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Abstract— The performance of Reed-Solomon codes over the
binary additive Markov noise channel (BAMNC) is analyzed.
A recursive expression for the probability of m error symbols
in a block of n symbols is derived using the generating series
approach, thus facilitating the exact calculation of the proba-
bility of codeword error under bounded distance decoding. An
approximation to this probability is obtained, and it is shown
to be tight when the noise correlation is not very large. In this
case, interleaving the channel at the symbol level can be avoided.
Furthermore, a wide range of channel conditions, under which
channel interleaving at the bit level can be avoided, is identified.

I. I NTRODUCTION

Burst-error correcting codes are of prime theoretical and
practical interest due to the bursty nature of real-world wireless
digital communication channels. An important class of non-
binary burst-error correcting codes used widely in data trans-
mission and storage systems is the family of Reed-Solomon
(RS) codes (e.g., [1], [2]). Conventional communication sys-
tems employing these codes are designed for memoryless
channels, which is not an accurate model for wireless fading
channels. As a consequence, interleaving is used to render
the channel memoryless; this introduces additional delay and
complexity to the system. Furthermore, such interleaved sys-
tem fails to exploit the benefits of the statistical memory of
the channel noise. When non-binary codes are sent over a
stationary binary additive noise channel with memory, two
interleaving strategies are worth considering: interleaving the
code (or channel) bits which reduces the channel to the
memoryless binary symmetric channel (BSC) (under perfect or
infinite interleaving depth) and interleaving the code symbols.

The performance of non-interleaved RS codes on corre-
lated fading channels is analyzed in [3]–[6] using a two
step procedure. First, a channel model is introduced for the
generation of the bit or symbol error process, and then a
formula for the probability of codeword error (PCE) under
bounded distance decoding is derived for the proposed model.
In [3], the channel is modeled via the Gilbert-Elliott channel
[7] whose parameters are calculated using a simple threshold
model. An approximation to the PCE is derived under the
assumption that the channel state does not change during
each symbol transmission. In [4], level crossing statistics are
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applied to characterize the fading arrival process and the fading
durations, and the PCE is expressed in terms of the probability
distribution of the fading durations. In [5], the bit error
process resulting from the hard-decision demodulation of bi-
nary frequency-shift keying modulated signals over correlated
Rician fading channels is modeled via a Fritchman channel.
Furthermore, an analytical method based on the generating
series approach for calculating the PCE of RS codes over finite
state channels is presented. In [6] anL-state Markov chain
is proposed to characterize the correlation of symbol errors.
Imperfect (finite-length) symbol interleaving is also considered
in [4], [5], [8].

The objective of this paper is to identify the range of
channel parameters for which perfect interleaving of RS codes
(at either the bit or symbol level) does not yield improved
performance. To make the analytical derivation simple, we
consider the binary additive (first-order) Markov noise channel
(BAMNC), but this study can also be conducted for higher-
order Markov models which can accurately model correlated
fading channels [9]. Using the approach of [5], we first derive
a recursive expression for the probability ofm error symbols
in a block of n symbols and determine the exact PCE when
RS codes are sent over the BAMNC. Then we derive an
approximation to the PCE under the assumption that the noise
within a symbol is Markovian but is independent from symbol
to symbol (i.e., the PCE under perfect symbol interleaving).
We show that the PCE under perfect symbol interleaving is
superior to that under perfect bit interleaving. We compare
the approximated PCE with the exact PCE numerically for
four different RS codes to find channel conditions – described
in terms of the channel bit error rate (CBER) and noise
correlation – for which the approximation is accurate. For
such conditions, symbol interleaving can be discarded or
avoided. Finally, we compare the exact PCE for the BAMNC
with the exact PCE for the BSC (the BAMNC under perfect
bit interleaving) and determine a wider range of channel
parameters under which bit interleaving can be avoided.

