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Abstract

Error-correcting coding schemes using low-density parity-check (LDPC) codes and be-

lief propagation decoders based on the sum-product algorithm (SPA) have recently achieved

some of the highest performance results in the literature. In particular, the performance of

irregular LDPC codes over memoryless channel models is unrivaled. This thesis explores

LDPC decoding schemes which are capable of exploiting the memory of channels based

on Markov models to achieve performance gains over systems which use interleaving and

assume the channel is memoryless. To this end, we present a joint channel-state estimation

decoder for binary additive M th-order Markov noise channels (BAMNCs) using the SPA.

We then apply this decoder to the queue-based channel (QBC), which is a simple BAMNC

with only four channel parameters. The QBC enjoys closed form equations for the chan-

nel capacity and the block transition distribution. The QBC is a versatile model which

has been shown to be able to effectively model other channels with memory including the

Gilbert-Elliot channel (GEC) and Rayleigh and Rician fading channels. In particular, it is a

good model for slow fading phenomena, which is difficult to model using channel models

like the GEC. We obtain simulation results that compare SPA decoding of LDPC codes

over the QBC to SPA decoding over the memoryless binary symmetric channel (BSC) rel-

ative to their respective Shannon limits. These results demonstrate that the performance of

the QBC decoding scheme scales well with the QBC’s higher Shannon limit and that the

decoder effecively exploits the channel memory. We also use the QBC and BAMNC to

model the GEC by attempting to match its M th-order channel noise statistics. Simulations

are run using the QBC and the more general BAMNC to model the GEC for decoding data

transmitted over the simulated GEC. The results show us the effectivenes of this technique.

Finally, we examine the performance of irregular LDPC codes over the QBC model. Using

irregular codes designed for the GEC and the additive white Gaussian noise (AWGN) chan-
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nel we simulate their performance over two different QBCs as well as over the BSC and

GEC they were designed for. We measure their performance relative to the performance

of regular LDPC codes over the same channels and examine the effect of using irregular

LDPC codes over channels they were not designed for. We find that the ‘memorylessness’

of the channel affects the performance of these two codes more than the type of channel

model used. The overall goals of this work are to develop tools and obtain results that

allow us to better understand the relationship between LDPC/SPA based error-correcting

coding schemes and their performance over channel models with memory. In real-world

communication systems channel noise is rarely, if ever, memoryless. Even so, the major-

ity of coding systems use random interleaving to compensate for the burstiness of typical

communication channels rather than exploiting the channel’s memory. The primary goal

of this work is to aid in the design of practical error-correcting coding schemes that can

outperform traditional memoryless-model-based schemes through exploiting the memory

of the channel.
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Chapter 1

Introduction

1.1 Description of the Problem

Traditional communication systems are made up of three major components: the sender,

the channel and the receiver. The sender transmits a signal across a noisy channel which

introduces distortion to that signal. The receiver receives the now distorted signal and

attempts to recover the original signal.

In the design of any communication system the designers must consider the channel dis-

tortion as it will cause errors possibly rendering the received data unusable to the receiver.

In general a certain level of signal distortion may be acceptable but it may be necessary

to design a system in which the receiver is capable of correcting the errors in the received

data in order to bring the distortion down to an acceptable level. This can be accomplished

through the use of an error-correcting coding scheme.

An error-correcting coding scheme adds two additional components to the communica-

tion system described above. A channel encoder, which adds redundancy to the transmitted

data and a channel decoder which exploits this redundancy in order to find and correct er-
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Diagram of a basic communication system utilizing an encoder and decoder to
correct errors.

rors caused by the channel noise. In Fig. 1.1 we present a block diagram of this system.

The sender produces a message W to be transmitted which is then encoded by the encoder

to produce the encoded, length n block of data Xn. The channel introduces distortion to

that signal producing Yn at its output. The decoder then attempts to correct the errors in

the received signal to produce Ŵ for the receiver which is an estimate of what the original

signal W was.

In his pioneering work “A mathematical theory of communication” [29], Claude Shan-

non defines the capacity of a channel as the maximum rate at which data can be sent such

that an arbitrarily low probability of error can be achieved in the recovery of the data. The

capacity of a binary channel is a value C ≤ 1. When we say that it is the maximum rate

at which data can be reliably sent it means that we must send r ≤ C bits of data per bit

transmitted across the channel for it to be received reliably.

This implies that we send redundant data across the channel. Assuming that the data is

binary, this means sending n bits of data for every k ≤ n bits that we wish to communicate

across the channel; thus, there are m = n − k redundant bits in the transmitted signal.
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Carefully chosen redundant bits can aid the decoder in correcting the errors caused by the

channel noise and allow it to recover the original signal.

Example. Consider sending three bits for every one bit of data we wish to send. If we send

the sequence (1, 1, 1) every time we wish to send the binary value 1 and (0, 0, 0) every time

we wish to send 0, then if there is only a single error in any bit the decoder can look at the

other two and correct that error. Unfortunately, the decoder is limited to a single error, for

if two errors occur we will decode incorrectly

1 : (1, 1, 1) =⇒ (1, 0, 1) : 1, correct,

1 : (1, 1, 1) =⇒ (0, 0, 1) : 0, error.

Many different types of error-correcting codes have been developed in the almost 60

years since Shannon’s original work such as the repetition code shown in the example

above. In this work, we focus on LDPC codes, which are binary linear block codes based

on linear transformations defined by binary matrices. They have the dual advantage of both

being very simple and very effective. In fact, they are some of the best error correcting

codes known today. This is particularly interesting since they were actually first proposed

[11] only 15 years after Shannon’s paper, but the impressive performance of these codes

was discovered only just recently [18].

One of the most important considerations in the design of any error-correcting coding

scheme is the channel, or more precisely the channel model, it is being designed for. It is

important to design the coding scheme based on a channel model that accurately describes

the statistics of the channel the code will eventually be used on.

Most commonly, coding schemes are based on simple memoryless channel models.

These are models where the noise process is independent. One common example is the
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Figure 1.2: Channel transition diagram for the BSC.

memoryless binary symmetric channel (BSC) in which errors are distributed uniformly

across the received data. Error occurs with probability p and cause the bits to be ‘flipped’

from 0 to 1 and vice versa (see Fig. 1.2).

This work examines LDPC decoder designs based on channel models with memory.

These are channel models where the channel noise is dependent on past channel noise

symbols (as opposed to memoryless channel models where the channel noise is indepen-

dent). It is significantly more difficult to design decoders for channels with memory as the

noise process which describes them is more complex than that of memoryless channels.

Nonetheless, channel models with memory are generally better models for real world com-

munication channels since real channel noise is rarely, if ever, truly independent. Since

most channels do in fact have memory an interleaver can be used to randomly order the

data and make the noise appear memoryless to the decoder. This is typically how many

communication systems function in the real world.

There is generally a significant gain in performance achievable by considering the chan-

nel memory for most channels with memory. Decoders designed to exploit the memory of

the channel are capable of achieving better results than those which assume the channel

noise to be memoryless. One of the main goals of this work is to extend the class of

channels for which practical estimator-decoders exist to the queue-based channel (QBC)
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from [35] for LDPC codes. More generally, this work defines an estimator-decoder for

LDPC codes over channels with binary additive Markov noise. The QBC model is a type

of binary additive Markov noise channel.

We compare results for our decoder on the QBC to the Gilbert-Elliot channel (GEC)

[10, 14] which is a very popular two-state Markov modulated channel. Much work has

been done on LDPC decoding for the GEC [6, 12, 25] making it an obvious choice to com-

pare our work on the QBC with. Both the GEC and QBC are binary symmetric channels

with additive binary noise and so they are both comparable to the equivalent memoryless

channel, the BSC. The BSC is a model which is based on the ideal interleaving of channel

noise which has memory.

Both of these channels are based on finite-state Markov models, where the channel state

is determined by a Markov process. For each state, the channel has a probability of error

associated with it. Usually some states have a particularly high probability of error while

others are low. This simulates channels for which errors occur in bursts which correspond

to states with a high probability of error.

In order to fully exploit the channel memory in our decoder, we need to estimate the

state of the channel for each received bit. This helps produce a better estimate of the

probability a particular bit is an error. To achieve this, we use a joint estimator-decoder that

performs state estimation and decoding simultaneously using the sum-product algorithm

(SPA) [15].

The SPA is an iterative decoder which uses belief propagation [21] to estimate the

probability of error for each bit based on the relationships between bits and parity-checks

for an LDPC code. By further extending the belief propagation to include the relationship

between the probability of error and the channel state, the decoder can use the estimates

produced by the decoding process to help estimate the channel state, which can then be
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used to obtain a more accurate estimate of the probability of error.

This is the basis for the design of SPA based joint estimator-decoders for the GEC pre-

sented in [6, 12, 20], and it is also the basis for the design of a joint estimator-decoder for

the QBC and more generally the class of binary additive Markov noise channels (BAM-

NCs) in this work.

1.2 Review of Literature

Low-density parity-check codes were first proposed by Gallager in 1963 [11] as an ap-

proach to linear block codes based on sparse parity-check matrices. Each column and row

of the parity-check matrix was required to contain a relatively small and fixed number of

1’s. The reasoning behind this design was to be able to decode these codes in linear time.

Gallager proposed two different probabilistic decoding methods based on message

passing between code-bits and the parity-checks they participate in. This type of decoder

is called a message-passing decoder. Since each bit participates in a small fixed number of

parity-checks, the complexity of this algorithm is linear. Unfortunately, the block lengths

and the calculations required for the decoder were still too difficult for computers of the

time and hence the performance of these codes was not fully explored.

The discovery of convolutional codes [9] began a new area of study into so called ‘non-

algebraic codes’. Non algebraic because they were not based on linear transformations

using generator and parity-check matrices, nor were they based on the algebraic construc-

tions used for cyclic codes. Convolutional codes are encoded using a finite-state process

which gives them a linear order encoding method. They also have linear order 1 decoders

such as the the Viterbi algorithm [32] and the BCJR algorithm [2].

1Linear order refers to the complexity of the decoding algorithm growing linearly in the length of the code
(i.e., the number of computations needed for decoding grows linearly in the length of the code).
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Much later, convolutional codes led to the discovery of a class of codes called Turbo

codes [3], which are a type of concatenated convolutional codes that use an interleaver to

randomize the order of some of the bits. These so-called ‘random’ codes have excellent

performance characteristics and achieve performance well within 0.5dB of the Shannon

limit. Turbo codes also utilize a message passing probabilistic decoder to achieve these

results in linear time.

Both the BCJR algorithm and the Turbo decoder can be shown [15] to be instances

of Pearl’s belief propagation [21] on a Bayesian network. This is a method of computing

complex probability functions of multiple variables by organizing the relationships between

the variables into a network or graph.

Shortly after the discovery of Turbo codes, work on other classes of codes that could

be decoded effectively using belief propagation led to the rediscovery of LDPC codes by

MacKay and Neal [18] where they demonstrate that LDPC codes are good codes with near

Shannon limit performance approaching that of Turbo codes. In later work [17] MacKay

also proves that under the assumption of an optimal decoder there exists regular LDPC

codes which are in fact capacity achieving.

The decoding of LDPC codes was done through belief propagation on the factor graph

representation of the parity-check matrix. The factor graph representation for LDPC codes

was first analyzed by Tanner [30] and it is often referred to as a Tanner graph. The message

passing algorithm over a factor graph is known as the sum-product algorithm (SPA) and

is described in [15]. The authors demonstrate how Pearl’s belief propagation, the BCJR

algorithm and Turbo decoding can all be implemented as instances of the sum-product

algorithm.

These impressive results regarding the performance and low complexity of LDPC codes

brought attention back to these long forgotten codes and a significant amount of new work
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has been done recently on the analysis of their performance. In particular, a technique

called density evolution (DE) was developed [27] as a means of determining the limit of

performance for a class of LDPC codes under the assumption of the sub-optimal SPA de-

coding rather than the less practical assumption of optimal decoding used in [17].

The DE technique computes the performance of SPA decoding numerically in the limit

of long block length codes and assumes that a large number of iterations are used for de-

coding. This technique enables the comparison of the average performance of sub-classes

of LDPC codes based on the code parameters (i.e., the weights of the rows and columns of

the parity-check matrix).

For regular LDPC codes each sub-class of LDPC codes is defined by the constant row

and column weights for the parity-check matrix. It was shown that the best rate-1/2 regular

LDPC code for the AWGN and BSC channels under SPA decoding is the (3,6) code (three

parity-checks per bit and six bits per parity-check) [27].

In order to find LDPC codes with even better performance the definition of LDPC codes

was loosened to allow for irregular LDPC codes where the number of 1’s in the rows and

columns of the parity-check matrix was allowed to vary from column to column and row

to row. Irregular LDPC codes are determined by their degree distribution, which deter-

mines the proportion of rows or columns of a particular weight in the parity-check matrix.

Using density evolution, Richardson, Shokrollahi and Urbanke were able to evaluate the

performance of various degree distributions for the additive white Gaussian noise (AWGN)

channel and BSC [26]. They used DE to search for degree distributions which showed par-

ticularly good performance limits. The best degree distribution found for the AWGN using

this technique has a performance limit under SPA decoding within 0.0045dB of the Shan-

non limit [4]. While this result assumes impractically long block lengths, this LDPC code

still outperforms even Turbo codes over the AWGN when simulated with similar block
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lengths and decoder iterations achieving results withing 0.04dB of the Shannon limit at a

BER of 10−6.

The next logical step in the construction of irregular LDPC codes is to design codes

which perform this well for channels with memory. Recently, there has been work done

on extending the SPA decoding algorithm for LDPC codes to exploit the channel mem-

ory in models of channels with memory, such as the GEC. In [6, 12, 25], SPA decoding

schemes are developed which perform joint channel estimation-decoding for the GEC and

this decoder is also generalized to the larger class of Markov modulated channels based on

hidden Markov models with more than two states, though the results of these papers have

been restricted to the GEC.

Finding good irregular LDPC codes using DE is much more complex for most channels

with memory than for memoryless channels. Channels with memory generally have multi-

ple parameters unlike memoryless channels like the AWGN channel or the BSC. Analysing

the performance of an irregular code must be done in multiple dimensions instead of sim-

ply one. Therfore, it is necessary to characterize the parameters of these channels in such a

way that allows one to easily determine how the parameters improve or degrade the channel

quality.

In [6, 8] the authors first develop a joint estimator-decoder for hidden Markov model

(HMM) based channels, and then take it a step further by also characterizing the GEC pa-

rameters to greatly simplify density evolution for the GEC. This is then used to analyze the

performance limits of a regular-(3,6) LDPC code. In [7], the authors apply density evolu-

tion to the GEC to devise a number of irregular codes for a specific set of GEC parameters

which outperform the standard regular LDPC codes. Even with the simplification provided

by this characterization of the GEC paramters, the analysis done in [6, 8] is only performed

in two dimentions and in [7], only one dimention. It would still be very difficult to do a
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complete analysis over the entire parameter space using DE.

In [1], the authors propose a binary symmetric channel with memory based on Polya’s

urn scheme for modeling contagions. They describe both infinite memory and finite mem-

ory versions of the channel. The finite memory contagion model (FMCC) is an M th- order

additive Markov model in which the channel noise sequence is itself a Markov chain. The

probability of channel error is a function of the last M channel noise symbols. The FMCC

is designed to be a simple model of fading or burst error noise which is easy to analyze. The

FMCC has closed form solutions for both the capacity and the block transition distributions

which is what defines any channel with memory.

Finite-state Markov models like the GEC are based on an underlying or ‘hidden’ Markov

process to describe state transitions and for each state there is an associated probability of

error. While finite-state Markov models like the GEC are simple to describe and implement,

they do not have closed form solutions for capacity or their block transition distributions.

As a result, they can be difficult to analyze.

Decoding of LDPC codes over the FMCC for the simple case of M = 1 was explored

in [20]. The authors developed a joint estimator-decoder for the FMCC similar to that used

for the GEC in [6]. They also develop a two-dimentional characterization of the parameters

of the FMCC for M = 1 so that they can apply DE.

The FMCC model was further generalized in [35] as a queue-based channel (QBC),

where the state of the M th-order Markov process is described by a length M queue con-

taining the last M channel noise symbols. This is a four parameter model which adds an

additional degree of freedom to the FMCC but retains closed form solutions for capacity

and the block transition distribution.

Both the FMCC and the QBC are finite-state additive Markov noise channels where the

state transition process is not a ‘hidden’ variable of the noise process. The state transition
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is instead determined exactly by the noise process. We refer to these types of channels as

binary additive Markov noise channels (BAMNCs) and describe this class in detail later

on.

Markov process based channel models are useful models both because they are simple

to understand and implement and because they have proven to be good models of burst

errors and fading phenomena. In [23, 28, 33] hidden Markov models (including the GEC)

are used to model discretized versions of both Rician and Rayleigh correlated fading chan-

nels. The BAMNC model is also used to model the same channels in [23] with excellent

results (in terms of matching of capacity and the autocorrelation function for the channels)

for fast and medium fading channels. The authors of [37] further demonstrate that the QBC

model is in fact a better model for Rician slow fading phenomena than the GEC and much

easier to analyze and implement than the BAMNC for the long memory lengths required to

model slow fading since it only requires 4 parameters to describe regardless of the memory

length.

