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Abstract

A class of burst noise-erasure channels which incorporate both errors and erasures during transmis-

sion is studied. The channel, whose output is explicitly expressed in terms of its input and a stationary

ergodic noise-erasure process, is shown to have a so-called “quasi-symmetry” property under certain

invertibility conditions. As a result, it is proved that a uniformly distributed input process maximizes the

channel’s block mutual information, resulting in a closed-form formula for its non-feedback capacity in

terms of the noise-erasure entropy rate and the entropy rate of an auxiliary erasure process. The feedback

channel capacity is also characterized, showing that feedback does not increase capacity and generalizing

prior related results. The capacity-cost function of the channel with and without feedback is next

investigated. A sequence of finite-letter upper bounds for the capacity-cost function without feedback

is derived. Finite-letter lower bonds for the capacity-cost function with feedback are obtained using

a specific encoding rule. Based on these bounds, it is demonstrated both numerically and analytically

that feedback can increase the capacity-cost function for a class of channels with Markov noise-erasure

processes.
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I. INTRODUCTION

The stationary memoryless binary erasure channel (BEC) and the binary symmetric channel

(BSC) play fundamental roles in information theory, since they model two types of common

channel distortions in digital communications. In a BEC, at each time instance, the transmitter

sends a bit (0 or 1) and the receiver either gets the bit correctly or as an erasure denoted by

the symbol “e.” The BEC models communication systems where signals are either transmitted

noiselessly or lost. The loss may be caused by packet collisions, buffer overflows, excessive

delay, or corrupted data. In a BSC, the transmitter similarly sends a bit, but the receiver obtains

it either correctly or flipped. The BSC is a standard model for binary communication systems

with noise. For example, in a memoryless additive Gaussian noise channel used with antipodal

signaling and hard-decision demodulation, when the noise level is high, a decision error may

occur at the receiver which is characterized by flipping the transmitted bit in the system’s BSC

representation. As opposed to the BSC, the BEC is, in a sense, noiseless. However in realistic

systems, erasures and errors usually co-exist and often occur in bursts due to their time-correlated

statistical behavior. In this paper, we introduce the q-ary noise-erasure channel (NEC) with

memory which incorporates both erasures and noise. This model, which subsumes both the

BEC and the BSC, as well as their extensions with non-binary alphabets and memory, provides

a useful model for real-world channels, where data packets can be corrupted or dropped in a

bursty fashion. Such channels include wireless systems where the receiver can identify deep

fades and designate them as erasure bursts (while less detrimental fades are treated as regular

error-prone transmissions), hybrid internet-wireless communications and magnetic storage and

recording devices [2]–[4].

A. The burst erasure and additive noise channels

Given integer q ≥ 2, let Xi ∈ X = {0, 1, 2, .., q − 1} , Q denote the channel input at time

i and Yi ∈ Y = Q ∪ {e} denote the corresponding channel output (we assume throughout that

e 6∈ Q). For the general q-ary burst erasure channel (EC), the input-output relationship can be

expressed by

Yi = Xi · 1{Z̃i 6= e}+ e · 1{Z̃i = e}, for i = 1, 2, . . . ,

where {Z̃i}∞i=1 is a correlated erasure process (which is independent of the message conveyed

by the input sequence) with alphabet {0, e}, 1(·) is the indicator function, and by definition
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a+ 0 = a, a · 0 = 0, and a · 1 = a for all a ∈ Q∪ {e}. When {Z̃i}∞i=1 is stationary memoryless

(i.e., independent and identically distributed) and q = 2, the channel reduces to the BEC. The

above burst EC also includes the Gilbert-Elliott erasure model (e.g., [5]–[7]) as a special instance.

In this case, the erasure process {Z̃i} is a hidden Markov source driven by a two-state Markov

chain according to the well-known Gilbert-Elliott model [8]–[10] (where each state is governed

by a BEC). The performance of coding techniques for burst ECs has been extensively studied; see

for example [2], [4]–[7], [11]–[13] and the references therein. Channel capacity studies include

[14] and [15], where the feedback and non-feedback capacities of BECs with no-consecutive-ones

at the input were respectively investigated. Furthermore, explicit computations of the feedback

and non-feedback capacities of energy harvesting BECs were given in [16], where it was shown

that feedback increases the capacity of such channels.

A discrete q-ary additive noise channel (ANC) with memory has identical input and output

alphabets X = Y = Q and is described as Yi = Xi⊕q Zi for i = 1, 2, · · · , where {Zi}∞i=1 is a q-

ary correlated noise process (that is independent of the input message) and ⊕q denotes modulo-q

addition. The BSC is a special case of the ANC: when {Zi}∞i=1 is binary-valued and memoryless,

the ANC reduces to the BSC. Furthermore, the Gilbert-Elliott burst noise channel [8]–[10]

(whose states are each governed by a BSC) and the more recent infinite and finite-memory

Polya contagion channel [17] and its queue-based variation [18] are interesting instances of the

ANC, which have been used to model time-correlated fading channels (e.g., see [19], [20] and

related work). In [21], it was shown that feedback does not increase the capacity of ANCs with

arbitrary noise memory. In particular, denoting the capacity with and without feedback by CANC
FB

and CANC, respectively, it is proved in [21] that CANC = CANC
FB = log q−Hsp(Z), where Hsp(Z)

denotes the spectral sup-entropy rate [22], [23] of the noise process Z = {Zi}∞i=1. The result

of [21], which can also be proved for a larger class of channels [24], was recently extended

in [25] to the family of compound channels with additive noise. Furthermore, it was shown in

[26] that feedback can increase the capacity-cost function of an ANC with Markov noise.

B. NEC model: a burst channel for both errors and erasures

In this paper, we consider the NEC, a channel with both burst erasures and errors whose

output Yi ∈ Y = Q∪ {e} at time i is given by

Yi = h(Xi, Zi) · 1{Zi 6= e}+ e · 1{Zi = e} , θ(Xi, Zi) (1)
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where Xi ∈ X = Q is the input, {Zi}ni=1 , Z is a noise-erasure process with alphabet Z =

{0, ..., q′ − 1} ∪ {e} , Q′ ∪ {e}, 1 ≤ q′ ≤ q, which is independent of the input message, and

h : Q ×Q′ → Q is a deterministic function. Note that strictly speaking, h(xi, zi) is undefined

when zi = e. However, since 1{zi 6= e} = 0 when zi = e, this is remedied by setting the product

of an undefined quantity and zero as equal to zero. Indeed, (1) means that

Yi =

 h(Xi, Zi), if Zi 6= e,

e, if Zi = e.

Setting q′ = 1 and h(x, z) = x for all z ∈ Z , reduces the NEC to the EC. Setting q′ = q,

h(x, z) = x ⊕q z, and PZi
(e) = 0, turns the NEC into the ANC. Also, a Gilbert-Elliott burst

model combining (in general non-binary) errors with erasures is an example of an NEC (in

such model, each state is governed by a memoryless channel whose inputs can be received in

error or erased). Finally, we note that the NEC resembles the cascade channel of [4], where its

non-feedback capacity is derived and its performance under low-density parity-check coding is

analyzed. This cascade channel is motivated by magnetic data storage systems and it consists

of a concatenation of an indecomposable finite-state channel with a burst erasure channel where

symbols are erased consecutively in each output sequence. The NEC differs from the cascade

model of [4] in a number of aspects, including the fact that the NEC is governed via an explicit

input-output functional relationship in terms of a single noise-erasure process as given in (1)

without requiring consecutive erasures in the output sequences while the cascade model has

independent error and erasure processes emanating from its separate channel components.

We study the non-feedback and feedback capacities and capacity-cost functions of the NEC

under certain invertibility conditions on the function h in (1). The class of NECs satisfying

these conditions readily include the ANC, the EC, the discrete symmetric channel of [24] (with

identical input, noise and output alphabets) and the following channel which differs significantly

from the latter three channels.

Data storage channel: This channel is described by (1) where we set q′ = 2, q to be a power

of 2, and the function h(·, ·) to be

h(x, z) = x · 1{z = 0}+ (q − 1− x) · 1{z = 1}. (2)

This channel can model storage devices with errors and erasures where the data is stored in

binary form, using a natural binary code (NBC) of length log2 q bits. When z = e, an erasure

occurs. In the non-erasure mode, if z = 0, no error occurs and the storage device returns x
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perfectly, and if z = 1, a hard failure occurs causing the storage device to flip all the NBC bits

representing x, which is equivalent to the operation q − 1− x.

In general, the capacity of well-behaving channels with memory (such as stationary informa-

tion stable channels) is given as the limit of the n-fold mutual information sequence [22], [27]–

[29], while the feedback capacity is expressed via the limit of the n-fold directed information

[30]–[34]. For some special cases, single-letter expressions or exact values of such capacities can

be obtained. Examples of channels where the feedback capacity is explicitly determined include

the ANC [21], the finite-state channel with states known at both transmitter and receiver [35], the

trapdoor channel [36], the Ising channel [37], the symmetric finite-state Markov channel [38],

and the BEC [14] and the binary-input binary-output channel [39] with both channels subjected

to a no consecutive ones input constraint.

