedure test-and-split in [39, Section 4] trivial. Essentially, in that step, one always

makes the active point explicit by splitting the corresponding edge. Secondly, be-

cause of the particular low-level representation, there is no need to actually represent

λ0 . . . λN−1; suffix links pointing to those can be represented by null pointers.

For the sake of simplicity, we incorporated procedures update and test-and-split
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from [39] in the following step-by-step description of the generalized version of Ukko-

nen’s algorithm for binary block suffix trees. For N = 1, it becomes Ukkonen’s

algorithm. The termination step transforming SN(tn−1
0 ) into SN(tn0 ) has not been

included in the listing below.

Algorithm 5.4.1 (Binary Block-N Suffix Tree Construction)
Input: tn−1

0 , N
Output: SN(tn−1

0 )

Initialization.

1. l← 0, i← 0, p← N, q ← N

2. from← null

3. add new leaf node root to SN

4. (root→ start)← 0, (root→ end)←∞, (root→ link)← null

5. s̄← root

Main loop until the end of the input string.

6. while p < n do

Search for the active point. Actually, if the computer can operate on blocks of bits (as is
usually the case), this loop can be implemented in a much more efficient way. Here it is
presented like this for the sake of clarity.

7. while i < N do

8. x← tp+i

9. if l = (s̄→ end− s̄→ start) then

10. l← 0

11. s̄← (s̄→ child[x])

12. else

13. x← tp+i

14. if ts̄→start+l 6= tp+i then break to 16

15. i← (i + 1), l← (l + 1)

16. if i < N then do

Active point found. The following procedure splits the arc on which the active point resides.
The new leaf is added as a branch, while the rest of the arc is the trunk. This corresponds
to test-and-split in [39].
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17. add new node trunk to SN

18. (trunk → end)← (s̄→ end)← (s̄→ start + l)

19. (trunk → start)← (s̄→ end)

20. (trunk → child[0])← (s̄→ child[0])

21. (trunk → child[1])← (s̄→ child[1])

22. add new leaf node branch to SN

23. (branch→ start)← (p + i), (branch→ end)←∞

24. (s̄→ child[x])← branch, (s̄→ child[1− x])← trunk

Traversal of the boundary path. The two branches of the condition below deal with explicit
nodes and λ0 . . . λN , respectively.

25. if from 6= null then (from→ link)← s̄

26. from← s̄

27. if (s̄→ link) 6= null then

28. c← (s̄→ start), s̄← (s̄→ link)

29. canonize

30. if l = 0 or ts̄→start+l = x then from← null

31. else if q < p then

32. p← (p + N), c← p

33. l← (p− q) + ((s̄→ start + l)modN)

34. s̄← root

35. canonize

36. from← null

37. else

38. s̄← root

39. l← 0, i← 0, from← null

40. p← (p + N), q ← (q + N)

41. loop while from 6= null

Active point not found in the block. Continue searching.

42. else q ← (q + N), i← 0

43. return
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5.5 Conclusions

It has been demonstrated that block suffix trees are computationally less expensive

representations of the suffix trees of strings whose symbols are blocks of uniform

length consisting of elementary symbols. For example, binary block-8 suffix trees

are efficient representations of suffix trees of strings of bytes. An efficient algorithm

for constructing block suffix trees on small alphabets and arbitrary block size has

been developed. In the special case of suffix trees on small alphabets when the block

size equals 1, the proposed algorithm is still advantageous because of the implicit

representation of the end-of-string symbol.

In the introduction to their 2003 paper [21], Kärkkäinen and Sanders claim that

their algorithm is simpler than any suffix tree construction algorithm and illustrate

it by a 50 line C++ implementation. Our algorithm, when implemented on bits as

elementary symbols, is of comparable simplicity: Algorithm 5.4.1 is presented at a

very low level of abstraction and can be translated line-by-line into a C or C++

program. In an efficient implementation for a fixed block length, one can replace the

loop at line 7 by a few operations on blocks. In this case, the performance of this

algorithm matches that in the appendix of [21]. The memory footprint, however, is

about four times larger, which is a significant disadvantage compared to [21] for small

block sizes. For large block sizes it is less significant, while the lexicographic naming

step becomes increasingly unwieldy, requiring an advanced data structure of its own.

Our algorithm, by contrast, handles large block sizes seamlessly without modification.

It is also interesting to compare our algorithm to that by Farach [16]. There are

two approaches to building a suffix tree on blocks with Farach’s algorithm. If the

block size is a power of two (as is often the case), Farach’s algorithm can be used

directly to construct the corresponding block suffix tree, by ending the recursion at

the corresponding level. For general block sizes, one can first number the blocks in

lexicographic order and then use Farach’s algorithm on these numbers. In this second
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case, the sorting of blocks becomes the computational bottleneck. As illustrated by

the proof of Theorem 5.4.1, our algorithm leverages the suffix tree’s structure to

achieve the lexicographic ordering of blocks implicitly. Our algorithm is simpler and

faster in both cases, though Farach’s algorithm may also offer similar opportunities

for simplification for the binary case and block sizes of powers of two. While not as

general as our solution, this might actually be worth pursuing, as Farach’s algorithm

does not need suffix links, thus saving one pointer (out of the average four) for each

explicit node, including the leaf nodes.
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Chapter 6

Conclusions

In this chapter, we summarize and interpret our results and show some possible

directions for future work. In particular, we provide interpretations of the results

from Chapter 4 and Chapter 5 in terms of design criteria for lossless compression

applications, and revisit the experimental results in Chapter 3 to provide a better

explanation for our findings in the light of the results in Chapter 4.