In this work, we focus on the design of a joint channel estimator-decoder for the QBC

and the more general family of BAMNCs. This gives us the ability to simulate the experi-

mental performance of LDPC codes over the QBC and compare the QBC model to the GEC

and the general class of BAMNCs. It also provides the framework for the design of QBC

or BAMNC based decoders for Rayleigh and Rican fading channels or other appropriate

channel models.

1.3 Overview of this Work

We begin in Chapter 2 with a background review of information theoretic concepts used

in this work. We review Shannon’s noisy channel coding theorem and the Shannon limit
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used for performance comparison in our simulations. We define noisy channels both with

and without memory and give the specific definitions of the types of channels used in this

thesis. These include the memoryless BSC, BAMNCs like the QBC and binary symmetric

channels based on HMMs like the GEC. Each of these channel models is described in

detail and where possible expressions for capacity, the steady state and block transition

distributions are given. We also describe a method of modeling general channel statistics

using an M th-order additive Markov noise model to match the M th-order channel noise

statistics of another channel.

Chapter 3 covers the topic of LDPC codes by covering the relevant background material

needed to understand LDPC codes and sum-product algorithm based decoding. Beginning

with linear block codes and their parity-check matrix and Tanner graph expressions, LDPC

codes, both regular and irregular, are defined and discussed to give an understanding of

their construction and the method of encoding used. The SPA is first discussed as a general

belief propagation algorithm, then more specifically as a decoder for memoryless channels

and then as a joint estimator-decoder for finite-state Markov modelled channels like those

described in Chapter 2.

With the necessary background covered we move on to the coding system design in

Chapter 4. We begin with the encoder design for both regular and irregular LDPC codes,

then the SPA decoder design and finally the design of the channel model simulations. The

SPA decoder is again broken down into two parts. First is the message passing algorithm

on the Tanner graph. This part can be taken on its own and used for decoding over mem-

oryless channels. The second part is the message passing algorithm on the Markov chain

graph which can also be described as a forward-backward algorithm (much like the BCJR

algorithm). Both parts are then connected bit-wise to produce the joint-estimation decoder

design. The chapter concludes with a step-by-step breakdown of the coding system and
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finally a brief discussion of algorithm parallelization for the SPA based joint estimator-

decoder.

In Chapter 5 results from the numerous simulations are given. Simulation results in-

volving the QBC, GEC and BSC with both regular and irregular codes are shown. Addi-

tionally examples of QBC and BAMNC modeling of the GEC are demonstrated.

Finally, we conclude in Chapter 6 by discussing the significance of the results. We also

describe several possible avenues of future research indicated by this work.



Chapter 2

Information Theory and Channel

Modeling

This chapter is a brief review of the key concepts of Shannon’s channel coding theorem

as well as a detailed overview of the channel models we present in this work. All of

coding theory, including that of LDPC codes, is based on the channel coding theorem. It

provides us with the achievable limits of communications allowing us to measure how close

practical communications schemes come to this ultimate limit. The channels we present

in this work attempt to accurately model real world communications channels in order to

allow the design of coding schemes that can approach the capacity of these channels. These

channels model the burstiness of typical real world channels which generally makes them

better models than the corresponding memoryless channel model that is commonly used in

communication system design.

14
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2.1 Information Theory and Channel Coding

We begin our discussion of information theory and channel modeling with the basics of

information theory as laid out by Claude E. Shannon in [29]. After giving the necessary

definitions of information and channel capacity, we state Shannon’s channel coding theo-

rem and then derive general form channel capacity equations for the types of channels we

consider in this work. Finally, we define the rate-distortion Shannon limit, which is used to

compare the performance of our simulations to these ultimate limits defined by Shannon.

2.1.1 Information Measures

To begin any discussion of Shannon’s information theory we must start with the definition

of the basic measure of information. Dubbed entropy by Shannon, it is a measure of the

uncertainty in a random variable. Entropy tells us that the more uncertainty there is about a

random variable, the more information it carries with it. Conversely, this can be expressed

as, the more certain we are about the result of a random event, the less information we

obtain by knowing the result.

We are concerned with discrete data sources and discrete channels defined over discrete

alphabets, so our definitions will be based on this model of information and communica-

tions. A discrete alphabet X is a countable set of elements or symbols. from which we can

draw a value x ∈ X for the random variable X . The simplest and most common example

of a discrete alphabet is the binary alphabet X = {0, 1}. Another very common discrete

alphabet is the Latin alphabet X = {a, b, c, . . . , z}, which is a source alphabet for many

Western written languages.

We describe a random variable X over a discrete alphabet X by it’s probability distri-

bution p(x) = Pr(X = x), which is the probability that X takes on the value x ∈ X .
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Definition 2.1.1. The entropy of a random variableX , which takes values from the discrete

alphabet X , with probability distribution p(x) = Pr(X = x), where x ∈ X is given by

H(X) = −
∑

x∈X

p(x) log p(x),

where the logarithm is to the base 2. Let us also define the conditional entropy of X

given Y . Let Y be another random variable over the discrete alphabet Y and we define

the probability distributions p(y) = Pr(Y = y), p(x, y) = Pr(X = x, Y = y) and

p(x|y) = Pr(X = x|Y = x). Then the conditional entropy of X given Y is

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x|y).

While the entropy can be thought of as a measure of the amount of information a ran-

dom variable contains, the conditional entropy can be thought of as the amount of informa-

tion carried by X given that we already know Y . It can be shown (and is intutitively clear)

that H(X|Y ) ≤ H(X), with equality iff X is independent of Y [5, p.27].

We extend the concept of entropy to sequences of random variables, or random pro-

cesses where Xn = (X1, X2, . . . , Xn) is a length n sequence of random variables. Let

X = {Xi}
∞
i=1 be a random process, then we would like to know the entropy rate or the

average entropy per symbol. The entropy of a sequence of random variables is given by

H(Xn) = −
∑

xn∈Xn

p(xn) log p(xn),

where xn is a length n sequence of values and p(xn) is the joint probability of that sequence

of values.

Definition 2.1.2. The entropy rate of the random process X = {Xi}
∞
i=1 is the average
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entropy per variable (or per symbol) given by

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn)

= − lim
n→∞

1

n

∑

x1,...,xn

Pr(X1 = x1, . . . , Xn = xn) log Pr(X1 = x1, . . . , Xn = xn).

This limit may not exist for all random processes, however it does exist for processes which

are stationary and for a stationary process X, H(X) =H ′(X), where H ′(X) is defined as

H ′(X) = lim
n→∞

H(Xn|X1, X2, . . . , Xn−1),

and H(Xn|X1, X2, . . . , Xn−1) is the conditional entropy of the last symbol in the sequence

given the preceeding symbols.

The final quantity we need to define is mutual information. This is the amount of

information that can be known about one random variable by observing another. It can be

thought of as the amount of information shared by two random variables.

Definition 2.1.3. The mutual information between random variablesX and Y defined over

the alphabets X and Y , respectively, is defined as

I(X;Y ) =
∑∑

p(x, y) log
p(x, y)

p(x)p(y)

= H(X) −H(X|Y )

= H(Y ) −H(Y |X)

= I(Y ;X).

Entropy, conditional entropy, mutual information and the entropy rate provide the basic

definitions needed to discuss information theory. They are the measures of information
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used to describe the limits of communications which we define in the next section.

2.1.2 Shannon’s Channel Coding Theorem

The communication system shown in Fig. 1.1 is the basis for Shannon’s channel coding

theorem. We assume for this work that both the source and channel are discrete. In the

following definitions we use the superscript n to denote a sequence of variables of length n.

Definition 2.1.4. A discrete channel is a process defined by the sequence of block transition

probabilities {Pr(Yn = yn|Xn = xn}∞n=1 where xn ∈ X n and yn ∈ Yn and X and Y

are discrete alphabets. The block transition probability Pr(Yn = yn|Xn = xn) is the

probability that we receive the sequence yn from the output of the channel given that the

encoder sends the sequence xn.

The capacity of a discrete channel can be defined using the mutual information bwtween

the input and output sequences of the channel.

Definition 2.1.5. We define the capacity of the channel as the maximization of the mutual

information rate between the input and the output of the channel over the distribution of the

input. Essentially, this is the maximum amount of information about the source data that

can be reliably conveyed across the channel and this is given by

C = lim
n→∞

max
p(xn)

1

n
I(Xn;Yn)

= lim
n→∞

max
p(xn)

(
1

n
H(X1, X2, . . . , Xn) −

1

n
H(X1, X2, . . . , Xn|Y1, Y2, . . . , Yn)),

where the maximization is over all possible input distributions for xn.

We note that this definition is not always useful as this limit may not exist for certain
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channels. It is also very difficult to compute in closed form for most channels in general

unless the channel model used allows for a significant simplification of this definition.

The encoder and decoder in Fig. 1.1 together comprise a channel code. A channel code

is defined by its encoding function f(·), and its decoding function g(·).

Definition 2.1.6. An (M,n) channel code maps the input messages from the set {1, . . . ,M}

to the discrete alphabet X n through the encoding function

f : {1, . . . ,M} → X n,

and maps messages from the discrete alphabet Yn to {1, . . . ,M} through the decoding

function

g : Yn → {1, . . . ,M}.

The encoder maps the set of input messages to the set C = {f(1), . . . , f(M)}, which is

the codebook of the code. The decoder attempts to make the best guess at what message

W ∈ {1, . . . ,M} was sent given that it received Y n and assigns the value Ŵ as its estimate

of W .

The rate of an (M,n) code is given by R = log(M)/n (bits/channel use). The prob-

ability of decoder error for a code is the probability that Ŵ 6= W (i.e. that the decoder

chooses the wrong message). The conditional probability of error given that W = i is

P i
e = Pr(g(Y n) 6= i|Xn = f(i)),
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for each message i ∈ {1, . . . ,M}. We define the maximum probability of error as

P (n)
e = max

i∈{1,...,M}
P i

e.

Definition 2.1.7. For a given channel, a rate R is said to be achievable for that channel,

if there is a sequence of (
⌈

2nR
⌉

, n) codes such that P (n)
e → 0 as n → ∞. We define the

ceiling operation d·e as rounding up to the next integer value.

Shannon’s channel coding theorem proves that the maximum achievable rate at which

data can be transmitted on a channel is the capacity of the channel. We are now ready to

give Shannon’s channel coding theorem, which holds for information stable channels [1]

for C as defined in Def. 2.1.5.

Theorem 2.1.8. For every rate R < C, there exists a sequence of (
⌈

2nR
⌉

, n) codes such

that the maximum probability of error P (n)
e → 0 as n → ∞. In other words, every rate

R < C is achievable according to the definition above.

Conversely, for any sequence of (
⌈

2nR
⌉

, n) which have the property that P (n)
e → 0 as

n→ ∞, then the code must have rate R ≤ C.

See [29] or [5, pp.199] for the proof of this theorem for the case of discrete memoryless

channels.

Shannon’s channel coding theorem defines the optimal limits of communications sys-

tems. No system may exceed the capacity of the channel without suffering a probability of

error which is bounded away from zero, though it is still possible to consider the limits of

systems which do not have arbitrarily small probability of error. This is done through the

use of Shannon’s rate-distortion theorem and the Shannon limit described in Section 2.1.4.
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2.1.3 Capacity of Additive Binary Symmetric Channels

We now show how to derive the capacity for the channel models which are considered in

this thesis. These are all channels where both the input and output alphabets are binary (i.e.

X = Y = {0, 1}). Furthermore, all of the channels we consider are additive binary noise

channels and the noise process is symmetric.

An additive noise channel is one in which the channel noise is determined by a random

sequence En which is additively combined with the input sequence such that Yn = Xn +

En. Furthermore we assume, En is independent of Xn so that

Pr(Yn = yn|Xn = xn) = Pr(Xn + En = yn|Xn = xn)

= Pr(En = yn − xn|Xn = xn)

= Pr(En = yn − xn).

For binary input-binary output channels En ∈ {0, 1}n and addition is taken bitwise modulo-

2. We represent modulo-2 addition with the symbol ⊕, so we write Yn = Xn ⊕ En for

binary additive noise channels.

The term symmetric refers to the relationship between the two possible channel outputs

and the two possible channel inputs. Simply put, for any single bit, the probability of error

is the same for both inputs (see Fig. 1.2).

Pr(Yi = 1|Xi = 0) = Pr(Yi = 0|Xi = 1)

= Pr(Ei = 1),

Pr(Yi = 1|Xi = 1) = Pr(Yi = 0|Xi = 0)

= Pr(Ei = 0)

= 1 − Pr(Ei = 1).
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The simplest example of this kind of channel is the memoryless binary symmetric chan-

nel (BSC) in which the noise samples Ei are independent and the probability of error is

fixed, Pr(Ei = 1) = p, where p ≤ 0.5. For this channel the capacity equation is much

simpler and we get

C = max
p(x)

I(X;Y )

= max
p(x)

H(Y ) −H(Y |X)

= max
p(x)

H(Y ) −
∑

p(x)H(E)

= 1 −H(E) = 1 + p log p+ (1 − p) log(1 − p).

The distribution of X which maximizes C is clearly the uniform distribution for a binary

random variable. We note that if X is uniform then Y must be uniform as well, due to

the symmetry of the channel and thus H(Y ) = 1, which is the maximum entropy a binary

random variable can have.

This work is primarily concerned with two types of channels with memory. One type

has a simple and exact expression for the channel capacity, while the other type only allows

for upper and lower bounds. The first is the binary symmetric additive Markov noise chan-

nel (BAMNC) which is the main focus of this work and the queue-based channel (QBC)

is an example of this type of channel. The second type is the class of Markov modulated

binary symmetric channels based on hidden Markov models (HMMs). As we stated earlier

in all cases when we are referring to BAMNCs or HMM based channels, we are referring

to additive binary symmetric channels. The Gilbert-Elliot channel (GEC) is an example of

this type of channel.

In all cases, the additive channel noise process E is independent of the channel input

process X and since the channel is symmetric the capacity is maximized by input blocks
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XN which are uniformly distributed. So we assume a uniform input distribution in each

case. These channels are also stationary so we have thatH(E) = H ′(E); thus, the equation

for capacity simplifies somewhat to become

C = lim
n→∞

max
p(xn)

1

n
I(Xn;Yn)

= 1 − lim
n→∞

1

n
H(E1, E2, . . . , En)

= 1 − lim
n→∞

H(En|E1, E2, . . . , En−1).

For a BAMNC the noise process E is an M th-order stationary Markov process. This

means that

Pr(En = en|En−1 = en−1, . . . , E1 = e1)

= Pr(En = en|En−1 = en−1, . . . , En−M = en−M)

= Pr(EM+1 = eM+1|E1 = e1, . . . , EM = eM),

In other words, the probability of the next symbol given the entire past is equal to the

probability of the next symbol given only the pastM symbols. This means that the capacity

simplifies further and we can compute the limit as

C = lim
n→∞

max
p(xn)

1

n
I(Xn;Yn)

= 1 − lim
n→∞

H(En|E1, E2, . . . , En−1)

= 1 −H(EM+1|E1, E2, . . . , EM)

= 1 −
∑

eM

p(eM) log p(eM |eM−1),

where eM = (e1, . . . , eM).
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An M th-order binary Markov process can also be thought of as a first-order Markov

process with 2M states. Each state is a representation of a unique sequence of values for

eM = (e1, . . . , eM). which can take on 2M possible values since each variable is a binary

number. The state at time t is a random variable we will denote by St. Each of these

states has associated with it a steady-state probability, which is the average probability

we are in that state and it is denoted πi, the steady-state probability of being in state i,

where i ∈ {0, . . . , 2M−1}. Any two states i and j also have a probability of state transition

associated with them, denoted Pij = Pr(St+1 = j|St = i), which is the probability of

going from state i at time t to state j at time (t+ 1).

We note that the state St is simply another way of representing the length M sequence

(Et−1, Et−2, . . . , Et−M ), and thus

C = lim
n→∞

max
p(xn)

1

n
I(Xn;Y n)

= 1 −H(EM |E0, E, . . . , EM−1)

= 1 −H(St+1|St)

= 1 −
∑

i,j

πiPij logPij. (2.1)

So for BAMNCs, where we have closed form equations for the steady-state and block

transition distributions, we can compute a closed form expression for the capacity of the

channel. This makes models like the QBC, for which this is true, very attractive for infor-

mation theoretic analysis purposes.

Markov modulated channels based on HMMs are not as simple. A hidden Markov

model is one in which the Markov process is an underlying or hidden process of some

observed random variables that are related to the hidden Markov process through a ‘random

function’ of the state of the Markov process. The capacity of channels based on HMMs
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can usually only be upper and lower bounded in a closed form for any finite value of n.

We define a HMM by a ‘hidden’ state sequence S1, . . . , Sn, where the variables st are

defined over the set S, and a set of probability distribution functions (PDF) φst
(·). There is

a PDF associated with each state in S. Then we define the sequence E1, . . . , En such that

Pr(Et = et) = φst
(et) which is the ‘visible’ sequence of the HMM.