C. Contributions

In this paper, we introduce an auxiliary erasure process {Z̃i}∞i=1 , Z̃, a binary process defined

via the noise-erasure process Z = {Zi}∞i=1, and we prove that the non-feedback capacity of the

NEC with a stationary ergodic noise-erasure process is given by (1− ε) log q− [H̄(Z)− H̄(Z̃)]

(Theorem 1), where H̄(·) denotes entropy rate and ε = PZi
(e) is the probability of an erasure

which is defined in Section III. The proof consists of showing, via two intermediate lemmas

(Lemmas 7 and 8) that make use of the structure of the channel function h in (1), that the n-

fold NEC is quasi-symmetric (as per Definition 6) and hence its n-fold mutual information

is maximized by a uniformly distributed input process. The derived NEC capacity formula

recovers the capacity expressions of the ANC and the EC, when the NEC is specialized to

the latter channels. We briefly explore the calculation of the capacity for Markov noise-erasure

processes. We further show that, unlike the EC, for which memory in the erasure process does

not increase capacity (e.g., see [5], [11]), the capacity of the NEC is strictly larger than the

capacity of its memoryless counterpart (i.e., a channel with a memoryless noise-erasure process

with identical marginal distribution as the NEC’s stationary ergodic noise-erasure process) for

non-trivial correlated noise-erasure processes such as non-degenerate stationary, irreducible and

aperiodic Markov processes. We also investigate the NEC with ideal output feedback. We prove

a converse for the feedback capacity and show that the feedback capacity coincides with the

non-feedback capacity (Theorem 2). This shows that feedback does not increase the capacity of

the NEC and generalizes the feedback capacity results of [21] and [24].
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The capacity-cost functions of the NEC with and without feedback is next investigated. We

establish a sequence of finite letter upper bounds on the capacity-cost function without feedback

(Theorem 3) and a sequence of finite letter lower bounds on the capacity-cost function with

feedback based on a constructive feedback encoding rule and an achievability result (Theorem 4).

For a class of NECs with stationary irreducible and aperiodic Markov noise-erasure processes

with transition probability matrices satisfying some uniformity conditions for one of their rows

and for the column corresponding to the erasure state, we prove that feedback does increase

the capacity-cost function in a certain cost range (Theorem 5). This result, which generalizes

a similar result in [26] for the ANC, is further demonstrated to hold for more general NECs

by numerically comparing the lower bound of the capacity-cost function with feedback and

the upper bound of the capacity-cost function without feedback. Finally, we point out that the

proof techniques of this paper are significant extensions of the methods used for the ANC in

the derivation of the feedback capacity [21] and the study of the capacity-cost function with

and without feedback [26]. We note that, in addition to allowing for erased output symbols,

the NEC can significantly differ from the ANC as its noise alphabet can be much smaller than

the input alphabet (e.g., see the data storage example in (2)). Furthermore, while the ANC is

symmetric [45], the NEC satisfies a considerably weaker notion of symmetry, quasi-symmetry.

These differences necessitate a technically more sophisticated approach for proving the capacity

results.

The rest of this paper is organized as follows. We first provide preliminary results in Section II.

In Section III, we present the invertibility properties imposed on the NEC and derive the NEC

non-feedback capacity. We also examine the calculation of the capacity expression under Markov

noise-erasure processes and the effect of memory on the NEC capacity. In Section IV, we

study the feedback capacity of the NEC and show that feedback does not increase capacity. We

investigate the NEC capacity-cost functions with and without feedback in Sections V and VI,

respectively. We conclude the paper in Section VII.

II. PRELIMINARIES

A. Non-Feedback/Feedback Capacity and Capacity-Cost Function

We use capital letters such as X, Y , and Z to denote random variables and the corresponding

script letters X , Y , and Z to denote their alphabets. The distribution of X is denoted by PX ,

where the subscript may be omitted if there is no ambiguity. In this paper, all random variables
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have finite alphabets. A channel W with input alphabet X and output alphabet Y is statistically

modeled as a sequence of conditional distributions W = {W n(·|·)}∞n=1, where W n(·|xn) is a

probability distribution on Yn for every xn ∈ X n, which we call the n-fold channel of W .

Finally, let Xn and Y n denote the n-fold channel’s input and output sequences, respectively,

where Xn = (X1, X2, ..., Xn) and Y n = (Y1, Y2, ..., Yn).

Definition 1: A feedback channel code with block length n and rate R ≥ 0 consists of a

sequence of encoding functions f (n)
i : M× Y i−1 → X for i = 1, ..., n and a decoder g(n) :

Yn →M, where M = {1, 2, ..., 2nR} is the message set.

When there is no feedback, the sequence of encoders simplifies to the sequence f (n) :M→

X n of encoders whose domain is just the message set. The encoder conveys message M , which

is uniformly distributed over M, by sending the sequence Xn over the channel which in turn

is received as Y n at the receiver. For the non-feedback case, Xn = f (n)(M), while for the

feedback case, the encoder takes into account the previously received channel outputs and sends

Xi = f
(n)
i (M,Y i−1) for i = 1, · · · , n. Upon estimating the sent message via g(n)(Y n), the

resulting decoding error probability is P (n)
e = Pr(g(n)(Y n) 6= M).

In general, the use of the channel is not free. For example, a binary on-off keyed physical

channel emits a pulse signal when sending the bit 1 (which requires a certain expenditure of

energy) and stays idle (using no energy) when sending the bit 0 (e.g., [40]); this results in different

cost constraints on the input alphabet of the equivalent discrete channel. Let b : X → R be a

cost function and define the cost of an input sequence xn as b(xn) =
∑n

i=1 b(xi) [41].

Definition 2: A channel code with block length n and rate R for the n-fold channel of W is

β-admissible if b(xn) ≤ nβ for all codewords xn in the codebook C which, when there is no

feedback, is given by

C =
{
xn ∈ X n : xn = f (n)(m) for some m ∈M

}
,

while, when there is feedback, is given by

C =
{
xn ∈ X n : xi = f

(n)
i (m, yi−1), i = 1, ..., n,m ∈M, yn ∈ Yn,W n(yn|xn) 6= 0

}
.

Definition 3: The feedback capacity-cost function of a channel, denoted by CFB(β), is the

supremum of all rates R for which there exists a sequence of β-admissible feedback channel

codes with block length n and rate R, such that limn→∞ P
(n)
e = 0.

The non-feedback capacity-cost function, feedback capacity, and non-feedback capacity are

defined similarly and are denoted by C(β), CFB, and C, respectively. When there is no cost
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constraint, or equivalently β =∞, the capacity-cost function (with or without feedback) reduces

to the capacity (with or without feedback).

Recall that the channel W is memoryless if W n(yn|xn) = Πn
i=1W

1(yi|xi) for all n ≥ 1,

xn ∈ X n and yn ∈ Yn, when there is no feedback. Thus, a memoryless channel is defined by its

input alphabet X , output alphabet Y , and transition probabilities W 1(y|x), x ∈ X and y ∈ Y . For

memoryless channels, the superscript “1” is usually omitted. Shannon’s channel coding theorem

[42] establishes that

C = max
PX

I(X;Y ) (3)

for memoryless channels, where I(X;Y ) is the mutual information between X and Y . This

coding theorem can be extended to show that (e.g., see [22], [27]–[29], [43])

C = sup
n
Cn = lim

n→∞
Cn (4)

for stationary and information stable channels,1 where

Cn = max
PXn

1

n
I(Xn;Y n).

For memoryless channels, the feedback and non-feedback capacities are equal [44]. In general,

CFB ≥ C, since the class of feedback codes includes non-feedback codes as a special case, and

CFB > C for certain channels with memory.

Definition 4: For an input random vector Xn with distribution PXn , the average cost of sending

Xn over the channel is defined by

E[b(Xn)] =
∑
xn

PXn(xn)b(xn) =
n∑
i=1

E[b(Xi)].

Definition 5: The distribution PXn of an n-dimensional input random vector Xn that satisfies

1

n
E[b(Xn)] ≤ β

is called a β-admissible input distribution. We denote the set of n-dimensional β-admissible

input distributions by τn(β):

τn(β) = {PXn :
1

n
E[b(Xn)] ≤ β}.

1In this paper we focus on stationary and information stable channels. A channel is stationary if every stationary channel input

process results in a stationary joint input-output process. Furthermore, loosely speaking, a channel is information stable if the

input process that maximizes the channel’s block mutual information yields a joint input-output process that behaves ergodically

(see for example [27], [28], [43] for a precise definition). Note that supn Cn = limn→∞ Cn holds since the sequence {nCn}∞n=1

is superadditive in light of the channel stationarity (e.g., see [29, Lemma 2, pp. 112-113]).
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The capacity-cost function of stationary information stable channels is given by (e.g., [26],

[41])

C(β) = sup
n
Cn(β) = lim

n→∞
Cn(β), (5)

where Cn(β) is the nth capacity-cost function given by

Cn(β) , max
PXn∈τn(β)

1

n
I(Xn;Y n). (6)

Lemma 1: [41, p. 51] The nth capacity-cost function Cn(β) is concave and strictly increasing

in β for βmin ≤ β ≤ β
(n)
max and is equal to Cn for β ≥ β

(n)
max , where

βmin , min
x∈X

b(x),

and

β(n)
max , min

PXn

{ 1

n
E[b(Xn)] :

1

n
I(Xn;Y n) = Cn

}
.