II. SYSTEM DESCRIPTION

A. Channel Model

We consider a BAMNC whose output symbolYk at time
k is described byYk = Xk ⊕ Zk, k = 1, 2, · · · , where
⊕ denotes addition modulo-2,Xk ∈ {0, 1} is the kth input
symbol andZk ∈ {0, 1} is the ith noise symbol. We assume



that the input and noise processes are independent of each
other. Furthermore, we assume that the noise process{Zk}

∞

k=1

is a stationary (first-order) Markov with transition probability
matrix given by

P = [Pij ] =

[

ε + (1 − ε)(1 − p) (1 − ε)p
(1 − ε)(1 − p) ε + (1 − ε)p

]

where Pij , Pr(Zk = j|Zk−1 = i), i, j ∈ {0, 1}. Here
p = Pr(Zk = 1) is the CBER, andε , [Pr(Zk = 1, Zk−1 =
1) − p2]/[p(1 − p)] is the correlation coefficient of the noise
process. We assume that0 < p < 1/2 and that0 ≤ ε <
1, ensuring that the noise process is irreducible (it is also
general in the sense of being equivalent to all stationary binary
Markov processes with nonnegative correlation coefficient).
When ε = 0, the noise process becomes independent and
identically distributed and the resulting channel reducesto the
memoryless BSC channel with crossover probabilityp. The
state of the Markov channel at timek is denoted bySk and
given bySk = Zk. For z ∈ {0, 1}, let P(z) be a2× 2 matrix
whoseijth entry is given byPr(Zk = z, Sk = j|Sk−1 = i).
Hence,

P(0) =

[

ε + (1 − ε)(1 − p) 0
(1 − ε)(1 − p) 0

]

,

P(1) =

[

0 (1 − ε)p
0 ε + (1 − ε)p

]

.

Note thatP(0) + P(1) = P. Let zn = (z1, z2, · · · , zn) be a
binary noise sequence of lengthn, then

Pr(Zn = zn) = Π
T

(

n
∏

i=0

P(zi)

)

1

where the superscript[·]T indicates the transpose of a matrix,
Π = [1 − p, p]T is the stationary distribution, and1 is a

column matrix with all entries being 1. This channel model is
a special case of the Gilbert-Elliott channel, realized by setting
the cross-over probabilities of the “good” and “bad” channel
components [7] equal to zero and one, respectively.

B. Reed-Solomon Codes

An (n, k) RS code over the Galois field GF(2b) is a non-
binary linear block code whose codewords are of length
n = 2b − 1 symbols. Each codeword containsk information
symbols, the rate of the code isR = k/n and the code can
correct up tot = ⌊n−k

2
⌋ symbols (under bounded distance

decoding). Each symbol in GF(2b) can be mapped one-to-one
to a binaryb-tuple. As a result, the non-binary codewords are
sent over the BAMNC by transmitting the equivalent binary
representation for each codeword. A transmitted symbol is
received correctly if the noise corrupting it is a sequence
of zeros of lengthb. Otherwise, the transmitted symbol is
received incorrectly.

III. PERFORMANCEANALYSIS

A. Exact Probability of Codeword Error

For at-error correcting code using bounded distance decod-
ing, the probability of correct decodingPc and the probability

of codeword error PCE are given by

Pc =

t
∑

m=0

P (m, n) and PCE= 1 − Pc,

respectively, whereP (m, n) is the probability thatm symbol
errors occur in a block ofn symbols. Given indetermi-
nates s and z, define the formal power seriesP (s, z) =
∑

∞

n=0

∑n

m=0
P (m, n) sm zn. For a 2b-ary code transmitted

over a binary finite-state channel,P (s, z) is given by [5]

P (s, z) , Π
T
[

I − z{P(0)b + s(Pb − P(0)b)}
]−1

1 (1)

where I is the 2 × 2 identity matrix. ThusP (m, n) can be
derived as the coefficient ofsmzn in P (s, z) above [5].

For the BAMNC, it can be shown by induction (see [10])
that for any integern

P
n =

[

εn + (1 − p)(1 − εn) p(1 − εn)
(1 − p)(1 − εn) εn + (1 − εn)p

]

.

It can also be shown by induction that for any integern

P(0)n =

[

(ε + (1 − p)(1 − ε))n 0
(1 − ε)(1 − p)(ε + (1 − p)(1 − ε))n−1 0

]

.

Since P (s, z) in (1) is a ratio of two polynomials, a
recursive expression forP (m, n) is obtained by examining
the denominator polynomial, which is the determinant of the
matrix I − z{P(0)b + s(Pb − P(0)b)}. Specifically,

P (m, n) = [ε + (1 − ε)(1 − p)]bP (m, n − 1)

−[(ε + (1 − ε)(1 − p))b − (1 + εb)]P (m − 1, n − 1)

−[(ε + (1 − ε)(1 − p))b−1(εb(1 − p) + εp)]P (m − 1, n − 2)

−[εb − (εb(1 − p) + pε)(ε + (1 − ε)(1 − p))b−1]
×P (m − 2, n − 2)

(2)for n ≥ 2, with initial conditions given by
P (m, n) = 0 if m, n < 0 or m < n

P (0, 0) = 1

P (0, 1) = (1 − p)(ε + (1 − ε)(1 − p))b−1

P (1, 1) = 1 − (1 − p)(ε + (1 − ε)(1 − p))b−1.