For channels based on HMMs, E is the additive noise process of the channel. We wish

to know the entropy rate H(E) of this process so that we may evaluate the capacity. We

use the following theorem to obtain tight upper and lower bounds for the entropy rate of

hidden Markov models.

Theorem 2.1.9. If S1, . . . , Sn is a stationary Markov chain and Pr(Et = et) = φst
(et),

then

H(En|En−1, . . . , E1, S1) ≤ H(E) ≤ H(En|En−1, . . . , E1)

and

lim
n→∞

H(En|En−1, . . . , E1, S1) = H(E) = lim
n→∞

H(En|En−1, . . . , E1).

Proof. The proof of this can be found in [5, p. 71].

Using these bounds we can place upper and lower bounds on the capacity of HMM

based channel models

1 −H(En|En−1, . . . , E1) ≤ C ≤ 1 −H(En|En−1, . . . , E1, S1)

1 − lim
n→∞

H(En|En−1, . . . , E1) = C = 1 − lim
n→∞

H(En|En−1, . . . , E1, S1). (2.2)

Either of these bounds can be used with a sufficiently large value of n to approximate the
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capacity of an HMM based channel such as the GEC.

Each of these channels represents a significant simplification of real world channels

where channel noise is dependent on many complex factors. Models like these allow for

practical simulation and analysis by simplifying the computations needed to both simulate

the channel model and to compute its statistical properties and limits. It is these simple

models that allow us to design practical decoders. In particular, models with memory like

the GEC and QBC allow us to design decoders that can exploit the property that errors

occur in bursts in many real world channels.

2.1.4 The Rate-Distortion Shannon Limit

In Shannon’s original work [29], he defines the capacity of the channel as the highest rate

at which data can be sent such that an arbitrarily low probability of error can be achieved.

In practice we wish to analyze a fixed rate code and would like to know what is the worst

channel on which this code can achieve an arbitrarily low probability of error. In other

words, for a code of rate r we want to find the channel parameters for which the capacity

of the channel C = r. This is often referred to as the Shannon limit for that code.

To find the Shannon limit of a rate 1/2 code over the BSC we need to find the value

of p, the probability of error for the channel, which gives a channel which has C = 1/2.

This turns out to be at p = 0.11; thus, the Shannon limit of a rate 1/2 code of the BSC is

p = 0.11.

In most practical applications where we can accept a certain level of error we need not

require an arbitrarily low error rate. In this case, the question becomes, “for a given code

of rate r, and an acceptable probability of decoding error Pe, what is the worst channel for

which we can achieve Pe with this code?”
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Shannon also provides us with a tool for considering the rates at which a certain level

of error or distortion can be achieved called rate-distortion theory [5, 13]. Rate-distortion

theory is often used in source coding involving lossy compression. For a Bernoulli source,

rate-distortion theory states that for an acceptable probability of bit error Pe (under the

Hamming distortion measure), we need only send R(Pe) ≤ 1 bits per bit of data where

R(·) is the rate distortion function and is given by

R(Pe) = 1 − hb(Pe),

= 1 − [−Pe log2(Pe) − (1 − Pe) log2(Pe)],

where 0 ≤ Pe ≤ 1/2. This means that only R(Pe) bits are needed to describe each bit of

data and still be able to recover the original source with a probability of bit error as low as

Pe.

Suppose we were to apply lossy compression to our source data before encoding it. If

we used ideal lossy compression on the source data then the rate-distortion function tells

us that we can achieve a probability of bit error as low as Pe by encoding only R(Pe) ≤ 1

bits per bit of data. If the channel encoder then encodes this data at a rate of r < C then we

can achieve an arbitrarily low probability of error with respect to the compressed bits and

we can still achieve a probability of error as low as Pewith respect to the original source

data.

Relative to the original source data we have encoded the source data at an overall rate

of r ·R(Pe) and we can achieve a probability of error as low as Pe. Another way to look at

this is to say that if we send data at a rate r < C/R(Pe) then Shannon guarantees that we

can achieve a probability of error as low as Pe.

We can now reword this result in terms of the Shannon limit to find the worst channel
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for which a code of rate r can achieve a probability of bit error as low as Pe. This is referred

to as the rate-distortion Shannon limit (RDSL).

The RDSL is generally evaluated numerically since this is simpler than evaluating the

inverse of the capacity equations. It is also usually evaluated in terms of a single parameter,

the BSC has only one parameter p, which is the channel bit-error rate (CBER) and for the

QBC the parameter used is also the CBER p (all the other parameters are fixed). For these

examples the RDSL is computed as

SRD(r, Pe) = p∗,

where p∗ satisfies

C(p∗) = r(1 − hb(Pe)) 0 < p∗ < 0.5.

In examining the performance of the simulations presented in Chapter 5, we use the

RDSL to compare the performance of actual codes over simulated channels at different

CBERs to the theoretical limit of performance at the same CBERs for both the BSC and

QBC.

2.2 Binary Symmetric Channels with Markov Memory

This section describes, in detail, the channel models used in the design of our LDPC de-

coder. We are concerned with decoding over channels with memory, which can be modeled

using finite-state Markov chains. To this end we present two different families of binary

symmetric Markov modeled channels: channels with additiveM th-order Markov noise and

channels with additive noise based on finite-state HMMs.
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The former channel models are finite-memory models where the channel state is a direct

function of the past M channel noise outputs. By contrast, HMMs have effectively infinite

memory (in terms of having no exact finite-length block transition description) and the

channel state is a ‘hidden’ variable of the channel noise outputs; thus, the state cannot be

determined by direct observation of these outputs.

2.2.1 Binary Additive (Mth-order) Markov Noise Channels

We define here a general class of binary symmetric channels with M th-order Markov noise

and we will refer to them as binary additive Markov noise channels (BAMNCs).

Definition 2.2.1. Let Xn be a random input sequence of length n and let Yn be the output

of a BAMNC. Then Yn = Xn ⊕ En, where ⊕ represents block-wise addition modulo-2

and En is the length n additive noise sequence of the BAMNC. Now we let Et ∈ {0, 1}

be a random variable representing the single binary noise symbol at time t and we define

St = (Et−1, Et−2, . . . , Et−M) as the channel state at time t. We then require that

Pr(Et = et|Et−1 = et−1, . . . , E1 = e1)

= Pr(Et = et|Et−1 = et−1, . . . , Et−M = et−M )

= Pr(Et = et|St = st),

and thus for all si ∈ {0, 1}M ,

Pr(St+1 = st+1|St = st, St−1 = st−1, . . . , S1 = s1) = Pr(St+1 = st+1|St = st).

In other words, we require that the noise process of the BAMNC be the M th-order Marko-

vian and thus the channel-state process form a Markov chain.
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This channel model is fully characterized by its state transition probability since each

state transition corresponds to a particular channel noise output value. Equivalently, this

implies that there are only two possible state transitions into or out of any state. In or-

der to fully describe an M th-order binary additive Markov channel we require up to 2M

parameters, one for each state. We can enumerate the states using the set of integers

{0, . . . , 2M −1}, where the state corresponding to the sequence (et−1, ..., et−M) is given by

i = et−12
M−1 + et−22

M−2 + · · ·+ et−i2
M−i + · · ·+ et−M .

For each state, we define the probability P e
i = Pr(Et = 1|St = i), which is both

the probability of error for that state as well as the probability of state transition from

i →
⌊

i+2M

2

⌋

. The probability of no error for state i is simply (1 − P e
i ), which is also the

state transition probability from i →
⌊

i
2

⌋

. We define the operation b·c as rounding down

the the nearest integer.

The state transition probability matrix for this channel is sparse, since there are only

two non-zero values in each row: P e
i and (1 − P e

i ). Because channel errors and state

transitions directly determine each other, we need no more than one parameter per state

to describe any BAMNC. Thus this model is simpler than other, more general, finite-state

Markov models.

In [35], the authors propose using a queue of size M to describe the channel-state.

One can think of channel state transitions as shifting the values of the queue to the right

by one and placing the most recent channel noise output in the first queue position (the

most significant bit). This leads to the description of an even simpler subset of this family,

the queue-based channel which is a generalization of the finite memory Polya contagion

channel from [1].

For real world channels it is possible to try to develop binary additiveM th-order Markov
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approximations. M th-order Markov processes are often used in source coding to model

real-world random sources [13, 5] and could be applied using the BAMNC model to de-

velop decoders or based on M th-order approximations to actual channels. We will show

how this can be done in Section 2.2.4

2.2.2 Binary Channels Based on Hidden Markov Models

The GEC is one of the most popular finite-state Markov channel models in the literature.

This is due in part to its early adoption in the history of communication research but mostly

due to its simplicity as a model.

It is a two-state HMM, because the channel state is a hidden variable of the observations

of channel noise. The channel-state sequence cannot be directly inferred from observing

the channel noise sequence. This is different from the BAMNC where the knowledge of the

past channel noise sequence allows us to determine exactly what the channel-state sequence

was.

Binary symmetric HMM based channels, as we define them here, are Markov mod-

ulated channels where channel state transitions occur according to a Markov process in

the same way as state transitions for the BAMNC model occur. The difference is that for

HMMs, each channel-state has an associated memoryless BSC which generates the channel

noise when the channel is in that state. For each state, we need to define the state-transition

probabilities as well as the probability of error for the BSC associated with that state. We

can see this relationship between the channel state and it’s associated BSC in Fig. 2.2 for

the simple GEC model.

As mentioned in Section 2.2.1, for the M th-order BAMNC, channel-state transitions

are a function of the noise symbol. As a result we only need one parameter per state.

The two-state (first-order) BAMNC needs only two parameters to define the channel, while
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the two-state GEC requires four parameters. In general an n-state binary HMM channel

requires up to n2 parameters, n× (n− 1) for state transition probabilities and n parameters

for the channel bit-error rates for each state. The n-state M th-order BAMNC (n = 2M )

requires only up to n parameters.

Finite-state HMM based binary symmetric channels do not have an exact finite-length

channel block transition probability description (although an approximation is possible).

This means that HMMs do not have a finite-order Markov distribution for the noise process

even though the underlying state transition model is first-order Markov. As a result of this

HMMs are harder to analyse since channel capacity can only be upper and lower bounded

and the noise process statistics must be approximated. Having a finite-order Markov dis-

tribution of the noise process is the defining characteristic of the BAMNC model and we

note that it is possible to approximate the noise process of an HMM with a BAMNC of

finite-order by using an M th-order approximation of the channel noise process. This is

described in Section 2.2.4.

2.2.3 Specific Implementations

There are two channel models in the literature based on an additive Markov noise model

that we will consider in this work. The finite memory contagion channel (FMCC) and

the queue-based channel (QBC). The FMCC [1] is based on Polya’s model for the spread

of a contagion in a population. This model was generalized to the QBC in [35] which is

the channel we focus on in our simulations. The GEC is the example used for a hidden

Markov model since it is a very popular example of this type of channel in the literature.

This channel is also used in our simulations and is compared with the QBC.



CHAPTER 2. INFORMATION THEORY AND CHANNEL MODELING 33

Finite Memory Contagion Channel

Alajaji and Fuja presented a novel description of a channel with binary additive Markov

noise in [1], where each error affects the probability of future errors based on Polya’s model

for the spread of a contagion. It models how testing a single person for an infection affects

the probability of finding infected people in future tests. Each positive test increases the

probability of a future positive test and a negative test decreases the probability of future

positive tests.

In their paper, they develop a channel model where the channel noise sequence is chosen

according to the urn scheme used by Polya for modeling contagions [24]. It proceeds as

follows: the urn initially contains T balls with R red balls and S black balls (T = R + S).

At each turn, a ball is drawn and we examine the color. If it is red then an error occurs and

if it is black no error occurs. Afterwards we place 1 + ∆ balls of the same color in the urn

(∆ > 0).

The authors note that this channel has infinite memory and the effect of memory does

not diminish over time. The effect of the first ball drawn on the probability of the next

ball is the same as the effect of the last ball. They also determine that the capacity of this

channel is zero. As a result they propose a finite memory contagion channel, where the

model has an M th-order Markov noise process and any balls added to the urn more than

M draws in the past are removed from the urn.

The FMCC scheme is defined as follows: an urn contains T balls with R red balls and

S black balls. As before, we draw from the urn and an error occurs if and only if we draw

a red ball. Then we return 1 + ∆ (∆ > 0) balls of the same color as before. After M more

draws from the urn, we retrieve ∆ balls of that color from the urn. This ensures that any

draw will only affect the probabilities of the next M draws and no more. This channel is

described by three parameters M , ρ = R/T and δ = ∆/T . We note that ρ is the stationary
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probability of error for the channel. Recalling our definition of St as the last M channel

noise outputs, the probability distribution of Et given St is:

Pr(Et = 1|St = st) =
R + (et−1 + et−2 + · · · + et−M)∆

T +M∆

=
ρ+ (et−1 + et−2 + · · ·+ et−M )δ

1 +Mδ
, (2.3)

where st = (et−1, . . . , et−M).

The FMCC’s additive noise process is stationary ergodicM th-order additive Markovian

with closed form equations for its steady-state distribution and the entropy rate. Like all

additive Markov noise processes we can define the state as a value, i ∈ {0, . . . , 2M − 1},

where i = et−12
M−1 + et−22

M−2 + · · ·+ et−i2
M−i + · · ·+ et−M . Using this definition, the

one-step state transition probabilities for the channel are given by

Pij =























1−ρ+(M−w(i))δ
1−Mδ

, if j = 2i (mod 2M),

ρ+w(i)δ
1+Mδ

, if j = (2i+ 1) (mod 2M),

0, otherwise,

(2.4)

where w(i) is the weight (number of 1’s) of the binary representation of i. The steady-state

distribution of the channel state is given by

πi =

∏w(i)−1
j=0 (ρ+ jδ)

∏M−1−w(i)
k=0 ((1 − ρ) + kδ)

∏M−1
l=1 (1 + lδ)

, (2.5)

where πi is the steady-state probability that the Markov process of the channel is in state i.
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Figure 2.1: Queue diagram for the QBC

Using (2.4) and (2.5) we can compute the channel capacity exactly.

CFMCC = 1 −H(EM+1|EM , EM−1, . . . , E1) (2.6)

= 1 −

2M−1
∑

i,j=0

πihb(pij) (2.7)

= 1 −
M
∑

k=0







M

k






Lkhb

(

ρ + kδ

1 +Mδ

)

, (2.8)

where

Lk =

∏k−1
j=0(ρ+ jδ)

∏M−1−k
l=0 ((1 − ρ) + lδ)

∏M−1
m=1 (1 +mδ)

,

and hb(·) is the binary entropy function.

Queue-Based Channel

In [35] Zhong, Alajaji and Takahara generalize the FMCC by using a finite queue to de-

scribe an M th-order additive Markov noise process. The channel is described by four

parameters M , p, ε and α.

The noise process is generated according to the following scheme: we have a size M

queue which contains the values of the past M channel noise outputs (Fig. 2.1). We choose

randomly between two ‘parcels’ where we choose parcel 1 with probability ε and parcel 2

with probability 1 − ε.
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Parcel 1 is the length M queue which contains the last M values from the channel

output. The next channel noise output is chosen from the queue according to:

Pr(Et = qn) =











1/(M − 1 + α), if n = 1, . . . ,M − 1,

α/(M − 1 + α), if n = M.

Parcel 2 is a memoryless BSC noise process with probability of error p:

Pr(Et = 1) = p.

After each use of the channel, the value, Et, enters the queue from the left like a shift

register and the entries of the queue are shifted to the right by one. Et becomes the new

entry in the first position and the last entry, Et−M , is shifted out of the queue. Just like the

FMCC, noise symbols older than Et−M , where t is the current time, have no effect on the

next noise symbol.

The contents of the queue fully describe the state of the channel. The probability dis-

tribution of the next noise symbol Et, is given by

Pr(Et = 1|St) =
ε(et−1 + et−2 + · · · + αet−M)

M − 1 + α
+ (1 − ε)p. (2.9)

We note that for α = 1, the QBC reduces to the FMCC with parameters M , ρ = p and

δ = ε/[(1 − ε)M ]. Like the FMCC, the QBC has a stationary ergodic noise process with

closed form expressions for the channel noise block distribution and capacity.
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The one-step channel state transition probabilities are given by

p
(M)
ij =



















































(M−w(i)−1+α)ε
M−1+α

+ (1 − ε)(1 − p), if j = i
2
, and i is even,

(M−w(i))ε
M−1+α

+ (1 − ε)(1 − p), if j =
⌊

i
2

⌋

, and i is odd,

w(i)ε
M−1+α

+ (1 − ε)p, if j = i+2M

2
, and i is even,

(w(i)−1+α)ε
M−1+α

+ (1 − ε)p, if j =
⌊

i+2M

2

⌋

, and i is odd,

0, otherwise;

(2.10)

where p(M)
ij is the M -state channel transition probability from state i to state j and w(i) is

the weight of the binary sequence representation of i as before. The steady-state distribution

for the channel is

πi =

∏w(i)−1
j=0 [j ε

M−1+α
+ (1 − ε)p]

∏M−w(i)−1
k=0 [k ε

M−1+α
+ (1 − ε)(1 − p)]

∏M−1
l=1 (1 + (α + l) ε

M−1+α
)

,

where the state i = 0, 1, . . . , 2M − 1.