Lemma 2: [26, Lemma 2] The capacity-cost function C(β) given by (5) is concave and strictly

increasing in β for βmin ≤ β ≤ βmax, and is equal to C for β ≥ βmax, where

βmax , min
PX

{
lim
n→∞

1

n
E[b(Xn)] : lim

n→∞

1

n
I(Xn;Y n) = C

}
and X denotes the random process {Xi}∞i=1.

B. Quasi-symmetry

In general, the optimization problem in (3) is difficult to solve analytically. However, it is

shown in [29], [41], [45] that when the channel satisfies certain “symmetry” properties, the

optimal input distribution in (3) is uniform and the channel capacity can be expressed in closed-

form. This result was further extended to so-called “quasi-symmetric” channels in [46].

The transition matrix of a discrete memoryless channel (DMC) with input alphabet X , output

alphabet Y , and transition probabilities {W (y|x)} is the |X |×|Y| matrix Q with the entry W (y|x)

in the xth row and yth column. For simplicity, let px,y , W (y|x) for all (x, y) ∈ X × Y .

A DMC is symmetric if the rows of its transition matrix Q are permutations of each other and

the columns of Q are permutations of each other. The DMC is weakly-symmetric if the rows of

Q are permutations of each other and all the column sums of Q are identical [41], [45].

Lemma 3 ( [41], [45]): The capacity of a weakly-symmetric DMC is attained by the uniform

input distribution and is given by C = log |Y| −H(p1, p2, ..., p|Y|), where (p1, p2, ..., p|Y|) is an

arbitrary row of Q and H(p1, p2, ..., p|Y|) = −
∑|Y|

i=1 pi log pi.
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It readily follows that a symmetric DMC is weakly-symmetric. We also note that Gallager’s

notion for a symmetric channel [29, p. 94] is a generalization of the above symmetry definition

in terms of partitioning Q into symmetric sub-matrices. In turn, Gallager-symmetry is subsumed

by the notion of quasi-symmetry below.

Definition 6 ( [46]): A DMC with transition matrix Q is quasi-symmetric if, for some m ≥ 1,

Q can be partitioned along its columns into m weakly-symmetric sub-matrices, Q̃1, Q̃2, ..., Q̃m,

where Q̃i is a sub-matrix of size |X | × |Yi| for i = 1, ...,m, with Y1 ∪ ... ∪ Ym = Y and

Yi ∩ Yj = ∅, for any i 6= j, i, j = 1, 2, ...,m.

Lemma 4 ( [46]): The capacity of a quasi-symmetric DMC is attained by the uniform input

distribution and is given by

C =
m∑
i=1

aiCi,

where, for i = 1, · · · ,m, ai ,
∑

y∈Yi px,y is the sum of any row (px,y1 , px,y2 , · · · , px,y|Yi|) of Qi

(corresponding to an arbitrary input symbol x ∈ X ), and

Ci = log |Yi| −H
(

any row of
1

ai
Qi

)
= log |Yi| −H

(
px,y1
ai

,
px,y2
ai

, · · · ,
px,y|Yi|
ai

)
is the capacity of the ith weakly-symmetric sub-channel whose transition matrix is 1

ai
Qi.

III. NEC NON-FEEDBACK CAPACITY

We study a class of NECs with memory as defined in (1) for which the function h : Q×Q′ →

Q satisfies the following invertibility conditions:2

• (S-I) Given any x ∈ Q, the function h(x, ·) : Q′ → Yx is invertible with inverse h̃(x, ·) :

Yx → Q′, where Yx , {y ∈ Q : ∃ z ∈ Q′ such that h(x, z) = y}.

• (S-II) Given any y ∈ Q, the function h̃(·, y) : Xy → Q′ invertible, where Xy , {x ∈ Q :

∃ z ∈ Q′ such that h(x, z) = y}.

The above properties enable us to obtain the channel’s noise-erasure from the input and output

values via the relationship

zi = h̃(xi, yi) · 1{yi 6= e}+ e · 1{yi = e} (7)

where h̃ : A → Q′ with

A ,
⋃
x∈Q

{x} × Yx =
⋃
y∈Q

Xy × {y} ⊆ Q×Q,

2These conditions are similar to but more general than the ones considered in [24].
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or equivalently,

A = {(x, y) ∈ Q×Q : ∃ z ∈ Q′ such that h(x, z) = y}.

For any input-output pair (x, y) ∈ Q × Q with (x, y) /∈ A, there is no z ∈ Q′ such that

y = h(x, z); thus for such a (x, y) pair, we have Pr(Xi = x, Yi = y) = 0.

It can be straightforwardly verified that examples of NECs that satisfy conditions S-I and S-II

above include the EC, the ANC, the discrete symmetric channel of [24], and the data storage

channel described in (2). In this paper, the noise-erasure process Z = {Zi}∞i=1 is assumed to

be stationary and ergodic and independent of the transmitted message. Throughout the paper,

except in Section V, it is assumed that the NEC satisfies properties S-I and S-II above. We next

present our first main result, which is proved at the end of this section.

Theorem 1: The capacity of an NEC without feedback is given by

C = (1− ε) log q − (H̄(Z)− H̄(Z̃)),

where ε = PZi
(e) is the probability of an erasure, H̄(·) denotes the entropy rate and Z̃ = {Z̃i}∞i=1

is an auxiliary erasure process derived from the noise-erasure process Z as follows

Z̃i =

 0 if Zi 6= e

e if Zi = e.
(8)

Before proving the theorem, we state the following observations.

Observation 1 (Important Special Cases):

• If {Zi}∞i=1 is memoryless, then

C = (1− ε) log q − (H̄(Z)− H̄(Z̃))

= (1− ε) log q −H(Z1|Z̃1). (9)

• If we set q′ = 1 and h(x, z) = x, then Zi = Z̃i and C = (1 − ε) log q, recovering the

capacity of the burst EC [11].

• If q′ = q, h(x, z) = x⊕q z and ε = 0, then C = log q− H̄(Z) and we recover the capacity

of the discrete symmetric channel in [24] which subsumes the ANC [21].

Observation 2 (Capacity calculation): The calculation of the NEC capacity given in Theorem 1

hinges on the evaluation of the entropy rates H̄(Z) and H̄(Z̃) of the noise-erasure and auxiliary

erasure processes, respectively. As both processes are stationary, we have H̄(Z) ≤ H(Zl|Z l−1)
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and H̄(Z̃) ≤ H(Z̃l|Z̃ l−1) for any fixed integer l ≥ 1, and estimates of the entropy rates (whose

accuracy improve with l) can be obtained. We next examine how to determine these entropy

rates when the noise-erasure process Z is a first-order Markov source.

• Special Markov noise-erasure process: If the noise-erasure process Z is first-order Markov

and satisfies

PZi|Zi−1
(e|zi−1) = ε′

for some 0 ≤ ε′ ≤ 1 and all zi−1 ∈ Q′, then the corresponding auxiliary erasure process Z̃

is also Markov3 with transition distribution given by

PZ̃i|Z̃i−1
(e|0) = PZi|Zi−1

(e|0) = ε′

and

PZ̃i|Z̃i−1
(e|e) = PZi|Zi−1

(e|e).

In this case, we directly have H̄(Z) = H(Z2|Z1) and H̄(Z̃) = H(Z̃2|Z̃1), hence simplifying

the NEC capacity to the following expression

C = (1− ε) log q − (H(Z2|Z1)−H(Z̃2|Z̃1)),

which can be exactly determined.

• General Markov noise-erasure process: For a general (stationary ergodic first-order) Markov

noise-erasure process Z, the auxiliary erasure process Z̃ is not Markovian; it is a hidden

Markov process as Z̃i is a deterministic function of Zi given by Z̃i = e ·1(Zi = e), yielding

Pr(Z̃j = z̃j|Zj = zj) = 1(z̃j = e)1(zj = e) + 1(z̃j = 0)1(zj 6= e) (10)

for any j ≥ 1. As noted above, H̄(Z̃) is upper bounded by H(Z̃l|Z̃ l−1) for any positive l.

Furthermore by [45, Section 4.5], it is lower bounded by H(Z̃l|Z̃ l−1, Z1), l ≥ 1, whose

initial values are given by

H(Z̃l|Z̃ l−1, Z1) =

H(Z̃1|Z1) = 0 for l = 1,

H(Z̃2|Z1) for l = 2.

3This can be shown, along the same lines as equations (49) and (51) in Section VI, by noting that if the conditional term

Y i−1 = yi−1 is removed, both equations still hold.
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Thus, when Z is a general Markov process, the NEC capacity satisfies

(1− ε) log q −H(Z2|Z1) +H(Z̃l|Z̃ l−1, Z1)

≤ C ≤ (1− ε) log q −H(Z2|Z1) +H(Z̃l|Z̃ l−1) (11)

for any l ≥ 1, where the lower and upper bounds in (11) are asymptotically tight as l→∞

[45, Section 4.5]. In light of the channel structure, the conditional entropies H(Z̃l|Z̃ l−1, Z1)

and H(Z̃l|Z̃ l−1) can be efficiently computed via the joint distributions Pr(Z1 = z1, Z̃
i = z̃i)

and Pr(Z̃i = z̃i), i ≥ 1, which we can determine recursively as follows:

(i) Initial distributions: we have

Pr(Z̃1 = e) = 1− Pr(Z̃1 = 0) = PZ1(e)

and

Pr(Z1 = z1, Z̃1 = z̃1) = PZ1(z1) Pr(Z̃1 = z̃1|Z1 = z1)

for z1 ∈ Z = Q′ ∪ {e}, z̃1 ∈ {0, e}, where Pr(Z̃j = z̃j|Zj = zj) is given in (10).