If b = 1, then we have binary codes, and for this special case
P (m, n) reduces to

P (m, n) = (ε + (1 − ε)(1 − p))P (m, n − 1)+

(ε + (1 − ε)p)P (m − 1, n − 1) − εP (m − 1, n − 2).

This is a simpler expression than the one derived in [10] for
the same binary system as it contains one less term.

B. Approximate Probability of Codeword Error

We herein assume that the binary noise process is only
Markovian within each symbol (of lengthb bits), and it
is independent between symbols. Obviously, this assumption
(which can be realized via perfect symbol interleaving) does
not hold when RS codes are directly sent over the BAMNC.
Thus, the correspondingP (m, n) for this new system, denoted



by P ′(m, n), will approximate the actualP (m, n) given in (2).
We obtain

P
′(m, n) =

 

n

m

!

Pr(1 symbol error)m Pr(No symbol error)n−m

=

 

n

m

!

h

1 − (1 − p)[ε + (1 − ε)(1 − p)]b−1
im

h

(1 − p)[ε + (1 − ε)(1 − p)]b−1
i(n−m)

. (3)

In this case, the probability of correct decoding for at-
error correcting RS code isP ′

c =
∑t

m=0
P ′(m, n), while the

probability of codeword error for this code (under bounded
distance decoding) is simply PCE′ = 1−P ′

c. Note that when
the channel is a BSC (i.e., whenε = 0), this approximation
is exact as the channel becomes memoryless.

C. Symbol Interleaving is Always Better than Bit Interleaving

For 0 ≤ x ≤ n, let

f(x) ,
[

1 − (1 − p)(ε + (1 − ε)(1 − p))b−1
]x

×
[

(1 − p)(ε + (1 − ε)(1 − p))b−1
]n−x

,

g(x) ,
[

1 − (1 − p)b
]x [

(1 − p)b
]n−x

.

We notice that if ε 6= 0 and b > 1, f(0) > g(0) and
f(n) < g(n). Also, g(x) is monotone decreasing, constant
or monotone increasing withx depending on whether(1−p)b

is larger than, equal to, or less than 1/2, respectively. A similar
behavior is observed forf(x) depending on how(1 − p)[ε +
(1−ε)(1−p)]b−1 compares with1/2. Therefore, ifε 6= 0 and
b > 1, (1 − p)b < (1 − p)[ε + (1 − ε)(1 − p)]b−1 and there
exists a unique value ofx, sayx0, such thatf(x0) = g(x0).
Specifically,x0 is given byx0 = n (lnA/ lnB), where

A ,
(1 − p)b

(1 − p)(ε + (1 − ε)(1 − p))b−1
,

B ,
[1 − (1 − p)(ε + (1 − ε)(1 − p))b−1][1 − p]b

[(1 − p)(ε + (1 − ε)(1 − p))b−1][1 − (1 − p)b]
.

For example, ifp = 0.01 and ε = 0.3, thenx0 = 17.93 for
b = 8 andx0 = 7.49 for b = 7. Now letting t be an integer
less than or equal to⌊x0⌋ yields

t
∑

i=0

(

n

i

)

f(i) >

t
∑

i=0

(

n

i

)

g(i). (4)

The right-hand side of (4) is the probability of correct decoding
for a t-error correcting RS code over GF(2b) when sent over
the BSC, while the left-hand side isP ′

c. Furthermore, ift is
larger than⌊x0⌋, thenf(x) < g(x) for t + 1 ≤ x ≤ n. Then

PCE′ =

n
∑

i=t+1

(

n

i

)

f(i) <

n
∑

i=t+1

(

n

i

)

g(i) (5)

where the right-hand side of (5) is the probability of codeword
error for the BSC. Thus we have shown that the code’s perfor-
mance under perfect symbol interleaving is always better when
compared with its performance under perfect bit interleaving.
This result can also be shown for a larger class ofM -order
Markov channels [9] as well as the Gilbert-Elliott channel [7].