Finally, the channel capacity is given by

CQBC = 1 −H(EM+1|EM , EM−1, . . . , E1)

= 1 −

2M−1
∑

i,j=0

πihb(pij)

= 1 −
M−1
∑

k=0







M − 1

k






Lkhb

(

kε

(M − 1 + α)
+ (1 − ε)p

)

−

M
∑

k=1







M − 1

k − 1






Lkhb

(

(k − 1 + α)ε

(M − 1 + α)
+ (1 − ε)p

)

,
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where

Lk =

∏k−1
j=0 [j

ε
M−1+α

+ (1 − ε)p]
∏M−k−1

l=0 [l ε
M−1+α

+ (1 − ε)(1 − p)]
∏M−1

m=1 (1 + (α +m) ε
M−1+α

)
,

In [35] the authors show that the parametrization of the QBC has certain properties

which are useful for analysis of the channel. The first is that the capacity is non-decreasing

in α and the second is that for 0 ≤ α ≤ 1 capacity is non-decreasing in M .

Theorem 2.2.2. The capacity CQBC of the QBC increases as the parameter α increases

for fixed M , p, and correlation of the channel given by

Cor =

ε
(M−1+α)

1 − (M−2+α)ε
(M−1+α)

, (2.11)

and the capacity converges to 1 as α approaches infinity for all M , p, and Cor 6= 0.

Proof. Given in [35].

The correlation of the QBC channel is a measure of the relationship between consecu-

tive channel noise symbols and is defined as

Cor ,
E[E1E2] − E[E1]E[E2]

E[E2
1 ] − E[E1]2

,

where E[·] denotes expectation. For discrete random variables correlation ranges between

-1 and 1 and Cor = 0 ifE1 andE2 are independant although the converse is not necessarily

true. We note here that it is true for the QBC and Cor = 0 implies not only that E1 and

E2 are independant but that ε = 0 and therefore the channel is a completely memoryless

BSC. Furthermore the correlation of the QBC must be between 0 and 1 which is clear from

(2.11).
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Theorem 2.2.3. The capacity CQBC of the QBC is non-decreasing in M for fixed p, Cor,

and 0 ≤ α ≤ 1.

Proof. Noting that a QBC with fixed Cor, M and α = 1, is equivalent to a QBC with

Cor′ = Cor, M ′ = M + 1 and α′ = 0, we can use Theorem 2.2.2 and write

CM
QBC(α) ≤ CM

QBC(1)

= CM+1
QBC (0)

≤ C
(M+1)
QBC (α).

Monotonicity of capacity in p, assuming all other parameters are fixed, is clear, since p

is the steady-state probability of error for the channel. In general, the capacity will be non-

increasing in p. Proving that capacity is monotonic in ε (or equivalentlyCor), assuming all

other parameters are fixed, is not as simple. Numerical results plotted in [35], for several

examples, show that as Cor → 1 capacity is monotonic and CQBC → 1. Additionally,

for the simplest case of M = 1, it is straightforward to show that
∂C1

QBC

∂Cor
≥ 0 for all fixed

values of p. We hypothesize that the capacity is in fact monotonic and non-decreasing in

the correlation of the channel and equivalently ε.

Both the QBC and FMCC have a constant number of parameters needed to describe

the channel regardless of the value of M . This is not true in general for all additive M th-

order Markov noise channels. Thus, these models are simpler to implement and analyze,

particularly for large values of M .
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Gilbert-Elliot Channel

The GEC [14, 10] is one of the most widely used binary additive noise channels with

memory. It is a simple two-state Markov modulated channel based on a hidden Markov

model.

Usually, one state is referred to as the ‘good’ state and the other as the ‘bad’ state. The

good state is associated with a BSC which has a lower probability of error than the BSC

which is associated with the bad state. The channel operates by transitioning between the

low error ‘good’ state and the high error ‘bad’ state, where errors occur more frequently.

The bad state models bursts of errors typical of many real world communications systems.

The Markov process is shown in Fig. 2.2 as a simple finite state machine model. There

are four parameters needed to describe the GEC: g the probability of transition from the

bad state to the good state, b the probability of transition from the good to the bad state, Pg

the BSC probability of error in the good state and Pb the BSC probability of error in the

bad state. In general we require that Pg < Pb.

As discussed in Section 2.1.3 there is no closed form solution for the capacity of the

GEC (or any other HMM based channel) its capacity can be estimated numerically using

the following equation from [19], which is a lower bound on the capacity for finite values

of t

CGEC = limt→∞ Ct
GEC = lim

t→∞
E[1 − hb(Pr(et+1|e

t))], (2.12)

where et = (et, et−1, . . . , e1). We approximate CGEC numerically by computing C t
GEC for

a sufficiently large value of t.
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Figure 2.2: Finite state machine model for the GEC

2.2.4 Binary Additive Mth-order Markov Approximations

The binary additive M th-order Markov noise channel is a versatile channel model which

can be used to approximate the statistics of channels for which no simple model exists.

We can design a BAMNC as an M th-order Markov approximation to a real world channel

noise process or for a channel model which does not have a finite-order additive Markov

process such as the GEC. This can be done by determining the length M block transition

probabilities and stationary block distribution for the channel noise.

M th-order Markov approximations of real world random processes are often used to

model random sources for data compression. Markov processes can be used as a proba-

bilistic model for text, images, audio and video in order to design better data compression

codes for these types of data. English language based text makes for a good example of

Markov modeling.

If we want to use a random process to model English text, we could begin by randomly
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generating letters and spaces according to the frequency at which they occur in a suffi-

ciently long English book or set of books. Using this model to generate text we would get

something like this [29]:

xfoml rxkhrjffjuj zlpwcfwkcyj ffjeyvkcqsghyd qpaamkbzaacibzlhjqd.

While the letters and spaces appear in similar proportion as in English text, this text

does not resemble English at all. We can improve the model significantly by using a

Markov model. In order to do this, we compute the probability of each letter given the

past M letters. Each letter is chosen according to the probability that it follows the previ-

ous M letters that came before it. For example, a third order Markov approximation has

the probability distribution of the next letter generated as

p(x) = Pr(Li = x|Li−1 = li−1, Li−2 = li−2, Li−3 = li−3),

where Li and li are the random variable and variable, respectively, associated with the ith

letter in the sequence. Using this model would produce something like this [29]:

in no ist lat whey cratict froure birs grocid pondenome of demonstures of

the reptagin is regoactiona of cre.

This sentence is still gibberish, however its structure more closely resembles English.

The words, though nonsense, could probably be pronounced and they contain consonants

and vowels in a similar manner to real English words. Additionally, we see the occurrence

of a few real English words such as ‘the’, ‘is’ and ‘of’. We can clearly see that this is a

much better random model of English text than the first. However the complexity of the

higher-order models increase exponentially with the order of the model.
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The same technique can be used to model the statistics of real channels by computing

the M th-order Markov statistics for the channel. In order to do this we must first observe

sufficient channel noise statistics to compute accurately the length M block stationary dis-

tribution and transition probabilities for the channel. In other words, for a binary symmet-

ric channel we need to determine, for each eM = (e1, e2, . . . , eM), where ei ∈ {0, 1}, the

finite-length block distributions of the channel noise process

Pr(eM) = Pr(E1 = e1, E2 = e2, . . . , EM = eM), (2.13)

Pr(eM+1|e
M) = Pr(EM+1 = em+1|E1 = e1, . . . , EM = em). (2.14)

This gives the steady state distribution (2.13) and the channel transition probability (2.14)

for the M th-order approximation of the channel. The channel state at time t is represented

by et = (et−1, et−2, . . . , et−M) as it is for all BAMNCs.

Using an M th-order approximation allows us to model the statistics of any stationary

binary symmetric additive noise channel as closely as complexity will allow. The complex-

ity of the channel model and the decoder increases exponentially with M . Thus, there is a

practical limit to the order of the model that can be used for actual decoding.

We can use this method to derive an M th-order approximation of the GEC by comput-

ing the probability of each length M bit sequence under the GEC as well as the probability

of error in the M + 1st noise symbol given the previous M noise symbols.

First let us define a matrix which contains binary probability distributions

PGEC(ei) =







PEi,Si+1|Si
(ei, G|G) PEi,Si+1|Si

(ei, B|G)

PEi,Si+1|Si
(ei, B|B) PEi,Si+1|Si

(ei, G|B)






,

where PEi,Si+1|Si
(ei, si+1|si) is the joint probability of the state transition to si+1 with noise
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symbol ei given that the current state is si. For ei ∈ {0, 1} we get

PGEC(1) =







(1 − b)Pg bPg

(1 − g)Pb gPb






,

PGEC(0) =







(1 − b)(1 − Pg) b(1 − Pg)

(1 − g)(1 − Pb) g(1 − Pb)






.

This matrix can be used to calculate P (e1, . . . , eM) as well as P (eM+1|e1 . . . , eM) for

every sequence (e1, . . . , eM). Let

πGEC =







g

g+b

b
g+b






,

which is the stationary distribution for the state of the GEC. Then we get

P (e1, . . . , eM) = uT PGEC(eM) · PGEC(eM−1) · · · PGEC(e1)πGEC ,

P (eM+1|e1, . . . , eM) =
P (e1, . . . , eM+1)

P (e1, . . . , eM)
,

where uT is the all ’1’ row vector (implying the sum over all the values of the vector

obtained from the matrix multiplications to the right of it).

This computation must be computed for each binary sequence {e1, . . . , eM}; thus, com-

puting the M th-order BAMNC statistics is of exponential complexity, which limits how

large M can practically be.1

1We use the same computations to compute the conditional probability distribution for the GEC in order
to get a lower bound on the capacity of the channel as described in Section 2.2.3.



Chapter 3

LDPC Codes and SPA Decoding

In this chapter we review the two related topics of low-density parity-check (LDPC) codes

and the sum-product algorithm (SPA) which is used to decode them.

We begin in Section 3.1 with a review of the definition of LDPC codes for both regular

and irregular variants. The basics of linear block codes, parity-check equations and Tanner

graphs are discussed to give a complete understanding of LDPC codes.

In Section 3.2, we describe the sum-product algorithm which is the basis for our joint

channel-estimation/decoder design in Chapter 3. The SPA is an algorithm for simplifying

the computation of a complex global probability distribution function by factoring it into a

product of simple local probability functions and representing this factorization on a graph.

3.1 Low-Density Parity-Check Codes

Here we define the characteristics of LDPC codes. These are a class of linear block codes

named for their sparse parity-check matrix, which is their defining characteristic. We begin

45
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with the basics of linear block codes and parity-check matrices and define the main sub-

classes of LDPC codes from the literature.

This chapter makes use of the following standard notation for representing vectors and

matrix multiplication. We denote vectors using boldface letters (e.g. x = (x1, x2, . . . , xn))

and for the purposes of matrix multiplication we use the standard definition of vectors as

column vectors. Matrices are denoted using a capital bold face letter. For any given m× n

matrix A, and length n vector x, we perform the multiplication of matrix with vector using

the standard method of matrix-column vector multiplication

Ax = A



















x1

x2

...

xn



















.

Since we are concerned only with linear block codes over the binary alphabet {0, 1}, we

perform all multiplication and addition over the binary alphabet modulo-2. We use the

symbol ⊕ to denote the operation of addition modulo-2.

3.1.1 Linear Block Codes

Linear block codes are channel codes defined as the null-space or kernel of a size m × n

matrix known as a parity-check matrix. This forms a linear vector space denoted by C,

which is called the codebook for the code and is the set of all valid codewords for the code.

Each codeword is a length n vector (n is the codeword block size of the code). While

linear block codes are not restricted to variables over a binary alphabet, this work is only

concerned with binary-input/binary-output channels so we will only define codes in terms

of a binary alphabet.
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Definition 3.1.1. Let H be an m×n parity-check matrix with entries taken from the binary

set {0, 1}. Then a vector c = (c1,c2, . . . , cn), where ci ∈ {0, 1}, is said to be a codeword of

the linear block code defined by H, if and only if Hc = 0m where 0m is the all zero vector.

We refer to the set C = {c : Hc = 0m} as the codebook for the code.

Example 3.1.2. A Hamming code with n = 7 and m = 3 can be represented by the

following parity-check matrix:

H =













1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1













. (3.1)

Each row of the parity-check matrix represents a parity-check equation on the code

while each column corresponds to a code-bit. A parity-check equation enforces the condi-

tion that the modulo-2 sum of the code-bits that participate in that parity-check is zero. For

the Hamming code example in (3.1) the parity-check equations are

h̃1(c) = c1 ⊕ c4 ⊕ c6 ⊕ c7,

h̃2(c) = c2 ⊕ c4 ⊕ c5 ⊕ c7, (3.2)

h̃3(c) = c3 ⊕ c5 ⊕ c6 ⊕ c7.

Therefore, a vector c, is a codeword if and only if h̃i(c) = 0 for all i.

Linear block codes can be encoded through the use of a generator matrix, which is

an n × k matrix G, where k = n − m and for which the rows are linearly independent.

The matrix G forms a linear mapping from a k-dimensional binary vector-space to a n-

dimensional binary vector-space that is the null-space of the parity-check matrix.

Definition 3.1.3. The generator matrix for a linear block code C, defined by the size m×n
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parity-check matrix H, is a size n× k matrix G such that HG = 0m×k, where 0 is the all

zero matrix.

Example 3.1.4. The Hamming code defined by (3.1) can be encoded using the following

generator matrix:

G =







































1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 1

1 1 0 1

0 1 1 1







































. (3.3)

Encoding a length k block of binary information v = (v1, v2, . . . , vk), using the code

defined by H, can be done by simply obtaining the product x = Gv; thus, x ∈ C is the

length n codeword for the input vector v.

It is a simple process to determine if a given vector x is a valid codeword by computing

the syndrome Hx. If each of the parity-checks evaluate to zero, then it is a valid codeword.

This provides an effective method for detecting if a received vector contains errors or for

determining if error correction was successful (though this will not guarantee that it is the

correct codeword). In decoding LDPC codes using iterative decoders such as the SPA,

we use the parity-checks to terminate the decoding process once it has resulted in a valid

codeword.

Another property of all linear block codes is that they can be represented graphically

using a Tanner factor-graph [30]. This is a bipartite graph where parity-checks and code-bit

variables are represented by nodes on the graph. A code-bit node is connected to a parity-
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Figure 3.1: Tanner graph for the Hamming code from (3.1).

check node in the graph if that code-bit participates in that parity-check. Fig. 3.1 shows the

parity-check matrix from Example 3.1.4 in its Tanner graph representation.

There are many families of linear block codes such as Hamming codes, Reed-Muller

codes, cyclic codes like BCH codes and LDPC codes with which we are concerned.1

3.1.2 Regular LDPC Codes

As mentioned earlier, low-density parity-check codes have a sparse parity-check matrix

(i.e., the proportion of non-zero entries of the matrix is small). Indeed, the density of the

LDPC matrix goes to zero as the length of the code increases. Ee define regular-LDPC

codes as they were defined in Gallager’s original work [11].

Definition 3.1.5. A length n (dv, dc)-regular LDPC code is defined by an m × n parity-

check matrix where each row has dc 1’s and each column has dv 1’s. The rate of this code

is r ≥ 1− dv/dc (with equality iff the rows of H are linearly independant) and we have the

constraint that m = (dv/dc)n.

1More detailed descriptions of each of these classes of codes can be found in [16].



CHAPTER 3. LDPC CODES AND SPA DECODING 50

Figure 3.2: Example of a length 10 (2,4)-regular LDPC code in both parity-check and
Tanner graph forms.

The density of a (dv, dc)-regular LDPC code is simply ρ = dc/n = dv/m, and clearly

limn→∞ ρ = 0. An example of a length 10 (2,4)-regular LDPC code can be seen in Fig. 3.2

with both its parity-check matrix and Tanner graph.

Often LDPC codes are subject to the additional constraint that no two rows share more

than one column for which they both have a ’1’ in that column. This results in a Tanner

factor graph for the code which does not contain cycles of length four. Cycles of length

four are the shortest cycles possible in a bipartite graph (Fig. 3.3). The shortest cycle in a

graph defines the girth so as a result of this constraint the girth of this LDPC code will be at

least 6. The reason for requiring this will become clearer when the sum-product algorithm

decoder is discussed, but for now it is sufficient to say that short cycles negatively affect

the performance of message-passing decoders like the SPA.

The sparse nature of the parity-check matrix makes it possible to use message-passing

decoding algorithms with linear complexity.2 Message-passing algorithms estimate the

probability of error for each bit by passing messages containing estimates of the probability

2Linear complexity means that the number of computations needed to decode a block increases linearly
with the block length n.
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Figure 3.3: Example of a length 4 cycle in a Tanner graph.

of error along the edges between code-bits and parity-checks on the factor graph iteratively.

For LDPC codes, the number of edges on the graph grows linearly with n. For a (dv, dc)-

regular LDPC code,

NEdges = ndv = mdc.