(ii). For any i ≥ 2, z1, zi ∈ Z and z̃i ∈ {0, e}i, we have the recursion

Pr(Z1 = z1, Zi = zi, Z̃
i = z̃i)

=
∑

z2,...,zi−1

Pr(Zi = zi, Z̃i = z̃i)

=
∑

z2,...,zi−1

Pr(Zi−1 = zi−1, Z̃i−1 = z̃i−1)PZi|Zi−1
(zi|zi−1) Pr(Z̃i = z̃i|Zi = zi)

=
∑
zi−1

Pr(Z1 = z1, Zi−1 = zi−1, Z̃
i−1 = z̃i−1)PZi|Zi−1

(zi|zi−1) Pr(Z̃i = z̃i|Zi = zi) (12)

where for i = 2, Pr(Z1 = z1, Zi−1 = zi−1, Z̃
i−1 = z̃i−1) = Pr(Z1 = z1, Z̃1 = z̃1), which is

given above. Finally, in light of (12), we have

Pr(Z1 = z1, Z̃
i = z̃i) =

∑
zi

Pr(Z1 = z1, Zi = zi, Z̃
i = z̃i)

and

Pr(Z̃i = z̃i) =
∑
z1

Pr(Z1 = z1, Z̃
i = z̃i)

for i ≥ 2.

Example: We illustrate the estimation of C by computing the above lower and upper bounds

on the entropy rate H̄(Z̃) of the auxiliary erasure process. We consider two cases of
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the stationary (first-order) Markov noise-erasure process {Zi}. In the first case, {Zi} has

alphabet {0, 1, e} (i.e., q′ = 2) and a transition probability matrix given by

Π =


PZi|Zi−1

(0|0) PZi|Zi−1
(1|0) PZi|Zi−1

(e|0)

PZi|Zi−1
(0|1) PZi|Zi−1

(1|1) PZi|Zi−1
(e|1)

PZi|Zi−1
(0|e) PZi|Zi−1

(1|e) PZi|Zi−1
(e|e)

 =


0.6 0.2 0.2

0.1 0.8 0.1

0.4 0.4 0.2

 .
In the second case, {Zi} has alphabet {0, 1, 2, 3, e} (q′ = 4) and transition probability

Π̂ =



0.8 0 0 0.2 0

0 0.7 0 0 0.3

0 0 0.6 0.4 0

0 0.4 0 0.6 0

0.1 0 0.1 0 0.8


.

We plot in Figs. 1 and 2, the upper and lower bounds on the entropy rate H̄(Z̃) when

{Z̃i} is generated by {Zi} with transition matrices Π and Π̂, respectively. The figures

indicate a relatively fast agreement between the upper and lower bounds. For source Π, the

bounds converge for l = 8 with H̄(Z̃) ≈ 0.5884. For source Π̂, the bounds take longer to

converge (which is expected, as this source is significantly more bursty than Π); we have

H̄(Z̃) ≈ 0.529 around l = 17. With the accurate calculation of H̄(Z̃) in each case, we

obtain a reliable estimate for channel capacity: C = (1 − ε) log q − (H(Z2|Z1) − H̄(Z̃)).

We have numerically observed a similar behavior of the tightness of these bounds for other

examples of Markov noise-erasure processes with various degrees of burstiness.

We close this observation by noting that the upper and lower bounds on C in (11) can be

directly extended to NECs with M ’th-order Markov noise-erasure processes:

(1− ε) log q −H(ZM+1|ZM , . . . , Z1) +H(Z̃l|Z̃ l−1, ZM , . . . , Z1)

≤ C ≤ (1− ε) log q −H(ZM+1|ZM , . . . , Z1) +H(Z̃l|Z̃ l−1) (13)

for l ≥M , with the lower and upper bounds in (13) asymptotically coinciding as l grows without

bound.

Observation 3 (Effect of memory on NEC capacity): Here we examine the effect of memory

on the capacity of the NEC with stationary noise-erasure process Z = {Zi}∞i=1. Let Z ′ =

{Z ′i}∞i=1 be a memoryless noise-erasure process with the same marginal distribution as Z and let

CDMC denote the capacity of the NEC with noise-erasure process Z ′ (which is the memoryless
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H(Z̃l|Z̃
l−1)

H(Z̃l|Z̃
l−1, Z1)

Fig. 1. Comparison as a function of l of the entropy rate upper and lower bounds, H(Z̃l|Z̃l−1) and H(Z̃l|Z̃l−1, Z1), for the

hidden Markov source {Z̃i} generated by the Markov noise-erasure process given by Π.
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0.44

0.46

0.48

0.5

0.52
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H(Z̃l|Z̃
l−1)

H(Z̃l|Z̃
l−1, Z1)

Fig. 2. Comparison as a function of l of the entropy rate upper and lower bounds, H(Z̃l|Z̃l−1) and H(Z̃l|Z̃l−1, Z1), for the

hidden Markov source {Z̃i} generated by the Markov noise-erasure process given by Π̂.

counterpart channel to the NEC). Similarly, let Z̃ ′ be the memoryless erasure process obtained

from Z ′. Since the channel is stationary and information stable, we readily obtain from (4) that

C ≥ C1 = CDMC ; see also [47]. We have

CDMC = (1− ε) log q −
[
H̄(Z ′)− H̄(Z̃ ′)

]
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= (1− ε) log q −H(Z ′1|Z̃ ′1)

= (1− ε) log q −H(Z1|Z̃1).

Therefore, C > CDMC if and only if H̄(Z) − H̄(Z̃) < H(Z1|Z̃1). If q′ = 1 and h(x, z) = z,

then Z = Z̃ and the NEC reduces to the EC; in this case, C = CDMC = (1− ε) log q, which is

the well-known result that memory does not increase capacity of the burst EC [5], [11]. If ε = 0

(i.e., no erasures occur) and Z has memory, then C = log q−H(Z) > log q−H(Z1) = CDMC .

For the NEC with general noise-erasure process (noisy, with ε 6= 0 and not memoryless), it is

not obvious whether C > CDMC since we need to evaluate the difference of the entropy rates of

two random process with memory. We provide an answer in the case of Markov noise-erasure

processes in the following lemma.

Lemma 5: For NECs with (first-order) Markov noise-erasure process Z, if there exist z1, z
′
1, z2 ∈

Q′ with z1 6= z′1 such that PZ1(z1) > 0, PZ1(z
′
1) > 0 and PZ2|Z1(z2|z1) 6= PZ2|Z1(z2|z′1), then

C > CDMC .

Note the conditions in Lemma 5 readily hold for non-degenerate (i.e., non-memoryless) station-

ary, irreducible and aperiodic Markov noise-erasure processes.

Proof: To prove this lemma, we first need the following lemma whose proof in given in

the appendix.

Lemma 6: Let Z = {Zi}∞i=1 and Z̃ = {Z̃i}∞i=1 be the processes as in (8) and let Hn ,
1
n
[H(Zn)−H(Z̃n)]. Then the sequence {nHn}∞n=1 is subadditive.

From Lemma 6, we have

inf
n
Hn = lim

n→∞
Hn = lim

n→∞

1

n
[H(Zn)−H(Z̃n)] = H̄(Z)− H̄(Z̃).

Thus, H̄(Z)− H̄(Z̃) ≤ H2. Note that

H2 =
1

2

[
H(Z2)−H(Z̃2)

]
=

1

2

[
H(Z1) +H(Z2|Z1)−H(Z̃1)−H(Z̃2|Z̃1)

]
= H(Z1)−H(Z̃1) +

1

2

[
−H(Z1) +H(Z2|Z1) +H(Z̃1)−H(Z̃2|Z̃1)

]
= H(Z1|Z̃1) +

1

2

[
−H(Z2) +H(Z2|Z1) +H(Z̃2)−H(Z̃2|Z̃1)

]
= H(Z1|Z̃1) +

1

2

[
− I(Z1;Z2) + I(Z̃1; Z̃2)

]
≤ H(Z1|Z̃1), (14)
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where (14) holds since Z̃1−Z1−Z2− Z̃2 form a Markov chain and where equality holds if and

only if Z1− Z̃1− Z̃2−Z2 also form a Markov chain. Therefore, for a (first-order) Markov noise-

erasure process Z, if there exist z1, z
′
1, z2 ∈ Q′ and z1 6= z′1 such that PZ1(z1) > 0, PZ1(z

′
1) > 0

and PZ2|Z1(z2|z1) 6= PZ2|Z1(z2|z′1), then H(Z) −H(Z̃) ≤ H2 < H(Z1|Z̃1), which implies that

C > CDMC .

We conclude this section with the proof of Theorem 1.

Proof of Theorem 1: An NEC with stationary and ergodic noise-erasure process Z =

{Zi}∞i=1 is stationary and information stable. Therefore, its non-feedback capacity is given by

(4):

C = lim
n→∞

Cn = lim
n→∞

max
PXn

1

n
I(Xn;Y n).