IV. RESULTS

We consider four RS codes given in Table I. First, we vali-
date our analytical derivation ofP (m, n) in (2) by comparing
the PCE calculated usingP (m, n) with the PCE obtained
via simulations (implemented using the Berlekamp-Massey
decoding algorithm). The results, shown in Fig. 1 for codeC4

and ε = 0.1, 0.9, indicate a complete agreement between the
simulations and the numerical calculations (a similar behavior
is observed for the other codes). Thus (2) provides an effective
tool for determining PCE without the need for simulations
which can be complex and long for low PCE values.

A. When Can Symbol Interleaving Be Avoided ?

Equipped with (2) and (3), we determine the regions of
ε and p for which our approximation is accurate (within an
absolute relative error less than or equal to0.1) for the four
codes of Table I. In Table II, the(p, ǫ) values for which our
approximation is accurate are given in the form0 ≤ ǫ ≤ ǫmax

for values ofp chosen so that PCE is between10−5 and10−1.
Thus for these values of(p, ǫ), symbol interleaving can be
avoided.

B. When Can Bit Interleaving Be Avoided ?

We evaluate the RS codes of Table I on the BAMNC
using (2) to systematically identify the(p, ǫ) values for which
the codes performance without interleaving (withǫ > 0) is
superior to that with perfect bit interleaving (withǫ = 0). The
results, withǫ shown in the formǫmin ≤ ǫ ≤ ǫmax for p
given, are summarized in Tables III-VI (the dash symbols in
the tables indicate that perfect bit interleaving yields better
performance for the specifiedp value). Thus for such channel
conditions, not only can one forgo additional delay and com-
plexity by avoiding bit interleaving, but improved performance
can also be achieved as illustrated in Fig. 2.

V. CONCLUSIONS

The performance of non-interleaved RS codes over a simple
binary channel with memory, the BAMNC, was analyzed and
evaluated. It was shown that for any given RS code using
standard encoding/decoding procedures (that do not exploit
the channel memory), there is a (sometimes wide) range of
channel conditions for which the code is well matched to the
channel in such way that the code provides the best perfor-
mance when no (symbol or bit) interleaving is employed. The
design of an RS decoding technique that exploits the channel
memory can lead to further performance improvements and is
an interesting topic for future work.
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TABLE I

PARAMETERS OF THE CONSIDEREDRS CODES.

code n k t R

C1 255 221 17 0.867
C2 255 129 63 0.506
C3 127 111 8 0.874
C4 127 65 31 0.511

TABLE II

(p, ε) INTERVALS FOR WHICH TO AVOID SYMBOL INTERLEAVING.

code p εmax

7 × 10−3 0.2
C1 5 × 10−3 0.1

4 × 10−3 0.06
4 × 10−2 0.3

C2 3 × 10−2 0.13
2.3 × 10−2 0.06
1 × 10−2 0.38

C3 5 × 10−3 0.12
4 × 10−3 0.08
4 × 10−2 0.26

C4 3 × 10−2 0.13
2 × 10−3 0.04

TABLE III

(p, ǫ) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC1 .

p εmin εmax

≥ 3 × 10−2 0 1
3 × 10−3 0 0.9
2 × 10−3 0 0.83
1 × 10−3 0.14 0.62

≤ 9 × 10−4 - -

TABLE IV

(p, ǫ) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC2 .

p εmin εmax

≥ 5 × 10−2 0 1
1 × 10−2 0 0.87
5 × 10−3 0 0.73
4 × 10−3 0 0.64

3.8 × 10−3 0.11 0.61
3.6 × 10−3 0.33 0.54

≤ 3.5 × 10−3 - -

TABLE V

(p, ǫ) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC3 .

p εmin εmax

≥ 5 × 10−3 0 1
3 × 10−3 0 0.87
2 × 10−3 0 0.78

1.5 × 10−3 0 0.69
1.2 × 10−3 0.29 0.53
≤ 1 × 10−3 - -

TABLE VI

(p, ǫ) VALUES FOR WHICH TO AVOID BIT INTERLEAVING FOR CODEC4 .

p εmin εmax

≥ 5 × 10−2 0 1
1 × 10−2 0 0.82
7 × 10−3 0 0.73
5 × 10−3 0.05 0.58

≤ 4.5 × 10−3 - -
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Fig. 1. PCE for codeC4: simulation (sim.) vs analytical (calc.) results.
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Fig. 2. PCE for codeC1: BAMNC vs BSC.