The number of messages passed grows linearly in n; thus, we say that the decoding algo-

rithm is of order n which is often written as O(n). The most effective message passing

decoder is the SPA [15] which is a belief propagation [21] algorithm for factor graphs.

The existence of a linear-time belief propagation decoder for LDPC codes is something

they have in common with Turbo codes. In fact the SPA can also be used to perform belief

propagation decoding of Turbo codes and convolutional codes. The second thing they

have in common is excellent performance under belief propagation decoding. Simulated

performance of LDPC codes is within a fraction of a decibel of the Shannon limit for the

AWGN channel [4, 26]. This is one reason why LDPC codes have generated so much

attention recently.

LDPC codes also have some advantages over Turbo codes. Unlike Turbo codes, the

decoding process for LDPC codes is verifiable by computing the parity-check of the de-

coder output. This allows for early termination of the decoding algorithm once a valid
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codeword is obtained, as well as allowing for the decoder to determine if the decoding of a

received block has failed. Detecting failures allows the receiver to request retransmission

if needed. LDPC codes also do not require the use of a long interleaver which is an integral

component of Turbo encoders and decoders.

Furthermore, Turbo codes generally experience a phenomenon known as ‘error-flare’

(often incorrectly referred to as ‘error-floor’) at a higher bit-error rate than LDPC codes.

Error-flare is when the bit-error rate stops decreasing exponentially as the channel quality

improves causing the plotted error curve to ‘flare’ outwards. This is due to the poor distance

properties of their constituent convolutional codes [22]. In fact, under the assumption of

optimal decoding, the existence of capacity-achieving LDPC codes can be proven [17], a

property which has not been demonstrated for Turbo codes.

3.1.3 Irregular LDPC Codes

Just like regular LDPC codes, irregular LDPC codes are defined by their sparse parity-

check matrix. Unlike regular LDPC codes, the definition for irregular LDPC codes is

looser and allows the number of 1’s in each row and column to vary. An irregular LDPC

code is defined by a degree distribution. The degree of a variable (code-bit) or check node

is the number of edges that intersect with that node. For a variable node, it is the number

of parity-checks it participates in, and for a check node, it is the number of variables which

participate in that parity-check.

Definition 3.1.6. The degree distribution of an LDPC code is defined by the sets, {ρ2, ρ3, . . . , ρdc
}

and {λ2, λ3, . . . , λdv
}, where ρi (λi) is the proportion of non-zero (i.e. containing a ‘1’) in

the parity-check matrix in a row (column) of weight i. More specifically it is defined

as the proportion of edges connected to check (variable) nodes of degree i and clearly
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∑

i ρi =
∑

i λi = 1. Using this definition we can categorize regular LDPC codes as a

subset of irregular LDPC codes which have ρdc
, λdv

= 1.

Using (3.4) and (3.5), we can determine the number of variable nodes Vi, and parity-

check nodesCi, of degree i that are in the Tanner graph. (3.6) gives the relationship between

the number of checks and the block length of the code which in turn gives us the rate of the

code in (3.7):

Vi = n
λi/i

∑dv

j=2 λj/j
, (3.4)

Ci = m
ρi/i

∑dc

j=2 ρj/j
, (3.5)

m = n

∑dc

j=2 ρj/j
∑dv

j=2 λj/j
, (3.6)

r = 1 −

∑dc

j=2 ρj/j
∑dv

j=2 λj/j
. (3.7)

The family of irregular LDPC codes is clearly a super-set of the family of regular LDPC

codes and it has been shown that there exist irregular degree distributions that greatly out-

perform regular LDPC codes for a variety of channels under SPA decoding. Such channels

include the AWGN channel and the BSC [26, 4] and some Gilbert-Elliot channels [7]. The

design of a good degree distribution generally involves a combination of trial and error,

careful searching and testing and the use of analysis techniques such as density evolution

(DE) [27], EXIT chart analysis [31] or other techniques.

These techniques are generally computationally complex though significantly simpler

than brute force searching and testing. This is even more difficult for channels with mem-

ory than for channels without memory. Despite these difficulties DE techniques have been

applied to the GEC [6] and the FMCC [20] for a few simple examples of these channels.

However, very little work has been done to design irregular codes for channels with mem-
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ory due to the difficulty in performing this type of analysis.

3.2 The Sum-Product Algorithm

The Sum-Product Algorithm (SPA) is a form of Pearl’s belief propagation [21] that uses

message passing on factor graphs. Many different algorithms in computer science, prob-

abilistic modeling, statistics, signal processing and digital communications can be shown

to be instances of the SPA [15] and can be performed using the SPA. In fact, Turbo de-

coding, the BCJR algorithm and other forms of belief propagation, can all be performed as

instances of the SPA [15].

In this section, we describe in detail how the SPA is derived and give examples of

message passing on factor graphs. We also define factor graphs and show how global

functions can be factored as a product of local functions to be represented as a factor graph.

We will show how the SPA can be combined with the Tanner graphs of LDPC codes

to perform approximate belief propagation decoding, as well as explain why this decoding

method is only an approximate belief propagation technique and is sub-optimal. Further-

more, we extend this decoding method by factoring the Markov chain representation of the

channel state for the GEC and for BAMNCs to show how the SPA can be used to design a

joint channel-estimator/decoder.

3.2.1 Factor Graphs

Factor graphs are a simple way to graphically represent the statistical dependence between

variables. Imagine we have a global function of several variables g(x1, . . . , xn) which can
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Figure 3.4: Factor graph for (3.9).

be factored into a product of local functions

g(x1, . . . , xn) =
N
∏

j=1

fj(Xj), (3.8)

where Xj ⊂ {x1, . . . , xn} and is the set of variables participating in the j th factor and N is

the number of factors.

A factor graph is a bipartite graph where the graph connects nodes representing each of

the variables xi to nodes representing the functions fj so that there is an edge between xi

and fj if and only if xi ∈ Xj.

Example 3.2.1. For example, let us define g(·) as follows

g(x1, . . . , x5) = f1(x1, x2)f2(x2)f3(x2, x3, x4)f4(x4, x5)f5(x5), (3.9)

which can be represented as the factor graph shown in Fig. 3.4.

This work is mainly concerned with two types of factor graphs: Tanner factor graphs of

parity-check codes [30] and Wiberg-type factor graph representations of Markov chains [34].

Both of these types of graphs are discussed in [15]. Tanner graphs have previously been
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defined in Section 3.1 along with the linear block codes they are used to describe. They

are simply factor graphs where we connect variable nodes representing code-bit variables

to factor nodes representing the parity-checks that those code-bits participate in.

For a parity-check matrix with n bits and m parity-checks we define the global function

of a parity-check matrix H as follows:

gH(x1, . . . , xn) =











1 if (x1, . . . , xn) ∈ C,

0 otherwise.

=
m
∏

i

hi(Xi),

where

hi(Xi) =











1 if
⊕

xj∈Xi
xj = 0

0 otherwise,
(3.10)

and
⊕

xj∈Xi
is the modulo-2 sum taken over all the elements xj ∈ Xi. The global function

gH(·) is the indicator function of the code (i.e., gH(c) = 1 iff c ∈ C). The local function

hi(Xi) is the indicator function of the ith parity-check for the code and Xi is the set of all

variables xj which participate in the ith parity-check.

The Tanner-graph represents the factorization of a global indicator function which tests

if a vector is a valid codeword, into a product of local indicator functions. Each indicator

function represents a parity-check equation for the code. Recall that in Section 3.1 we

showed that the parity-check matrix, which defines the set of parity-check equations, is

sufficient to completely characterize the codebook for a linear block code.

The global function for the state-sequence of a Markov chain can be factored into local

functions which describe the probability distribution of the next state given the current
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Figure 3.5: Factor graph for the state sequence of a Markov process

state.

g(s1, . . . , sn) = Pr(s1)

n−1
∏

i=1

Pr(si+1|si).

This is because the Markov property of Markov processes states that the probability of

the next state conditioned on the infinite past sequence of states is equal to the probability

of the next state conditioned only on the most recent state

Pr(si+1|si, si−1, . . .) = Pr(si+1|si).

We obtain a Markov chain factor graph which can be seen in Fig. 3.5. The Markov

factor-graph can be extended to represent a hidden Markov model to obtain what is called

a Wiberg-type graph [34]. In a Wiberg-type representation, the state of the Markov chain

is related through each factor node to an observed or visible variable. The SPA can then

be used to infer the probability of the state sequence from these observations through the

relationship given by the factors. The Wiberg-type factor graph is shown in Fig. 3.6. The

Wiberg-type graph represents the factorization of the global function

g(s1, . . . , sn, e1, . . . , en) = Pr(s1)
n−1
∏

i=1

Pr(si+1|si) Pr(ei|si+1, si).

In an SPA decoder we observe variables which are the bits received after being trans-

mitted across the channel. These can be considered ‘visible’ variables of the ‘hidden’ state
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Figure 3.6: A factor graph for the state-sequence of a hidden Markov model (Wiberg-type
graph).

sequence for the channel.

3.2.2 Message Passing

The SPA is a ‘message-passing’ algorithm. This means that it operates by passing messages

along the edges of the factor graph. At each node, messages are received by the node and

uses the SPA update rules to compute the outgoing messages. One rule is for the factor

nodes and one is for the variable nodes. Outgoing messages are computed and passed

to the connected nodes on the outgoing edges. A message in the SPA is a function µ(x)

which carries a conditional probability distribution for the variable x. The distribution is

conditional on the messages distributions from other variable and factor nodes which were

passed to compute it (using the message update rules). First, we will define the message

passing rules for both the variable nodes and factor nodes. Second, we will show step-

by-step how the SPA is used to compute the marginalize product-of-functions (MPF) rule

using Example 3.2.1.

Definition 3.2.2. We define the SPA update rules for the messages in Fig. 3.7 as follows.

Let X be the set of all variables and F the set of all factor functions. Let x ∈ X denote a

variable in the set and f ∈ F a function. We denote n(x) as the local neighbourhood of
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Figure 3.7: The messages passed between variable nodes and factor nodes by the SPA from
Def’n. 3.2.2.

functions connected to the node representing x in the graph and X = n(f) as the local

neighbourhood of variables connected to f . The update rules for the SPA are expressed as

follows:

variable-to-factor:

µx→f(x) =
∏

f ′∈n(x)\{f}

µf ′→x(x). (3.11)

factor-to-variable:

µf→x(x) =
∑

n(f)\{x}

f(X)





∏

x′∈n(f)\{x}

µx′→f(x
′)



 . (3.12)

As previously mentioned the SPA computes the MPF for the variable nodes in the factor
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graph. Using Example 3.2.1 the MPF for x1 can be written as

g1(x1) =
∑

∼{x1}

g(x1, x2, x3, x4, x5), (3.13)

where ∼ {x1} is called the summary and denotes the set of all variables not being summed

over. Using the factorization of g(·) in (3.9) we can write this as

g1(x1) =
∑

x2

f1(x1, x2)f2(x2) ·

·

(

∑

x3,x4

f3(x2, x3, x4)

(

∑

x5

f4(x4, x5)f5(x5)

))

. (3.14)

Using the SPA we can compute the MPF of this problem by arranging the factor graph

from Fig. 3.4 as a tree with x1 as the root node. Then we pass messages from the leaves of

the tree to the root as follows.

Example 3.2.3. Using the equations and factor graph from Example 3.2.1 and the update

rules (3.11) and (3.12), we can compute the MPF from (3.14) as follows:

µf5→x5
(x5) = f5(x5)

µx5→f4
(x5) = f5(x5)

µf4→x4
(x4) =

∑

x5

f4(x4, x5)f5(x5).

µx4→f3
(x4) = µf4→x4

(x4)

=
∑

x5

f4(x4, x5)f5(x5)

µx3→f3
(x3) = 1.
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µf3→x2
(x2) =

∑

x3,x4

f3(x2, x3, x4)µx3→f2
(x3)µx4→f2

(x4)

=
∑

x3,x4

f3(x2, x3, x4)
∑

x5

f4(x4, x5)f5(x5)

µf2→x2
(x2) = f2(x2).

µx2→f1
(x2) = µf2→x2

(x2)µf2→x2
(x2)

= f(x2)

(

∑

x3,x4

f3(x2, x3, x4)

(

∑

x5

f4(x4, x5)f5(x5)

))

µf1→x1
(x) =

∑

x2

f1(x1, x2)µf2→x2
(x2)

=
∑

x2

f1(x1, x2)f2(x2)

(

∑

x3,x4

f3(x2, x3, x4)

(

∑

x5

f4(x4, x5)f5(x5)

))

= g1(x1).

To truly take advantage of the computations performed by the SPA one must compute

the complete set of MPFs for the factor graph. It is easily seen that passing the messages

back in the other direction computes the MPF for every variable. So while we pass eight

messages to compute the MPF for x1, in order to compute all five MPF solutions we need

only pass sixteen messages. This makes the SPA very efficient for computing large sets of

MPFs as it reuses the computations to solve for each variable.

3.2.3 SPA Decoder for LDPC Codes

We now describe how the SPA decoder is used to decode LDPC codes. In fact this method

can be applied to any code defined by a parity-check matrix, but for LDPC codes the

complexity of the decoder is of linear order in the length of the code. We will show how the

SPA decoding algorithm can be used as a decoder for memoryless channels as well as in
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the design of a joint channel-state estimator/decoder for finite-state Markov channels such

as those described in Section 1.2.

Factorizations for SPA Decoding

The SPA can be applied to the decoding of LDPC codes through factoring the probability

distribution

x̂ =arg max
x∈C

(fX|Y(x|y))

where C is the set of all codewords. The rule is: given that we receive y then x̂ is the de-

coding decision which minimizes the probability of block error. The distribution equation

fX|Y(x|y) can be rewritten as

g(x) = KfY|X(y|x)fX(x) = fX|Y(x|y),

where K is a normalizing constant, x and y are length n vectors representing the input and

output of the channel respectively, fY|X(·|·) is the conditional probability of the channel

output and fX(·) is the probability distribution of the transmitted codewords. We assume y

is a known quantity since it is what the decoder receives; thus, g(·) is only a function of x.

The decoding rule is: given y, we choose x to maximize g(·), which optimally mini-

mizes the probability of block error. If we assume that the channel input vectors are uni-

formly distributed (i.e., the probability of sending any given codeword is uniform) then this

is equivalent to the maximum likelihood (ML) decoding rule which maximizes the quantity

g(x) = fY|X(y|x) over x.

For a binary-input memoryless channel using a linear block code defined by a parity-

check matrix H and assuming uniform input, g(·) factors as
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Figure 3.8: Factor graph of (3.15) for decoding parity-check codes over memoryless chan-
nels.

g(x1, x2, . . . , xn) = K |C|−1
m
∏

i=1

hi(Xi)

n
∏

j=1

fY |X(yj|xj), (3.15)

where |C| = 2k is the size of the codebook for our linear block code and hi(·) is the

indicator function of the ith parity-check from (3.10).

The factor graph for (3.15) is shown in Fig. 3.8. We see how the code-bits, xi’s, are

related to the received bits, yi’s, through the factors, fY |X(yi|xi), which is the conditional

distribution of the channel transition model. We only need to determine the variable values

which maximize g(·) so we can ignore the constants in (3.15).

For channels with memory, where the yi’s are not conditionally independent given the

xi’s, we cannot factor fY|X(·|·) as in (3.15). Fortunately, for channels with a Markov

channel-state process, like the ones described in the previous section, we can factor the

Markov chain of the channel state sequence as we have just shown. Thus, the function g(·)
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Figure 3.9: Factor graph of (3.16) for decoding parity-check codes over finite-state Markov
channels.

becomes

g(x1, x2, . . . , xn) = K |C|−1
m
∏

i=1

hi(Xi) Pr(s1)

n
∏

j=1

Pr(sj+1|sj) Pr(yj|xj, sj+1, sj). (3.16)

This factorization is represented graphically by the factor graph in Fig. 3.9.

At each iteration, the SPA explicitly computes the function gi(xi|n(n(xi))) for each

variable node in the graph, where n(n(xi)) is the set of all received bits which share

parity-checks with xi. Due to cycles in the graph this can only approximate the solution to

gi(xi|y
n), even after many iterations. The maximization of this function over xi is the bit-

wise maximum a posteriori probability (MAP) decoding rule. The SPA is an approximate

MAP decoder. We note that while exact MAP rule decoding of LDPC codes is order NP

(no polynomial time algorithm exists), the SPA is a linear time algorithm.
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Message Passing for SPA Decoding

Message passing for decoding using the SPA is, in general, exactly the same as it was

described in Section 3.2.2. There is one key difference however; the algorithm does not

have a termination point since the factor graphs for linear block codes generally contain

cycles so their Tanner graph cannot be arranged as a tree.

While it is entirely possible to create a parity-check matrix for which the factor graph

does not contain cycles, codes constructed in this manner have extremely poor properties

and are not good choices for error-correcting. Cycles result in messages being passed

around continuously that will never return to a termination point. Messages passed to a

node in a cycle in the graph will also be dependent on the message passed from that node a

number of iterations earlier which can affect the performance of the algorithm.