Focusing on Cn, note that it can be viewed as the capacity of a discrete memoryless channel with

input alphabet X n, output alphabet Yn, and input-output relationship Yi = h(Xi, Zi) · 1{Zi 6=

e} + e · 1{Zi = e}, for i = 1, 2, ..., n. Let W n(·|·) and Q(n) denote the transition probability

and transition matrix of this channel, respectively, and let q̄yn|Xn denote the column of Q(n)

associated with the output yn, i.e.,

q̄yn|Xn , [W n(yn|xn)]Txn∈Xn ,

where the superscript “T ” denotes transposition and the entries of q̄yn|Xn are listed in the

lexicographic order. For example, for binary input alphabet and n = 2,

q̄y2|X2 = [W 2(y2|00),W 2(y2|01),W 2(y2|10),W 2(y2|11)]T .

For any S ⊆ N , {1, 2, ..., n}, define

YS , {yn : yi = e for i ∈ S, yi 6= e for i /∈ S},

and

QYS |Xn , [q̄yn|Xn ]yn∈YS ,

where the columns of QYS |Xn are collected in the lexicographic order in yn ∈ YS . We first

show that the n-fold channel Q(n) of the NEC is quasi-symmetric (recall Definition 6).4 Note

that {QYS |Xn}S⊆N is a partition of Q(n). Also in light of properties S-I and S-II, we have the

following two lemmas (Lemma 7 and 8) which imply the quasi-symmetry of the NEC.

4The NEC, being quasi-symmetric, satisfies a weaker (and hence more general) notion of “symmetry” than the ANC [21] and

the channel in [24] which are both symmetric.
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Lemma 7: For any S ⊆ N , each row of QYS |Xn is a permutation of

p̄ZS , [PZn(zn), 0, ..., 0︸ ︷︷ ︸
qn−|S|−(q′)n−|S|

]zn∈ZS ,

where

ZS , {zn : zi = e for i ∈ S, zi 6= e for i /∈ S},

and the entries of p̄ZS are collected in the lexicographic order in zn ∈ ZS .

Proof: Fixing an input vector xn ∈ X n and considering the element in QYS |Xn associated

with the input sequence xn and output sequence yn ∈ YS , we have

W (yn|xn)

=

 Pr(ZN\S = h̃(xN\S , yN\S), ZS = e|S|), if yi ∈ Yxi for all i ∈ N \ S,

0, if ∃ yi /∈ Yxi for some i ∈ N \ S,
(15)

where ZN\S denotes {Zi : i ∈ N \ S} and similarly for xN\S and yN\S , h̃(xA, yA) is short for

(h̃(xi, yi))i∈A, and (15) follows from (7) and (1). Note that{
h̃(xN\S , yN\S)

}
yN\S∈Πi∈N\SYxi

=
(
Q′
)n−|S|

,

since h̃(x, ·) is invertible for all x ∈ Q (property S-I). Therefore,{
zn : zN\S = h̃(xN\S , yN\S), zS = e|S|, for some yN\S ∈ Πi∈N\SYxi

}
=
{
zn : zN\S ∈

(
Q′
)n−|S|

, zS = e|S|
}

= ZS . (16)

From (15), we note that W (yn|xn) = 0 for all yn such that yn ∈ YS with yN\S /∈ Πi∈N\SYxi .

Therefore, [W (yn|xn)]yn∈YS is a permutation of [PZn(zn), 0, ..., 0]zn∈ZS where the number of

consecutive zeros is |YS | − |Πi∈N\SYxi | = |YS | − |ZS | = qn−|S| − (q′)n−|S|. Note that the above

argument does not depend on the input sequence xn, and thus all rows of QYS |Xn are permutations

of p̄ZS .

Lemma 8: For any S ⊆ N , the column sums of QYS |Xn are identical and are equal to

q|S|PZ̃n(z̃(n,S)),

where Z̃i, i = 1, · · · , n, is defined in (8), and z̃(n,S) denotes the n-tuple with components

z̃i(n,S) =

0 for i ∈ N \ S,

e for i ∈ S.
(17)
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Proof: Fixing an output sequence yn ∈ YS and considering the column sum of q̄yn|Xn , we

have ∑
xn∈Qn

W n(yn|xn)

=
∑

xn∈Qn:xi∈Xyi ,i∈N\S

Pr(ZN\S = h̃(xN\S , yN\S), ZS = e|S|) (18)

=
∑

xS∈Q|S|

∑
xN\S∈Qn−|S|:xi∈Xyi ,i∈N\S

Pr(ZN\S = h̃(xN\S , yN\S), ZS = e|S|)

= q|S|
∑

xN\S∈Qn−|S|:xi∈Xyi ,i∈N\S

Pr(ZN\S = h̃(xN\S , yN\S), ZS = e|S|)

= q|S|
∑
zn∈ZS

PZn(zn) (19)

= q|S|PZ̃n(z̃(n,S)), (20)

where (18) follows (7), yn ∈ YS and W n(yn|xn) = 0 if xi /∈ Xyi for some i ∈ N \ S , (19)

follows from property S-II, and (20) follows from (8) and (17). Note that (20) does not depend

on the output sequence yn, and thus the column sums are identical.

We are now ready to explicitly determine Cn. By Lemma 4, we have

Cn =
1

n

∑
S⊆N

∑
zn∈ZS

PZn(zn) ·
[

log qn−|S| −H
(

any row of
1∑

zn∈ZS PZn(zn)
QYS |Xn

)]

=
1

n

∑
S⊆N

∑
zn∈ZS

PZn(zn)

[
log qn−|S| −H

((
PZn(ẑn)∑

zn∈ZS PZn(zn)

)
ẑn∈ZS

)]

=
1

n

∑
S⊆N

∑
zn∈ZS

PZn(zn)
[

log qn−|S| −H(Zn|Zn ∈ ZS)
]

=
1

n

∑
S⊆N

Pr(Z̃N/S = 0n−|S|, Z̃S = e|S|)
[

log qn−|S| −H(Zn|Z̃N/S = 0n−|S|, Z̃S = e|S|)
]

(21)

=
1

n

∑
S⊆N

PZ̃n(z̃(n,S))
[

log qn−|S| −H(Zn|Z̃n = z̃(n,S))
]

=
1

n
[n log q

∑
S⊆N

PZ̃n(z̃(n,S))− log q
∑
S⊆N

PZ̃n(z̃(n,S))|S|

−
∑
S⊆N

PZ̃n(z̃(n,S))H(Zn|Z̃n = z̃(n,S))]

=
1

n

[
n log q − log q

∑
z̃n∈Z̃n

PZ̃n(z̃n)
n∑
i=1

1(z̃i = e)−
∑
z̃n∈Z̃n

PZ̃n(z̃n)H(Zn|Z̃n = z̃n)
]
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=
1

n

[
n log q − log q · E

[ n∑
i=1

1(Z̃i = e)
]
−H(Zn|Z̃n)

]
= log q − 1

n
log q

n∑
i=1

E
[
1(Z̃i = e)

]
− 1

n
H(Zn|Z̃n)

= (1− ε) log q − 1

n
(H(Zn)−H(Z̃n)),

where (21) follows from (8). Taking the limit of Cn above and using the definition of entropy

rate (which exists for both Z and Z̃ by stationarity) yields

C = lim
n→∞

Cn = (1− ε) log q − (H̄(Z)− H̄(Z̃)).

IV. NEC FEEDBACK CAPACITY

We next show that feedback does not increase the capacity of the NEC.

Theorem 2: Feedback does not increase the capacity of the NEC:

CFB = C = (1− ε) log q − [H̄(Z)− H̄(Z̃)],

where Z̃ = {Z̃i}∞i=1 is defined in (8).

Proof: For any sequence of feedback channel codes with rate R and error probability

satisfying limn→0 P
(n)
e = 0, we have

nR = H(M)

= I(M ;Y n) +H(M |Y n)

≤ I(M ;Y n) + nεn (22)

=
n∑
i=1

I(M ;Yi|Y i−1) + nεn

=
n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M) + nεn

=
n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M,X i) + nεn (23)

=
n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Yi|Y i−1,M,X i, Zi−1) + nεn (24)

=
n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Zi|Y i−1,M,X i, Zi−1) + nεn (25)
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=
n∑
i=1

H(Yi|Y i−1)−
n∑
i=1

H(Zi|Zi−1) + nεn (26)

=
n∑
i=1

H(Yi|Y i−1)−H(Zn) + nεn

=
n∑
i=1

H(Yi|Y i−1, Z̃i−1)−H(Zn) + nεn (27)

≤
n∑
i=1

H(Yi|Z̃i−1)−H(Zn) + nεn

=
n∑
i=1

∑
z̃i−1

Pr(Z̃i−1 = z̃i−1)H(Yi|Z̃i−1 = z̃i−1)−H(Zn) + nεn

≤
n∑
i=1

∑
z̃i−1

Pr(Z̃i−1 = z̃i−1) max
PXi|Z̃i−1 (·|z̃i−1)

H(Yi|Z̃i−1 = z̃i−1)−H(Zn) + nεn

=
n∑
i=1

∑
z̃i−1

PZ̃i−1(z̃i−1)
[(

1− PZi|Z̃i−1(e|z̃i−1)
)

log q + hb
(
PZi|Z̃i−1(e|z̃i−1)

)]
−H(Zn) + nεn

(28)

=
n∑
i=1

∑
z̃i−1

PZ̃i−1(z̃i−1)
[(

1− PZi|Z̃i−1(e|z̃i−1)
)

log q +H(Z̃i|Z̃i−1 = z̃i−1)
]
−H(Zn) + nεn

=
n∑
i=1

[
(1− ε) log q +H(Z̃i|Z̃i−1)

]
−H(Zn) + nεn

= n(1− ε) log q +H(Z̃n)−H(Zn) + nεn,

where εn goes to zero as n → ∞. Here (22) follows from Fano’s inequality, (23) holds since

Xi = fi(M,Y i−1), i = 1, 2, ..., n, (24) follows from (7), (25) follows from (1) and (7), and (26)

holds because Zn and M are independent, and for i ≥ 2,

H(Zi|Zi−1) = H(Zi|Zi−1,M)

= H(Zi|Zi−1,M,X1) (29)

= H(Zi|Zi−1,M,X1, Y1) (30)

= H(Zi|Zi−1,M,X2, Y1) (31)

= H(Zi|Zi−1,M,X i, Y i−1), (32)

where (29) follows from X1 = f1(M), (30) follows from (1), (31) holds since X2 = f2(M,Y1),

and (32) is obtained by including more conditional terms as in (30) and (31). Furthermore,
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equation (27) follows from (8) and (7). Finally, (28) follows from Corollary 1 in the appendix,

and hb(ε) , −ε log ε− (1− ε) log(1− ε) is the binary entropy function. We thus have

CFB ≤ (1− ε) log q − lim
n→∞

1

n

[
H(Zn)−H(Z̃n)

]
= (1− ε) log q −

[
H̄(Z)− H̄(Z̃)

]
= C.