6.1 Summary and Interpretation of our Results

The main question that our results can help answering is whether or not it is worth

doing lossless compression on the level of elementary symbols.

One one hand, we have proved an upper bound on the redundancy resulting from

not taking blocks into account and also proved that strongly universal source codes

for higher order Markov sources are universal for finite-memory block Markov sources

as well. Thus, irrespective of the actual block size of the source, we have guaranteed

performance if we use such codes.

Theorem 4.2.1 gives the best mth order Markovian approximation for a block

Markov source and an explicit expression for the divergence rate resulting from this

approximation. Corollary 4.2.1 shows that it converges to zero, as m, the memory
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of the model approaches infinity. Theorem 4.3.1 shows that this convergence rate is

exponentially fast. Finally, in Theorem 4.4.1 an upper bound on the actual coding

redundancy is shown.

On the other hand, when using codes that match the known block size of the

source, we may have faster convergence. This is well illustrated by the experiments

in Chapter 3 and the result of the follow-up experiment depicted on Figure 4.4.

In this follow-up experiment, we used the same modeling and encoding algorithm

for all block sizes for a fair comparison. It is interesting to note that bzip2’s sophis-

ticated modeling and encoding algorithm for the binary case performs slightly worse

than the simple 0-order run-length encoding used for the experiments in Chapter 3.

This can be explained by the fact that some of the output it produces is redundant

for the binary alphabet.

If the block size is known, it is advantageous to take it into account (see Re-

mark (ii) to Theorem 4.4.1). No improved modeling and encoding algorithm on the

binary BWT output could have matched the performance of a similar block-sorting

compression algorithm, when its block size assumption was met.

As discussed in [14], the main advantage of block-sorting compression when com-

pared to other methods with similar performance is the low computational complexity.

We have shown in Chapter 5 that block sorting remains computationally inexpensive

when done on blocks of symbols rather than individual symbols. The results are

applicable beyond block-sorting as well. For example, the proposed data structure

and the algorithm for its construction can be applied with minimal modifications to

the compression algorithm presented in [13]. Instead of a block suffix tree, a block

prefix tree will need to get built in a similar fashion, generalizing the algorithm for

arbitrary block sizes while retaining its complexity and performance characteristics.

Theorem 5.4.1 implies that the proposed data structure, the block-N suffix tree,

is an equivalent representation of the suffix tree on the N long blocks of the input.
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For the binary case, we provide a particularly efficient representation.

By carefully exploiting the advantages resulting from operating on a binary al-

phabet and designing a very simple and efficient suffix tree construction algorithm

(Algorithm 5.4.1), we have successfully challenged the claim in [21] that the skew

algorithm presented in that paper is simpler than any linear suffix tree construction

algorithm.

6.2 Possible Directions for Future Work

Many questions regarding redundancy resulting from mismatched block size in the

source and the approximating model remains open. As illustrated by the following

example, it is not even guaranteed to exceed that by a symbol-level approximation.
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Figure 6.1: Synthetic block Markov source with first order statistics of English

The graph in Figure 6.2 shows the results of compressing a synthetic block Markov
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source that matches the first order statistics of book1 from the Calgary Corpus, when

representing characters as 7 and 8 bit blocks (Ns = 7 and Ns=8, respectively). It has

been encoded using bzip2, operating on 1, 7 and 8 bit blocks. At around n = 105

symbols, the mismatched model surpasses the binary one. While this may be partly

due to the inefficiency of bzip2 on the binary alphabet (our compression algorithm

from Chapter 3 compresses the first 105 blocks of this synthetic source to within 4.5

bits per block in both cases), it certainly invites further studies.

The theoretical problem underlying these experimental results is the following:

Assuming a block-N Markov source and universal codes that provide near optimal

redundancy rates for order m Markov sources, what is the minimax redundancy in

this scenario? Note that the results of Chapter 4 only partially answer this question

by giving a uniform upper bound for a strong family of universal codes. Missing are

a lower bound and a matching upper bound (likely tighter than that of Section 4.4).

In cryptography, the results in Chapter 4 can be applied to mounting a known

ciphertext attack against encrypted sources with known cleartext statistics, when the

encryption is realized with a block cipher used in ECB (electronic codebook) mode,

but the block size of the cipher is not known in advance.

As noted in Chapter 5, it would be interesting to investigate whether Farach’s al-

gorithm [16] offers similar simplification opportunities for the binary case. While that

would limit the attainable block sizes to powers of two, it would also offer consider-

able savings in memory costs by omitting suffix links. It would also be interesting to

study block suffix tree construction under various advanced models of computation,

as it definitely offers many opportunities for parallel processing.
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