Cycles in LDPC codes make the SPA decoding algorithm an iterative decoding algo-

rithm. For each iteration we pass messages from the set of variable nodes along each edge

in the graph to the parity-check nodes and then pass the updated messages back to the vari-

able nodes. While this process is not capable of computing the MPFs exactly even after a

large number of iterations, it has been shown that for sufficiently large and sparse graphs

the local neighbourhoods within the graph are almost always cycle free and the algorithm

converges to the optimal solution [27]. In other words, for sufficiently large LDPC codes

the probability of short cycles is small and the effect of the larger cycles on the convergence

of the SPA is also small.

LDPC codes are ideal for decoding using the SPA since they form sparse graphs, in

fact the density of the parity-check matrix decreases as the block length is increased. Fur-

thermore, for a particular regular-LDPC code, the number of checks-per-bit is fixed, which

implies that the number of messages computed per bit is constant; thus SPA decoding is of

linear order complexity in the length of the code.
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For memoryless channels, using the graph in Fig. 3.8, the SPA operates by passing

messages containing the probability that each transmitted bit xi was either a zero or a one.

To simplify this, we pass the likelihood ratio,

L(xi) = Pr(xi = 0)/Pr(xi = 1),

for each bit. The algorithm is initialized with the messages passed from the received bit

variable-nodes through the channel factor nodes which simply passes the value

ζi(yi) = Pr(xi = 0|yi)/Pr(xi = 1|yi)

to each variable node for the xi’s.

For each iteration, the messages are computed for each edge in the Tanner factor graph,

first going from variable to parity-check and then from parity-check to variable. The mes-

sages are computed using the SPA update rules (3.11) and (3.12) combined with the factor-

ization in (3.15). The message equations are as follows:

Sij =
∏

k 6=j

Pki, (3.17)

Pij =
1 +

∏

k 6=j (1 − 2(1 + Ski)
−1)

1 −
∏

k 6=j (1 − 2(1 + Ski)−1)
, (3.18)

where Sij is the message passed from the ith variable node to the jth parity-check node

and Pij is the message passed from the ith parity-check node to the jth variable node. To

begin, the algorithm initializes the Sij messages to the messages received from the channel

factors; thus, Sij = ζ(xi) for all i, j as mentioned above.
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For each iteration we have an estimate of each bit determined by

x̂i =











0 if
(

∏

j Pij

)

≥ 1,

1 if
(

∏

j Pij

)

< 1,

where x̂i is our estimate for xi.

Using the parity-checks, we can verify if the estimate for transmitted bits is a valid

codeword and if so the algorithm is terminated. Otherwise, the algorithm continues until a

valid codeword is obtained or until a maximum number of iterations has been performed.

The algorithm can be extended to pass messages from the variable nodes to a channel

factor graph representing the Markov chain of a finite-state channel with Markov memory

such as is shown in Fig. 3.9. This requires four additional messages to be passed between

the channel factor graph and the Tanner factor graph of the code and along the channel

factor graph. The entire set of messages for both graphs can been seen in Fig. 3.10.

The equations for messages passed between the code-bit variable nodes and the parity-

check factor nodes are unchanged from those given in (3.17) and (3.18). The four additional

messages are: χi, the extrinsic information passed from the Tanner graph to the channel

graph, ζi, the channel message passed back from the channel graph, αi, the forward mes-

sage on the channel factor graph and βi, the backward message. The αi and βi messages

are the SPA estimates of the probability distribution for the state of the channel at time i.

The channel messages equations are derived from (3.11) and (3.12) combined with the

factorization in (3.16) and are

χi =
∏

j

Pji, (3.19)
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αi+1(si+1) =
∑

xi,si

αi(si)χi(xi) Pr(si+1|si) Pr(xi|yi, si, si+1), (3.20)

βi(si) =
∑

xi,si+1

βi+1(si+1)χi(xi) Pr(si+1|si) Pr(xi|yi, si, si+1), (3.21)

ζi =

∑

si,si+1
αi(si)βi+1(si+1) Pr(si+1|si) Pr(xi = 0|yi, si, si+1)

∑

si,si+1
αi(si)βi+1(si+1) Pr(si+1|si) Pr(xi = 1|yi, si, si+1)

. (3.22)

We note that while χi was originally defined as a likelihood ratio in (3.19), in (3.20)

and (3.21), we represent it as a distribution function of xi to make the equations easier to

express. The two representations of the message are equivalent, since xi is a binary number.

These equations are similar to those used in [8] and the same notation for the channel

message has been used to make comparisons between this work on the BAMNC and the

work in [8] on the GEC easier. The main difference is that the relationship between chan-

nel state transitions and the noise process for the BAMNC model is deterministic rather

than probabilistic. Furthermore BAMNCs only have two possible transitions for each state

regardless of the number of states, which is also true for the GEC because it has only two

states but is not true in general for HMM based channels. The effect of these diferences

will become clearer when we derive the exact computations used for decoding in Chapter 4.

The extended SPA decoding algorithm is a joint channel state estimator/decoder. The

Tanner graph portion of the decoder can perform decoding on the code itself, while the

channel graph portion performs channel state estimation. The advantage of the joint sys-

tem is that the decoder gains from the knowledge of the channel model while the channel

estimation gains from the knowledge of the code structure. This improves the ability of

both parts to produce an accurate estimate of the code-bits and channel state.
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Figure 3.10: All the local messages passed for the extended SPA decoder



Chapter 4

System Design

This chapter describes the design of a joint channel-state estimator/decoder for binary chan-

nels with Markov memory, specifically the GEC and the QBC

The purpose of such a system is to design an error-correcting coding scheme capable of

recovering errors in data transmitted over these channels, or over channels similar enough

to these channels that they can be considered effective models. In order to be effective, such

a scheme must use both knowledge of the encoder and of the channel model to decode the

received data. In other words, the decoder must be able to exploit the relationship between

code bits as well as the relationship between channel errors.

In order to create practical systems for decoding using methods designed for memory-

less channels, techniques like interleaving are used to make the data appear to be memo-

ryless to the decoder. The memoryless equivalent channel often has lower capacity than

the original channel. The performance of this scheme is necessarily bounded away from

capacity relative to the true Shannon limit when channel memory is considered. So even

though it may be very close to the performance limit of the memoryless channel, there may

still be a large gap to the capacity of the actual channel with memory.

70
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Exploiting the channel memory to achieve better performance than schemes based on

memoryless channels can lead us to better performance in terms of the bit-error rate of the

decoder; however, this performance generally comes at the cost of increased computational

complexity in the design of the decoder. It is a central goal of decoder design to achieve

excellent decoder performance while also maintaining a sufficiently small decoding delay.1

These two objectives are often at odds with one another.

It is also necessary to use ‘good’ channel models in order to exploit channel memory

effectively. Channel models should attempt to be ‘good’ models of real world channel noise

phenomena such as fading, multi-path propagation, burst error noise, etc. This is important

because the decoder will rely on how close a ‘fit’ the channel model is to the real channel

when it is operating in the real world. A good fit means it will be able to exploit the channel

memory and possibly outperform an equivalent memoryless system. Additionally, a ‘good’

channel model is also important for simulation and testing of the system. We would like the

results of simulating the communication system to give us results that are representative of

the performance of that system in the real world.

The three main objectives in the design of this error-correcting decoding scheme are:

to be able exploit channel memory, to obtain performance as close to the Shannon limit as

possible and to do so with minimum cost in terms of computational complexity.

We will compare our scheme with the traditional scheme used for decoding LDPC

codes over the memoryless binary symmetric channel in terms of performance and com-

plexity. In order to make these comparisons, we develop a computer simulation of the

noisy channel coding scheme for channels with and without memory using the designs for

the encoder, channel models and the decoder.

1The decoding delay is the time between the decoder receiving a block of encoded data from the channel
and the time it completes decoding that block.
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Figure 4.1: Block diagram of an error-correcting coding communication system with an
additive noise channel.

4.1 Overview of the System

As described in Chapter 1, an error-correcting coding scheme is comprised of two com-

ponents: the encoder and the decoder. For LDPC codes (and linear block codes in general)

the encoder takes binary sequences of length k and produces encoded binary sequences of

length n > k which contain m = n − k parity-check bits. For simplicity we assume the

source data is uniformly distributed2 and that the channel has a binary stationary ergodic

noise process. The decoder receives the encoded data after it has been affected by the chan-

nel noise and attempts to correctly determine what was sent from the encoder by correcting

the errors in the received data.

The basic LDPC encoder functions via matrix multiplication using the generator ma-

trix for the code. Since, this work is mainly concerned with decoder design, we do not

explore other encoding schemes here, which may have lower order complexity than matrix

multiplication.

The decoder is based on the MAP decoding rule. The basic idea is to decode for each bit

to the value which was most probably sent given the channel’s block transition probability,

the probability distribution of the code and the data received by the decoder. This problem

2This is equivalent to assuming that the source is ideally compressed before encoding.
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is extremely difficult, and no known algorithm solves it exactly for LDPC codes in linear

order time. The SPA decoder can be used to sub-optimally compute the bitwise MAP

decoding rule with excellent results.

The SPA decoder is an iterative decoder operating on the principle of belief propagation.

The probability distribution associated with the optimal decoding rule is factored into a

product-of-functions operating on local variable subsets and calculations are carried out

locally to get an estimate of the global distribution. The decoder computes the probability

distribution for each bit based on its local relationship to other sent bits via parity-check

equations. In accounting for a channel with memory, we also consider the related channel

state at the time it was sent. Furthermore, the probability distribution for the channel state

at each time is computed using the SPA based on its relationship with both the previous

and subsequent states.

The channel models are based on finite-state Markov chains and have been described

in detail in Section 2.2. Each state of the channel has a probability of bit error and a

probability of state transition associated with it. For the purpose of computer simulation of

these channels we use pseudo-random number generation to determine the channel noise

output and channel state transition for each channel use.

The encoder, channel simulation and decoder are concatenated as shown in Fig. 4.1 in

order to simulate a complete communication system. We test the performance limits of the

LDPC coding scheme for these channels and compare performance against other similar

systems using this simulation method.
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4.2 LDPC Encoder Design

For encoding, we use a systematic encoder, for which the first k bits of the length n encoded

sequence c = (c1, . . . , cn) are the uncoded length k input sequence v = (v1, . . . , vk), and

the last m bits are the parity-check bits p = (p1, . . . , pm). All linear block codes can

either be put into a strictly-systematic form or they are equivalent3 to a code which can. By

strictly-systematic we mean that the form of G is

G =

[

Ik

A

]

,

where G is the generator matrix, Ik is the k × k identity matrix and A is a matrix which

computes the parity-check bits for the codeword.

Encoding the length k vector v results in Gv = c. Matrix-vector multiplication is

O(m × k) or O(n2), since m and k are both linearly proportional to n. There are LDPC

code designs which are structured in such as way as to have linear order (O(n)) encoders,

but these are outside the scope of this work.

4.2.1 Regular LDPC Codes

In this work, we use a common class of regular LDPC codes of rate 1/2 which has three

parity-check nodes per bit and six bits per parity-check node(a (3,6)-regular LDPC code).

The codes used are created by pseudo-randomly generating a parity-check matrix with

constrained row and column weights. This can be done by randomly generating columns

of weight three and then making each row weight six by shifting bits along the columns or

vice-versa.

3By equivalent we mean that they can be made to be strictly-systematic via. a permutation of the columns
which results in a different codebook, but does not change any of the other properties of the code.
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Figure 4.2: Parity-check matrix with a 4-cycle (a) and then with it removed (b).

After generating a random matrix, cycles of length 4 are removed by further shifting

of the bits within the columns (see Fig. 4.2). Cycles of length 4 are the shortest possible

cycles in the Tanner graph and represent the highest dependency between messages. They

are removed so that the messages passed by the SPA are less dependent.

The SPA would compute the bitwise MAP decoding rule exactly if it were not for

the cycles in the Tanner graph. Unfortunately, as mentioned previously, codes designed

without any cycles are not good codes. It is widely believed that short cycles in particular,

negatively affect the convergence of the SPA towards a near-optimal solution.4

Removing the shortest cycles, the length 4 cycles, is quite simple using an iterative

technique that first looks for 4-cycles, then shifts the bits in the column to break them up

and then checks again to see if any new 4-cycles were created. This method usually works

after only a few iterations. If it does not succeed after a maximum number of attempts a

new parity-check matrix can be generated that will hopefully be more accommodating. An

example of a removing 4-cycles is shown in Fig. 4.2.

It is possible to remove cycles of length 6 and higher, however the recursion is becomes

4The exact nature of the relationship between cycles in the graph and the performance of the SPA is still
an open problem.
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more complex with the length of the cycles and it becomes more likely that we will simply

create new cycles in the process of removing them. If one wants LDPC codes with girth

larger than 6 it is possible to structure the LDPC codes in such a way to accomplish this.

We do not explore these LDPC code designs in this work.

Once the parity-check matrix H has been created, the generator matrix is computed by

finding a strictly-systematic matrix G which solves HG = 0m×k. We can do this using the

following decomposition of H

H = [C1|C2],

G =

[

Ik

A

]

,

HG = [C1 ⊕ C2A],

∴ A = C−1
2 C1,

where C1 is anm×k matrix and C2 is a m×m invertible matrix. To compute the generator

matrix we simply need to compute C−1
2 .

4.2.2 Irregular LDPC Codes

Irregular LDPC codes are also generated pseudo-randomly, but in order to generate ir-

regular LDPC codes we must use a degree distribution to determine the individual row and

column weights of the matrix to be generated. The degree distribution of an irregular LDPC

code determines the proportion of edges in the Tanner graph connected to check nodes and

variable nodes of a particular degree. Equivalently, it can be represented by the number of

check nodes and variable nodes of a particular degree.

Finding ‘good’ degree distributions is very hard. They must be tested experimentally

to determine if they perform well (in particular if they perform better than a regular LDPC
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code). Since there is an effectively infinite number of possible degree distributions, we re-

quire some means of direct analysis. Fortunately, techniques such as density evolution [27]

(DE) offer a reduced complexity method to determine the performance limit of a degree

distribution.

The analysis performed by DE determines what the ‘worst’ channel for which the SPA

decoder will decode with an arbitrarily small probability of error in the limit of long block

lengths and using a large number of iterations of the SPA to decode. DE is based on the av-

erage performance of an ensemble of LDPC codes of a particular degree distribution. One

can then state with certainty that there exists a code in this ensemble which outperforms the

average. For example, DE can be used to determine what is the highest CBEP for a BSC

for which the average performance of the ensemble goes to zero as the block length of the

codes in the ensemble go to infinity and the number of SPA iterations is taken to be very

large.

In [27] the authors prove that DE determines the worst channel for which a code using a

particular degree distribution can achieve an arbitrarily low probability of error under SPA

decoding. For any channel worse than this ‘limit’ the probability of error will be bounded

away from zero. This is a sort of ‘channel capacity’ for the LDPC/SPA encoder/decoder.

The difference between this and Shannon’s capacity is that Shannon gives us the perfor-

mance limit of the best channel code which assumes optimal decoding and as we have

stated earlier the SPA is sub-optimal.

Using this technique the authors were able to search for good degree distributions (those

that maximized the DE ‘capacity’ for the BSC and AWGN channels) [26]. DE has also been

applied to an example of the GEC channel in [7] although not as extensively.

This work does not present any density evolution techniques to find good degree dis-

tributions for the QBC or the GEC. Instead, we have used results from [26] and [7] in our
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simulations to see how degree distributions designed for one type of channel perform on

another.

In order to generate the irregular code, we need the number of nodes of each partic-

ular degree; however, in the literature the proportion of edges is generally used for the

degree distribution. We compute the number of nodes using the following equations from

Section 3.2:

m = n

∑dc

j=2 ρj/j
∑dv

j=2 λj/j
, (4.1)

Vi = n
λi/i

∑dv

j=2 λj/j
, (4.2)

Ci = m
ρi/i

∑dc

j=2 ρj/j
, (4.3)

where ρi and λi are the proportion of edges connected to check nodes and variable nodes

of degree i, respectively, dv and dc are the maximum degree for variable and check nodes

respectively, n is the length of the code, m the number of parity-checks and Vi and Ci are

the number of variable and check nodes of degree i, respectively which are the quantities

we use to generate the parity-check matrix.

The n columns are generated randomly with weights according to the degree distribu-

tion and (4.2) and then arranged in random order. Then using the degree distribution for the

rows and (4.3), the row weights are placed in a random ordering. Then the row weights are

applied to the existing matrix by shifting bits within the columns (preserving the column

weights) so that the row weights of the matrix match the ordering. This results in a random

parity-check matrix with row and column weights determined by the degree distribution
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given.

At this point, the 4-cycles can be removed by shifting bits in the columns just as before.

This technique preserves both the row and column weights and does not affect the degree

distribution. Interestingly, no significant gain in performance was achieved by doing this.

In fact, performance appeared to be very slightly worse for the codes tested, so 4-cycles

were not removed for the irregular code simulations.