This inequality and the fact that CFB ≥ C complete the proof.

V. NEC CAPACITY-COST FUNCTION

In this section, we consider the capacity-cost function of NECs without feedback. The capacity-

cost function given in (5) is a multi-letter expression and is not computable for general channels.

We herein derive a set of finite-letter upper bounds for it.

Theorem 3: The capacity-cost function of the NEC satisfies

C(β) ≤ Cl(β)− H̄(Z) +
1

l
H(Z l) , Cub

l (β)

for any positive integer l.

Proof: Consider a sequence of β-admissible channel codes with rate R such that limn→∞ P
(n)
e =

0. As in (22), it follows from Fano’s inequality that

R ≤ lim
n→∞

1

n
I(M ;Y n).

For any fixed integer l ≥ 1, let n , kl + l′ for some non-negative integers k and l′, where

l′ ∈ [0, l − 1]. Then we have

lim
n→∞

1

n
I(M ;Y n) = lim

k→∞

1

kl + l′
[
I(M ;Y kl) + I(M ;Y kl+l′

kl+1 |Y
kl)
]

≤ lim
k→∞

1

kl + l′
[
I(M ;Y kl) + l′ log |Y|

]
= lim

k→∞

1

kl + l′
I(M ;Y kl)

≤ lim
k→∞

1

kl
I(M ;Y kl), (33)

where Y j
i is a constant random variable, if j < i. Note that

I(M ;Y kl) = I(M,Xkl;Y kl)

= H(Y kl)−H(Y kl|M,Xkl)
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= H(Y kl)−H(Zkl|M,Xkl)

= H(Y kl)−H(Zkl)

≤
k∑
i=1

H(Y il
(i−1)l+1)−H(Zkl)

=
k∑
i=1

H(Y il
(i−1)l+1)−

k∑
i=1

H(Y il
(i−1)l+1|X il

(i−1)l+1) +
k∑
i=1

H(Zil
(i−1)l+1)−H(Zkl) (34)

=
k∑
i=1

I(X il
(i−1)l+1;Y il

(i−1)l+1)−H(Zkl) + kH(Z l)

≤
k∑
i=1

lCl(βi)−H(Zkl) + kH(Z l)

≤ klCl

(∑k
i=1 βi
k

)
−H(Zkl) + kH(Z l) (35)

≤ klCl(β)−H(Zkl) + kH(Z l) (36)

where βi , 1
l
E[b(X il

(i−1)l+1)], (34) follows from H(Y il
(i−1)l+1|X il

(i−1)l+1) = H(Zil
(i−1)l+1|X il

(i−1)l+1)

and the independence of Zil
(i−1)l+1 and X il

(i−1)l+1, (35) follows from the concavity of Cl(β)

which is stated in Lemma 1, and (36) holds since Cl(β) is monotone increasing by Lemma 1.

Substituting (36) into (33), we have

lim
n→∞

1

n
I(M ;Y n) ≤ Cl(β)− lim

k→∞

1

kl
H(Zkl) +

1

l
H(Z l).

Since

lim
n→∞

1

n
H(Zn) = lim

k→∞

1

kl
H(Zkl),

we obtain

C(β) ≤ Cl(β)− H̄(Z) +
1

l
H(Z l).

The upper bounds for C(β) given in Theorem 3, which hold for an arbitrary NEC (not necessarily

satisfying conditions S-I and S-II), generalize the upper bounds for the capacity-cost function

of the ANC shown in [26]. Note that these upper bounds are counterparts to the Wyner-Ziv

lower bounds on the rate-distortion function of stationary sources [48], [49] and illustrate the

functional duality between the capacity-cost and rate-distortion functions originally pointed out

by Shannon [50]. For any positive integer l, Cl(β) is a finite-letter lower bound to C(β) : C(β) =
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supn≥1Cn(β) ≥ Cl(β). The l-letter upper and lower bounds are asymptotically tight as the gap

∆l , Cub
l (β)− Cl(β) = 1

l
H(Z l)− H̄(Z) goes to zero as l→∞. Finally, note that for finite l,

both Cl(β) and Cub
l (β) can be numerically evaluated via Blahut’s algorithm for the capacity-cost

function [40], [51].

VI. NEC CAPACITY-COST FUNCTION WITH FEEDBACK

We next investigate the feedback capacity-cost function CFB(β) of the NEC. At time i, the

transmitter obtains Y i−1 from the feedback link, and thus knows Zi−1 according to (7). Therefore,

the input at time i can be generated according to Xi = fi(M,Zi−1). In general, the feedback

encoding rule fi(M,Zi−1) is time-varying. In this section, we will choose an input cost function,

a family of Markov noise-erasure processes and an appropriate time invariant feedback encoding

rule to demonstrate that feedback can increase the capacity-cost function.

We first derive a lower bound to CFB(β) under time invariant feedback strategies. For the

NEC with feedback and a fixed encoding rule f ∗ : Q× (Q′ ∪ {e}) → Q, we define C lb,FB
n (β)

as

C lb,FB(β) = sup
n
C lb,FB
n (β) = lim

n→∞
C lb,FB
n (β),

where

C lb,FB
n (β) = max

PV n∈τ̃n(β)

1

n
I(V n;Y n),

Xi = f ∗(Vi, Zi−1), for i = 1, 2, ..., n, V n is a q-ary n-tuple independent of Zn, and

τ̃n(β) , {PV n :
1

n
E[b(Xn)] ≤ β}.

Note that the cost constraint is imposed on the input vector Xn rather than V n. We next state

without proving the following theorem; the proof can be obtained by using a standard random

coding argument as in the proof of [26, Theorem 2].

Theorem 4 (Achievability of C lb,FB(β) : CFB(β) ≥ C lb,FB(β) ): Consider the NEC and a

fixed time-invariant feedback encoding rule f ∗ as above. For any R < C lb,FB(β), there exists a

sequence of β-admissible feedback codes of block length n and rate R such that P (n)
e → 0 as

n→∞.
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In the rest of this section, we consider the linear cost function b(x) = x for x ∈ Q and the

following specific encoding function f ∗ [26]. Let V n(M) be a q-ary n-tuple representing the

message M ∈ {1, 2, ..., 2nR}. Then, to transmit M , the encoder sends Xn(M), where

X1(M) = V1(M); Xi(M) = f ∗(Vi(M), Zi−1) ,

 Vi(M), Zi−1 6= s̃

0, Zi−1 = s̃
if i > 1, (37)

and s̃ is some fixed preselected state. Note that V n(M) can be viewed as the input vector when

there is no feedback; that is, if the channel is without feedback, then Xn(M) = V n(M). The

encoder of the NEC with feedback can obtain the state Zi−1 at time i. If the encoder observes

the “bad” state s̃, then it sends the least expensive symbol. In many cases (such as the examples

considered in the figures below), the least expensive symbol has cost b(0) = 0.

In light of Theorems 3 and 4, a numerical comparison of C lb,FB
n (β) and Cub

n (β) for a given

block length n can indicate whether it is possible for feedback to increase the capacity-cost

function. Since C(β) ≤ Cub
n (β) and C lb,FB(β) = supnC

lb,FB
n (β), it suffices to show that

C lb,FB
n (β) > Cub

n (β) for some n and β to conclude that CFB(β) > C(β). To this end, consider

an NEC with q′ = q = 2, h(x, z) = x ⊕2 z, a linear cost function and a first-order Markov

noise-erasure process described by the transition matrix

Π1 =


0.4 0.4 0.2

0.7 0.1 0.2

0.2 0.7 0.1

 ,
where the entries are ordered according to the order (0, 1, e). In Fig. 3, we plot using Blahut’s

algorithm [40], [51] Cub
n (β) versus C lb,FB

n (β) (with f ∗ given by (37)) for n = 6. Fig. 3 clearly

indicates that feedback increases the capacity-cost function of this NEC for a range of costs β.