4.3 SPA Decoder Design

As mentioned in Section 3.2, the SPA decoder is an iterative decoder design that performs

probability propagation on factor graphs. It can be applied to the belief propagation de-

coding of convolutional codes, Turbo codes and LDPC codes as a linear time decoding

algorithm. Furthermore, the SPA decoder can be extended to consider the channel state

model for channels with finite-state Markov memory.

Here, we consider the message passing rules used by the decoder for passing proba-

bilities along the Tanner factor graph and the Markov factor graph for the channel state.

4.3.1 Tanner Graph Messages (Decoding)

The messages update rules for the Tanner graph have been given in Section 3.2; below we

derive the equations for SPA decoding from those message update rules.

First we define the messages passed as µxi→hj
(xi) = µhj→xi

(xi) = P̂r(xi), the current

estimate for the probability distribution for xi. Since xi ∈ {0, 1}, we can send a single
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Figure 4.3: Graphs showing the messages and factor nodes associated with the parity-check
factors (a) and the channel factors (b).

value in place of the distribution message. For this we use the likelihood ratio (LR):

Sij , µxi→hj
(0)/µxi→hj

(1),

Pji , µhj→xi
(0)/µhj→xi

(1),

where Sij is the message passed from the code-bit variables to the parity-check factors and

Pij is the message passed from the parity-check factors to the code-bit variables.

The variable node for xi receives messages from its neighbouring parity-check nodes

and computes the outgoing message to the parity-check node for hj as

µxi→hj
(xi) =

∏

k∈n(xi)\{j}

µhk→xi
(xi),

⇒ Sij =
∏

k∈n(xi)\{j}

Pki, (4.4)

where n(xi) is the set of indicies for the parity-check nodes connected to xi.
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The message update equation for the parity-check nodes is more complicated because

we need to take the sum of a product-of-functions involving several variables over all of

the combinations of those variables which satisfy the parity-check condition. This can be

simplified considerably using the likelihood difference (LD):

SLD
ij , µxi→hj

(0) − µxi→hj
(1),

PLD
ji , µhj→xi

(0) − µhj→xi
(1),

and further noting that

SLD
ij = 1 − 2(1 + Sij)

−1,

PLD
ji = 1 − 2(1 + Pji)

−1.

Thus, we can use

µhj→xi
(xi) =

∑

Xj

hj(Xj)
∏

xk∈Xj\{xi}

µxk→hj
(xk),

⇒ µhj→xi
(0) − µhj→xi

(1) =
∏

k∈Xj\{i}

(

µxk→hj
(0) − µxk→hj

(1)
)

,

⇒ Pji =
1 +

∏

k∈Xj\{i}
(1 − 2(1 + Ski)

−1)

1 −
∏

k∈Xj\{i}
(1 − 2(1 + Ski)−1)

, (4.5)

where hj(·) is the identity function for the jth parity-check equation and Xj is the set of

variables corresponding to the code bits that participate in the j th parity-check. We note that

the second step comes from observing that all the negative terms in the product correspond

to an odd number of 1’s in the set Xj\{xi} (implying xi = 1) and all the positive terms

correspond to an even number of 1’s (implying xi = 0).

Another way of representing the messages passed is with log-likelihood ratios (LLRs),
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which uses the log of the LRs: SLLR
ij , ln(Sij) and PLLR

ji , ln(Pji). This simplifies the

multiplication of (4.4) to a sum. Unfortunately, (4.5) becomes much more complex, since

we must compute the hyperbolic tangent. When running computer simulations, any gain in

performance obtained by changing products into sums is negated by the operations needed

to compute the hyperbolic tangent function.

One way to simplify these calculations further is by applying the min-sum update rule.

This is based on using LLRs and an approximation of the check function involving the

relation: ln(cosh(x)) ≈ |x| − ln(2), for x� 1. The update equations become

SLLR
ij =

∑

k∈n(xi)\{j}

PLLR
ki ,

PLLR
ji = min

k∈Xj\{i}
(SLLR

kj )





∏

k∈Xj\{i}

sgn(SLLR
kj )



 ,

where

sgn(x) =











1 if x ≥ 0

−1 if x < 0
.

The min-sum algorithm trades multiplication operations with summation and compari-

son operations. While the min-sum update rule is not as effective as the sum-product update

rule, the cost of slightly reduced bit-error rate performance is often worth the significant re-

duction in the computational complexity of the algorithm. This can be used in applications

where computational complexity is more important than achieving the best possible perfor-

mance. While we do not use the min-sum rule in any of our simulations it is important to

not that simplifications to the SPA are possible in order to achieve reduced complexity.
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4.3.2 Markov Graph Messages (Estimation)

The Markov chain graph models the relationship between the channel state transition se-

quence and the channel noise sequence. The relationship of the factor node of the joint

probability between the variables si+1, si, xi and yi is given by

fi(si+1, si, xi, yi) = Pr(si+1|si) Pr(yi|xi, si+1, si).

The message update rules related to the Markov graph are

µxi→fi
(xi) =

∏

j∈n(xi)

µhj→xi
(xi),

µfi→si+1
(si+1) =

∑

si,xi

fi(si+1, si, xi, yi)µsi→fi
(si)µxi→fi

(xi),

µfi→si
(si) =

∑

si+1,xi

fi(si+1, si, xi, yi)µsi+1→fi
(si)µxi→fi

(xi).

The variable nodes on the Markov graph simply pass on the messages they receive since

they are of degree two. Using the likelihood ratios of the previous section we defined the

extrinsic message χi, as the likelihood ratio passed from the Tanner graph to the Markov

graph this is computed based on (3.19):

χi =
∏

j∈n(xi)

Pji.

This ratio is also used for the decision rule on each bit when determining the current de-

coder estimate for the codeword.
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We define the messages αi and βi as

αi =



















µsi→fi
(0)

µsi→fi
(1)

...

µsi→fi
(smax)



















,

where smax is the last state. βi is defined similarly, with µsi→fi−1
(si) used for the entries.

The message update rules from (3.20) and (3.21) can be computed as:

αi+1(si+1) =
∑

si∈S,xi∈{0,1}

Pr(si+1|si) Pr(yi|si+1, si, xi)αi(si)ψxi
(χi),

βi(si) =
∑

si+1∈S,xi∈{0,1}

Pr(si+1|si) Pr(yi|si+1, si, xi)βi+1(si+1)ψxi
(χi),

where ψxi
(χi) =

(

1 + χxi−1
i

)−1
= µxi→fi

(xi) and S is the set of state indexes for the

channel (S = {0, . . . , smax}). The functions α(s) and β(s) correspond to the entries in α

and β corresponding to state s.

We can write this as a matrix multiplication by defining matrices E and C to correspond

to the terms associated with errors (yi 6= xi) and valid transmissions (yi = xi). Since yi is a

known variable, this is equivalent to the terms in which xi = 0 and xi = 1. Let ei = yi⊕xi,

then define the (j, k)th entry of the matrices E and C as follows:

ejk = Pr(si+1|si) Pr(xi 6= yi|si+1, si, yi),

cjk = Pr(si+1|si) Pr(xi = yi|si+1, si, yi).
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The matrices are defined for the GEC as

ejk = PjkPj,

cjk = Pjk(1 − Pj),

where Pjk is the one-step channel transition probability from state j to state k and Pj is the

probability of error for state j (either Pg or Pb).

For the QBC and in general for binary channels with additive Markov noise, the matri-

ces are

ejk =











Pjk if k ≥ 2M−1,

0 otherwise,

cjk =











Pjk if k < 2M−1,

0 otherwise.

Using these matrices, the update rules become simplified. First we define

Pe(χi, yi) =
(

1 + χ−yi

i

)−1
,

as the probability yi is in error based on the extrinsic message χi. Then the forward mes-

sage, backward message and the return message ζi, are computed using matrix and vector

multiplication as

αi+1 = [CT (1 − P e(χi, yi)) + ETP e(χi, yi)]αi,

βi = [C(1 − P e(χi, yi)) + EP e(χi, yi)]βi+1,

ζi =

(

αiCβi+1

αiEβi+1

)−yi

.
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We note that the matricies are quite sparse for the QBC and BAMNC since there are only

two entries per row. For a more general Markov process this will not always be the case

so using BAMNCs allows us to compute these equations in linear order with respect to the

number of states, where it would be a squared order algorithm in general.

4.4 Channel Model Simulations

The channel models used for simulation are the QBC and the GEC. For both channels, we

simply generate U = Uniform(0, 1) pseudo-random numbers to determine state-transition

and error events according to their probability distribution.

For the GEC there are two events at each channel use: the state transition and the noise

symbol value. First we determine the noise symbol value based on the state si and the

probability of error for that state Pg, if it is the ‘good’ state and Pb, if it is the bad state. In

other words, we generate U1, and if U1 < Psi
, where Psi

is the probability of error in the

state si at time i, then an error occurs. Then we generate a second pseudo-random number

U2, to determine if a state transition occurs. If we are in the ‘good’ state then state transition

to the ‘bad’ state occurs only if U2 < g. If we are in the ‘bad’ state, then state transition to

the good state occurs if U2 < b: otherwise the state remains unchanged.

The QBC model is more complex because it can have many more than two states. For-

tunately, for each state there are only two possible events: a state transition corresponding

to an error event or a state transition corresponding to the no-error event. Using the one-step

state transition probabilities we can determine psi
for each state (probability of error/error

state transition) and if U1 < psi
an error event occurs, otherwise no error occurs.

Alternatively, it is possible to use the QBC process described in Chapter 2 and generate

separate random variables to determine if we choose the queue or BSC process and then to
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determine which entry from the queue is chosen or whether or not an error occurs according

to the BSC process. This method is a bit more complex. Furthermore, the former method

is universal and will work for any binary additive M th-order Markov channel where the

one-step transition probabilities have been defined.

4.5 Step-by-Step

The simulation process proceeds in three main parts: encoding, transmission and decoding.

Encoding and transmission are very simple processes, while the SPA decoder is clearly

more involved.

Encoding:

• Generate a set of uniformly distributed pseudo-random source bits to encode.

• Encode the source bits one block at a time (k bits at a time) through matrix multipli-

cation with the generator matrix.

• The output result is the encoded bit sequence.

Transmission:

• Take encoded bits one at a time to simulate transmission.

• Determine the noise symbol for each bit transmission according to the noise process

using pseudo-random number generation.

• Output the modulo-2 sum of the input bit and the noise symbol.

Decoding:
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1. Initialize the decoder:

(a) Set each message in the Tanner graph based on the bit error rate of the channel

and the received bit.

(b) Set each message in the Markov graph to the stationary distribution of the chan-

nel state.

2. Perform an iteration on the Tanner graph:

(a) Pass messages from the variable to the factor nodes and back.

(b) Compute the new variable node messages.

(c) Compute the extrinsic message to be passed to the Markov graph.

3. Check exit conditions:

(a) Use the extrinsic message to get an estimate for each bit and determine if this

forms a valid codeword by computing the parity-check. Stop decoding and

return codeword if it is valid.

(b) Check if the number of iterations performed is greater than the maximum num-

ber of iterations set for the algorithm. If so, stop decoding and report that

decoding failed.

4. Perform an iteration on the Markov graph (forward-backward):

(a) Starting with the state at time zero, pass messages forward. The last forward

message becomes first (time n) backward message.

(b) Starting with the state at time n, pass messages backward. The last backward

message becomes the first (time zero) forward message.
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(c) For each bit compute the channel message from the prior forward message and

posterior backward message and pass it to the Tanner graph.

5. Return to step 2 and repeat.

4.6 Algorithm Parallelization

One of the major advantages of the SPA is that it is a completely parallelizable design. A

multi-processor system can, in theory, be designed so that each node in the graph has a

single processor computing the update rules and passing the messages. We will generally

not have that many processors so we suggest a system based on computing the nodes N at

a time.5

A multi-processor system withN processors can be utilized so that parity-check update

messages are computed N at a time and then variable update messages are computed N at

a time. The forward-backward scheduling cannot be parallelized as we have described it;

however, it is possible to change the scheduling without affecting the long run calculations

of the channel messages. The channel factor node messages can be computed in parallel,

N at a time. The messages would no longer pass updated values serially from beginning to

end and back again. Instead, they would use the existing messages from the last iteration

for computing the updates and thus, would be able to compute the messages in parallel.

Theoretically, using this scheduling the speed of the algorithm should scale linearly

with the number of processors used, up to a maximum of m processors for the parity-check

updates and n processors for the variable and channel updates.

5Assuming N < m, n.
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Results

In this section we present the results from several simulations designed to analyze the per-

formance of the SPA decoder design outlined in the previous chapter. We compare mem-

oryless decoding using the BSC as well as decoding for the GEC using a joint estimator-

decoder designed for the GEC. We compare these with the performance of the QBC de-

coder using both regular LDPC codes and irregular LDPC codes designed for channels

other than the QBC.

The purpose of comparing with the BSC is to see how much BER performance is im-

proved by taking the channel memory into consideration. This is as opposed to using an

interleaver to make the channel noise appear memoryless. Furthermore, we want to know

if the gap between simulated performance and the Shannon limit of the QBC is comparable

to that for the BSC. We will see that for regular LDPC codes the performance gap to the

Shannon limit remains relatively constant regardless of the channel used.

We make comparisons with the GEC using the results from [36]. There the authors

took several different parametrizations of the GEC and produced parametrizations of the

QBC in which they minimized the divergence rate between the two channels. As a re-

90
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sult, they obtain QBC channels that are statistically similar to the GEC for several different

parametrizations. We take two of these examples, which are suitable for simulation us-

ing a rate 1/2 code, to obtain simulated results to compare these models. In particular, we

wanted to examine how much the performance degrades if we use one model to decode data

transmitted over the other model (i.e., using the QBC decoder to decode data sent over the

simulated GEC and vice versa). We see that while performance is degraded by the chan-

nel/decoder mismatch when compared with matched channel and decoder, the performance

is still significantly better than the memoryless strategy assuming an ideal interleaver.

Lastly, we use irregular LDPC codes with the QBC decoder. In [26] and [7], irregular

codes are designed for the AWGN channel and the GEC, respectively. In both cases, the

authors used density evolution to find these codes. We test these codes with the QBC to

see the effect that channel mismatch between the channel used for code design and the

channel used in the simulation has on performance. The choice of channel used for design

of irregular codes has a very significant effect on performance particularly when the effect

of the channel memory is strong. In fact, an irregular LDPC code which significantly

improves performance relative to the regular LDPC code on one channel, may actually

show degraded performance on another channel.

5.1 Performance of the QBC vs. BSC

To begin analysis of the performance of the joint estimator-decoder for the QBC, we have

compared the results of three different QBCs with those obtained by ordinary SPA decoding

for the BSC. The QBCs have varying channel correlation to examine channels with signif-

icantly different memory effects. We wanted to see if performance of the LDPC codes

scaled with the capacity of the channels used; so two of the channels have significantly
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Channel ε α M Cor
QBC 1 0.26 1.0 4 0.08
QBC 2 0.625 1.5 2 0.4
QBC 3 0.8 1.0 4 0.5

Table 5.1: Table of parameters for the three QBC channels used in the simulations shown
in Fig. 5.1

higher capacity than the BSC for the same CBER.

The channel parameters for the three QBCs are given in Table 5.1. The first QBC is a

UQBC (i.e., a FMCC) with a very small correlation and thus its capacity is not significantly

different than the BSC. The effect of memory for this channel is quite weak since it has a

very small correlation value. In the second channel, we use a smaller queue of length

two with a larger ε, resulting in a significantly increased correlation. Furthermore, the

dependency of the next noise symbol on the last queue entry is larger than for the first entry

due to a higher α. The last channel is again a UQBC with queue length four and a value

of ε, which is the highest of the three channels. This channel has the highest correlation

and capacity of the three. The QBCs are numbered in order of increasing capacity for the

same CBER allowing us to examine how the simulated performance scales with channel

capacity.

In Fig. 5.1, we present the results from simulations performed on the three QBCs and

the BSC. The code used was a randomly generated regular-(3,6) LDPC code of length

100,000 bits. The decoder performed a maximum of 200 iterations per block and simu-

lations were run using up to 10,000 blocks (1,000,000,000 bits), though simulations were

terminated early once a sufficient number of bits had been sent to produce accurate results

(as a rule of thumb, in order to measure a Bernoulli statistic on the order of 10−x one should

send at least 10(x+2) bits; we use up to 10(x+3) bits).

The Shannon limit curve shown is the rate-distortion Shannon limit (RDSL) and shows
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Figure 5.1: Comparison of the QBCs from Table 5.1 and the BSC. For these simulations
a length 105, rate-1/2, (3,6)-regular code was used with a maximum of 200 iterations for
decoding.
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the best CBER achievable at the plotted output BER by a rate-1/2 code. In each case the

RDSL was computed using the method described in Section 2.1.4.

The main result that we observe is that the performance of the decoder scales well

with the Shannon limit of the channels. This shows that for channels with memory, that

have considerably higher capacity than the corresponding memoryless channel, significant

performance gains are achievable using the joint estimation/decoding scheme relative to

the interleaved decoding scheme without state-estimation.

The gap between the Shannon limit and the simulated performance (measured at ∼

10−4 BER) is quite consistent for each channel. For the BSC performance is 73% of Shan-

non limit, for QBC 1 it is 74%, QBC 2 it is 76% and QBC 3 it is 68%. By comparing

performance as a percentage of the Shannon limit, we can compare the gap relative to the

limit for channels with different capacities. This is similar to comparing the Shannon limit

gap in decibels for channels such as the AWGN channel where signal and noise power are

given in decibels.

This indicates that for regular LDPC codes, we obtain nearly the same performance

across all the channels. The effectiveness of these codes appear to be universal for all the

channels we have tested. This appears to be a property of regular-LDPC codes because as

we will see in Section 5.4, a different behaviour is observed for irregular LDPC codes.

5.2 Using the QBC to Model GEC Statistics

While the QBC and GECs are in general very different channel models, it is demonstrated

in [36] that for certain parametrizations there exist QBCs and GECs with similar block

transition distributions. This fact can be exploited to produce QBC parametrizations that

closely model or ‘match’ a particular parametrization of the GEC. This also suggests that



CHAPTER 5. RESULTS 95

the QBC could be used to model other more general channel models such as Rayleigh or

Rician correlated fading channels.1

In [36], the authors derive a number of these channel matchings between the GEC

and QBC by minimizing the Kullback-Leibler divergence rate between the channels. They

demonstrate numerically that the capacity of the two channels is nearly the same. Using the

decoding scheme we have developed for the QBC and the decoding scheme for the GEC

from [6, 12, 25], we simulate the transmission of data over one model, coupled with the

decoder for the other. In other words, we mismatch the channel and the decoder to give us

a good idea of how practical these channel matchings are in terms of decoder performance.

In Table 5.2, we study two GECs and their corresponding ‘matched’ QBC. The match

is obtained by searching for a parametrization of the QBC that minimizes the divergence

of the two channels. The CBEP for the GEC is (like the QBC) the long-run proportion of

errors produced by the channel and can be obatined from

CBEP =
g

b + g
Pg +

b

b + g
Pb.

We can see from this table that while the performance of each decoder when operat-

ing on the other channel is worse than when it is operating on its own channel (which

we expect), the performance is still much better than the performance of the memory-

less (interleaved) channel using the BSC model. Thus, channel matching by minimizing

the divergence between the two channels is an effective technique for exploiting channel

memory. We are capable of producing a match that performs better than the alternative of

interleaving the data and assuming the channel is memoryless.

1Modeling correlated Rayleigh and Rician fading using Markov models is the subject of [23]. They also
explore modeling using general BAMNCs and the GEC.
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GEC Channel Parameters:

GEC CBEP Pg Pb g b

Exp. 1 0.09 0.0519 0.6118 0.0450 0.0033
Exp. 2 0.08 0.0439 0.5746 0.0450 0.0033

QBC Channel Parameters

QBC CBEP ε α p M

Exp. 1 0.09 0.5705 0.4168 0.0900 5
Exp. 2 0.08 0.5711 0.4312 0.0800 5

Results:

GEC QBC GEC w/ QBC QBC w/ GEC BSC
Decoder Decoder

Exp 1 1.4E-05 1.2E-05 2.0E-03 5.0E-04 6.5E-02
Exp 2 < 10−6 < 10−6 1.2E-05 < 10−6 6.5E-03

Table 5.2: Results from the comparison of decoding over two GECs and two QBCs that
approximate those GECs. We show performance over the GEC using the QBC decoder and
vice-versa compared with the BSC and correctly matched decoders. For these simulations
a length 105, rate-1/2, (3,6)-regular code was used with a maximum of 200 iterations for
decoding.
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It should be mentioned that although the GEC decoder appears to decode data trans-

mitted over the QBC better than the QBC decoder does with data transmitted over the

GEC, this does not imply that one model is superior. The fact that both results significantly

outperform the memoryless channel serve to demonstrate that the match between the two

channels is good.

5.3 Using Additive Markov Approximations to Model GEC

Statistics

Similar to the concept of matching the QBC to the GEC above, it is possible to use a more

general additive Markov noise channel to model other channels such as the GEC. As was

proposed in Chapter 2, we can use an additive Markov noise channel which has exactly

the same finite-length block distribution and block transition probabilities as the GEC for a

particular parametrization.

We do this by computing the length M block stationary distribution for the noise pro-

cess of the GEC as well as the probability of error given the last M noise symbols for each

possible noise sequence. These are the block stationary distribution and state transition

probabilities of the length M BAMNC model of this GEC.

So for each length M sequence of channel noise symbols (ei−1, . . . , ei−M) we com-

pute the probability of that sequence occurring for that GEC channel and this gives us the

stationary distribution for the BAMNC

PBAMNC(si) = PGEC(ei−1, . . . , ei−M),

= PGEC(e1, . . . , eM),

= PGEC(e1) · P (e2|e1) · · · · · P (eM |e1, ..., eM−1).



CHAPTER 5. RESULTS 98

Channels Parameters:

GEC CBEP Pg Pb g b

Exp. 1 0.09 0.0519 0.6118 0.0450 0.0033
Exp. 2 0.08 0.0439 0.5746 0.0450 0.0033

Results:

GEC GEC w/ BAMNC GEC w/ BAMNC GEC w/ BAMNC BSC
Decoder, M=2 Decoder, M=4 Decoder, M=6

Exp. 1 1.4E-05 5.047e-03 8.094e-04 1.978e-04 6.5E-02
Exp. 2 < 10

−6 3.532e-04 5.654e-06 < 10
−6 6.5e-03

Table 5.3: Results from the comparison of decoding over the GEC using BAMNC approx-
imation decoders versus the GEC decoder. For these simulations a length 105, rate-1/2,
(3,6)-regular code was used with a maximum of 200 iterations for decoding.

The equations and method used to compute the stationary distribution and state-transition

model for the M th-order BAMNC are given in Section 2.2.4.

Using the class of BAMNCs to match the GEC should give us more flexibility than

using the QBC since it is ultimately a subset of that class. For those GECs that are mod-

elled well by a finite-length stationary block distribution and state transition distribution we

should expect decoding results as good or better than those obtained by the QBC model in

the last section.

Our results in Table 5.3 use the GECs from the last section to show how the BAMNC

model performs for different memory lengths. We can see that for M = 4, the BAMNC

outperforms the matched QBC from Table 5.2 which has M = 5. Even for M = 2, the

BAMNC still greatly outperforms the BSC which represents decoding using ideal inter-

leaving.

In Fig. 5.2, we use a similar GEC to that used in Exp. 1 from Table 5.3 to plot the

performance of the GEC decoder vs. the BAMNC modeled decoder for various memory

lengths. As the memory is increased the performance of the BAMNC improves, and we
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Figure 5.2: BER performance of the BAMNC based decoder (M = 1, 2, 3) and the GEC
based decoder over a simulated GEC (Pb = 0.5, g = 0.02, b = 0.002) and Pg varies. For
these simulations a length 105, rate-1/2, (3,6)-regular code was used with a maximum of
200 iterations for decoding.

obtain excellent results even for the relatively short memory lengths shown.

The main drawback to the BAMNC model is its complexity. The BAMNC model used

here is a numerical model produced by finite-length analysis of either another channel

model, or observed statistics. It requires two parameters for each state to define it, one

for the stationary probability of that state and another for the probability of error/state-

transition probability for that state. The QBC on the other hand requires only four parame-

ters for any number of states.

Regardless of this fact, the decoder we use is of linear order complexity in the number

of states and not the number of parameters used. This means that both a BAMNC and a
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QBC of length M will have the same decoder complexity using this finite-state Markov

chain modeled decoder. Thus, the BAMNC modeling technique provides a useful method

for designing a versatile SPA based decoder for channels with memory, even though it may

not be a useful analytical model.

5.4 Performance of Irregular LDPC Codes

Irregular LDPC codes have been shown to significantly outperform regular LDPC codes

for a number of channels. In this work we did not develop any techniques for finding good

irregular codes for the QBC, since it is very difficult for channels with multiple parameters.

Instead, we have examined the performance of irregular codes developed for other channels

over the QBC.

Irregular LDPC codes are generally designed with a particular channel model in mind

using density evolution (DE) [27]. While the work on designing irregular LDPC codes has

focused almost solely on memoryless channels, there has also been some work done for the

GEC [6, 7].

The results for regular LDPC codes showed that the performance of the code was not

significantly affected by the choice of channel, but remained consistent relative to the ca-

pacity of the channel. We are curious if the same will be true for irregular codes, or if the

choice of channel model is more important in the design and implementation of irregular

codes than it is for regular LDPC codes. We used two different codes for these simulations.

The degree distributions for the two codes are given in Table 5.4.

The first set of simulations were run using Code 1 which is taken from [26] and was

designed using density evolution over the AWGN channel. This rate-1/2 code shows a

significant gain in performance over the (3,6) regular LDPC code for both the AWGN and



CHAPTER 5. RESULTS 101

Variable Node Degree Distribution:

dv λ2 λ3 λ4 λ5 λ8 λ10 λ12

Code 1 0.24426 0.25907 0.01054 0.05510 0.01455 0.01275 0.40373
Code 2 0.08 0.63 - - 0.29 - -

Parity-Check Node Degree Distribution:

dc ρ6 ρ7 ρ8 ρ9

Code 1 - 0.25475 0.73438 0.01087
Code 2 0.0113 0.9887 - -

Table 5.4: Variable node (dv) and parity-check node (dc) degree distributions for the two
irregular codes used in the simulation results below. The two codes generated were of
length 105 bits

the BSC. In Fig. 5.3, we plot simulations of the BSC and QBC 1 and 2 from Table 5.1.

We can see that the performance improvement for the BSC is quite significant. The two

QBCs give very different results however. QBC 1 shows performance gains similar to those

obtained by the BSC but QBC 2 shows performance degradation relative to the regular-(3,6)

code. The irregular code actually performs worse than the regular code on this channel.

The second set of simulations were run using Code 2 which is taken from [7] which is

a rate 1/2 code designed using density evolution over the GEC with parameters Pg = g =

b = 0.01 and Pb varying. In Fig. 5.4, we once again notice a significant improvement over

the (3,6) regular LDPC code for both the GEC and QBC 1. However, it is clear that this

performance gain is less than it was for QBC 1 using Code 1. The QBC 2 simulation still

shows degradation relative to the regular code.

Due to the fact that QBC 1 performed well with both codes we ran a final simulation

comparing Code 1 and Code 2 for the BSC, GEC and QBC 1 with results shown in Fig. 5.5.

Clearly it is important that irregular LDPC codes be designed with the channel model

intended in mind. However, as can be seen in the comparison of the GEC and the QBC
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Figure 5.3: Comparison of decoding of the QBC 1 and 2 and the BSC using Code 1 from
[26].
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Figure 5.4: Comparison of decoding of the QBC 1 and 2 and a GEC using Code 2 from [7].
GEC parameters are Pg = g = b = 0.01 and Pb varies.
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Figure 5.5: Comparison of Code 1 from [26] and Code 2 from [7] on the BSC, GEC and
QBC 1. GEC parameters are again Pg = g = b = 0.01 and Pb varies.
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1, though these models are not statistically similar they both benefit greatly from the same

irregular code designed for that GEC (Code 2). Interestingly, the QBC 1 also benefited

greatly from the irregular code designed for the AWGN channel which is a completely

memoryless channel.

The QBC 1 which performed well using both codes is, in fact, a nearly memoryless

channel with very weak correlation. Furthermore, the GECs used also has very weak cor-

relation. Thus, in both cases these channels are nearly memoryless channels to begin with.

Due to the nearly memoryless nature of QBC 1, it is not that surprising that it performs

well on a code designed for a memoryless channel. Furthermore, since the GEC used in

Fig. 5.4 is also a nearly memoryless channel, then it makes sense that a code designed

for this channel is essentially a code designed for a nearly memoryless channel. There-

fore, we would also expect that it performs well when used on other nearly memoryless or

memoryless channels.

The results we have obtained seem to suggest that irregular codes designed for memo-

ryless or nearly memoryless channels perform well and in fact, nearly equally well on other

channels which are memoryless or nearly memoryless. The comparison of the two codes

Fig. 5.5 further suggest that even though Code 1 was not designed for either QBC 1 and the

GEC that it is a better code overall for all three channels than Code 2, likely due to the fact

that it is a more complex degree distribution. It is clear however that the GEC used will

achieve good results with codes designed for memoryless channels.

Unfortunately, these results do not tell us much about the performance of irregular

codes for channel which do have significant memory effects such as QBC 2 and 3. What

we do learn is that for a channel with high correlation like QBC 2 it is still better to exploit

the channel memory than it is to use an irregular code with excellent performance over an

interleaved version of the channel.
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Conclusion

In this work we have presented a method of decoding low-density parity-check codes over

channels with binary additive Markov noise using the sum-product algorithm.

We factor the probability distribution for the optimum decoding rule which maximizes

the probability that x̂n was sent given that yn was received, where x̂n is our decoders

estimate of the value of xn, the transmitted codeword. This is given by the joint probability

of the block-channel transition probabilities and the parity-check functions of the code.

By incorporating the block transition probabilities for a channel with Markov memory this

rule can be extended to channels with memory as well. Thus, we can obtain a factorization

which includes the factored channel-state transition probabilities of the Markov process for

the channel.

The factorization is represented graphically as a relationship between factor equations

and the variables which participate in them. By iteratively applying the SPA to this fac-

torization we are able to compute results that converge very close to the optimal bitwise

MAP decoding rule, which minimizes the probability of bit error. The SPA decoder is a

linear time algorithm with respect to the length of the codewords. The result obtained is,
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admittedly, sub-optimal due to cycles in the graphs of LDPC codes; however, the SPA is a

significant reduction in complexity compared with the optimal solution to MAP decoding,

which is NP hard.

This extended SPA decoder is a joint estimator-decoder capable of simultaneous channel-

state estimation and decoding. The SPA based joint estimator-decoder is also a linear time

algorithm with respect to both the block-length of the code and the number of states of

the channel (though it is exponential in M , the memory of the channel for the QBC and

BAMNC models).

6.1 Significance of the Results

The results from the simulated performance of the SPA based joint estimator-decoder show

that joint estimation-decoding performs as well on the QBC as the standard SPA decoder

performs on the memoryless BSC. In other words, the SPA is just as capable of computing

the probabilities for approximate MAP decoding of more complex channel models such as

the QBC, as it is for decoding very simple memoryless models like the BSC.

This demonstrates that significant performance gains are achievable using joint estimation-

decoding vs. interleaving and decoding assuming the channel is memoryless. These gains

would seem to outweigh the added complexity of the estimator-decoder at least for channels

which have sufficiently greater capacity than the equivalent memoryless channel. However,

in order to achieve these gains in real world communication systems, it is necessary to be

able to model the real world channel statistics accurately.

By minimizing the divergence rate between QBC and GEC models as well as com-

puting M th-order BAMNC models for the GEC, our simulations demonstrate that channel

matching based on finite-order block statistics is an effective tool. While the results ob-
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tained show that the decoder performs best when it has precise knowledge of the channel,

we see that an approximation is sufficient to effectively exploit the channel memory. In

real-world communications systems, developing exact models of the channel is impractical.

These simulations demonstrate that for the GEC, QBC and BAMNC models, reasonable

performance gains are still achievable through channel matching. This suggests that chan-

nel matching using the QBC or BAMNC model could be used to exploit channel memory

in real channels with worthwhile results.

There are two parts to an error-correcting coding system, the encoder and the decoder.

We have shown the effectiveness of the joint estimator-decoder in improving performance

over channels with memory. We also examined the effect of code design on the system’s

performance through the use of irregular LDPC codes. Simulations are performed using

two different irregular LDPC codes, which have been designed to perform much better

than the (3,6)-regular LDPC code on the BSC and a nearly memoryless GEC. We observe

that the parameters of the QBC that the code is used on have a substantial effect on the

performance of the code. Both irregular codes were designed for channels with very weak

correlation (in the case of the first code, no correlation at all). We see that even when used

over the QBC, these codes perform very well if the QBC’s correlation is also weak. How-

ever, when we simulate these codes over a QBC with strong correlation the performance

of these codes is actually worse than the performance of the regular LDPC code on this

channel though still better than the weakly correlated QBC.

It would seem that for channels with a strongly correlated noise process the choice

of channel model used in the code design is much more important than it is for channels

with weak correlation. Unfortunately, no work has been done constructing irregular LDPC

codes for strongly correlated channels, so there is still much about the design of irregular

LDPC codes for channels with Markov memory that remains to be explored.



CHAPTER 6. CONCLUSION 109

6.2 Future Work

A number of areas of future research are indicated by the results of this thesis are:

• Developing and testing a decoding algorithm with linear complexity in M for the

QBC (i.e., sub-linear in the number of states of the channel).

• Extending the work from [23] and [37] to explore modeling hard-decision correlated

Rayleigh and Rican fading with the QBC and BAMNC and testing SPA decoder

performance over using these models.

• Characterizing the QBC parameters to modify density evolution for this channel as

was done for the GEC in [8].

• Design of irregular LDPC codes which outperform regular LDPC codes for the QBC

using density evolution.
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