We next formalize this result analytically for NECs with irreducible and aperiodic stationary

Markov noise-erasure processes whose transition probability matrix has the property that the

row corresponding to a given noise state s̃ ∈ Q′ and the column corresponding to the erasure

state are nearly uniform. More specifically, we prove that for such channels using feedback

encoding rule (37) (which is properly matched to the linear cost function), we can achieve the

channel capacity with a cost that is lower than the cost incurred in the non-feedback case, hence

extending a previous result in [26] from the family of ANCs to the wider class of NECs.
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Fig. 3. Comparison of Cub
6 (β) with Clb,FB

6 (β) (in bits) for a binary input NEC with a Markov noise-erasure process given by

Π1 (recall that C(β) ≤ Cub
n (β) and Clb,FB

n (β) ≤ CFB(β) for any n).

Theorem 5: Consider an NEC with stationary irreducible and aperiodic Markov noise-erasure

process and feedback encoding rule given in (37). If the transition probabilities of the noise-

erasure process satisfy that for a particular noise state s̃ ∈ Q′

PZi|Zi−1
(zi|s̃) =

 ε′, if zi = e

1−ε′
q
, otherwise

and

PZi|Zi−1
(e|zi−1) = ε′

for some 0 ≤ ε′ ≤ 1 and all zi−1 ∈ Q′, then

CFB(β) > C(β) for βlb ≤ β <
q − 1

2
,

where

βlb = [1− PZ(s̃)]
q − 1

2
.

Proof: Let P ∗V n(vn) = 1
qn

for any vn ∈ Qn. For the non-feedback channel with input

distribution P ∗V n , since P ∗V n achieves Cn, we have

β(n)
max =

1

n

∑
vn

P ∗V n(vn)b(vn) =
∑
v

P ∗V1(v)b(v) =
q − 1

2
= βmax,

July 27, 2018 DRAFT



27

C(n)
(q − 1

2

)
= (1− ε) log q − 1

n
[H(Zn)−H(Z̃n)],

and

C
(q − 1

2

)
= (1− ε) log q − [H̄(Z)− H̄(Z̃)].

Thus, from Lemma 2, we have

C(β) < (1− ε) log q − [H̄(Z)− H̄(Z̃)] for β <
q − 1

2
. (38)

For the feedback channel with input distribution P ∗V n and the encoding rule f ∗, we have

βlbn ,
1

n
E[b(Xn)] =

1

n

n∑
i=1

E[b(Xi)]

=
1

n

∑
v1

P ∗V1(v1)b(v1) +
1

n

n∑
i=2

E[b(f ∗(Vi, Zi−1))]

=
1

n

q − 1

2
+
n− 1

n

∑
v

∑
z

PZ(z)P ∗V (v)b(f ∗(v, z))

=
1

n

q − 1

2
+
n− 1

n

[∑
v

PZ(s̃)P ∗V (v)b(0) +
∑
z 6=s̃

∑
v

PZ(z)P ∗V (v)b(v)
]

=
1

n

q − 1

2
+
n− 1

n

∑
z 6=s̃

PZ(z)
q − 1

2

=
[
1− n− 1

n
PZ(s̃)

]q − 1

2
.

Note that since Z is an irreducible and aperiodic stationary Markov process, PZ(s̃) > 0, and

thus βlbn < q−1
2

. The uniform input distribution P ∗V n may not be the optimal input distribution

achieving C lb,FB
n (βlbn ), implying that for V n with distribution P ∗V n , we have

C lb,FB
n (βlbn ) ≥ 1

n
I(V n;Y n) =

1

n
[H(Y n)−H(Y n|V n)]

=
1

n

n∑
i=1

H(Yi|Y i−1)− 1

n
H(Y n|V n). (39)

For the second term in (39), we have

H(Y n|V n) = H(Y n|V n, X1) (40)

= H(Z1, Y
n|V n, X1) (41)

= H(Z1|V n, X1) +H(Y n|V n, X1, Z1)

= H(Z1) +H(Y n
2 |V n, X1, Z1) (42)
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= H(Z1) +H(Y n
2 |V n, X1, Z1, X2) (43)

= H(Z1) +H(Z2, Y
n

2 |V n, X1, Z1, X2)

= H(Z1) +H(Z2|V n, X1, Z1, X2) +H(Y n
2 |V n, X1, Z1, X2, Z2)

= H(Z1) +H(Z2|Z1) +H(Y n
3 |V n, X1, Z1, X2, Z2)

= H(Zn), (44)

where (40) holds since X1 = V1, (41) follows from (7), (42) follows form (1) and the fact

that the noise process is independent of the message, (43) holds since X2 = f ∗(V2, Z1) and

(44) is obtained by repeating the steps (40)-(43). To analyze the first term in (39), we consider

Pr(Yi = yi|Y i−1 = yi−1) for two cases:

• For Yi = e, we have

Pr(Yi = e|Y i−1 = yi−1)

=
∑
zi

Pr(Zi = zi, Yi = e|Y i−1 = yi−1)

= Pr(Zi = e|Y i−1 = yi−1) (45)

= Pr(Z̃i = e|Y i−1 = yi−1),

where (45) follows from the fact that Yi = e if and only if Zi = e by (1).

• For Yi = yi 6= e, we have

Pr(Yi = yi|Y i−1 = yi−1)

=
∑

zi,zi−1,vi,xi

Pr(Zi−1 = zi−1, Zi = zi, Vi = vi, Xi = xi, Yi = yi|Y i−1 = yi−1)

=
∑

zi,zi−1,vi,xi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi|Zi−1
(zi|zi−1)P ∗Vi(vi)×

1(xi = f ∗(vi, zi−1)) · 1(yi = θ(xi, zi)) (46)

=
∑

zi,zi−1 6=s̃,vi,xi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi|Zi−1
(zi|zi−1)P ∗Vi(vi)×

1(xi = f ∗(vi, zi−1)) · 1(yi = θ(xi, zi))

+
∑
zi,vi,xi

Pr(Zi−1 = s̃|Y i−1 = yi−1)PZi|Zi−1
(zi|s̃)P ∗Vi(vi)1(xi = f ∗(vi, s̃)) · 1(yi = θ(xi, zi))

=
∑

zi,zi−1 6=s̃,xi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi|Zi−1
(zi|zi−1)

1

q
· 1(yi = θ(xi, zi))
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+ q
∑
zi

Pr(Zi−1 = s̃|Y i−1 = yi−1)PZi|Zi−1
(zi|s̃)

1

q
· 1(yi = θ(0, zi))

=
∑

zi−1 6=s̃,xi∈Xyi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi|Zi−1
(h̃(xi, yi)|zi−1)

1

q

+ Pr(Zi−1 = s̃|Y i−1 = yi−1)PZi|Zi−1
(h̃(0, yi)|s̃)

=
∑

zi−1 6=s̃,zi 6=e

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi|Zi−1
(zi|zi−1)

1

q

+ Pr(Zi−1 = s̃|Y i−1 = yi−1)
1− ε′

q

=
1

q

∑
zi−1 6=s̃,zi 6=e

Pr(Zi−1 = zi−1, Zi = zi|Y i−1 = yi−1)

+
1

q
Pr(Zi−1 = s̃|Y i−1 = yi−1)P (Zi 6= e|Zi−1 = s̃)

=
1

q
Pr(Zi−1 6= s̃, Zi 6= e|Y i−1 = yi−1) +

1

q
P (Zi−1 = s̃, Zi 6= e|Y i−1 = yi−1)

=
1

q
Pr(Zi 6= e|Y i−1 = yi−1)

=
1

q
Pr(Z̃i = 0|Y i−1 = yi−1),

where (46) follows from the chain rule, the encoding rule, (1) and the fact that the noise

process is Markov and independent of the message.

From the preceding analysis, we have

H(Yi|Y i−1)

=
∑
yi−1

Pr(Y i−1 = yi−1)H(Yi|Y i−1 = yi−1)

=
∑
yi−1

Pr(Y i−1 = yi−1)
[
− Pr(Z̃i = e|Y i−1 = yi−1) log Pr(Z̃i = e|Y i−1 = yi−1)

− qPr(Z̃i = 0|Y i−1 = yi−1)

q
log

Pr(Z̃i = 0|Y i−1 = yi−1)

q

]
=
∑
yi−1

Pr(Y i−1 = yi−1)
[
H(Z̃i|Y i−1 = yi−1) + Pr(Z̃i = 0|Y i−1 = yi−1) log q

]
= H(Z̃i|Y i−1) + (1− ε) log q

= H(Z̃i|Y i−1, Z̃i−1) + (1− ε) log q. (47)

July 27, 2018 DRAFT



30

Next, we consider Pr(Z̃i = e|Y i−1 = yi−1, Z̃i−1 = z̃i−1) for (yi−1, z̃i−1) with Pr(Y i−1 =

yi−1, Z̃i−1 = z̃i−1) > 0. We have

Pr(Z̃i = e|Y i−1 = yi−1, Z̃i−1 = z̃i−1)

=
∑
zi−1

Pr(Zi−1 = zi−1, Z̃i = e|Y i−1 = yi−1, Z̃i−1 = z̃i−1)

=
∑
zi−1

Pr(Zi−1 = zi−1|Y i−1 = yi−1, Z̃i−1 = z̃i−1) Pr(Z̃i = e|Zi−1 = zi−1)

=
∑
zi−1 6=e

Pr(Zi−1 = zi−1|Y i−1 = yi−1, Z̃i−1 = z̃i−1)ε′

+ Pr(Zi−1 = e|Y i−1 = yi−1, Z̃i−1 = z̃i−1) Pr(Z̃i = e|Zi−1 = e). (48)

If Z̃i−1 = e, then since Z is Markovian,

Pr(Z̃i = e|Y i−1 = yi−1, Z̃i−1 = e, Z̃i−2 = z̃i−2)

= Pr(Zi = e|Y i−1 = yi−1, Z̃i−1 = e, Z̃i−2 = z̃i−2)

= Pr(Zi = e|Zi−1 = e)

= Pr(Z̃i = e|Z̃i−1 = e). (49)

If Z̃i−1 = 0, then using (48), we have

Pr(Z̃i = e|Y i−1 = yi−1, Z̃i−1 = 0, Z̃i−2 = z̃i−2)

=
∑
zi−1 6=e

Pr(Zi−1 = zi−1|Y i−1 = yi−1, Z̃i−1 = 0, Z̃i−2 = z̃i−2)ε′

+ Pr(Zi−1 = e|Y i−1 = yi−1, Z̃i−1 = 0, Z̃i−2 = z̃i−2) Pr(Z̃i = e|Zi−1 = e)

=
∑
zi−1

Pr(Zi−1 = zi−1|Y i−1 = yi−1, Z̃i−1 = 0, Z̃i−2 = z̃i−2)ε′

= ε′ (50)

= Pr(Z̃i = e|Z̃i−1 = 0), (51)

where (50) holds since Pr(Zi−1 = e|Y i−1 = yi−1, Z̃i−1 = 0, Z̃i−2 = z̃i−2) = 0. Since Z̃i

is binary, (49) and (51) show that Z̃i − Z̃i−1 − (Y i−1, Z̃i−2) form a Markov chain and thus

H(Z̃i|Y i−1, Z̃i−1) = H(Z̃i|Z̃i−1). From this, (39), (44) and (47), we have

C lb,FB
n (βlbn ) ≥ (1− ε) log q − 1

n
[H(Zn)−H(Z̃n)]. (52)
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Recalling that

lim
n→∞

βlbn = lim
n→∞

(
1− n− 1

n
PZ(s̃)

)
q − 1

2

=

(
1− PZ(s̃)

)
q − 1

2
= βlb,

the following lemma is proved in the appendix.

Lemma 9:

lim
n→∞

C lb,FB
n (βlbn ) = C lb,FB(βlb).

In view of the preceding lemma, taking the limit of both sides of (52) yields

C lb,FB(βlb) ≥ (1− ε) log q − [H̄(Z)− H̄(Z̃)].

Since C lb,FB(βlb) is a lower bound to CFB(βlb) and CFB(βlb) ≤ CFB = (1−ε) log q− [H̄(Z)−

H̄(Z̃)], we have

CFB(β) = (1− ε) log q − [H̄(Z)− H̄(Z̃)] for βlb ≤ β ≤ q − 1

2
,

and by (38) we conclude that CFB(β) > C(β) for βlb ≤ β < q−1
2

.

Note that the NEC of Fig. 3 has a Markov transition matrix that satisfies exactly the conditions

of Theorem 5. We next provide numerical results for Markov NECs which do not precisely meet

these conditions. In Figs. 4 and 5, we plot Cub
6 (β) and C lb,FB

6 (β) (under the linear cost function

and f ∗ given by (37)) for NECs with q′ = q = 2, h(x, z) = x ⊕2 z and Markov transition

matrices

Π2 =


0.4 0.4 0.2

0.7 0.2 0.1

0.2 0.7 0.1

 and Π3 =


0.45 0.35 0.2

0.7 0.2 0.1

0.2 0.7 0.1

 ,
respectively. These figures show that in fact Theorem 5 holds for a more general class of NECs

and a wider range of costs β. Similar numerical results can be obtained for NECs with non-binary

input alphabets.

Without input cost constraints, the channel, being quasi-symmetric, has the uniform distribution

as the optimal capacity achieving input distribution under both feedback and non-feedback

regimes. Thus the entropy rate of the channel output remains unchanged in the presence of

feedback and feedback does not increase capacity. However, upon imposing an input cost

constraint, the uniform input distribution is no longer optimal. In this case, feedback provides the
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Fig. 4. Comparison of Cub
6 (β) with Clb,FB

6 (β) (in bits) for a binary input NEC with Markov noise-erasure given by Π2 (recall

that C(β) ≤ Cub
n (β) and Clb,FB

n (β) ≤ CFB(β) for any n).

encoder useful information that, under feedback encoding rules judiciously selected in accordance

with the cost function, can drive the input distribution to improve the entropy rate of the output,

resulting in an increase in the channel capacity-cost function.

VII. CONCLUSION

We investigated a class of NECs satisfying invertibility conditions which can be viewed as

a generalization of the EC and ANC with memory. The non-feedback capacity was derived

in closed-form with the aide of an auxiliary erasure process with memory and proving that

the n-fold channel is quasi-symmetric for all n. We then showed that the feedback capacity is

identical to the non-feedback capacity, demonstrating that feedback does not increase capacity.

We note that these results can be generalized to NECs with an arbitrary noise-erasure process

(not necessarily stationary or information stable) using generalized spectral information measures

[21]–[23]. The capacity-cost function of the NEC with and without feedback were also studied.

We demonstrated, both analytically and numerically, that for a class of NECs with linear input

costs and Markov noise-erasure processes, feedback does increase the capacity-cost function.
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Fig. 5. Comparison of Cub
6 (β) with Clb,FB

6 (β) (in bits) for a binary input NEC with Markov noise-erasure given by Π3 (recall

that C(β) ≤ Cub
n (β) and Clb,FB

n (β) ≤ CFB(β) for any n).

Future work include deriving the non-feedback and feedback capacities of non quasi-symmetric

NECs and of compound channels with NEC components.

APPENDIX

A. Proof of Lemma 6

Proof: If N and n are two integers such that N > n ≥ 1, then we have

NHN = H(ZN)−H(Z̃N)

= H(ZN |Z̃N) (53)

= H(Zn, ZN
n+1|Z̃N)

= H(Zn|Z̃N) +H(ZN
n+1|Z̃N , Zn)

≤ H(Zn|Z̃n) +H(ZN
n+1|Z̃N

n+1)

= H(Zn|Z̃N) +H(ZN−n|Z̃N−n)

= nHn + (N − n)HN−n,
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where (53) follows by writing I(ZN ; Z̃N) in two different ways and noting that H(Z̃N |ZN) = 0.

Dividing both sides by N , we have that HN ≤ n
N
Hn + N−n

N
HN−n, and hence the sequence

{nHn}∞n=1 is subadditive.

B. Corollary 1

We first prove the following lemma.

Lemma 10: If Y denotes the output of the NEC with invertibility conditions S-I and S-II, the

input X and the noise Z are independent, and ε = PZ(e), then

max
PX

H(Y ) = (1− ε) log q − hb(ε).

Proof: Noting that Z̃ = 0 if Z 6= e and that Z̃ = e if Z = e, we have

max
PX

H(Y ) = max
PX

[I(X;Y ) +H(Y |X)]

= max
PX

I(X;Y ) +H(Z)

= (1− ε) log q − (1− ε)H(Z|Z̃ 6= e) +H(Z) (54)

= (1− ε) log q − (1− ε)H(Z|Z̃ 6= e) +H(Z, Z̃)

= (1− ε) log q − (1− ε)H(Z|Z̃ 6= e) +H(Z̃) +H(Z|Z̃)

= (1− ε) log q − (1− ε)H(Z|Z̃ 6= e) + hb(ε) + (1− ε)H(Z|Z̃ 6= e)

= (1− ε) log q − hb(ε),

where (54) follows from (9).

Corollary 1: If in the setup of Lemma 10, random variable A is jointly distributed with Z

and is conditionally independent of X and Y given Z, then

max
PX

H(Y |A = a) = (1− εa) log q − hb(εa),

for all a ∈ A, where εa = P (Z = e|A = a).

C. Proof of Lemma 9

We will show that {C lb,FB
n } is an equicontinuous family of functions on [βlb, βmax]. Since

C lb,FB
n converges to C lb,FB pointwise, this will imply by Problem 16 of [52, Chap. 7] that the

sequence of functions {C lb,FB
n } converges to C lb,FB uniformly over the interval [βlb, βmax]. Since
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βlbn ∈ [βlb, βmax] for all n and limn→∞ β
lb
n = βlb, Problem 9 in [52, Chap. 7] will in turn imply

that C lb,FB
n (βlbn )→ C lb,FB(βlb) as n→∞ as claimed.

Since each C lb,FB
n is an increasing concave function with C lb,FB

n (0) = 0, for all n and β, β′ ∈

[βlb, βmax] with β′ < β, we have

0 ≤ C lb,FB
n (β)− C lb,FB

n (β′)

β − β′
≤ C lb,FB

n (βlb)− C lb,FB
n (0)

βlb − 0

=
C lb,FB
n (βlb)

βlb
≤ C lb,FB(βlb)

βlb
,

where the last inequality holds since C lb,FB(β) = supn≥1C
lb,FB
n (β). Thus for all n,∣∣C lb,FB

n (β)− C lb,FB
n (β′)

∣∣ ≤ C lb,FB(βlb)

βlb
∣∣β − β′∣∣

showing that {C lb,FB
n } is equicontinuous on [βlb, βmax] and the lemma follows.
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